101
|
Correale M, Croella F, Leopizzi A, Mazzeo P, Tricarico L, Mallardi A, Fortunato M, Magnesa M, Ceci V, Puteo A, Iacoviello M, Di Biase M, Brunetti ND. The Evolving Phenotypes of Cardiovascular Disease during COVID-19 Pandemic. Cardiovasc Drugs Ther 2023; 37:341-351. [PMID: 34328581 PMCID: PMC8322635 DOI: 10.1007/s10557-021-07217-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/07/2021] [Indexed: 02/07/2023]
Abstract
COVID-19 pandemic has negatively impacted the management of patients with acute and chronic cardiovascular disease: acute coronary syndrome patients were often not timely reperfused, heart failure patients not adequately followed up and titrated, atrial arrhythmias not efficaciously treated and became chronic. New phenotypes of cardiovascular patients were more and more frequent during COVID-19 pandemic and are expected to be even more frequent in the next future in the new world shaped by the pandemic. We therefore aimed to briefly summarize the main changes in the phenotype of cardiovascular patients in the COVID-19 era, focusing on new clinical challenges and possible therapeutic options.
Collapse
Affiliation(s)
| | - Francesca Croella
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Alessandra Leopizzi
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Pietro Mazzeo
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Lucia Tricarico
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Adriana Mallardi
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Martino Fortunato
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Michele Magnesa
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Vincenzo Ceci
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | | - Massimo Iacoviello
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Matteo Di Biase
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | |
Collapse
|
102
|
Alizadehmohajer N, Zahedifar S, Sohrabi E, Shaddel Basir S, Nourigheimasi S, Falak R, Nedaeinia R, A Ferns G, Emami Nejad A, Manian M. Using In Silico Bioinformatics Algorithms for the Accurate Prediction of the Impact of Spike Protein Mutations on the Pathogenicity, Stability, and Functionality of the SARS-CoV-2 Virus and Analysis of Potential Therapeutic Targets. Biochem Genet 2023; 61:778-808. [PMID: 36173498 PMCID: PMC9521556 DOI: 10.1007/s10528-022-10282-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 09/01/2022] [Indexed: 11/02/2022]
Abstract
Coronavirus disease 2019 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We have used bioinformatics to investigate seventeen mutations in the spike protein of SARS-CoV-2, as this mediates infection of human cells and is the target of most vaccine strategies and antibody-based therapies. Two mutations, H146Y and S221W, were identified as being most pathogenic. Mutations at positions D614G, A829T, and P1263L might also have deleterious effects on protein function. We hypothesized that candidate small molecules may be repurposed to combat viral infection. We investigated changes in binding energies of the ligands and the mutant proteins by assessing molecular docking. For an understanding of cellular function and organization, protein-protein interactions are also critical. Protein-protein docking for naïve and mutated structures of SARS-CoV-2 S protein was evaluated for their binding energy with the angiotensin-converting enzyme 2 (ACE2). These interactions might limit the binding of the SARS-CoV-2 spike protein to the ACE2 receptor or may have a deleterious effect on protein function that may limit infection. These results may have important implications for the transmission of SARS-CoV-2, its pathogenesis, and the potential for drug repurposing and immune therapies.
Collapse
Affiliation(s)
- Negin Alizadehmohajer
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133, Milan, Italy
| | - Shahrzad Zahedifar
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ehsan Sohrabi
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sedighe Shaddel Basir
- Department of Microbiology, Faculty of New Sciences and Technologies Branch, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Falmer, Brighton, BN1 9PH, Sussex, UK
| | - Asieh Emami Nejad
- Department of Biology, Payame Noor University (PNU), P.O.Box 19395-3697, Tehran, Iran.
| | - Mostafa Manian
- Department of Medical Laboratory Science, Faculty of Medical Science, Kermanshah Branch, Imam Khomeini Campus, Islamic Azad University, Farhikhtegan Bld., Shahid J'afari St., 6718997551, Kermanshah, Iran.
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
103
|
Mutoh Y, Umemura T, Nishikawa T, Kondo K, Nishina Y, Soejima K, Noguchi Y, Bando T, Ota S, Shimahara T, Hirota S, Hagimoto S, Takei R, Fukihara J, Sasano H, Yamano Y, Yokoyama T, Kataoka K, Matsuda T, Kimura T, Ichihara T, Kondoh Y. Real-World Experience of the Comparative Effectiveness and Safety of Molnupiravir and Nirmatrelvir/Ritonavir in High-Risk Patients with COVID-19 in a Community Setting. Viruses 2023; 15:v15030811. [PMID: 36992519 PMCID: PMC10054616 DOI: 10.3390/v15030811] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
Molnupiravir (MOV) and nirmatrelvir/ritonavir (NMV/r) are efficacious oral antiviral agents for patients with the 2019 coronavirus (COVID-19). However, little is known about their effectiveness in older adults and those at high risk of disease progression. This retrospective single-center observational study assessed and compared the outcomes of COVID-19 treated with MOV and NMV/r in a real-world community setting. We included patients with confirmed COVID-19 combined with one or more risk factors for disease progression from June to October 2022. Of 283 patients, 79.9% received MOV and 20.1% NMV/r. The mean patient age was 71.7 years, 56.5% were men, and 71.7% had received ≥3 doses of vaccine. COVID-19-related hospitalization (2.8% and 3.5%, respectively; p = 0.978) or death (0.4% and 3.5%, respectively; p = 0.104) did not differ significantly between the MOV and NMV/r groups. The incidence of adverse events was 2.7% and 5.3%, and the incidence of treatment discontinuation was 2.7% and 5.3% in the MOV and NMV/r groups, respectively. The real-world effectiveness of MOV and NMV/r was similar among older adults and those at high risk of disease progression. The incidence of hospitalization or death was low.
Collapse
Affiliation(s)
- Yoshikazu Mutoh
- Department of Infectious Diseases, Tosei General Hospital, Seto 489-8642, Japan
| | - Takumi Umemura
- Department of Infection Control Team, Tosei General Hospital, Seto 489-8642, Japan
| | - Takeshi Nishikawa
- Department of Infectious Diseases, Tosei General Hospital, Seto 489-8642, Japan
| | - Kaho Kondo
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto 489-8642, Japan
| | - Yuta Nishina
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto 489-8642, Japan
| | - Kazuaki Soejima
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto 489-8642, Japan
| | - Yoichiro Noguchi
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto 489-8642, Japan
| | - Tomohiro Bando
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto 489-8642, Japan
| | - Sho Ota
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto 489-8642, Japan
| | - Tatsuki Shimahara
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto 489-8642, Japan
| | - Shuko Hirota
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto 489-8642, Japan
| | - Satoshi Hagimoto
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto 489-8642, Japan
| | - Reoto Takei
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto 489-8642, Japan
| | - Jun Fukihara
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto 489-8642, Japan
| | - Hajime Sasano
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto 489-8642, Japan
| | - Yasuhiko Yamano
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto 489-8642, Japan
| | - Toshiki Yokoyama
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto 489-8642, Japan
| | - Kensuke Kataoka
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto 489-8642, Japan
| | - Toshiaki Matsuda
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto 489-8642, Japan
| | - Tomoki Kimura
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto 489-8642, Japan
| | - Toshihiko Ichihara
- Department of Infectious Diseases, Tosei General Hospital, Seto 489-8642, Japan
- Department of Infection Control Team, Tosei General Hospital, Seto 489-8642, Japan
| | - Yasuhiro Kondoh
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto 489-8642, Japan
| |
Collapse
|
104
|
Ahsan K, Anwar MA, Munawar N. Gut microbiome therapeutic modulation to alleviate drug-induced hepatic damage in COVID-19 patients. World J Gastroenterol 2023; 29:1708-1720. [PMID: 37077515 PMCID: PMC10107217 DOI: 10.3748/wjg.v29.i11.1708] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/06/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) infection caused by the severe acute respiratory syndrome coronavirus 2 virus, its symptoms, treatment, and post-COVID-19 effects have been a major focus of research since 2020. In addition to respiratory symptoms, different clinical variants of the virus have been associated with dynamic symptoms and multiorgan diseases, including liver abnormalities. The release of cytokines by the activation of innate immune cells during viral infection and the high doses of drugs used for COVID-19 treatment are considered major drivers of liver injury in COVID-19 patients. The degree of hepatic inflammation in patients suffering from chronic liver disease and having COVID-19 could be severe and can be estimated through different liver chemistry abnormality markers. Gut microbiota influences liver chemistry through its metabolites. Gut dysbiosis during COVID-19 treatment can promote liver inflammation. Here, we highlighted the bidirectional association of liver physiology and gut microbiota (gut-liver axis) and its potential to manipulate drug-induced chemical abnormalities in the livers of COVID-19 patients.
Collapse
Affiliation(s)
- Khansa Ahsan
- Department of Chemistry, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Munir Ahmad Anwar
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Nayla Munawar
- Department of Chemistry, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| |
Collapse
|
105
|
Dobrowolska K, Zarębska-Michaluk D, Brzdęk M, Rzymski P, Rogalska M, Moniuszko-Malinowska A, Kozielewicz D, Hawro M, Rorat M, Sikorska K, Jaroszewicz J, Kowalska J, Flisiak R. Retrospective Analysis of the Effectiveness of Remdesivir in COVID-19 Treatment during Periods Dominated by Delta and Omicron SARS-CoV-2 Variants in Clinical Settings. J Clin Med 2023; 12:jcm12062371. [PMID: 36983370 PMCID: PMC10051185 DOI: 10.3390/jcm12062371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Continuous evaluation of real-world treatment effectiveness of COVID-19 medicines is required due to the ongoing evolution of SARS-CoV-2 and the possible emergence of resistance. Therefore, this study aimed to analyze, in a retrospective manner, the outcomes in patients hospitalized with COVID-19 during the pandemic waves dominated by Delta and Omicron variants and treated with remdesivir (RDV) (n = 762) in comparison to a demographically and clinically matched group not treated with any antivirals (n = 1060). A logistic regression analysis revealed that RDV treatment was associated with a significantly lower risk of death during both Delta wave (OR = 0.42, 95%CI: 0.29-0.60; p < 0.0001) and Omicron-dominated period (OR = 0.56, 95%CI: 0.35-0.92; p = 0.02). Moreover, RDV-treated groups were characterized by a lower percentage of patients requiring mechanical ventilation, but the difference was not statistically significant. This study is the first real-world evidence that RDV remains effective during the dominance of more pathogenic SARS-CoV-2 variants and those that cause a milder course of the disease, and continues to be an essential element of COVID-19 therapy.
Collapse
Affiliation(s)
| | - Dorota Zarębska-Michaluk
- Department of Infectious Diseases and Allergology, Jan Kochanowski University, 25-317 Kielce, Poland
- Department of Infectious Diseases, Provincial Hospital, 25-317 Kielce, Poland
| | - Michał Brzdęk
- Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 60-806 Poznań, Poland
| | - Magdalena Rogalska
- Department of Infectious Diseases and Hepatology, Medical University of Białystok, 15-540 Białystok, Poland
| | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Białystok, 15-809 Białystok, Poland
| | - Dorota Kozielewicz
- Department of Infectious Diseases and Hepatology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Marcin Hawro
- Department of Infectious Diseases and Hepatology, Medical Center in Łańcut, 37-100 Łańcut, Poland
| | - Marta Rorat
- Department of Forensic Medicine, Wrocław Medical University, 50-367 Wroclaw, Poland
| | - Katarzyna Sikorska
- Institute of Maritime and Tropical Medicine, Faculty of Health Sciences, Medical University of Gdansk, 81-519 Gdynia, Poland
| | - Jerzy Jaroszewicz
- Department of Infectious Diseases and Hepatology, Medical University of Silesia, 41-902 Katowice, Poland
| | - Justyna Kowalska
- Department of Adults' Infectious Diseases, Medical University of Warsaw, 01-201 Warsaw, Poland
| | - Robert Flisiak
- Department of Infectious Diseases and Hepatology, Medical University of Białystok, 15-540 Białystok, Poland
| |
Collapse
|
106
|
Ayyashi M, Darbashi H, Hakami A, Sharahili F. Evaluation of Remdesivir Utilization Pattern in Critically Ill Patients With COVID-19 in Jazan Province. Cureus 2023; 15:e36247. [PMID: 37069861 PMCID: PMC10105617 DOI: 10.7759/cureus.36247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 03/17/2023] Open
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19), has spread around the world, spurring the biomedical community to find and create antiviral therapies. The agent remdesivir, which has undergone a protracted and tortuous developmental path, is one potential therapeutic strategy now being assessed in several clinical trials. A broad-spectrum antiviral drug called remdesivir has already shown antiviral effects against filoviruses. Remdesivir was suggested as an exploratory medicine early in the pandemic because in vitro tests showed it to have antiviral effectiveness against SARS-CoV-2. Methods We conducted a retrospective cohort study that examined patient data captured through an electronic medical system at the Abu Arish General Hospital between 2021 and 2022. Data analysis was performed with SPSS version 25.0 (Armonk, NY: IBM Corp.). Results A total of 88 patients were included in this study. With the usage of remdesivir, our risk model is able to forecast adverse events and the case fatality rate. In contrast to D-dimer and c-reactive proteins, we showed that alanine transaminase (ALT), aspartate aminotransferase (AST), serum creatinine, and hemoglobin are relevant variables. Conclusion Our risk model can predict the adverse reactions and case fatality rate with the use of remdesivir. We demonstrated ALT, AST, serum creatinine, and hemoglobin as important variables rather than D-dimer and c-reactive proteins.
