101
|
Liaqat A, Mason M, Foster B, Gregory G, Patel A, Barlas A, Kulkarni S, Basso R, Patak P, Liaqat H, Qureshi M, Shehata A, Awad Y, Ghaly M, Gulzar Q, Doty W. Evidence-Based Approach of Biologic Therapy in Bronchial Asthma. J Clin Med 2023; 12:4321. [PMID: 37445357 DOI: 10.3390/jcm12134321] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
The emergence of biologic agents in the treatment of bronchial asthma has a wide impact on improving quality of life, reducing morbidity, and overall health care utilization. These therapies usually work by targeting specific inflammatory pathways involving type 2 inflammation and are particularly effective in severe eosinophilic asthma. Various randomized controlled trials have shown their effectiveness by reducing exacerbation rates and decreasing required glucocorticoid dosages. One of the relatively newer agents, tezepelumab, targets thymic stromal lymphoprotein and has proven its efficacy in patients independent of asthma phenotype and serum biomarker levels. This article reviews the pathophysiologic mechanism behind biologic therapy and offers an evidence-based discussion related to the indication, benefits, and adverse effects of such therapies.
Collapse
Affiliation(s)
- Adnan Liaqat
- Pulmonary and Critical Care Medicine, McLaren Health/Michigan State University, Flint, MI 48532, USA
| | - Mathew Mason
- Internal Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brian Foster
- Pulmonary and Critical Care Medicine, Cleveland Clinic Florida, Weston, FL 33321, USA
| | - Grant Gregory
- Internal Medicine, Alabama College of Osteopathic Medicine, Dothan, AL 36303, USA
| | - Avani Patel
- Internal Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Aisha Barlas
- Internal Medicine, Mercy Health, Rockford, IL 61114, USA
| | - Sagar Kulkarni
- Pulmonary and Critical Care Medicine, Southeast Health, Dothan, AL 36301, USA
| | - Rafaela Basso
- Pulmonary and Critical Care Medicine, Southeast Health, Dothan, AL 36301, USA
| | - Pooja Patak
- Pulmonary and Critical Care Medicine, University of Missouri, Kansas City, MO 64110, USA
| | - Hamza Liaqat
- Internal Medicine, Wah Medical College, Wah Cantt 47040, Pakistan
| | - Muhammad Qureshi
- Pulmonary and Critical Care Medicine, Southeast Health, Dothan, AL 36301, USA
| | - Abdelrahman Shehata
- Pulmonary and Critical Care Medicine, Southeast Health, Dothan, AL 36301, USA
| | - Yousef Awad
- Pulmonary and Critical Care Medicine, Southeast Health, Dothan, AL 36301, USA
| | - Mina Ghaly
- Pulmonary and Critical Care Medicine, Southeast Health, Dothan, AL 36301, USA
| | - Qamar Gulzar
- Pulmonary and Critical Care Medicine, Southeast Health, Dothan, AL 36301, USA
| | - Walter Doty
- Pulmonary and Critical Care Medicine, Southeast Health, Dothan, AL 36301, USA
| |
Collapse
|
102
|
Scotney E, Fleming L, Saglani S, Sonnappa S, Bush A. Advances in the pathogenesis and personalised treatment of paediatric asthma. BMJ MEDICINE 2023; 2:e000367. [PMID: 37841968 PMCID: PMC10568124 DOI: 10.1136/bmjmed-2022-000367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 05/05/2023] [Indexed: 10/17/2023]
Abstract
The diversity of pathology of severe paediatric asthma demonstrates that the one-size-fits-all approach characterising many guidelines is inappropriate. The term "asthma" is best used to describe a clinical syndrome of wheeze, chest tightness, breathlessness, and sometimes cough, making no assumptions about underlying pathology. Before personalising treatment, it is essential to make the diagnosis correctly and optimise basic management. Clinicians must determine exactly what type of asthma each child has. We are moving from describing symptom patterns in preschool wheeze to describing multiple underlying phenotypes with implications for targeting treatment. Many new treatment options are available for school age asthma, including biological medicines targeting type 2 inflammation, but a paucity of options are available for non-type 2 disease. The traditional reliever treatment, shortacting β2 agonists, is being replaced by combination inhalers containing inhaled corticosteroids and fast, longacting β2 agonists to treat the underlying inflammation in even mild asthma and reduce the risk of asthma attacks. However, much decision making is still based on adult data extrapolated to children. Better inclusion of children in future research studies is essential, if children are to benefit from these new advances in asthma treatment.
Collapse
Affiliation(s)
- Elizabeth Scotney
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton Hospital, London, UK
| | - Louise Fleming
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton Hospital, London, UK
- Centre for Paediatrics and Child Health, Imperial College London, London, UK
| | - Sejal Saglani
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton Hospital, London, UK
- Centre for Paediatrics and Child Health, Imperial College London, London, UK
| | - Samatha Sonnappa
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton Hospital, London, UK
- Centre for Paediatrics and Child Health, Imperial College London, London, UK
| | - Andrew Bush
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton Hospital, London, UK
- Centre for Paediatrics and Child Health, Imperial College London, London, UK
| |
Collapse
|
103
|
Harker JA, Lloyd CM. T helper 2 cells in asthma. J Exp Med 2023; 220:214104. [PMID: 37163370 PMCID: PMC10174188 DOI: 10.1084/jem.20221094] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/10/2023] [Accepted: 04/25/2023] [Indexed: 05/12/2023] Open
Abstract
Allergic asthma is among the most common immune-mediated diseases across the world, and type 2 immune responses are thought to be central to pathogenesis. The importance of T helper 2 (Th2) cells as central regulators of type 2 responses in asthma has, however, become less clear with the discovery of other potent innate sources of type 2 cytokines and innate mediators of inflammation such as the alarmins. This review provides an update of our current understanding of Th2 cells in human asthma, highlighting their many guises and functions in asthma, both pathogenic and regulatory, and how these are influenced by the tissue location and disease stage and severity. It also explores how biologics targeting type 2 immune pathways are impacting asthma, and how these have the potential to reveal hitherto underappreciated roles for Th2 cell in lung inflammation.
Collapse
Affiliation(s)
- James A Harker
- National Heart and Lung Institute, Imperial College London , London, UK
| | - Clare M Lloyd
- National Heart and Lung Institute, Imperial College London , London, UK
| |
Collapse
|
104
|
Plichta J, Kuna P, Panek M. Biologic drugs in the treatment of chronic inflammatory pulmonary diseases: recent developments and future perspectives. Front Immunol 2023; 14:1207641. [PMID: 37334374 PMCID: PMC10272527 DOI: 10.3389/fimmu.2023.1207641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
Chronic inflammatory diseases of the lung are some of the leading causes of mortality and significant morbidity worldwide. Despite the tremendous burden these conditions put on global healthcare, treatment options for most of these diseases remain scarce. Inhaled corticosteroids and beta-adrenergic agonists, while effective for symptom control and widely available, are linked to severe and progressive side effects, affecting long-term patient compliance. Biologic drugs, in particular peptide inhibitors and monoclonal antibodies show promise as therapeutics for chronic pulmonary diseases. Peptide inhibitor-based treatments have already been proposed for a range of diseases, including infectious disease, cancers and even Alzheimer disease, while monoclonal antibodies have already been implemented as therapeutics for a range of conditions. Several biologic agents are currently being developed for the treatment of asthma, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis and pulmonary sarcoidosis. This article is a review of the biologics already employed in the treatment of chronic inflammatory pulmonary diseases and recent progress in the development of the most promising of those treatments, with particular focus on randomised clinical trial outcomes.
Collapse
Affiliation(s)
- Jacek Plichta
- Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, Lodz, Poland
| | | | | |
Collapse
|
105
|
Paçacı Çetin G, Kepil Özdemir S, Can Bostan Ö, Öztop N, Çelebi Sözener Z, Karakaya G, Gelincik Akkor A, Yılmaz İ, Mungan D, Bavbek S. [Biologics for the treatment of severe asthma: Current status report 2023]. Tuberk Toraks 2023; 71:176-187. [PMID: 37345400 PMCID: PMC10795269 DOI: 10.5578/tt.20239921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 04/21/2023] [Indexed: 06/23/2023] Open
Abstract
Severe asthma is associated with increased use of healthcare services, significant deterioration in the quality of life, and high disease and economic burden on patients and societies. Additional treatments are required for severe forms of asthma. Biological agents are recommended for the treatment of severe asthma. In this current status report, we aimed to evaluate the efficacy, effectiveness, and safety data of approved biologics; omalizumab, mepolizumab, reslizumab, benralizumab, dupilumab, and tezepelumab, in the treatment of severe asthma and appropriate patient profiles for these biologics. Pubmed and Cochrane databases based on randomized controlled trials, posthoc analyses, meta-analyses, and real-life studies examining the efficacy and effectiveness of biologics in severe asthma were searched, and the results of these studies on important asthma outcomes were reviewed. Existing studies have shown that all the approved biologic agents targeting cells, receptors, and mediators involved in type 2 inflammation in the bronchial wall in severe asthma significantly reduce asthma exacerbations, reduce the need for oral corticosteroids, and improve asthma control, quality of life, and pulmonary functions. Characterizing the asthma endotype and phenotype in patients with severe asthma and determining which treatment would be more appropriate for a particular patient is an essential step in personalized treatment.
Collapse
Affiliation(s)
- G. Paçacı Çetin
- Division of Immunology and Allergy, Department of Chest Diseases,
Erciyes University Faculty of Medicine, Kayseri, Türkiye
| | - S. Kepil Özdemir
- Division of Allergy and Immunology, Department of Chest Diseases,
University of Health Sciences, Dr. Suat Seren Chest Diseases and Surgery
Training and Research Hospital, İzmir, Türkiye
| | - Ö. Can Bostan
- Division of Immunology and Allergy, Department of Chest Diseases,
Hacettepe University Faculty of Medicine, Ankara, Türkiye
| | - N. Öztop
- Clinic of Adult Immunology and Allergy, Başakşehir Cam and
Sakura City Hospital, İstanbul, Türkiye
| | - Z. Çelebi Sözener
- Clinic of Immunology and Allergy, Ankara Bilkent City Hospital,
Ankara, Türkiye
| | - G. Karakaya
- Division of Immunology and Allergy, Department of Chest Diseases,
Hacettepe University Faculty of Medicine, Ankara, Türkiye
| | - A. Gelincik Akkor
- Division of Immunology and Allergic Diseases, Department of Internal
Medicine, İstanbul University Faculty of Medicine, İstanbul, Türkiye
| | - İ. Yılmaz
- Division of Immunology and Allergy, Department of Chest Diseases,
Erciyes University Faculty of Medicine, Kayseri, Türkiye
| | - D. Mungan
- Division of Immunology and Allergy, Department of Chest Diseases,
Ankara University Faculty of Medicine, Ankara, Türkiye
| | - S. Bavbek
- Division of Immunology and Allergy, Department of Chest Diseases,
Ankara University Faculty of Medicine, Ankara, Türkiye
| |
Collapse
|
106
|
Mutarelli A, Giavina-Bianchi B, Arasi S, Cafarotti A, Fiocchi A. Biologicals in IgE-mediated food allergy. Curr Opin Allergy Clin Immunol 2023; 23:205-209. [PMID: 37185824 DOI: 10.1097/aci.0000000000000900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
PURPOSE OF REVIEW A better understanding of the most recent scientific literature in the use of biological therapy in the treatment of patients with IgE-mediated food allergy. RECENT FINDINGS A systematic review and meta-analysis demonstrated safety and effectiveness of omalizumab in the treatment of food allergy. The findings support the potential use of omalizumab as a monotherapy or as an adjunct to oral immunotherapy in IgE-mediated cow's milk allergy. The potential use of other biologics in the management of food allergy is subject of speculation. SUMMARY Different biological therapies are under evaluation for food allergic patients. The advance in literature will guide for a personalized treatment in the near future. However, additional research is needed to better understand the best candidate for each treatment, the optimal dose and timing.
Collapse
Affiliation(s)
| | | | - Stefania Arasi
- Allergy Diseases Research Area, Pediatric Allergology Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Arianna Cafarotti
- Federal University of Minas Gerais, Belo Horizonte, MG
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- Allergy Diseases Research Area, Pediatric Allergology Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Alessandro Fiocchi
- Allergy Diseases Research Area, Pediatric Allergology Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| |
Collapse
|
107
|
Chung KF. Type-2-low severe asthma endotypes for new treatments: the new asthma frontier. Curr Opin Allergy Clin Immunol 2023; 23:199-204. [PMID: 37185823 DOI: 10.1097/aci.0000000000000899] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
PURPOSE OF REVIEW Type-2 (T2)-high asthma represents a well defined group of severe eosinophilic asthma for which there are now effective biologic therapies targetting the interleukins (ILs) 4, 5 and 13, and Immunoglobulin E. T2-low asthma detected in the clinic by a low blood eosinophil count remains ill-defined and is the focus of this review. RECENT FINDINGS By analysing transcriptomic and proteomic expression in sputum samples in U-BIOPRED cohort, both T2-high and -low molecular phenotypes have been described. Using clustering approaches, a neutrophilic-predominant cluster associated with activation markers of neutrophilic and inflammasome activation with interferon and tumour necrosis factor expression, together with a cluster of paucigranulocytic inflammation linked to oxidative phosphorylation and senescence pathways have been described. Using gene set variation analysis, specific molecular phenotypes driven by IL-6 trans-signalling pathway, or those by IL-6, IL-17 and IL-22 pathways were identified linked to a mixed granulocytic or neutrophilic inflammation. SUMMARY Previous trials of antineutrophilic agents in asthma have failed because enrolled patients were not specifically chosen for these targeted treatments. Although the T2-low molecular pathways should be validated in other cohorts, the availability of targeted therapies indicated for other autoimmune conditions should encourage a trial of these respective biological therapies for these specific molecular phenotypes.
