101
|
Takano Y, Shimokata T, Urakawa H, Kikumori T, Ando Y. Long-term response to MEK inhibitor monotherapy in a patient with papillary thyroid carcinoma harboring BRAF V600E mutation. Int Cancer Conf J 2024; 13:184-188. [PMID: 38962055 PMCID: PMC11217198 DOI: 10.1007/s13691-024-00670-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/04/2024] [Indexed: 07/05/2024] Open
Abstract
Solid tumors harboring mutations in the Braf gene (BRAF) are currently treated by combination Braf/MEK inhibitor therapy, and there is an extensive literature on patient response rates. Alternatively, few studies have documented the clinical response of BRAF mutation-positive solid tumors to MEK inhibitor monotherapy. We report the case of a 57-year-old female diagnosed with papillary thyroid carcinoma and progressive lung metastases initially treated by total thyroidectomy and subsequent thyroid-stimulating hormone suppression therapy. Next-generation sequencing revealed that the tumor harbored a BRAF V600E mutation, and the patient was enrolled in a clinical study of the oral MEK1/2 inhibitor binimetinib. Shortly after starting treatment, the patient experienced pneumothorax due to rapid regression of lung metastases, and computed tomography after 6 months of binimetinib treatment revealed a partial sustained response. One year later, the dose was reduced because of an acneiform rash. After 5 years of binimetinib treatment, lung metastases had regrown, and treatment was switched to the oral multikinase inhibitor lenvatinib. This case demonstrates the potential of MEK inhibitor monotherapy as an alternative treatment for BRAF mutation-positive papillary thyroid carcinoma.
Collapse
Affiliation(s)
- Yuko Takano
- Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital, Nagoya, Japan
- Department of Breast and Endocrine Surgery, Nagoya University Hospital, Nagoya, Japan
| | - Tomoya Shimokata
- Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital, Nagoya, Japan
| | - Hiroshi Urakawa
- Department of Advanced Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Toyone Kikumori
- Department of Breast and Endocrine Surgery, Nagoya University Hospital, Nagoya, Japan
| | - Yuichi Ando
- Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital, Nagoya, Japan
- Department of Advanced Medicine, Nagoya University Hospital, Nagoya, Japan
| |
Collapse
|
102
|
Kawaguchi Y, Watanabe Y, Miyakita Y, Ohno M, Ogawa C, Takahashi M, Yanagisawa S, Mukai T, Igaki H, Sugino H, Yoshida A, Narita Y. Successful treatment of pediatric patients with high-grade gliomas featuring leptomeningeal metastases by targeting BRAF V600E mutations with dabrafenib plus trametinib: two illustrative cases. Int Cancer Conf J 2024; 13:256-262. [PMID: 38962052 PMCID: PMC11217217 DOI: 10.1007/s13691-024-00674-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/13/2024] [Indexed: 07/05/2024] Open
Abstract
A combination of BRAF and MEK inhibitors is reported to be effective for gliomas with the BRAF V600E mutation; however, its efficacy in gliomas with leptomeningeal metastases (LMM) is still unknown. In this report, we describe two pediatric patients with high-grade glioma featuring the BRAF V600E mutation who were treated with dabrafenib and trametinib for LMM. Both 2 cases underwent craniotomy for primary intracranial lesions and were diagnosed as a high-grade glioma with BRAF V600E mutation; one case was consistent with anaplastic pleomorphic xanthoastorocytoma, the other was epithelioid glioblastoma. They received standard treatment for the lesions but subsequently were found to have new lesions including multiple spinal dissemination. We started administering dabrafenib and trametinib. Within a few days of starting treatment, the symptoms improved dramatically and MRI performed one month after the prescription of the two drugs demonstrated remission of both brain and spinal lesions. This report shows that dabrafenib and trametinib are effective not only for recurrent lesions but also for LMM in pediatric patients.
Collapse
Affiliation(s)
- Yuki Kawaguchi
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Yuko Watanabe
- Department of Pediatric Oncology, National Cancer Center, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Yasuji Miyakita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Makoto Ohno
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Chitose Ogawa
- Department of Pediatric Oncology, National Cancer Center, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Masamichi Takahashi
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Shunsuke Yanagisawa
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Takayuki Mukai
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Hiroshi Igaki
- Department of Radiation Oncology, National Cancer Center, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Hirokazu Sugino
- Department of Diagnostic Pathology, National Cancer Center, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| |
Collapse
|
103
|
Donzé C, Leenhardt F, Vinches M, Eberlé MC, Fersing C. Clinical Pharmacy Initiatives Contribute to the Excellent Efficacy of the Dabrafenib/Trametinib Combination for Iodine-Refractory Thyroid Carcinoma: A Case Report. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1037. [PMID: 39064466 PMCID: PMC11278742 DOI: 10.3390/medicina60071037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024]
Abstract
A 76-year-old female patient presented with an iodine-refractory papillary thyroid carcinoma (PTC), diagnosed eight years earlier, with several lymph node recurrences requiring successive surgeries. Fluorodeoxyglucose ([18F]FDG) positron emission tomography/computed tomography (PET/CT) imaging revealed a new unresectable loco-regional recurrence. The patient was diagnosed with a somatic BRAF V600E mutation. Therefore, dabrafenib and trametinib combination therapy was introduced and closely monitored by a dedicated multidisciplinary team, involving pharmaceutical consultations. As early as six weeks after treatment initiation, the patient reported multiple adverse events (AEs) to the clinical pharmacy team, who provided advice on resolving AEs or improving tolerance. Close interprofessional collaboration among healthcare workers involved in the care pathway allowed for the identification of the most opportune times for temporary suspension of treatment (four suspensions over seven months) or dose reduction (two reductions over 3.5 months). This resulted in a total treatment duration (one year) longer than the average times reported in the literature. The patient showed a rapid and excellent response to treatment immediately after initiation, culminating in a complete metabolic response assessed by [18F]FDG PET/CT imaging at nine months. Twenty-five months after treatment discontinuation, the disease remained controlled. Overall, dabrafenib and trametinib combination could offer excellent outcomes in selected patients with refractory BRAF-mutated PTC, with additional clinical pharmacy initiatives allowing for the optimized management of AEs and prolonged treatment periods.
Collapse
Affiliation(s)
- Charlotte Donzé
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University of Montpellier, 34298 Montpellier, France
| | - Fanny Leenhardt
- Pharmacy Department, Institut Régional du Cancer de Montpellier (ICM), University of Montpellier, 34298 Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, University of Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34090 Montpellier, France
| | - Marie Vinches
- Medical Oncology Department, Institut Régional du Cancer de Montpellier (ICM), University of Montpellier, 34298 Montpellier, France
| | - Marie-Claude Eberlé
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University of Montpellier, 34298 Montpellier, France
| | - Cyril Fersing
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University of Montpellier, 34298 Montpellier, France
- IBMM, Univ Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| |
Collapse
|
104
|
Di Leo L, Pagliuca C, Kishk A, Rizza S, Tsiavou C, Pecorari C, Dahl C, Pacheco MP, Tholstrup R, Brewer JR, Berico P, Hernando E, Cecconi F, Ballotti R, Bertolotto C, Filomeni G, Gjerstorff MF, Sauter T, Lovat P, Guldberg P, De Zio D. AMBRA1 levels predict resistance to MAPK inhibitors in melanoma. Proc Natl Acad Sci U S A 2024; 121:e2400566121. [PMID: 38870061 PMCID: PMC11194594 DOI: 10.1073/pnas.2400566121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024] Open
Abstract
Intrinsic and acquired resistance to mitogen-activated protein kinase inhibitors (MAPKi) in melanoma remains a major therapeutic challenge. Here, we show that the clinical development of resistance to MAPKi is associated with reduced tumor expression of the melanoma suppressor Autophagy and Beclin 1 Regulator 1 (AMBRA1) and that lower expression levels of AMBRA1 predict a poor response to MAPKi treatment. Functional analyses show that loss of AMBRA1 induces phenotype switching and orchestrates an extracellular signal-regulated kinase (ERK)-independent resistance mechanism by activating focal adhesion kinase 1 (FAK1). In both in vitro and in vivo settings, melanomas with low AMBRA1 expression exhibit intrinsic resistance to MAPKi therapy but higher sensitivity to FAK1 inhibition. Finally, we show that the rapid development of resistance in initially MAPKi-sensitive melanomas can be attributed to preexisting subclones characterized by low AMBRA1 expression and that cotreatment with MAPKi and FAK1 inhibitors (FAKi) effectively prevents the development of resistance in these tumors. In summary, our findings underscore the value of AMBRA1 expression for predicting melanoma response to MAPKi and supporting the therapeutic efficacy of FAKi to overcome MAPKi-induced resistance.
Collapse
Affiliation(s)
- Luca Di Leo
- Melanoma Research Team, Center for Autophagy, Recycling and Disease, Danish Cancer Institute, Copenhagen2100, Denmark
| | - Chiara Pagliuca
- Melanoma Research Team, Center for Autophagy, Recycling and Disease, Danish Cancer Institute, Copenhagen2100, Denmark
| | - Ali Kishk
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux4365, Luxembourg
| | - Salvatore Rizza
- Redox Biology Group, Danish Cancer Institute, Copenhagen2100, Denmark
| | - Christina Tsiavou
- Melanoma Research Team, Center for Autophagy, Recycling and Disease, Danish Cancer Institute, Copenhagen2100, Denmark
| | - Chiara Pecorari
- Redox Biology Group, Danish Cancer Institute, Copenhagen2100, Denmark
| | - Christina Dahl
- Molecular Diagnostics Group, Danish Cancer Institute, Copenhagen2100, Denmark
| | - Maria Pires Pacheco
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux4365, Luxembourg
| | - Rikke Tholstrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense5230, Denmark
| | - Jonathan Richard Brewer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense5230, Denmark
| | - Pietro Berico
- Department of Pathology, New York University Grossman School of Medicine, New York, NY10016
| | - Eva Hernando
- Department of Pathology, New York University Grossman School of Medicine, New York, NY10016
| | - Francesco Cecconi
- Cell Stress and Survival, Center for Autophagy, Recycling and Disease, Danish Cancer Institute, Copenhagen2100, Denmark
- Faculty of Medicine and Surgery, Università Cattolica del “Sacro Cuore”, Fondazione Policlinico Gemelli—Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome00136, Italy
| | - Robert Ballotti
- Université Côte d’Azur, Nice06200, France
- Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020, Centre Méditerranéen de Médecine Moléculaire, Nice06200, France
| | - Corine Bertolotto
- Université Côte d’Azur, Nice06200, France
- Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020, Centre Méditerranéen de Médecine Moléculaire, Nice06200, France
| | - Giuseppe Filomeni
- Redox Biology Group, Danish Cancer Institute, Copenhagen2100, Denmark
| | - Morten Frier Gjerstorff
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense5230, Denmark
- Department of Oncology, Odense University Hospital, Odense5000, Denmark
| | - Thomas Sauter
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux4365, Luxembourg
| | - Penny Lovat
- Translational and Clinical Research Institute, Medical School, Newcastle University, Newcastle upon TyneNE2 4HH, United Kingdom
| | - Per Guldberg
- Molecular Diagnostics Group, Danish Cancer Institute, Copenhagen2100, Denmark
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense5230, Denmark
| | - Daniela De Zio
- Melanoma Research Team, Center for Autophagy, Recycling and Disease, Danish Cancer Institute, Copenhagen2100, Denmark
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense5230, Denmark
| |
Collapse
|
105
|
Grabbe P, Borchers MS, Gschwendtner KM, Strobel S, Wild B, Kirchner M, Kälber K, Rendon A, Steininger J, Meier F, Hassel JC, Bieber C. An Online Decision Aid for Patients With Metastatic Melanoma—Results of the Randomized Controlled Trial “PEF-Immun”. DEUTSCHES ARZTEBLATT INTERNATIONAL 2024; 121:385-392. [PMID: 38566437 PMCID: PMC11460262 DOI: 10.3238/arztebl.m2024.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Treatment decisions in metastatic melanoma (MM) are highly dependent on patient preferences and require the patients' involvement. The complexity of treatment options with their individual advantages and disadvantages is often overwhelming. We therefore developed an online patient decision aid (PtDA) to facilitate shared decision making (SDM). METHODS To evaluate the PtDA we conducted a two-armed, twocenter, prospective, open randomized controlled trial with MM patients who were facing a decision about first-line treatment. The patients were allotted randomly in a 1:1 ratio to an intervention group (IG) with access to the PtDA before discussion with a physician or to a control group (CG) without access to the PtDA. The primary endpoint was knowledge about the options for first-line treatment (multiple-choice test, 10 items, range 0-40 points). The secondary endpoints were the SDM (third-party ratings of audio recordings of the treatment discussions) and satisfaction with the decision at the follow-up visit. RESULTS Of the 128 randomized patients, 120 completed the baseline questionnaire and were analyzed (59% male, median age 66 years). The primary endpoint, i.e., the mean difference in knowledge after discussion with a physician, differed significantly between the IG and the CG (-3.22, 95% CI [-6.32; -0.12], p = 0.042). No differences were found for the secondary endpoints, SDM and satisfaction with the decision. The patients in the IG rated the PtDA as very useful. CONCLUSION The PtDA improved the knowledge of patients with MM about the options for treatment. Both groups were highly satisfied with their treatment decisions. However, additional physician training seems necessary to promote SDM.
Collapse
Affiliation(s)
- Pia Grabbe
- *Joint first authors
- Department of General Internal Medicine and Psychosomatics, Center for Psychosocial Medicine, Heidelberg University Hospital, Medical Faculty, Heidelberg University, Heidelberg
| | - Milena S. Borchers
- *Joint first authors
- Department of General Internal Medicine and Psychosomatics, Center for Psychosocial Medicine, Heidelberg University Hospital, Medical Faculty, Heidelberg University, Heidelberg
| | - Kathrin M. Gschwendtner
- Department of General Internal Medicine and Psychosomatics, Center for Psychosocial Medicine, Heidelberg University Hospital, Medical Faculty, Heidelberg University, Heidelberg
| | - Sophia Strobel
- Heidelberg University, Medical Faculty, Department of Dermatology and National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Beate Wild
- Department of General Internal Medicine and Psychosomatics, Center for Psychosocial Medicine, Heidelberg University Hospital, Medical Faculty, Heidelberg University, Heidelberg
| | - Marietta Kirchner
- Institute of Medical Biometry, Heidelberg University Hospital, Heidelberg
| | - Katharina Kälber
- Heidelberg University, Medical Faculty, Department of Dermatology and National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Adriana Rendon
- Heidelberg University, Medical Faculty, Department of Dermatology and National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Julian Steininger
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus at the Technical University Dresden, Dresden, Germany
| | - Friedegund Meier
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus at the Technical University Dresden, Dresden, Germany
| | - Jessica C. Hassel
- *Joint last authors
- Heidelberg University, Medical Faculty, Department of Dermatology and National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | | |
Collapse
|
106
|
Gâta VA, Pașca A, Roman A, Muntean MV, Morariu DȘ, Bonci EA, Dina C, Ungureanu L. The Expression of Forkhead Box P3 T Regulatory Lymphocytes as a Prognostic Factor in Malignant Melanomas. Int J Mol Sci 2024; 25:6377. [PMID: 38928083 PMCID: PMC11204253 DOI: 10.3390/ijms25126377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/26/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Since transcription factor Forkhead Box P3 (FoxP3) was identified as a specific regulatory T cell (Treg) marker, researchers have scrutinized its value as a potential novel therapeutic target or a prognostic factor in various types of cancer with inconsistent results. The present analysis was performed to assess the influence of Treg FoxP3 expression on the prognosis of primary melanoma and to evaluate the correlations with various clinicopathological prognostic factors. We analyzed all eligible patients with stage pT3 primary malignant melanomas treated in a tertiary cancer center. Immunohistochemical staining for Treg FoxP3 expression was performed on retrospectively identified paraffin blocks and subsequently correlated with the outcomes of the patients. A total of 81% of the patients presented a positive Treg FoxP3 expression, being correlated with a higher risk of lymph node metastasis, tumor relapse, and death. Moreover, positive expression was statistically associated with a shorter OS. The tumor relapse rate was estimated at 36.7%. A positive expression of Treg FoxP3 and lymph node metastasis were associated with a higher risk of death based on multivariate analysis. Treg FoxP3 expression may be used as an independent prognostic factor in patients with malignant melanoma to evaluate tumor progression and survival.
