101
|
Yan CC, Zhang XS, Zhou L, Yang Q, Zhou M, Zhang LW, Xing JC, Yan ZF, Price M, Li J, Yue BS, Fan ZX. Effects of aging on gene expression in blood of captive Tibetan macaques ( Macaca thibetana) and comparisons with expression in humans. Zool Res 2021; 41:557-563. [PMID: 32746507 PMCID: PMC7475009 DOI: 10.24272/j.issn.2095-8137.2020.092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Changes in gene expression occur as animals, including primates, age. Macaques have long been used as a model species for primate evolution and biomedical studies. Here, to study gene expression in Tibetan macaques (Macaca thibetana, TMs) and its differences to humans, we applied RNA-Seq to obtain the blood transcriptomes of 24 TMs. In total, 2 523 age-associated differentially expressed genes (DEGs) were identified. Several pathways and processes that regulate aging, including the FoxO signaling pathway, autophagy, and platelet activation, were significantly enriched in the up-regulated DEGs. Two significantly age-related modules were identified by weighted gene co-expression network analysis (WGCNA). The TMs and humans shared 279 common DEGs, including 111 up-regulated and 141 down-regulated genes with advancing age in the same expression direction. However, 27 age-related DEGs presented the opposite expression direction in TMs as that in humans. For example, INPPL1, with inhibitory effects on the B cell receptor signaling pathway, was up-regulated in humans but down-regulated in TMs. In general, our study suggests that aging is a critical factor affecting gene expression in the captive TM population. The similarities and differences in gene expression patterns between TMs and humans could provide new insights into primate evolution and benefit TM model development.
Collapse
Affiliation(s)
- Chao-Chao Yan
- Key Laboratory of Bioresources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xin-Shang Zhang
- Institute of Laboratory Animal Sciences, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610212, China
| | - Liang Zhou
- Institute of Laboratory Animal Sciences, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610212, China
| | - Qiao Yang
- Key Laboratory of Bioresources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Min Zhou
- Key Laboratory of Bioresources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Lin-Wan Zhang
- Key Laboratory of Bioresources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jin-Chuan Xing
- Department of Genetics, Rutgers, State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Zhi-Feng Yan
- Institute of Laboratory Animal Sciences, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610212, China
| | - Megan Price
- Key Laboratory of Bioresources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jing Li
- Key Laboratory of Bioresources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Bi-Song Yue
- Key Laboratory of Bioresources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhen-Xin Fan
- Key Laboratory of Bioresources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China. E-mail:
| |
Collapse
|
102
|
Warren A, Chen Y, Jones A, Shibue T, Hahn WC, Boehm JS, Vazquez F, Tsherniak A, McFarland JM. Global computational alignment of tumor and cell line transcriptional profiles. Nat Commun 2021; 12:22. [PMID: 33397959 PMCID: PMC7782593 DOI: 10.1038/s41467-020-20294-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 11/24/2020] [Indexed: 12/19/2022] Open
Abstract
Cell lines are key tools for preclinical cancer research, but it remains unclear how well they represent patient tumor samples. Direct comparisons of tumor and cell line transcriptional profiles are complicated by several factors, including the variable presence of normal cells in tumor samples. We thus develop an unsupervised alignment method (Celligner) and apply it to integrate several large-scale cell line and tumor RNA-Seq datasets. Although our method aligns the majority of cell lines with tumor samples of the same cancer type, it also reveals large differences in tumor similarity across cell lines. Using this approach, we identify several hundred cell lines from diverse lineages that present a more mesenchymal and undifferentiated transcriptional state and that exhibit distinct chemical and genetic dependencies. Celligner could be used to guide the selection of cell lines that more closely resemble patient tumors and improve the clinical translation of insights gained from cell lines.
Collapse
Affiliation(s)
| | - Yejia Chen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Andrew Jones
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - William C Hahn
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jesse S Boehm
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | | |
Collapse
|
103
|
Paul S, Madhumita. Pattern Recognition Algorithms for Multi-Omics Data Analysis. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11538-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
104
|
Cui Y, Yang J, Bai Y, Li Q, Yao Y, Liu C, Wu F, Zhang J, Zhang Y. ENC1 Facilitates Colorectal Carcinoma Tumorigenesis and Metastasis via JAK2/STAT5/AKT Axis-Mediated Epithelial Mesenchymal Transition and Stemness. Front Cell Dev Biol 2021; 9:616887. [PMID: 33816464 PMCID: PMC8010667 DOI: 10.3389/fcell.2021.616887] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/05/2021] [Indexed: 01/08/2023] Open
Abstract
Ectodermal neural cortex 1 (ENC1) is an actin-binding protein and has been known to be upregulated in several cancers, but the molecular mechanisms through which it contributes to the pathology of CRC have largely been elusive. We utilized data mining and validated the aberrant expression of ENC1, following which phenotypic traits of malignancy were assessed in vitro. Ruxolitinib was used as a surrogate to compare the effects of ENC1 expression and silencing on the JAK-STAT-AKT pathway. In vivo models were employed to confirm the in vitro observations. Computation analysis, strengthened by in situ and in vitro data, confirmed the overexpression of ENC1 in CRC and predicted a poor prognosis, while enhanced cell proliferation, invasion, migration, EMT, and stemness were associated with ENC1 overexpression. Silencing of ENC1 downregulated the phenotypes. Additionally, silencing of ENC1 significantly reduced the activation of JAK2 and consequent activation of STAT5 and AKT comparable to ruxolitinib inhibition of JAK2. Silencing of ENC1 resulted in lesser tumor volumes and fewer numbers of tumors, in vivo. These data suggest that ENC1 induces CRC through the JAK2-STAT5-AKT axis. ENC1 is a suitable diagnostic marker for CRC detection, and ENC1 targeting therapies may suppress CRC progression.
Collapse
Affiliation(s)
- Ying Cui
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jiani Yang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yibing Bai
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - QingWei Li
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuanfei Yao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chao Liu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Feng Wu
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingchun Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- *Correspondence: Yanqiao Zhang,
| |
Collapse
|
105
|
Karkampouna S, De Filippo MR, Ng CKY, Klima I, Zoni E, Spahn M, Stein F, Haberkant P, Thalmann GN, Kruithof-de Julio M. Stroma Transcriptomic and Proteomic Profile of Prostate Cancer Metastasis Xenograft Models Reveals Prognostic Value of Stroma Signatures. Cancers (Basel) 2020; 12:cancers12123786. [PMID: 33334054 PMCID: PMC7768471 DOI: 10.3390/cancers12123786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/10/2020] [Indexed: 01/08/2023] Open
Abstract
Resistance acquisition to androgen deprivation treatment and metastasis progression are a major clinical issue associated with prostate cancer (PCa). The role of stroma during disease progression is insufficiently defined. Using transcriptomic and proteomic analyses on differentially aggressive patient-derived xenografts (PDXs), we investigated whether PCa tumors predispose their microenvironment (stroma) to a metastatic gene expression pattern. RNA sequencing was performed on the PCa PDXs BM18 (castration-sensitive) and LAPC9 (castration-resistant), representing different disease stages. Using organism-specific reference databases, the human-specific transcriptome (tumor) was identified and separated from the mouse-specific transcriptome (stroma). To identify proteomic changes in the tumor (human) versus the stroma (mouse), we performed human/mouse cell separation and subjected protein lysates to quantitative Tandem Mass Tag labeling and mass spectrometry. Tenascin C (TNC) was among the most abundant stromal genes, modulated by androgen levels in vivo and highly expressed in castration-resistant LAPC9 PDX. The tissue microarray of primary PCa samples (n = 210) showed that TNC is a negative prognostic marker of the clinical progression to recurrence or metastasis. Stroma markers of osteoblastic PCa bone metastases seven-up signature were induced in the stroma by the host organism in metastatic xenografts, indicating conserved mechanisms of tumor cells to induce a stromal premetastatic signature. A 50-gene list stroma signature was identified based on androgen-dependent responses, which shows a linear association with the Gleason score, metastasis progression and progression-free survival. Our data show that metastatic PCa PDXs, which differ in androgen sensitivity, trigger differential stroma responses, which show the metastasis risk stratification and prognostic biomarker potential.
Collapse
Affiliation(s)
- Sofia Karkampouna
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland; (S.K.); (M.R.D.F.); (I.K.); (E.Z.); (G.N.T.)
| | - Maria R. De Filippo
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland; (S.K.); (M.R.D.F.); (I.K.); (E.Z.); (G.N.T.)
| | - Charlotte K. Y. Ng
- Oncogenomics Laboratory, Department for BioMedical Research, University of Bern, Murtenstrasse 40, 3008 Bern, Switzerland;
| | - Irena Klima
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland; (S.K.); (M.R.D.F.); (I.K.); (E.Z.); (G.N.T.)
| | - Eugenio Zoni
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland; (S.K.); (M.R.D.F.); (I.K.); (E.Z.); (G.N.T.)
| | - Martin Spahn
- Lindenhofspital Bern, Prostate Center Bern, 3012 Bern, Switzerland;
| | - Frank Stein
- Proteomics Core Facility, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany; (F.S.); (P.H.)
| | - Per Haberkant
- Proteomics Core Facility, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany; (F.S.); (P.H.)
| | - George N. Thalmann
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland; (S.K.); (M.R.D.F.); (I.K.); (E.Z.); (G.N.T.)
- Department of Urology, Inselspital, Anna Seiler Haus, Bern University Hospital, 3010 Bern, Switzerland
| | - Marianna Kruithof-de Julio
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland; (S.K.); (M.R.D.F.); (I.K.); (E.Z.); (G.N.T.)
- Department of Urology, Inselspital, Anna Seiler Haus, Bern University Hospital, 3010 Bern, Switzerland
- Correspondence:
| |
Collapse
|
106
|
Tanaka T, Warner BM, Odani T, Ji Y, Mo YQ, Nakamura H, Jang SI, Yin H, Michael DG, Hirata N, Suizu F, Ishigaki S, Oliveira FR, Motta ACF, Ribeiro-Silva A, Rocha EM, Atsumi T, Noguchi M, Chiorini JA. LAMP3 induces apoptosis and autoantigen release in Sjögren's syndrome patients. Sci Rep 2020; 10:15169. [PMID: 32939030 PMCID: PMC7494869 DOI: 10.1038/s41598-020-71669-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 08/10/2020] [Indexed: 12/16/2022] Open
Abstract
Primary Sjögren's syndrome (pSS) is a complex autoimmune disease characterized by dysfunction of secretory epithelia with only palliative therapy. Patients present with a constellation of symptoms, and the diversity of symptomatic presentation has made it difficult to understand the underlying disease mechanisms. In this study, aggregation of unbiased transcriptome profiling data sets of minor salivary gland biopsies from controls and Sjögren's syndrome patients identified increased expression of lysosome-associated membrane protein 3 (LAMP3/CD208/DC-LAMP) in a subset of Sjögren's syndrome cases. Stratification of patients based on their clinical characteristics suggested an association between increased LAMP3 expression and the presence of serum autoantibodies including anti-Ro/SSA, anti-La/SSB, anti-nuclear antibodies. In vitro studies demonstrated that LAMP3 expression induces epithelial cell dysfunction leading to apoptosis. Interestingly, LAMP3 expression resulted in the accumulation and release of intracellular TRIM21 (one component of SSA), La (SSB), and α-fodrin protein, common autoantigens in Sjögren's syndrome, via extracellular vesicles in an apoptosis-independent mechanism. This study defines a clear role for LAMP3 in the initiation of apoptosis and an independent pathway for the extracellular release of known autoantigens leading to the formation of autoantibodies associated with this disease.ClinicalTrials.gov Identifier: NCT00001196, NCT00001390, NCT02327884.