Collapse
|
107
|
Chopra A, Tillu G, Chuadhary K, Reddy G, Srivastava A, Lakdawala M, Gode D, Reddy H, Tamboli S, Saluja M, Sarmukaddam S, Gundeti M, Raut AK, Rao BCS, Yadav B, Srikanth N, Patwardhan B. Co-administration of AYUSH 64 as an adjunct to standard of care in mild and moderate COVID-19: A randomized, controlled, multicentric clinical trial. PLoS One 2023; 18:e0282688. [PMID: 36928877 PMCID: PMC10019690 DOI: 10.1371/journal.pone.0282688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/28/2022] [Indexed: 03/18/2023] Open
Abstract
OBJECTIVE Evaluate the efficacy of AYUSH 64, a standard polyherbal Ayurvedic drug in COVID-19. METHODS During the first pandemic wave, 140 consenting and eligible hospitalized adult participants with mild-moderate symptomatic disease (specific standard RT-PCR assay positive) were selected as per a convenience sample, and randomized (1:1 ratio) to an open-label (assessor blind) two-arm multicentric drug trial; standard of care (SOC as per Indian guidelines) versus AYUSH 64 combined with SOC (AYUSH plus). Participants were assessed daily and discharged once clinical recovery (CR, primary efficacy) was achieved which was based on a predetermined set of criteria (resolution of symptoms, normal peripheral oximetry, and negative specific RT-PCR assay). Each participant was followed using an indigenous software program(mobile phone) and completed a 12-week study period. The dose of AYUSH 64 was 2 tablets oral, 500 mg each, bid for 12 weeks (AYUSH plus only). Significant P was <0.05 (two-sided). On randomization, the groups were found well matched. RESULTS The mean interval time from randomization to CR was significantly superior in the AYUSH plus group [mean 6.45 days versus 8.26 days, 95% Confidence Interval of the difference -3.02 to -0.59 (P = 0.003, Student's 't test] as per-protocol analysis (134 participants); significant (P = 0.002) on an intention to treat analysis. 70% of the participants in AYUSH plus recovered during the first week (P = 0.046, Chi-square) and showed a significantly better change in physical health, fatigue, and quality of life measures. 48 adverse events, mostly mild and gut related, were reported by each group. There were 20 patient withdrawals (8 in AYUSH plus) but none due to an AE. There were no deaths. Daily assessment (hospitalization) and supervised drug intake ensured robust efficacy data. The open-label design was a concern (study outcome). CONCLUSIONS AYUSH 64 in combination with SOC hastened recovery, reduced hospitalization, and improved health in COVID-19. It was considered safe and well-tolerated. Further clinical validation (Phase III) is required. TRIAL REGISTRATION CTRI/2020/06/025557.
Collapse
Affiliation(s)
| | - Girish Tillu
- Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | | | - Govind Reddy
- Regional Ayurveda Research Institute, Nagpur, India
| | | | | | - Dilip Gode
- Datta Meghe Institute of Medical Sciences, Nagpur, India
| | | | - Sanjay Tamboli
- Target Institute of Medical Education & Research, Mumbai, India
| | | | | | | | | | - B. C. S. Rao
- Central Council for Research in Ayurvedic Sciences, New Delhi, India
| | - Babita Yadav
- Central Council for Research in Ayurvedic Sciences, New Delhi, India
| | | | - Bhushan Patwardhan
- Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
108
|
Mbatha LS, Akinyelu J, Chukwuma CI, Mokoena MP, Kudanga T. Current Trends and Prospects for Application of Green Synthesized Metal Nanoparticles in Cancer and COVID-19 Therapies. Viruses 2023; 15:741. [PMID: 36992450 PMCID: PMC10054370 DOI: 10.3390/v15030741] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Cancer and COVID-19 have been deemed as world health concerns due to the millions of lives that they have claimed over the years. Extensive efforts have been made to develop sophisticated, site-specific, and safe strategies that can effectively diagnose, prevent, manage, and treat these diseases. These strategies involve the implementation of metal nanoparticles and metal oxides such as gold, silver, iron oxide, titanium oxide, zinc oxide, and copper oxide, formulated through nanotechnology as alternative anticancer or antiviral therapeutics or drug delivery systems. This review provides a perspective on metal nanoparticles and their potential application in cancer and COVID-19 treatments. The data of published studies were critically analysed to expose the potential therapeutic relevance of green synthesized metal nanoparticles in cancer and COVID-19. Although various research reports highlight the great potential of metal and metal oxide nanoparticles as alternative nanotherapeutics, issues of nanotoxicity, complex methods of preparation, biodegradability, and clearance are lingering challenges for the successful clinical application of the NPs. Thus, future innovations include fabricating metal nanoparticles with eco-friendly materials, tailor making them with optimal therapeutics for specific disease targeting, and in vitro and in vivo evaluation of safety, therapeutic efficiency, pharmacokinetics, and biodistribution.
Collapse
Affiliation(s)
- Londiwe Simphiwe Mbatha
- Department of Biotechnology and Food Science, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Jude Akinyelu
- Department of Biochemistry, Federal University Oye-Ekiti, Private Mail Bag 373, Ekiti State 370111, Nigeria
| | - Chika Ifeanyi Chukwuma
- Centre for Quality of Health and Living, Faculty of Health and Environmental Sciences, Central University of Technology, Private Bag X20539, Bloemfontein 9301, South Africa
| | - Mduduzi Paul Mokoena
- Department of Pathology, Pre-Clinical Sciences Division, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa
| | - Tukayi Kudanga
- Department of Biotechnology and Food Science, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| |
Collapse
|
109
|
Chatterjee S, Nalla LV, Sharma M, Sharma N, Singh AA, Malim FM, Ghatage M, Mukarram M, Pawar A, Parihar N, Arya N, Khairnar A. Association of COVID-19 with Comorbidities: An Update. ACS Pharmacol Transl Sci 2023; 6:334-354. [PMID: 36923110 PMCID: PMC10000013 DOI: 10.1021/acsptsci.2c00181] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Indexed: 03/03/2023]
Abstract
Coronavirus disease (COVID-19) is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) which was identified in Wuhan, China in December 2019 and jeopardized human lives. It spreads at an unprecedented rate worldwide, with serious and still-unfolding health conditions and economic ramifications. Based on the clinical investigations, the severity of COVID-19 appears to be highly variable, ranging from mild to severe infections including the death of an infected individual. To add to this, patients with comorbid conditions such as age or concomitant illnesses are significant predictors of the disease's severity and progression. SARS-CoV-2 enters inside the host cells through ACE2 (angiotensin converting enzyme2) receptor expression; therefore, comorbidities associated with higher ACE2 expression may enhance the virus entry and the severity of COVID-19 infection. It has already been recognized that age-related comorbidities such as Parkinson's disease, cancer, diabetes, and cardiovascular diseases may lead to life-threatening illnesses in COVID-19-infected patients. COVID-19 infection results in the excessive release of cytokines, called "cytokine storm", which causes the worsening of comorbid disease conditions. Different mechanisms of COVID-19 infections leading to intensive care unit (ICU) admissions or deaths have been hypothesized. This review provides insights into the relationship between various comorbidities and COVID-19 infection. We further discuss the potential pathophysiological correlation between COVID-19 disease and comorbidities with the medical interventions for comorbid patients. Toward the end, different therapeutic options have been discussed for COVID-19-infected comorbid patients.
Collapse
Affiliation(s)
- Sayan Chatterjee
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India
| | - Lakshmi Vineela Nalla
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India.,Department of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh 522302, India
| | - Monika Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India
| | - Nishant Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India
| | - Aditya A Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India
| | - Fehmina Mushtaque Malim
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India
| | - Manasi Ghatage
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India
| | - Mohd Mukarram
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India
| | - Abhijeet Pawar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India
| | - Nidhi Parihar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India
| | - Neha Arya
- Department of Translational Medicine, All India Institute of Medical Sciences (AIIMS), Bhopal, Bhopal 462020, India
| | - Amit Khairnar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno 602 00, Czech Republic.,ICRC-FNUSA Brno 656 91, Czech Republic.,Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 62500 Brno, Czechia
| |
Collapse
|
110
|
Naidoo DB, Chuturgoon AA. The Potential of Nanobodies for COVID-19 Diagnostics and Therapeutics. Mol Diagn Ther 2023; 27:193-226. [PMID: 36656511 PMCID: PMC9850341 DOI: 10.1007/s40291-022-00634-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 01/20/2023]
Abstract
The infectious severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative agent for coronavirus disease 2019 (COVID-19). Globally, there have been millions of infections and fatalities. Unfortunately, the virus has been persistent and a contributing factor is the emergence of several variants. The urgency to combat COVID-19 led to the identification/development of various diagnosis (polymerase chain reaction and antigen tests) and treatment (repurposed drugs, convalescent plasma, antibodies and vaccines) options. These treatments may treat mild symptoms and decrease the risk of life-threatening disease. Although these options have been fairly beneficial, there are some challenges and limitations, such as cost of tests/drugs, specificity, large treatment dosages, intravenous administration, need for trained personal, lengthy production time, high manufacturing costs, and limited availability. Therefore, the development of more efficient COVID-19 diagnostic and therapeutic options are vital. Nanobodies (Nbs) are novel monomeric antigen-binding fragments derived from camelid antibodies. Advantages of Nbs include low immunogenicity, high specificity, stability and affinity. These characteristics allow for rapid Nb generation, inexpensive large-scale production, effective storage, and transportation, which is essential during pandemics. Additionally, the potential aerosolization and inhalation delivery of Nbs allows for targeted treatment delivery as well as patient self-administration. Therefore, Nbs are a viable option to target SARS-CoV-2 and overcome COVID-19. In this review we discuss (1) COVID-19; (2) SARS-CoV-2; (3) the present conventional COVID-19 diagnostics and therapeutics, including their challenges and limitations; (4) advantages of Nbs; and (5) the numerous Nbs generated against SARS-CoV-2 as well as their diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Dhaneshree Bestinee Naidoo
- Discipline of Medical Biochemistry and Chemical Pathology, Faculty of Health Sciences, Howard College, University of Kwa-Zulu Natal, Durban, 4013, South Africa
| | - Anil Amichund Chuturgoon
- Discipline of Medical Biochemistry and Chemical Pathology, Faculty of Health Sciences, Howard College, University of Kwa-Zulu Natal, Durban, 4013, South Africa.
| |
Collapse
|
111
|
Landerholm A, Fedotova NO, Levy-Carrick NC, Chung R, Funk MC. C-L Case Conference: Torsades de Pointes in a Patient With Lifelong Medical Trauma, COVID-19, Remdesivir, Citalopram, Quetiapine, and Hemodialysis. J Acad Consult Liaison Psychiatry 2023; 64:147-157. [PMID: 36351521 DOI: 10.1016/j.jaclp.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/19/2022] [Accepted: 11/02/2022] [Indexed: 11/08/2022]
Abstract
We present a case of Torsades de Pointes (TdP) in a patient with COVID-19 infection and multiple TdP risk factors including QT-interval prolongation, hemodialysis, bradycardia, and treatment with remdesivir, citalopram, and quetiapine. The case was complicated by post-resuscitation anxiety superimposed on a history of medical trauma since childhood. Top experts in the field of consultation-liaison psychiatry, trauma informed care, and cardiac electrophysiology provide perspectives on this case with a review of the literature. Key teaching topics include identification of TdP risk factors in patients with a complex illness; the necessity for prompt electrophysiology consultation in clinical scenarios with high risk for TdP; and the approach to patients with medical trauma using a trauma-informed lens. We highlight the contributions of COVID-19, the pharmacokinetics of QT-interval-prolonging psychotropic medications, the risks of hemodialysis, and the role of remdesivir-induced bradycardia in this first reported case of TdP in a patient treated with remdesivir.
Collapse
Affiliation(s)
- Angela Landerholm
- Department of Psychiatry, Brigham and Women's Hospital, Boston, MA; Department of Psychosocial Oncology, Dana Farber Cancer Institute, Boston, MA; Harvard Medical School, Boston, MA.
| | - Natalie O Fedotova
- Department of Psychiatry, Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Nomi C Levy-Carrick
- Department of Psychiatry, Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Roy Chung
- Department of Cardiovascular Medicine, Cardiac Electrophysiology and Pacing Section, Cleveland Clinic, Cleveland, OH
| | - Margo C Funk
- Department of Psychiatry, Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA
| |
Collapse
|
112
|
Soltani A, Jaam M, Nazar Z, Stewart D, Shaito A. Attitudes and beliefs regarding the use of herbs and supplementary medications with COVID-19: A systematic review. Res Social Adm Pharm 2023; 19:343-355. [PMID: 36402712 PMCID: PMC9659320 DOI: 10.1016/j.sapharm.2022.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND AIM There is growing interest in using herbs and supplementary medications to treat and/or prevent COVID-19, evidenced by multiple reports exploring their effectiveness and safety. From a health psychology perspective, the desire to use herbs and supplementary medications to prevent and/or treat COVID-19 is a health behavior which is attributed to attitudes and beliefs. This systematic review critically appraised and synthesized the data from studies investigating these attitudes and beliefs. METHODS EMBASE, PubMed, ScienceDirect, Scopus, Cochrane (library), and WebOfScience were searched from inception to December 13, 2021 for studies investigating attitudes and beliefs on the use of herbs and supplementary medications to treat and/or prevent COVID-19. RESULTS A total of 17 articles were identified for inclusion. All except one were of cross-sectional design. Participants across most studies had a positive attitude towards using herbs and supplementary medications. They believed that herbs and supplementary medications were effective and were confident in their value in preventing and/or treating COVID-19 symptoms. The majority of included studies had significant flaws in study design and reporting, including inconsistent definitions of herbs and supplementary medications, a lack of theoretical models and conceptual frameworks underpinning the study of beliefs and attitudes, in addition to methodological issues of robustness affecting the validity and reliability of data. CONCLUSION The use of herbs and supplementary medicines to prevent and/or treat COVID-19 could well be driven by a positive attitude stemming from beliefs of effectiveness and safety. There is a need for well-designed studies on attitudes and beliefs that are driven by health behavior theories to permit generalizability of findings and establish more conclusive relationships between beliefs, attitudes and the decision to use herbs and supplementary medications to treat and/or prevent COVID-19.
Collapse
Affiliation(s)
| | - Myriam Jaam
- Clinical Pharmacy and Practice Department, College of Pharmacy, QU Health, Qatar University, Doha, Qatar.
| | - Zachariah Nazar
- Clinical Pharmacy and Practice Department, College of Pharmacy, QU Health, Qatar University, Doha, Qatar.
| | - Derek Stewart
- Clinical Pharmacy and Practice Department, College of Pharmacy, QU Health, Qatar University, Doha, Qatar.
| | - Abdullah Shaito
- Biomedical Research Center, College of Medicine, And Department of Biomedical Sciences, College of Health Sciences, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
113
|
Ekpanyapong S, Reddy KR. Liver and Biliary Tract Disease in Patients with Coronavirus disease-2019 Infection. Gastroenterol Clin North Am 2023; 52:13-36. [PMID: 36813421 PMCID: PMC9531659 DOI: 10.1016/j.gtc.2022.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Coronavirus disease-2019 (COVID-19) had become a global pandemic since March 2020. Although, the most common presentation is of pulmonary involvement, hepatic abnormalities can be encountered in up to 50% of infected individuals, which may be associated with disease severity, and the mechanism of liver injury is thought to be multifactorial. Guidelines for management in patients with chronic liver disease during COVID-19 era are being regularly updated. Patients with chronic liver disease and cirrhosis, including liver transplant candidates and liver transplant recipients are strongly recommended to receive SARS-CoV-2 vaccination because it can reduce rate of COVID-19 infection, COVID-19-related hospitalization, and mortality.