Collapse
Affiliation(s)
- Vlad Alexandru Gâta
- Department of Surgical Oncology and Gynecologic Oncology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- “Prof. Dr. Ion Chiricuță” Institute of Oncology, 400015 Cluj-Napoca, Romania
| | - Andrei Pașca
- Department of Surgical Oncology and Gynecologic Oncology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- “Prof. Dr. Ion Chiricuță” Institute of Oncology, 400015 Cluj-Napoca, Romania
| | - Andrei Roman
- “Prof. Dr. Ion Chiricuță” Institute of Oncology, 400015 Cluj-Napoca, Romania
- Department of Radiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Maximilian Vlad Muntean
- “Prof. Dr. Ion Chiricuță” Institute of Oncology, 400015 Cluj-Napoca, Romania
- Department of Plastic and Reconstructive Surgery, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | | | - Eduard Alexandru Bonci
- Department of Surgical Oncology and Gynecologic Oncology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- “Champalimaud“ Research and Clinical Centre, 1400-038 Lisbon, Portugal
| | - Constantin Dina
- Department of Anatomy, Faculty of Medicine, Ovidius University, 900470 Constanta, Romania
| | - Loredana Ungureanu
- Department of Dermatology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Dermatology, Emergency County Hospital Cluj-Napoca, 400006 Cluj-Napoca, Romania
| |
Collapse
|
107
|
He Z, Lyu J, Lyu L, Long X, Xu B. Identification of a metabolism-linked genomic signature for prognosis and immunotherapeutic efficiency in metastatic skin cutaneous melanoma. Medicine (Baltimore) 2024; 103:e38347. [PMID: 38847706 PMCID: PMC11155616 DOI: 10.1097/md.0000000000038347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/03/2024] [Indexed: 06/10/2024] Open
Abstract
Metastatic skin cutaneous melanoma (MSCM) is the most rapidly progressing/invasive skin-based malignancy, with median survival rates of about 12 months. It appears that metabolic disorders accelerate disease progression. However, correlations between metabolism-linked genes (MRGs) and prognosis in MSCM are unclear, and potential mechanisms explaining the correlation are unknown. The Cancer Genome Atlas (TCGA) was utilized as a training set to develop a genomic signature based on the differentially expressed MRGs (DE-MRGs) between primary skin cutaneous melanoma (PSCM) and MSCM. The Gene Expression Omnibus (GEO) was utilized as a validation set to verify the effectiveness of genomic signature. In addition, a nomogram was established to predict overall survival based on genomic signature and other clinic-based characteristics. Moreover, this study investigated the correlations between genomic signature and tumor micro-environment (TME). This study established a genomic signature consisting of 3 genes (CD38, DHRS3, and TYRP1) and classified MSCM patients into low and high-risk cohorts based on the median risk scores of MSCM cases. It was discovered that cases in the high-risk cohort had significantly lower survival than cases in the low-risk cohort across all sets. Furthermore, a nomogram containing this genomic signature and clinic-based parameters was developed and demonstrated high efficiency in predicting MSCM case survival times. Interestingly, Gene Set Variation Analysis results indicated that the genomic signature was involved in immune-related physiological processes. In addition, this study discovered that risk scoring was negatively correlated with immune-based cellular infiltrations in the TME and critical immune-based checkpoint expression profiles, indicating that favorable prognosis may be influenced in part by immunologically protective micro-environments. A novel 3-genomic signature was found to be reliable for predicting MSCM outcomes and may facilitate personalized immunotherapy.
Collapse
Affiliation(s)
- Zhongshun He
- Department of Oral and Maxillofacial Surgery, Kunming Medical University School and Hospital of Stomatology, Kunming, China
- Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Jing Lyu
- Department of Physiology, Kunming Medical University, Kunming, Yunnan, China
| | - Lechun Lyu
- Technology Transfer Center, Kunming Medical University, Kunming, Yunnan, China
| | - Xiaolin Long
- Yunnan Bestai Biotechnology Co., Ltd., Kunming, Yunnan, China
| | - Biao Xu
- Department of Oral and Maxillofacial Surgery, Kunming Medical University School and Hospital of Stomatology, Kunming, China
- Yunnan Key Laboratory of Stomatology, Kunming, China
| |
Collapse
|
108
|
Vo KT, Sabnis AJ, Williams PM, Roy-Chowdhuri S, Patton DR, Coffey B, Reid JM, Piao J, Saguilig L, Alonzo TA, Berg SL, Jaju A, Fox E, Weigel BJ, Hawkins DS, Mooney MM, Takebe N, Tricoli JV, Janeway KA, Seibel NL, Parsons DW. Phase II Study of Ulixertinib in Children and Young Adults With Tumors Harboring Activating Mitogen-Activated Protein Kinase Pathway Alterations: APEC1621J of the National Cancer Institute-Children's Oncology Group Pediatric MATCH Trial. JCO Precis Oncol 2024; 8:e2400103. [PMID: 38935895 PMCID: PMC11639582 DOI: 10.1200/po.24.00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/29/2024] [Accepted: 05/06/2024] [Indexed: 06/29/2024] Open
Abstract
PURPOSE The National Cancer Institute-Children's Oncology Group (NCI-COG) Pediatric MATCH trial assigns patients age 1-21 years with refractory malignancies to phase II treatment arms of molecularly targeted therapies on the basis of genetic alterations detected in their tumor. Patients with activating alterations in the mitogen-activated protein kinase pathway were treated with ulixertinib, an extracellular signal-regulated kinase (ERK)1/2 inhibitor. METHODS As there were no previous pediatric data, ulixertinib was initially tested in a dose escalation cohort to establish the recommended phase II dose (RP2D) before proceeding to the phase II cohort. Ulixertinib was administered at 260 mg/m2/dose orally twice a day (dose level 1 [DL1], n = 15) or 350 mg/m2/dose orally twice a day (DL2, n = 5). The primary end point was objective response rate; secondary end points included safety/tolerability and progression-free survival (PFS). RESULTS Twenty patients (median 12 years; range, 5-20) were treated, all evaluable for response. CNS tumors comprised 55% (11/20) of diagnoses, with high-grade glioma and low-grade glioma most common (n = 5 each). All CNS tumors except one harbored BRAF fusions or V600E mutations. Rhabdomyosarcoma (n = 5) was the most frequent non-CNS diagnosis. DL1 was declared the RP2D in the dose escalation cohort after dose-limiting toxicities in Cycle 1 occurred in 1/6 patients at DL1 and 2/5 patients at DL2, including fatigue, anorexia, rash, nausea, vomiting, diarrhea, dehydration, hypoalbuminemia, and hypernatremia. No objective responses were observed. Six-month PFS was 37% (95% CI, 17 to 58). Three patients with BRAF-altered CNS tumors achieved stable disease >6 months. CONCLUSION Ulixertinib, a novel targeted agent with no previous pediatric data, was successfully evaluated in a national precision medicine basket trial. The pediatric RP2D of ulixertinib is 260 mg/m2/dose orally twice a day. Limited single-agent efficacy was observed in a biomarker-selected cohort of refractory pediatric tumors.
Collapse
Affiliation(s)
- Kieuhoa T. Vo
- Department of Pediatrics, University of California, San Francisco School of Medicine, UCSF Benioff Children’s Hospital, San Francisco, CA
| | - Amit J. Sabnis
- Department of Pediatrics, University of California, San Francisco School of Medicine, UCSF Benioff Children’s Hospital, San Francisco, CA
| | | | | | - David R. Patton
- Center for Biomedical Informatics and Information Technology, NCI, NIH, Bethesda, MD
| | - Brent Coffey
- Center for Biomedical Informatics and Information Technology, NCI, NIH, Bethesda, MD
| | | | - Jin Piao
- Keck School of Medicine, University of Southern California, Los Angeles, CA
| | | | - Todd A. Alonzo
- Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Stacey L. Berg
- Texas Children’s Cancer and Hematology Centers, Baylor College of Medicine, Houston, TX
| | - Alok Jaju
- Ann and Robert H. Lurie Children’s Hospital, Chicago, IL
| | | | - Brenda J. Weigel
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | | | - Margaret M. Mooney
- Division of Cancer Treatment and Diagnosis, Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD
| | - Naoko Takebe
- Division of Cancer Treatment and Diagnosis, Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD
| | - James V. Tricoli
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | | | - Nita L. Seibel
- Division of Cancer Treatment and Diagnosis, Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD
| | - D. Williams Parsons
- Texas Children’s Cancer and Hematology Centers, Baylor College of Medicine, Houston, TX
| |
Collapse
|
109
|
Dima D, Lopetegui‐Lia N, Ogbue O, Osantowski B, Ullah F, Jia X, Song JM, Gastman B, Isaacs J, Kennedy LB, Funchain P. Real-world outcomes of patients with resected stage III melanoma treated with adjuvant therapies. Cancer Med 2024; 13:e7257. [PMID: 39031560 PMCID: PMC11190025 DOI: 10.1002/cam4.7257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 11/28/2023] [Accepted: 04/27/2024] [Indexed: 07/22/2024] Open
Abstract
BACKGROUND Both immunotherapy (IO) and targeted therapy (TT) are used as adjuvant (adj) treatment for stage III melanoma, however, data describing real-world outcomes are limited. In addition, a significant proportion of patients relapse, for whom best management is unclear. The aim of our study was to assess the efficacy, and safety of adj anti-PD1 IO and TT in a real-world cohort of patients with resected stage III melanoma, and further delineate patterns of recurrence and treatment strategies. METHODS We retrospectively analyzed 130 patients who received adj therapy (100 anti-PD1 IO and 30 TT). RESULTS At a median follow-up of 30 months, median relapse-free survival (RFS) was 24.6 (95% CI, 17-not reached [NR]) versus 64 (95% CI, 29.5-NR) months for the TT and IO groups, respectively (p = 0.26). Median overall survival (OS) was NR for either subgroup. At data cutoff, 77% and 82% of patients in TT and IO arms were alive. A higher number of grade ≥3 treatment-related adverse events (AEs) were noted in the IO group (11% vs. 3%), however, a higher proportion of patients permanently discontinued adj therapy in the TT group (43% vs. 11%) due to toxicity. Strategies at relapse and outcomes were variable based on location and timing of recurrence. A significant number of patients who relapsed after adj IO received a second round of IO. Among them, patients who were off adj IO at relapse had superior second median RFS (mRFS2), compared to those who relapsed while on adj IO; mRFS2 was NR versus 5.1 months (95% CI, 2.5-NR), respectively, p = 0.02. CONCLUSION In summary, both TT and IO yielded prolonged RFS in a real-world setting, however, longer follow-up is needed to determine any potential OS benefit. Adj therapy, particularly TT, may not be as well tolerated as suggested in clinical trials, with lower completion rates (59% vs. 74%) in a real-life setting. Overall, patients who relapse during adj therapy have poor outcomes, while patients who relapse after discontinuation of adj IO therapy appear to benefit from IO re-treatment.
Collapse
Affiliation(s)
- Danai Dima
- Department of Hematology‐OncologyTaussig Cancer Institute, Cleveland Clinic FoundationClevelandOhioUSA
| | - Nerea Lopetegui‐Lia
- Department of Hematology‐OncologyTaussig Cancer Institute, Cleveland Clinic FoundationClevelandOhioUSA
| | - Olisaemeka Ogbue
- Department of Internal MedicineCleveland Clinic FoundationClevelandOhioUSA
| | - Bennett Osantowski
- Department of Internal MedicineCleveland Clinic FoundationClevelandOhioUSA
| | - Fauzia Ullah
- Department of Hematology‐OncologyTaussig Cancer Institute, Cleveland Clinic FoundationClevelandOhioUSA
| | - Xuefei Jia
- Department of BiostatisticsCleveland Clinic FoundationClevelandOhioUSA
| | - Jung Min Song
- Department of Hematology‐OncologyTaussig Cancer Institute, Cleveland Clinic FoundationClevelandOhioUSA
| | - Brian Gastman
- Department of Plastic SurgeryCleveland Clinic FoundationClevelandOhioUSA
| | - James Isaacs
- Department of Hematology‐OncologyTaussig Cancer Institute, Cleveland Clinic FoundationClevelandOhioUSA
| | - Lucy Boyce Kennedy
- Department of Hematology‐OncologyTaussig Cancer Institute, Cleveland Clinic FoundationClevelandOhioUSA
| | - Pauline Funchain
- Department of Hematology‐OncologyTaussig Cancer Institute, Cleveland Clinic FoundationClevelandOhioUSA
- Division of Oncology, Stanford Cancer InstituteStanford University School of MedicineStanfordCaliforniaUSA
| |
Collapse
|
110
|
Hennemann A, Puzenat E, Decreuse M, Vuillier F, Nardin C, Aubin F. Intracranial hemorrhage caused by dabrafenib and trametinib therapy for metastatic melanoma. Melanoma Res 2024; 34:280-282. [PMID: 38602773 DOI: 10.1097/cmr.0000000000000820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Although generally well tolerated compared with chemotherapy, molecular targeted therapy used in metastatic melanoma may be associated with life-threatening toxicity. We report the case of a patient with metastatic melanoma treated by dabrafenib plus trametinib who developed intracranial hemorrhage. Physicians should be aware of this rare but life-threatening adverse event of B-rapidly accelerated fibrosarcoma (BRAF) and mitogen-activated protein kinase kinase (MEK) inhibitors. However, they should be also careful about the bleeding origin, which can prove to be a new onset of melanoma metastasis or anticoagulation overdose, or even an uncontrolled arterial hypertension.