Collapse
Affiliation(s)
- Tsutomu Tanaka
- National Institute of Dental and Craniofacial Research, National Institutes of Health, NIH 10 Center Dr., Bethesda, MD, 20892, USA
| | - Blake M Warner
- National Institute of Dental and Craniofacial Research, National Institutes of Health, NIH 10 Center Dr., Bethesda, MD, 20892, USA
| | - Toshio Odani
- National Institute of Dental and Craniofacial Research, National Institutes of Health, NIH 10 Center Dr., Bethesda, MD, 20892, USA
| | - Youngmi Ji
- National Institute of Dental and Craniofacial Research, National Institutes of Health, NIH 10 Center Dr., Bethesda, MD, 20892, USA
| | - Ying-Qian Mo
- National Institute of Dental and Craniofacial Research, National Institutes of Health, NIH 10 Center Dr., Bethesda, MD, 20892, USA
| | - Hiroyuki Nakamura
- National Institute of Dental and Craniofacial Research, National Institutes of Health, NIH 10 Center Dr., Bethesda, MD, 20892, USA
| | - Shyh-Ing Jang
- National Institute of Dental and Craniofacial Research, National Institutes of Health, NIH 10 Center Dr., Bethesda, MD, 20892, USA
| | - Hongen Yin
- National Institute of Dental and Craniofacial Research, National Institutes of Health, NIH 10 Center Dr., Bethesda, MD, 20892, USA
| | - Drew G Michael
- National Institute of Dental and Craniofacial Research, National Institutes of Health, NIH 10 Center Dr., Bethesda, MD, 20892, USA
| | - Noriyuki Hirata
- Division of Cancer Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Futoshi Suizu
- Division of Cancer Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Satoko Ishigaki
- Division of Cancer Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Fabiola Reis Oliveira
- Department of Clinical Medicine, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Ana Carolina F Motta
- Department of Stomatology, Public Health and Forensic Dentistry, School of Dentistry of Ribeirão Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Alfredo Ribeiro-Silva
- Department of Pathology and Legal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Eduardo M Rocha
- Department of Ophthalmology, Otorhinolaryngology, Head and Neck Surgery, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masayuki Noguchi
- Division of Cancer Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - John A Chiorini
- National Institute of Dental and Craniofacial Research, National Institutes of Health, NIH 10 Center Dr., Bethesda, MD, 20892, USA.
| |
Collapse
|
107
|
Genomic and Functional Regulation of TRIB1 Contributes to Prostate Cancer Pathogenesis. Cancers (Basel) 2020; 12:cancers12092593. [PMID: 32932846 PMCID: PMC7565426 DOI: 10.3390/cancers12092593] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/26/2020] [Accepted: 09/04/2020] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer is the most frequent malignancy in European men and the second worldwide. One of the major oncogenic events in this disease includes amplification of the transcription factor cMYC. Amplification of this oncogene in chromosome 8q24 occurs concomitantly with the copy number increase in a subset of neighboring genes and regulatory elements, but their contribution to disease pathogenesis is poorly understood. Here we show that TRIB1 is among the most robustly upregulated coding genes within the 8q24 amplicon in prostate cancer. Moreover, we demonstrate that TRIB1 amplification and overexpression are frequent in this tumor type. Importantly, we find that, parallel to its amplification, TRIB1 transcription is controlled by cMYC. Mouse modeling and functional analysis revealed that aberrant TRIB1 expression is causal to prostate cancer pathogenesis. In sum, we provide unprecedented evidence for the regulation and function of TRIB1 in prostate cancer.
Collapse
|
108
|
Elhodaky M, Hong LK, Kadkol S, Diamond AM. Selenium-binding protein 1 alters energy metabolism in prostate cancer cells. Prostate 2020; 80:962-976. [PMID: 32511787 PMCID: PMC7473137 DOI: 10.1002/pros.24028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/30/2020] [Accepted: 05/21/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The broad goal of the research described in this study was to investigate the contributions of selenium-binding protein 1 (SBP1) loss in prostate cancer development and outcome. METHODS SBP1 levels were altered in prostate cancer cell lines and the consequences on oxygen consumption, expression of proteins associated with energy metabolism, and cellular transformation and migration were investigated. The effects of exposing cells to the SBP1 reaction products, H2 O2 and H2 S were also assessed. In silico analyses identified potential HNF4α binding sites within the SBP1 promoter region and this was investigated using an inhibitor specific for that transcription factor. RESULTS Using in silico analyses, it was determined that the promoter region of SBP1 contains putative binding sites for the HNF4α transcription factor. The potential for HNF4α to regulate SBP1 expression was supported by data indicating that HNF4α inhibition resulted in a dose-response increase in the levels of SBP1 messenger RNA and protein, identifying HNF4α as a novel negative regulator of SBP1 expression in prostate cancer cells. The consequences of altering the levels of SBP1 were investigated by ectopically expressing SBP1 in PC-3 prostate cancer cells, where SBP1 expression attenuated anchorage-independent cellular growth and migration in culture, both properties associated with transformation. SBP1 overexpression reduced oxygen consumption in these cells and increased the activation of AMP-activated protein kinase (AMPK), a major regulator of energy homeostasis. In addition, the reaction products of SBP1, H2 O2 , and H2 S also activated AMPK. CONCLUSIONS Based on the obtained data, it is hypothesized that SBP1 negatively regulates oxidative phosphorylation (OXPHOS) in the healthy prostate cells by the production of H2 O2 and H2 S and consequential activation of AMPK. The reduction of SBP1 levels in prostate cancer can occur due to increased binding of HNF4α, acting as a transcriptional inhibitor to the SBP1 promoter. Consequently, there is a reduction in H2 O2 and H2 S-mediated signaling, inhibition of AMPK, and stimulation of OXPHOS and building blocks of biomolecules needed for tumor growth and progression. Other effects of SBP1 loss in tumor cells remain to be discovered.
Collapse
Affiliation(s)
- Mostafa Elhodaky
- Department of Pathology, College of MedicineUniversity of Illinois at ChicagoChicagoIllinois
| | - Lenny K. Hong
- Department of Pathology, College of MedicineUniversity of Illinois at ChicagoChicagoIllinois
| | - Shrinidhi Kadkol
- Department of Pathology, College of MedicineUniversity of Illinois at ChicagoChicagoIllinois
| | - Alan M. Diamond
- Department of Pathology, College of MedicineUniversity of Illinois at ChicagoChicagoIllinois
| |
Collapse
|
109
|
Hemming ML, Fan C, Raut CP, Demetri GD, Armstrong SA, Sicinska E, George S. Oncogenic Gene-Expression Programs in Leiomyosarcoma and Characterization of Conventional, Inflammatory, and Uterogenic Subtypes. Mol Cancer Res 2020; 18:1302-1314. [PMID: 32518213 PMCID: PMC7484251 DOI: 10.1158/1541-7786.mcr-20-0197] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/17/2020] [Accepted: 06/03/2020] [Indexed: 12/25/2022]
Abstract
Leiomyosarcoma (LMS) is a mesenchymal neoplasm with complex copy-number alterations and characteristic loss of tumor suppressor genes without known recurrent activating mutations. Clinical management of advanced LMS relies on chemotherapy and complementary palliative approaches, and research efforts to date have had limited success identifying clinically actionable biomarkers or targeted therapeutic vulnerabilities. To explore the biological underpinning of LMS, we evaluated gene-expression patterns of this disease in comparison with diverse sarcomas, nonmesenchymal neoplasms, and normal myogenic tissues. We identified a recurrent gene-expression program in LMS, with evidence of oncogenic evolution of an underlying smooth-muscle lineage-derived program characterized by activation of E2F1 and downstream effectors. Recurrently amplified or highly expressed genes in LMS were identified, including IGF1R and genes involved in retinoid signaling pathways. Though the majority of expressed transcripts were conserved across LMS samples, three separate subtypes were identified that were enriched for muscle-associated transcripts (conventional LMS), immune markers (inflammatory LMS), or a uterine-like gene-expression program (uterogenic LMS). Each of these subtypes expresses a unique subset of genes that may be useful in the management of LMS: IGF1R was enriched in conventional LMS, worse disease-specific survival was observed in inflammatory LMS, and prolactin was elaborated by uterogenic LMS. These results extend our understanding of LMS biology and identify several strategies and challenges for further translational investigation. IMPLICATIONS: LMS has a recurrent oncogenic transcriptional program and consists of molecular subtypes with biological and possible clinical implications.
Collapse
Affiliation(s)
- Matthew L Hemming
- Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Changyu Fan
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Chandrajit P Raut
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - George D Demetri
- Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Ludwig Center at Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Ewa Sicinska
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Suzanne George
- Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
110
|
Bai Y, Wang X, Hou J, Geng L, Liang X, Ruan Z, Guo H, Nan K, Jiang L. Identification of a Five-Gene Signature for Predicting Survival in Malignant Pleural Mesothelioma Patients. Front Genet 2020; 11:899. [PMID: 32849853 PMCID: PMC7427512 DOI: 10.3389/fgene.2020.00899] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/21/2020] [Indexed: 12/17/2022] Open
Abstract
Malignant pleural mesothelioma (MPM), predominantly caused by asbestos exposure, is a highly aggressive cancer with poor prognosis. The staging systems currently used in clinics is inadequate in evaluating the prognosis of MPM. In this study, a five-gene signature was developed and enrolled into a prognostic risk score model by LASSO Cox regression analysis based on two expression profiling datasets (GSE2549 and GSE51024) from Gene Expression Omnibus (GEO). The five-gene signature was further validated using the Cancer Genome Atlas (TCGA) MPM dataset. Univariate and multivariate Cox analyses proved that the five-gene signature was an independent prognostic factor for MPM. The signature remained statistically significant upon stratification by Brigham stage, AJCC stage, gender, tumor size, and lymph node status. Time-dependent receiver operating characteristic (ROC) curve indicated good performance of our model in predicting 1- and 2-years overall survival in MPM patients. The C-index was 0.784 for GSE2549 and 0.753 for the TCGA dataset showing moderate predictive accuracy of our model. Furthermore, Gene Set Enrichment Analysis suggested that the five-gene signature was related to pathways resulting in MPM tumor progression. Together, we have established a five-gene signature significantly associated with prognosis in MPM patients. Hence, the five-genes signature may serve as a potentially useful prognostic tool for MPM patients.
Collapse
Affiliation(s)
- Yiyang Bai
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiao Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jia Hou
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Luying Geng
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xuan Liang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhiping Ruan
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hui Guo
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Kejun Nan
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Oncology Hospital, Xi'an International Medical Center Hospital, Xi'an, China
| | - Lili Jiang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
111
|
He B, Zhang Y, Zhou Z, Wang B, Liang Y, Lang J, Lin H, Bing P, Yu L, Sun D, Luo H, Yang J, Tian G. A Neural Network Framework for Predicting the Tissue-of-Origin of 15 Common Cancer Types Based on RNA-Seq Data. Front Bioeng Biotechnol 2020; 8:737. [PMID: 32850691 PMCID: PMC7419649 DOI: 10.3389/fbioe.2020.00737] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/10/2020] [Indexed: 12/19/2022] Open
Abstract
Sequencing-based identification of tumor tissue-of-origin (TOO) is critical for patients with cancer of unknown primary lesions. Even if the TOO of a tumor can be diagnosed by clinicopathological observation, reevaluations by computational methods can help avoid misdiagnosis. In this study, we developed a neural network (NN) framework using the expression of a 150-gene panel to infer the tumor TOO for 15 common solid tumor cancer types, including lung, breast, liver, colorectal, gastroesophageal, ovarian, cervical, endometrial, pancreatic, bladder, head and neck, thyroid, prostate, kidney, and brain cancers. To begin with, we downloaded the RNA-Seq data of 7,460 primary tumor samples across the above mentioned 15 cancer types, with each type of cancer having between 142 and 1,052 samples, from the cancer genome atlas. Then, we performed feature selection by the Pearson correlation method and performed a 150-gene panel analysis; the genes were significantly enriched in the GO:2001242 Regulation of intrinsic apoptotic signaling pathway and the GO:0009755 Hormone-mediated signaling pathway and other similar functions. Next, we developed a novel NN model using the 150 genes to predict tumor TOO for the 15 cancer types. The average prediction sensitivity and precision of the framework are 93.36 and 94.07%, respectively, for the 7,460 tumor samples based on the 10-fold cross-validation; however, the prediction sensitivity and precision for a few specific cancers, like prostate cancer, reached 100%. We also tested the trained model on a 20-sample independent dataset with metastatic tumor, and achieved an 80% accuracy. In summary, we present here a highly accurate method to infer tumor TOO, which has potential clinical implementation.
Collapse
Affiliation(s)
- Binsheng He
- Academician Workstation, Changsha Medical University, Changsha, China
| | | | - Zhen Zhou
- Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Bo Wang
- Geneis (Beijing) Co., Ltd., Beijing, China
| | | | | | - Huixin Lin
- Geneis (Beijing) Co., Ltd., Beijing, China
| | - Pingping Bing
- Academician Workstation, Changsha Medical University, Changsha, China
| | - Lan Yu
- Inner Mongolia People's Hospital, Huhhot, China
| | - Dejun Sun
- Inner Mongolia People's Hospital, Huhhot, China
| | - Huaiqing Luo
- Academician Workstation, Changsha Medical University, Changsha, China
| | - Jialiang Yang
- Academician Workstation, Changsha Medical University, Changsha, China.,Geneis (Beijing) Co., Ltd., Beijing, China
| | - Geng Tian
- Geneis (Beijing) Co., Ltd., Beijing, China
| |
Collapse
|
112
|
Liu R, Wu Z, Zhang Y, Miao X, Zou Q, Yuan Y, Li D, Yang Z. Prognostic and Clinicopathological Significance of X-Box-Binding Protein 1 and N-Acetyltransferase 1 in Gallbladder Cancer. Front Oncol 2020; 10:1124. [PMID: 32793479 PMCID: PMC7393250 DOI: 10.3389/fonc.2020.01124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/04/2020] [Indexed: 12/29/2022] Open
Abstract
Background: X-box-binding protein 1 (XBP1) and N-acetyltransferase 1 (NAT1) are involved in oncogenesis and progression of many human cancer types. However, the roles of XBP1 and NAT1 in gallbladder cancer (GBC) are never reported. Methods: We examined XBP1 and NAT1 expression in GBC and matched adjacent non-tumor tissues via Western blotting. Then, we assayed XBP1 and NAT1 expression in 215 GBCs, including 69 squamous cell/adenosquamous carcinomas (SC/ASCs) and 146 adenocarcinomas (ACs) with immunohistochemistry. Their prognostic and clinicopathological significance was further evaluated using the χ2 test or Fisher's exact test, Kaplan–Meier univariate survival analysis, and log-rank tests. Results: XBP1 expression was upregulated, and NAT1 expression was downregulated in GBC. Immunohistochemical results showed that XBP1 expression was negatively associated with NAT1 expression in GBC, including SC/ASC and AC. The rate of patients with an age of more than 45 years, positivity of lymph node metastasis, and invasion were significantly higher in SC/ASC than those in AC (all P < 0.05). The percentage of XBP1-positive and NAT1-negative expression was significantly higher in the cases with poor differentiation, advanced tumor, nodes, and metastases (TNM) stage, lymph node metastasis, invasion, and only receiving biopsy in GBC, SC/ASC, and AC (all P < 0.05). XBP1-positive and NAT1-negative expression was positively related to larger tumor size (>3 cm) in GBC and AC. There was a negative association between XBP1 and NAT1 expression in GBC, SC/ASC, and AC (all P < 0.05). Positive XBP1 and negative NAT1 expression was closely associated with decreased overall survival in GBC, SC/ASC, and AC patients (all P < 0.05). The multivariate Cox regression analysis showed that positive XBP1 or negative NAT1 expression was an independent factor for poor prognosis in gallbladder SC/ASC and AC patients. Conclusions: This study indicates that positive XBP1 and negative NAT1 expression are closely associated with the clinicopathological and biological behaviors and poor prognosis in GBC.
