101
|
Glynos C, Dupont LL, Vassilakopoulos T, Papapetropoulos A, Brouckaert P, Giannis A, Joos GF, Bracke KR, Brusselle GG. The role of soluble guanylyl cyclase in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2013; 188:789-99. [PMID: 23841447 DOI: 10.1164/rccm.201210-1884oc] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
RATIONALE Soluble guanylyl cyclase (sGC), a cyclic guanosine 5'-monophosphate-generating enzyme, regulates smooth muscle tone and exerts antiinflammatory effects in animal models of asthma and acute lung injury. In chronic obstructive pulmonary disease (COPD), primarily caused by cigarette smoke (CS), lung inflammation persists and smooth muscle tone remains elevated, despite ample amounts of nitric oxide that could activate sGC. OBJECTIVES To determine the expression and function of sGC in patients with COPD and in a murine model of COPD. METHODS Expression of sGCα1, α2, and β1 subunits was examined in lungs of never-smokers, smokers without airflow limitation, and patients with COPD; and in C57BL/6 mice after 3 days, 4 weeks, and 24 weeks of CS exposure. The functional role of sGC was investigated in vivo by measuring bronchial responsiveness to serotonin in mice using genetic and pharmacologic approaches. MEASUREMENTS AND MAIN RESULTS Pulmonary expression of sGC, both at mRNA and protein level, was decreased in smokers without airflow limitation and in patients with COPD, and correlated with disease severity (FEV1%). In mice, exposure to CS reduced sGC, cyclic guanosine 5'-monophosphate levels, and protein kinase G activity. sGCα1(-/-) mice exposed to CS exhibited bronchial hyperresponsiveness to serotonin. Activation of sGC by BAY 58-2667 restored the sGC signaling and attenuated bronchial hyperresponsiveness in CS-exposed mice. CONCLUSIONS Down-regulation of sGC because of CS exposure might contribute to airflow limitation in COPD.
Collapse
Affiliation(s)
- Constantinos Glynos
- 1 Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Camargo E, Santana D, Silva C, Teixeira S, Toyama M, Cotrim C, Landucci E, Antunes E, Muscara M, Costa S. Inhibition of inducible nitric oxide synthase-derived nitric oxide as a therapeutical target for acute pancreatitis induced by secretory phospholipase A2. Eur J Pain 2013; 18:691-700. [DOI: 10.1002/j.1532-2149.2013.00414.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2013] [Indexed: 12/15/2022]
Affiliation(s)
- E.A. Camargo
- Department of Physiology; Federal University of Sergipe; São Cristóvão Brazil
| | - D.G. Santana
- Department of Physiology; Federal University of Sergipe; São Cristóvão Brazil
| | - C.I. Silva
- Department of Pharmacology; Institute of Biomedical Sciences; University of São Paulo (USP); Brazil
| | - S.A. Teixeira
- Department of Pharmacology; Institute of Biomedical Sciences; University of São Paulo (USP); Brazil
| | - M.H. Toyama
- São Vicente Unit; University of São Paulo State (UNESP); São Vicente Brazil
| | - C. Cotrim
- São Vicente Unit; University of São Paulo State (UNESP); São Vicente Brazil
| | - E.C.T. Landucci
- Department of Pharmacology; Faculty of Medical Sciences; State University of Campinas (UNICAMP); São Paulo Brazil
| | - E. Antunes
- Department of Pharmacology; Faculty of Medical Sciences; State University of Campinas (UNICAMP); São Paulo Brazil
| | - M.N. Muscara
- Department of Pharmacology; Institute of Biomedical Sciences; University of São Paulo (USP); Brazil
| | - S.K.P. Costa
- Department of Pharmacology; Institute of Biomedical Sciences; University of São Paulo (USP); Brazil
| |
Collapse
|
103
|
Cardnell RJG, Rabender CS, Ross GR, Guo C, Howlett EL, Alam A, Wang XY, Akbarali HI, Mikkelsen RB. Sepiapterin ameliorates chemically induced murine colitis and azoxymethane-induced colon cancer. J Pharmacol Exp Ther 2013; 347:117-25. [PMID: 23912334 PMCID: PMC3781406 DOI: 10.1124/jpet.113.203828] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 07/31/2013] [Indexed: 12/24/2022] Open
Abstract
The effects of modulating tetrahydrobiopterin (BH4) levels with a metabolic precursor, sepiapterin (SP), on dextran sodium sulfate (DSS)-induced colitis and azoxymethane (AOM)-induced colorectal cancer were studied. SP in the drinking water blocks DSS-induced colitis measured as decreased disease activity index (DAI), morphologic criteria, and recovery of Ca(2+)-induced contractility responses lost as a consequence of DSS treatment. SP reduces inflammatory responses measured as the decreased number of infiltrating inflammatory macrophages and neutrophils and decreased expression of proinflammatory cytokines interleukin 1β (IL-1β), IL-6, and IL-17A. High-performance liquid chromatography analyses of colonic BH4 and its oxidized derivative 7,8-dihydrobiopterin (BH2) are inconclusive although there was a trend for lower BH4:BH2 with DSS treatment that was reversed with SP. Reduction of colonic cGMP levels by DSS was reversed with SP by a mechanism sensitive to 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), a specific inhibitor of the NO-sensitive soluble guanylate cyclase (sGC). ODQ abrogates the protective effects of SP on colitis. This plus the finding that SP reduces DSS-enhanced protein Tyr nitration are consistent with DSS-induced uncoupling of NOS. The results agree with previous studies that demonstrated inactivation of sGC in DSS-treated animals as being important in recruitment of inflammatory cells and in altered cholinergic signaling and colon motility. SP also reduces the number of colon tumors in AOM/DSS-treated mice from 7 to 1 per unit colon length. Thus, pharmacologic modulation of BH4 with currently available drugs may provide a mechanism for alleviating some forms of colitis and potentially minimizing the potential for colorectal cancer in patients with colitis.