Collapse
Affiliation(s)
| | - Eve Puzenat
- Department of Dermatology, University Hospital, Inserm 1098
| | - Marion Decreuse
- Department of Neurology, University Hospital, Besançon, France
| | | | - Charlée Nardin
- Department of Dermatology, University Hospital, Inserm 1098
| | - François Aubin
- Department of Dermatology, University Hospital, Inserm 1098
| |
Collapse
|
111
|
Scardaci R, Berlinska E, Scaparone P, Vietti Michelina S, Garbo E, Novello S, Santamaria D, Ambrogio C. Novel RAF-directed approaches to overcome current clinical limits and block the RAS/RAF node. Mol Oncol 2024; 18:1355-1377. [PMID: 38362705 PMCID: PMC11161739 DOI: 10.1002/1878-0261.13605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/30/2023] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
Mutations in the RAS-RAF-MEK-ERK pathway are frequent alterations in cancer and RASopathies, and while RAS oncogene activation alone affects 19% of all patients and accounts for approximately 3.4 million new cases every year, less frequent alterations in the cascade's downstream effectors are also involved in cancer etiology. RAS proteins initiate the signaling cascade by promoting the dimerization of RAF kinases, which can act as oncoproteins as well: BRAFV600E is the most common oncogenic driver, mutated in the 8% of all malignancies. Research in this field led to the development of drugs that target the BRAFV600-like mutations (Class I), which are now utilized in clinics, but cause paradoxical activation of the pathway and resistance development. Furthermore, they are ineffective against non-BRAFV600E malignancies that dimerize and could be either RTK/RAS independent or dependent (Class II and III, respectively), which are still lacking an effective treatment. This review discusses the recent advances in anti-RAF therapies, including paradox breakers, dimer-inhibitors, immunotherapies, and other novel approaches, critically evaluating their efficacy in overcoming the therapeutic limitations, and their putative role in blocking the RAS pathway.
Collapse
Affiliation(s)
- Rossella Scardaci
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| | - Ewa Berlinska
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| | - Pietro Scaparone
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| | - Sandra Vietti Michelina
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| | - Edoardo Garbo
- Department of OncologyUniversity of Torino, San Luigi HospitalOrbassanoItaly
| | - Silvia Novello
- Department of OncologyUniversity of Torino, San Luigi HospitalOrbassanoItaly
| | - David Santamaria
- Centro de Investigación del CáncerCSIC‐Universidad de SalamancaSpain
| | - Chiara Ambrogio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| |
Collapse
|
112
|
Rozendorn N, Shutan I, Feinmesser G, Grynberg S, Hodadov H, Alon E, Asher N. Real-World Outcomes of Inoperable and Metastatic Cutaneous Head and Neck Melanoma Patients. Laryngoscope 2024; 134:2762-2770. [PMID: 38230960 DOI: 10.1002/lary.31290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/26/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024]
Abstract
OBJECTIVE This study aims to describe the overall survival (OS) and to identify associated prognostic factors in patients with inoperable and metastatic cutaneous melanoma of the head and neck (H&N) region, undergoing modern systemic treatments. METHODS This is a retrospective single institutional study. Data on all consecutive H&N melanoma patients treated with systemic oncologic treatments between 2015 and 2022 were collected from electronic medical files. Kaplan-Meier curves were used to describe survival and Cox regression analysis was used to identify patient and tumor factors associated with prognosis. RESULTS A total of 144 patients were included. Median OS was 45 months (95% confidence interval [CI] 28-65 m). On univariable analysis for OS, the primary disease site, specifically the nape and neck (hazard ratio [HR] 3.3, 95% CI 1.4-7.7, p = 0.007), high Eastern Cooperative Oncology Group Performance Status ([ECOG-PS], HR 2.5, 95% CI = 1.9-3.3, p < 0.001), high lactate dehydrogenase (LDH) levels (HR 2.8, 95% CI = 1.7-4.6, p < 0.001), and treatment with targeted therapy (TT) as compared with immunotherapy (HR 2.6, 95% CI = 1.06-6.3, p = 0.03) were all associated with shorter OS. High-grade adverse events (AEs) were associated with a longer OS (HR 0.41, 95% CI = 0.25-0.68, p = 0.001). On multivariable analysis for OS, the ECOG-PS, LDH levels, site of disease, and the development of moderate-severe AEs remained significant. CONCLUSIONS In the era of modern oncologic treatments, the prognosis of inoperable and metastatic cutaneous H&N melanoma aligns with other cutaneous melanomas. Primary tumor site of the nape and neck region emerges as a significant prognostic factor. LEVEL OF EVIDENCE 3 Laryngoscope, 134:2762-2770, 2024.
Collapse
Affiliation(s)
- Noa Rozendorn
- Department of Otolaryngology-Head and Neck Surgery, Sheba Medica Center, Ramat Gan, Israel
| | - Itay Shutan
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gilad Feinmesser
- Department of Otolaryngology-Head and Neck Surgery, Sheba Medica Center, Ramat Gan, Israel
| | - Shirly Grynberg
- Ella Lemelbaum Institute of Immuno-Oncology, Sheba Medical Center, Ramat Gan, Israel
| | - Hadas Hodadov
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eran Alon
- Department of Otolaryngology-Head and Neck Surgery, Sheba Medica Center, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nethanel Asher
- Skin Cancer and Melanoma Center, Davidoff Center, Beilinson Medical Center, Petah Tikva, Israel
| |
Collapse
|
113
|
Dong F. Pan-Cancer Molecular Biomarkers: A Paradigm Shift in Diagnostic Pathology. Clin Lab Med 2024; 44:325-337. [PMID: 38821647 DOI: 10.1016/j.cll.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
The rapid adoption of next-generation sequencing in clinical oncology has enabled the detection of molecular biomarkers shared between multiple tumor types. These pan-cancer biomarkers include sequence-altering mutations, copy number changes, gene rearrangements, and mutational signatures and have been demonstrated to predict response to targeted therapy. This article reviews issues surrounding current and emerging pan-cancer molecular biomarkers in clinical oncology: technological advances that enable the broad detection of cancer mutations across hundreds of genes, the spectrum of driver and passenger mutations derived from human cancer genomes, and implications for patient care now and in the near future.
Collapse
Affiliation(s)
- Fei Dong
- Department of Pathology, Stanford University School of Medicine, 3375 Hillview Ave, Palo Alto, CA 94304, USA.
| |
Collapse
|
114
|
Yi JR, Zhong NN, Lin H, Liu XH, Yang Y, Liu B, Man QW. Exploiting BRAF mutations in the therapeutic approach towards oral and maxillofacial tumors. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 125:101846. [PMID: 38556167 DOI: 10.1016/j.jormas.2024.101846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Oral and maxillofacial tumors pose a significant clinical challenge due to their tendency to recur, despite advancements in surgical removal techniques. The jaw's intricate structure further complicates treatments and affects patient quality of life. Consequently, emphasis has shifted towards pharmacological interventions, to potentially reduce invasive surgical procedures. One promising approach targets BRAF mutations, specifically the common V600E mutation. BRAF, a critical protein kinase, regulates cell growth and differentiation via the RAS-RAF-MEK-ERK-MAP kinase pathway. A specific nucleotide change at position 1799, swapping Thymine (T) for Adenine (A), results in the V600E mutation, causing unchecked cell growth. This mutation is common in certain oral and maxillofacial tumors like ameloblastoma. A recent neoadjuvant therapy targeting BRAF, involving the use of dabrafenib and trametinib, has showcased a promising, safe, and effective strategy for organ preservation in the treatment of mandibular ameloblastoma. This convergence of molecular insights and targeted therapies holds the key to managing BRAF-mutated oral and maxillofacial tumors effectively, promising improved patient outcomes.
Collapse
Affiliation(s)
- Jing-Rui Yi
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Nian-Nian Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Hao Lin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Xuan-Hao Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Ying Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Qi Wen Man
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
115
|
Villani A, Potestio L, Lallas A, Apalla Z, Scalvenzi M, Martora F. Unaddressed Challenges in the Treatment of Cutaneous Melanoma? MEDICINA (KAUNAS, LITHUANIA) 2024; 60:884. [PMID: 38929501 PMCID: PMC11205306 DOI: 10.3390/medicina60060884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/28/2024]
Abstract
Background and Objectives: While the management of noninvasive cutaneous melanoma (CM) is typically limited to a secondary excision to reduce recurrence risk and periodic follow-up, treating patients with advanced melanoma presents ongoing challenges. Materials and Methods: This review provides a comprehensive examination of both established and emerging pharmacologic strategies for advanced CM management, offering an up-to-date insight into the current therapeutic milieu. The dynamic landscape of advanced CM treatment is explored, highlighting the efficacy of immune checkpoint inhibitors and targeted therapies, either in monotherapy or combination regimens. Additionally, ongoing investigations into novel treatment modalities are thoroughly discussed, reflecting the evolving nature of melanoma management. Results: The therapeutic landscape for melanoma management is undergoing significant transformation. Although various treatment modalities exist, there remains a critical need for novel therapies, particularly for certain stages of melanoma or cases resistant to current options. Conclusions: Consequently, further studies are warranted to identify new treatment avenues and optimize the utilization of existing drugs.
Collapse
Affiliation(s)
- Alessia Villani
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy (F.M.)
| | - Luca Potestio
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy (F.M.)
| | - Aimilios Lallas
- First Department of Dermatology, School of Medicine, Faculty of Health Sciences, Aristotle University, 54124 Thessaloniki, Greece;
| | - Zoe Apalla
- Second Department of Dermatology, School of Medicine, Faculty of Health Sciences, Aristotle University, 54124 Thessaloniki, Greece
| | - Massimiliano Scalvenzi
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy (F.M.)
| | - Fabrizio Martora
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy (F.M.)
| |
Collapse
|
116
|
Tawfeek HN, Abdelmoez A, Dahlous KA, Youssif BGM, Bräse S, Rissanen K, Nieger M, El-Sheref EM. Convenient synthesis and X-ray determination of 2-amino-6 H-1,3,4-thiadiazin-3-ium bromides endowed with antiproliferative activity. RSC Adv 2024; 14:17866-17876. [PMID: 38939040 PMCID: PMC11208997 DOI: 10.1039/d4ra02531h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/28/2024] [Indexed: 06/29/2024] Open
Abstract
A new series of 1,3,4-thiadiazin-3-ium bromide derivatives 9a-g were prepared as a six-member ring by interactions between 4-substituted thiosemicarbazides 8a-e and α-halo ketones 2a,b. The reaction was conducted using hydrazine-NH2 and yielded a hexagonal shape. The structures of all obtained compounds have been verified using IR, NMR spectra, mass spectrometry, elemental analysis, and X-ray crystallography. The X-ray crystallographic analysis of compounds 9a and 9b has revealed that the salt is formed with the nitrogen atom N3 when the aromatic substituents 9a and 9d are present, but in the case of compounds 9b, 9c, 9e, 9f, and 9g with the aliphatic substituent, the salt is formed outside the ring. Compounds 9a-g were evaluated for antiproliferative activity as multitargeted inhibitors. Results revealed that targets 9a-g displayed good antiproliferative activity, with GI50 ranging from 38 nM to 66 nM against a panel of four cancer cell lines compared to the reference Erlotinib (GI50 = 33 nM). Compounds 9a, 9c, and 9d were the most potent antiproliferative derivatives, with GI50 values of 43, 38, and 47 nM, respectively. Compounds 9a, 9c, and 9d were evaluated for their inhibitory activity against EGFR, BRAFV600E, and VEGFR-2. The in vitro experiments demonstrated that the compounds being examined exhibit potent antiproliferative properties and have the potential to function as multitargeted inhibitors. In addition, the western blotting investigation demonstrated the inhibitory effects of 9c on EGFR, BRAFV600E, and VEGFR-2.
Collapse
Affiliation(s)
- Hendawy N Tawfeek
- Chemistry Department, Faculty of Science, Minia University El Minia 61519 Egypt
- Unit of Occupational of Safety and Health, Administration Office of Minia University El-Minia 61519 Egypt
| | - Alshaimaa Abdelmoez
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt +20-1098294419
- Department of Neurology, Ulm University Ulm Germany
| | - Kholood A Dahlous
- Department of Chemistry, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt +20-1098294419
| | - Stefan Bräse
- Institute of Biological and Chemical Systems, IBCS-FMS, Karlsruhe Institute of Technology 76131 Karlsruhe Germany
| | - Kari Rissanen
- Department of Chemistry, University of Jyväskylä PO Box 35 40014 Jyväskylä Finland
| | - Martin Nieger
- Department of Chemistry, University of Helsinki PO Box 55, A. I. Virtasen Aukio 1 00014 Helsinki Finland
| | - Essmat M El-Sheref
- Chemistry Department, Faculty of Science, Minia University El Minia 61519 Egypt
| |
Collapse
|
117
|
Piper AK, Penney C, Holliday J, Tincknell G, Ma Y, Napaki S, Pantel K, Brungs D, Ranson M. EGFR and PI3K Signalling Pathways as Promising Targets on Circulating Tumour Cells from Patients with Metastatic Gastric Adenocarcinoma. Int J Mol Sci 2024; 25:5565. [PMID: 38791602 PMCID: PMC11122469 DOI: 10.3390/ijms25105565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
The prognosis for metastatic gastric adenocarcinoma (mGAC) remains poor. Gene alterations in receptor tyrosine kinases (RTKs) such as epidermal growth factor receptor (EGFR) and their downstream effectors including catalytic subunit alpha of the phosphatidylinositol 3-kinase (PIK3CA) are common in mGAC. Targeted RTK and phosphatidylinositol-3-kinase (PI3K) treatments have demonstrated clinical benefits in other solid tumours and are key potential targets for clinical development against mGAC given the presence of recurrent alterations in these pathways. Furthermore, combination RTK/PI3K treatments may overcome compensatory mechanisms that arise using monotherapies, leading to improved patient outcomes. Herein, we investigated RTK/PI3K single and combination drug responses against our unique human mGAC-derived PIK3CA gain-of-function mutant, human epidermal growth factor receptor 2 (HER2)-negative, EGFR-expressing circulating tumour cell line, UWG02CTC, under two- and three-dimensional culture conditions to model different stages of metastasis. UWG02CTCs were highly responsive to the PI3K p110α-subunit targeted drugs PIK-75 (IC50 = 37.0 ± 11.1 nM) or alpelisib (7.05 ± 3.7 µM). Drug sensitivities were significantly increased in 3D conditions. Compensatory MAPK/ERK pathway upregulation by PI3K/Akt suppression was overcome by combination treatment with the EGFR inhibitor gefitinib, which was strongly synergistic. PIK-75 plus gefitinib significantly impaired UWG02CTC invasion in an organotypic assay. In conclusion, UWG02CTCs are a powerful ex vivo mGAC drug responsiveness model revealing EGFR/PI3K-targeted drugs as a promising combination treatment option for HER2-negative, RAS wild-type mGAC patients.