Collapse
Affiliation(s)
- Rushi Liu
- Department of Medical Laboratory, Immunodiagnostic Reagents Engineering Research Center of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Zhengchun Wu
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research, Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yuanfang Zhang
- Department of Medical Laboratory, Immunodiagnostic Reagents Engineering Research Center of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Xiongying Miao
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research, Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiong Zou
- Department of Pathology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Yuan
- Department of Pathology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Daiqiang Li
- Department of Pathology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhulin Yang
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research, Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
113
|
Cruz-Hernández CD, Cruz-Burgos M, Cortés-Ramírez SA, Losada-García A, Camacho-Arroyo I, García-López P, Langley E, González-Covarrubias V, Llaguno-Munive M, Albino-Sánchez ME, Cruz-Colín JL, Pérez-Plasencia C, Beltrán-Anaya FO, Rodríguez-Dorantes M. SFRP1 increases TMPRSS2-ERG expression promoting neoplastic features in prostate cancer in vitro and in vivo. Cancer Cell Int 2020; 20:312. [PMID: 32694934 PMCID: PMC7364616 DOI: 10.1186/s12935-020-01333-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022] Open
Abstract
Background Prostate cancer (PCa) is the second cause of cancer related death in North American men. Androgens play an important role in its progression by regulating the expression of several genes including fusion ones that results from structural chromosome rearrangements. TMPRSS2-ERG is a fusion gene commonly observed in over 50% of PCa tumors, and its expression can be transcriptionally regulated by the androgen receptor (AR) given its androgen responsive elements. TMPRSS2-ERG could be involved in epithelial–mesenchymal transition (EMT) during tumor development. ERG has been reported as a key transcriptional factor in the AR-ERG-WNT network where five SFRP proteins, structurally similar to WNT ligands and considered to be WNT pathway antagonists, can regulate signaling in the extracellular space by binding to WNT proteins or Frizzled receptors. It has been shown that over-expression of SFRP1 protein can regulate the transcriptional activity of AR and inhibits the formation of colonies in LNCaP cells. However, the effect of SFRP1 has been controversial since differential effects have been observed depending on its concentration and tissue location. In this study, we explored the role of exogenous SFRP1 protein in cells expressing the TMPRSS2-ERG fusion. Methods To evaluate the effect of exogenous SFRP1 protein on PCa cells expressing TMPRSS2-ERG, we performed in silico analysis from TCGA cohort, expression assays by RT-qPCR and Western blot, cell viability and cell cycle measurements by cytometry, migration and invasion assays by xCELLigance system and murine xenografts. Results We demonstrated that SFRP1 protein increased ERG expression by promoting cellular migration in vitro and increasing tumor growth in vivo in PCa cells with the TMPRSS2-ERG fusion. Conclusions These results suggest the possible role of exogenous SFRP1 protein as a modulator of AR-ERG-WNT signaling network in cells positive to TMPRSS2-ERG. Further, investigation is needed to determine if SFRP1 protein could be a target in against this type of PCa.
Collapse
Affiliation(s)
- Carlos D Cruz-Hernández
- Instituto Nacional de Medicina Genómica, Périferico Sur 4809, Arenal Tepepan, 14610 Mexico city, Mexico
| | - Marian Cruz-Burgos
- Instituto Nacional de Medicina Genómica, Périferico Sur 4809, Arenal Tepepan, 14610 Mexico city, Mexico
| | - Sergio A Cortés-Ramírez
- Instituto Nacional de Medicina Genómica, Périferico Sur 4809, Arenal Tepepan, 14610 Mexico city, Mexico
| | - Alberto Losada-García
- Instituto Nacional de Medicina Genómica, Périferico Sur 4809, Arenal Tepepan, 14610 Mexico city, Mexico
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México; (UNAM), 04510 Mexico City, Mexico
| | | | | | | | | | - Martha E Albino-Sánchez
- Departamento de Biología celular, CINVESTAV, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, 07360 Mexico city, Mexico
| | - José L Cruz-Colín
- Instituto Nacional de Medicina Genómica, Périferico Sur 4809, Arenal Tepepan, 14610 Mexico city, Mexico
| | | | - Fredy O Beltrán-Anaya
- Instituto Nacional de Medicina Genómica, Périferico Sur 4809, Arenal Tepepan, 14610 Mexico city, Mexico
| | | |
Collapse
|
114
|
Sáez-Martínez P, Jiménez-Vacas JM, León-González AJ, Herrero-Aguayo V, Montero Hidalgo AJ, Gómez-Gómez E, Sánchez-Sánchez R, Requena-Tapia MJ, Castaño JP, Gahete MD, Luque RM. Unleashing the Diagnostic, Prognostic and Therapeutic Potential of the Neuronostatin/GPR107 System in Prostate Cancer. J Clin Med 2020; 9:E1703. [PMID: 32498336 PMCID: PMC7355908 DOI: 10.3390/jcm9061703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 01/22/2023] Open
Abstract
Certain components of the somatostatin-system play relevant roles in Prostate Cancer (PCa), whose most aggressive phenotype (Castration-Resistant-PCa (CRPC)) remains lethal nowadays. However, neuronostatin and the G protein-coupled receptor 107 (GPR107), two novel members of the somatostatin-system, have not been explored yet in PCa. Consequently, we investigated the pathophysiological role of NST/GPR107-system in PCa. GPR107 expression was analyzed in well-characterized PCa patient's cohorts, and functional/mechanistic assays were performed in response to GPR107-silencing and NST-treatment in PCa cells (androgen-dependent (AD: LNCaP) and androgen-independent (AI: 22Rv1/PC-3), which are cell models of hormone-sensitive and CRPC, respectively), and normal prostate cells (RWPE-1 cell-line). GPR107 was overexpressed in PCa and associated with key clinical parameters (e.g., advance stage of PCa, presence of vascular invasion and metastasis). Furthermore, GPR107-silencing inhibited proliferation/migration rates in AI-PCa-cells and altered key genes and oncogenic signaling-pathways involved in PCa aggressiveness (i.e., KI67/CDKN2D/MMP9/PRPF40A, SST5TMD4/AR-v7/In1-ghrelin/EZH2 splicing-variants and AKT-signaling). Interestingly, NST treatment inhibited proliferation/migration only in AI-PCa cells and evoked an identical molecular response than GPR107-silencing. Finally, NST decreased GPR107 expression exclusively in AI-PCa-cells, suggesting that part of the specific antitumor effects of NST could be mediated through a GPR107-downregulation. Altogether, NST/GPR107-system could represent a valuable diagnostic and prognostic tool and a promising novel therapeutic target for PCa and CRPC.
Collapse
Affiliation(s)
- Prudencio Sáez-Martínez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (A.J.L.-G.); (V.H.-A.); (A.J.M.H.); (E.G.-G.); (R.S.-S.); (M.J.R.-T.); (J.P.C.); (M.D.G.)
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, 14071 Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), 14004 Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), 14004 Cordoba, Spain
| | - Juan M. Jiménez-Vacas
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (A.J.L.-G.); (V.H.-A.); (A.J.M.H.); (E.G.-G.); (R.S.-S.); (M.J.R.-T.); (J.P.C.); (M.D.G.)
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, 14071 Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), 14004 Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), 14004 Cordoba, Spain
| | - Antonio J. León-González
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (A.J.L.-G.); (V.H.-A.); (A.J.M.H.); (E.G.-G.); (R.S.-S.); (M.J.R.-T.); (J.P.C.); (M.D.G.)
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, 14071 Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), 14004 Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), 14004 Cordoba, Spain
| | - Vicente Herrero-Aguayo
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (A.J.L.-G.); (V.H.-A.); (A.J.M.H.); (E.G.-G.); (R.S.-S.); (M.J.R.-T.); (J.P.C.); (M.D.G.)
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, 14071 Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), 14004 Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), 14004 Cordoba, Spain
| | - Antonio J. Montero Hidalgo
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (A.J.L.-G.); (V.H.-A.); (A.J.M.H.); (E.G.-G.); (R.S.-S.); (M.J.R.-T.); (J.P.C.); (M.D.G.)
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, 14071 Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), 14004 Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), 14004 Cordoba, Spain
| | - Enrique Gómez-Gómez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (A.J.L.-G.); (V.H.-A.); (A.J.M.H.); (E.G.-G.); (R.S.-S.); (M.J.R.-T.); (J.P.C.); (M.D.G.)
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, 14071 Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), 14004 Cordoba, Spain
- Urology Service, HURS/IMIBIC, 14004 Cordoba, Spain
| | - Rafael Sánchez-Sánchez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (A.J.L.-G.); (V.H.-A.); (A.J.M.H.); (E.G.-G.); (R.S.-S.); (M.J.R.-T.); (J.P.C.); (M.D.G.)
- Hospital Universitario Reina Sofía (HURS), 14004 Cordoba, Spain
- Anatomical Pathology Service, HURS, 14004 Cordoba, Spain
| | - María J. Requena-Tapia
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (A.J.L.-G.); (V.H.-A.); (A.J.M.H.); (E.G.-G.); (R.S.-S.); (M.J.R.-T.); (J.P.C.); (M.D.G.)
- Hospital Universitario Reina Sofía (HURS), 14004 Cordoba, Spain
- Urology Service, HURS/IMIBIC, 14004 Cordoba, Spain
| | - Justo P. Castaño
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (A.J.L.-G.); (V.H.-A.); (A.J.M.H.); (E.G.-G.); (R.S.-S.); (M.J.R.-T.); (J.P.C.); (M.D.G.)
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, 14071 Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), 14004 Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), 14004 Cordoba, Spain
| | - Manuel D. Gahete
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (A.J.L.-G.); (V.H.-A.); (A.J.M.H.); (E.G.-G.); (R.S.-S.); (M.J.R.-T.); (J.P.C.); (M.D.G.)
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, 14071 Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), 14004 Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), 14004 Cordoba, Spain
| | - Raúl M. Luque
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (A.J.L.-G.); (V.H.-A.); (A.J.M.H.); (E.G.-G.); (R.S.-S.); (M.J.R.-T.); (J.P.C.); (M.D.G.)
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, 14071 Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), 14004 Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), 14004 Cordoba, Spain
| |
Collapse
|
115
|
Sui Y, Li X, Oh S, Zhang B, Freeman WM, Shin S, Janknecht R. Opposite Roles of the JMJD1A Interaction Partners MDFI and MDFIC in Colorectal Cancer. Sci Rep 2020; 10:8710. [PMID: 32457453 PMCID: PMC7250871 DOI: 10.1038/s41598-020-65536-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
MyoD family inhibitor (MDFI) and MDFI domain-containing (MDFIC) are homologous proteins known to regulate myogenic transcription factors. Hitherto, their role in cancer is unknown. We discovered that MDFI is up- and MDFIC downregulated in colorectal tumors. Mirroring these different expression patterns, MDFI stimulated and MDFIC inhibited growth of HCT116 colorectal cancer cells. Further, MDFI and MDFIC interacted with Jumonji C domain-containing (JMJD) 1 A, a histone demethylase and epigenetic regulator involved in colorectal cancer. JMJD1A influenced transcription of several genes that were also regulated by MDFI or MDFIC. Notably, the HIC1 tumor suppressor gene was stimulated by JMJD1A and MDFIC, but not by MDFI, and HIC1 overexpression phenocopied the growth suppressive effects of MDFIC in HCT116 cells. Similar to colorectal cancer, MDFI was up- and MDFIC downregulated in breast, ovarian and prostate cancer, but both were overexpressed in brain, gastric and pancreatic tumors that implies MDFIC to also promote tumorigenesis in certain tissues. Altogether, our data suggest a tumor modulating function for MDFI and MDFIC in colorectal and other cancers that may involve their interaction with JMJD1A and a MDFIC→HIC1 axis.