Collapse
Affiliation(s)
- Sirina Ekpanyapong
- Division of Gastroenterology and Hepatology, Department of Medicine, Huachiew General Hospital, 665 Bumroongmueang Road, Khlong Mahanak, Bangkok 10100, Thailand; Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania, 2 Dulles, Liver Transplant Office, HUP3400 Spruce Street, Philadelphia, PA 19104, USA
| | - K Rajender Reddy
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania, 2 Dulles, Liver Transplant Office, HUP3400 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
114
|
Hillary VE, Ceasar SA. An update on COVID-19: SARS-CoV-2 variants, antiviral drugs, and vaccines. Heliyon 2023; 9:e13952. [PMID: 36855648 PMCID: PMC9946785 DOI: 10.1016/j.heliyon.2023.e13952] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly contagious and pathogenic virus that first appeared in late December 2019. This SARS-CoV-2 causes an infection of an acute respiratory disease called "coronavirus infectious disease-2019 (COVID-19). The World Health Organization (WHO) declared this SARS-CoV-2 outbreak a great pandemic on March 11, 2020. As of January 31, 2023, SARS-CoV-2 recorded more than 67 million cases and over 6 million deaths. Recently, novel mutated variants of SARS-CoV are also creating a serious health concern worldwide, and the future novel variant is still mysterious. As infection cases of SARS-CoV-2 are increasing daily, scientists are trying to combat the disease using numerous antiviral drugs and vaccines against SARS-CoV-2. To our knowledge, this is the first comprehensive review that summarized the dynamic nature of SARS-CoV-2 transmission, SARS-CoV-2 variants (a variant of concern and variant of interest), antiviral drugs and vaccines utilized against SARS-CoV-2 at a glance. Hopefully, this review will enable the researcher to gain knowledge on SARS-CoV-2 variants and vaccines, which will also pave the way to identify efficient novel vaccines against forthcoming SARS-CoV-2 strains.
Collapse
Key Words
- ACE2, Angiotensin-converting enzyme 2
- Antiviral drugs
- COVID-19
- COVID-19, Coronavirus infectious disease-2019
- EUA, Emergency Use Authorization
- FDA, Food and Drug Administration
- NIH, National Institutes of Health
- RBD, Receptor-binding domain
- SARS-CoV-2
- SARS-CoV-2 variants
- SARS-CoV-2, Severe acute respiratory syndrome coronavirus 2
- VOC, Variants of Concern
- VOI, Variants of Interests
- Vaccines
- WHO, World Health Organization
Collapse
Affiliation(s)
- Varghese Edwin Hillary
- Department of Biosciences, Rajagiri College of Social Sciences, Cochin, 683 104, Kerala, India
| | | |
Collapse
|
115
|
Miranda C, Garlatti E, Da Porto A, Rinaldo E, Grazioli S, Zanette G, Tonizzo M. Liver injury in COVID-19 patients with non-alcoholic fatty liver disease: an update. Arch Med Sci Atheroscler Dis 2023; 8:e1-e10. [PMID: 37153375 PMCID: PMC10161789 DOI: 10.5114/amsad/160950] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 02/06/2023] [Indexed: 05/09/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has revolutionized the priorities of the medical society worldwide. Although most patients infected with SARS-CoV-2 exhibit respiratory symptoms, other organs may also be involved, including the liver, often resulting in liver injury. Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the world, and its prevalence is expected to increase together with the epidemics of type 2 diabetes and obesity. Data about liver injury during COVID-19 are numerous, while overviews of this infection in patients with NAFLD, both in terms of respiratory and liver, are emerging. In this review, we summarise the current research focusing on COVID-19 in NAFLD patients and discuss the association between liver injury in COVID-19 subjects and non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Cesare Miranda
- Clinic of Endocrinology and Metabolism Diseases, Pordenone Hospital, Pordenone, Italy
| | - Elena Garlatti
- Internal Medicine, Santa Maria degli Angeli Hospital, Pordenone, Italy
| | - Andrea Da Porto
- Department of Medicine, Clinica Medica, University of Udine, Udine, Italy
| | - Elena Rinaldo
- Clinic of Endocrinology and Metabolism Diseases, Pordenone Hospital, Pordenone, Italy
| | - Silvia Grazioli
- Internal Medicine, Santa Maria degli Angeli Hospital, Pordenone, Italy
| | - Giorgio Zanette
- Clinic of Endocrinology and Metabolism Diseases, Pordenone Hospital, Pordenone, Italy
| | - Maurizio Tonizzo
- Internal Medicine, Santa Maria degli Angeli Hospital, Pordenone, Italy
| |
Collapse
|
116
|
Tamura R, Irie K, Nakagawa A, Muroi H, Eto M, Ikesue H, Muroi N, Fukushima S, Tomii K, Hashida T. Population pharmacokinetics and exposure-clinical outcome relationship of remdesivir major metabolite GS-441524 in patients with moderate and severe COVID-19. CPT Pharmacometrics Syst Pharmacol 2023; 12:513-521. [PMID: 36798006 PMCID: PMC10088080 DOI: 10.1002/psp4.12936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Although remdesivir, a prodrug of nucleoside analog (GS-441524), has demonstrated clinical benefits in coronavirus disease 2019 (COVID-19) treatment, its pharmacokinetics (PKs) in patients with COVID-19 remain poorly understood. Therefore, in this study, the PKs of remdesivir and its major metabolite, GS-441524, were evaluated using a population PK (PopPK) approach to understand the PK aspect and exposure-clinical outcome relationship. The serum concentrations of remdesivir and GS-441524 (102 points in 39 patients) were measured using liquid chromatography-tandem mass spectrometry. All patients received 200 mg remdesivir on the first day, followed by 100 mg on 2-5 days, except for one patient who discontinued remdesivir on day 4. The median (range) age, body surface area, and estimated glomerular filtration rate (eGFR) were 70 (42-85), 1.74 m2 (1.36-2.03), and 68 mL/min/1.73 m2 (33-113), respectively. A compartment model with first-order elimination combined with remdesivir and GS-441524 was used for nonlinear mixed-effects model analysis. Remdesivir was rapidly eliminated after infusion, whereas GS-441524 was eliminated relatively slowly (half-time = 17.1 h). The estimated apparent clearance (CL) and distribution volume of GS-441524 were 11.0 L/h (intersubject variability [ISV]% = 43.0%) and 271 L (ISV% = 58.1%), respectively. The CL of GS-441524 was significantly related to the eGFR (CL × [eGFR/68]0.745 ). The post hoc area under the curve of GS-441524 was unrelated to the recovery rate or aspartate aminotransferase/alanine aminotransferase elevation. Overall, PopPK analysis showed the rapid elimination of remdesivir in the blood, and GS-441524 accumulation depended on eGFR in patients with COVID-19. However, no relevance of exposure-clinical outcome was not suggestive of the dose adjustment of remdesivir.
Collapse
Affiliation(s)
- Ryo Tamura
- Department of Pharmacy, Kobe City Hospital Organization, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Kei Irie
- Department of Pharmacy, Kobe City Hospital Organization, Kobe City Medical Center General Hospital, Kobe, Japan.,Faculty of Pharmaceutical Science, Kobe Gakuin University, Kobe, Japan
| | - Atsushi Nakagawa
- Department of Respiratory Medicine, Kobe City Hospital Organization, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Hirohito Muroi
- Department of Pharmacy, Kobe City Hospital Organization, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Masaaki Eto
- Department of Clinical Laboratory, Kobe City Hospital Organization, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Hiroaki Ikesue
- Department of Pharmacy, Kobe City Hospital Organization, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Nobuyuki Muroi
- Department of Pharmacy, Kobe City Hospital Organization, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Shoji Fukushima
- Department of Pharmacy, Kobe City Hospital Organization, Kobe City Medical Center General Hospital, Kobe, Japan.,Faculty of Pharmaceutical Science, Kobe Gakuin University, Kobe, Japan
| | - Keisuke Tomii
- Department of Respiratory Medicine, Kobe City Hospital Organization, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Tohru Hashida
- Department of Pharmacy, Kobe City Hospital Organization, Kobe City Medical Center General Hospital, Kobe, Japan.,Faculty of Pharmaceutical Science, Kobe Gakuin University, Kobe, Japan
| |
Collapse
|
117
|
Alshamrani AA, Assiri AM, Almohammed OA. Comprehensive evaluation of six interventions for hospitalized patients with COVID-19: A propensity score matching study. Saudi Pharm J 2023; 31:517-525. [PMID: 36819112 PMCID: PMC9930407 DOI: 10.1016/j.jsps.2023.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
Purpose The purpose of this study was to evaluate the effectiveness of either hydroxychloroquine, triple combination therapy (TCT), favipiravir, dexamethasone, remdesivir, or COVID-19 convalescent plasma (CCP) in comparison with standard-of-care for hospitalized patients with COVID-19 using real-world data from Saudi Arabia. Patients and methods A secondary database analysis was conducted using the Saudi Ministry of Health database for patients with COVID-19. Adult (≥ 18 years) hospitalized patients with COVID-19 between March 2020 and January 2021 were included in the analysis. A propensity score matching technique was used to establish comparable groups for each therapeutic approach. Lastly, an independent t-test and chi-square test were used to compare the matching groups in the aspects of the duration of hospitalization, length of stay (LOS) in intensive care units (ICU), in-hospital mortality, and composite poor outcome. Multilevel logistic regression model was used to assess the association between the severity stage of COVID-19 and the outcomes while using the medication or intervention used as a grouping variable in the model. Results The mean duration of hospitalization was significantly longer for patients who received TCT, favipiravir, dexamethasone, or CCP compared to patients who did not receive these therapies, with a mean difference ranging between 2.2 and 4.9 days for dexamethasone and CCP, respectively. Furthermore, the use of favipiravir or CCP was associated with a longer stay in ICU. Remdesivir was the only agent associated with in-hospital mortality benefit. A higher risk of mortality and poorer composite outcome were associated with the use of favipiravir or dexamethasone. However, the logistic regression model reveled that the difference between the two matched cohorts was due to the severity stage not the medication. Additionally, the use of hydroxychloroquine, TCT, or CCP had no impact on the incidence of in-hospital mortality or composite poor outcomes. Conclusion Remdesivir was the only agent associated with in-hospital mortality benefit. The observed worsened treatment outcomes associated with the use of dexamethasone or FPV shall be attributed to the severity stage rather than the medication use. In light of these varied results, additional studies are needed to continue evaluating the actual benefits of these therapies.
Collapse
Affiliation(s)
- Ali A Alshamrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed M Assiri
- Health Volunteering Center, Ministry of Health, Riyadh, Saudi Arabia
| | - Omar A Almohammed
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Pharmacoeconomics Research Unit, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
118
|
Fernandes S, Sosa-Napolskij M, Lobo G, Silva I. Relation of COVID-19 with liver diseases and their impact on healthcare systems: The Portuguese case. World J Gastroenterol 2023; 29:1109-1122. [PMID: 36844137 PMCID: PMC9950868 DOI: 10.3748/wjg.v29.i6.1109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/18/2022] [Accepted: 12/30/2022] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND The impact caused by the coronavirus disease 2019 (COVID-19) on the Portuguese population has been addressed in areas such as clinical manifestations, frequent comorbidities, and alterations in consumption habits. However, comorbidities like liver conditions and changes concerning the Portuguese population's access to healthcare-related services have received less attention. AIM To (1) Review the impact of COVID-19 on the healthcare system; (2) examine the relationship between liver diseases and COVID-19 in infected individuals; and (3) investigate the situation in the Portuguese population concerning these topics. METHODS For our purposes, we conducted a literature review using specific keywords. RESULTS COVID-19 is frequently associated with liver damage. However, liver injury in COVID-19 individuals is a multifactor-mediated effect. Therefore, it remains unclear whether changes in liver laboratory tests are associated with a worse prognosis in Portuguese individuals with COVID-19. CONCLUSION COVID-19 has impacted healthcare systems in Portugal and other countries; the combination of COVID-19 with liver injury is common. Previous liver damage may represent a risk factor that worsens the prognosis in individuals with COVID-19.
Collapse
Affiliation(s)
- Sara Fernandes
- Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS-UP), Porto 4050-313, Portugal
| | - Milaydis Sosa-Napolskij
- CINTESIS@RISE, Center for Health Technology and Services Research at The Associate Laboratory RISE–Health Research Network, Faculty of Medicine of The University of Porto, Porto 4200-219, Portugal
| | - Graça Lobo
- Laboratory of Pharmacology and Neurobiology–Department of Immuno-physiology and Pharmacology, Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS-UP), Porto 4050-313, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS-UP), Porto 4050-313, Portugal
| | - Isabel Silva
- Laboratory of Pharmacology and Neurobiology–Department of Immuno-physiology and Pharmacology, Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS-UP), Porto 4050-313, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS-UP), Porto 4050-313, Portugal
| |
Collapse
|
119
|
Use and effectiveness of remdesivir for the treatment of patients with covid-19 using data from the Lean European Open Survey on SARS-CoV-2 infected patients (LEOSS): a multicentre cohort study. Infection 2023:10.1007/s15010-023-01994-0. [PMID: 36763285 PMCID: PMC9913009 DOI: 10.1007/s15010-023-01994-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
OBJECTIVES The use of remdesivir (RDV) as the first drug approved for coronavirus disease 2019 (COVID-19) remains controversial. Based on the Lean European Open Survey on severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infected patients (LEOSS), we aim to contribute timing-focused complementary real-world insights to its evaluation. METHODS SARS-CoV-2 infected patients between January 2020 and December 2021 treated with RDV were matched 1:1 to controls considering sociodemographics, comorbidities and clinical status. Multiple imputations were used to account for missing data. Effects on fatal outcome were estimated using uni- and multivariable Cox regression models. RESULTS We included 9,687 patients. For those starting RDV administration in the complicated phase, Cox regression for fatal outcome showed an adjusted hazard ratio (aHR) of 0.59 (95%CI 0.41-0.83). Positive trends could be obtained for further scenarios: an aHR of 0.51 (95%CI 0.16-1.68) when RDV was initiated in uncomplicated and of 0.76 (95% CI 0.55-1.04) in a critical phase of disease. Patients receiving RDV with concomitant steroids exhibited a further reduction in aHR in both, the complicated (aHR 0.50, 95%CI 0.29-0.88) and critical phase (aHR 0.63, 95%CI 0.39-1.02). CONCLUSION Our study results elucidate that RDV use, in particular when initiated in the complicated phase and accompanied by steroids is associated with improved mortality. However, given the limitations of non-randomized trials in estimating the magnitude of the benefit of an intervention, further randomized trials focusing on the timing of therapy initiation seem warranted.