Collapse
Affiliation(s)
- Ann-Katrin Piper
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Chelsea Penney
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Jacqueline Holliday
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Gary Tincknell
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, NSW 2500, Australia
| | - Yafeng Ma
- Centre for Circulating Tumour Cell Diagnostics & Research at the Ingham Institute for Applied Medical Research, South-Western Clinical School, University of New South Wales, Liverpool, NSW 2170, Australia
| | - Sarbar Napaki
- Graduate School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
- Department of Pathology, Wollongong Hospital, Wollongong, NSW 2500, Australia
| | - Klaus Pantel
- Institute for Tumor Biology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Daniel Brungs
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, NSW 2500, Australia
- Graduate School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
- Department of Pathology, Wollongong Hospital, Wollongong, NSW 2500, Australia
| | - Marie Ranson
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
118
|
Ge X, Ou W, Wei A, Lian H, Ma H, Cui L, Wang D, Zhang L, Wang X, He L, Zhang R, Wang T. Clinical features and treatment outcomes of liver involvement in paediatric Langerhans cell histiocytosis. BMC Pediatr 2024; 24:316. [PMID: 38714959 PMCID: PMC11077857 DOI: 10.1186/s12887-024-04764-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Langerhans cell histiocytosis (LCH) is the most common histiocytic disorder in children, and liver involvement in LCH is rare. This retrospective study reported the clinical features and prognosis of patients with hepatic LCH. Liver involvement was defined by histopathological findings, liver dysfunction or abnormalities, or ultrasound imaging. A total of 130 patients (14.5%) with hepatic LCH out of 899 in the LCH population were enrolled. Patients with liver involvement had greater frequencies of skin, lung, hearing system, and haematologic system involvement, and hemophagocytic lymphohistiocytosis (P<0.001, 0.001, 0.002, 0.009, and <0.001, respectively). Overall survival and progression-free survival were lower in LCH patients with liver involvement than in those without liver involvement (P<0.001 and <0.001). In patients with liver involvement, the overall survival (OS) and progression-free survival (PFS) rates were lower in patients with cholangitis than in those without cholangitis (P<0.020 and 0.030). For the treatment response, the response rate of hepatic LCH patients to initial first-line therapy (n=89) was 22.5%. However, there was no significant difference in the response rate or recurrence rate between patients who shifted from first-line treatment to second-line treatment (n=29) or to targeted therapy (n=13) (P=0.453 and 1.000). The response rate of hepatic LCH patients who received initial second-line therapy (n=13) was 38.5%. Two of these patients subsequently experienced bone recurrence. The response rate of hepatic LCH patients who received initial targeted therapy (n=16) was 75.0%. Three patients subsequently experienced recurrence, including 2 in the bone and 1 in the liver and skin. A total of 39.3% of patients who received second-line treatment had severe myelosuppression (grade III-IV), and 50.8% had varying degrees of gastrointestinal events, whereas there was no severe toxicity in patients who received first-line treatment and targeted therapy. Four patients underwent liver transplantation because of liver cirrhosis. The patients' liver disease improved within a follow-up period of 18-79 months. This study demonstrated that LCH with liver involvement, especially cholangitis, indicates a poor prognosis. Targeted therapy provides a good treatment response and less toxicity. However, it may relapse after withdrawal. Liver transplantation is still a reliable salvage option for patients with end-stage liver disease.
Collapse
Affiliation(s)
- Xinshun Ge
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Disease in Children, Ministry of Education; Department of Hematology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Nanlishi Road No. 56, Xicheng District, Beijing, 100045, P.R. China
| | - Wenxin Ou
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Disease in Children, Ministry of Education; Department of Hematology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Nanlishi Road No. 56, Xicheng District, Beijing, 100045, P.R. China
| | - Ang Wei
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Disease in Children, Ministry of Education; Department of Hematology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Nanlishi Road No. 56, Xicheng District, Beijing, 100045, P.R. China
| | - Hongyun Lian
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Disease in Children, Ministry of Education; Department of Hematology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Nanlishi Road No. 56, Xicheng District, Beijing, 100045, P.R. China
| | - Honghao Ma
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Disease in Children, Ministry of Education; Department of Hematology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Nanlishi Road No. 56, Xicheng District, Beijing, 100045, P.R. China
| | - Lei Cui
- Hematologic Disease Laboratory, Beijing Pediatric Research Institute; Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Disease in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, P. R. China
| | - Dong Wang
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Disease in Children, Ministry of Education; Department of Hematology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Nanlishi Road No. 56, Xicheng District, Beijing, 100045, P.R. China
| | - Liping Zhang
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Disease in Children, Ministry of Education; Department of Hematology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Nanlishi Road No. 56, Xicheng District, Beijing, 100045, P.R. China
| | - Xiaoman Wang
- Department of Ultrasonography, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Nanlishi Road No. 56, Xicheng District, Beijing, 100045, P.R. China.
| | - Lejian He
- Department of Pathology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Nanlishi Road No. 56, Xicheng District, Beijing, 100045, P.R. China.
| | - Rui Zhang
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Disease in Children, Ministry of Education; Department of Hematology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Nanlishi Road No. 56, Xicheng District, Beijing, 100045, P.R. China.
| | - Tianyou Wang
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Disease in Children, Ministry of Education; Department of Hematology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Nanlishi Road No. 56, Xicheng District, Beijing, 100045, P.R. China.
| |
Collapse
|
119
|
Leeneman B, Xander NSH, Fiets WE, de Jong WK, Uyl NEM, Wymenga ANM, Reyners AKL, Uyl-de Groot CA. Assessing the clinical benefit of systemic anti-cancer treatments in the Netherlands: The impact of different thresholds for effectiveness. Eur J Cancer 2024; 202:114002. [PMID: 38489860 DOI: 10.1016/j.ejca.2024.114002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND In the Netherlands, the clinical benefit of systemic anti-cancer treatments (SACTs) is assessed by the Committee for the Evaluation of Oncological Agents (cieBOM). For non-curative SACTs, the assessment is based on the hazard ratio (HR) for progression-free survival and/or overall survival (OS), and the difference in median survival. We evaluated the impact of different thresholds for effectiveness by reassessing the clinical benefit of SACTs. METHODS We reassessed SACTs that were initially assessed by cieBOM between 2015 and 2017. Four scenarios were formulated: replacing an "OR" approach (initial assessment) by an "AND" approach (used in all scenarios), changing the HR threshold from < 0.70 (initial assessment) to < 0.60, changing the threshold for the difference in median survival from > 12 weeks (initial assessment) to > 16 weeks, and including thresholds for OS rates. The outcomes of these scenarios were compared to the outcomes of the initial assessment. RESULTS Reassessments were conducted for 41 treatments. Replacing the "OR" approach by an "AND" approach substantially decreased the number of positive assessments (from 33 to 22), predominantly affecting immunotherapies. This number further decreased (to 21 and 19, respectively) in case more restrictive thresholds for the HR and difference in median survival were used. Including thresholds for OS rates slightly mitigated the impact of applying an "AND" approach. CONCLUSIONS The scenario-specific thresholds had a substantial impact; the number of negative assessments more than doubled. Since this was not limited to treatments with marginal survival benefits, understanding the potential challenges that may arise from applying more restrictive thresholds is essential.
Collapse
Affiliation(s)
- Brenda Leeneman
- Department of Health Technology Assessment, Erasmus School of Health Policy and Management, Erasmus University Rotterdam, Burgemeester Oudlaan 50, 3062 PA Rotterdam, the Netherlands; Erasmus Centre for Health Economics Rotterdam, Erasmus University Rotterdam, Burgemeester Oudlaan 50, 3062 PA Rotterdam, the Netherlands.
| | - Nicolas S H Xander
- Department of Health Technology Assessment, Erasmus School of Health Policy and Management, Erasmus University Rotterdam, Burgemeester Oudlaan 50, 3062 PA Rotterdam, the Netherlands; Erasmus Centre for Health Economics Rotterdam, Erasmus University Rotterdam, Burgemeester Oudlaan 50, 3062 PA Rotterdam, the Netherlands
| | - W Edward Fiets
- Department of Medical Oncology, Medical Center Leeuwarden, Henri Dunantweg 2, 8934 AD Leeuwarden, the Netherlands
| | - Wouter K de Jong
- Department of Pulmonology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Nathalie E M Uyl
- Department of Health Technology Assessment, Erasmus School of Health Policy and Management, Erasmus University Rotterdam, Burgemeester Oudlaan 50, 3062 PA Rotterdam, the Netherlands
| | - A N Machteld Wymenga
- Department of Medical Oncology, Medisch Spectrum Twente, Koningsplein 1, 7512 KZ Enschede the Netherlands
| | - An K L Reyners
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Carin A Uyl-de Groot
- Department of Health Technology Assessment, Erasmus School of Health Policy and Management, Erasmus University Rotterdam, Burgemeester Oudlaan 50, 3062 PA Rotterdam, the Netherlands; Erasmus Centre for Health Economics Rotterdam, Erasmus University Rotterdam, Burgemeester Oudlaan 50, 3062 PA Rotterdam, the Netherlands
| |
Collapse
|
120
|
Kikuchi Y, Shimada H, Yamasaki F, Yamashita T, Araki K, Horimoto K, Yajima S, Yashiro M, Yokoi K, Cho H, Ehira T, Nakahara K, Yasuda H, Isobe K, Hayashida T, Hatakeyama S, Akakura K, Aoki D, Nomura H, Tada Y, Yoshimatsu Y, Miyachi H, Takebayashi C, Hanamura I, Takahashi H. Clinical practice guidelines for molecular tumor marker, 2nd edition review part 2. Int J Clin Oncol 2024; 29:512-534. [PMID: 38493447 DOI: 10.1007/s10147-024-02497-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/21/2024] [Indexed: 03/19/2024]
Abstract
In recent years, rapid advancement in gene/protein analysis technology has resulted in target molecule identification that may be useful in cancer treatment. Therefore, "Clinical Practice Guidelines for Molecular Tumor Marker, Second Edition" was published in Japan in September 2021. These guidelines were established to align the clinical usefulness of external diagnostic products with the evaluation criteria of the Pharmaceuticals and Medical Devices Agency. The guidelines were scoped for each tumor, and a clinical questionnaire was developed based on a serious clinical problem. This guideline was based on a careful review of the evidence obtained through a literature search, and recommendations were identified following the recommended grades of the Medical Information Network Distribution Services (Minds). Therefore, this guideline can be a tool for cancer treatment in clinical practice. We have already reported the review portion of "Clinical Practice Guidelines for Molecular Tumor Marker, Second Edition" as Part 1. Here, we present the English version of each part of the Clinical Practice Guidelines for Molecular Tumor Marker, Second Edition.
Collapse
Affiliation(s)
| | - Hideaki Shimada
- Department of Clinical Oncology, Toho University, Tokyo, Japan.
- Department of Surgery, Toho University, Tokyo, Japan.
| | - Fumiyuki Yamasaki
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Taku Yamashita
- Department of Otorhinolaryngology-Head and Neck Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Koji Araki
- Department of Otorhinolaryngology-Head and Neck Surgery, National Defense Medical College, Saitama, Japan
| | - Kohei Horimoto
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | - Masakazu Yashiro
- Department of Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Keigo Yokoi
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Haruhiko Cho
- Department of Surgery, Tokyo Metropolitan Komagome Hospital, Tokyo, Japan
| | - Takuya Ehira
- Department of Gastroenterology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Kazunari Nakahara
- Department of Gastroenterology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Hiroshi Yasuda
- Department of Gastroenterology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Kazutoshi Isobe
- Division of Respiratory Medicine, Department of Internal Medicine (Omori), Toho University, Tokyo, Japan
| | - Tetsu Hayashida
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Shingo Hatakeyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | | | - Daisuke Aoki
- International University of Health and Welfare Graduate School, Tokyo, Japan
| | - Hiroyuki Nomura
- Department of Obstetrics and Gynecology, School of Medicine, Fujita Health University, Aichi, Japan
| | - Yuji Tada
- Department of Pulmonology, School of Medicine, International University of Health and Welfare, Chiba, Japan
| | - Yuki Yoshimatsu
- Department of Patient-Derived Cancer Model, Tochigi Cancer Center Research Institute, Tochigi, Japan
| | - Hayato Miyachi
- Faculty of Clinical Laboratory Sciences, Nitobe Bunka College, Tokyo, Japan
| | - Chiaki Takebayashi
- Division of Hematology and Oncology, Department of Internal Medicine (Omori), Toho University, Tokyo, Japan
| | - Ichiro Hanamura
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Aichi, Japan
| | | |
Collapse
|
121
|
Abstract
Although RAS was formerly considered undruggable, various agents that inhibit RAS or specific RAS oncoproteins have now been developed. Indeed, the importance of directly targeting RAS has recently been illustrated by the clinical success of mutant-selective KRAS inhibitors. Nevertheless, responses to these agents are typically incomplete and restricted to a subset of patients, highlighting the need to develop more effective treatments, which will likely require a combinatorial approach. Vertical strategies that target multiple nodes within the RAS pathway to achieve deeper suppression are being investigated and have precedence in other contexts. However, alternative strategies that co-target RAS and other therapeutic vulnerabilities have been identified, which may mitigate the requirement for profound pathway suppression. Regardless, the efficacy of any given approach will likely be dictated by genetic, epigenetic and tumour-specific variables. Here we discuss various combinatorial strategies to treat KRAS-driven cancers, highlighting mechanistic concepts that may extend to tumours harbouring other RAS mutations. Although many promising combinations have been identified, clinical responses will ultimately depend on whether a therapeutic window can be achieved and our ability to prospectively select responsive patients. Therefore, we must continue to develop and understand biologically diverse strategies to maximize our likelihood of success.
Collapse
Affiliation(s)
- Naiara Perurena
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Lisa Situ
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Karen Cichowski
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Ludwig Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
122
|
Pompili SVB, Fanzini S, Schachner M, Chen S. In Vitro and In Vivo Studies of Melanoma Cell Migration by Antagonistic Mimetics of Adhesion Molecule L1CAM. Int J Mol Sci 2024; 25:4811. [PMID: 38732030 PMCID: PMC11084881 DOI: 10.3390/ijms25094811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Melanoma, the deadliest type of skin cancer, has a high propensity to metastasize to other organs, including the brain, lymph nodes, lungs, and bones. While progress has been made in managing melanoma with targeted and immune therapies, many patients do not benefit from these current treatment modalities. Tumor cell migration is the initial step for invasion and metastasis. A better understanding of the molecular mechanisms underlying metastasis is crucial for developing therapeutic strategies for metastatic diseases, including melanoma. The cell adhesion molecule L1CAM (CD171, in short L1) is upregulated in many human cancers, enhancing tumor cell migration. Earlier studies showed that the small-molecule antagonistic mimetics of L1 suppress glioblastoma cell migration in vitro. This study aims to evaluate if L1 mimetic antagonists can inhibit melanoma cell migration in vitro and in vivo. We showed that two antagonistic mimetics of L1, anagrelide and 2-hydroxy-5-fluoropyrimidine (2H5F), reduced melanoma cell migration in vitro. In in vivo allograft studies, only 2H5F-treated female mice showed a decrease in tumor volume.
Collapse
Affiliation(s)
- Stefano Vito Boccadamo Pompili
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University, 00185 Rome, Italy
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA;
| | - Sophia Fanzini
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA;
| | - Melitta Schachner
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA;
| | - Suzie Chen
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA;
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- VA New Jersey Health System, East Orange, NJ 07018, USA
| |
Collapse
|
123
|
Fateeva A, Eddy K, Chen S. Current State of Melanoma Therapy and Next Steps: Battling Therapeutic Resistance. Cancers (Basel) 2024; 16:1571. [PMID: 38672652 PMCID: PMC11049326 DOI: 10.3390/cancers16081571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Melanoma is the most aggressive and deadly form of skin cancer due to its high propensity to metastasize to distant organs. Significant progress has been made in the last few decades in melanoma therapeutics, most notably in targeted therapy and immunotherapy. These approaches have greatly improved treatment response outcomes; however, they remain limited in their abilities to hinder disease progression due, in part, to the onset of acquired resistance. In parallel, intrinsic resistance to therapy remains an issue to be resolved. In this review, we summarize currently available therapeutic options for melanoma treatment and focus on possible mechanisms that drive therapeutic resistance. A better understanding of therapy resistance will provide improved rational strategies to overcome these obstacles.
Collapse
Affiliation(s)
- Anna Fateeva
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA; (A.F.); (K.E.)