Collapse
Affiliation(s)
- Yuan Sui
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Xiaomeng Li
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Sangphil Oh
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.,Stephenson Cancer Center, Oklahoma City, OK, 73104, USA
| | - Bin Zhang
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
| | - Willard M Freeman
- Stephenson Cancer Center, Oklahoma City, OK, 73104, USA.,Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Sook Shin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.,Stephenson Cancer Center, Oklahoma City, OK, 73104, USA
| | - Ralf Janknecht
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA. .,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA. .,Stephenson Cancer Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
116
|
Molecular and Clinical Relevance of ZBTB38 Expression Levels in Prostate Cancer. Cancers (Basel) 2020; 12:cancers12051106. [PMID: 32365491 PMCID: PMC7281456 DOI: 10.3390/cancers12051106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/12/2020] [Accepted: 04/23/2020] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer is one of the most commonly diagnosed cancers in men. A number of genomic and clinical studies have led to a better understanding of prostate cancer biology. Still, the care of patients as well as the prediction of disease aggressiveness, recurrence and outcome remain challenging. Here, we showed that expression of the gene ZBTB38 is associated with poor prognosis in localised prostate cancer and could help discriminate aggressive localised prostate tumours from those who can benefit only from observation. Analysis of different prostate cancer cohorts indicates that low expression levels of ZBTB38 associate with increased levels of chromosomal abnormalities and more aggressive pathological features, including higher rate of biochemical recurrence of the disease. Importantly, gene expression profiling of these tumours, complemented with cellular assays on prostate cancer cell lines, unveiled that tumours with low levels of ZBTB38 expression might be targeted by doxorubicin, a compound generating reactive oxygen species. Our study shows that ZBTB38 is involved in prostate cancer pathogenesis and may represent a useful marker to identify high risk and highly rearranged localised prostate cancer susceptible to doxorubicin.
Collapse
|
117
|
Chen G, Cai ZD, Lin ZY, Wang C, Liang YX, Han ZD, He HC, Mo RJ, Lu JM, Pan B, Wu CL, Wang F, Zhong WD. ARNT-dependent CCR8 reprogrammed LDH isoform expression correlates with poor clinical outcomes of prostate cancer. Mol Carcinog 2020; 59:897-907. [PMID: 32319143 DOI: 10.1002/mc.23201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 01/09/2023]
Abstract
Lactate dehydrogenase isozyme (LDH) is a tetramer constituted of two isoforms, LDHA and LDHB, the expression of which is associated with cell metabolism and cancer progression. Our previous study reveals that CC-chemokine ligand-18 (CCL18) is involved in progression of prostate cancer (PCa).This study aims to investigate how CCL18 regulates LDH isoform expression, and therefore, contributes to PCa progression. The data revealed that the expression of LDHA was upregulated and LDHB was downregulated in PCa cells by CCL18 at both messenger RNA and protein levels. The depletion of CCR8 reduced the ability of CCL18 to promote the proliferation, migration, and lactate production of PCa cells. Depletion of a CCR8 regulated transcription factor, ARNT, significantly reduced the expression of LDHA. In addition, The Cancer Genome Atlas dataset analyses revealed a positive correlation between CCR8 and ARNT expression. Two dimension difference gel electrophoresis revealed that the LDHA/LDHB ratio was increased in the prostatic fluid of patients with PCa and PCa tissues. Furthermore, increased LDHA/LDHB ratio was associated with poor clinical outcomes of patients with PCa. Together, our results indicate that the CCR8 pathway programs LDH isoform expression in an ARNT dependent manner and that the ratio of LDHA/LDHB has the potential to serve as biomarkers for PCa diagnosis and prognosis.
Collapse
Affiliation(s)
- Guo Chen
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Zhi-Duan Cai
- Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhuo-Yuan Lin
- Department of Urology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Cong Wang
- School of pharmaceutical sciences, Wenzhou Medical University, Wenzhou, China
| | - Yu-Xiang Liang
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Department of Urology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Zhao-Dong Han
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Department of Urology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Hui-Chan He
- Guangdong Key Laboratory of Urology, Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital, Guangzhou Institute of Urology, Guangzhou, Guangdong, China
| | - Ru-Jun Mo
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Department of Urology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Jian-Ming Lu
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Department of Urology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Bin Pan
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Chin-Lee Wu
- Department of Pathology and Urology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Fen Wang
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas
| | - Wei-de Zhong
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.,Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Department of Urology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
118
|
Zhang WF, Li T, Lin SX. Meta-Analysis of steroid-converting enzymes and related receptors in prostate cancer suggesting novel combined therapies. J Steroid Biochem Mol Biol 2020; 198:105559. [PMID: 31783154 DOI: 10.1016/j.jsbmb.2019.105559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023]
Abstract
Androgen receptor (AR) signaling is essential for prostate cancer (PC) progression and treatment. Experiments have demonstrated that the intratumoral androgen levels are not affected by circulating androgen levels, but rather modulated by local steroid-converting enzyme activities. The expression modulation status of human steroid-converting enzymes and nuclear receptors are of great promise to identify novel therapeutic targets. Meta-analysis was performed with 9 cohorts (1093 specimens) from Gene Expression Omnibus, 16 cohorts (933 specimens) from Oncomine and the TCGA cohort (550 specimens). We found significant up regulation of 5α-reductase type 1 and type 3 in both primary and metastatic PC, together with the down regulation of AKR1C2 in primary PC, contributing to the high intratumoral DHT levels. The expression of AR in metastatic PC was up regulated, indicating the importance of AR signaling in the progression of this cancer. The down regulations of HSD11B1 and NR3C1 in primary and metastatic PC may diminish the anti-inflammation and anti-proliferation effects of glucocorticoids signaling. Furthermore, the decrease of progesterone receptor (PGR) expression in primary and metastatic PC was also observed, relieving the suppression effect of PGR on PC proliferation. The clinical evidences of the remarkable expression modulation of steroid-converting enzymes and receptors in PC may indicate novel combined treatment against this highly incident cancer.
Collapse
Affiliation(s)
- Wen-Fa Zhang
- Axe Molecular Endocrinology and Nephrology, CHU Research Center and Department of Molecular Medicine, Laval University, 2705 Boulevard Laurier, Quebec City, Quebec G1V 4G2, Canada.
| | - Tang Li
- Axe Molecular Endocrinology and Nephrology, CHU Research Center and Department of Molecular Medicine, Laval University, 2705 Boulevard Laurier, Quebec City, Quebec G1V 4G2, Canada; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Sheng-Xiang Lin
- Axe Molecular Endocrinology and Nephrology, CHU Research Center and Department of Molecular Medicine, Laval University, 2705 Boulevard Laurier, Quebec City, Quebec G1V 4G2, Canada.
| |
Collapse
|
119
|
Oberhuber M, Pecoraro M, Rusz M, Oberhuber G, Wieselberg M, Haslinger P, Gurnhofer E, Schlederer M, Limberger T, Lagger S, Pencik J, Kodajova P, Högler S, Stockmaier G, Grund‐Gröschke S, Aberger F, Bolis M, Theurillat J, Wiebringhaus R, Weiss T, Haitel A, Brehme M, Wadsak W, Griss J, Mohr T, Hofer A, Jäger A, Pollheimer J, Egger G, Koellensperger G, Mann M, Hantusch B, Kenner L. STAT3-dependent analysis reveals PDK4 as independent predictor of recurrence in prostate cancer. Mol Syst Biol 2020; 16:e9247. [PMID: 32323921 PMCID: PMC7178451 DOI: 10.15252/msb.20199247] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 01/05/2023] Open
Abstract
Prostate cancer (PCa) has a broad spectrum of clinical behavior; hence, biomarkers are urgently needed for risk stratification. Here, we aim to find potential biomarkers for risk stratification, by utilizing a gene co-expression network of transcriptomics data in addition to laser-microdissected proteomics from human and murine prostate FFPE samples. We show up-regulation of oxidative phosphorylation (OXPHOS) in PCa on the transcriptomic level and up-regulation of the TCA cycle/OXPHOS on the proteomic level, which is inversely correlated to STAT3 expression. We hereby identify gene expression of pyruvate dehydrogenase kinase 4 (PDK4), a key regulator of the TCA cycle, as a promising independent prognostic marker in PCa. PDK4 predicts disease recurrence independent of diagnostic risk factors such as grading, staging, and PSA level. Therefore, low PDK4 is a promising marker for PCa with dismal prognosis.
Collapse
|
120
|
P-REX1-Independent, Calcium-Dependent RAC1 Hyperactivation in Prostate Cancer. Cancers (Basel) 2020; 12:cancers12020480. [PMID: 32092966 PMCID: PMC7072377 DOI: 10.3390/cancers12020480] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/07/2020] [Accepted: 02/17/2020] [Indexed: 12/15/2022] Open
Abstract
The GTPase Rac1 is a well-established master regulator of cell motility and invasiveness contributing to cancer metastasis. Dysregulation of the Rac1 signaling pathway, resulting in elevated motile and invasive potential, has been reported in multiple cancers. However, there are limited studies on the regulation of Rac1 in prostate cancer. Here, we demonstrate that aggressive androgen-independent prostate cancer cells display marked hyperactivation of Rac1. This hyperactivation is independent of P-Rex1 activity or its direct activators, the PI3K product PIP3 and Gβγ subunits. Furthermore, we demonstrate that the motility and invasiveness of PC3 prostate cancer cells is independent of P-Rex1, supporting the analysis of publicly available datasets indicating no correlation between high P-Rex1 expression and cancer progression in patients. Rac1 hyperactivation was not related to the presence of activating Rac1 mutations and was insensitive to overexpression of a Rac-GAP or the silencing of specific Rac-GEFs expressed in prostate cancer cells. Interestingly, active Rac1 levels in these cells were markedly reduced by elevations in intracellular calcium or by serum stimulation, suggesting the presence of an alternative means of Rac1 regulation in prostate cancer that does not involve previously established paradigms.
Collapse
|
121
|
Chromatin remodelling factor BAF155 protects hepatitis B virus X protein (HBx) from ubiquitin-independent proteasomal degradation. Emerg Microbes Infect 2020; 8:1393-1405. [PMID: 31533543 PMCID: PMC6758689 DOI: 10.1080/22221751.2019.1666661] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
HBx is a short-lived protein whose rapid turnover is mainly regulated by ubiquitin-dependent proteasomal degradation pathways. Our prior work identified BAF155 to be one of the HBx binding partners. Since BAF155 has been shown to stabilize other members of the SWI/SNF chromatin remodelling complex by attenuating their proteasomal degradation, we proposed that BAF155 might also contribute to stabilizing HBx protein in a proteasome-dependent manner. Here we report that BAF155 protected hepatitis B virus X protein (HBx) from ubiquitin-independent proteasomal degradation by competing with the 20S proteasome subunit PSMA7 to bind to HBx. BAF155 was found to directly interact with HBx via binding of its SANT domain to the HBx region between amino acid residues 81 and 120. Expression of either full-length BAF155 or SANT domain increased HBx protein levels whereas siRNA-mediated knockdown of endogenous BAF155 reduced HBx protein levels. Increased HBx stability and steady-state level by BAF155 were attributable to inhibition of ubiquitin-independent and PSMA7-mediated protein degradation. Consequently, overexpression of BAF155 enhanced the transcriptional transactivation function of HBx, activated protooncogene expression and inhibited hepatoma cell clonogenicity. These results suggest that BAF155 plays important roles in ubiquitin-independent degradation of HBx, which may be related to the pathogenesis and carcinogenesis of HBV-associated HCC.
Collapse
|
122
|
Prokhnevska N, Emerson DA, Kissick HT, Redmond WL. Immunological Complexity of the Prostate Cancer Microenvironment Influences the Response to Immunotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1210:121-147. [PMID: 31900908 DOI: 10.1007/978-3-030-32656-2_7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Prostate cancer is one of the most common cancers in men and a leading cause of cancer-related death. Recent advances in the treatment of advanced prostate cancer, including the use of more potent and selective inhibitors of the androgen signaling pathway, have provided significant clinical benefit for men with metastatic castration-resistant prostate cancer (mCRPC). However, most patients develop progressive lethal disease, highlighting the need for more effective treatments. One such approach is immunotherapy, which harness the power of the patient's immune system to identify and destroy cancer cells through the activation of cytotoxic CD8 T cells specific for tumor antigens. Although immunotherapy, particularly checkpoint blockade, can induce significant clinical responses in patients with solid tumors or hematological malignancies, minimal efficacy has been observed in men with mCRPC. In the current review, we discuss our current understanding of the immunological complexity of the immunosuppressive prostate cancer microenvironment, preclinical models of prostate cancer, and recent advances in immunotherapy clinical trials to improve outcomes for men with mCRPC.