Collapse
Affiliation(s)
- Kian Fan Chung
- National Heart & Lung Institute, Imperial College London; Royal Brompton and Harefield Hospitals, London, UK
| |
Collapse
|
108
|
Fong KY, Zhao JJ, Syn NL, Nair P, Chan YH, Lee P. Comparing bronchial thermoplasty with biologicals for severe asthma: Systematic review and network meta-analysis. Respir Med 2023:107302. [PMID: 37257786 DOI: 10.1016/j.rmed.2023.107302] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/12/2023] [Accepted: 05/27/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Bronchial thermoplasty (BT) has shown favorable safety and efficacy in several randomized controlled trials (RCTs), but has not been directly compared to biological therapies. METHODS Electronic literature searches were performed on PubMed, EMBASE, and the Cochrane Central Register of Controlled Trials, to retrieve RCTs of BT or FDA-approved biologicals against controls in patients with severe asthma. Six outcomes were analyzed: Asthma Control Questionnaire (ACQ), Asthma Quality of Life Questionnaire (AQLQ), the number of patients experiencing ≥1 asthma exacerbation, annualized exacerbation rate ratio (AERR), oral corticosteroid dose reduction (OCDR), and morning peak expiratory flow rate (amPEF). Random-effects, Frequentist network meta-analysis (NMA) were performed, and therapies were ranked using P-scores. RESULTS Twenty-nine RCTs (15,547 patients) were included. Fewer patients treated with BT experienced ≥1 asthma exacerbation (risk ratio [RR] = 0.66, 95%CI = 0.45-0.98) compared to control. AERR of BT versus control was non-significant, but significant improvements in ACQ score (mean difference [MD] -0.41, 95%CI -0.63 to -0.20), AQLQ score (MD = 0.54, 95%CI = 0.30-0.77), amPEF and OCDR were found. No significant differences between BT and biologics were seen across indirect comparisons of all studies. CONCLUSIONS Despite the lack of head-to-head comparative trials, this NMA suggests that BT is non-inferior to biologicals in terms of quality-of-life scores, and represents a promising alternative for patients with severe asthma.
Collapse
Affiliation(s)
- Khi Yung Fong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Joseph J Zhao
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Nicholas L Syn
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Parameswaran Nair
- Firestone Institute for Respiratory Health, St. Joseph's Healthcare Hamilton, Ontario, Canada
| | - Yiong Huak Chan
- Biostatistics Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Pyng Lee
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Respiratory and Critical Care Medicine, National University Hospital, Singapore.
| |
Collapse
|
109
|
Elliott MR, Grogan CE, Marshall GD. An Update on Monoclonal Antibody Therapy to Treat Moderate-to-Severe Asthma: Benefits, Choices, and Limitations. Am J Med 2023:S0002-9343(23)00327-3. [PMID: 37210021 DOI: 10.1016/j.amjmed.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Moderate or severe asthma is a complex disease process clinically manifesting as at least partially reversible airway obstruction due to airway hyperresponsiveness. Asthma therapy was based primarily on symptom control until recent studies of its mechanisms have led to a host of new targeted, safe, and effective therapies. These biologic therapies directly attack culprit inflammatory mediators at the molecular level. In this article we review currently available biologic agents for the treatment of moderate-to-severe asthma. We provide information deemed necessary to optimally consult with an asthma specialist to choose, assist in financial arrangements for, and coordinate the use of these new, promising, FDA approved biologic agents. We will also briefly review the molecular pathways targeted with each class of biologic to provide a more in-depth understanding of why these targeted therapies are effective. These biologics are the first of many to come that modify newly discovered components of the immune system with which many physicians are unfamiliar.
Collapse
Affiliation(s)
- Matthew R Elliott
- University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, 601-815-5527
| | - Charles E Grogan
- University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, 601-815-5527
| | - Gailen D Marshall
- University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, 601-815-5527.
| |
Collapse
|
110
|
Chagas GCL, Xavier D, Gomes L, Ferri-Guerra J, Oquet REH. Effects of Tezepelumab on Quality of Life of Patients with Moderate-to-Severe, Uncontrolled Asthma: Systematic Review and Meta-Analysis. Curr Allergy Asthma Rep 2023:10.1007/s11882-023-01085-y. [PMID: 37191902 DOI: 10.1007/s11882-023-01085-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2023] [Indexed: 05/17/2023]
Abstract
PURPOSE OF REVIEW To assess the effects of tezepelumab on quality of life (QoL) in patients with moderate-to-severe, uncontrolled asthma. RECENT FINDINGS Tezepelumab improves pulmonary function tests (PFTs) and reduces the annualized asthma exacerbation rate (AAER) in patients with moderate-to-severe, uncontrolled asthma. We searched MEDLINE, Embase, and Cochrane Library from inception to September 2022. We included randomized controlled trials comparing tezepelumab versus placebo in patients aged ≥ 12 years with asthma on medium- or high-dose inhaled corticosteroids with ≥ 1 additional controller medication for ≥ 6 months and who had ≥ 1 asthma exacerbation in the 12 months before enrollment. We estimated effects measures with a random-effects model. Of 239 records identified, three studies were included, with a total of 1,484 patients. Tezepelumab significantly decreased biomarkers of T helper 2-driven inflammation, including blood eosinophil count (MD -135.8 [95% CI -164.37, -107.23]) and fractional exhaled nitric oxide (MD -9.64 [95% CI -13.75, -5.53]); improved PFTs, including pre-bronchodilator forced expiratory volume in 1 s (MD 0.18 [95% CI 0.08-0.27]); reduced the AAER (MD 0.47 [95% CI 0.39-0.56]); improved asthma-specific health-related QoL in the Asthma Control Questionnaire-6 (MD -0.33 [95% CI -0.34, -0.32]), Asthma Quality of Life Questionnaire for 12 Years and Older (MD 0.34 [95% CI 0.33, -0.35]), Asthma Symptom Diary (MD -0.11 [95% CI -0.18, -0.04]), and European Quality of Life 5 Dimensions 5 Levels Questionnaire (SMD 3.29 [95% CI 2.03, 4.55]) scores, although not clinically important; and did not change key safety outcomes, including any adverse event (OR 0.78 [95% CI 0.56-1.09]).
Collapse
Affiliation(s)
| | - Débora Xavier
- Department of Medicine, Federal University of Pará, Belém, PA, Brazil
| | - Lorena Gomes
- Department of Medicine, Federal University of Pará, Belém, PA, Brazil
| | - Juliana Ferri-Guerra
- Department of Internal Medicine, Mount Sinai Medical Center, Miami Beach, FL, USA
| | | |
Collapse
|
111
|
Chen W, Reddel HK, FitzGerald JM, Beasley R, Janson C, Sadatsafavi M. Can we predict who will benefit most from biologics in severe asthma? A post-hoc analysis of two phase 3 trials. Respir Res 2023; 24:120. [PMID: 37131185 PMCID: PMC10155396 DOI: 10.1186/s12931-023-02409-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 03/27/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Individualized prediction of treatment response may improve the value proposition of advanced treatment options in severe asthma. This study aimed to investigate the combined capacity of patient characteristics in predicting treatment response to mepolizumab in patients with severe asthma. METHODS Patient-level data were pooled from two multinational phase 3 trials of mepolizumab in severe eosinophilic asthma. We fitted penalized regression models to quantify reductions in the rate of severe exacerbations and the 5-item Asthma Control Questionnaire (ACQ5) score. The capacity of 15 covariates towards predicting treatment response was quantified by the Gini index (measuring disparities in treatment benefit) as well as observed treatment benefit within the quintiles of predicted treatment benefit. RESULTS There was marked variability in the ability of patient characteristics to predict treatment response; covariates explained greater heterogeneity in predicting treatment response to asthma control than to exacerbation frequency (Gini index 0.35 v. 0.24). Key predictors for treatment benefit for severe exacerbations included exacerbation history, blood eosinophil count, baseline ACQ5 score and age, and those for symptom control included blood eosinophil count and presence of nasal polyps. Overall, the average reduction in exacerbations was 0.90/year (95%CI, 0.87‒0.92) and average reduction in ACQ5 score was 0.18 (95% CI, 0.02‒0.35). Among the top 20% of patients for predicted treatment benefit, exacerbations were reduced by 2.23/year (95% CI, 2.03‒2.43) and ACQ5 score were reduced by 0.59 (95% CI, 0.19‒0.98). Among the bottom 20% of patients for predicted treatment benefit, exacerbations were reduced by 0.25/year (95% CI, 0.16‒0.34) and ACQ5 by -0.20 (95% CI, -0.51 to 0.11). CONCLUSION A precision medicine approach based on multiple patient characteristics can guide biologic therapy in severe asthma, especially in identifying patients who will not benefit as much from therapy. Patient characteristics had a greater capacity to predict treatment response to asthma control than to exacerbation. TRIAL REGISTRATION ClinicalTrials.gov number, NCT01691521 (registered September 24, 2012) and NCT01000506 (registered October 23, 2009).
Collapse
Affiliation(s)
- Wenjia Chen
- Saw Swee Hock School of Public Health, National University of Singapore, MD1 - Tahir Foundation Building, 12 Science Drive 2, Singapore, 117549, Singapore.
| | - Helen K Reddel
- The Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia
| | - J Mark FitzGerald
- Respiratory Evaluation Sciences Program, Faculty of Pharmaceutical Sciences, the University of British Columbia, Vancouver, Canada
| | - Richard Beasley
- Medical Research Institute of New Zealand, Wellington, New Zealand
| | - Christer Janson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Mohsen Sadatsafavi
- Respiratory Evaluation Sciences Program, Faculty of Pharmaceutical Sciences, the University of British Columbia, Vancouver, Canada
| |
Collapse
|
112
|
Wang BF, Cao PP, Norton JE, Poposki JA, Klingler AI, Suh LA, Carter R, Huang JH, Bai J, Stevens WW, Tan BK, Peters AT, Grammer LC, Conley DB, Welch KC, Liu Z, Kern RC, Kato A, Schleimer RP. Evidence that oncostatin M synergizes with IL-4 signaling to induce TSLP expression in chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 2023; 151:1379-1390.e11. [PMID: 36623776 PMCID: PMC10164690 DOI: 10.1016/j.jaci.2022.11.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Oncostatin M (OSM) may promote type 2 inflammation in chronic rhinosinusitis with nasal polyps (CRSwNP) by inducing thymic stromal lymphopoietin (TSLP). OBJECTIVE We sought to study the impact of OSM on TSLP synthesis and release from nasal epithelial cells (NECs). METHODS OSM receptors, IL-4 receptors (IL-4R), and TSLP were evaluated in mucosal tissue and primary NECs from patients with CRSwNP by quantitative PCR and immunofluorescence. Air-liquid interface-cultured NECs were stimulated with cytokines, including OSM, and quantitative PCR, ELISA, Western blot, and flow cytometry were used to assess the expression of OSM receptors, IL-4R, and TSLP. RESULTS Increased levels of OSM receptor β chain (OSMRβ), IL-4Rα, and TSLP were observed in nasal polyp tissues and primary epithelial cells from nasal polyps of patients with CRSwNP compared with control tissues or cells from control subjects. The level of expression of OSMRβ in tissue was correlated with levels of both IL-4Rα and TSLP. OSM stimulation of NECs increased the expression of OSMRβ and IL-4Rα. Stimulation with IL-4 plus OSM augmented the production of TSLP; the response was suppressed by a signal transducer and activator of transcription 6 inhibitor. Stimulation of NECs with IL-4 plus OSM increased the expression of proprotein convertase subtilisin/kexin 3, an enzyme that truncates and activates TSLP. CONCLUSIONS OSM increases the expression of IL-4Rα and synergizes with IL-4 to induce the synthesis and release of TSLP in NECs. Because the combination of IL-4 and OSM also augmented the expression of proprotein convertase subtilisin/kexin 3, these results suggest that OSM can induce both synthesis and posttranslational processing/activation of TSLP, promoting type 2 inflammation.