Collapse
Affiliation(s)
- Robert J G Cardnell
- Departments of Radiation Oncology (R.J.G.C., C.S.R., E.L.H., A.A., R.B.M.), Pharmacology and Toxicology (C.S.R., G.R.R., H.I.A.), and Human and Molecular Genetics (C.G., X.-Y.W.), Virginia Commonwealth University, Richmond, Virginia
| | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Zamorano-León JJ, Olivier C, de Las Heras N, Mateos-Cáceres PJ, Brime Menéndez R, Rodríguez-Sierra P, Martín Palacios N, Manso LSJ, Modrego J, Segura A, Macaya C, López-Farré AJ. Vardenafil improves penile erection in type 2 diabetes mellitus patients with erectile dysfunction: role of tropomyosin. J Sex Med 2013; 10:3110-20. [PMID: 24112450 DOI: 10.1111/jsm.12324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Evidences have been suggested that phosphodiesterase type 5 (PDE5) inhibition promotes vasculoprotective benefits in patients with cardiovascular diseases. AIM The aim of this study is to analyze the systemic effect of PDE5 inhibition in type 2 diabetes mellitus patients with erectile dysfunction (ED) determining changes in the expression levels of plasma proteins. METHODS Seventeen patients with controlled type 2 diabetes mellitus and ED were included in the study. Patients received vardenafil hydrochloride 20 mg on demand during 12 weeks. At the beginning and 12 weeks after vardenafil administration, plasma samples were collected and analyzed using proteomics. MAIN OUTCOME MEASURES International Index of Erectile Function-Erectile Function Domain (IIEF-EFD) and plasma protein expression before and after vardenafil administration. Nitrate/nitrite release, PDE5, and soluble guanylate cyclase (sGC) expression and cyclic guanosine monophosphate (cGMP) content in cultured bovine aortic endothelial cells (BAECs). RESULTS The IIEF-EFD score was markedly improved after 12 weeks of vardenafil administration. Plasma levels of alpha 1-antitrypsin isotypes 4 and 6 and β-tropomyosin were decreased, whereas apolipoprotein AI isoype 5 was increased 12 weeks after vardenafil administration. Only β-tropomyosin plasma levels were inversely correlated with IIEF-EFD score. Tropomyosin has been added to cultured BAECs and after 24 hours reduced the protein expression level of sGC-β1 subunit and decreased the cGMP content. Tropomyosin did not modify PDE5 expression and nitric oxide release in BAECs as compared with control BAECs. Vardenafil (10 μg/mL) did not modify sGC-β1 subunit expression in tropomyosin + vardenafil-incubated BAECs; however, vardenafil significantly reversed the reduction of cGMP content induced by tropomyosin. CONCLUSION Vardenafil administration improved erectile functionality in controlled type 2 diabetes mellitus patients with ED, which was associated with reduction of circulating plasma β-tropomyosin levels. Tropomyosin affected by itself the cGMP generating system suggesting a possible new mechanism involved in ED. Vardenafil reversed the reduction effect of cGMP content elicited by tropomyosin in BAECs.