Collapse
Affiliation(s)
| | - Dana A Emerson
- Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA.,Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | | | - William L Redmond
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA.
| |
Collapse
|
123
|
MYOCD and SMAD3/SMAD4 form a positive feedback loop and drive TGF-β-induced epithelial-mesenchymal transition in non-small cell lung cancer. Oncogene 2020; 39:2890-2904. [PMID: 32029901 DOI: 10.1038/s41388-020-1189-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/18/2020] [Accepted: 01/23/2020] [Indexed: 11/08/2022]
Abstract
Myocardin (MYOCD) promotes Smad3-mediated transforming growth factor-β (TGF-β) signaling in mouse fibroblast cells. Our previous studies show that TGF-β/SMADs signaling activation enhances epithelial-mesenchymal transition (EMT) in human non-small cell lung cancer (NSCLC) cells. However, whether and how MYOCD contributes to TGF-β-induced EMT of NSCLC cells are poorly elucidated. Here, we found that TGF-β-induced EMT was accompanied by increased MYOCD expression. Interestingly, MYOCD overexpression augmented EMT and invasion of NSCLC cells induced by TGF-β, whereas knockdown of MYOCD expression attenuated these effects. Overexpression and knockdown of MYOCD resulted in the upregulation and downregulation of TGF-β-induced Snail mRNA, respectively. Moreover, MYOCD overexpression promoted TGF-β-stimulated NSCLC cell metastasis in vivo. MYOCD was highly expressed and positively correlated with Snail in metastatic NSCLC tissues. Mechanistically, MYOCD directly interacted with SMAD3 and sustained the formation of TGF-β-induced nuclear SMAD3/SMAD4 complex, facilitating TGF-β/SMAD3-induced transactivation of Snail. Importantly, MYOCD was transcriptionally activated by TGF-β-induced SMAD3/SMAD4 complex and CRISPR/Cas9-mediated silencing of SMAD3/SMAD4 led to a reduction in MYOCD mRNA expression. Taken together, our findings indicate that MYOCD promotes TGF-β-induced EMT and metastasis of NSCLC and identify a positive feedback loop between MYOCD and SMAD3/SMAD4 driving TGF-β-induced EMT.
Collapse
|
124
|
Wei T, Zhong J. A Preliminary Study of Knowledge Transfer in Multi-Classification Using Gene Expression Programming. Front Neurosci 2020; 13:1396. [PMID: 32009880 PMCID: PMC6978847 DOI: 10.3389/fnins.2019.01396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/10/2019] [Indexed: 12/04/2022] Open
Abstract
Gene Expression Programming (GEP), a variant of Genetic Programming (GP), is a well established technique for automatic generation of computer programs. Due to the flexible representation, GEP has long been concerned as a classification algorithm for various applications. Whereas, GEP cannot be extended to multi-classification directly, and thus is only capable of treating an M-classification task as M separate binary classifications without considering the inter-relationship among classes. Consequently, GEP-based multi-classifier may suffer from output conflict of various class labels, and the underlying conflict can probably lead to the degraded performance in multi-classification. This paper employs evolutionary multitasking optimization paradigm in an existing GEP-based multi-classification framework, so as to alleviate the output conflict of each separate binary GEP classifier. Therefore, several knowledge transfer strategies are implemented to enable the interation among the population of each separate binary task. Experimental results on 10 high-dimensional datasets indicate that knowledge transfer among separate binary classifiers can enhance multi-classification performance within the same computational budget.
Collapse
Affiliation(s)
- Tingyang Wei
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
| | - Jinghui Zhong
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, China.,Sino-Singapore International Joint Research Institute, Guangzhou, China
| |
Collapse
|
125
|
The need for rapid therapeutic efficacy testing for cancer therapy. Exp Mol Pathol 2020; 113:104382. [PMID: 31982397 DOI: 10.1016/j.yexmp.2020.104382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/21/2020] [Indexed: 11/23/2022]
|
126
|
Yasumizu Y, Rajabi H, Jin C, Hata T, Pitroda S, Long MD, Hagiwara M, Li W, Hu Q, Liu S, Yamashita N, Fushimi A, Kui L, Samur M, Yamamoto M, Zhang Y, Zhang N, Hong D, Maeda T, Kosaka T, Wong KK, Oya M, Kufe D. MUC1-C regulates lineage plasticity driving progression to neuroendocrine prostate cancer. Nat Commun 2020; 11:338. [PMID: 31953400 PMCID: PMC6969104 DOI: 10.1038/s41467-019-14219-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 12/20/2019] [Indexed: 02/06/2023] Open
Abstract
Neuroendocrine prostate cancer (NEPC) is an aggressive malignancy with no effective targeted therapies. The oncogenic MUC1-C protein is overexpressed in castration-resistant prostate cancer (CRPC) and NEPC, but its specific role is unknown. Here, we demonstrate that upregulation of MUC1-C in androgen-dependent PC cells suppresses androgen receptor (AR) axis signaling and induces the neural BRN2 transcription factor. MUC1-C activates a MYC→BRN2 pathway in association with induction of MYCN, EZH2 and NE differentiation markers (ASCL1, AURKA and SYP) linked to NEPC progression. Moreover, MUC1-C suppresses the p53 pathway, induces the Yamanaka pluripotency factors (OCT4, SOX2, KLF4 and MYC) and drives stemness. Targeting MUC1-C decreases PC self-renewal capacity and tumorigenicity, suggesting a potential therapeutic approach for CRPC and NEPC. In PC tissues, MUC1 expression associates with suppression of AR signaling and increases in BRN2 expression and NEPC score. These results highlight MUC1-C as a master effector of lineage plasticity driving progression to NEPC.
Collapse
Affiliation(s)
- Yota Yasumizu
- Dana-Farber Cancer Institute Harvard Medical School, Boston, MA, USA
| | - Hasan Rajabi
- Dana-Farber Cancer Institute Harvard Medical School, Boston, MA, USA
| | - Caining Jin
- Dana-Farber Cancer Institute Harvard Medical School, Boston, MA, USA
| | - Tsuyoshi Hata
- Dana-Farber Cancer Institute Harvard Medical School, Boston, MA, USA.,Department of Gastrointestinal Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Sean Pitroda
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
| | - Mark D Long
- Department of Biostatistics and Bioinformatics Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Masayuki Hagiwara
- Dana-Farber Cancer Institute Harvard Medical School, Boston, MA, USA
| | - Wei Li
- Dana-Farber Cancer Institute Harvard Medical School, Boston, MA, USA
| | - Qiang Hu
- Department of Biostatistics and Bioinformatics Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Nami Yamashita
- Dana-Farber Cancer Institute Harvard Medical School, Boston, MA, USA
| | - Atsushi Fushimi
- Dana-Farber Cancer Institute Harvard Medical School, Boston, MA, USA
| | - Ling Kui
- Dana-Farber Cancer Institute Harvard Medical School, Boston, MA, USA
| | - Mehmet Samur
- Dana-Farber Cancer Institute Harvard Medical School, Boston, MA, USA
| | - Masaaki Yamamoto
- Dana-Farber Cancer Institute Harvard Medical School, Boston, MA, USA.,Department of Gastrointestinal Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yan Zhang
- Dana-Farber Cancer Institute Harvard Medical School, Boston, MA, USA
| | - Ning Zhang
- Dana-Farber Cancer Institute Harvard Medical School, Boston, MA, USA
| | - Deli Hong
- Dana-Farber Cancer Institute Harvard Medical School, Boston, MA, USA
| | - Takahiro Maeda
- Department of Urology, Keio University School of Medicine Shinjuku-ku, Tokyo, Japan
| | - Takeo Kosaka
- Department of Urology, Keio University School of Medicine Shinjuku-ku, Tokyo, Japan
| | - Kwok K Wong
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine Shinjuku-ku, Tokyo, Japan
| | - Donald Kufe
- Dana-Farber Cancer Institute Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
127
|
Mapelli SN, Albino D, Mello-Grand M, Shinde D, Scimeca M, Bonfiglio R, Bonanno E, Chiorino G, Garcia-Escudero R, Catapano CV, Carbone GM. A Novel Prostate Cell Type-Specific Gene Signature to Interrogate Prostate Tumor Differentiation Status and Monitor Therapeutic Response (Running Title: Phenotypic Classification of Prostate Tumors). Cancers (Basel) 2020; 12:cancers12010176. [PMID: 31936761 PMCID: PMC7016595 DOI: 10.3390/cancers12010176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/28/2019] [Accepted: 01/06/2020] [Indexed: 02/07/2023] Open
Abstract
In this study, we extracted prostate cell-specific gene sets (metagenes) to define the epithelial differentiation status of prostate cancers and, using a deconvolution-based strategy, interrogated thousands of primary and metastatic tumors in public gene profiling datasets. We identified a subgroup of primary prostate tumors with low luminal epithelial enrichment (LumElow). LumElow tumors were associated with higher Gleason score and mutational burden, reduced relapse-free and overall survival, and were more likely to progress to castration-resistant prostate cancer (CRPC). Using discriminant function analysis, we generate a predictive 10-gene classifier for clinical implementation. This mini-classifier predicted with high accuracy the luminal status in both primary tumors and CRPCs. Immunohistochemistry for COL4A1, a low-luminal marker, sustained the association of attenuated luminal phenotype with metastatic disease. We found also an association of LumE score with tumor phenotype in genetically engineered mouse models (GEMMs) of prostate cancer. Notably, the metagene approach led to the discovery of drugs that could revert the low luminal status in prostate cell lines and mouse models. This study describes a novel tool to dissect the intrinsic heterogeneity of prostate tumors and provide predictive information on clinical outcome and treatment response in experimental and clinical samples.
Collapse
Affiliation(s)
- Sarah N. Mapelli
- Institute of Oncology Research (IOR), Università della Svizzera italiana (USI), 6500 Bellinzona, Switzerland; (S.N.M.); (D.A.); (D.S.)
- Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
| | - Domenico Albino
- Institute of Oncology Research (IOR), Università della Svizzera italiana (USI), 6500 Bellinzona, Switzerland; (S.N.M.); (D.A.); (D.S.)
| | - Maurizia Mello-Grand
- Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia Valenta, 13900 Biella, Italy; (M.M.-G.); (G.C.)
| | - Dheeraj Shinde
- Institute of Oncology Research (IOR), Università della Svizzera italiana (USI), 6500 Bellinzona, Switzerland; (S.N.M.); (D.A.); (D.S.)
| | - Manuel Scimeca
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.S.); (R.B.); (E.B.)
| | - Rita Bonfiglio
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.S.); (R.B.); (E.B.)
| | - Elena Bonanno
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.S.); (R.B.); (E.B.)
| | - Giovanna Chiorino
- Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia Valenta, 13900 Biella, Italy; (M.M.-G.); (G.C.)
| | - Ramon Garcia-Escudero
- Molecular Oncology Unit, CIEMAT, 28040 Madrid, Spain
- Biomedicine Research Institute, Hospital 12 octubre, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28040 Madrid, Spain
- Correspondence: (R.G.-E.); (C.V.C.); (G.M.C.); Tel.: +41-918210074 (G.M.C.); Fax: +41-918200397 (G.M.C.)
| | - Carlo V. Catapano
- Institute of Oncology Research (IOR), Università della Svizzera italiana (USI), 6500 Bellinzona, Switzerland; (S.N.M.); (D.A.); (D.S.)
- Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
- Department of Oncology, Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland
- Correspondence: (R.G.-E.); (C.V.C.); (G.M.C.); Tel.: +41-918210074 (G.M.C.); Fax: +41-918200397 (G.M.C.)
| | - Giuseppina M. Carbone
- Institute of Oncology Research (IOR), Università della Svizzera italiana (USI), 6500 Bellinzona, Switzerland; (S.N.M.); (D.A.); (D.S.)