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ 08854, USA
| | - Kevinn Eddy
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA; (A.F.); (K.E.)
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ 08854, USA
| | - Suzie Chen
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA; (A.F.); (K.E.)
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ 08854, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- U.S. Department of Veterans Affairs, New Jersey Health Care System, East Orange, NJ 07018, USA
| |
Collapse
|
124
|
Bergamaschi D. Improving cancer stem cells killing in malignant melanoma. Br J Dermatol 2024; 190:615-616. [PMID: 38282338 DOI: 10.1093/bjd/ljae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/30/2024]
Affiliation(s)
- Daniele Bergamaschi
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine & Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
125
|
Doostmohammadi A, Jooya H, Ghorbanian K, Gohari S, Dadashpour M. Potentials and future perspectives of multi-target drugs in cancer treatment: the next generation anti-cancer agents. Cell Commun Signal 2024; 22:228. [PMID: 38622735 PMCID: PMC11020265 DOI: 10.1186/s12964-024-01607-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/05/2024] [Indexed: 04/17/2024] Open
Abstract
Cancer is a major public health problem worldwide with more than an estimated 19.3 million new cases in 2020. The occurrence rises dramatically with age, and the overall risk accumulation is combined with the tendency for cellular repair mechanisms to be less effective in older individuals. Conventional cancer treatments, such as radiotherapy, surgery, and chemotherapy, have been used for decades to combat cancer. However, the emergence of novel fields of cancer research has led to the exploration of innovative treatment approaches focused on immunotherapy, epigenetic therapy, targeted therapy, multi-omics, and also multi-target therapy. The hypothesis was based on that drugs designed to act against individual targets cannot usually battle multigenic diseases like cancer. Multi-target therapies, either in combination or sequential order, have been recommended to combat acquired and intrinsic resistance to anti-cancer treatments. Several studies focused on multi-targeting treatments due to their advantages include; overcoming clonal heterogeneity, lower risk of multi-drug resistance (MDR), decreased drug toxicity, and thereby lower side effects. In this study, we'll discuss about multi-target drugs, their benefits in improving cancer treatments, and recent advances in the field of multi-targeted drugs. Also, we will study the research that performed clinical trials using multi-target therapeutic agents for cancer treatment.
Collapse
Affiliation(s)
- Ali Doostmohammadi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Hossein Jooya
- Biochemistry Group, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Kimia Ghorbanian
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Sargol Gohari
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mehdi Dadashpour
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
126
|
Abstract
RAS family variants-most of which involve KRAS-are the most commonly occurring hotspot mutations in human cancers and are associated with a poor prognosis. For almost four decades, KRAS has been considered undruggable, in part due to its structure, which lacks small-molecule binding sites. But recent developments in bioengineering, organic chemistry and related fields have provided the infrastructure to make direct KRAS targeting possible. The first successes occurred with allele-specific targeting of KRAS p.Gly12Cys (G12C) in non-small cell lung cancer, resulting in regulatory approval of two agents-sotorasib and adagrasib. Inhibitors targeting other variants beyond G12C have shown preliminary antitumor activity in highly refractory malignancies such as pancreatic cancer. Herein, we outline RAS pathobiology with a focus on KRAS, illustrate therapeutic approaches across a variety of malignancies, including emphasis on the 'on' and 'off' switch allele-specific and 'pan' RAS inhibitors, and review immunotherapeutic and other key combination RAS targeting strategies. We summarize mechanistic understanding of de novo and acquired resistance, review combination approaches, emerging technologies and drug development paradigms and outline a blueprint for the future of KRAS therapeutics with anticipated profound clinical impact.
Collapse
Affiliation(s)
- Anupriya Singhal
- Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bob T Li
- Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Early Drug Development Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Eileen M O'Reilly
- Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- David M. Rubenstein Center for Pancreatic Cancer, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
127
|
Fischer RA, Ryan I, De La Torre K, Barnett C, Sehgal VS, Levy JB, Luke JJ, Poklepovic AS, Hurlbert MS. US physician perspective on the use of biomarker and ctDNA testing in patients with melanoma. Crit Rev Oncol Hematol 2024; 196:104289. [PMID: 38341119 DOI: 10.1016/j.critrevonc.2024.104289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024] Open
Abstract
New treatments have increased survival of patients with melanoma, and methods to monitor patients throughout the disease process are needed. Circulating tumor DNA (ctDNA) is a predictive and prognostic biomarker that may allow routine, real-time monitoring of disease status. We surveyed 44 US physicians to understand their preferences and practice patterns for biomarker and ctDNA testing in their patients with melanoma. Tumor biomarker testing was often ordered in stage IIIA-IV patients. Barriers to biomarker testing include insufficient tissue (60%) and lack of insurance coverage (54%). ctDNA testing was ordered by 16-18% of physicians for stages II-IV. Reasons for not using ctDNA testing included lack of prospective data (41%), ctDNA testing used for research only (18%), and others. Physicians (≥74%) believed that ctDNA assays could help with monitoring and treatment selection throughout the disease process. Physicians consider ctDNA testing potentially valuable for clinical decision-making but cited concerns that should be addressed.
Collapse
Affiliation(s)
- Rachel A Fischer
- Melanoma Research Alliance, 730 15th St NW, Washington, DC 20005, USA
| | - Isabel Ryan
- Melanoma Research Alliance, 730 15th St NW, Washington, DC 20005, USA
| | | | - Cody Barnett
- Melanoma Research Alliance, 730 15th St NW, Washington, DC 20005, USA
| | - Viren S Sehgal
- Melanoma Research Alliance, 730 15th St NW, Washington, DC 20005, USA
| | - Joan B Levy
- Melanoma Research Alliance, 730 15th St NW, Washington, DC 20005, USA
| | - Jason J Luke
- Cancer Immunotherapeutics Center, University of Pittsburgh Medical Center, 5150 Centre Avenue, Pittsburgh, PA 15232, USA
| | - Andrew S Poklepovic
- Virginia Commonwealth University Health System Massey Cancer Center, 401 College Street, Richmond, VA 23298-0037, USA
| | - Marc S Hurlbert
- Melanoma Research Alliance, 730 15th St NW, Washington, DC 20005, USA.
| |
Collapse
|
128
|
Richtig E, Nguyen VA, Koelblinger P, Wolf I, Kehrer H, Saxinger W, Ressler JM, Weinlich G, Meyersburg D, Hafner C, Jecel-Grill E, Kofler J, Lange-Asschenfeldt B, Weihsengruber F, Rappersberger K, Svastics N, Gasser K, Seeber A, Kratochvill F, Nagler S, Mraz B, Hoeller C. Dabrafenib plus trametinib in unselected advanced BRAF V600-mut melanoma: a non-interventional, multicenter, prospective trial. Melanoma Res 2024; 34:142-151. [PMID: 38092013 PMCID: PMC10906199 DOI: 10.1097/cmr.0000000000000948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 11/06/2023] [Indexed: 03/02/2024]
Abstract
OBJECTIVE The efficacy of combined BRAF and MEK inhibition for BRAF V600-mutant melanoma in a broad patient population, including subgroups excluded from phase 3 trials, remains unanswered. This noninterventional study (DATUM-NIS) assessed the real-world efficacy, safety and tolerability of dabrafenib plus trametinib in Austrian patients with unresectable/metastatic melanoma. METHODS This multicenter, open-label, non-interventional, post-approval, observational study investigated the effectiveness of dabrafenib plus trametinib prescribed in day-to-day clinical practice to patients ( N = 79) with BRAF V600-mutant unresectable/metastatic melanoma with M1c disease (American Joint Committee on Cancer staging manual version 7), ECOG > 1, and elevated serum lactate dehydrogenase (LDH). The primary endpoint was 6-, 12- and 18-month progression-free survival (PFS) rates. Secondary endpoints were median PFS, disease control rate and overall survival (OS). RESULTS The 6-, 12- and 18-month PFS rates were 76%, 30.6% and 16.2%, respectively. Subgroup analysis showed a significant PFS benefit in the absence of lung metastasis. The median PFS and OS were 9.1 (95% CI, 7.1-10.3) months and 17.9 (95% CI, 12.7-27.8) months, respectively. The 12- and 24-month OS rates were 62.7% and 26.8%, respectively. Subgroup analyses showed significant OS benefits in the absence of bone or lung metastasis and the presence of other metastases (excluding bone, lung, brain, liver and lymph nodes). Furthermore, S100 and Eastern Cooperative Oncology Group performance status (ECOG PS) showed a significant impact on survival. No new safety signals were observed. CONCLUSION Despite an unselected population of melanoma patients with higher M1c disease, ECOG PS > 1 and elevated LDH, this real-world study demonstrated comparable efficacy and safety with the pivotal phase 3 clinical trials for dabrafenib-trametinib.
Collapse
Affiliation(s)
- Erika Richtig
- Department of Dermatology, Medical University of Graz, Graz
| | - Van A. Nguyen
- Department of Dermatology, Medical University of Innsbruck, Innsbruck
| | - Peter Koelblinger
- Department of Dermatology and Allergology, Paracelsus Private Medical University, Salzburg
| | - Ingrid Wolf
- Department of Dermatology, Medical University of Graz, Graz
| | - Helmut Kehrer
- Department of Dermatology, Ordensklinikum Linz Elisabethinen, Linz
| | | | | | - Georg Weinlich
- Department of Dermatology, Medical University of Innsbruck, Innsbruck
| | - Damian Meyersburg
- Department of Dermatology and Allergology, Paracelsus Private Medical University, Salzburg
| | - Christine Hafner
- Department of Dermatology, University Hospital St. Pölten, Karl Landsteiner University of Health Sciences, St Pölten
| | - Elisabeth Jecel-Grill
- Department of Dermatology, University Hospital St. Pölten, Karl Landsteiner University of Health Sciences, St Pölten
| | - Julian Kofler
- Department of Dermatology, Klinikum Klagenfurt am Wörthersee, Klagenfurt
| | | | | | | | - Nina Svastics
- Dermatologische Ambulanz, Landesklinikum Wiener Neustadt, Wiener Neustadt
| | - Klaus Gasser
- Department of Oncology and Hematology, LKH Feldkirch, Rankweil
| | | | | | | | | | | |
Collapse
|
129
|
Boutros A, Croce E, Ferrari M, Gili R, Massaro G, Marconcini R, Arecco L, Tanda ET, Spagnolo F. The treatment of advanced melanoma: Current approaches and new challenges. Crit Rev Oncol Hematol 2024; 196:104276. [PMID: 38295889 DOI: 10.1016/j.critrevonc.2024.104276] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/15/2024] [Accepted: 01/26/2024] [Indexed: 02/17/2024] Open
Abstract
In recent years, advances in melanoma treatment have renewed patient hope. This comprehensive review emphasizes the evolving treatment landscape, particularly highlighting first-line strategies and the interplay between immune-checkpoint inhibitors (ICIs) and targeted therapies. Ipilimumab plus nivolumab has achieved the best median overall survival, exceeding 70 months. However, the introduction of new ICIs, like relatlimab, has added complexity to first-line therapy decisions. Our aim is to guide clinicians in making personalized treatment decisions. Various features, including brain metastases, PD-L1 expression, BRAF mutation, performance status, and prior adjuvant therapy, significantly impact the direction of advanced melanoma treatment. We also provide the latest insights into the treatment of rare melanoma subtypes, such as uveal melanoma, where tebentafusp has shown promising improvements in overall survival for metastatic uveal melanoma patients. This review provides invaluable insights for clinicians, enabling informed treatment choices and deepening our understanding of the multifaceted challenges associated with advanced melanoma management.
Collapse
Affiliation(s)
- Andrea Boutros
- Skin Cancer Unit, U.O. Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genova, Italy; Department of Internal Medicine and Medical Sciences (DiMI), School of Medicine, University of Genova, Genova, Italy.
| | - Elena Croce
- Skin Cancer Unit, U.O. Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Marco Ferrari
- Azienda Ospedaliero Universitaria Pisana, Medical Oncology Unit, Pisa, Italy
| | - Riccardo Gili
- Skin Cancer Unit, U.O. Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genova, Italy; Department of Internal Medicine and Medical Sciences (DiMI), School of Medicine, University of Genova, Genova, Italy
| | - Giulia Massaro
- Unit of Medical Oncology, Careggi University-Hospital, 50134 Florence, Italy
| | - Riccardo Marconcini
- Azienda Ospedaliero Universitaria Pisana, Medical Oncology Unit, Pisa, Italy
| | - Luca Arecco
- Department of Internal Medicine and Medical Sciences (DiMI), School of Medicine, University of Genova, Genova, Italy; Department of Medical Oncology, U.O.C. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Enrica Teresa Tanda
- Skin Cancer Unit, U.O. Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesco Spagnolo
- Skin Cancer Unit, U.O. Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genova, Italy; Department of Surgical Sciences and Integrated Diagnostics (DISC), Plastic Surgery Division, University of Genova, Genova, Italy
| |
Collapse
|
130
|
Levi S, Bank H, Mullinax J, Boland G. Precision Oncology in Melanoma and Skin Cancer Surgery. Surg Oncol Clin N Am 2024; 33:369-385. [PMID: 38401915 DOI: 10.1016/j.soc.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2024]
Abstract
There has been perhaps no greater advance in the prognosis of solid tumors in the last decade than for patients with metastatic melanoma. This is due to significant improvements in treatment based on two key components of melanoma tumor biology (1) the identification of driver mutations with therapeutic potential and (2) the mechanistic understanding of a tumor-specific immune response. With breakthrough findings in such a relatively short period of time, the treatment of patients with metastatic melanoma has become intensely personalized.
Collapse
Affiliation(s)
| | | | - John Mullinax
- Sarcoma Department, Moffitt Cancer Center, Tampa, FL, USA
| | - Genevieve Boland
- Department of Surgery, MGH, Boston, MA, USA; Department of Surgery, Massachusetts General Hospital (MGH) Cancer Center, Harvard Medical School (HMS), Boston, MA, USA.
| |
Collapse
|
131
|
Godson L, Alemi N, Nsengimana J, Cook GP, Clarke EL, Treanor D, Bishop DT, Newton-Bishop J, Gooya A, Magee D. Immune subtyping of melanoma whole slide images using multiple instance learning. Med Image Anal 2024; 93:103097. [PMID: 38325154 DOI: 10.1016/j.media.2024.103097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/15/2024] [Accepted: 01/25/2024] [Indexed: 02/09/2024]
Abstract
Determining early-stage prognostic markers and stratifying patients for effective treatment are two key challenges for improving outcomes for melanoma patients. Previous studies have used tumour transcriptome data to stratify patients into immune subgroups, which were associated with differential melanoma specific survival and potential predictive biomarkers. However, acquiring transcriptome data is a time-consuming and costly process. Moreover, it is not routinely used in the current clinical workflow. Here, we attempt to overcome this by developing deep learning models to classify gigapixel haematoxylin and eosin (H&E) stained pathology slides, which are well established in clinical workflows, into these immune subgroups. We systematically assess six different multiple instance learning (MIL) frameworks, using five different image resolutions and three different feature extraction methods. We show that pathology-specific self-supervised models using 10x resolution patches generate superior representations for the classification of immune subtypes. In addition, in a primary melanoma dataset, we achieve a mean area under the receiver operating characteristic curve (AUC) of 0.80 for classifying histopathology images into 'high' or 'low immune' subgroups and a mean AUC of 0.82 in an independent TCGA melanoma dataset. Furthermore, we show that these models are able to stratify patients into 'high' and 'low immune' subgroups with significantly different melanoma specific survival outcomes (log rank test, P< 0.005). We anticipate that MIL methods will allow us to find new biomarkers of high importance, act as a tool for clinicians to infer the immune landscape of tumours and stratify patients, without needing to carry out additional expensive genetic tests.