Collapse
|
120
|
Kale A, Shelke V, Dagar N, Anders HJ, Gaikwad AB. How to use COVID-19 antiviral drugs in patients with chronic kidney disease. Front Pharmacol 2023; 14:1053814. [PMID: 36843922 PMCID: PMC9947246 DOI: 10.3389/fphar.2023.1053814] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
Antiviral drugs such as Remdesivir (Veklury), Nirmatrelvir with Ritonavir (Paxlovid), Azvudine, and Molnupiravir (Lagevrio) can reduce the risk for severe and fatal Coronavirus Disease (COVID)-19. Although chronic kidney disease is a highly prevalent risk factor for severe and fatal COVID-19, most clinical trials with these drugs excluded patients with impaired kidney function. Advanced CKD is associated with a state of secondary immunodeficiency (SIDKD), which increases the susceptibility to severe COVID-19, COVID-19 complications, and the risk of hospitalization and mortality among COVID-19 patients. The risk to develop COVID-19 related acute kidney injury is higher in patients with precedent CKD. Selecting appropriate therapies for COVID-19 patients with impaired kidney function is a challenge for healthcare professionals. Here, we discuss the pharmacokinetics and pharmacodynamics of COVID-19-related antiviral drugs with a focus on their potential use and dosing in COVID-19 patients with different stages of CKD. Additionally, we describe the adverse effects and precautions to be taken into account when using these antivirals in COVID-19 patients with CKD. Lastly, we also discuss about the use of monoclonal antibodies in COVID-19 patients with kidney disease and related complications.
Collapse
Affiliation(s)
- Ajinath Kale
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, India
| | - Vishwadeep Shelke
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, India
| | - Neha Dagar
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, India
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Internal Medicine IV, Hospital of the Ludwig Maximilians University Munich, Munich, Germany
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, India
| |
Collapse
|
121
|
Panahi Y, Gorabi AM, Talaei S, Beiraghdar F, Akbarzadeh A, Tarhriz V, Mellatyar H. An overview on the treatments and prevention against COVID-19. Virol J 2023; 20:23. [PMID: 36755327 PMCID: PMC9906607 DOI: 10.1186/s12985-023-01973-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 01/14/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to plague the world. While COVID-19 is asymptomatic in most individuals, it can cause symptoms like pneumonia, ARDS (acute respiratory distress syndrome), and death in others. Although humans are currently being vaccinated with several COVID-19 candidate vaccines in many countries, however, the world still is relying on hygiene measures, social distancing, and approved drugs. RESULT There are many potential therapeutic agents to pharmacologically fight COVID-19: antiviral molecules, recombinant soluble angiotensin-converting enzyme 2 (ACE2), monoclonal antibodies, vaccines, corticosteroids, interferon therapies, and herbal agents. By an understanding of the SARS-CoV-2 structure and its infection mechanisms, several vaccine candidates are under development and some are currently in various phases of clinical trials. CONCLUSION This review describes potential therapeutic agents, including antiviral agents, biologic agents, anti-inflammatory agents, and herbal agents in the treatment of COVID-19 patients. In addition to reviewing the vaccine candidates that entered phases 4, 3, and 2/3 clinical trials, this review also discusses the various platforms that are used to develop the vaccine COVID-19.
Collapse
Affiliation(s)
- Yunes Panahi
- Pharmacotherapy Department, Faculty of Pharmacy, Bagyattallah University of Medical Sciences, Tehran, Iran
| | - Armita Mahdavi Gorabi
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sona Talaei
- Department of Basic Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Fatemeh Beiraghdar
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahideh Tarhriz
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Mellatyar
- Pharmacotherapy Department, Faculty of Pharmacy, Bagyattallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
122
|
Ippolito D, Maino C, Vernuccio F, Cannella R, Inchingolo R, Dezio M, Faletti R, Bonaffini PA, Gatti M, Sironi S. Liver involvement in patients with COVID-19 infection: A comprehensive overview of diagnostic imaging features. World J Gastroenterol 2023; 29:834-850. [PMID: 36816623 PMCID: PMC9932422 DOI: 10.3748/wjg.v29.i5.834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/06/2022] [Accepted: 01/20/2023] [Indexed: 02/06/2023] Open
Abstract
During the first wave of the pandemic, coronavirus disease 2019 (COVID-19) infection has been considered mainly as a pulmonary infection. However, different clinical and radiological manifestations were observed over time, including involvement of abdominal organs. Nowadays, the liver is considered one of the main affected abdominal organs. Hepatic involvement may be caused by either a direct damage by the virus or an indirect damage related to COVID-19 induced thrombosis or to the use of different drugs. After clinical assessment, radiology plays a key role in the evaluation of liver involvement. Ultrasonography (US), computed tomography (CT) and magnetic resonance imaging (MRI) may be used to evaluate liver involvement. US is widely available and it is considered the first-line technique to assess liver involvement in COVID-19 infection, in particular liver steatosis and portal-vein thrombosis. CT and MRI are used as second- and third-line techniques, respectively, considering their higher sensitivity and specificity compared to US for assessment of both parenchyma and vascularization. This review aims to the spectrum of COVID-19 liver involvement and the most common imaging features of COVID-19 liver damage.
Collapse
Affiliation(s)
- Davide Ippolito
- Milano Bicocca School of Medicine and Surgery, Milano 20126, Italy
- Fondazione IRCCS San Gerardo dei Tintori, Monza 20900, Italy
| | - Cesare Maino
- Fondazione IRCCS San Gerardo dei Tintori, Monza 20900, Italy
| | - Federica Vernuccio
- Institute of Radiology (DIMED), University Hospital of Padova, Padova 35128, Italy
| | - Roberto Cannella
- Section of Radiology-Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo 90127, Italy
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo 90127, Italy
| | - Riccardo Inchingolo
- Division of Interventional Radiology, Department of Radiology, Madonna delle Grazie Hospital, Matera 75100, Italy
| | - Michele Dezio
- Division of Interventional Radiology, Department of Radiology, Madonna delle Grazie Hospital, Matera 75100, Italy
| | - Riccardo Faletti
- Department of Surgical Sciences, University of Turin, Turin 10126, Italy
| | - Pietro Andrea Bonaffini
- Milano Bicocca School of Medicine and Surgery, Milano 20126, Italy
- Department of Diagnostic Radiology, Papa Giovanni XXIII Hospital, Bergamo 24127, Italy
| | - Marco Gatti
- Department of Diagnostic Radiology, University of Turin, Turin 10126, Italy
| | - Sandro Sironi
- Milano Bicocca School of Medicine and Surgery, Milano 20126, Italy
- Department of Diagnostic Radiology, Papa Giovanni XXIII Hospital, Bergamo 24127, Italy
| |
Collapse
|
123
|
Al-Khlaifat AM, Al Quraan AM, Nimri AF, Khaled NEB, Ramadina N, Ayyash FF, Daoud SO, Hamlan SY, Hababeh BM. Factors Influencing the Length of Hospital Stay Among Pediatric COVID-19 Patients at Queen Rania Al Abdullah Hospital for Children: A Cross-Sectional Study. Cureus 2023; 15:e35000. [PMID: 36949998 PMCID: PMC10027108 DOI: 10.7759/cureus.35000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Background COVID-19 caused by SARS-CoV-2 is a worldwide epidemic. Children are less commonly infected and have less severe symptoms than adults. However, they are at risk for COVID-19-associated severe sickness and hospitalization. The duration of stay is a major driver of effective health treatment during hospitalization; thus, it is only logical to attempt to comprehend the factors influencing the length of stay (LOS) for these patients, particularly in light of the ongoing pandemic caused by the new SARS-CoV-2 virus. As predictors of hospital LOS, several variables, including age, gender, disease severity, hospital mortality, insurance type, and hospital location, have been discovered. In our study, we focused on the severity of the patient's condition, the presence of comorbidities, and the necessary therapeutic regimen to predict the duration of stay. This study aimed to answer the following questions: If a patient has comorbidity and has COVID-19 requiring hospital treatment, will the patient's comorbidity elongate the duration of stay at the hospital for further management in the pediatric age group? What are the risk factors that play a significant role in the hospital stay duration in pediatrics? Methodology We gathered data from 100 hospitalized children aged up to 14 years who tested positive for COVID-19, which was not specific to variants of SARS-CoV-2, over 24 months (February 2020-February 2022) at Queen Rania Al Abdullah Hospital for Children, one of the Health Care Accreditation Council accredited facilities. Clinical symptoms, signs, oxygen demand, imaging study results, laboratory data, and usage of corticosteroid and antiviral medication were all taken from patients' medical records. There were no limitations in taking the sample of patients. All patients in the duration mentioned were included. Results Clinical data of 100 COVID-19-positive pediatric patients were analyzed; 52% of the patients had associated chronic illnesses, while 48% were medically free. The longest duration of LOS was 28 days, the shortest was one day, the median was eight days, and five days was the most frequent among patients owing to 21% of patients, using mean descriptive statistics. We compared LOS to having or not having comorbidities. The mean LOS of patients with the comorbid disease was 6.15 days, with a maximum of 28 days, while for patients without chronic illnesses, the mean was 4.81 days with a maximum of 14 days. The significance was 0.07. Our results also showed a significant correlation between using steroids and LOS, as it had an advantageous effect by decreasing it with a significance value of 0.04. Having abnormal findings on chest computed tomography (CT) scan was also associated with increased LOS with a significant value of 0.00. Conclusions According to our research, there was no direct association between comorbidity and hospital LOS, which is counterintuitive, as it was influenced by multiplayers of variables such as using steroids, which decreased the LOS, and abnormal findings on chest CT, which resulted in lengthening of the hospital stay. Our findings cannot be proven without further research and a larger patient sample.
Collapse
Affiliation(s)
- Alia M Al-Khlaifat
- Pediatric Infectious Diseases, Jordanian Royal Medical Services, Amman, JOR
| | - Asmaa M Al Quraan
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Aseel F Nimri
- Pediatric Infectious Diseases, Jordanian Royal Medical Services, Amman, JOR
| | | | | | - Fadi F Ayyash
- Pediatric Endocrinology, Jordanian Royal Medical Services, Amman, JOR
| | - Shadi O Daoud
- Rheumatology, Jordanian Royal Medical Services, Amman, JOR
| | - Sarah Y Hamlan
- Pediatrics, Jordanian Royal Medical Services, Amman, JOR
| | | |
Collapse
|
124
|
Khan A, Heng W, Imran K, Zhu G, Ji J, Zhang Y, Guan X, Ge G, Wei DQ. Discovery of Isojacareubin as a covalent inhibitor of SARS-CoV-2 main protease using structural and experimental approaches. J Med Virol 2023; 95:e28542. [PMID: 36727647 DOI: 10.1002/jmv.28542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/03/2023]
Abstract
The ongoing pandemic with the emergence of immune evasion potential and, particularly, the current omicron subvariants intensified the situation further. Although vaccines are available, the immune evasion capabilities of the recent variants demand further efficient therapeutic choices to control the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Hence, considering the necessity of the small molecule inhibitor, we target the main protease (3CLpro), which is an appealing target for the development of antiviral drugs against SARS-CoV-2. High-throughput molecular in silico screening of South African natural compounds database reported Isojacareubin and Glabranin as the potential inhibitors for the main protease. The calculated docking scores were reported to be -8.47 and -8.03 kcal/mol, respectively. Moreover, the structural dynamic assessment reported that Isojacareubin in complex with 3CLpro exhibit a more stable dynamic behavior than Glabranin. Inhibition assay indicated that Isojacareubin could inhibit SARS-CoV-2 3CLpro in a time- and dose-dependent manner, with half maximal inhibitory concentration values of 16.00 ± 1.35 μM (60 min incubation). Next, the covalent binding sites of Isojacareubin on SARS-CoV-2 3CLpro was identified by biomass spectrometry, which reported that Isojacareubin can covalently bind to thiols or Cysteine through Michael addition. To evaluate the inactivation potency of Isojacareubin, the inactivation kinetics was further investigated. The inactivation kinetic curves were plotted according to various concentrations with gradient-ascending incubation times. The KI value of Isojacareubin was determined as 30.71 μM, whereas the Kinact value was calculated as 0.054 min-1 . These results suggest that Isojacareubin is a covalent inhibitor of SARS-CoV-2 3CLpro .
Collapse
Affiliation(s)
- Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nayang, Henan, P.R., China
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R., China
| | - Wang Heng
- International School of Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, P.R., China
| | - Kashif Imran
- Services Institute of Medical Sciences, Lahore, Punjab, Pakistan
| | - Guanghao Zhu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun Ji
- Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang, P.R., China
| | - Yani Zhang
- Peng Cheng Laboratory, Vanke Cloud City, Nashan District, Shenzhen, Guangdong, P.R., China
| | - Xiaoqing Guan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangbo Ge
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nayang, Henan, P.R., China
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R., China
- Peng Cheng Laboratory, Vanke Cloud City, Nashan District, Shenzhen, Guangdong, P.R., China
| |
Collapse
|
125
|
Devgun JM, Zhang R, Brent J, Wax P, Burkhart K, Meyn A, Campleman S, Abston S, Aldy K. Identification of Bradycardia Following Remdesivir Administration Through the US Food and Drug Administration American College of Medical Toxicology COVID-19 Toxic Pharmacovigilance Project. JAMA Netw Open 2023; 6:e2255815. [PMID: 36787141 PMCID: PMC9929701 DOI: 10.1001/jamanetworkopen.2022.55815] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
IMPORTANCE The rapid spread and mortality associated with COVID-19 emphasized a need for surveillance system development to identify adverse events (AEs) to emerging therapeutics. Bradycardia is a remdesivir infusion-associated AE listed in the US Food and Drug Administration-approved prescribing information. OBJECTIVE To evaluate the magnitude and duration of bradycardic events following remdesivir administration. DESIGN, SETTING, AND PARTICIPANTS A multicenter cohort study of patients with recorded heart rate less than 60 beats per minute within 24 hours after administration of a remdesivir dose was conducted between November 23, 2020, and October 31, 2021. Participants included patients hospitalized with COVID-19 at 15 medical centers across the US. Patients excluded had AEs unrelated to bradycardia, AEs in addition to bradycardia, or first onset of bradycardia after 5 remdesivir doses. EXPOSURES Remdesivir administration. MAIN OUTCOMES AND MEASURES Linear mixed-effect models for the minimum HR before starting remdesivir and within 24 hours of each dose included doses as fixed effects. Baseline covariates were age (≥65 years vs <65 years), sex (male vs female), cardiovascular disease history (yes vs no), and concomitant use of bradycardia-associated medications. The interactions between variables and doses were considered fixed-effects covariates to adjust models. RESULTS A total of 188 patients were included in the primary analysis and 181 in the secondary analysis. The cohort included 108 men (57.4%); 75 individuals (39.9%) were non-Hispanic White and mean (SD) age was 61.3 (15.4) years. Minimum HR after doses 1 to 5 was lower than before remdesivir. Mean minimum HR was lowest after dose 4, decreasing by -15.2 beats per minute (95% CI, -17.4 to -13.1; P < .001) compared with before remdesivir administration. Mean (SD) minimum HR was 55.6 (10.2) beats per minute across all 5 doses. Of 181 patients included in time-to-event analysis, 91 had their first episode of bradycardia within 23.4 hours (95% CI, 20.1-31.5 hours) and 91 had their lowest HR within 60.7 hours (95% CI, 54.0-68.3 hours). Median time to first bradycardia after starting remdesivir was shorter for patients aged 65 years or older vs those younger than 65 years (18.7 hours; 95% CI, 16.8-23.7 hours vs 31.5 hours; 95% CI, 22.7-39.3 hours; P = .04). Median time to lowest HR was shorter for men vs women (54.2 hours; 95% CI, 47.3-62.0 hours vs 71.0 hours; 95% CI, 59.5-79.6 hours; P = .02). CONCLUSIONS AND RELEVANCE In this cohort study, bradycardia occurred during remdesivir infusion and persisted. Given the widespread use of remdesivir, practitioners should be aware of this safety signal.