- Correspondence: (R.G.-E.); (C.V.C.); (G.M.C.); Tel.: +41-918210074 (G.M.C.); Fax: +41-918200397 (G.M.C.)
| |
Collapse
|
128
|
Jiang M, Kang Y, Sewastianik T, Wang J, Tanton H, Alder K, Dennis P, Xin Y, Wang Z, Liu R, Zhang M, Huang Y, Loda M, Srivastava A, Chen R, Liu M, Carrasco RD. BCL9 provides multi-cellular communication properties in colorectal cancer by interacting with paraspeckle proteins. Nat Commun 2020; 11:19. [PMID: 31911584 PMCID: PMC6946813 DOI: 10.1038/s41467-019-13842-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 11/22/2019] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer, which despite recent advances in treatment, remains incurable due to molecular heterogeneity of tumor cells. The B-cell lymphoma 9 (BCL9) oncogene functions as a transcriptional co-activator of the Wnt/β-catenin pathway, which plays critical roles in CRC pathogenesis. Here we have identified a β-catenin-independent function of BCL9 in a poor-prognosis subtype of CRC tumors characterized by expression of stromal and neural associated genes. In response to spontaneous calcium transients or cellular stress, BCL9 is recruited adjacent to the interchromosomal regions, where it stabilizes the mRNA of calcium signaling and neural associated genes by interacting with paraspeckle proteins. BCL9 subsequently promotes tumor progression and remodeling of the tumor microenvironment (TME) by sustaining the calcium transients and neurotransmitter-dependent communication among CRC cells. These data provide additional insights into the role of BCL9 in tumor pathogenesis and point towards additional avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Meng Jiang
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.,Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150001, China
| | - Yue Kang
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.,Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tomasz Sewastianik
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.,Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, 02776, Poland
| | - Jiao Wang
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.,Department of Obstetrics and Gynecology, Fourth Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150001, China
| | - Helen Tanton
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Keith Alder
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Peter Dennis
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Yu Xin
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Zhongqiu Wang
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.,Depatment of Radiation Oncology and Cyberknife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Ruiyang Liu
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Mengyun Zhang
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Ying Huang
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Massimo Loda
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Amitabh Srivastava
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Runsheng Chen
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ming Liu
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150001, China
| | - Ruben D Carrasco
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA. .,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
129
|
Attenuation of NAD[P]H:quinone oxidoreductase 1 aggravates prostate cancer and tumor cell plasticity through enhanced TGFβ signaling. Commun Biol 2020; 3:12. [PMID: 31909204 PMCID: PMC6941961 DOI: 10.1038/s42003-019-0720-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 12/04/2019] [Indexed: 12/30/2022] Open
Abstract
NAD[P]H:quinone oxidoreductase 1 (NQO1) regulates cell fate decisions in response to stress. Oxidative stress supports cancer maintenance and progression. Previously we showed that knockdown of NQO1 (NQO1low) prostate cancer cells upregulate pro-inflammatory cytokines and survival under hormone-deprived conditions. Here, we tested the ability of NQO1low cells to form tumors. We found NQO1low cells form aggressive tumors compared with NQO1high cells. Biopsy specimens and circulating tumor cells showed biochemical recurrent prostate cancer was associated with low NQO1. NQO1 silencing was sufficient to induce SMAD-mediated TGFβ signaling and mesenchymal markers. TGFβ treatment decreased NQO1 levels and induced molecular changes similar to NQO1 knockdown cells. Functionally, NQO1 depletion increased migration and sensitivity to oxidative stress. Collectively, this work reveals a possible new gatekeeper role for NQO1 in counteracting cellular plasticity in prostate cancer cells. Further, combining NQO1 with TGFβ signaling molecules may serve as a better signature to predict biochemical recurrence. Thapa et al find that depletion of the antioxidant enzyme NAD[P]H:Quinone Oxidoreductase 1 (NQO1) accelerates prostate tumorigenesis and induces the epithelial-to-mesenchymal transition by activating TGFβ signaling. They also find that low NQO1 is associated with mesenchymal signature and biochemical recurrence in clinical samples.
Collapse
|
130
|
The role of JNK in prostate cancer progression and therapeutic strategies. Biomed Pharmacother 2020; 121:109679. [DOI: 10.1016/j.biopha.2019.109679] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/10/2019] [Accepted: 11/16/2019] [Indexed: 12/31/2022] Open
|
131
|
Alam MM, Chakma K, Mahmud S, Hossain MN, Ahsan T. A systemic analysis reveals TRIM24-SMARCC1 dependent poor prognosis of hepatocellular carcinoma. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
132
|
Krishnamoorthy PKP, Kamal MA, Warsi MK, Alnajeebi AM, Ali HA, Helmi N, Izhari MA, Mustafa S, Firoz A, Mobashir M. In-silico study reveals immunological signaling pathways, their genes, and potential herbal drug targets in ovarian cancer. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
133
|
PlexinB1 Promotes Nuclear Translocation of the Glucocorticoid Receptor. Cells 2019; 9:cells9010003. [PMID: 31861264 PMCID: PMC7017238 DOI: 10.3390/cells9010003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/29/2019] [Accepted: 12/14/2019] [Indexed: 12/12/2022] Open
Abstract
Androgen receptor (AR) and glucocorticoid receptor (GR) are nuclear receptors whose function depends on their entry into the nucleus where they activate transcription of an overlapping set of genes. Both AR and GR have a role in resistance to androgen deprivation therapy (ADT), the mainstay of treatment for late stage prostate cancer. PlexinB1, a receptor for semaphorins, has been implicated in various cancers including prostate cancer and has a role in resistance to ADT. We show here that activation of PlexinB1 by Sema4D and Sema3C results in translocation of endogenous GR to the nucleus in prostate cancer cells, and that this effect is dependent on PlexinB1 expression. Sema4D/Sema3C promotes the translocation of GR-GFP to the nucleus and mutation of the nuclear localization sequence (NLS1) of GR abrogates this response. These findings implicate the importin α/β system in the Sema4D/Sema3C-mediated nuclear import of GR. Knockdown of PlexinB1 in prostate cancer cells decreases the levels of glucocorticoid-responsive gene products and antagonizes the decrease in cell motility and cell area of prostate cancer cells upon dexamethasone treatment, demonstrating the functional significance of these findings. These results show that PlexinB1 activation has a role in the trafficking and activation of the nuclear receptor GR and thus may have a role in resistance to androgen deprivation therapy in late stage prostate cancer.
Collapse
|
134
|
Valcarcel-Jimenez L, Macchia A, Crosas-Molist E, Schaub-Clerigué A, Camacho L, Martín-Martín N, Cicogna P, Viera-Bardón C, Fernández-Ruiz S, Rodriguez-Hernandez I, Hermanova I, Astobiza I, Cortazar AR, Corres-Mendizabal J, Gomez-Muñoz A, Sanz-Moreno V, Torrano V, Carracedo A. PGC1α Suppresses Prostate Cancer Cell Invasion through ERRα Transcriptional Control. Cancer Res 2019; 79:6153-6165. [PMID: 31594836 DOI: 10.1158/0008-5472.can-19-1231] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/27/2019] [Accepted: 10/04/2019] [Indexed: 11/16/2022]
Abstract
The PPARγ coactivator 1 alpha (PGC1α) is a prostate tumor suppressor that controls the balance between anabolism and catabolism. PGC1A downregulation in prostate cancer is causally associated with the development of metastasis. Here we show that the transcriptional complex formed by PGC1α and estrogen-related receptor 1 alpha (ERRα) controls the aggressive properties of prostate cancer cells. PGC1α expression significantly decreased migration and invasion of various prostate cancer cell lines. This phenotype was consistent with remarkable cytoskeletal remodeling and inhibition of integrin alpha 1 and beta 4 expression, both in vitro and in vivo. CRISPR/Cas9-based deletion of ERRα suppressed PGC1α regulation of cytoskeletal organization and invasiveness. Mechanistically, PGC1α expression decreased MYC levels and activity prior to inhibition of invasiveness. In addition, PGC1α and ERRα associated at the MYC promoter, supporting the inhibitory activity PGC1α. The inverse correlation between PGC1α-ERRα activity and MYC levels was corroborated in multiple prostate cancer datasets. Altogether, these results support that PGC1α-ERRα functions as a tumor-suppressive transcriptional complex through the regulation of metabolic and signaling events. SIGNIFICANCE: These findings describe how downregulation of the prostate tumor suppressor PGC1 drives invasiveness and migration of prostate cancer cells.
Collapse
Affiliation(s)
| | | | - Eva Crosas-Molist
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, United Kingdom
| | | | - Laura Camacho
- CIC bioGUNE, Bizkaia, Spain
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | | | | | | | | | - Irene Rodriguez-Hernandez
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, United Kingdom
| | | | | | | | | | - Antonio Gomez-Muñoz
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Victoria Sanz-Moreno
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, United Kingdom
| | - Verónica Torrano
- CIC bioGUNE, Bizkaia, Spain.
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Bilbao, Spain
- CIBERONC, Madrid, Spain
| | - Arkaitz Carracedo
- CIC bioGUNE, Bizkaia, Spain.
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Bilbao, Spain
- CIBERONC, Madrid, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
135
|
Vidman L, Källberg D, Rydén P. Cluster analysis on high dimensional RNA-seq data with applications to cancer research - An evaluation study. PLoS One 2019; 14:e0219102. [PMID: 31805048 PMCID: PMC6894875 DOI: 10.1371/journal.pone.0219102] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/20/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Clustering of gene expression data is widely used to identify novel subtypes of cancer. Plenty of clustering approaches have been proposed, but there is a lack of knowledge regarding their relative merits and how data characteristics influence the performance. We evaluate how cluster analysis choices affect the performance by studying four publicly available human cancer data sets: breast, brain, kidney and stomach cancer. In particular, we focus on how the sample size, distribution of subtypes and sample heterogeneity affect the performance. RESULTS In general, increasing the sample size had limited effect on the clustering performance, e.g. for the breast cancer data similar performance was obtained for n = 40 as for n = 330. The relative distribution of the subtypes had a noticeable effect on the ability to identify the disease subtypes and data with disproportionate cluster sizes turned out to be difficult to cluster. Both the choice of clustering method and selection method affected the ability to identify the subtypes, but the relative performance varied between data sets, making it difficult to rank the approaches. For some data sets, the performance was substantially higher when the clustering was based on data from only one sex compared to data from a mixed population. This suggests that homogeneous data are easier to cluster than heterogeneous data and that clustering males and females individually may be beneficial and increase the chance to detect novel subtypes. It was also observed that the performance often differed substantially between females and males. CONCLUSIONS The number of samples seems to have a limited effect on the performance while the heterogeneity, at least with respect to sex, is important for the performance. Hence, by analyzing the genders separately, the possible loss caused by having fewer samples could be outweighed by the benefit of a more homogeneous data.
Collapse
Affiliation(s)
- Linda Vidman
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden
| | - David Källberg
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden
- Department of Statistics, USBE, Umeå University, Umeå, Sweden
| | - Patrik Rydén
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden
| |
Collapse
|
136
|
Grau M, Lenz G, Lenz P. Dissection of gene expression datasets into clinically relevant interaction signatures via high-dimensional correlation maximization. Nat Commun 2019; 10:5417. [PMID: 31780653 PMCID: PMC6883077 DOI: 10.1038/s41467-019-12713-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/20/2019] [Indexed: 12/12/2022] Open
Abstract
Gene expression is controlled by many simultaneous interactions, frequently measured collectively in biology and medicine by high-throughput technologies. It is a highly challenging task to infer from these data the generating effects and cooperating genes. Here, we present an unsupervised hypothesis-generating learning concept termed signal dissection by correlation maximization (SDCM) that dissects large high-dimensional datasets into signatures. Each signature captures a particular signal pattern that was consistently observed for multiple genes and samples, likely caused by the same underlying interaction. A key difference to other methods is our flexible nonlinear signal superposition model, combined with a precise regression technique. Analyzing gene expression of diffuse large B-cell lymphoma, our method discovers previously unidentified signatures that reveal significant differences in patient survival. These signatures are more predictive than those from various methods used for comparison and robustly validate across technological platforms. This implies highly specific extraction of clinically relevant gene interactions. Identification of clinically relevant gene expression signatures for cancer stratification remains challenging. Here, the authors introduce a flexible nonlinear signal superposition model that enables dissection of large gene expression data sets into signatures and extraction of gene interactions.
Collapse
Affiliation(s)
- Michael Grau
- Department of Medicine A, Albert-Schweitzer Campus 1, University Hospital Münster, 48149, Münster, Germany.,Cluster of Excellence EXC 1003, Cells in Motion, University of Münster, 48149, Münster, Germany
| | - Georg Lenz
- Department of Medicine A, Albert-Schweitzer Campus 1, University Hospital Münster, 48149, Münster, Germany.,Cluster of Excellence EXC 1003, Cells in Motion, University of Münster, 48149, Münster, Germany
| | - Peter Lenz
- Department of Physics, Renthof 5, University of Marburg, 35032, Marburg, Germany. .,LOEWE Center for Synthetic Microbiology, 35032, Marburg, Germany.
| |
Collapse
|
137
|
Targeting the lysyl oxidases in tumour desmoplasia. Biochem Soc Trans 2019; 47:1661-1678. [DOI: 10.1042/bst20190098] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 02/08/2023]
Abstract
The extracellular matrix (ECM) is a fundamental component of tissue microenvironments and its dysregulation has been implicated in a number of diseases, in particular cancer. Tumour desmoplasia (fibrosis) accompanies the progression of many solid cancers, and is also often induced as a result of many frontline chemotherapies. This has recently led to an increased interest in targeting the underlying processes. The major structural components of the ECM contributing to desmoplasia are the fibrillar collagens, whose key assembly mechanism is the enzymatic stabilisation of procollagen monomers by the lysyl oxidases. The lysyl oxidase family of copper-dependent amine oxidase enzymes are required for covalent cross-linking of collagen (as well as elastin) molecules into the mature ECM. This key step in the assembly of collagens is of particular interest in the cancer field since it is essential to the tumour desmoplastic response. LOX family members are dysregulated in many cancers and consequently the development of small molecule inhibitors targeting their enzymatic activity has been initiated by many groups. Development of specific small molecule inhibitors however has been hindered by the lack of crystal structures of the active sites, and therefore alternate indirect approaches to target LOX have also been explored. In this review, we introduce the importance of, and assembly steps of the ECM in the tumour desmoplastic response focussing on the role of the lysyl oxidases. We also discuss recent progress in targeting this family of enzymes as a potential therapeutic approach.