Collapse
Affiliation(s)
- Jose J Zamorano-León
- Cardiovascular Research Unit, Cardiology Department of Hospital Clínico San Carlos de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Gheorghiade M, Marti CN, Sabbah HN, Roessig L, Greene SJ, Böhm M, Burnett JC, Campia U, Cleland JGF, Collins SP, Fonarow GC, Levy PD, Metra M, Pitt B, Ponikowski P, Sato N, Voors AA, Stasch JP, Butler J. Soluble guanylate cyclase: a potential therapeutic target for heart failure. Heart Fail Rev 2013; 18:123-34. [PMID: 22622468 DOI: 10.1007/s10741-012-9323-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The number of annual hospitalizations for heart failure (HF) and the mortality rates among patients hospitalized for HF remains unacceptably high. The search continues for safe and effective agents that improve outcomes when added to standard therapy. The nitric oxide (NO)-soluble guanylate cyclase (sGC)-cyclic guanosine monophosphate (cGMP) pathway serves an important physiologic role in both vascular and non-vascular tissues, including regulation of myocardial and renal function, and is disrupted in the setting of HF, leading to decreased protection against myocardial injury, ventricular remodeling, and the cardio-renal syndrome. The impaired NO-sGC-cGMP pathway signaling in HF is secondary to reduced NO bioavailability and an alteration in the redox state of sGC, making it unresponsive to NO. Accordingly, increasing directly the activity of sGC is an attractive pharmacologic strategy. With the development of two novel classes of drugs, sGC stimulators and sGC activators, the hypothesis that restoration of NO-sGC-cGMP signaling is beneficial in HF patients can now be tested. Characterization of these agents in pre-clinical and clinical studies has begun with investigations suggesting both hemodynamic effects and organ-protective properties independent of hemodynamic changes. The latter could prove valuable in long-term low-dose therapy in HF patients. This review will explain the role of the NO-sGC-cGMP pathway in HF pathophysiology and outcomes, data obtained with sGC stimulators and sGC activators in pre-clinical and clinical studies, and a plan for the further clinical development to study these agents as HF therapy.
Collapse
Affiliation(s)
- Mihai Gheorghiade
- Center of Cardiovascular Innovation, Northwestern University Feinberg School of Medicine, 645 North Michigan Ave, Suite 1006, Chicago, IL 60611, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Vignozzi L, Gacci M, Cellai I, Morelli A, Maneschi E, Comeglio P, Santi R, Filippi S, Sebastianelli A, Nesi G, Serni S, Carini M, Maggi M. PDE5 inhibitors blunt inflammation in human BPH: a potential mechanism of action for PDE5 inhibitors in LUTS. Prostate 2013; 73:1391-402. [PMID: 23765639 DOI: 10.1002/pros.22686] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/15/2013] [Indexed: 01/24/2023]
Abstract
BACKGROUND Metabolic syndrome (MetS) and benign prostate hyperplasia (BPH)/low urinary tract symptoms (LUTS) are often comorbid. Chronic inflammation is one of the putative links between these diseases. Phosphodiesterase type 5 inhibitors (PDE5i) are recognized as an effective treatment of BPH-related LUTS. One proposed mechanism of action of PDE5 is the inhibition of intraprostatic inflammation. In this study we investigate whether PDE5i could blunt inflammation in the human prostate. METHODS Evaluation of the effect of tadalafil and vardenafil on secretion of interleukin 8 (IL-8, a surrogate marker of prostate inflammation) by human myofibroblast prostatic cells (hBPH) exposed to different inflammatory stimuli. We preliminary evaluate histological features of prostatic inflammatory infiltrates in BPH patients enrolled in a randomized, double bind, placebo controlled study aimed at investigating the efficacy of vardenafil (10 mg/day, for 12 weeks) on BPH/LUTS. RESULTS In vitro treatment with tadalafil or vardenafil on hBPH reduced IL-8 secretion induced by either TNFα or metabolic factors, including oxidized low-density lipoprotein, oxLDL, to the same extent as a PDE5-insensitive PKG agonist Sp-8-Br-PET-cGMP. These effects were reverted by the PKG inhibitor KT5823, suggesting a cGMP/PKG-dependency. Treatment with tadalafil or vardenafil significantly suppressed oxLDL receptor (LOX-1) expression. Histological evaluation of anti-CD45 staining (CD45 score) in prostatectomy specimens of BPH patients showed a positive association with MetS severity. Reduced HDL-cholesterol and elevated triglycerides were the only MetS factors significantly associated with CD45 score. In the MetS cohort there was a significant lower CD45 score in the vardenafil-arm versus the placebo-one.