Collapse
Affiliation(s)
- Jason M Devgun
- Department of Emergency Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Rongmei Zhang
- Center for Drug Evaluation and Research Food and Drug Administration, Silver Spring, Maryland
| | - Jeffrey Brent
- Department of Medicine, University of Colorado School of Medicine, Aurora
| | - Paul Wax
- American College of Medical Toxicology, Phoenix, Arizona
- Department of Emergency Medicine, The University of Texas Southwestern Medical Center, Dallas
| | - Keith Burkhart
- Center for Drug Evaluation and Research Food and Drug Administration, Silver Spring, Maryland
| | - Alison Meyn
- American College of Medical Toxicology, Phoenix, Arizona
| | | | | | - Kim Aldy
- American College of Medical Toxicology, Phoenix, Arizona
- Department of Emergency Medicine, The University of Texas Southwestern Medical Center, Dallas
| | | |
Collapse
|
126
|
A Clinical Insight on New Discovered Molecules and Repurposed Drugs for the Treatment of COVID-19. Vaccines (Basel) 2023; 11:vaccines11020332. [PMID: 36851211 PMCID: PMC9967525 DOI: 10.3390/vaccines11020332] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began churning out incredulous terror in December 2019. Within several months from its first detection in Wuhan, SARS-CoV-2 spread to the rest of the world through droplet infection, making it a pandemic situation and a healthcare emergency across the globe. The available treatment of COVID-19 was only symptomatic as the disease was new and no approved drug or vaccine was available. Another challenge with COVID-19 was the continuous mutation of the SARS-CoV-2 virus. Some repurposed drugs, such as hydroxychloroquine, chloroquine, and remdesivir, received emergency use authorization in various countries, but their clinical use is compromised with either severe and fatal adverse effects or nonavailability of sufficient clinical data. Molnupiravir was the first molecule approved for the treatment of COVID-19, followed by Paxlovid™, monoclonal antibodies (MAbs), and others. New molecules have variable therapeutic efficacy against different variants or strains of SARS-CoV-2, which require further investigations. The aim of this review is to provide in-depth information on new molecules and repurposed drugs with emphasis on their general description, mechanism of action (MOA), correlates of protection, dose and dosage form, route of administration, clinical trials, regulatory approval, and marketing authorizations.
Collapse
|
127
|
Hayashi M, Morikawa S, Goto Y, Yoshida T, Kimura Y, Kawabe T, Tsuzuki S, Imaizumi K. Clinical characteristics and courses of 200 patients hospitalized for COVID-19 during the second and third waves at Fujita Health University Okazaki Medical Center in Japan. FUJITA MEDICAL JOURNAL 2023; 9:17-21. [PMID: 36789122 PMCID: PMC9923452 DOI: 10.20407/fmj.2021-018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/21/2021] [Indexed: 02/16/2023]
Abstract
Objectives There are few reports about patients hospitalized for COVID-19 in Japan. We investigated 200 patients hospitalized for COVID-19 over a 6-month period with the aim of elucidating their clinical characteristics and clinical courses. Methods The study cohort comprised 200 patients hospitalized for COVID-19 during a 6-month period. We examined baseline characteristics, source of transmission, preadmission course, initial symptoms, concomitant symptoms, comorbidities, treatments, and prognosis. Results The number of inpatients from outside our region increased from 9 in the second wave to 53 in the third wave. The initial manifestations were cold-like and gastroenteritis-like symptoms, gustatory and olfactory dysfunction being frequently occurring concomitant symptoms. On admission 32 patients had mild disease, 108 moderate I, 54 moderate II, and 6 severe. We divided the 200 patients into second and third wave groups and compared their baseline characteristics. The third wave group was older and had more severe disease. The main treatments implemented were dexamethasone and remdesivir. Three patients (1.5%) required ventilation and 12 (6.0%) died in hospital. Conclusions We investigated 200 patients hospitalized for COVID-19 over a period of 6 months. The patients in the second wave were relatively young and most had mild disease. In contrast, the patients in the third wave were older and had more severe disease and higher in-hospital mortality.
Collapse
Affiliation(s)
- Masamichi Hayashi
- Department of Internal Medicine, Division of Respiratory Medicine, Fujita Health University, School of Medicine, Okazaki, Aichi, Japan,Department of Respiratory Medicine I, Fujita Health University, School of Medicine, Toyoake, Aichi, Japan
| | - Sayako Morikawa
- Department of Internal Medicine, Division of Respiratory Medicine, Fujita Health University, School of Medicine, Okazaki, Aichi, Japan,Department of Respiratory Medicine I, Fujita Health University, School of Medicine, Toyoake, Aichi, Japan
| | - Yusuke Goto
- Department of Internal Medicine, Division of Respiratory Medicine, Fujita Health University, School of Medicine, Okazaki, Aichi, Japan,Department of Respiratory Medicine I, Fujita Health University, School of Medicine, Toyoake, Aichi, Japan
| | - Takazumi Yoshida
- Department of Internal Medicine, Division of Respiratory Medicine, Fujita Health University, School of Medicine, Okazaki, Aichi, Japan,Department of Respiratory Medicine II, Fujita Health University, School of Medicine, Nagoya, Aichi, Japan
| | - Yutaro Kimura
- Department of Internal Medicine, Division of Respiratory Medicine, Fujita Health University, School of Medicine, Okazaki, Aichi, Japan,Department of Respiratory Medicine I, Fujita Health University, School of Medicine, Toyoake, Aichi, Japan
| | - Taku Kawabe
- Department of General Practice, Fujita Health University, School of Medicine, Okazaki, Aichi, Japan
| | - Seiichiro Tsuzuki
- Department of General Internal Medicine and Emergency, Fujita Health University, School of Medicine, Okazaki, Aichi, Japan
| | - Kazuyoshi Imaizumi
- Department of Respiratory Medicine I, Fujita Health University, School of Medicine, Toyoake, Aichi, Japan
| |
Collapse
|
128
|
Dhakal S, Charoen P, Pan-ngum W, Luvira V, Sivakorn C, Hanboonkunupakarn B, Chirapongsathorn S, Poovorawan K. Severity of COVID-19 in Patients with Diarrhoea: A Systematic Review and Meta-Analysis. Trop Med Infect Dis 2023; 8:84. [PMID: 36828500 PMCID: PMC9966065 DOI: 10.3390/tropicalmed8020084] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
COVID-19 patients occasionally present with diarrhoea. Our objective was to estimate the risk of developing the severe disease in COVID-19 patients with and without diarrhoea and to provide a more precise estimate of the prevalence of COVID-19-associated digestive symptoms. A total of 88 studies (n = 67,794) on patients with a COVID-19 infection published between 1 January 2020 and 20 October 2022 were included in this meta-analysis. The overall prevalence of digestive symptoms was 27% (95% confidence interval (CI): 21-34%; I2 = 99%). According to our data, the pooled prevalence of diarrhoea symptoms in the 88 studies analysed was 17% (95% CI: 14-20%; I2 = 98%). The pooled estimate of nausea or vomiting in a total of 60 studies was 12% (95% CI: 8-15%; I2 = 98%). We also analysed 23 studies with eligible individuals (n = 3800) to assess the association between the disease severity and diarrhoea. Individuals who had diarrhoea were more likely to have experienced severe COVID-19 (odds ratio: 1.71; 95% CI: 1.31-2.24; p < 0.0001; I2 = 10%). Gastrointestinal symptoms and diarrhoea are frequently presenting COVID-19 manifestations that physicians should be aware of.
Collapse
Affiliation(s)
- Sunita Dhakal
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Pimphen Charoen
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Wirichada Pan-ngum
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Viravarn Luvira
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Chaisith Sivakorn
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Borimas Hanboonkunupakarn
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Sakkarin Chirapongsathorn
- Department of Gastroenterology and Hepatology, Phramongkutklao Hospital, College of Medicine, Bangkok 10400, Thailand
| | - Kittiyod Poovorawan
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
129
|
Grundeis F, Ansems K, Dahms K, Thieme V, Metzendorf MI, Skoetz N, Benstoem C, Mikolajewska A, Griesel M, Fichtner F, Stegemann M. Remdesivir for the treatment of COVID-19. Cochrane Database Syst Rev 2023; 1:CD014962. [PMID: 36695483 PMCID: PMC9875553 DOI: 10.1002/14651858.cd014962.pub2] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Remdesivir is an antiviral medicine approved for the treatment of mild-to-moderate coronavirus disease 2019 (COVID-19). This led to widespread implementation, although the available evidence remains inconsistent. This update aims to fill current knowledge gaps by identifying, describing, evaluating, and synthesising all evidence from randomised controlled trials (RCTs) on the effects of remdesivir on clinical outcomes in COVID-19. OBJECTIVES To assess the effects of remdesivir and standard care compared to standard care plus/minus placebo on clinical outcomes in patients treated for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. SEARCH METHODS We searched the Cochrane COVID-19 Study Register (which comprises the Cochrane Central Register of Controlled Trials (CENTRAL), PubMed, Embase, ClinicalTrials.gov, World Health Organization (WHO) International Clinical Trials Registry Platform, and medRxiv) as well as Web of Science (Science Citation Index Expanded and Emerging Sources Citation Index) and WHO COVID-19 Global literature on coronavirus disease to identify completed and ongoing studies, without language restrictions. We conducted the searches on 31 May 2022. SELECTION CRITERIA We followed standard Cochrane methodology. We included RCTs evaluating remdesivir and standard care for the treatment of SARS-CoV-2 infection compared to standard care plus/minus placebo irrespective of disease severity, gender, ethnicity, or setting. We excluded studies that evaluated remdesivir for the treatment of other coronavirus diseases. DATA COLLECTION AND ANALYSIS We followed standard Cochrane methodology. To assess risk of bias in included studies, we used the Cochrane RoB 2 tool for RCTs. We rated the certainty of evidence using the GRADE (Grading of Recommendations, Assessment, Development and Evaluation) approach for outcomes that were reported according to our prioritised categories: all-cause mortality, in-hospital mortality, clinical improvement (being alive and ready for discharge up to day 28) or worsening (new need for invasive mechanical ventilation or death up to day 28), quality of life, serious adverse events, and adverse events (any grade). We differentiated between non-hospitalised individuals with asymptomatic SARS-CoV-2 infection or mild COVID-19 and hospitalised individuals with moderate to severe COVID-19. MAIN RESULTS We included nine RCTs with 11,218 participants diagnosed with SARS-CoV-2 infection and a mean age of 53.6 years, of whom 5982 participants were randomised to receive remdesivir. Most participants required low-flow oxygen at baseline. Studies were mainly conducted in high- and upper-middle-income countries. We identified two studies that are awaiting classification and five ongoing studies. Effects of remdesivir in hospitalised individuals with moderate to severe COVID-19 With moderate-certainty evidence, remdesivir probably makes little or no difference to all-cause mortality at up to day 28 (risk ratio (RR) 0.93, 95% confidence interval (CI) 0.81 to 1.06; risk difference (RD) 8 fewer per 1000, 95% CI 21 fewer to 6 more; 4 studies, 7142 participants), day 60 (RR 0.85, 95% CI 0.69 to 1.05; RD 35 fewer per 1000, 95% CI 73 fewer to 12 more; 1 study, 1281 participants), or in-hospital mortality at up to day 150 (RR 0.93, 95% CI 0.84 to 1.03; RD 11 fewer per 1000, 95% CI 25 fewer to 5 more; 1 study, 8275 participants). Remdesivir probably increases the chance of clinical improvement at up to day 28 slightly (RR 1.11, 95% CI 1.06 to 1.17; RD 68 more per 1000, 95% CI 37 more to 105 more; 4 studies, 2514 participants; moderate-certainty evidence). It probably decreases the risk of clinical worsening within 28 days (hazard ratio (HR) 0.67, 95% CI 0.54 to 0.82; RD 135 fewer per 1000, 95% CI 198 fewer to 69 fewer; 2 studies, 1734 participants, moderate-certainty evidence). Remdesivir may make little or no difference to the rate of adverse events of any grade (RR 1.04, 95% CI 0.92 to 1.18; RD 23 more per 1000, 95% CI 46 fewer to 104 more; 4 studies, 2498 participants; low-certainty evidence), or serious adverse events (RR 0.84, 95% CI 0.65 to 1.07; RD 44 fewer per 1000, 95% CI 96 fewer to 19 more; 4 studies, 2498 participants; low-certainty evidence). We considered risk of bias to be low, with some concerns for mortality and clinical course. We had some concerns for safety outcomes because participants who had died did not contribute information. Without adjustment, this leads to an uncertain amount of missing values and the potential for bias due to missing data. Effects of remdesivir in non-hospitalised individuals with mild COVID-19 One of the nine RCTs was conducted in the outpatient setting and included symptomatic people with a risk of progression. No deaths occurred within the 28 days observation period. We are uncertain about clinical improvement due to very low-certainty evidence. Remdesivir probably decreases the risk of clinical worsening (hospitalisation) at up to day 28 (RR 0.28, 95% CI 0.11 to 0.75; RD 46 fewer per 1000, 95% CI 57 fewer to 16 fewer; 562 participants; moderate-certainty evidence). We did not find any data for quality of life. Remdesivir may decrease the rate of serious adverse events at up to 28 days (RR 0.27, 95% CI 0.10 to 0.70; RD 49 fewer per 1000, 95% CI 60 fewer to 20 fewer; 562 participants; low-certainty evidence), but it probably makes little or no difference to the risk of adverse events of any grade (RR 0.91, 95% CI 0.76 to 1.10; RD 42 fewer per 1000, 95% CI 111 fewer to 46 more; 562 participants; moderate-certainty evidence). We considered risk of bias to be low for mortality, clinical improvement, and safety outcomes. We identified a high risk of bias for clinical worsening. AUTHORS' CONCLUSIONS Based on the available evidence up to 31 May 2022, remdesivir probably has little or no effect on all-cause mortality or in-hospital mortality of individuals with moderate to severe COVID-19. The hospitalisation rate was reduced with remdesivir in one study including participants with mild to moderate COVID-19. It may be beneficial in the clinical course for both hospitalised and non-hospitalised patients, but certainty remains limited. The applicability of the evidence to current practice may be limited by the recruitment of participants from mostly unvaccinated populations exposed to early variants of the SARS-CoV-2 virus at the time the studies were undertaken. Future studies should provide additional data on the efficacy and safety of remdesivir for defined core outcomes in COVID-19 research, especially for different population subgroups.