Collapse
Affiliation(s)
- Lucy Godson
- School of Computing, University of Leeds, Woodhouse, Leeds, LS2 9JT, United Kingdom.
| | - Navid Alemi
- School of Computing, University of Leeds, Woodhouse, Leeds, LS2 9JT, United Kingdom
| | - Jérémie Nsengimana
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Graham P Cook
- Leeds Institute of Medical Research, University of Leeds School of Medicine, St. James's University Hospital, Leeds, United Kingdom
| | - Emily L Clarke
- Department of Histopathology, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom; Division of Pathology and Data Analytics, Leeds Institute of Cancer and Pathology, University of Leeds, Beckett Street, Leeds, LS9 7TF, United Kingdom
| | - Darren Treanor
- Department of Histopathology, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom; Division of Pathology and Data Analytics, Leeds Institute of Cancer and Pathology, University of Leeds, Beckett Street, Leeds, LS9 7TF, United Kingdom; Department of Clinical Pathology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden; Centre for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - D Timothy Bishop
- Leeds Institute of Medical Research, University of Leeds School of Medicine, St. James's University Hospital, Leeds, United Kingdom
| | - Julia Newton-Bishop
- Division of Pathology and Data Analytics, Leeds Institute of Cancer and Pathology, University of Leeds, Beckett Street, Leeds, LS9 7TF, United Kingdom
| | - Ali Gooya
- School of Computing, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Derek Magee
- School of Computing, University of Leeds, Woodhouse, Leeds, LS2 9JT, United Kingdom
| |
Collapse
|
132
|
Whitman ED, Totev TI, Jiang S, da Costa WL, Grebennik D, Wang H, Boca AE, Ayyagari R. Assessing the use of anti-PD1 monotherapy as adjuvant therapy and determinants of treatment choice in stage III cutaneous melanoma in the US. BMC Cancer 2024; 24:389. [PMID: 38539148 PMCID: PMC10967219 DOI: 10.1186/s12885-024-12178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/24/2024] [Indexed: 11/11/2024] Open
Abstract
BACKGROUND The objective of this study was to describe real-world adjuvant therapy (AT) use by disease substage and assess determinants of treatment choice among patients with stage III melanoma. METHODS This non-interventional retrospective study included survey responses and data from patient records provided by US medical oncologists. Survey responses, patient demographic/clinical characteristics, treatment utilization, and reasons for treatment were reported descriptively. The association between patient and disease characteristics and AT selection was assessed using logistic and multinomial regression models, overall and stratified by AJCC8 substage (IIIA vs. IIIB/C/D) and type of AT received (anti-PD1 monotherapy, BRAF/MEK, no AT), respectively. RESULTS In total 152 medical oncologists completed the survey and reviewed the charts of 507 patients (168 stage IIIA; 339 stages IIIB/IIIC/IIID); 405 (79.9%) patients received AT (360/405 (88.9%) received anti-PD1 therapy; 45/405 (11.1%) received BRAF/MEK therapy). Physicians reported clinical guidelines (61.2%), treatment efficacy (37.5%), and ECOG performance status (31.6%) as drivers of AT prescription. Patient-level data confirmed that improving patient outcomes (79%) was the main reason for anti-PD1 prescription; expected limited treatment benefit (37%), patient refusal (36%), and toxicity concerns (30%) were reasons for not prescribing AT. In multivariable analyses stage IIIB/IIIC/IIID disease significantly increased the probability of receiving AT (odds ratio [OR] 1.74) and anti-PD1 therapy (OR 1.82); ECOG 2/3 and Medicaid/no insurance decreased the probability of AT receipt (OR 0.37 and 0.42, respectively) and anti-PD1 therapy (OR 0.41 and 0.42, respectively) among all patients and patients with stage IIIA disease. CONCLUSION Most patients were given AT with a vast majority treated with an anti-PD1 therapy. Physician- and patient-level evidence confirmed the impact of disease substage on AT use, with stage IIIA patients, patients without adequate insurance coverage, and worse ECOG status having a lower probability of receiving AT.
Collapse
Affiliation(s)
- Eric D Whitman
- Atlantic Health System Cancer Care, Morristown, NJ, USA
- Atlantic Melanoma Center, Morristown, NJ, USA
| | | | | | | | | | | | | | | |
Collapse
|
133
|
Pastori C, Nafie EHO, Wagh MS, Hunt SJ, Neal RE. Neoadjuvant chemo-immunotherapy is improved with a novel pulsed electric field technology in an immune-cold murine model. PLoS One 2024; 19:e0299499. [PMID: 38527041 PMCID: PMC10962799 DOI: 10.1371/journal.pone.0299499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/11/2024] [Indexed: 03/27/2024] Open
Abstract
Chemo-immunotherapy uses combined systemic therapies for resectable and unresectable tumors. This approach is gaining clinical momentum, but survival increases leave considerable room for improvement. A novel form of Pulsed Electric Field (PEF) ablation combines focal tissue destruction with immune activation in preclinical settings. The PEFs induce lethal cell damage without requiring thermal processes, leaving cellular proteins intact. This affords PEF a favorable safety profile, improved antigenicity, and significant immunostimulatory damage-associated molecular pattern release compared to other focal therapies. Preclinical investigations demonstrate a combinatorial benefit of PEF with immunostimulation. This study evaluates whether this proprietary PEF therapy induces an immunostimulatory effect sufficient to augment systemic neoadjuvant chemotherapy and immunotherapy to reverse metastatic disease in an immune-cold murine tumor model. To determine whether PEF improves a neoadjuvant chemo-immunotherapy standard-of-care, partial PEF ablation was delivered to orthotopically inoculated 4T1 metastatic tumors in addition to combinations of cisplatin chemotherapy and/or αPD-1 immunotherapy, followed by resection. In addition, to determine whether PEF combined with chemo-immunotherapy improves local and metastatic response in unresectable populations, partial PEF ablation was added to chemo-immunotherapy in mice that did not receive resection. Blood cytokines and flow cytometry evaluated immune response. Partial PEF ablation generates an immunostimulatory tumor microenvironment, increases systemic immune cell populations, slows tumor growth, and prolongs survival relative to neoadjuvant systemic therapies-alone. These data suggest the addition of this proprietary PEF locoregional therapy may synergize with systemic standard-of-care paradigms to improve outcomes with potential or demonstrated metastatic disease in both resectable and unresectable patient cohorts.
Collapse
Affiliation(s)
- Chiara Pastori
- Galvanize Therapeutics, Redwood City, CA, United States of America
| | | | - Mukta S. Wagh
- Galvanize Therapeutics, Redwood City, CA, United States of America
| | - Stephen J. Hunt
- Hospital of the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Robert E. Neal
- Galvanize Therapeutics, Redwood City, CA, United States of America
| |
Collapse
|
134
|
Tanaka T, Takahashi K, Inoue Y, Endo N, Shimoda E, Ueno K, Ichiyanagi T, Ohta T, Ishihara A. Inhibition of melanoma cell proliferation by strobilurins isolated from mushrooms and their synthetic analogues. Biosci Biotechnol Biochem 2024; 88:389-398. [PMID: 38271595 DOI: 10.1093/bbb/zbae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024]
Abstract
Strobilurins A and X, isolated from Mucidula venosolamellata culture extracts, demonstrated potent inhibition of human melanoma G-361 cell proliferation. Strobilurin X exhibited milder inhibitory effects on human fibroblast cells (NB1RGB) compared to strobilurin A. Additional strobilurin-related compounds were isolated from the other mushroom species. Oudemansins A and B displayed weaker activities on G-361 cells than strobilurins A and B, respectively, emphasizing the importance of a conjugated double-bond structure. Among isolated compounds, strobilurin G showed the lowest IC50 value for G-361 cells. Additional strobilurins bearing various substituents on the benzene ring were synthesized. Synthetic intermediates lacking the methyl β-methoxyacrylate group and a strobilurin analogue bearing modified β-methoxyacrylate moiety showed almost no inhibitory activity against G-361 cells. The introduction of long or bulky substituents at the 4' position of the benzene ring of strobilurins enhanced the activity and selectivity, suggesting differential recognition of the benzene ring by G-361 and NB1RGB cells.
Collapse
Affiliation(s)
- Tomoya Tanaka
- Graduate School of Sustainability Sciences, Tottori University, Tottori, Japan
| | - Kenji Takahashi
- Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Yuki Inoue
- Department of Agricultural, Life, and Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Naoki Endo
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Emiko Shimoda
- Department of Agricultural, Life, and Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Kotomi Ueno
- Department of Agricultural, Life, and Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Tsuyoshi Ichiyanagi
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University, Tottori, Japan
- Department of Agricultural, Life, and Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Toshio Ohta
- Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Atsushi Ishihara
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University, Tottori, Japan
- Department of Agricultural, Life, and Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori, Japan
| |
Collapse
|
135
|
Drown BS, Gupta R, McGee JP, Hollas MAR, Hergenrother PJ, Kafader JO, Kelleher NL. Precise Readout of MEK1 Proteoforms upon MAPK Pathway Modulation by Individual Ion Mass Spectrometry. Anal Chem 2024; 96:4455-4462. [PMID: 38458998 PMCID: PMC11008683 DOI: 10.1021/acs.analchem.3c04758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
The functions of proteins bearing multiple post-translational modifications (PTMs) are modulated by their modification patterns, yet precise characterization of them is difficult. MEK1 (also known as MAP2K1) is one such example that acts as a gatekeeper of the mitogen-activating protein kinase (MAPK) pathway and propagates signals via phosphorylation by upstream kinases. In principle, top-down mass spectrometry can precisely characterize whole MEK1 proteoforms, but fragmentation methods that would enable the site-specific characterization of labile modifications on 43 kDa protein ions result in overly dense tandem mass spectra. By using the charge-detection method called individual ion mass spectrometry, we demonstrate how complex mixtures of phosphoproteoforms and their fragment ions can be reproducibly handled to provide a "bird's eye" view of signaling activity through mapping proteoform landscapes in a pathway. Using this approach, the overall stoichiometry and distribution of 0-4 phosphorylations on MEK1 was determined in a cellular model of drug-resistant metastatic melanoma. This approach can be generalized to other multiply modified proteoforms, for which PTM combinations are key to their function and drug action.
Collapse
Affiliation(s)
- Bryon S Drown
- Proteomics Center of Excellence, Departments of Molecular Biosciences, Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60202, United States
| | - Raveena Gupta
- Proteomics Center of Excellence, Departments of Molecular Biosciences, Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60202, United States
| | - John P McGee
- Proteomics Center of Excellence, Departments of Molecular Biosciences, Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60202, United States
| | - Michael A R Hollas
- Proteomics Center of Excellence, Departments of Molecular Biosciences, Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60202, United States
| | - Paul J Hergenrother
- Department of Chemistry, Carl R. Woese Institute for Genomic Biology, Cancer Center at Illinois, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - Jared O Kafader
- Proteomics Center of Excellence, Departments of Molecular Biosciences, Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60202, United States
| | - Neil L Kelleher
- Proteomics Center of Excellence, Departments of Molecular Biosciences, Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60202, United States
| |
Collapse
|
136
|
Kopecký J, Pásek M, Lakomý R, Melichar B, Mrazová I, Kubeček O, Arenbergerová M, Lemstrová R, Švancarová A, Tretera V, Hlodáková A, Žváčková K. The outcome in patients with BRAF-mutated metastatic melanoma treated with anti-programmed death receptor-1 monotherapy or targeted therapy in the real-world setting. Cancer Med 2024; 13:e6982. [PMID: 38491825 PMCID: PMC10943370 DOI: 10.1002/cam4.6982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/24/2023] [Accepted: 01/15/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Immunotherapy and targeted therapy are currently two alternative backbones in the therapy of BRAF-mutated malignant melanoma. However, predictive biomarkers that would help with treatment selection are lacking. METHODS This retrospective study investigated outcomes of anti-programmed death receptor-1 monotherapy and targeted therapy in the first-line setting in patients with metastatic BRAF-mutated melanoma, focusing on clinical and laboratory parameters associated with treatment outcome. RESULTS Data from 174 patients were analysed. The median progression-free survival (PFS) was 17.0 months (95% CI; 8-39) and 12.5 months (95% CI; 9-14.2) for immunotherapy and targeted therapy, respectively. The 3-year PFS rate was 39% for immunotherapy and 25% for targeted therapy. The objective response rate was 72% and 51% for targeted therapy and immunotherapy. The median overall (OS) survival for immunotherapy has not been reached and was 23.6 months (95% CI; 16.1-38.2) for targeted therapy, with a 3-year survival rate of 63% and 40%, respectively. In a univariate analysis, age < 70 years, a higher number of metastatic sites, elevated serum LDH and a neutrophil-lymphocyte ratio above the cut-off value were associated with inferior PFS regardless of the therapy received, but only serum LDH level and the presence of lung metastases remained significant predictors of PFS in a multivariate analysis. CONCLUSIONS Present real-world data document the high effectiveness of immunotherapy and targeted therapy. Although targeted therapy had higher response rates, immunotherapy improved PFS and OS. While the prognostic value of LDH was confirmed, the potential use of blood cell count-derived parameters to predict outcomes needs further investigation.
Collapse
Affiliation(s)
- Jindřich Kopecký
- Department of Clinical Radiotherapy and OncologyUniversity Hospital in Hradec KraloveHradec KraloveCzech Republic
| | - Marek Pásek
- Department of Dermatovenereology, Third Faculty of MedicineCharles University and Kralovske Vinohrady University HospitalPragueCzech Republic
| | - Radek Lakomý
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute and Faculty of MedicineMasaryk UniversityBrnoCzech Republic
| | - Bohuslav Melichar
- Department of Oncology, Faculty of Medicine and DentistryPalacký University and University HospitalOlomoucCzech Republic
| | - Ivona Mrazová
- Department of OncologyCounty HospitalČeské BudějoviceCzech Republic
| | - Ondřej Kubeček
- Department of Clinical Radiotherapy and OncologyUniversity Hospital in Hradec KraloveHradec KraloveCzech Republic
| | - Monika Arenbergerová
- Department of Dermatovenereology, Third Faculty of MedicineCharles University and Kralovske Vinohrady University HospitalPragueCzech Republic
| | - Radmila Lemstrová
- Department of Oncology, Faculty of Medicine and DentistryPalacký University and University HospitalOlomoucCzech Republic
| | - Alžběta Švancarová
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute and Faculty of MedicineMasaryk UniversityBrnoCzech Republic
| | - Vojtěch Tretera
- Department of Dermatovenereology, Third Faculty of MedicineCharles University and Kralovske Vinohrady University HospitalPragueCzech Republic
| | - Alžběta Hlodáková
- Department of Clinical Radiotherapy and OncologyUniversity Hospital in Hradec KraloveHradec KraloveCzech Republic
| | - Kamila Žváčková
- Department of Oncology, Faculty of Medicine and DentistryPalacký University and University HospitalOlomoucCzech Republic
| |
Collapse
|
137
|
Hanrahan AJ, Chen Z, Rosen N, Solit DB. BRAF - a tumour-agnostic drug target with lineage-specific dependencies. Nat Rev Clin Oncol 2024; 21:224-247. [PMID: 38278874 PMCID: PMC11857949 DOI: 10.1038/s41571-023-00852-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/28/2024]
Abstract
In June 2022, the FDA granted Accelerated Approval to the BRAF inhibitor dabrafenib in combination with the MEK inhibitor trametinib for the treatment of adult and paediatric patients (≥6 years of age) with unresectable or metastatic BRAFV600E-mutant solid tumours, except for BRAFV600E-mutant colorectal cancers. The histology-agnostic approval of dabrafenib plus trametinib marks the culmination of two decades of research into the landscape of BRAF mutations in human cancers, the biochemical mechanisms underlying BRAF-mediated tumorigenesis, and the clinical development of selective RAF and MEK inhibitors. Although the majority of patients with BRAFV600E-mutant tumours derive clinical benefit from BRAF inhibitor-based combinations, resistance to treatment develops in most. In this Review, we describe the biochemical basis for oncogenic BRAF-induced activation of MAPK signalling and pan-cancer and lineage-specific mechanisms of intrinsic, adaptive and acquired resistance to BRAF inhibitors. We also discuss novel RAF inhibitors and drug combinations designed to delay the emergence of treatment resistance and/or expand the population of patients with BRAF-mutant cancers who benefit from molecularly targeted therapies.