Collapse
|
138
|
Lin CJ, Yun EJ, Lo UG, Tai YL, Deng S, Hernandez E, Dang A, Chen YA, Saha D, Mu P, Lin H, Li TK, Shen TL, Lai CH, Hsieh JT. The paracrine induction of prostate cancer progression by caveolin-1. Cell Death Dis 2019; 10:834. [PMID: 31685812 PMCID: PMC6828728 DOI: 10.1038/s41419-019-2066-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 10/02/2019] [Accepted: 10/16/2019] [Indexed: 12/21/2022]
Abstract
A subpopulation of cancer stem cells (CSCs) plays a critical role of cancer progression, recurrence, and therapeutic resistance. Many studies have indicated that castration-resistant prostate cancer (CRPC) is associated with stem cell phenotypes, which could further promote neuroendocrine transdifferentiation. Although only a small subset of genetically pre-programmed cells in each organ has stem cell capability, CSCs appear to be inducible among a heterogeneous cancer cell population. However, the inductive mechanism(s) leading to the emergence of these CSCs are not fully understood in CRPC. Tumor cells actively produce, release, and utilize exosomes to promote cancer development and metastasis, cancer immune evasion as well as chemotherapeutic resistance; the impact of tumor-derived exosomes (TDE) and its cargo on prostate cancer (PCa) development is still unclear. In this study, we demonstrate that the presence of Cav-1 in TDE acts as a potent driver to induce CSC phenotypes and epithelial-mesenchymal transition in PCa undergoing neuroendocrine differentiation through NFκB signaling pathway. Furthermore, Cav-1 in mCRPC-derived exosomes is capable of inducing radio- and chemo-resistance in recipient cells. Collectively, these data support Cav-1 as a critical driver for mCRPC progression.
Collapse
Affiliation(s)
- Chun-Jung Lin
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Eun-Jin Yun
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673, Republic of Korea
| | - U-Ging Lo
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yu-Ling Tai
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Su Deng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Elizabeth Hernandez
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Andrew Dang
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yu-An Chen
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Debabrata Saha
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ping Mu
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Ho Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Tsai-Kun Li
- Department and Graduate Institute of Microbiology, National Taiwan University, Taipei, Taiwan
| | - Tang-Long Shen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
139
|
Muralidhar V, Zhang J, Wang Q, Mahal BA, Butler SS, Spratt DE, Davicioni E, Sartor O, Feng FY, Mouw KW, Nguyen PL. Genomic Validation of 3-Tiered Clinical Subclassification of High-Risk Prostate Cancer. Int J Radiat Oncol Biol Phys 2019; 105:621-627. [DOI: 10.1016/j.ijrobp.2019.06.2510] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/18/2019] [Accepted: 06/17/2019] [Indexed: 02/06/2023]
|
140
|
Cao R, Mohammadian Bajgiran A, Afshari Mirak S, Shakeri S, Zhong X, Enzmann D, Raman S, Sung K. Joint Prostate Cancer Detection and Gleason Score Prediction in mp-MRI via FocalNet. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:2496-2506. [PMID: 30835218 DOI: 10.1109/tmi.2019.2901928] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Multi-parametric MRI (mp-MRI) is considered the best non-invasive imaging modality for diagnosing prostate cancer (PCa). However, mp-MRI for PCa diagnosis is currently limited by the qualitative or semi-quantitative interpretation criteria, leading to inter-reader variability and a suboptimal ability to assess lesion aggressiveness. Convolutional neural networks (CNNs) are a powerful method to automatically learn the discriminative features for various tasks, including cancer detection. We propose a novel multi-class CNN, FocalNet, to jointly detect PCa lesions and predict their aggressiveness using Gleason score (GS). FocalNet characterizes lesion aggressiveness and fully utilizes distinctive knowledge from mp-MRI. We collected a prostate mp-MRI dataset from 417 patients who underwent 3T mp-MRI exams prior to robotic-assisted laparoscopic prostatectomy. FocalNet was trained and evaluated in this large study cohort with fivefold cross validation. In the free-response receiver operating characteristics (FROC) analysis for lesion detection, FocalNet achieved 89.7% and 87.9% sensitivity for index lesions and clinically significant lesions at one false positive per patient, respectively. For the GS classification, evaluated by the receiver operating characteristics (ROC) analysis, FocalNet received the area under the curve of 0.81 and 0.79 for the classifications of clinically significant PCa (GS ≥ 3 + 4) and PCa with GS ≥ 4 + 3, respectively. With the comparison to the prospective performance of radiologists using the current diagnostic guideline, FocalNet demonstrated comparable detection sensitivity for index lesions and clinically significant lesions, only 3.4% and 1.5% lower than highly experienced radiologists without statistical significance.
Collapse
|
141
|
Eich ML, Chandrashekar DS, Rodriguez Pen A MDC, Robinson AD, Siddiqui J, Daignault-Newton S, Chakravarthi BVSK, Kunju LP, Netto GJ, Varambally S. Characterization of glycine-N-acyltransferase like 1 (GLYATL1) in prostate cancer. Prostate 2019; 79:1629-1639. [PMID: 31376196 DOI: 10.1002/pros.23887] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 07/09/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Recent microarray and sequencing studies of prostate cancer showed multiple molecular alterations during cancer progression. It is critical to evaluate these molecular changes to identify new biomarkers and targets. We performed analysis of glycine-N-acyltransferase like 1 (GLYATL1) expression in various stages of prostate cancer in this study and evaluated the regulation of GLYATL1 by androgen. METHOD We performed in silico analysis of cancer gene expression profiling and transcriptome sequencing to evaluate GLYATL1 expression in prostate cancer. Furthermore, we performed immunohistochemistry using specific GLYATL1 antibody using high-density prostate cancer tissue microarray containing primary and metastatic prostate cancer. We also tested the regulation of GLYATL1 expression by androgen and ETS transcription factor ETV1. In addition, we performed RNA-sequencing of GLYATL1 modulated prostate cancer cells to evaluate the gene expression and changes in molecular pathways. RESULTS Our in silico analysis of cancer gene expression profiling and transcriptome sequencing we revealed an overexpression of GLYATL1 in primary prostate cancer. Confirming these findings by immunohistochemistry, we show that GLYATL1 is overexpressed in primary prostate cancer compared with metastatic prostate cancer and benign prostatic tissue. Low-grade cancers had higher GLYATL1 expression compared to high-grade prostate tumors. Our studies showed that GLYATL1 is upregulated upon androgen treatment in LNCaP prostate cancer cells which harbors ETV1 gene rearrangement. Furthermore, ETV1 knockdown in LNCaP cells showed downregulation of GLYATL1 suggesting potential regulation of GLYATL1 by ETS transcription factor ETV1. Transcriptome sequencing using the GLYATL1 knockdown prostate cancer cell lines LNCaP showed regulation of multiple metabolic pathways. CONCLUSIONS In summary, our study characterizes the expression of GLYATL1 in prostate cancer and explores the regulation of its regulation in prostate cancer showing role for androgen and ETS transcription factor ETV1. Future studies are needed to decipher the biological significance of these findings.
Collapse
Affiliation(s)
- Marie-Lisa Eich
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | - Alyncia D Robinson
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Javed Siddiqui
- Department of Pathology, The University of Michigan, Ann Arbor, Michigan
| | | | | | | | - George J Netto
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Sooryanarayana Varambally
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
142
|
Nilsson R, Nicolaidou V, Koufaris C. Mitochondrial MTHFD isozymes display distinct expression, regulation, and association with cancer. Gene 2019; 716:144032. [PMID: 31377316 DOI: 10.1016/j.gene.2019.144032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023]
Abstract
Mitochondrial folate metabolism is central to the generation of nucleotides, fuelling methylation reactions, and redox homeostasis. Uniquely among the reactions of the mitochondrial folate pathway, the key step of the oxidation of 5,10-methylene-tetrahydrofolate (CH2-THF) can be catalysed by two isozymes, MTHFD2 and MTHFD2L. The MTHFD2 enzyme has recently received considerable attention as an oncogenic enzyme upregulated in several tumour types, which is additionally required by cancer cells in vitro and in vivo. However, much less is currently known about MTHFD2L and its expression in cancer. In this study, we examine and compare the expression and regulation of the two mitochondrial MTHFD isozymes in normal human and cancer cells. We found that normal and cancer cells express both enzymes, although MTHFD2 has a much higher baseline expression. Unlike MTHFD2, the MTHFD2L isozyme does not show an association with proliferation and growth factor stimulation. In addition, we did not find evidence of a compensatory increase of MTHFD2L following suppression of its isozyme. This study supports that MTHFD2L is unlikely to have an important function in increased proliferation or cancer. Furthermore, therapeutic strategies aiming to block the mitochondrial folate pathway in cancer should focus on MTHFD2, with MTHFD2L being unlikely to be involved in the development of chemoresistance to targeting of its mitochondrial isozyme.
Collapse
Affiliation(s)
- R Nilsson
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, SE-171 76 Stockholm, Sweden; Division of Cardiovascular Medicine, Karolinska University Hospital, SE-171 76 Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - V Nicolaidou
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
| | - C Koufaris
- Department of Biological Sciences, University of Cyprus, 2109 Nicosia, Cyprus.
| |
Collapse
|
143
|
Rani RR, Ramyachitra D, Brindhadevi A. Detection of dynamic protein complexes through Markov Clustering based on Elephant Herd Optimization Approach. Sci Rep 2019; 9:11106. [PMID: 31366992 PMCID: PMC6668483 DOI: 10.1038/s41598-019-47468-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 07/11/2019] [Indexed: 11/19/2022] Open
Abstract
The accessibility of a huge amount of protein-protein interaction (PPI) data has allowed to do research on biological networks that reveal the structure of a protein complex, pathways and its cellular organization. A key demand in computational biology is to recognize the modular structure of such biological networks. The detection of protein complexes from the PPI network, is one of the most challenging and significant problems in the post-genomic era. In Bioinformatics, the frequently employed approach for clustering the networks is Markov Clustering (MCL). Many of the researches for protein complex detection were done on the static PPI network, which suffers from a few drawbacks. To resolve this problem, this paper proposes an approach to detect the dynamic protein complexes through Markov Clustering based on Elephant Herd Optimization Approach (DMCL-EHO). Initially, the proposed method divides the PPI network into a set of dynamic subnetworks under various time points by combining the gene expression data and secondly, it employs the clustering analysis on every subnetwork using the MCL along with Elephant Herd Optimization approach. The experimental analysis was employed on different PPI network datasets and the proposed method surpasses various existing approaches in terms of accuracy measures. This paper identifies the common protein complexes that are expressively enriched in gold-standard datasets and also the pathway annotations of the detected protein complexes using the KEGG database.
Collapse
Affiliation(s)
- R Ranjani Rani
- Department of Computer Science, Bharathiar University, Tamilnadu, India
| | - D Ramyachitra
- Department of Computer Science, Bharathiar University, Tamilnadu, India.
| | - A Brindhadevi
- Department of Computer Science, Bharathiar University, Tamilnadu, India
| |
Collapse
|
144
|
Testa U, Castelli G, Pelosi E. Cellular and Molecular Mechanisms Underlying Prostate Cancer Development: Therapeutic Implications. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E82. [PMID: 31366128 PMCID: PMC6789661 DOI: 10.3390/medicines6030082] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/19/2019] [Accepted: 07/25/2019] [Indexed: 12/15/2022]
Abstract
Prostate cancer is the most frequent nonskin cancer and second most common cause of cancer-related deaths in man. Prostate cancer is a clinically heterogeneous disease with many patients exhibiting an aggressive disease with progression, metastasis, and other patients showing an indolent disease with low tendency to progression. Three stages of development of human prostate tumors have been identified: intraepithelial neoplasia, adenocarcinoma androgen-dependent, and adenocarcinoma androgen-independent or castration-resistant. Advances in molecular technologies have provided a very rapid progress in our understanding of the genomic events responsible for the initial development and progression of prostate cancer. These studies have shown that prostate cancer genome displays a relatively low mutation rate compared with other cancers and few chromosomal loss or gains. The ensemble of these molecular studies has led to suggest the existence of two main molecular groups of prostate cancers: one characterized by the presence of ERG rearrangements (~50% of prostate cancers harbor recurrent gene fusions involving ETS transcription factors, fusing the 5' untranslated region of the androgen-regulated gene TMPRSS2 to nearly the coding sequence of the ETS family transcription factor ERG) and features of chemoplexy (complex gene rearrangements developing from a coordinated and simultaneous molecular event), and a second one characterized by the absence of ERG rearrangements and by the frequent mutations in the E3 ubiquitin ligase adapter SPOP and/or deletion of CDH1, a chromatin remodeling factor, and interchromosomal rearrangements and SPOP mutations are early events during prostate cancer development. During disease progression, genomic and epigenomic abnormalities accrued and converged on prostate cancer pathways, leading to a highly heterogeneous transcriptomic landscape, characterized by a hyperactive androgen receptor signaling axis.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy.