Collapse
Affiliation(s)
- Bao-Feng Wang
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill; Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping-Ping Cao
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - James E Norton
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Julie A Poposki
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Aiko I Klingler
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Lydia A Suh
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Roderick Carter
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Julia H Huang
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Junqin Bai
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Whitney W Stevens
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Bruce K Tan
- Department of Otolaryngology-Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Anju T Peters
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill; Department of Otolaryngology-Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Leslie C Grammer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - David B Conley
- Department of Otolaryngology-Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Kevin C Welch
- Department of Otolaryngology-Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Robert C Kern
- Department of Otolaryngology-Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Atsushi Kato
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Robert P Schleimer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill; Department of Otolaryngology-Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| |
Collapse
|
113
|
Chen ML, Nopsopon T, Akenroye A. Incidence of Anti-Drug Antibodies to Monoclonal Antibodies in Asthma: A Systematic Review and Meta-Analysis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1475-1484.e20. [PMID: 36716995 PMCID: PMC10601343 DOI: 10.1016/j.jaip.2022.12.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 01/29/2023]
Abstract
BACKGROUND Antidrug antibodies (ADAs) may worsen the efficacy and safety of biologics. However, little is known about the incidence of ADAs associated with the 6 biologics approved for the treatment of asthma in the United States. OBJECTIVE To elucidate the incidence of ADAs and their impact on reported clinical outcomes. METHODS Systematic review and meta-analyses of randomized controlled trials, open-label extension studies, and nonrandomized studies of biologics in patients with asthma indexed in PubMed, Embase, and CENTRAL between January 1, 2000, and July 9, 2022, were carried out. The primary outcomes were treatment-emergent ADAs (incidence) and ADA prevalence. RESULTS A total of 46 studies met the eligibility criteria. ADA incidence over follow-up was 2.91% (95% CI, 1.60-4.55) and was highest in the benralizumab studies (8.35%), with a risk ratio of 4.9 (2.69-8.92) when compared with placebo, and lowest in the omalizumab studies (0.00%). Incidence was 7.61% in the dupilumab studies, 4.39% in reslizumab, 3.63% in mepolizumab, and 1.12% in the tezepelumab studies. Incidence of neutralizing antibodies was 0.00% to 10.74% and was highest for benralizumab (7.12%). Incidence of neutralizing antibodies was higher in the benralizumab every 8 weeks (8.17%) versus every 4 weeks arms (5.81%). Results were consistent in subgroup analyses by study type and length of follow-up. CONCLUSIONS Approximately 2.9% of individuals in the included studies developed ADAs over study follow-up period. The incidence was highest in the benralizumab group and lowest in the omalizumab group. The subcutaneous route and longer dosing intervals were associated with higher ADA development.
Collapse
Affiliation(s)
- Ming-Li Chen
- Harvard T.H. Chan School of Public Health, Boston, Mass; Chung Shan Medical University, Taichung, Taiwan
| | - Tanawin Nopsopon
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Chulalongkorn University, Bangkok, Thailand
| | - Ayobami Akenroye
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Mass; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Md.
| |
Collapse
|
114
|
Theofani E, Tsitsopoulou A, Morianos I, Semitekolou M. Severe Asthmatic Responses: The Impact of TSLP. Int J Mol Sci 2023; 24:ijms24087581. [PMID: 37108740 PMCID: PMC10142872 DOI: 10.3390/ijms24087581] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Asthma is a chronic inflammatory disease that affects the lower respiratory system and includes several categories of patients with varying features or phenotypes. Patients with severe asthma (SA) represent a group of asthmatics that are poorly responsive to medium-to-high doses of inhaled corticosteroids and additional controllers, thus leading in some cases to life-threatening disease exacerbations. To elaborate on SA heterogeneity, the concept of asthma endotypes has been developed, with the latter being characterized as T2-high or low, depending on the type of inflammation implicated in disease pathogenesis. As SA patients exhibit curtailed responses to standard-of-care treatment, biologic therapies are prescribed as adjunctive treatments. To date, several biologics that target specific downstream effector molecules involved in disease pathophysiology have displayed superior efficacy only in patients with T2-high, eosinophilic inflammation, suggesting that upstream mediators of the inflammatory cascade could constitute an attractive therapeutic approach for difficult-to-treat asthma. One such appealing therapeutic target is thymic stromal lymphopoietin (TSLP), an epithelial-derived cytokine with critical functions in allergic diseases, including asthma. Numerous studies in both humans and mice have provided major insights pertinent to the role of TSLP in the initiation and propagation of asthmatic responses. Undoubtedly, the magnitude of TSLP in asthma pathogenesis is highlighted by the fact that the FDA recently approved tezepelumab (Tezspire), a human monoclonal antibody that targets TSLP, for SA treatment. Nevertheless, further research focusing on the biology and mode of function of TSLP in SA will considerably advance disease management.
Collapse
Affiliation(s)
- Efthymia Theofani
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Aikaterini Tsitsopoulou
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Ioannis Morianos
- Host Defense and Fungal Pathogenesis Lab, School of Medicine, University of Crete, 71110 Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 71300 Heraklion, Greece
| | - Maria Semitekolou
- Laboratory of Immune Regulation and Tolerance, School of Medicine, University of Crete, 71110 Heraklion, Greece
| |
Collapse
|
115
|
Brusselle G, Riemann S. Is Efficacy of Tezepelumab Independent of Severe Asthma Phenotype? Am J Respir Crit Care Med 2023; 208:1-3. [PMID: 37074294 PMCID: PMC10870843 DOI: 10.1164/rccm.202304-0700ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Affiliation(s)
- Guy Brusselle
- Erasmus Medical Center, Respiratory Medicine and Epidemiology, Rotterdam, Netherlands
- Ghent University Hospital, Respiratory Medicine, Ghent, Belgium;
| | - Sebastian Riemann
- Ghent University Hospital, Department of Respiratory Medicine, Ghent, Belgium
| |
Collapse
|
116
|
Wu Y, Huang M, Zhong J, Lu Y, Gan K, Yang R, Liu Y, Li J, Chen J. The clinical efficacy of type 2 monoclonal antibodies in eosinophil-associated chronic airway diseases: a meta-analysis. Front Immunol 2023; 14:1089710. [PMID: 37114057 PMCID: PMC10126252 DOI: 10.3389/fimmu.2023.1089710] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Background Anti-type 2 inflammation therapy has been proposed as a treatment strategy for eosinophil-associated chronic airway disorders that could reduce exacerbations and improve lung function. We performed a meta-analysis of randomized controlled trials to assess the effectiveness of type 2 monoclonal antibodies (anti-T2s) for eosinophil-associated chronic airway disorders. Methods PubMed, Embase, Web of Science, and Cochrane Library were searched from their inception to 21 August 2022. Randomized clinical trials evaluating the effectiveness of anti-T2s versus placebo in the treatment of chronic airway diseases were selected. The outcomes were exacerbation rate and change in pre-bronchodilator forced expiratory volume in 1 s (FEV1) from baseline. The Cochrane Risk of Bias Assessment Tool 1.0 was used to evaluate the risk of bias, and the random-effects or fixed-effect model were used to pool the data. Results Thirty-eight articles concerning forty-one randomized clinical trials with 17,115 patients were included. Compared with placebo, anti-T2s therapy yielded a significant reduction in exacerbation rate in COPD and asthma (Rate Ratio (RR)=0.89, 95%CI, 0.83-0.95, I2 = 29.4%; RR= 0.59, 95%CI, 0.52-0.68, I2 = 83.9%, respectively) and improvement in FEV1 in asthma (Standard Mean Difference (SMD)=0.09, 95%CI, 0.08-0.11, I2 = 42.6%). Anti-T2s therapy had no effect on FEV1 improvement in COPD (SMD=0.05, 95%CI, -0.01-0.10, I2 = 69.8%). Conclusion Despite inconsistent findings across trials, anti-T2s had a positive overall impact on patients' exacerbation rate in asthma and COPD and FEV1 in asthma. Anti-T2s may be effective in treating chronic airway illnesses related to eosinophils. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42022362280.
Collapse
Affiliation(s)
- Yuan Wu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mengfen Huang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinyao Zhong
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Lu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Kao Gan
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Rongyuan Yang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangzhou Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Emerging Infectious Diseases, Guangzhou, China
| | - Yuntao Liu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangzhou Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Emerging Infectious Diseases, Guangzhou, China
| | - Jiqiang Li
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangzhou Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Emerging Infectious Diseases, Guangzhou, China
| | - Jiankun Chen
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangzhou Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Emerging Infectious Diseases, Guangzhou, China
| |
Collapse
|
117
|
Moro K. The latest findings on ILC2s, from bench to bedside. Allergol Int 2023; 72:185-186. [PMID: 37003621 DOI: 10.1016/j.alit.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 04/03/2023] Open
Affiliation(s)
- Kazuyo Moro
- Laboratory for Innate Immune Systems, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka Suita-shi, Osaka 565-0871, Japan.
| |
Collapse
|
118
|
Saxena S, Rosas-Salazar C, Fitzpatrick A, Bacharier LB. Biologics and severe asthma in children. Curr Opin Allergy Clin Immunol 2023; 23:111-118. [PMID: 36730217 DOI: 10.1097/aci.0000000000000880] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE OF REVIEW Severe asthma can carry significant morbidity and mortality for patients, and it places a burden on families and the healthcare system. Biologic agents have revolutionized the care of patients with severe asthma in recent years. Evidence surrounding some of these therapies is limited in the pediatric population, but recent studies show that they significantly improve asthma care when used appropriately. In this review, we discuss the biologic therapies currently approved to treat severe asthma in school-age children and adolescents. RECENT FINDINGS Randomized controlled trials have been published in support of biologics in children and/or adolescents. These therapies have been shown to reduce the annual rate of severe asthma exacerbations by at least 40-50%, and some up to about 70%. Improvements in asthma control, lung function, oral corticosteroid use, and quality of life have also been demonstrated, although these vary by agent. Furthermore, these therapies have reassuring safety profiles in pediatric patients. SUMMARY With three biologic agents approved for children ages 6-11 years and five approved for adolescents ages >12 years, it can be challenging to select one. The therapy should be chosen after careful consideration of the patient's asthma phenotype and biomarkers. Additional pediatric-specific clinical trials would be helpful in developing evidence-based guidelines on biologic therapies in this population.
Collapse
Affiliation(s)
- Shikha Saxena
- Division of Pediatric Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Christian Rosas-Salazar
- Division of Pediatric Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Anne Fitzpatrick
- Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine
- Children's Healthcare of Atlanta Division of Pulmonary Medicine, Atlanta, Georgia, USA
| | - Leonard B Bacharier
- Division of Pediatric Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
119
|
Miller MH, Swaby LG, Vailoces VS, LaFratta M, Zhang Y, Zhu X, Hitchcock DJ, Jewett TJ, Zhang B, Tigno-Aranjuez JT. LMAN1 is a receptor for house dust mite allergens. Cell Rep 2023; 42:112208. [PMID: 36870056 PMCID: PMC10105285 DOI: 10.1016/j.celrep.2023.112208] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 12/01/2022] [Accepted: 02/15/2023] [Indexed: 03/05/2023] Open
Abstract
Development of therapies with the potential to change the allergic asthmatic disease course will require the discovery of targets that play a central role during the initiation of an allergic response, such as those involved in the process of allergen recognition. We use a receptor glycocapture technique to screen for house dust mite (HDM) receptors and identify LMAN1 as a candidate. We verify the ability of LMAN1 to directly bind HDM allergens and demonstrate that LMAN1 is expressed on the surface of dendritic cells (DCs) and airway epithelial cells (AECs) in vivo. Overexpression of LMAN1 downregulates NF-κB signaling in response to inflammatory cytokines or HDM. HDM promotes binding of LMAN1 to the FcRγ and recruitment of SHP1. Last, peripheral DCs of asthmatic individuals show a significant reduction in the expression of LMAN1 compared with healthy controls. These findings have potential implications for the development of therapeutic interventions for atopic disease.
Collapse
Affiliation(s)
- Madelyn H Miller
- Biotechnology and Immunology Research, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Lindsay G Swaby
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Vanessa S Vailoces
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Maggie LaFratta
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Yuan Zhang
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Xiang Zhu
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Dorilyn J Hitchcock
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Travis J Jewett
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Bin Zhang
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Justine T Tigno-Aranjuez
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA.
| |
Collapse
|
120
|
Niimi A, Fukunaga K, Taniguchi M, Nakamura Y, Tagaya E, Horiguchi T, Yokoyama A, Yamaguchi M, Nagata M. Executive summary: Japanese guidelines for adult asthma (JGL) 2021. Allergol Int 2023; 72:207-226. [PMID: 36959028 DOI: 10.1016/j.alit.2023.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 03/25/2023] Open
Abstract
Asthma is characterized by chronic airway inflammation, variable airway narrowing, and sensory nerve irritation, which manifest as wheezing, dyspnea, chest tightness, and cough. Longstanding asthma may result in airway remodeling and become intractable. Despite the increased prevalence of asthma in adults, asthma-associated deaths have decreased in Japan (0.94 per 100,000 people in 2020). The goals of asthma treatment include the control of symptoms and reduction of future risks. A functional partnership between physicians and patients is indispensable for achieving these goals. Long-term management with medications and the elimination of triggers and risk factors are fundamental to asthma treatment. Asthma is managed via four steps of pharmacotherapy ("controllers"), ranging from mild to intensive treatments, depending on disease severity; each step involves daily administration of an inhaled corticosteroid, which varies from low to high dosage. Long-acting β2 agonists, leukotriene receptor antagonists, sustained-release theophylline, and long-acting muscarinic antagonists are recommended as add-on drugs. Allergen immunotherapy is a new option that is employed as a controller treatment. Further, as of 2021, anti-IgE antibody, anti-IL-5 and anti-IL-5 receptor α-chain antibodies, and anti-IL-4 receptor α-chain antibodies are available for the treatment of severe asthma. Bronchial thermoplasty can be performed for asthma treatment, and its long-term efficacy has been reported. Algorithms for their usage have been revised. Comorbidities, such as allergic rhinitis, chronic rhinosinusitis, chronic obstructive pulmonary disease, and aspirin-exacerbated respiratory disease, should also be considered during the treatment of chronic asthma. Depending on the severity of episodes, inhaled short-acting β2 agonists, systemic corticosteroids, short-acting muscarinic antagonists, oxygen therapy, and other approaches are used as needed ("relievers") during exacerbation.