Collapse
Affiliation(s)
- Aphrothiti J Hanrahan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ziyu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Physiology, Biophysics & Systems Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Neal Rosen
- Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - David B Solit
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medical College, Cornell University, New York, NY, USA.
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
138
|
Weth FR, Hoggarth GB, Weth AF, Paterson E, White MPJ, Tan ST, Peng L, Gray C. Unlocking hidden potential: advancements, approaches, and obstacles in repurposing drugs for cancer therapy. Br J Cancer 2024; 130:703-715. [PMID: 38012383 PMCID: PMC10912636 DOI: 10.1038/s41416-023-02502-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/30/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023] Open
Abstract
High rates of failure, exorbitant costs, and the sluggish pace of new drug discovery and development have led to a growing interest in repurposing "old" drugs to treat both common and rare diseases, particularly cancer. Cancer, a complex and heterogeneous disease, often necessitates a combination of different treatment modalities to achieve optimal outcomes. The intrinsic polygenicity of cancer, intricate biological signalling networks, and feedback loops make the inhibition of a single target frequently insufficient for achieving the desired therapeutic impact. As a result, addressing these complex or "smart" malignancies demands equally sophisticated treatment strategies. Combinatory treatments that target the multifaceted oncogenic signalling network hold immense promise. Repurposed drugs offer a potential solution to this challenge, harnessing known compounds for new indications. By avoiding the prohibitive costs and long development timelines associated with novel cancer drugs, this approach holds the potential to usher in more effective, efficient, and cost-effective cancer treatments. The pursuit of combinatory therapies through drug repurposing may hold the key to achieving superior outcomes for cancer patients. However, drug repurposing faces significant commercial, technological and regulatory challenges that need to be addressed. This review explores the diverse approaches employed in drug repurposing, delves into the challenges faced by the drug repurposing community, and presents innovative solutions to overcome these obstacles. By emphasising the significance of combinatory treatments within the context of drug repurposing, we aim to unlock the full potential of this approach for enhancing cancer therapy. The positive aspects of drug repurposing in oncology are underscored here; encompassing personalized treatment, accelerated development, market opportunities for shelved drugs, cancer prevention, expanded patient reach, improved patient access, multi-partner collaborations, increased likelihood of approval, reduced costs, and enhanced combination therapy.
Collapse
Affiliation(s)
- Freya R Weth
- Gillies McIndoe Research Institute, Newtown, Wellington, 6021, New Zealand
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Kelburn, Wellington, 6021, New Zealand
| | - Georgia B Hoggarth
- Gillies McIndoe Research Institute, Newtown, Wellington, 6021, New Zealand
| | - Anya F Weth
- Gillies McIndoe Research Institute, Newtown, Wellington, 6021, New Zealand
| | - Erin Paterson
- Gillies McIndoe Research Institute, Newtown, Wellington, 6021, New Zealand
| | | | - Swee T Tan
- Gillies McIndoe Research Institute, Newtown, Wellington, 6021, New Zealand
- Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Lower Hutt, 5040, New Zealand
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Lifeng Peng
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Kelburn, Wellington, 6021, New Zealand
| | - Clint Gray
- Gillies McIndoe Research Institute, Newtown, Wellington, 6021, New Zealand.
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Kelburn, Wellington, 6021, New Zealand.
| |
Collapse
|
139
|
Uchi H. Optimal strategy in managing advanced melanoma. J Dermatol 2024; 51:324-334. [PMID: 38087810 PMCID: PMC11483965 DOI: 10.1111/1346-8138.17068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/01/2023] [Accepted: 11/20/2023] [Indexed: 03/05/2024]
Abstract
The advent of immune checkpoint inhibitors and combination therapy with BRAF inhibitors and MEK inhibitors has dramatically improved the prognosis of advanced melanoma. However, since acral melanoma and mucosal melanoma, which are rare in Western countries but are major subtypes of melanoma in East Asia, including Japan, have a low frequency of BRAF mutations, there are currently no treatment options other than immune checkpoint inhibitors in most such cases. Furthermore, owing to a lower tumor mutation burden, immune checkpoint inhibitors are less effective in acral and mucosal melanoma than in cutaneous melanoma. The aim of this review was to summarize the current status and future prospects for the treatment of advanced melanoma, comparing cutaneous melanoma, acral melanoma, and mucosal melanoma.
Collapse
Affiliation(s)
- Hiroshi Uchi
- Department of Dermato‐OncologyNational Hospital Organization Kyushu Cancer CenterFukuokaJapan
| |
Collapse
|
140
|
Benhima N, Belbaraka R, Langouo Fontsa MD. Single agent vs combination immunotherapy in advanced melanoma: a review of the evidence. Curr Opin Oncol 2024; 36:69-73. [PMID: 38193381 DOI: 10.1097/cco.0000000000001014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
PURPOSE OF REVIEW The aim of this review is to outline the current landscape of advanced melanoma treatment options, provide insights on selecting combination therapies within different clinical scenarios, capture clinical relevance of anti-programmed cell death protein 1 (PD-1) monotherapy, and explore the unmet needs with immune check-point inhibitors (ICI) in advanced melanoma. RECENT FINDINGS ICI based treatment consisted of single agent ICI or dual combination ICI-ICI is the standard of care of front-line treatment of metastatic or unresectable melanoma. PD-1 inhibitors (Pembrolizumab and Nivolumab) improved progression free survival (PFS) and overall survival (OS) compared to chemotherapy and cytotoxic T-lymphocyte associated protein 4 (CTLA-4) inhibitors (Ipilimumab and Tremelimumab). The dual ICI combination (Nivolumab and Ipilimumab) provided profound and durable responses better than monotherapy, and the longest overall survival ever achieved in advanced disease, including in patients with murine sarcoma viral oncogene homolog B (BRAF)-mutated disease, but at the cost of a high risk of severe toxicity. The new dual blockage of LAG-3 and PD-1 (Nivolumab-Relatlimab) emerges as a valid option with promising efficacy outcomes and a favourable toxicity profile. Mature survival data is still needed to capture the real benefit. SUMMARY These new plethora of options pose new challenges not only for optimal treatment sequencing strategies but especially for management of adverse effects, endorsing the need to integrate a holistic and personalized approach for patient care.
Collapse
Affiliation(s)
- Nada Benhima
- Medical Oncology Department, Mohammed VI University Hospital, Marrakech, Morocco
- Medical Oncology Clinic, Jules Bordet Institute, Brussels, Belgium
| | - Rhizlane Belbaraka
- Medical Oncology Department, Mohammed VI University Hospital, Marrakech, Morocco
| | | |
Collapse
|
141
|
Namikawa K, Nakano E, Ogata D, Yamazaki N. Long-term survival with systemic therapy in the last decade: Can melanoma be cured? J Dermatol 2024; 51:343-352. [PMID: 38358050 PMCID: PMC11484129 DOI: 10.1111/1346-8138.17147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
Immune checkpoint inhibitors have been shown to prolong survival of patients with several types of cancer, and the finding was first established in melanoma. Previously, systemic therapy for advanced melanoma aimed only at tumor control and palliation of symptoms. However, in recent years, some patients who received systemic therapy have achieved a complete response and survived without continuous treatment for more than several years. This review discusses the long-term survival rates achieved with currently used systemic therapies and their future perspectives. Long-term survival is currently most likely to be achieved with the use of the standard-dose combination of nivolumab plus ipilimumab, however, this regimen is associated with a high frequency of serious or persistent immune-related adverse events. Several new anti-PD-1-based combination therapies with a better risk-benefit balance are currently under development. Although the acral and mucosal subtypes tend to be less responsive to immune checkpoint inhibitors, anti-PD-1-based combination therapy should continue to be investigated for these subtypes owing to its potential for better long-term survival. With the development of efficacious immunotherapy and targeted therapy, it is important to determine the optimal duration of systemic therapy to avoid unnecessary health and financial burdens as well as to improve efforts to support long-term cancer survivors. As the goal of systemic therapy shifts from tumor control to long-term survival, in future clinical trials, long-term clinical outcomes should be evaluated to assess the benefits of novel agents.
Collapse
Affiliation(s)
- Kenjiro Namikawa
- Department of Dermatologic OncologyNational Cancer Center HospitalTokyoJapan
| | - Eiji Nakano
- Department of Dermatologic OncologyNational Cancer Center HospitalTokyoJapan
| | - Dai Ogata
- Department of Dermatologic OncologyNational Cancer Center HospitalTokyoJapan
| | - Naoya Yamazaki
- Department of Dermatologic OncologyNational Cancer Center HospitalTokyoJapan
| |
Collapse
|
142
|
Hadfield MJ, Sullivan RJ. What Is the Timing and Role of Targeted Therapy in Metastatic Melanoma? Cancer J 2024; 30:84-91. [PMID: 38527261 DOI: 10.1097/ppo.0000000000000712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
ABSTRACT Melanoma is the most lethal cutaneous malignancy worldwide. The last 15 years have ushered in several regulatory approvals that have dramatically altered the landscape of treatment options for patients with melanoma. Many patients with melanoma harbor activating mutations in the BRAF proto-oncogene, a key component of the mitogen-activated protein kinase (MAPK) intracellular signaling pathway. Therapies targeting BRAF have led to remarkable improvements in both response rates and survival in patients with metastatic disease. In parallel with these developments in MAPK-targeted therapy has been the clinical development of immune checkpoint inhibitors, which also have improved response rates and survival in patients with metastatic disease including randomized trials compared with MAPK-targeted therapy in patients with advanced, BRAF-mutant melanoma. Immune checkpoint inhibitors have become the preferred first-line standard-of-care treatment for patients with newly diagnosed metastatic disease in patients irrespective of BRAF mutational status. Given these developments, it is now less clear how to optimize the use of MAPK-targeted therapy regarding treatment setting and in sequence with immune checkpoint inhibitor.
Collapse
|
143
|
Smithy JW, Chapman PB. A General Approach to Patients Presenting With Locally Advanced or Distant Metastatic Disease. Cancer J 2024; 30:48-53. [PMID: 38527257 DOI: 10.1097/ppo.0000000000000704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
ABSTRACT The widespread adoption of immune checkpoint inhibitors and small molecule inhibitors of the MAP kinase pathway has transformed the management of locally advanced and metastatic melanoma. Here, we provide a broad overview on the use of these agents in the first-line setting, incorporating a review of the clinical literature as well as the practice patterns of our respective melanoma groups. Throughout, we highlight areas of uncertainty that provide opportunities for future clinical investigation and additional improvement in outcomes for patients with melanoma.
Collapse
Affiliation(s)
- James W Smithy
- From the Department of Medicine, Memorial Sloan Kettering Cancer Center
| | | |
Collapse
|
144
|
Fortuna A, Amaral T. Multidisciplinary approach and treatment of acral and mucosal melanoma. Front Oncol 2024; 14:1340408. [PMID: 38469235 PMCID: PMC10926023 DOI: 10.3389/fonc.2024.1340408] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/29/2024] [Indexed: 03/13/2024] Open
Abstract
Acral and mucosal melanoma are uncommon variants of melanoma. Acral melanoma has an age-adjusted incidence of approximately 1.8 cases per million individuals per year, accounting for about 2% to 3% of all melanoma cases. On the other hand, mucosal melanoma, with an incidence of 2.2 cases per million per year, makes up around 1.3% of all melanoma cases. These melanomas, in addition to being biologically and clinically distinct from cutaneous melanoma, share certain clinical and pathologic characteristics. These include a more aggressive nature and a less favorable prognosis. Furthermore, they exhibit a different mutational pattern, with KIT mutations being more prevalent in acral and mucosal melanomas. This divergence in mutational patterns may partially account for the relatively poorer prognosis, particularly to immune checkpoint inhibitors. This review explores various aspects of acral and mucosal melanoma, including their clinical presentation, pathologic features, mutational profiles, current therapeutic approaches, outcomes associated with systemic therapy, and potential strategies to address resistance to existing treatments.
Collapse
Affiliation(s)
- Ana Fortuna
- Oncology Department, Centro Hospitalar Universitário do Algarve, Faro, Portugal
| | - Teresa Amaral
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Cluster of Excellence Image-Guided and Functionally Instructed Tumor Therapies (iFIT) (EXC 2180), Tübingen, Germany
| |
Collapse
|
145
|
Alves Costa Silva C, Piccinno G, Suissa D, Bourgin M, Schreibelt G, Durand S, Birebent R, Fidelle M, Sow C, Aprahamian F, Manghi P, Punčochář M, Asnicar F, Pinto F, Armanini F, Terrisse S, Routy B, Drubay D, Eggermont AMM, Kroemer G, Segata N, Zitvogel L, Derosa L, Bol KF, de Vries IJM. Influence of microbiota-associated metabolic reprogramming on clinical outcome in patients with melanoma from the randomized adjuvant dendritic cell-based MIND-DC trial. Nat Commun 2024; 15:1633. [PMID: 38395948 PMCID: PMC10891084 DOI: 10.1038/s41467-024-45357-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Tumor immunosurveillance plays a major role in melanoma, prompting the development of immunotherapy strategies. The gut microbiota composition, influencing peripheral and tumoral immune tonus, earned its credentials among predictors of survival in melanoma. The MIND-DC phase III trial (NCT02993315) randomized (2:1 ratio) 148 patients with stage IIIB/C melanoma to adjuvant treatment with autologous natural dendritic cell (nDC) or placebo (PL). Overall, 144 patients collected serum and stool samples before and after 2 bimonthly injections to perform metabolomics (MB) and metagenomics (MG) as prespecified exploratory analysis. Clinical outcomes are reported separately. Here we show that different microbes were associated with prognosis, with the health-related Faecalibacterium prausnitzii standing out as the main beneficial taxon for no recurrence at 2 years (p = 0.008 at baseline, nDC arm). Therapy coincided with major MB perturbations (acylcarnitines, carboxylic and fatty acids). Despite randomization, nDC arm exhibited MG and MB bias at baseline: relative under-representation of F. prausnitzii, and perturbations of primary biliary acids (BA). F. prausnitzii anticorrelated with BA, medium- and long-chain acylcarnitines. Combined, these MG and MB biomarkers markedly determined prognosis. Altogether, the host-microbial interaction may play a role in localized melanoma. We value systematic MG and MB profiling in randomized trials to avoid baseline differences attributed to host-microbe interactions.