Collapse
Affiliation(s)
- Felicitas Grundeis
- Department of Anaesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig, Germany
| | - Kelly Ansems
- Department of Intensive Care Medicine and Intermediate Care, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Karolina Dahms
- Department of Intensive Care Medicine and Intermediate Care, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Volker Thieme
- Department of Anaesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig, Germany
| | - Maria-Inti Metzendorf
- Institute of General Practice, Medical Faculty of the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Nicole Skoetz
- Cochrane Haematology, Department I of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Carina Benstoem
- Department of Intensive Care Medicine and Intermediate Care, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Agata Mikolajewska
- Centre for Biological Threats and Special Pathogens (ZBS), Strategy and Incident Response, Clinical Management and Infection Control, Robert Koch Institute, Berlin, Germany
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Mirko Griesel
- Department of Anaesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig, Germany
| | - Falk Fichtner
- Department of Anaesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig, Germany
| | - Miriam Stegemann
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
130
|
Parchwani D, Sonagra AD, Dholariya S, Motiani A, Singh R. COVID-19-related liver injury: Focus on genetic and drug-induced perspectives. World J Virol 2023; 12:53-67. [PMID: 36743658 PMCID: PMC9896591 DOI: 10.5501/wjv.v12.i1.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/15/2022] [Accepted: 12/01/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Empirical use of potentially hepatotoxic drugs in the management of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is considered as one of the major etiopathogenetic factors for liver injury. Recent evidence has shown that an underlying genetic factor may also occur. Hence, it is important to understand the host genetics and iatrogenic-based mechanisms for liver dysfunction to make timely remedial measures.
AIM To investigate drug-induced and genetic perspectives for the development of coronavirus disease 2019 (COVID-19)-related liver injury.
METHODS Reference Citation Analysis, PubMed, Google Scholar and China National Knowledge Infrastructure were searched by employing the relevant MeSH keywords and pertaining data of the duration, site and type of study, sample size with any subgroups and drug-induced liver injury outcome. Genetic aspects were extracted from the most current pertinent publications.
RESULTS In all studies, the hepatic specific aminotransferase and other biochemical indices were more than their prescribed upper normal limit in COVID-19 patients and were found to be significantly related with the gravity of disease, hospital stay, number of COVID-19 treatment drugs and worse clinical outcomes. In addition, membrane bound O-acyltransferase domain containing 7 rs641738, rs11385942 G>GA at chromosome 3 gene cluster and rs657152 C>A at ABO blood locus was significantly associated with severity of livery injury in admitted SARS-CoV-2 patients.
CONCLUSION Hepatic dysfunction in SARS-CoV-2 infection could be the result of individual drugs or due to drug-drug interactions and may be in a subset of patients with a genetic propensity. Thus, serial estimation of hepatic indices in hospitalized SARS-CoV-2 patients should be done to make timely corrective actions for iatrogenic causes to avoid clinical deterioration. Additional molecular and translational research is warranted in this regard.
Collapse
Affiliation(s)
- Deepak Parchwani
- Department of Biochemistry, All India Institute of Medical Sciences, Rajkot 360001, India
| | - Amit D Sonagra
- Department of Biochemistry, All India Institute of Medical Sciences, Rajkot 360001, India
| | - Sagar Dholariya
- Department of Biochemistry, All India Institute of Medical Sciences, Rajkot 360001, India
| | - Anita Motiani
- Department of Biochemistry, All India Institute of Medical Sciences, Rajkot 360001, India
| | - Ragini Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Rajkot 360001, India
| |
Collapse
|
131
|
Mouse models susceptible to HCoV-229E and HCoV-NL63 and cross protection from challenge with SARS-CoV-2. Proc Natl Acad Sci U S A 2023; 120:e2202820120. [PMID: 36652473 PMCID: PMC9942917 DOI: 10.1073/pnas.2202820120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Human coronavirus 229E (HCoV-229E) and NL63 (HCoV-NL63) are endemic causes of upper respiratory infections such as the "common cold" but may occasionally cause severe lower respiratory tract disease in the elderly and immunocompromised patients. There are no approved antiviral drugs or vaccines for these common cold coronaviruses (CCCoV). The recent emergence of COVID-19 and the possible cross-reactive antibody and T cell responses between these CCCoV and SARS-CoV-2 emphasize the need to develop experimental animal models for CCCoV. Mice are an ideal experimental animal model for such studies, but are resistant to HCoV-229E and HCoV-NL63 infections. Here, we generated 229E and NL63 mouse models by exogenous delivery of their receptors, human hAPN and hACE2 using replication-deficient adenoviruses (Ad5-hAPN and Ad5-hACE2), respectively. Ad5-hAPN- and Ad5-hACE2-sensitized IFNAR-/- and STAT1-/- mice developed pneumonia characterized by inflammatory cell infiltration with virus clearance occurring 7 d post infection. Ad5-hAPN- and Ad5-hACE2-sensitized mice generated virus-specific T cells and neutralizing antibodies after 229E or NL63 infection, respectively. Remdesivir and a vaccine candidate targeting spike protein of 229E and NL63 accelerated viral clearance of virus in these mice. 229E- and NL63-infected mice were partially protected from SARS-CoV-2 infection, likely mediated by cross-reactive T cell responses. Ad5-hAPN- and Ad5-hACE2-transduced mice are useful for studying pathogenesis and immune responses induced by HCoV-229E and HCoV-NL63 infections and for validation of broadly protective vaccines, antibodies, and therapeutics against human respiratory coronaviruses including SARS-CoV-2.
Collapse
|
132
|
Donniacuo M, De Angelis A, Rafaniello C, Cianflone E, Paolisso P, Torella D, Sibilio G, Paolisso G, Castaldo G, Urbanek K, Rossi F, Berrino L, Cappetta D. COVID-19 and atrial fibrillation: Intercepting lines. Front Cardiovasc Med 2023; 10:1093053. [PMID: 36755799 PMCID: PMC9899905 DOI: 10.3389/fcvm.2023.1093053] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
Almost 20% of COVID-19 patients have a history of atrial fibrillation (AF), but also a new-onset AF represents a frequent complication in COVID-19. Clinical evidence demonstrates that COVID-19, by promoting the evolution of a prothrombotic state, increases the susceptibility to arrhythmic events during the infective stages and presumably during post-recovery. AF itself is the most frequent form of arrhythmia and is associated with substantial morbidity and mortality. One of the molecular factors involved in COVID-19-related AF episodes is the angiotensin-converting enzyme (ACE) 2 availability. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses ACE2 to enter and infect multiple cells. Atrial ACE2 internalization after binding to SARS-CoV-2 results in a raise of angiotensin (Ang) II, and in a suppression of cardioprotective Ang(1-7) formation, and thereby promoting cardiac hypertrophy, fibrosis and oxidative stress. Furthermore, several pharmacological agents used in COVID-19 patients may have a higher risk of inducing electrophysiological changes and cardiac dysfunction. Azithromycin, lopinavir/ritonavir, ibrutinib, and remdesivir, used in the treatment of COVID-19, may predispose to an increased risk of cardiac arrhythmia. In this review, putative mechanisms involved in COVID-19-related AF episodes and the cardiovascular safety profile of drugs used for the treatment of COVID-19 are summarized.
Collapse
Affiliation(s)
- Maria Donniacuo
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Concetta Rafaniello
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy
| | - Pasquale Paolisso
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | | | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giuseppe Castaldo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| | - Konrad Urbanek
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Donato Cappetta
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| |
Collapse
|
133
|
Ali FEM, Abd El-Aziz MK, Ali MM, Ghogar OM, Bakr AG. COVID-19 and hepatic injury: cellular and molecular mechanisms in diverse liver cells. World J Gastroenterol 2023; 29:425-449. [PMID: 36688024 PMCID: PMC9850933 DOI: 10.3748/wjg.v29.i3.425] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/15/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) represents a global health and economic challenge. Hepatic injuries have been approved to be associated with severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection. The viral tropism pattern of SARS-CoV-2 can induce hepatic injuries either by itself or by worsening the conditions of patients with hepatic diseases. Besides, other factors have been reported to play a crucial role in the pathological forms of hepatic injuries induced by SARS-CoV-2, including cytokine storm, hypoxia, endothelial cells, and even some treatments for COVID-19. On the other hand, several groups of people could be at risk of hepatic COVID-19 complications, such as pregnant women and neonates. The present review outlines and discusses the interplay between SARS-CoV-2 infection and hepatic injury, hepatic illness comorbidity, and risk factors. Besides, it is focused on the vaccination process and the role of developed vaccines in preventing hepatic injuries due to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | | | - Mahmoud M Ali
- Department of Pharmacology, Al-Azhar University, Assiut 71524, Egypt
| | - Osama M Ghogar
- Department of Biochemistry Faculty of Pharmacy, Badr University in Assiut, Egypt
| | - Adel G Bakr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| |
Collapse
|
134
|
Hajimoradi M, Sharif Kashani B, Dastan F, Aghdasi S, Abedini A, Naghashzadeh F, Mohamadifar A, Keshmiri MS, Noorali S, Lookzadeh S, Alizadeh N, Siri MA, Tavasolpanahi M, Abdolmohammadi Y, Shafaghi M, Rouhani ZS, Shafaghi S. Remdesivir associated sinus bradycardia in patients with COVID-19: A prospective longitudinal study. Front Pharmacol 2023; 13:1107198. [PMID: 36733376 PMCID: PMC9888491 DOI: 10.3389/fphar.2022.1107198] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023] Open
Abstract
Background: Remdesivir is effective against SARS-Cov-2 with little evidence of its adverse effect on the cardiac system. The aim of the present study is investigating the incidence of bradycardia in COVID-19 patients treated with Remdesivir. Methods: This prospective longitudinal study was conducted in a tertiary center on COVID-19 patients for Remdesivir therapy. The objectives were to investigate the incidence of sinus bradycardia, and also the association between their demographics, underlying diseases, and the disease severity with developing bradycardia in COVID-19 patients treated with Remdesivir. Results: Of 177 patients, 44% were male. The mean (±standard deviation) age of patients was 49.79 ± 15.16 years old. Also, 33% were hospitalized due to more severe symptoms. Oxygen support was required for all hospitalized subjects. A total of 40% of the patients had comorbidities, with the most common comorbidity being hypertension. The overall incidence of bradycardia (heart rate<60 bpm) in patients receiving Remdesivir was 27%, of whom 70% had extreme bradycardia (heart rate <50 bpm). There was also a statistically significant reduction in heart rate after five doses of Remdesivir compared to the baseline heart rates. In the multivariable model, none of the covariates including age above 60 years, female sex, CRP>50 mg/L, O2 saturation<90%, underlying cardiovascular disease, hypertension and diabetes mellitus, and beta-blockers were associated with Remdesivir-induced bradycardia. No association was found between the COVID-19 severity indicators and bradycardia. Conclusion: As sinus bradycardia is a prevalent adverse cardiac effect of Remdesivir, it is recommended that all COVID-19 patients receiving Remdesivir, be evaluated for heart rate based on examination; and in the case of bradyarrhythmia, cardiac monitoring should be performed during administration to prevent adverse drug reactions.
Collapse
Affiliation(s)
- Maryam Hajimoradi
- Lung Transplantation Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Sharif Kashani
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzaneh Dastan
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran,Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Aghdasi
- Lung Transplantation Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefeh Abedini
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farah Naghashzadeh
- Lung Transplantation Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezoo Mohamadifar
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Sadegh Keshmiri
- Lung Transplantation Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sima Noorali
- Lung Transplantation Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Lookzadeh
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloufar Alizadeh
- Department of Biostatistics, National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Siri
- Lung Transplantation Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadali Tavasolpanahi
- Lung Transplantation Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yazdan Abdolmohammadi
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Shafaghi
- Strategic Planning and Executive Office Manager of International Federation of Inventors' Associations-IFIA, Geneva, Switzerland
| | - Zahra Sadat Rouhani
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shadi Shafaghi
- Lung Transplantation Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran,*Correspondence: Shadi Shafaghi,
| |
Collapse
|
135
|
Al-Rawi TSS, Al-Ani RM. Liver dysfunction-related COVID-19: A narrative review. World J Meta-Anal 2023; 11:5-17. [DOI: 10.13105/wjma.v11.i1.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/25/2022] [Accepted: 12/14/2022] [Indexed: 01/11/2023] Open
Abstract
The coronavirus 2019 disease (COVID-19) is caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2. This disease was designated by the World Health Organization as a pandemic on March 11, 2020, which is not seen before. There are no classical features among the cases of the disease owing to the involvement of nearly all body tissues by the virus. Hepatic involvement is one of the characteristics of the COVID-19 course. There are six possible mechanisms of such involvement: Direct virus injury, drug-induced effect, inflammatory cytokine storm, hypoxia-ischemic destruction, abnormalities in liver function tests, and pre-existing chronic liver diseases. Liver abnormalities are seen commonly in the severe or critical stage of COVID-19. Therefore, these abnormalities determine the COVID-19 severity and carry a high rate of morbidity and mortality. The elderly and patients with comorbidities like diabetes mellitus and hypertension are more vulnerable to liver involvement. Another issue that needs to be disclosed is the liver manifestations following the COVID-19 vaccination, such as autoimmune hepatitis. Of note, complete vaccination with third and fourth booster doses is necessary for patients with previous chronic liver diseases or those who have been subjected to liver transplantation. This review aims to explore the various aspects of liver dysfunction during the COVID-19 course regarding the epidemiological features, predisposing factors, pathophysiological mechanisms, hepatic manifestations due to COVID-19 or following vaccination, role of liver function tests in the assessment of COVID-19 severity, adverse effects of the therapeutic agents for the disease, and prognosis.