Collapse
Affiliation(s)
- Akio Niimi
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| | - Koichi Fukunaga
- Pulmonary Division, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Masami Taniguchi
- Center for Immunology and Allergology, Shonan Kamakura General Hospital, Kanagawa, Japan
| | - Yoichi Nakamura
- Medical Center for Allergic and Immune Diseases, Yokohama City Minato Red Cross Hospital, Yokohama, Japan
| | - Etsuko Tagaya
- Department of Respiratory Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Takahiko Horiguchi
- Department of Respiratory Medicine, Toyota Regional Medical Center, Toyota, Japan
| | - Akihito Yokoyama
- Department of Respiratory Medicine and Allergology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Masao Yamaguchi
- Division of Respiratory Medicine, Third Department of Medicine, Teikyo University Chiba Medical Center, Chiba, Japan
| | - Makoto Nagata
- Department of Respiratory Medicine, Saitama Medical University, Saitama, Japan; Allergy Center, Saitama Medical University Hospital, Saitama Medical University, Saitama, Japan
| |
Collapse
|
121
|
Naito M, Kumanogoh A. Group 2 innate lymphoid cells and their surrounding environment. Inflamm Regen 2023; 43:21. [PMID: 36941691 PMCID: PMC10026507 DOI: 10.1186/s41232-023-00272-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/14/2023] [Indexed: 03/23/2023] Open
Abstract
Since the discovery of group 2 innate lymphoid cells (ILC2s) in 2010, subsequent studies have revealed their developmental pathways, mechanisms of activation and regulation, and immunological roles in tissue homeostasis and tissue-specific diseases in various organs. Although ILC2s are known to express tissue-specific features depending on where they reside, how the surrounding environment affects the functions of ILC2s remains to be fully elucidated. Recent histologic analyses revealed that ILC2s resides in specific perivascular regions in peripheral tissues with their function being controlled by the surrounding cells via cytokines, lipid mediators, neurotransmitters, and cell-cell interactions through surface molecules. This review summarizes the interactions between ILC2s and surrounding cells, including epithelial cells, neurons, immune cells, and mesenchymal cells, with the objective of promoting the development of novel diagnostic and therapeutic methods for ILC2-related diseases.
Collapse
Affiliation(s)
- Maiko Naito
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Immunopathology, World Premier International Research Center Initiative(WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
- Department of Immunopathology, World Premier International Research Center Initiative(WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan.
- Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Osaka, Japan.
- Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Osaka University, Suita, Osaka, Japan.
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
122
|
Lee TY, Sadatsafavi M, Yadav CP, Price DB, Beasley R, Janson C, Koh MS, Roy R, Chen W. Individualised risk prediction model for exacerbations in patients with severe asthma: protocol for a multicentre real-world risk modelling study. BMJ Open 2023; 13:e070459. [PMID: 36894199 PMCID: PMC10008482 DOI: 10.1136/bmjopen-2022-070459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
INTRODUCTION Severe asthma is associated with a disproportionally high disease burden, including the risk of severe exacerbations. Accurate prediction of the risk of severe exacerbations may enable clinicians to tailor treatment plans to an individual patient. This study aims to develop and validate a novel risk prediction model for severe exacerbations in patients with severe asthma, and to examine the potential clinical utility of this tool. METHODS AND ANALYSIS The target population is patients aged 18 years or older with severe asthma. Based on the data from the International Severe Asthma Registry (n=8925), a prediction model will be developed using a penalised, zero-inflated count model that predicts the rate or risk of exacerbation in the next 12 months. The risk prediction tool will be externally validated among patients with physician-assessed severe asthma in an international observational cohort, the NOVEL observational longiTudinal studY (n=1652). Validation will include examining model calibration (ie, the agreement between observed and predicted rates), model discrimination (ie, the extent to which the model can distinguish between high-risk and low-risk individuals) and the clinical utility at a range of risk thresholds. ETHICS AND DISSEMINATION This study has obtained ethics approval from the Institutional Review Board of National University of Singapore (NUS-IRB-2021-877), the Anonymised Data Ethics and Protocol Transparency Committee (ADEPT1924) and the University of British Columbia (H22-01737). Results will be published in an international peer-reviewed journal. TRIAL REGISTRATION NUMBER European Union electronic Register of Post-Authorisation Studies, EU PAS Register (EUPAS46088).
Collapse
Affiliation(s)
- Tae Yoon Lee
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
- Respiratory Evaluation Sciences Program, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mohsen Sadatsafavi
- Respiratory Evaluation Sciences Program, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - David B Price
- Observational and Pragmatic Research Institute, Singapore
- Centre of Academic Primary Care, Division of Applied Health Sciences, University of Aberdeen, Aberdeen, UK
- Optimum Patient Care Global, Cambridge, UK
| | - Richard Beasley
- Medical Research Institute of New Zealand, Wellington, New Zealand
| | - Christer Janson
- Department of Medical Sciences: Respiratory Medicine, Uppsala University, Uppsala, Sweden
| | - Mariko Siyue Koh
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore
- Duke-NUS Medical School, National University of Singapore, Singapore
| | - Rupsa Roy
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Wenjia Chen
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| |
Collapse
|
123
|
Frøssing L, Klein DK, Hvidtfeldt M, Obling N, Telg G, Erjefält JS, Bodtger U, Porsbjerg C. Distribution of type 2 biomarkers and association with severity, clinical characteristics and comorbidities in the BREATHE real-life asthma population. ERJ Open Res 2023; 9:00483-2022. [PMID: 36949964 PMCID: PMC10026007 DOI: 10.1183/23120541.00483-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022] Open
Abstract
Background Type 2 (T2) high asthma is recognised as a heterogenous entity consisting of several endotypes; however, the prevalence and distribution of the T2 biomarkers in the general asthma population, across asthma severity, and across compartments is largely unknown. The objective of the present study was to describe expression and overlaps of airway and systemic T2 biomarkers in a clinically representative asthma population. Methods Patients with asthma from the real-life BREATHE cohort referred to a specialist centre were included and grouped according to T2 biomarkers: blood and sputum eosinophilia (≥0.3×109 cells·L-1 and 3% respectively), total IgE (≥150 U·mL-1), and fractional exhaled nitric oxide (≥25 ppb). Results Patients with mild-to-moderate asthma were younger (41 versus 49 years, p<0.001), had lower body mass index (25.9 versus 28.0 kg·m-2, p=0.002) and less atopy (47% versus 58%, p=0.05), higher forced expiratory volume in 1 s (3.2 versus 2.8 L, p<0.001) and forced vital capacity (4.3 versus 3.9 L, p<0.001) compared with patients with severe asthma, who had higher blood (0.22×109 versus 0.17×109 cells·L-1, p=0.01) and sputum (3.0% versus 1.5%, p=0.01) eosinophils. Co-expression of all T2 biomarkers was a particular characteristic of severe asthma (p<0.001). In patients with eosinophilia, sputum eosinophilia without blood eosinophilia was present in 45% of patients with mild-to-moderate asthma and 35% with severe asthma. Conclusion Severe asthma is more commonly associated with activation of several T2 pathways, indicating that treatments targeting severe asthma may need to act more broadly on T2 inflammatory pathways. Implementation of airway inflammometry in clinical care is of paramount importance, as the best treatable trait is otherwise is overlooked in a large proportion of patients irrespective of disease severity.
Collapse
Affiliation(s)
- Laurits Frøssing
- Respiratory Research Unit, Dept of Respiratory Medicine, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
- Contributed equally
- Corresponding author: Laurits Frøssing ()
| | - Ditte K. Klein
- Respiratory Research Unit, Dept of Respiratory Medicine, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
- Contributed equally
| | - Morten Hvidtfeldt
- Respiratory Research Unit, Dept of Respiratory Medicine, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
| | - Nicolai Obling
- Respiratory Research Unit PLUZ, Dept of Respiratory Medicine, Zealand University Hospital, Naestved, Denmark
| | | | | | - Uffe Bodtger
- Respiratory Research Unit PLUZ, Dept of Respiratory Medicine, Zealand University Hospital, Naestved, Denmark
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Celeste Porsbjerg
- Respiratory Research Unit, Dept of Respiratory Medicine, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
| |
Collapse
|
124
|
Corren J, Brightling CE, Boulet LP, Porsbjerg C, Wechsler ME, Menzies-Gow A, Ambrose CS, Cook B, Martin N, Spahn J, Llanos JP. Not just an anti-eosinophil drug: tezepelumab treatment for type 2 asthma and beyond. Eur Respir J 2023; 61:2202202. [PMID: 36997233 DOI: 10.1183/13993003.02202-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/10/2023] [Indexed: 04/01/2023]
Affiliation(s)
| | - Christopher E Brightling
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | | | - Celeste Porsbjerg
- Department of Respiratory Medicine, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | - Andrew Menzies-Gow
- Royal Brompton and Harefield Hospitals, School of Immunology and Microbial Sciences, King's College, London, UK
| | - Christopher S Ambrose
- Respiratory and Immunology, BioPharmaceuticals Medical, AstraZeneca, Gaithersburg, MD, USA
| | - Bill Cook
- Respiratory and Immunology, BioPharmaceuticals Medical, AstraZeneca, Gaithersburg, MD, USA
| | - Neil Martin
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
- Respiratory and Immunology, BioPharmaceuticals Medical, AstraZeneca, Cambridge, UK
| | - Joseph Spahn
- Respiratory and Immunology, BioPharmaceuticals Medical, AstraZeneca, Wilmington, DE, USA
| | | |
Collapse
|
125
|
What Have Mechanistic Studies Taught Us About Childhood Asthma? THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:684-692. [PMID: 36649800 DOI: 10.1016/j.jaip.2023.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Childhood asthma is a chronic heterogeneous syndrome consisting of different disease entities or phenotypes. The immunologic and cellular processes that occur during asthma development are still not fully understood but represent distinct endotypes. Mechanistic studies have examined the role of gene expression, protein levels, and cell types in early life development and the manifestation of asthma, many under the influence of environmental stimuli, which can be both protective and risk factors for asthma. Genetic variants can regulate gene expression, controlled partly by different epigenetic mechanisms. In addition, environmental factors, such as living space, nutrition, and smoking, can contribute to these mechanisms. All of these factors produce modifications in gene expression that can alter the development and function of immune and epithelial cells and subsequently different trajectories of childhood asthma. These early changes in a partially immature immune system can have dramatic effects (e.g., causing dysregulation), which in turn contribute to different disease endotypes and may help to explain differential responsiveness to asthma treatment. In this review, we summarize published studies that have aimed to uncover distinct mechanisms in childhood asthma, considering genetics, epigenetics, and environment. Moreover, a discussion of new, powerful tools for single-cell immunologic assays for phenotypic and functional analysis is included, which promise new mechanistic insights into childhood asthma development and therapeutic and preventive strategies.
Collapse
|
126
|
Mastalerz L, Celejewska‐Wójcik N, Ćmiel A, Wójcik K, Szaleniec J, Hydzik‐Sobocińska K, Tomik J, Sanak M. Non-eosinophilic asthma in nonsteroidal anti-inflammatory drug exacerbated respiratory disease. Clin Transl Allergy 2023; 13:e12235. [PMID: 36973957 PMCID: PMC10009799 DOI: 10.1002/clt2.12235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/12/2023] [Accepted: 02/24/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND The cellular inflammatory pattern of nonsteroidal anti-inflammatory drug-exacerbated respiratory disease (N-ERD) is heterogeneous. However, data on the heterogeneity of non-eosinophilic asthma (NEA) with aspirin hypersensitivity are scanty. By examination of N-ERD patients based on clinical data and eicosanoid biomarkers we aimed to identify NEA endotypes potentially guiding clinical management. METHODS Induced sputum was collected from patients with N-ERD. Sixty six patients (49.6% of 133 N-ERD) with NEA were included in the hierarchical cluster analysis based on clinical and laboratory data. The quality of clustering was evaluated using internal cluster validation with different indices and a practical decision tree was proposed to simplify stratification of patients. RESULTS The most frequent NEA pattern was paucigranulocytic (PGA; 75.8%), remaining was neutrophilic asthma (NA; 24.2%). Four clusters were identified. Cluster #3 included the highest number of NEA patients (37.9%) with severe asthma and PGA pattern (96.0%). Cluster #1 (24.2%) included severe only asthma, with a higher prevalence of NA (50%). Cluster #2 (25.8%) comprised well-controlled mild or severe asthma (PGA; 76.5%). Cluster #4 contained only 12.1% patients with well-controlled moderate asthma (PGA; 62.5%). Sputum prostaglandin D2 levels distinguished cluster #1 from the remaining clusters with an area under the curve of 0.94. CONCLUSIONS Among identified four NEA subtypes, clusters #3 and #1 represented N-ERD patients with severe asthma but a different inflammatory signatures. All the clusters were discriminated by sputum PGD2 levels, asthma severity, and age of patients. The heterogeneity of non-eosinophilic N-ERD suggests a need for novel targeted interventions.