Collapse
Grants
- The MIND-DC trial was funded by ZonMw, Ministry of Health, Welfare and Sport (VWS), Stichting ATK, Miltenyi Biotec (in-kind). This work was supported by SEERAVE Foundation, European Union Horizon 2020:Project Number: 825410 and Project Acronym: ONCOBIOME, Institut National du Cancer (INCa), ANR Ileobiome - 19-CE15-0029-01, ANR RHU5 “ANR-21-RHUS-0017” IMMUNOLIFE&#x201D;, MAdCAM INCA_ 16698, Ligue contre le cancer, LABEX OncoImmunology, la direction generale de l&#x2019;offre de soins (DGOS), Universite Paris-Sud, SIRIC SOCRATE (INCa/DGOS/INSERM 6043), and PACRI network. G.K. is supported by the Ligue contre le Cancer (équipe labellis&#x00E9;e); Agence National de la Recherche (ANR) – Projets blancs; AMMICa US23/CNRS UMS3655; Association pour la recherche sur le cancer (ARC); Canc&#x00E9;rop&#x00F4;le Ile-de-France; Fondation pour la Recherche M&#x00E9;dicale (FRM); a donation by Elior; Equipex Onco-Pheno-Screen; European Joint Programme on Rare Diseases (EJPRD); European Research Council Advanced Investigator Award (ERC-2021-ADG, ICD-Cancer, Grant No. 101052444), European Union Horizon 2020 Projects Oncobiome, Prevalung (grant No. 101095604) and Crimson; Fondation Carrefour; Institut National du Cancer (INCa); Institut Universitaire de France; LabEx Immuno-Oncology (ANR-18-IDEX-0001); a Cancer Research ASPIRE Award from the Mark Foundation; the RHU Immunolife; Seerave Foundation; SIRIC Stratified Oncology Cell DNA Repair and Tumor Immune Elimination (SOCRATE); and SIRIC Cancer Research and Personalized Medicine (CARPEM). This study contributes to the IdEx Universit&#x00E9; de Paris ANR-18-IDEX-0001. This work is supported by the Prism project funded by the Agence Nationale de la Recherche under grant number ANR-18-IBHU-0002. CACS was funded by MSD Avenir. MF is funded by SEERAVE Foundation and MERCK Foundation. LD and BR were supported by Philantropia at Gustave Roussy Foundation.
Collapse
Affiliation(s)
- Carolina Alves Costa Silva
- Gustave Roussy Cancer Campus (GRCC), ClinicObiome, Villejuif Cedex, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin-Bicêtre, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
| | - Gianmarco Piccinno
- Department of Computational, Cellular and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Déborah Suissa
- Gustave Roussy Cancer Campus (GRCC), ClinicObiome, Villejuif Cedex, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin-Bicêtre, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
| | - Mélanie Bourgin
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, Paris, France
| | - Gerty Schreibelt
- Medical BioSciences, Radboud Institute for Medical Innovation, Radboud university medical center, Nijmegen, The Netherlands
| | - Sylvère Durand
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, Paris, France
| | - Roxanne Birebent
- Gustave Roussy Cancer Campus (GRCC), ClinicObiome, Villejuif Cedex, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin-Bicêtre, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
| | - Marine Fidelle
- Gustave Roussy Cancer Campus (GRCC), ClinicObiome, Villejuif Cedex, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
| | - Cissé Sow
- Gustave Roussy Cancer Campus (GRCC), ClinicObiome, Villejuif Cedex, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
| | - Fanny Aprahamian
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, Paris, France
| | - Paolo Manghi
- Department of Computational, Cellular and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Michal Punčochář
- Department of Computational, Cellular and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Francesco Asnicar
- Department of Computational, Cellular and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Federica Pinto
- Department of Computational, Cellular and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Federica Armanini
- Department of Computational, Cellular and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Safae Terrisse
- Oncology Department, Assistance Publique Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis, Paris, France
| | - Bertrand Routy
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Hematology-Oncology Division, Department of Medicine, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada
| | - Damien Drubay
- Gustave Roussy Cancer Campus (GRCC), ClinicObiome, Villejuif Cedex, France
- Office of Biostatistics and Epidemiology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Inserm, Université Paris-Saclay, CESP U1018, Oncostat, labeled Ligue Contre le Cancer, Villejuif, France
| | - Alexander M M Eggermont
- Princess Máxima Center and University Medical Center Utrecht, 3584 CS Utrecht, The Netherlands
- Comprehensive Cancer Center Munich, Technical University Munich & Ludwig Maximiliaan University, Munich, Germany
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, Paris, France
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Nicola Segata
- Department of Computational, Cellular and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus (GRCC), ClinicObiome, Villejuif Cedex, France.
- Faculté de Médecine, Université Paris-Saclay, Kremlin-Bicêtre, France.
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France.
- Center of Clinical Investigations BIOTHERIS, INSERM CIC1428, Villejuif, France.
| | - Lisa Derosa
- Gustave Roussy Cancer Campus (GRCC), ClinicObiome, Villejuif Cedex, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin-Bicêtre, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
| | - Kalijn F Bol
- Medical BioSciences, Radboud Institute for Medical Innovation, Radboud university medical center, Nijmegen, The Netherlands
- Department of Medical Oncology, Radboud university medical center, Nijmegen, The Netherlands
| | - I Jolanda M de Vries
- Medical BioSciences, Radboud Institute for Medical Innovation, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
146
|
Hieken TJ, Nelson GD, Flotte TJ, Grewal EP, Chen J, McWilliams RR, Kottschade LA, Yang L, Domingo-Musibay E, Dronca RS, Yan Y, Markovic SN, Dimou A, Montane HN, Erskine CL, Piltin MA, Price DL, Khariwala SS, Hui J, Strand CA, Harrington SM, Suman VJ, Dong H, Block MS. Neoadjuvant cobimetinib and atezolizumab with or without vemurafenib for high-risk operable Stage III melanoma: the Phase II NeoACTIVATE trial. Nat Commun 2024; 15:1430. [PMID: 38365756 PMCID: PMC10873383 DOI: 10.1038/s41467-024-45798-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/05/2024] [Indexed: 02/18/2024] Open
Abstract
Both targeted therapies and immunotherapies provide benefit in resected Stage III melanoma. We hypothesized that the combination of targeted and immunotherapy given prior to therapeutic lymph node dissection (TLND) would be tolerable and drive robust pathologic responses. In NeoACTIVATE (NCT03554083), a Phase II trial, patients with clinically evident resectable Stage III melanoma received either 12 weeks of neoadjuvant vemurafenib, cobimetinib, and atezolizumab (BRAF-mutated, Cohort A, n = 15), or cobimetinib and atezolizumab (BRAF-wild-type, Cohort B, n = 15) followed by TLND and 24 weeks of adjuvant atezolizumab. Here, we report outcomes from the neoadjuvant portion of the trial. Based on intent to treat analysis, pathologic response (≤50% viable tumor) and major pathologic response (complete or near-complete, ≤10% viable tumor) were observed in 86.7% and 66.7% of BRAF-mutated and 53.3% and 33.3% of BRAF-wild-type patients, respectively (primary outcome); these exceeded pre-specified benchmarks of 50% and 30% for major pathologic response. Grade 3 and higher toxicities, primarily dermatologic, occurred in 63% during neoadjuvant treatment (secondary outcome). No surgical delays nor progression to regional unresectability occurred (secondary outcome). Peripheral blood CD8 + TCM cell expansion associated with favorable pathologic responses (exploratory outcome).
Collapse
Affiliation(s)
- Tina J Hieken
- Division of Breast and Melanoma Surgical Oncology, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Garth D Nelson
- Department of Quantitative Health Sciences, Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN, USA
| | - Thomas J Flotte
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Eric P Grewal
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Jun Chen
- Department of Quantitative Health Sciences, Computational Biology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Lu Yang
- Department of Quantitative Health Sciences, Computational Biology, Mayo Clinic, Rochester, MN, USA
| | - Evidio Domingo-Musibay
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Roxana S Dronca
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Yiyi Yan
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Svetomir N Markovic
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Mara A Piltin
- Division of Breast and Melanoma Surgical Oncology, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Daniel L Price
- Department of Otolaryngology, Mayo Clinic, Rochester, MN, USA
| | - Samir S Khariwala
- Department of Otolaryngology, University of Minnesota, Minneapolis, MN, USA
| | - Jane Hui
- Division of Surgical Oncology, University of Minnesota, Minneapolis, MN, USA
| | - Carrie A Strand
- Department of Quantitative Health Sciences, Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN, USA
| | - Susan M Harrington
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
- Department of Urology, Mayo Clinic, Rochester, MN, USA
| | - Vera J Suman
- Department of Quantitative Health Sciences, Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN, USA
| | - Haidong Dong
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
- Department of Urology, Mayo Clinic, Rochester, MN, USA
| | - Matthew S Block
- Department of Oncology, Mayo Clinic, Rochester, MN, USA.
- Department of Immunology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
147
|
McFaline-Figueroa JL, Srivatsan S, Hill AJ, Gasperini M, Jackson DL, Saunders L, Domcke S, Regalado SG, Lazarchuck P, Alvarez S, Monnat RJ, Shendure J, Trapnell C. Multiplex single-cell chemical genomics reveals the kinase dependence of the response to targeted therapy. CELL GENOMICS 2024; 4:100487. [PMID: 38278156 PMCID: PMC10879025 DOI: 10.1016/j.xgen.2023.100487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 09/26/2023] [Accepted: 12/15/2023] [Indexed: 01/28/2024]
Abstract
Chemical genetic screens are a powerful tool for exploring how cancer cells' response to drugs is shaped by their mutations, yet they lack a molecular view of the contribution of individual genes to the response to exposure. Here, we present sci-Plex-Gene-by-Environment (sci-Plex-GxE), a platform for combined single-cell genetic and chemical screening at scale. We highlight the advantages of large-scale, unbiased screening by defining the contribution of each of 522 human kinases to the response of glioblastoma to different drugs designed to abrogate signaling from the receptor tyrosine kinase pathway. In total, we probed 14,121 gene-by-environment combinations across 1,052,205 single-cell transcriptomes. We identify an expression signature characteristic of compensatory adaptive signaling regulated in a MEK/MAPK-dependent manner. Further analyses aimed at preventing adaptation revealed promising combination therapies, including dual MEK and CDC7/CDK9 or nuclear factor κB (NF-κB) inhibitors, as potent means of preventing transcriptional adaptation of glioblastoma to targeted therapy.
Collapse
Affiliation(s)
- José L McFaline-Figueroa
- Department of Biomedical Engineering, Columbia University, New York, NY, USA; Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - Sanjay Srivatsan
- Department of Genome Sciences, University of Washington, Seattle, WA, USA; Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Andrew J Hill
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Molly Gasperini
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Dana L Jackson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Lauren Saunders
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Silvia Domcke
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Samuel G Regalado
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Paul Lazarchuck
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Sarai Alvarez
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Raymond J Monnat
- Department of Genome Sciences, University of Washington, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA; Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA; Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
| |
Collapse
|
148
|
Rubinstein JC, Domanskyi S, Sheridan TB, Sanderson B, Park S, Kaster J, Li H, Anczukow O, Herlyn M, Chuang JH. Spatiotemporal profiling defines persistence and resistance dynamics during targeted treatment of melanoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.577085. [PMID: 38370717 PMCID: PMC10871267 DOI: 10.1101/2024.02.02.577085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Resistance of BRAF-mutant melanomas to targeted therapy arises from the ability of cells to enter a persister state, evade treatment with relative dormancy, and repopulate the tumor when reactivated. Using spatial transcriptomics in patient derived xenograft models, we capture clonal lineage evolution during treatment, finding the persister state to show increased oxidative phosphorylation, decreased proliferation, and increased invasive capacity, with central-to-peripheral gradients. Phylogenetic tracing identifies intrinsic- and acquired-resistance mechanisms (e.g. dual specific phosphatases, Reticulon-4, CDK2) and suggests specific temporal windows of potential therapeutic efficacy. Using deep learning to analyze histopathological slides, we find morphological features of specific cell states, demonstrating that juxtaposition of transcriptomics and histology data enables identification of phenotypically-distinct populations using imaging data alone. In summary, we define state change and lineage selection during melanoma treatment with spatiotemporal resolution, elucidating how choice and timing of therapeutic agents will impact the ability to eradicate resistant clones. Statement of Significance Tumor evolution is accelerated by application of anti-cancer therapy, resulting in clonal expansions leading to dormancy and subsequently resistance, but the dynamics of this process are incompletely understood. Tracking clonal progression during treatment, we identify conserved, global transcriptional changes and local clone-clone and spatial patterns underlying the emergence of resistance.
Collapse
|
149
|
Bhamidipati D, Pellatt A, Subbiah V. Targeting All BRAF Alterations: The (Re)-Search Continues. JCO Precis Oncol 2024; 8:e2300670. [PMID: 38380848 PMCID: PMC10896466 DOI: 10.1200/po.23.00670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 02/22/2024] Open
Abstract
VivekSubbiah & colleagues delve into the @ASCO #TAPURStudy, shedding light on the importance of targeting ALL #BRAFAlterations, beyond V600E. (Re)-search continues, urging us to push the boundaries and unlock new possibilities in #PrecisionMedicine. #CancerResearch #JCOPO.
Collapse
Affiliation(s)
- Deepak Bhamidipati
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Andrew Pellatt
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | |
Collapse
|
150
|
Farah C, Mignion L, Jordan BF. Metabolic Profiling to Assess Response to Targeted and Immune Therapy in Melanoma. Int J Mol Sci 2024; 25:1725. [PMID: 38339003 PMCID: PMC10855758 DOI: 10.3390/ijms25031725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
There is currently no consensus to determine which advanced melanoma patients will benefit from targeted therapy, immunotherapy, or a combination of both, highlighting the critical need to identify early-response biomarkers to advanced melanoma therapy. The goal of this review is to provide scientific rationale to highlight the potential role of metabolic imaging to assess response to targeted and/or immune therapy in melanoma cancer. For that purpose, a brief overview of current melanoma treatments is provided. Then, current knowledge with respect to melanoma metabolism is described with an emphasis on major crosstalks between melanoma cell metabolism and signaling pathways involved in BRAF-targeted therapy as well as in immune checkpoint inhibition therapies. Finally, preclinical and clinical studies using metabolic imaging and/or profiling to assess response to melanoma treatment are summarized with a particular focus on PET (Positron Emission Tomography) imaging and 13C-MRS (Magnetic Resonance Spectroscopy) methods.
Collapse
Affiliation(s)
- Chantale Farah
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), B-1200 Brussels, Belgium;
| | - Lionel Mignion
- Nuclear and Electron Spin Technologies (NEST) Platform, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), B-1200 Brussels, Belgium;
| | - Bénédicte F. Jordan
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), B-1200 Brussels, Belgium;
- Nuclear and Electron Spin Technologies (NEST) Platform, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), B-1200 Brussels, Belgium;
| |
Collapse
|