Collapse
Affiliation(s)
- Taghreed S Saeed Al-Rawi
- Department of Biochemistry, University of Anbar College of Medicine, Ramadi City 31001, Anbar, Iraq
| | - Raid M Al-Ani
- Department of Surgery/Otolaryngology, University of Anbar College of Medicine, Ramadi City 31001, Anbar, Iraq
| |
Collapse
|
136
|
Fatima R, Sharma M, Prasher P, Gupta G, Singh K, Gulati M, Dua K. Elucidating the antiviral potential of polysaccharides. EXCLI JOURNAL 2023; 22:108-111. [PMID: 36814852 PMCID: PMC9939763 DOI: 10.17179/excli2022-5621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/19/2022] [Indexed: 02/24/2023]
Affiliation(s)
- Rabab Fatima
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun 248007, India
| | - Mousmee Sharma
- Department of Chemistry, Uttaranchal University, Dehradun 248007, India
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun 248007, India,*To whom correspondence should be addressed: Parteek Prasher, Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun 248007, India, E-mail:
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India,Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, 248007, India,Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India,Faculty of Health, Australian Research Center in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India,Faculty of Health, Australian Research Center in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Center in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo NSW, 2007, Australia
| |
Collapse
|
137
|
Sim DW, Myoung E, Hoyoung S. Successful Desensitization to Remdesivir Hypersensitivity in a Patient Undergoing Treatment for COVID-19. Ann Pharmacother 2023; 57:110-112. [PMID: 35582903 PMCID: PMC10076168 DOI: 10.1177/10600280221096883] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Da Woon Sim
- Department of Allergy and Clinical Immunology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, South Korea
| | - Eun Myoung
- Department of Allergy and Clinical Immunology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, South Korea
| | - Son Hoyoung
- Department of Allergy and Clinical Immunology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, South Korea
| |
Collapse
|
138
|
Emrani J, Hefner EN. Socio-demographic Heterogeneity in Prevalence of SARS-COV-2 Infection and Death Rate: Relevance to Black College Student Knowledge of COVID-19 and SARS-COV-2. J Racial Ethn Health Disparities 2023; 10:14-31. [PMID: 35119679 PMCID: PMC8815385 DOI: 10.1007/s40615-021-01193-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 02/03/2023]
Abstract
Black and Brown communities are affected disproportionately by COVID-19. In an attempt to learn if young Black college students unknowingly contribute to the spread of the COVID-19 in their communities, using surveys, this pilot study gauges the general safety knowledge and basic scientific knowledge of Black college students about SARS-COV-2 virus and COVID-19 at an HBCU. We also investigated whether students enrolled in chemistry courses designed for STEM (Science, Technology, and Engineering Majors) majors displayed increased knowledge of SARS-COV-2 and COVID-19 in comparison to their non-STEM major peers. Two sets of surveys with multiple choice questions, one with 25 and the other with 34 questions, were designed to assess general safety knowledge and basic scientific knowledge of the students about COVID-19 and the SARS-COV-2 virus. Survey questions were administered through Blackboard learning management system to one hundred eighty-seven (187) students in the summer of 2020 to two freshman non-science majors and in the fall of 2020 to one freshman non-science-major class, two freshmen STEM-major classes, and one senior STEM-major class. All students self-registered in the 6 chemistry classes at North Carolina A&T State University at random with no predetermined criteria. Results of the study show that regardless of their year of study, majority (> 90%) of the students possess basic scientific knowledge and are aware of the safety precautions concerning SARS-COV-2 virus and COVID-19. Majority of non-science major freshmen answered the basic safety questions correctly but were not able to choose the correct answers for the more specific scientific questions concerning SARS-COV-2 and COVID-19. Surprisingly, there was no significant difference in basic scientific knowledge regarding SARS-COV-2 and COVID-19 between STEM and non-STEM student populations, and first year STEM students were just as knowledgeable as senior STEM students. Based on these data, we speculate that students surveyed here have an acceptable basic understanding of how SARS-CoV-2 is transmitted, and therefore, they may not be a source of COVID-19 transmission to Black and Brown communities as this study confirms they are receiving accurate information about SARS-COV-2 and COVID-19. Possession of crucial timely and accurate knowledge about the health and safety is important in fighting racism and to gain equity within the society at large. By sharing the acquired knowledge, students can serve as positive role models for others in the community thus encouraging them to pursue science. Education brings equity, sharing the acquired knowledge encourages others to continue their education and succeed in obtaining higher degrees and better jobs as remedies for social inequality. Spread of accurate knowledge on various aspects of COVID-19 will also help remove fears of vaccination and hesitation towards visits to health clinics to resolve health issues. Relying on the results of this pilot study, we plan to explore these important factors further in our next study.
Collapse
Affiliation(s)
- Jahangir Emrani
- Department of Chemistry, North Carolina A&T State University, Greensboro, NC 27410 USA
| | - Elia Nichelle Hefner
- Department of Chemistry, North Carolina A&T State University, Greensboro, NC 27410 USA
| |
Collapse
|
139
|
Senghor AS, Mbaye MS, Diop R, Tosam MJ, Kabou P, Niang A, Okoye G. Towards a transactional medicine approach to combating global emerging pathogens: the case of COVID-19. Glob Public Health 2023; 18:2272710. [PMID: 37917803 DOI: 10.1080/17441692.2023.2272710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 10/15/2023] [Indexed: 11/04/2023]
Abstract
When the COVID-19 pandemic struck and China reported the first case to the World Health Organization in December 2019, there was no evidence-based treatment to combat it. With the catastrophic situation that followed, materialised by a considerable number of deaths, researchers, doctors, traditional healers, and governments of all nations committed themselves to find therapeutic solutions, including preventive and curative. There are effective treatments offered both by modern medicine and traditional medicine for COVID-19 today. However, other therapeutic proposals have not been approved due to the lack of effectiveness and scientific rigour during their development process. Proponents of modern medicine prefer biomedical therapies while in some countries, traditional treatments are used regularly because of their availability, affordability and satisfaction they bring to the population. In this paper, we propose a transactional medicine approach where the interaction between traditional and modern medicine produces a change. With this approach, the promoters of traditional medicine and those of modern medicine will be able to acquire knowledge through the experience produced by their encounters. Transactional medicine aims to be a model for decolonising medicine and recognising the value of both traditional and modern medicine in the fight against COVID-19 and other global emerging pathogens.
Collapse
Affiliation(s)
- Abdou Simon Senghor
- Department of Practice, Sciences, and Health Outcomes Research (P-SHOR), University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Mame Salah Mbaye
- Department sociétés, territoires et développement, chaire de recherche du Canada en Innovation sociale et développement du territoire, Université du Québec à Rimouski, Rimouski, Canada
| | - Rougui Diop
- Department of Sociology, Université de Montréal, Montreal, Canada
| | - Mbih Jerome Tosam
- Department of Philosophy, The University of Bamenda, Bamenda, Cameroon
| | - Patrick Kabou
- Department of Law, University of Toulouse 1 Capitole, Toulouse, France
| | - Abdoulaye Niang
- Department of Sociology, Gaston Berger University, Saint-Louis, Senegal
| | - Godwin Okoye
- Department of Practice, Sciences, and Health Outcomes Research (P-SHOR), University of Maryland School of Pharmacy, Baltimore, MD, USA
| |
Collapse
|
140
|
Chen Y, Guo Y, Li S, Xu J, Ning W, Zhao C, Wang J, Qu Y, Zhang M, Zhou W, Cui Q, Zhang H. Remdesivir inhibits the progression of glioblastoma by enhancing endoplasmic reticulum stress. Biomed Pharmacother 2023; 157:114037. [PMID: 36427388 DOI: 10.1016/j.biopha.2022.114037] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/14/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive primary malignant brain tumors. The major challenge is the lack of effective therapeutic drugs due to the blood-brain barrier (BBB) and tumor heterogeneity. Remdesivir (RDV), a new member of the nucleotide analog family, has previously been shown to have excellent antiviral effects and BBB penetration, and was predicted here to have anti-GBM effects. In vitro experiments, RDV significantly inhibited the growth of GBM cells, with IC50 values markedly lower than those of normal cell lines or the same cell lines treated with temozolomide. Moreover, in multiple mouse models, RDV not only distinctly inhibited the progression and improved the prognosis of GBM but also exhibited a promising biosafety profile, as manifested by the lack of significant body weight loss, liver or kidney dysfunction or organ structural damage after administration. Furthermore, we investigated the anti-GBM mechanism by RNA-seq and identified that RDV might induce apoptosis of GBM cells by enhancing endoplasmic reticulum (ER) stress and activating the PERK-mediated unfolded protein response. In conclusion, our results indicated that RDV might serve as a novel agent for GBM treatment by increasing ER stress and inducing apoptosis in GBM cells.
Collapse
Affiliation(s)
- Yujia Chen
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Yuduo Guo
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Shenglun Li
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Jiacheng Xu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Weihai Ning
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Chao Zhao
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Jun Wang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Yanming Qu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Mingshan Zhang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Wanlu Zhou
- Co., Ltd of JeaMoon Technology, 6Rd Middle Zuojiazhuang, Beijing 100028, China
| | - Qinghua Cui
- Co., Ltd of JeaMoon Technology, 6Rd Middle Zuojiazhuang, Beijing 100028, China.
| | - Hongwei Zhang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China.
| |
Collapse
|
141
|
Motallebnezhad M, Omraninava M, Esmaeili Gouvarchin Ghaleh H, Jonaidi-Jafari N, Hazrati A, Malekpour K, Bagheri Y, Izadi M, Ahmadi M. Potential therapeutic applications of extracellular vesicles in the immunopathogenesis of COVID-19. Pathol Res Pract 2023; 241:154280. [PMID: 36580795 PMCID: PMC9759301 DOI: 10.1016/j.prp.2022.154280] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the cause of coronavirus disease 2019 (COVID-19) which has emerged as a global health crisis. Recently, more than 50 different types of potential COVID-19 vaccines have been developed to elicit a strong immune response against SARS-CoV-2. However, genetic mutations give rise to the new variants of SARS-CoV-2 which is highly associated with the reduced effectiveness of COVID-19 vaccines. There is still no efficient antiviral agent to specifically target the SARS-CoV-2 infection and treatment of COVID-19. Therefore, understanding the molecular mechanisms underlying the pathogenesis of SARS-CoV-2 may contribute to discovering a novel potential therapeutic approach to the management of COVID-19. Recently, extracellular vesicle (EV)-based therapeutic strategies have received great attention on account of their potential benefits in the administration of viral diseases. EVs are extracellular vesicles containing specific biomolecules which play an important role in cell-to-cell communications. It has been revealed that EVs are involved in the pathogenesis of different inflammatory diseases such as cancer and viral infections. EVs are released from virus-infected cells which could mediate the interaction of infected and uninfected host cells. Hence, these extracellular nanoparticles have been considered a novel approach for drug delivery to mediate the treatment of a wide range of diseases including, COVID-19. EVs are considered a cell-free therapeutic strategy that could ameliorate the cytokine storm and its complications in COVID-19 patients. Furthermore, EV-based cargo delivery such as immunomodulatory agents in combination with antiviral drugs may have therapeutic benefits in patients with SARS-CoV-2 infection. In this review, we will highlight the potential of EVs as a therapeutic candidate in the diagnosis and treatment of COVID-19. Also, we will discuss the future perspectives regarding the beneficial effects of Evs in the development of COVID-19 vaccines.
Collapse
Affiliation(s)
- Morteza Motallebnezhad
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Melodi Omraninava
- Department of Infectious Disease, Faculty of Medical Sciences, Sari Branch, Islamic Azad University, Sari, Iran
| | | | - Nematollah Jonaidi-Jafari
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Yasser Bagheri
- Immunology Department, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Morteza Izadi
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
142
|
O'Hayer PJ, Vasbinder A, Anderson E, Catalan T, Bitterman B, Khaleel I, Erne G, Tekumulla A, Tilley C, Presswalla F, Nelapudi N, Chen J, Tripathi M, Rochlen M, Rambo L, Sulaiman N, Blakely P, Huang Y, Zhao L, Pop-Busui R, Hayek SS. Evolution of Care and Outcomes Across Surges in Hospitalized Patients with Coronavirus Disease 2019. Am J Med 2023; 136:63-71.e1. [PMID: 36150511 PMCID: PMC9489963 DOI: 10.1016/j.amjmed.2022.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) pandemic has unfolded in distinct surges. Understanding how surges differ may reveal important insights into the evolution of the pandemic and improve patient care. METHODS We leveraged the Michigan Medicine COVID-19 Cohort, a prospective observational study at an academic tertiary medical center that systematically enrolled 2309 consecutive patients hospitalized for COVID-19, comprising 5 distinct surges. RESULTS As the pandemic evolved, patients hospitalized for COVID-19 tended to have a lower burden of comorbidities and a lower inflammatory burden as measured by admission levels of C-reactive protein, ferritin, lactate dehydrogenase, and D-dimer. Use of hydroxychloroquine and azithromycin decreased substantially after Surge 1, while use of corticosteroids and remdesivir markedly increased (P < .001 for all). In-hospital mortality significantly decreased from 18.3% in Surge 1 to 5.3% in Surge 5 (P < .001). The need for mechanical ventilation significantly decreased from 42.5% in Surge 1 to 7.0% in Surge 5 (P < .001), while the need for renal replacement therapy decreased from 14.4% in Surge 1 to 2.3% in Surge 5 (P < .001). Differences in patient characteristics, treatments, and inflammatory markers accounted only partially for the differences in outcomes between surges. CONCLUSIONS The COVID-19 pandemic has evolved significantly with respect to hospitalized patient populations and therapeutic approaches, and clinical outcomes have substantially improved. Hospitalization after the first surge was independently associated with improved outcomes, even after controlling for relevant clinical covariates.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Grace Erne
- Department of Medicine, Division of Cardiology
| | | | | | | | | | - Jiazi Chen
- Department of Medicine, Division of Cardiology
| | | | | | - Loni Rambo
- Department of Medicine, Division of Cardiology
| | | | | | - Yiyuan Huang
- Department of Biostatistics, School of Public Health
| | - Lili Zhao
- Department of Biostatistics, School of Public Health
| | - Rodica Pop-Busui
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor
| | | |
Collapse
|
143
|
Latif WB, Ahammad I, Ahmed E, Hasan MM, Jalil MA, Azad MM. Influence of COVID-19 and employees’ response to deviations on employee enactment. CORPORATE GOVERNANCE AND ORGANIZATIONAL BEHAVIOR REVIEW 2023; 7:118-127. [DOI: 10.22495/cgobrv7i2p10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Developing countries’ economies are in shambles as a result of the coronavirus. Developing countries like Bangladesh began opening its business sector in May 2020 in order to preserve the economy. To mitigate the effect of coronavirus, the government has implemented “new normal” guidelines for businesses. The primary goals of this research are to determine how the COVID-19 pandemic has influenced employee performance and to determine the workers’ perspectives regarding the changes that have been made to their everyday lives. To complete this research, employee performance was assessed using the employee response to change (ERC) method. Employees from many sectors have been studied. For this research, 300 people from various sectors were surveyed online at random. The study was quantitative as well as exploratory. It was based solely on original data. The research used a non-probability sampling approach to collect data. The survey questionnaire was sent to those who replied via Google Forms. Results and visual representations are found using SPSS software and Microsoft Excel. COVID-19 and the reaction to employee changes have a considerable detrimental influence on employee performance, according to all of the study’s findings. The employee’s focus, communication, and attention to work are all adversely affected by these “new normal” alterations
Collapse
|
144
|
Johnson DM, Brasel T, Massey S, Garron T, Grimes M, Smith J, Torres M, Wallace S, Villasante-Tezanos A, Beasley DW, Comer JE. Evaluation of molnupiravir (EIDD-2801) efficacy against SARS-CoV-2 in the rhesus macaque model. Antiviral Res 2023; 209:105492. [PMID: 36535309 PMCID: PMC9756747 DOI: 10.1016/j.antiviral.2022.105492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Molnupiravir (EIDD-2801) is a prodrug of a ribonucleoside analogue that is currently being used under a US FDA emergency use authorization for the treatment of mild to moderate COVID-19. We evaluated molnupiravir for efficacy as an oral treatment in the rhesus macaque model of SARS-CoV-2 infection. Twenty non-human primates (NHPs) were challenged with SARS-CoV-2 and treated with 75 mg/kg (n = 8) or 250 mg/kg (n = 8) of molnupiravir twice daily by oral gavage for 7 days. The NHPs were observed for 14 days post-challenge and monitored for clinical signs of disease. After challenge, all groups showed a trend toward increased respiration rates. Treatment with molnupiravir significantly reduced viral RNA levels in bronchoalveolar lavage (BAL) samples at Days 7 and 10. Considering the mild to moderate nature of SARS-CoV-2 infection in the rhesus macaque model, this study highlights the importance of monitoring the viral load in the lung as an indicator of pharmaceutical efficacy for COVID-19 treatments. Additionally, this study provides evidence of the efficacy of molnupiravir which supplements the current ongoing clinical trials of this drug.