Collapse
Affiliation(s)
- Lucyna Mastalerz
- 2nd Department of Internal MedicineJagiellonian University Medical CollegeKrakowPoland
| | | | - Adam Ćmiel
- Department of Applied MathematicsAGH University of Science and TechnologyKrakowPoland
| | - Krzysztof Wójcik
- 2nd Department of Internal MedicineJagiellonian University Medical CollegeKrakowPoland
| | - Joanna Szaleniec
- Department of OtolaryngologyFaculty of MedicineJagiellonian University Medical CollegeKrakowPoland
| | | | - Jerzy Tomik
- Department of OtolaryngologyFaculty of MedicineJagiellonian University Medical CollegeKrakowPoland
| | - Marek Sanak
- 2nd Department of Internal MedicineJagiellonian University Medical CollegeKrakowPoland
| |
Collapse
|
127
|
Gauvreau GM, Hohlfeld JM, FitzGerald JM, Boulet LP, Cockcroft DW, Davis BE, Korn S, Kornmann O, Leigh R, Mayers I, Watz H, Grant SS, Jain M, Cabanski M, Pertel PE, Jones I, Lecot JR, Cao H, O'Byrne PM. Inhaled anti-TSLP antibody fragment, ecleralimab, blocks responses to allergen in mild asthma. Eur Respir J 2023; 61:13993003.01193-2022. [PMID: 36822634 PMCID: PMC9996823 DOI: 10.1183/13993003.01193-2022] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/24/2022] [Indexed: 02/25/2023]
Abstract
BACKGROUND Thymic stromal lymphopoietin (TSLP) is a key upstream regulator driving allergic inflammatory responses. We evaluated the efficacy and safety of ecleralimab, a potent inhaled neutralising antibody fragment against human TSLP, using allergen inhalation challenge (AIC) in subjects with mild atopic asthma. METHODS This was a 12-week, randomised, double-blind, placebo-controlled, parallel-design, multicentre allergen bronchoprovocation study conducted at 10 centres across Canada and Germany. Subjects aged 18-60 years with stable mild atopic asthma were randomised (1:1) to receive 4 mg once-daily inhaled ecleralimab or placebo. Primary end-points were the allergen-induced change in forced expiratory volume in 1 s (FEV1) during the late asthmatic response (LAR) measured by area under the curve (AUC3-7h) and maximum percentage decrease (LAR%) on day 84, and the safety of ecleralimab. Allergen-induced early asthmatic response (EAR), sputum eosinophils and fractional exhaled nitric oxide (F ENO) were secondary and exploratory end-points. RESULTS 28 subjects were randomised to ecleralimab (n=15) or placebo (n=13). On day 84, ecleralimab significantly attenuated LAR AUC3-7h by 64% (p=0.008), LAR% by 48% (p=0.029), and allergen-induced sputum eosinophils by 64% at 7 h (p=0.011) and by 52% at 24 h (p=0.047) post-challenge. Ecleralimab also numerically reduced EAR AUC0-2h (p=0.097) and EAR% (p=0.105). F ENO levels were significantly reduced from baseline throughout the study (p<0.05), except at 24 h post-allergen (day 43 and day 85). Overall, ecleralimab was safe and well tolerated. CONCLUSION Ecleralimab significantly attenuated allergen-induced bronchoconstriction and airway inflammation, and was safe in subjects with mild atopic asthma.
Collapse
Affiliation(s)
- Gail M Gauvreau
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- These authors contributed equally to this work
| | - Jens M Hohlfeld
- Fraunhofer Institute for Toxicology and Experimental Medicine and Hannover Medical School, Hannover, Germany
- These authors contributed equally to this work
| | - J Mark FitzGerald
- Centre for Lung Health, University of British Columbia, Vancouver, BC, Canada
- These authors contributed equally to this work
| | | | - Donald W Cockcroft
- Division of Respirology, Critical Care and Sleep Medicine, Department of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Beth E Davis
- Division of Respirology, Critical Care and Sleep Medicine, Department of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Stephanie Korn
- IKF Pneumologie Mainz and Thoraxklinik, Heidelberg, Germany
| | - Oliver Kornmann
- IKF Pneumologie Frankfurt, Clinical Research Centre Respiratory Diseases, Frankfurt, Germany
| | - Richard Leigh
- Department of Medicine, Cumming School of Medicine, Calgary, AB, Canada
| | - Irvin Mayers
- Division of Pulmonary Medicine, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Henrik Watz
- Pulmonary Research Institute at Lungen Clinic Grosshansdorf, Airway Research Centre North (ARCN), German Centre for Lung Research (DZL), Grosshansdorf, Germany
| | - Sarah S Grant
- Novartis Institutes of Biomedical Research, Cambridge, MA, USA
| | - Monish Jain
- Novartis Institutes of Biomedical Research, Cambridge, MA, USA
| | - Maciej Cabanski
- Novartis Institutes of Biomedical Research, Cambridge, MA, USA
| | - Peter E Pertel
- Novartis Institutes of Biomedical Research, Cambridge, MA, USA
| | | | | | - Hui Cao
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | - Paul M O'Byrne
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
128
|
Chen CC, Buchheit KM. Endotyping Chronic Rhinosinusitis with Nasal Polyps: Understanding Inflammation Beyond Phenotypes. Am J Rhinol Allergy 2023; 37:132-139. [PMID: 36848270 DOI: 10.1177/19458924221149003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) is a heterogenous group of inflammatory conditions impacting the nose and paranasal sinuses. Our understanding of the underlying pathobiology of CRSwNP has substantially improved due to ongoing translational research efforts. Advances in treatment options, including targeted respiratory biologic therapy for CRSwNP, allow for more personalized approaches for CRSwNP patient care. Patients with CRSwNP are typically classified to one or more endotype based on the presence of type 1, type 2, and type 3 inflammation. This review will discuss recent advances in our understanding of CRSwNP and how this may impact current and future treatment approaches for patients with CRSwNP.
Collapse
Affiliation(s)
- Chongjia C Chen
- Department of Medicine, Harvard Medical School, the Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Kathleen M Buchheit
- Department of Medicine, Harvard Medical School, the Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
129
|
Chiang S, Lee SE. New Concepts in Barrier Dysfunction in CRSwNP and Emerging Roles of Tezepelumab and Dupilumab. Am J Rhinol Allergy 2023; 37:193-197. [PMID: 36848281 DOI: 10.1177/19458924231154061] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
BACKGROUND Epithelial barrier disturbances in CRSwNP patients play an important role in both the innate and adaptive immune responses, contributing to chronic inflammation, olfactory dysfunction, and impairments in quality of life. OBJECTIVE To evaluate the role of the sinonasal epithelium in disease and health, review the pathophysiology of epithelial barrier dysfunction in CRSwNP, and the immunologic targets for treatment. METHODS Literature review. RESULTS Blockade of cytokines such as thymic stromal lymphopoietin (TSLP), IL-4, and IL-13 have shown promise in barrier restoration and IL-13, specifically may be central to olfactory dysfunction. CONCLUSION The sinonasal epithelium plays a crucial role in the health and function of the mucosa and immune response. Increased understanding of the local immunologic dysfunction has led to several therapeutics that can potentially restore epithelial barrier function and olfaction. Real world and comparative effectiveness studies are needed.
Collapse
Affiliation(s)
- Simon Chiang
- Department of Surgery, 1861Brigham and Women's Hospital, Division of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, Massachusetts
| | - Stella E Lee
- Department of Surgery, 1861Brigham and Women's Hospital, Division of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
130
|
Corren J, Wechsler ME, Chupp G, Roseti SL, Hellqvist Å, Martin N, Llanos JP, Ambrose CS, Colice G. Efficacy and safety of tezepelumab in patients with uncontrolled disease while receiving maintenance therapy for moderate or severe asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:943-945.e2. [PMID: 36375743 DOI: 10.1016/j.jaip.2022.10.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/12/2022] [Accepted: 10/21/2022] [Indexed: 11/13/2022]
Affiliation(s)
- Jonathan Corren
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, Calif.
| | | | - Geoffrey Chupp
- Department of Medicine, Yale School of Medicine, New Haven, Conn
| | - Stephanie L Roseti
- Late-stage Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Md
| | - Åsa Hellqvist
- Biometrics, Late-stage Development, Respiratory and Immunology, BioPharmaceuticals R&D, Gothenburg, Sweden
| | - Neil Martin
- Respiratory and Immunology, BioPharmaceuticals Medical, AstraZeneca, Cambridge, UK; Leicester NIHR Biomedical Research Centre, University of Leicester, Leicester, UK
| | | | - Christopher S Ambrose
- Respiratory and Immunology, BioPharmaceuticals Medical, AstraZeneca, Gaithersburg, Md
| | - Gene Colice
- Late-stage Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Md
| |
Collapse
|
131
|
Shinkai M, Ebisawa M, Fukushima Y, Takeuchi S, Okada H, Tokiyo T, Hayashi N, Takikawa M, Colice G, Almqvist G. One-year safety and tolerability of tezepelumab in Japanese patients with severe uncontrolled asthma: results of the NOZOMI study. J Asthma 2023; 60:616-624. [PMID: 35707873 DOI: 10.1080/02770903.2022.2082309] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To assess the long-term safety of tezepelumab in Japanese patients with severe uncontrolled asthma. METHODS This phase III, 52-week, open-label, single-arm study (NOZOMI, NCT04048343) evaluated the safety/tolerability of subcutaneous (SC) tezepelumab 210 mg every 4 weeks (Q4W) in Japanese patients aged 12-80 years with severe uncontrolled asthma using medium- to high-dose inhaled corticosteroids and at least one additional asthma controller medication, with/without oral corticosteroids. Exploratory outcomes included efficacy (asthma exacerbations, lung function, and asthma control), pharmacokinetic parameters, and immunogenicity. RESULTS Among 65 patients (median age 52 years), 39 (60%) experienced 94 adverse events (AEs; predominantly nasopharyngitis [13/65]) of mild (49.2%), moderate (7.7%), or severe (3.1%) intensity. Two patients had transient injection site erythema related to tezepelumab. Four patients reported serious AEs unrelated to tezepelumab and one AE led to treatment discontinuation. AEs of special interest were infrequent and generally mild/moderate. Apart from a decrease in blood eosinophils (an expected pharmacodynamic effect), no notable trends/clinically relevant changes in hematology, clinical chemistry, or urinalysis parameters were observed. Among exploratory outcomes, tezepelumab was associated with a low annualized asthma exacerbation rate over the study period (0.11/patient-year), improved lung function (mean [standard deviation] change from baseline of 0.075 [0.226] L in pre-dose/pre-bronchodilator forced expiratory volume in 1 s), and better asthma control versus baseline (responder rate: 71.4% at Week 52). CONCLUSION Tezepelumab 210 mg SC Q4W in Japanese patients with severe uncontrolled asthma showed safety/tolerability profiles similar to international data, with low exacerbation rates and improvements in lung function and asthma control.
Collapse
Affiliation(s)
- Masaharu Shinkai
- Division of Internal Medicine, Tokyo Shinagawa Hospital, Tokyo, Japan
| | - Motohiro Ebisawa
- Clinical Research Center for Allergy and Rheumatology, NHO Sagamihara National Hospital, Sagamihara, Japan
| | | | | | - Hiroshi Okada
- BioPharmaceuticals TA, R&D, AstraZeneca K.K., Osaka, Japan
| | - Tatsuro Tokiyo
- BioPharmaceuticals TA, R&D, AstraZeneca K.K., Tokyo, Japan
| | - Nobuya Hayashi
- Science and Data Analytics Division, R&D, AstraZeneca K.K., Osaka, Japan
| | - Mami Takikawa
- Development Operation Biopharma Clinical Operation, R&D, AstraZeneca K.K., Osaka, Japan
| | - Gene Colice
- Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Gun Almqvist
- Late-stage Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
132
|
Nopsopon T, Lassiter G, Chen ML, Alexander GC, Keet C, Hong H, Akenroye A. Comparative efficacy of tezepelumab to mepolizumab, benralizumab, and dupilumab in eosinophilic asthma: A Bayesian network meta-analysis. J Allergy Clin Immunol 2023; 151:747-755. [PMID: 36538979 PMCID: PMC9992307 DOI: 10.1016/j.jaci.2022.11.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/05/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND It is unclear how the efficacy of tezepelumab, approved for the treatment of type 2 high and low asthma, compares to the efficacy of other biologics for type 2-high asthma. OBJECTIVES We sought to conduct an indirect comparison of tezepelumab to dupilumab, benralizumab, and mepolizumab in the treatment of eosinophilic asthma. METHODS The investigators conducted a systematic review and Bayesian network meta-analyses. They identified randomized controlled trials indexed in PubMed, Embase, or Cochrane Central Register of Controlled Trials (CENTRAL) between January 1, 2000, and August 12, 2022. Outcomes included exacerbation rates, prebronchodilator FEV1, and the Asthma Control Questionnaire. RESULTS Ten randomized controlled trials (n = 9201) met eligibility. Tezepelumab (relative risk: 0.63; 95% credible interval [CI]: 0.46-0.86) was associated with significantly lower exacerbation rates than benralizumab and larger improvements in FEV1 compared to mepolizumab (mean difference [MD]: 66; 95% CI: -33 to 170) and benralizumab (MD: 62; 95% CI: -22 to 150), though the 95% CI crossed the null value of 0. Mepolizumab improved the Asthma Control Questionnaire score the most, but this improvement was not significantly different from that of tezepelumab (tezepelumab vs mepolizumab; MD: 0.14; 95% CI: -0.10 to 0.38). For efficacy by clinically important thresholds, tezepelumab, mepolizumab, and dupilumab achieved a >99% probability of reducing exacerbation rates by ≥50% compared to placebo, but benralizumab had only a 66% probability of doing so. Tezepelumab and dupilumab had a probability of 1.00 of improving prebronchodilator FEV1 by ≥100 mL above placebo. Compared to mepolizumab, dupilumab had >90% chance for improving FEV1 by ≥50 mL, but none of the differences between biologics exceeded 100 mL. CONCLUSIONS In individuals with eosinophilic asthma, tezepelumab and dupilumab were associated with greater improvements (although below clinical thresholds) in exacerbation rates and lung function than benralizumab or mepolizumab.