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
145
|
Kristensen G, Berg KD, Toft BG, Stroomberg HV, Nolley R, Brooks JD, Brasso K, Roder MA. Predictive value of AZGP1 following radical prostatectomy for prostate cancer: a cohort study and meta-analysis. J Clin Pathol 2019; 72:696-704. [PMID: 31331953 DOI: 10.1136/jclinpath-2019-205940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/03/2019] [Accepted: 06/07/2019] [Indexed: 01/10/2023]
Abstract
AIMS Zinc-alpha 2-glycoprotein (AZGP1) is a promising tissue biomarker to predict outcomes in men undergoing treatment for localised prostate cancer (PCa). We aimed to examine the association between AZGP1 expression and the endpoints: risk of biochemical failure (BF), initiating castration-based treatment, developing castration-resistant PCa (CRPC) and PCa-specific mortality following radical prostatectomy (RP). METHODS The study included a prospective cohort of 302 patients who underwent RP for PCa from 2002 to 2005. AZGP1 expression was analysed using immunohistochemistry on tissue microarray RP specimens and was scored semiquantitively as low or high expression. Risk of all endpoints was analysed using stratified cumulative incidences and cause-specific Cox regression, and validated with receiver operating curves, calibration and discrimination in competing-risk analyses. A meta-analysis was performed including previous studies investigating AZGP1 expression and risk of BF following RP. RESULTS Median time of follow-up was 14.0 years. The cumulative incidence of all endpoints was significantly higher in patients with low AZGP1 expression compared with patients with high AZGP1 expression (p<0.001). In a multivariate analysis, low AZGP1 expression increases the risk of BF (HR 2.7; 95% CI 1.9 to 3.8; p<0.0001), castration-based treatment (HR 2.2; 95% CI 1.2 to 4.2; p=0.01) and CRPC (HR 2.3; 95% CI 1.1 to 5.0; p=0.03). Validation showed a low risk of prediction error and a high model performance for all endpoints. In a meta-analysis, low AZGP1 was associated with BF (HR 1.7; 95% CI 1.2 to 2.5). CONCLUSIONS Low AZGP1 expression is associated with the risk of aggressive time-dependent outcomes in men undergoing RP for localised PCa.
Collapse
Affiliation(s)
- Gitte Kristensen
- Copenhagen Prostate Cancer Center, Department of Urology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kasper Drimer Berg
- Copenhagen Prostate Cancer Center, Department of Urology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Birgitte Grønkær Toft
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Hein Vincent Stroomberg
- Copenhagen Prostate Cancer Center, Department of Urology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Rosalie Nolley
- Department of Urology, Stanford Medicine, Stanford, California, USA
| | - James D Brooks
- Department of Urology, Stanford Medicine, Stanford, California, USA
| | - Klaus Brasso
- Copenhagen Prostate Cancer Center, Department of Urology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Martin Andreas Roder
- Copenhagen Prostate Cancer Center, Department of Urology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
146
|
Mazzu YZ, Yoshikawa Y, Nandakumar S, Chakraborty G, Armenia J, Jehane LE, Lee GSM, Kantoff PW. Methylation-associated miR-193b silencing activates master drivers of aggressive prostate cancer. Mol Oncol 2019; 13:1944-1958. [PMID: 31225930 PMCID: PMC6717747 DOI: 10.1002/1878-0261.12536] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/14/2019] [Accepted: 06/19/2019] [Indexed: 12/19/2022] Open
Abstract
Epigenetic silencing of miRNA is a primary mechanism of aberrant miRNA expression in cancer, and hypermethylation of miRNA promoters has been reported to contribute to prostate cancer initiation and progression. Recent data have shown that the miR‐193b promoter is hypermethylated in prostate cancer compared with normal tissue, but studies assessing its functional significance have not been performed. We aimed to elucidate the function of miR‐193b and identify its critical targets in prostate cancer. We observed an inverse correlation between miR‐193b level and methylation of its promoter in The Cancer Genome Atlas (TCGA) cohort. Overexpression of miR‐193b in prostate cancer cell lines inhibited invasion and induced apoptosis. We found that a majority of the top 150 genes downregulated when miR‐193b was overexpressed in liposarcoma are overexpressed in metastatic prostate cancer and that 41 miR‐193b target genes overlapped with the 86 genes in the aggressive prostate cancer subtype 1 (PCS1) signature. Overexpression of miR‐193b led to the inhibition of the majority of the 41 genes in prostate cancer cell lines. High expression of the 41 genes was correlated with recurrence of prostate cancer. Knockdown of miR‐193b targets FOXM1 and RRM2 in prostate cancer cells phenocopied overexpression of miR‐193b. Dual treatment with DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitors decreased miR‐193b promoter methylation and restored inhibition of FOXM1 and RRM2. Our data suggest that silencing of miR‐193b through promoter methylation may release the inhibition of PCS1 genes, contributing to prostate cancer progression and suggesting a possible therapeutic strategy for aggressive prostate cancer.
Collapse
Affiliation(s)
- Ying Z Mazzu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Yuki Yoshikawa
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Subhiksha Nandakumar
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Goutam Chakraborty
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Joshua Armenia
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Lina E Jehane
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Gwo-Shu Mary Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Philip W Kantoff
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
147
|
Bhagirath D, Yang TL, Tabatabai ZL, Shahryari V, Majid S, Dahiya R, Tanaka Y, Saini S. Role of a novel race-related tumor suppressor microRNA located in frequently deleted chromosomal locus 8p21 in prostate cancer progression. Carcinogenesis 2019; 40:633-642. [PMID: 30874288 PMCID: PMC7331454 DOI: 10.1093/carcin/bgz058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/07/2019] [Accepted: 03/12/2019] [Indexed: 12/14/2022] Open
Abstract
The prostate cancer (PCa) genome is characterized by deletions of chromosome 8p21-22 region that increase significantly with tumor grade and are associated with poor prognosis. We proposed and validated a novel, paradigm-shifting hypothesis that this region is associated with a set of microRNA genes-miR-3622, miR-3622b, miR-383-that are lost in PCa and play important mechanistic roles in PCa progression and metastasis. Extending our hypothesis, in this study, we evaluated the role of a microRNA gene located in chromosome 8p-miR-4288-by employing clinical samples and cell lines. Our data suggests that (i) miR-4288 is widely downregulated in primary prostate tumors and cell lines; (ii) miR-4288 expression is lost in metastatic castration-resistant PCa; (ii) miR-4288 downregulation is race-related PCa alteration that is prevalent in Caucasian patients and not in African Americans; (iii) in Caucasians, miR-4288 was found to be associated with increasing tumor grade and high serum prostate-specific antigen, suggesting that miR-4288 downregulation/loss may be associated with tumor progression specifically in Caucasians; (iv) miR-4288 possess significant potential as a molecular biomarker to predict aggressiveness/metastasis; and (v) miR-4288 is anti-proliferative, is anti-invasive and inhibits epithelial-to-mesenchymal transition; and (vi) miR-4288 directly represses expression of metastasis/invasion-associated genes MMP16 and ROCK1. Thus, the present study demonstrates a tumor suppressor role for a novel miRNA located with a frequently lost region in PCa, strengthening our hypothesis that this locus is causally related to PCa disease progression via loss of microRNA genes. Our study suggests that miR-4288 may be a novel biomarker and therapeutic target, particularly in Caucasians.
Collapse
Affiliation(s)
- Divya Bhagirath
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California, San Francisco, CA, USA
| | - Thao Ly Yang
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California, San Francisco, CA, USA
| | - Z Laura Tabatabai
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California, San Francisco, CA, USA
| | - Varahram Shahryari
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California, San Francisco, CA, USA
| | - Shahana Majid
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California, San Francisco, CA, USA
| | - Rajvir Dahiya
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California, San Francisco, CA, USA
| | - Yuichiro Tanaka
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California, San Francisco, CA, USA
| | - Sharanjot Saini
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California, San Francisco, CA, USA
| |
Collapse
|
148
|
Parthiban N, Sampath NL, JeyaMaheshwari J, Prajna NV, Lalitha P, Dharmalingam K. Quantitative profiling of tear proteome reveals down regulation of zinc alpha-2 glycoprotein in Aspergillus flavus keratitis patients. Exp Eye Res 2019; 186:107700. [PMID: 31233730 DOI: 10.1016/j.exer.2019.107700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/20/2019] [Accepted: 06/12/2019] [Indexed: 12/16/2022]
Abstract
Corneal mycotic ulceration is predominantly due to Aspergillus and Fusarium solani infection in tropical countries. In this study, we examined the proteome profile of tear samples from A. flavus keratitis patients at various stages of infection. The proteome was profiled using 2D PAGE and the protein levels were quantified using 2D DIGE. Alpha-1-antitrypsin, apolipoprotein, haptoglobin, lactoferrin and albumin were up regulated while cystatin SA III precursor, lacrimal lipocalin precursor, lacritin precursor and Zinc alpha-2 glycoprotein (ZAG) were down regulated in tear fluid. In the case of ZAG all proteoforms were down regulated as the disease progressed from early to late stage of infection. Western blot analysis confirmed the results observed using DIGE. Further, there were no gender specific differences in the levels of ZAG expression in keratitis patient tear film. Published results show up regulation of ZAG in Fusarium keratitis patient tear indicating subtle changes in the early events of host response to these two fungal pathogens. We conclude that ZAG level could be used as an indicator of A. flavus or F. solani infection, even during the early stage of the disease.
Collapse
Affiliation(s)
- Niranjana Parthiban
- Proteomics Department, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System,Madurai, TamilNadu, India
| | - Nithya Lakshmi Sampath
- Proteomics Department, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System,Madurai, TamilNadu, India
| | - Jayapal JeyaMaheshwari
- Proteomics Department, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System,Madurai, TamilNadu, India
| | | | - Prajna Lalitha
- Department of Ocular Microbiology, Aravind Eye Hospital,Aravind Eye Care System, Madurai, TamilNadu, India
| | - Kuppamuthu Dharmalingam
- Aravind Medical Research Foundation, Aravind Eye Care System, 1. Anna Nagar, Madurai, 625020, Tamil Nadu, India.
| |
Collapse
|
149
|
Bai T, Liu Y, Li B. LncRNA LOXL1‐AS1/miR‐let‐7a‐5p/
EGFR
‐related pathway regulates the doxorubicin resistance of prostate cancer DU‐145 cells. IUBMB Life 2019; 71:1537-1551. [PMID: 31188543 DOI: 10.1002/iub.2075] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 05/09/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Tianliang Bai
- Department of Gastrointestinal SurgeryAffiliated Hospital of Hebei University Baoding Hebei P.R.China
- Department of General SurgeryFourth Hospital of Hebei Medical University (Tumor Hospital of Hebei Province) Shijiiazhuang Hebei China
| | - Yabin Liu
- Department of Gastrointestinal SurgeryAffiliated Hospital of Hebei University Baoding Hebei P.R.China
- Department of General SurgeryFourth Hospital of Hebei Medical University (Tumor Hospital of Hebei Province) Shijiiazhuang Hebei China
| | - Binghui Li
- Department of Gastrointestinal SurgeryAffiliated Hospital of Hebei University Baoding Hebei P.R.China
- Department of General SurgeryFourth Hospital of Hebei Medical University (Tumor Hospital of Hebei Province) Shijiiazhuang Hebei China
| |
Collapse
|
150
|
Wang Q, Wang F, Lv J, Xin J, Xie L, Zhu W, Tang Y, Li Y, Zhao X, Wang Y, Li X, Guo X. Interactive online consensus survival tool for esophageal squamous cell carcinoma prognosis analysis. Oncol Lett 2019; 18:1199-1206. [PMID: 31423180 PMCID: PMC6607102 DOI: 10.3892/ol.2019.10440] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 05/15/2019] [Indexed: 02/06/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common types of cancer worldwide. However, operative diagnostic and prognostic systems for ESCC remain to be established. To improve assessment of the prognosis for patients with ESCC, the present study developed an online consensus survival tool for ESCC, termed OSescc. OSescc was built using 264 ESCC cases with gene expression data and relevant clinical information obtained from the Gene Expression Omnibus and The Cancer Genome Atlas databases. Kaplan-Meier survival plots with hazard ratios and P-values were generated by OSescc to predict the association between potential biomarkers and relapse free survival and overall survival. In addition, the current study integrated a function by which one could assess the prognosis based on an individual probe or the mean value of multiple probes for each gene, which helped improve the evaluation of the validity and reliability of the potential prognosis biomarkers. OSescc can be accessed at bioinfo.henu.edu.cn/DBList.jsp.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Cell Signal Transduction Laboratory, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Fengling Wang
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Cell Signal Transduction Laboratory, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Jiajia Lv
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Cell Signal Transduction Laboratory, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, P.R. China.,Department of Thoracic Surgery, The Affiliated Nanshi Hospital of Henan University, Nanyang, Henan 473003, P.R. China
| | - Junfang Xin
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Cell Signal Transduction Laboratory, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Longxiang Xie
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Cell Signal Transduction Laboratory, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Wan Zhu
- Department of Anesthesia, Stanford University, Stanford, CA 94305, USA
| | - Yitai Tang
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Yongqiang Li
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Cell Signal Transduction Laboratory, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Xiaofang Zhao
- Jiangsu SuperBio Co., Ltd., Nanjing, Jiangsu 210061, P.R. China
| | - Yunlong Wang
- Henan Bioengineering Research Center, Zhengzhou, Henan 450046, P.R. China
| | - Xianzhe Li
- Department of Thoracic Surgery, The Affiliated Nanshi Hospital of Henan University, Nanyang, Henan 473003, P.R. China
| | - Xiangqian Guo
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Cell Signal Transduction Laboratory, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, P.R. China
| |
Collapse
|