Collapse
Affiliation(s)
- Dylan M Johnson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Trevor Brasel
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; Office of Regulated Nonclinical Studies, University of Texas Medical Branch, Galveston, TX, USA
| | - Shane Massey
- Office of Regulated Nonclinical Studies, University of Texas Medical Branch, Galveston, TX, USA
| | - Tania Garron
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Michael Grimes
- Office of Regulated Nonclinical Studies, University of Texas Medical Branch, Galveston, TX, USA
| | - Jeanon Smith
- Office of Regulated Nonclinical Studies, University of Texas Medical Branch, Galveston, TX, USA
| | - Maricela Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | - David W Beasley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; Office of Regulated Nonclinical Studies, University of Texas Medical Branch, Galveston, TX, USA
| | - Jason E Comer
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; Office of Regulated Nonclinical Studies, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
145
|
Jha RK, Khan RJ, Parthiban A, Singh E, Jain M, Amera GM, Singh RP, Ramachandran P, Ramachandran R, Sachithanandam V, Muthukumaran J, Singh AK. Identifying the natural compound Catechin from tropical mangrove plants as a potential lead candidate against 3CL pro from SARS-CoV-2: An integrated in silico approach. J Biomol Struct Dyn 2022; 40:13392-13411. [PMID: 34644249 DOI: 10.1080/07391102.2021.1988710] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2, a member of beta coronaviruses, is a single-stranded, positive-sense RNA virus responsible for the COVID-19 pandemic. With global fatalities of the pandemic exceeding 4.57 million, it becomes crucial to identify effective therapeutics against the virus. A protease, 3CLpro, is responsible for the proteolysis of viral polypeptides into functional proteins, which is essential for viral pathogenesis. This indispensable activity of 3CLpro makes it an attractive target for inhibition studies. The current study aimed to identify potential lead molecules against 3CLpro of SARS-CoV-2 using a manually curated in-house library of antiviral compounds from mangrove plants. This study employed the structure-based virtual screening technique to evaluate an in-house library of antiviral compounds against 3CLpro of SARS-CoV-2. The library was comprised of thirty-three experimentally proven antiviral molecules extracted from different species of tropical mangrove plants. The molecules in the library were virtually screened using AutoDock Vina, and subsequently, the top five promising 3CLpro-ligand complexes along with 3CLpro-N3 (control molecule) complex were subjected to MD simulations to comprehend their dynamic behaviour and structural stabilities. Finally, the MM/PBSA approach was used to calculate the binding free energies of 3CLpro complexes. Among all the studied compounds, Catechin achieved the most significant binding free energy (-40.3 ± 3.1 kcal/mol), and was closest to the control molecule (-42.8 ± 5.1 kcal/mol), and its complex with 3CLpro exhibited the highest structural stability. Through extensive computational investigations, we propose Catechin as a potential therapeutic agent against SARS-CoV-2. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rajat Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P., India
| | - Rameez Jabeer Khan
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P., India
| | - A Parthiban
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Government of India, Anna University Campus, Chennai, Tamil Nadu, India.,Department of Chemistry, School of Arts and Sciences, Vinayaka Mission's Research Foundation, AVIT campus, Chennai, India
| | - Ekampreet Singh
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P., India
| | - Monika Jain
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P., India
| | - Gizachew Muluneh Amera
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P., India.,Department of Biotechnology, College of Natural and Computational Sciences, Wollo University, Dessie, Ethiopia
| | - Rashmi Prabha Singh
- Department of Biotechnology, IILM College of Engineering & Technology, Greater Noida, U.P, India
| | - Purvaja Ramachandran
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Government of India, Anna University Campus, Chennai, Tamil Nadu, India
| | - Ramesh Ramachandran
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Government of India, Anna University Campus, Chennai, Tamil Nadu, India
| | - V Sachithanandam
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Government of India, Anna University Campus, Chennai, Tamil Nadu, India
| | - Jayaraman Muthukumaran
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P., India
| | - Amit Kumar Singh
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P., India
| |
Collapse
|
146
|
Maev IV, Osadchuk MA. Liver disease during the pandemic of COVID-19 infection: prediction of the course and tactics of management: A review. TERAPEVT ARKH 2022; 94:1326-1332. [PMID: 37167173 DOI: 10.26442/00403660.2022.11.201934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 12/26/2022] [Indexed: 12/27/2022]
Abstract
The hepatic consequences of SARS-CoV-2 infection are now recognized as an important component of CoronaVIrus Disease 2019 (COVID-19). This aspect is most clinically relevant in patients with pre-existing chronic liver disease (CKD), who are at extremely high risk of severe COVID-19 and death. Risk factors for severe CKD, especially in people with liver cirrhosis and non-alcoholic fatty liver disease, are the direct and indirect cytotoxic effects of coronavirus against the background of systemic inflammation, blood clotting disorders and immune dysfunction. The severe negative impact of the pandemic in the presence of CKD and the difficulties of patient relationships contribute to the progressive increase in the global burden of liver disease on the health system.
Collapse
|
147
|
Oliver JC, Silva EN, Soares LM, Scodeler GC, Santos ADS, Corsetti PP, Prudêncio CR, de Almeida LA. Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus. Ther Adv Vaccines Immunother 2022; 10:25151355221144845. [PMID: 36578829 PMCID: PMC9791004 DOI: 10.1177/25151355221144845] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/18/2022] [Indexed: 12/25/2022] Open
Abstract
According to the World Health Organization (WHO), in the second half of 2022, there are about 606 million confirmed cases of COVID-19 and almost 6,500,000 deaths around the world. A pandemic was declared by the WHO in March 2020 when the new coronavirus spread around the world. The short time between the first cases in Wuhan and the declaration of a pandemic initiated the search for ways to stop the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or to attempt to cure the disease COVID-19. More than ever, research groups are developing vaccines, drugs, and immunobiological compounds, and they are even trying to repurpose drugs in an increasing number of clinical trials. There are great expectations regarding the vaccine's effectiveness for the prevention of COVID-19. However, producing sufficient doses of vaccines for the entire population and SARS-CoV-2 variants are challenges for pharmaceutical industries. On the contrary, efforts have been made to create different vaccines with different approaches so that they can be used by the entire population. Here, we summarize about 8162 clinical trials, showing a greater number of drug clinical trials in Europe and the United States and less clinical trials in low-income countries. Promising results about the use of new drugs and drug repositioning, monoclonal antibodies, convalescent plasma, and mesenchymal stem cells to control viral infection/replication or the hyper-inflammatory response to the new coronavirus bring hope to treat the disease.
Collapse
Affiliation(s)
| | | | | | | | - Ana de Souza Santos
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas, Brazil
| | - Patrícia Paiva Corsetti
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas, Brazil
| | - Carlos Roberto Prudêncio
- Laboratory of Immunotechnology , Center of Immunology, Instituto Adolfo Lutz Institute, São Paulo, Brazil
| | | |
Collapse
|
148
|
Hamidian M, Ansari R, Zarshenas MM, Foroughinia F. Cardiovascular implications of the COVID-19: Management of complications and drug safety concerns. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2022; 27:92. [PMID: 36685029 PMCID: PMC9854922 DOI: 10.4103/jrms.jrms_895_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 05/30/2022] [Accepted: 06/13/2022] [Indexed: 12/24/2022]
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2, has rapidly spread worldwide and has been infected more than 219 million individuals with 4.55 million deaths worldwide as of September 2021, causing a pandemic. Preexisting cardiovascular (CV) comorbidities such as hypertension, diabetes, and coronary artery disease seem to be associated with greater severity of infection, worse prognosis, and higher mortality. Moreover, COVID-19 can contribute to CV complications, including acute myocardial injury, arrhythmia, acute coronary syndrome, and venous thromboembolism, emphasizing the importance of precocious detection and implementation of optimal therapeutic strategies. This review provides an overview of evidence-based data of CV complications of COVID-19, focusing on their management strategies, as well as potential cardiac adverse effects and drug interactions, due to off-label and investigational drugs used for the treatment of COVID-19.
Collapse
Affiliation(s)
- Maliheh Hamidian
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ramin Ansari
- Department of Clinical Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Zarshenas
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Foroughinia
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
149
|
Polyzogopoulou E, Amoiridou P, Abraham TP, Ventoulis I. Acute liver injury in COVID-19 patients hospitalized in the intensive care unit: Narrative review. World J Gastroenterol 2022; 28:6662-6688. [PMID: 36620339 PMCID: PMC9813941 DOI: 10.3748/wjg.v28.i47.6662] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/14/2022] [Accepted: 12/05/2022] [Indexed: 12/19/2022] Open
Abstract
In recent years, humanity has been confronted with a global pandemic due to coronavirus disease 2019 (COVID-19), which has caused an unprecedented health and economic crisis worldwide. Apart from the respiratory symptoms, which are considered the principal manifestations of COVID-19, it has been recognized that COVID-19 constitutes a systemic inflammatory process affecting multiple organ systems. Across the spectrum of organ involvement in COVID-19, acute liver injury (ALI) has been gradually gaining increasing attention by the international scientific community. COVID-19 associated liver impairment can affect a considerable proportion of COVID-19 patients and seems to correlate with the severity of the disease course. Indeed, COVID-19 patients hospitalized in the intensive care unit (ICU) run a greater risk of developing ALI due to the severity of their clinical condition and in the context of multi-organ failure. The putative pathophysiological mechanisms of COVID-19 induced ALI in ICU patients remain poorly understood and appear to be multifactorial in nature. Several theories have been proposed to explain the occurrence of ALI in the ICU setting, such as hypoperfusion and ischemia due to hemodynamic instability, passive liver congestion as a result of congestive heart failure, ischemia-reperfusion injury, hypoxia due to respiratory failure, mechanical ventilation itself, sepsis and septic shock, cytokine storm, endotheliitis with concomitant coagulopathy, drug-induced liver injury, parenteral nutrition and direct cytopathic viral effect. It should be noted that no specific therapy for COVID-19 induced ALI exists. Therefore, the therapeutic approach lies in preventive measures and is exclusively supportive once ALI ensues. The aim of the current review is to scrutinize the existing evidence on COVID-19 associated ALI in ICU patients, explore its clinical implications, shed light on the underlying pathophysiological mechanisms and propose potential therapeutic approaches. Ongoing research on the particular scientific field will further elucidate the pathophysiology behind ALI and address unresolved issues, in the hope of mitigating the tremendous health consequences imposed by COVID-19 on ICU patients.
Collapse
Affiliation(s)
- Effie Polyzogopoulou
- Department of Emergency Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, Athens 12462, Greece
| | - Pinelopi Amoiridou
- Department of Intensive Care, AHEPA University Hospital, Thessaloniki 54621, Greece
| | - Theodore P Abraham
- Hypertrophic Cardiomyopathy Center of Excellence, University of California, San Francisco, CA 94117, United States
| | - Ioannis Ventoulis
- Department of Occupational Therapy, University of Western Macedonia, Ptolemaida 50200, Greece
| |
Collapse
|
150
|
Karlafti E, Paramythiotis D, Pantazi K, Georgakopoulou VE, Kaiafa G, Papalexis P, Protopapas AA, Ztriva E, Fyntanidou V, Savopoulos C. Drug-Induced Liver Injury in Hospitalized Patients during SARS-CoV-2 Infection. Medicina (B Aires) 2022; 58:medicina58121848. [PMID: 36557050 PMCID: PMC9782075 DOI: 10.3390/medicina58121848] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
In the last few years, the world has had to face the SARS-CoV-2 infection and its multiple effects. Even though COVID-19 was first considered to be a respiratory disease, it has an extended clinical spectrum with symptoms occurring in many tissues, and it is now identified as a systematic disease. Therefore, various drugs are used during the therapy of hospitalized COVID-19 patients. Studies have shown that many of these drugs could have adverse side-effects, including drug-induced liver injury-also known as DILI-which is the focus of our review. Despite the consistent findings, the pathophysiological mechanism behind DILI in COVID-19 disease is still complex, and there are a few risk factors related to it. However, when it comes to the diagnosis, there are specific algorithms (including the RUCAM algorithm) and biomarkers that can assist in identifying DILI and which we will analyze in our review. As indicated by the title, a variety of drugs are associated with this COVID-19-related complication, including systemic corticosteroids, drugs used for the therapy of uncontrolled cytokine storm, as well as antiviral, anti-inflammatory, and anticoagulant drugs. Bearing in mind that hepatotoxicity is very likely to occur during COVID-19, especially in patients treated with multiple medications, we will also refer to the use of other drugs used for DILI therapy in an effort to control and prevent a severe and long-term outcome.
Collapse
Affiliation(s)
- Eleni Karlafti
- Emergency Department, AHEPA University General Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
- First Propaedeutic Department of Internal Medicine, AHEPA University General Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
- Correspondence: ; Tel.: +231-330-3110
| | - Daniel Paramythiotis
- First Propaedeutic Department of Surgery, AHEPA University General Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Konstantina Pantazi
- First Propaedeutic Department of Internal Medicine, AHEPA University General Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | | | - Georgia Kaiafa
- First Propaedeutic Department of Internal Medicine, AHEPA University General Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Petros Papalexis
- Unit of Endocrinology, First Department of Internal Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece
| | - Adonis A. Protopapas
- First Propaedeutic Department of Internal Medicine, AHEPA University General Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Eleftheria Ztriva
- First Propaedeutic Department of Internal Medicine, AHEPA University General Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Varvara Fyntanidou
- Emergency Department, AHEPA University General Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Christos Savopoulos
- First Propaedeutic Department of Internal Medicine, AHEPA University General Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| |
Collapse
|