Collapse
Affiliation(s)
- Tanawin Nopsopon
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass; Harvard T.H. Chan School of Public Health, Boston, Mass; Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Grace Lassiter
- Department of Anesthesiology, NewYork-Presbyterian/Weill Cornell Medical Center
| | - Ming-Li Chen
- Harvard T.H. Chan School of Public Health, Boston, Mass; Chung Shan Medical University, Taichung, Taiwan
| | - G Caleb Alexander
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Md; Center for Drug Safety and Effectiveness, Baltimore, Md; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Md
| | - Corinne Keet
- Division of Pediatric Allergy and Immunology, University of North Carolina, Chapel Hill, NC
| | - Hwanhee Hong
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC
| | - Ayobami Akenroye
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Md; Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Mass.
| |
Collapse
|
133
|
Couillard S, Petousi N, Smigiel KS, Molfino NA. Toward a Predict and Prevent Approach in Obstructive Airway Diseases. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:704-712. [PMID: 36682536 DOI: 10.1016/j.jaip.2023.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/22/2023]
Abstract
Asthma and chronic obstructive pulmonary disease are currently diagnosed and treated after the demonstration of variable airflow limitation and symptoms. Under this framework, undiagnosed and unchecked airway inflammation is associated with recurrent acute attacks, airway remodeling, airflow limitation, adverse effects of corticosteroids, and impaired quality of life, ultimately leading to the collection of side effects termed "people remodeling." This one-size-fits-all damage control approach aims to control symptoms and treat exacerbations rather than modify the underlying disease process. The advent of highly effective therapies targeting proximal drivers of airway inflammation calls for a paradigm shift; upstream-acting therapies offer potential to alter the disease course and achieve clinical remission. We propose moving away from downstream firefighting and toward a "predict and prevent" model, measuring inflammation and providing anti-inflammatory therapy early, without waiting for further clinical deterioration. Much in the same way that high blood pressure and cholesterol are used to predict and prevent heart attacks, in asthma, elevated blood eosinophils and/or exhaled nitric oxide can be used to predict and prevent asthma attacks. We also advocate moving research further upstream by identifying patients with subclinical airway inflammation or disease who may be at risk of progressing to airflow limitation and associated morbidities and intervening early to prevent them. In summary, we call for a predict and prevent approach in obstructive airway disease.
Collapse
Affiliation(s)
- Simon Couillard
- Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Nayia Petousi
- Respiratory Medicine Unit and NIHR Oxford Respiratory BRC, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
134
|
Ramírez-Jiménez F, Pavón-Romero GF, Velásquez-Rodríguez JM, López-Garza MI, Lazarini-Ruiz JF, Gutiérrez-Quiroz KV, Teran LM. Biologic Therapies for Asthma and Allergic Disease: Past, Present, and Future. Pharmaceuticals (Basel) 2023; 16:270. [PMID: 37259416 PMCID: PMC9963709 DOI: 10.3390/ph16020270] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 09/18/2024] Open
Abstract
The discovery of the mechanism underlying allergic disease, mouse models of asthma, and bronchoscopy studies provided initial insights into the role of Th2-type cytokines, including interlukin (IL)-4, IL-5 and IL-13, which became the target of monoclonal antibody therapy. Omalizumab, Benralizumab, Mepolizumab, Reslizumab, and Tezepelumab have been approved. These biologicals have been shown to be good alternative therapies to corticosteroids, particularly in severe asthma management, where they can improve the quality of life of many patients. Given the success in asthma, these drugs have been used in other diseases with type 2 inflammation, including chronic rhinosinusitis with nasal polyps (CRSwNP), atopic dermatitis, and chronic urticaria. Like the Th2-type cytokines, chemokines have also been the target of novel monoclonal therapies. However, they have not proved successful to date. In this review, targeted therapy is addressed from its inception to future applications in allergic diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Luis M. Teran
- Immunogenetics and Allergy Department, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, (INER), Mexico City 14080, Mexico
| |
Collapse
|
135
|
Sun J, Bai S, Zhao J, Li D, Ma X, Ma L, Su X. Mapping knowledge structure and research of the biologic treatment of asthma: A bibliometric study. Front Immunol 2023; 14:1034755. [PMID: 36845128 PMCID: PMC9947831 DOI: 10.3389/fimmu.2023.1034755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/17/2023] [Indexed: 02/11/2023] Open
Abstract
Background Bronchial asthma (asthma) is a chronic inflammatory disease of the airways, involving a variety of cells and cellular components, that manifests clinically as recurrent episodes of wheezing, shortness of breath, with or without chest tightness or cough, airway hyperresponsiveness, and variable airflow limitation. The number of people with asthma has reached 358 million worldwide and asthma causes huge economic loss. However, there is a subset of patients who are not sensitive to existing drugs and the existing drugs have many adverse effects. Therefore, it's important to find new drugs for asthma patients. Methods Publications related to biologics in asthma published from 2000 to 2022 were retrieved from Web of Science Core Collection. The search strategies were as follows: topic: TS=(biologic* OR "biologic* product*" OR "biologic* therap*" OR biotherapy* OR "biologic* agent*" OR Benralizumab OR "MEDI-563" OR Fasenra OR "BIW-8405" OR Dupilumab OR SAR231893 OR "SAR-231893" OR Dupixent OR REGN668 OR "REGN-668" OR Mepolizumab OR Bosatria OR "SB-240563" OR SB240563 OR Nucala OR Omalizumab OR Xolair OR Reslizumab OR "SCH-55700" OR SCH55700 OR "CEP-38072" OR CEP38072 OR Cinqair OR "DCP-835" OR DCP835 OR Tezspire OR "tezepelumab-ekko" OR "AMG-157" OR tezspire OR "MEDI-9929" OR "MEDI-19929" OR MEDI9929 OR Itepekimab OR "REGN-3500"OR REGN3500 OR "SAR-440340"OR SAR440340 OR Tralokinumab OR "CAT-354" OR Anrukinzumab OR "IMA-638" OR Lebrikizumab OR "RO-5490255"OR "RG-3637"OR "TNX-650"OR "MILR1444A"OR "MILR-1444A"OR"PRO301444"OR "PRO-301444"OR Pitrakinra OR altrakincept OR "AMG-317"OR"AMG317" OR Etokimab OR Pascolizumab OR "IMA-026"OR Enokizumab OR "MEDI-528"OR "7F3COM-2H2" OR 7F3COM2H2 OR Brodalumab OR "KHK-4827" OR "KHK4827"OR "AMG-827"OR Siliq OR Ligelizumab OR "QGE-031" OR QGE031 OR Quilizumab OR Talizumab OR "TNX-901" OR TNX901 OR Infliximab OR Etanercept OR "PRS-060") AND TS=asthma*. The document type was set to articles and review articles and the language restriction was set to English. Three different analysis tools including one online platform, VOS viewer1.6.18, and CiteSpace V 6.1.R1 software were used to conduct this bibliometric study. Results This bibliometric study included 1,267 English papers published in 244 journals from 2,012 institutions in 69 countries/regions. Omalizumab, benralizumab, mepolizumab, and tezepelumab in relation to asthma were the research hotspots in the field. Conclusion This study systematically uncovers a holistic picture of existing literature related to the biologic treatment of asthma over the past 20 years. We consulted scholars in order to understand key information in this field from the perspective of bibliometrics, which we believe may greatly facilitate future research in this field.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xinming Su
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Diseases, The First Hospital of China Medical University, China Medical University, Shenyang, China
| |
Collapse
|
136
|
Pianigiani T, Alderighi L, Meocci M, Messina M, Perea B, Luzzi S, Bergantini L, D’Alessandro M, Refini RM, Bargagli E, Cameli P. Exploring the Interaction between Fractional Exhaled Nitric Oxide and Biologic Treatment in Severe Asthma: A Systematic Review. Antioxidants (Basel) 2023; 12:antiox12020400. [PMID: 36829959 PMCID: PMC9952501 DOI: 10.3390/antiox12020400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Fractional exhaled nitric oxide (FeNO) is a biomarker of airway inflammation associated with airway hyper-responsiveness and type-2 inflammation. Its role in the management of severe asthmatic patients undergoing biologic treatment, as well as FeNO dynamics during biologic treatment, is largely unexplored. PURPOSE The aim was to evaluate published data contributing to the following areas: (1) FeNO as a predictive biomarker of response to biologic treatment; (2) the influence of biologic treatment in FeNO values; (3) FeNO as a biomarker for the prediction of exacerbations in patients treated with biologics. METHODS The systematic search was conducted on the Medline database through the Pubmed search engine, including all studies from 2009 to the present. RESULTS Higher baseline values of FeNO are associated with better clinical control in patients treated with omalizumab, dupilumab, and tezepelumab. FeNO dynamics during biologic treatment highlights a clear reduction in FeNO values in patients treated with anti-IL4/13 and anti-IL13, as well as in patients treated with tezepelumab. During the treatment, FeNO may help to predict clinical worsening and to differentiate eosinophilic from non-eosinophilic exacerbations. CONCLUSIONS Higher baseline FeNO levels appear to be associated with a greater benefit in terms of clinical control and reduction of exacerbation rate, while FeNO dynamics during biologic treatment remains a largely unexplored issue since few studies have investigated it as a primary outcome. FeNO remains detectable during biologic treatment, but its potential utility as a biomarker of clinical control is still unclear and represents an interesting research area to be developed.
Collapse
|
137
|
Hiroyasu S, Barit JVJG, Hiroyasu A, Tsuruta D. Pruritogens in pemphigoid diseases: Possible therapeutic targets for a burdensome symptom. J Dermatol 2023; 50:150-161. [PMID: 36477831 PMCID: PMC10108135 DOI: 10.1111/1346-8138.16652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 12/12/2022]
Abstract
Pruritus is a hallmark feature in pemphigoid diseases, where it can be severe and greatly impact the quality of life of affected patients. Despite being a key symptom, the exact pathophysiological mechanisms involved in pruritus in pemphigoid are yet to be fully elucidated and effective therapies addressing them are limited. This review summarizes the present understanding of pruritus specific to pemphigoid diseases, especially the pruritogens that induce it, and the therapeutic options that have been explored so far. The majority of the available evidence is on bullous pemphigoid and epidermolysis bullosa acquisita. Histamine derived from basophils correlates with pruritus severity, with omalizumab demonstrating promising efficacy in pruritus for bullous pemphigoid. IL-4/-13 contribute to itch in bullous pemphigoid with dupilumab being evaluated in clinical trials. Other pruritogens of interest include substance P, tryptase, and thymic stromal lymphopoetin, with therapies targeting them requiring further investigation. Scratching behaviors contribute directly to blister formation through various mechanisms, such as pathological autoantibody recruitment, T helper cell type 1 polarization, and exposure of intracellular autoantigens. Treatments addressing these pathways may contribute to decreasing disease severity. Additional studies are needed to fully characterize how pruritus is regulated in pemphigoid diseases, to help pave the way to develop novel and effective therapeutics that will not only address pruritic symptoms but also decrease disease severity.
Collapse
Affiliation(s)
- Sho Hiroyasu
- Department of Dermatology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Jay-V James G Barit
- Department of Dermatology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Aoi Hiroyasu
- Department of Dermatology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Daisuke Tsuruta
- Department of Dermatology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
138
|
Scott G, Asrat S, Allinne J, Keat Lim W, Nagashima K, Birchard D, Srivatsan S, Ajithdoss DK, Oyejide A, Ben LH, Walls J, Le Floc'h A, Yancopoulos GD, Murphy AJ, Sleeman MA, Orengo JM. IL-4 and IL-13, not eosinophils, drive type 2 airway inflammation, remodeling and lung function decline. Cytokine 2023; 162:156091. [PMID: 36481478 DOI: 10.1016/j.cyto.2022.156091] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/02/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Abstract
RATIONALE Type 2 (T2) asthma is characterized by airflow limitations and elevated levels of blood and sputum eosinophils, fractional exhaled nitric oxide, IgE, and periostin. While eosinophils are associated with exacerbations, the contribution of eosinophils to lung inflammation, remodeling and function remains largely hypothetical. OBJECTIVES To determine the effect of T2 cytokines IL-4, IL-13 and IL-5 on eosinophil biology and compare the impact of depleting just eosinophils versus inhibiting all aspects of T2 inflammation on airway inflammation. METHODS Human eosinophils or endothelial cells stimulated with IL-4, IL-13 or IL-5 were assessed for gene changes or chemokine release.Mice exposed to house dust mite extract received anti-IL-4Rα (dupilumab), anti-IL-5 or control antibodies and were assessed for changes in lung histological and inflammatory endpoints. MEASUREMENTS AND MAIN RESULTS IL-4 or IL-13 stimulation of human eosinophils and endothelial cells induced gene expression changes related to granulocyte migration; whereas, IL-5 induced changes reflecting granulocyte differentiation.In a mouse model, blocking IL-4Rα improved lung function by impacting multiple effectors of inflammation and remodeling, except peripheral eosinophil counts, thereby disconnecting blood eosinophils from airway inflammation, remodeling and function. Blocking IL-5 globally reduced eosinophil counts but did not impact inflammatory or functional measures of lung pathology. Whole lung transcriptome analysis revealed that IL-5 or IL-4Rα blockade impacted eosinophil associated genes, whereas IL-4Rα blockade also impacted genes associated with multiple cells, cytokines and chemokines, mucus production, cell:cell adhesion and vascular permeability. CONCLUSIONS Eosinophils are not the sole contributor to asthma pathophysiology or lung function decline and emphasizes the need to block additional mediators to modify lung inflammation and impact lung function.
Collapse
Affiliation(s)
- George Scott
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Seblewongel Asrat
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Jeanne Allinne
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Wei Keat Lim
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Kirsten Nagashima
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Dylan Birchard
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Subhashini Srivatsan
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Dharani K Ajithdoss
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Adelekan Oyejide
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Li-Hong Ben
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Johnathon Walls
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Audrey Le Floc'h
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - George D Yancopoulos
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Andrew J Murphy
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Matthew A Sleeman
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Jamie M Orengo
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA.
| |
Collapse
|
139
|
O'Byrne PM, Panettieri RA, Taube C, Brindicci C, Fleming M, Altman P. Development of an inhaled anti-TSLP therapy for asthma. Pulm Pharmacol Ther 2023; 78:102184. [PMID: 36535465 DOI: 10.1016/j.pupt.2022.102184] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/24/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Thymic stromal lymphopoietin (TSLP), an epithelial cell-derived cytokine, acts as a key mediator in airway inflammation and modulates the function of multiple cell types, including dendritic cells and group 2 innate lymphoid cells. TSLP plays a role in asthma pathogenesis as an upstream cytokine, and data suggest that TSLP blockade with the anti-TSLP monoclonal antibody, tezepelumab, could be efficacious in a broad asthma population. Currently approved asthma biologic therapies target allergic or eosinophilic disease and require phenotyping; therefore, an unmet need exists for a therapy that can address Type 2 (T2)-high and T2-low inflammation in asthma. All currently approved biologic treatments are delivered intravenously or subcutaneously; an inhaled therapy route that allows direct targeting of the lung with reduced systemic impact may offer advantages. Currently in development, ecleralimab (CSJ117) represents the first inhaled anti-TSLP antibody fragment that binds soluble TSLP and prevents TSLP receptor activation, thereby inhibiting further inflammatory signalling cascades. This anti-TSLP antibody fragment is being developed for patients with severe uncontrolled asthma despite standard of care inhaled therapy. A Phase IIa proof of concept study, using allergen bronchoprovocation as a model for asthma exacerbations, found that ecleralimab was well-tolerated and reduced allergen-induced bronchoconstriction in adult patients with mild asthma. These results suggest ecleralimab may be a promising, new therapeutic class for asthma treatment.
Collapse
Affiliation(s)
- Paul M O'Byrne
- Firestone Institute for Respiratory Health, St. Joseph's Healthcare and McMaster University, Hamilton, Ontario, Canada.
| | | | - Christian Taube
- Department of Pulmonary Medicine, University Hospital Essen, Germany
| | | | | | - Pablo Altman
- Novartis Pharmaceuticals Corporation, New Jersey, USA.
| |
Collapse
|
140
|
Ahmad JG, Marino MJ, Luong AU. Unified Airway Disease. Otolaryngol Clin North Am 2023; 56:181-195. [DOI: 10.1016/j.otc.2022.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
141
|
Gauvreau GM, Bergeron C, Boulet LP, Cockcroft DW, Côté A, Davis BE, Leigh R, Myers I, O'Byrne PM, Sehmi R. Sounding the alarmins-The role of alarmin cytokines in asthma. Allergy 2023; 78:402-417. [PMID: 36463491 PMCID: PMC10108333 DOI: 10.1111/all.15609] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/14/2022] [Accepted: 11/27/2022] [Indexed: 12/07/2022]
Abstract
The alarmin cytokines thymic stromal lymphopoietin (TSLP), interleukin (IL)-33, and IL-25 are epithelial cell-derived mediators that contribute to the pathobiology and pathophysiology of asthma. Released from airway epithelial cells exposed to environmental triggers, the alarmins drive airway inflammation through the release of predominantly T2 cytokines from multiple effector cells. The upstream positioning of the alarmins is an attractive pharmacological target to block multiple T2 pathways important in asthma. Blocking the function of TSLP inhibits allergen-induced responses including bronchoconstriction, airway hyperresponsiveness, and inflammation, and subsequent clinical trials of an anti-TSLP monoclonal antibody, tezepelumab, in asthma patients demonstrated improvements in lung function, airway responsiveness, inflammation, and importantly, a reduction in the rate of exacerbations. Notably, these improvements were observed in patients with T2-high and with T2-low asthma. Clinical trials blocking IL-33 and its receptor ST2 have also shown improvements in lung function and exacerbation rates; however, the impact of blocking the IL-33/ST2 axis in T2-high versus T2-low asthma is unclear. To date, there is no evidence that IL-25 blockade is beneficial in asthma. Despite the considerable overlap in the cellular functions of IL-25, IL-33, and TSLP, they appear to have distinct roles in the immunopathology of asthma.
Collapse
Affiliation(s)
- Gail M Gauvreau
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Celine Bergeron
- Centre for Lung Health, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Donald W Cockcroft
- Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Andréanne Côté
- Centre for Lung Health, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Beth E Davis
- Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Richard Leigh
- Department of Medicine, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Irvin Myers
- Division of Pulmonary Medicine, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Paul M O'Byrne
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Roma Sehmi
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
142
|
Pediatric obesity and severe asthma: Targeting pathways driving inflammation. Pharmacol Res 2023; 188:106658. [PMID: 36642111 DOI: 10.1016/j.phrs.2023.106658] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Asthma affects more than 300 million people of all ages worldwide, including about 10-15% of school-aged children, and its prevalence is increasing. Severe asthma (SA) is a particular and rare phenotype requiring treatment with high-dose inhaled corticosteroids plus a second controller and/or systemic glucocorticoid courses to achieve symptom control or remaining "uncontrolled" despite this therapy. In SA, other diagnoses have been excluded, and potential exacerbating factors have been addressed. Notably, obese asthmatics are at higher risk of developing SA. Obesity is both a major risk factor and a disease modifier of asthma in children and adults: two main "obese asthma" phenotypes have been described in childhood with high or low levels of Type 2 inflammation biomarkers, respectively, the former characterized by early onset and eosinophilic inflammation and the latter by neutrophilic inflammation and late-onset. Nevertheless, the interplay between obesity and asthma is far more complex and includes obese tissue-driven inflammatory pathways, mechanical factors, comorbidities, and poor response to corticosteroids. This review outlines the most recent findings on SA in obese children, particularly focusing on inflammatory pathways, which are becoming of pivotal importance in order to identify selective targets for specific treatments, such as biological agents.
Collapse
|
143
|
Calderon AA, Dimond C, Choy DF, Pappu R, Grimbaldeston MA, Mohan D, Chung KF. Targeting interleukin-33 and thymic stromal lymphopoietin pathways for novel pulmonary therapeutics in asthma and COPD. Eur Respir Rev 2023; 32:32/167/220144. [PMID: 36697211 PMCID: PMC9879340 DOI: 10.1183/16000617.0144-2022] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/15/2022] [Indexed: 01/27/2023] Open
Abstract
Interleukin-33 (IL-33) and thymic stromal lymphopoietin (TSLP) are alarmins that are released upon airway epithelial injury from insults such as viruses and cigarette smoke, and play critical roles in the activation of immune cell populations such as mast cells, eosinophils and group 2 innate lymphoid cells. Both cytokines were previously understood to primarily drive type 2 (T2) inflammation, but there is emerging evidence for a role for these alarmins to additionally mediate non-T2 inflammation, with recent clinical trial data in asthma and COPD cohorts with non-T2 inflammation providing support. Currently available treatments for both COPD and asthma provide symptomatic relief with disease control, improving lung function and reducing exacerbation rates; however, there still remains an unmet need for further improving lung function and reducing exacerbations, particularly for those not responsive to currently available treatments. The epithelial cytokines/alarmins are involved in exacerbations; biologics targeting TSLP and IL-33 have been shown to reduce exacerbations in moderate-to-severe asthma, either in a broad population or in specific subgroups, respectively. For COPD, while there is clinical evidence for IL-33 blockade impacting exacerbations in COPD, clinical data from anti-TSLP therapies is awaited. Clinical data to date support an acceptable safety profile for patients with airway diseases for both anti-IL-33 and anti-TSLP antibodies in development. We examine the roles of IL-33 and TSLP, their potential use as drug targets, and the evidence for target patient populations for COPD and asthma, together with ongoing and future trials focused on these targets.
Collapse
Affiliation(s)
| | | | | | | | | | - Divya Mohan
- Genentench, Inc., San Francisco, CA, USA,Corresponding author: Divya Mohan ()
| | - Kian Fan Chung
- National Heart and Lung institute, Imperial College London, London, UK
| |
Collapse
|
144
|
Is tezepelumab the ubiquitous biologic for severe asthma? THE LANCET. RESPIRATORY MEDICINE 2023; 11:393-395. [PMID: 36702145 DOI: 10.1016/s2213-2600(22)00530-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 01/25/2023]
|
145
|
Menzies-Gow A, Wechsler ME, Brightling CE, Korn S, Corren J, Israel E, Chupp G, Bednarczyk A, Ponnarambil S, Caveney S, Almqvist G, Gołąbek M, Simonsson L, Lawson K, Bowen K, Colice G, Fiterman J, Souza Machado A, Antila MA, Lima MA, Minamoto SET, Blanco DC, Bezerra PGDM, Houle PA, Lemiere C, Melenka LS, Leigh R, Mitchell P, Anees S, Pek B, Chouinard G, Cheema AS, Yang WHC, Philteos G, Chanez P, Bourdin A, Devouassoux G, Taille C, De Blay F, Leroyer C, Beurnier A, Garcia G, Girodet PO, Blanc FX, Magnan A, Wanin S, Just J, Linde R, Zielen S, Förster K, Geßner C, Jandl M, Buhl RO, Korn S, Kornmann MO, Linnhoff A, Ludwig-Sengpiel A, Ehlers M, Schmoller T, Steffen H, Hoffmann M, Kirschner J, Schmidt O, Welte T, Temme H, Wand O, Bar-Shai A, Izbicki G, Berkman N, Fink G, Shitrit D, Adir Y, Kuna P, Rewerska B, Pisarczyk-Bogacka E, Kurbacheva O, Mikhailov SL, Vasilev M, Emelyanov A, Wali S, Albanna A, van Zyl-Smit R, Abdullah I, Abdullah I, Bernhardi D, Hoosen F, Irusen E, Kalla I, Lakha D, Mitha E, Naidoo V, Nell H, Padayachee T, Reddy J, Petrick F, van der Walt E, Vawda ZFA, Park HS, Lee SH, Kim MK, Park JW, Cho YS, Lee BJ, Chang YS, Park CS, Lee KH, Lee SY, Yoon H, Sohn KH, Park MJ, Min KH, Cho YJ, Park HK, Lee Y, Lee J, Sheu CC, Tu CY, Lee KY, Bavbek S, Gemicioglu B, Ediger D, Kalkan IK, Makieieva N, Ostrovskyy M, Dytyatkovs'ka Y, Mostovoy YM, Lebed K, Yakovenko O, Adams A, Mooring T, Torres Jr L, Sexton M, Thompson E, Bernstein JA, Lisi P, Chappel CM, Cole J, Greenwald GI, Jones C, Klein RM, Pham DN, Spangenthal S, Weinstein SF, Windom HH, Kao NL, Leong MA, Mehta V, Moore WC, Bhat S, Aish B, Meltzer SM, Corren J, Moss MH, Kerwin EM, Delgado JP, Lucksinger GH, Thompson CA, Chupp G, Alpizar SA, Vadgama SV, Zafar Z, Jacobs JS, Lugogo NJ, Jain N, Sher LD, Andrawis NS, Fuentes D, Boren EJ, Gonzalez EG, Talreja N, Durrani SS, Israel E, Sekhsaria S, DeLeon S, Shukla M, Totszollosy Tarpay MM, Fakih F, Hudes G, Tillinghast JP, Korenblat PE, Shenoy K, Que L, Kureishy SA, Umeh FC, Nguyen VN, Chu HT, Nguyen TTD. Long-term safety and efficacy of tezepelumab in people with severe, uncontrolled asthma (DESTINATION): a randomised, placebo-controlled extension study. THE LANCET. RESPIRATORY MEDICINE 2023; 11:425-438. [PMID: 36702146 DOI: 10.1016/s2213-2600(22)00492-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Tezepelumab is a human monoclonal antibody that blocks thymic stromal lymphopoietin. The drug has been tested previously in the phase 3 NAVIGATOR (NCT03347279) and SOURCE (NCT03406078) studies, and was subsequently approved as a treatment for severe asthma. This extension study recruited from NAVIGATOR and SOURCE and aimed to evaluate the long-term safety and efficacy of tezepelumab in individuals with severe, uncontrolled asthma. METHODS DESTINATION was a phase 3, multicentre, randomised, double-blind, placebo-controlled, long-term extension study. The study was done across 182 sites (including hospitals, clinics, medical centres, clinical trial centres, and private practices) in 18 countries. Participants (aged 12-80 years) were required to have good treatment compliance in the parent study. Randomisation was stratified by the parent study and all participants were re-randomised. Those who were previously randomised to receive tezepelumab in either parent study continued treatment of subcutaneous tezepelumab (210 mg every 4 weeks); those who were previously randomised to receive placebo in either parent study were re-randomised 1:1 to receive either subcutaneous tezepelumab (210 mg every 4 weeks) or placebo (every 4 weeks) using a randomisation list prepared by a computerised system. Total treatment duration (including the parent studies) was 104 weeks for all groups. Participants, investigators, and site staff were masked to treatment assignment. The primary endpoints were exposure-adjusted incidence of adverse events and serious adverse events and the secondary endpoint was the annualised asthma exacerbation rate; these were assessed from week 0 of the parent studies to week 104 of DESTINATION in all participants who were randomised and who received at least one dose of tezepelumab or placebo in either of the parent studies. The trial is registered with ClinicalTrials.gov, NCT03706079, and is closed to new participants. FINDINGS Participants were recruited between Jan 7, 2019, and Oct 15, 2020. For individuals who initially received tezepelumab (n=528) in NAVIGATOR, incidence of adverse events over 104 weeks was 49·62 (95% CI 45·16 to 54·39) per 100 patient-years, compared with 62·66 (56·93 to 68·81) for those receiving placebo (n=531; difference -13·04, 95% CI -17·83 to -8·18). For serious adverse events, incidence was 7·85 (6·14 to 9·89) per 100 patient-years for individuals who initially received tezepelumab and 12·45 (9·97 to 15·35) for those who received placebo (difference -4·59, -7·69 to -1·65). In SOURCE, incidence of adverse events was 47·15 (36·06 to 60·56) per 100 patient-years for those who initially received tezepelumab (n=74) and 69·97 (54·54 to 88·40) for those who received placebo (n=76; difference -22·82, -34·77 to -10·01). For serious adverse events, incidence was 13·14 (7·65 to 21·04) per 100 patient-years for those who initially received tezepelumab and 17·99 (10·66 to 28·44) for those who received placebo (difference -4·85, -14·88 to 4·53). Tezepelumab reduced the annualised asthma exacerbation rate over 104 weeks compared with placebo. In participants initially from NAVIGATOR, the annualised asthma exacerbation rate ratio over 104 weeks was 0·42 (95% CI 0·35 to 0·51); in those initially from SOURCE, the ratio over 104 weeks was 0·61 (0·38 to 0·96). INTERPRETATION Tezepelumab treatment was well tolerated for up to 2 years and resulted in sustained, clinically meaningful reductions in asthma exacerbations in individuals with severe, uncontrolled asthma. These findings are consistent with previous randomised, placebo-controlled studies and show the long-term safety and sustained efficacy of tezepelumab in individuals with severe, uncontrolled asthma. FUNDING AstraZeneca and Amgen.
Collapse
Affiliation(s)
- Andrew Menzies-Gow
- Department of Respiratory Medicine, Royal Brompton and Harefield Hospitals, School of Immunology and Microbial Sciences, King's College London, London, UK.
| | | | - Christopher E Brightling
- Institute for Lung Health, National Institute for Health and Care Research, Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Stephanie Korn
- Pulmonary Department, Institute für klinische Forschung, Pneumologie Mainz, Mainz, Germany; Pulmonary Department, Thoraxklinik Heidelberg, Heidelberg, Germany
| | - Jonathan Corren
- Department of Medicine and Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Elliot Israel
- Division of Pulmonary and Critical Care Medicine and Allergy and Immunology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Geoffrey Chupp
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Artur Bednarczyk
- Late-Stage Development, Respiratory and Immunology, BioPharmaceuticals Research and Development, AstraZeneca Warsaw, Poland
| | - Sandhia Ponnarambil
- Late-Stage Development, Respiratory and Immunology, BioPharmaceuticals Research and Development, AstraZeneca, Cambridge, UK
| | - Scott Caveney
- Global Development, Inflammation, Research and Development, Amgen, Thousand Oaks, CA, USA
| | - Gun Almqvist
- Late-Stage Development, Respiratory and Immunology, BioPharmaceuticals Research and Development, AstraZeneca, Gothenburg, Sweden
| | - Monika Gołąbek
- Late-Stage Development, Respiratory and Immunology, BioPharmaceuticals Research and Development, AstraZeneca Warsaw, Poland
| | - Linda Simonsson
- Late-Stage Development, Respiratory and Immunology, BioPharmaceuticals Research and Development, AstraZeneca, Gothenburg, Sweden
| | - Kaitlyn Lawson
- Late-Stage Development, Respiratory and Immunology, BioPharmaceuticals Research and Development, AstraZeneca, Gaithersburg, MD, USA; Cytel, Cambridge, MA, USA
| | - Karin Bowen
- Biometrics, Late-stage Development, Respiratory and Immunology, BioPharmaceuticals Research and Development, AstraZeneca, Gaithersburg, MD, USA
| | - Gene Colice
- Late-Stage Development, Respiratory and Immunology, BioPharmaceuticals Research and Development, AstraZeneca, Gaithersburg, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Montelukast Increased IL-25, IL-33, and TSLP via Epigenetic Regulation in Airway Epithelial Cells. Int J Mol Sci 2023; 24:ijms24021227. [PMID: 36674744 PMCID: PMC9865269 DOI: 10.3390/ijms24021227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/24/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
The epithelium-derived cytokines interleukin (IL)-25, IL-33, and thymic stromal lymphopoietin (TSLP) are important mediators that initiate innate type 2 immune responses in asthma. Leukotriene receptor antagonists (LTRAs) are commonly used to prevent asthma exacerbations. However, the effects of LTRAs on epithelium-derived cytokines expression in airway epithelial cells are unclear. This study aimed to investigate the effects of LTRAs on the expression of epithelium-derived cytokines in human airway epithelial cells and to explore possible underlying intracellular processes, including epigenetic regulation. A549 or HBE cells in air-liquid interface conditions were pretreated with different concentrations of LTRAs. The expression of epithelium-derived cytokines and intracellular signaling were investigated by real-time PCR, enzyme-linked immunosorbent assay, and Western blot. In addition, epigenetic regulation was investigated using chromatin immunoprecipitation analysis. The expression of IL-25, IL-33, and TSLP was increased under LTRAs treatment and suppressed by inhaled corticosteroid cotreatment. Montelukast-induced IL-25, IL-33, and TSLP expression were mediated by the mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) pathways and regulated by histone H3 acetylation and H3K36 and H3K79 trimethylation. LTRAs alone might increase inflammation and exacerbate asthma by inducing the production of IL-25, IL-33, and TSLP; therefore, LTRA monotherapy may not be an appropriate therapeutic option for asthma.
Collapse
|
147
|
Domeier PP, Rahman ZSM, Ziegler SF. B cell- and T cell-intrinsic regulation of germinal centers by thymic stromal lymphopoietin signaling. Sci Immunol 2023; 8:eadd9413. [PMID: 36608149 PMCID: PMC10162646 DOI: 10.1126/sciimmunol.add9413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Long-lived and high-affinity antibodies are derived from germinal center (GC) activity, but the cytokines that regulate GC function are still being identified. Here, we show that thymic stromal lymphopoietin (TSLP) signaling regulates the GC and the magnitude of antigen-specific antibody responses. Both GC B cells and T follicular helper (TFH) cells up-regulate the expression of surface TSLP receptor (TSLPR), but cell-specific loss of TSLPR results in distinct effects on GC formation and antibody production. TSLPR signaling on T cells supports the retention of antigen-specific B cells and TFH differentiation, whereas TSLPR in B cells regulates the generation of antigen-specific memory B cells. TSLPR in both cell types promotes interferon regulatory factor 4 (IRF4) expression, which is important for efficient GC activity. Overall, we identified a previously unappreciated cytokine regulator of GCs and identified how this signaling pathway differentially regulates B and T cell responses in the GC.
Collapse
Affiliation(s)
- Phillip P Domeier
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Ziaur S M Rahman
- Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Steven F Ziegler
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
| |
Collapse
|
148
|
Lv X, Gao Z, Tang W, Qin J, Wang W, Liu J, Li M, Teng F, Yi L, Dong J, Wei Y. Trends of therapy in the treatment of asthma. Ther Adv Respir Dis 2023; 17:17534666231155748. [PMID: 36942731 PMCID: PMC10031615 DOI: 10.1177/17534666231155748] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND To better understand the development of therapy for asthma, grasp the core paradigm associated with the transformation of cognition of asthma treatment and asthma, explore potential and effective therapies for asthma, discover new biomarkers and mechanisms related to asthma treatment, find novel targets for anti-asthma drugs, and predict the future trends of asthma therapy, we used a bibliometric analysis to research articles related to the therapies for asthma published from 1983 to 2022. METHODS A comprehensive search was conducted to analyze the articles associated with therapy for asthma with the help of the Web of Science Core Collection (WOSCC) database from January 1, 1983 to August 14, 2022. The CiteSpace 6.1.R2 software and VOS viewer 6.1.8 software were utilized to analyze the overall structure of the network, network clusters, links between clusters, key nodes, and pathways. RESULTS A total of 3902 publications related to therapies on asthma were published in 3211 academic journals by a total of 14,655 authors in 3476 organizations from 87 countries or regions from 1983 to 2022. The United States published the most articles (n = 1143), followed by England (n = 574) and China (n = 405). However, the centrality of China was 0.4, higher than the United States (centrality = 0.16) and Singapore (centrality = 0.11). Akdis Cezmi published the most papers. Journal of Allergy and Clinical Immunology published the most studies on therapies for asthma. Asthma was the most frequent keyword (n = 594). The betweenness centrality value of keywords that were greater than 0.1 included airway inflammation (centrality = 0.22), double blind (centrality = 0.18), asthma (centrality = 0.17), inflammation (centrality = 0.12), and inhaled corticosteroid (centrality = 0.11). CONCLUSIONS The results from this biometric review provide insight into the development of therapy for asthma, the paradigm of recognition of this field, the approach of discovering new targets, exploration and combination of new mechanisms, and the frontier trend of this field in future.
Collapse
Affiliation(s)
- Xiaodi Lv
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Zhen Gao
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Weifeng Tang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingjing Qin
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Wenqian Wang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jiaqi Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Mihui Li
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Fangzhou Teng
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - La Yi
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| |
Collapse
|
149
|
Abstract
Thymic stromal lymphopoietin (TSLP) is a pleiotropic cytokine that acts on multiple cell lineages, including dendritic cells, T cells, B cells, neutrophils, mast cells, eosinophils and innate lymphoid cells, affecting their maturation, survival and recruitment. It is best known for its role in promoting type 2 immune responses such as in allergic diseases and, in 2021, a monoclonal antibody targeting TSLP was approved for the treatment of severe asthma. However, it is now clear that TSLP has many other important roles in a variety of settings. Indeed, several genetic variants for TSLP are linked to disease severity, and chromosomal alterations in TSLP are common in certain cancers, indicating important roles of TSLP in disease. In this Review, we discuss recent advances in TSLP biology, highlighting how it regulates the tissue environment not only in allergic disease but also in infectious diseases, inflammatory diseases and cancer. Encouragingly, therapies targeting the TSLP pathway are being actively pursued for several diseases.
Collapse
Affiliation(s)
- Risa Ebina-Shibuya
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Warren J Leonard
- Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
150
|
Luo J, Zhu Z, Zhai Y, Zeng J, Li L, Wang D, Deng F, Chang B, Zhou J, Sun L. The Role of TSLP in Atopic Dermatitis: From Pathogenetic Molecule to Therapeutical Target. Mediators Inflamm 2023; 2023:7697699. [PMID: 37096155 PMCID: PMC10122597 DOI: 10.1155/2023/7697699] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/25/2022] [Accepted: 10/10/2022] [Indexed: 04/26/2023] Open
Abstract
Atopic dermatitis (AD) is a kind of chronic skin disease with inflammatory infiltration, characterized by skin barrier dysfunction, immune response dysregulation, and skin dysbiosis. Thymic stromal lymphopoietin (TSLP) acts as a regulator of immune response, positively associated with AD deterioration. Mainly secreted by keratinocytes, TSLP interacts with multiple immune cells (including dendritic cells, T cells, and mast cells), following induction of Th2-oriented immune response during the pathogenesis of AD. This article primarily focuses on the TSLP biological function, the relationship between TSLP and different cell populations, and the AD treatments targeting TSLP.
Collapse
Affiliation(s)
- Jialiang Luo
- Department of Dermatology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhengyumeng Zhu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Yumeng Zhai
- Department of Dermatology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Junxiang Zeng
- Department of Bioinformation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Lei Li
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Di Wang
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Southern Medical University, Guangzhou, Guangdong, China
| | - Fan Deng
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Bo Chang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jia Zhou
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Ledong Sun
- Department of Dermatology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|