Collapse
Affiliation(s)
- Linda Vignozzi
- Department of Experimental and Clinical Biomedical Sciences, Sexual Medicine and Andrology Unit, University of Florence, Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Walshe TE, dela Paz NG, D'Amore PA. The role of shear-induced transforming growth factor-β signaling in the endothelium. Arterioscler Thromb Vasc Biol 2013; 33:2608-17. [PMID: 23968981 DOI: 10.1161/atvbaha.113.302161] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Vascular endothelial cells (ECs) are continuously exposed to blood flow that contributes to the maintenance of vessel structure and function; however, the effect of hemodynamic forces on transforming growth factor-β (TGF-β) signaling in the endothelium is poorly described. We examined the potential role of TGF-β signaling in mediating the protective effects of shear stress on ECs. APPROACH AND RESULTS Human umbilical vein ECs (HUVECs) exposed to shear stress were compared with cells grown under static conditions. Signaling through the TGF-β receptor ALK5 was inhibited with SB525334. Cells were examined for morphological changes and harvested for analysis by real-time polymerase chain reaction, Western blot analysis, apoptosis, proliferation, and immunocytochemistry. Shear stress resulted in ALK5-dependent alignment of HUVECs as well as attenuation of apoptosis and proliferation compared with static controls. Shear stress led to an ALK5-dependent increase in TGF-β3 and Krüppel-like factor 2, phosphorylation of endothelial NO synthase, and NO release. Addition of the NO donor S-nitroso-N-acetylpenicillamine rescued the cells from apoptosis attributable to ALK5 inhibition under shear stress. Knockdown of TGF-β3, but not TGF-β1, disrupted the HUVEC monolayer and prevented the induction of Krüppel-like factor 2 by shear. CONCLUSIONS Shear stress of HUVECs induces TGF-β3 signaling and subsequent activation of Krüppel-like factor 2 and NO, and represents a novel role for TGF-β3 in the maintenance of HUVEC homeostasis in a hemodynamic environment.
Collapse
Affiliation(s)
- Tony E Walshe
- From the Departments of Ophthalmology (T.E.W., N.G.d.P., P.A.D.) and Pathology (P.A.D.), Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston; and La Jolla Bioengineering Institute, San Diego, CA (N.G.d.P.)
| | | | | |
Collapse
|
108
|
Madamanchi NR, Runge MS. Redox signaling in cardiovascular health and disease. Free Radic Biol Med 2013; 61:473-501. [PMID: 23583330 PMCID: PMC3883979 DOI: 10.1016/j.freeradbiomed.2013.04.001] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 03/05/2013] [Accepted: 04/02/2013] [Indexed: 02/07/2023]
Abstract
Spatiotemporal regulation of the activity of a vast array of intracellular proteins and signaling pathways by reactive oxygen species (ROS) governs normal cardiovascular function. However, data from experimental and animal studies strongly support that dysregulated redox signaling, resulting from hyperactivation of various cellular oxidases or mitochondrial dysfunction, is integral to the pathogenesis and progression of cardiovascular disease (CVD). In this review, we address how redox signaling modulates the protein function, the various sources of increased oxidative stress in CVD, and the labyrinth of redox-sensitive molecular mechanisms involved in the development of atherosclerosis, hypertension, cardiac hypertrophy and heart failure, and ischemia-reperfusion injury. Advances in redox biology and pharmacology for inhibiting ROS production in specific cell types and subcellular organelles combined with the development of nanotechnology-based new in vivo imaging systems and targeted drug delivery mechanisms may enable fine-tuning of redox signaling for the treatment and prevention of CVD.
Collapse
Affiliation(s)
- Nageswara R Madamanchi
- McAllister Heart Institute, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Marschall S Runge
- McAllister Heart Institute, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
109
|
Wang WZ, Jones AW, Wang M, Durante W, Korthuis RJ. Preconditioning with soluble guanylate cyclase activation prevents postischemic inflammation and reduces nitrate tolerance in heme oxygenase-1 knockout mice. Am J Physiol Heart Circ Physiol 2013; 305:H521-32. [PMID: 23771693 DOI: 10.1152/ajpheart.00810.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously we have shown that, unlike wild-type mice (WT), heme oxygenase-1 knockout (HO-1-/-) mice developed nitrate tolerance and were not protected from inflammation caused by ischemia-reperfusion (I/R) when preconditioned with a H2S donor. We hypothesized that stimulation (with BAY 41-2272) or activation (with BAY 60-2770) of soluble guanylate cyclase (sGC) would precondition HO-1-/- mice against an inflammatory effect of I/R and increase arterial nitrate responses. Intravital fluorescence microscopy was used to visualize leukocyte rolling and adhesion to postcapillary venules of the small intestine in anesthetized mice. Relaxation to ACh and BAY compounds was measured on superior mesenteric arteries isolated after I/R protocols. Preconditioning with either BAY compound 10 min (early phase) or 24 h (late phase) before I/R reduced postischemic leukocyte rolling and adhesion to sham control levels and increased superior mesenteric artery responses to ACh, sodium nitroprusside, and BAY 41-2272 in WT and HO-1-/- mice. Late-phase preconditioning with BAY 60-2770 was maintained in HO-1-/- and endothelial nitric oxide synthase knockout mice pretreated with an inhibitor (dl-propargylglycine) of enzymatically produced H2S. Pretreatment with BAY compounds also prevented the I/R increase in small intestinal TNF-α. We speculate that increasing sGC activity and related PKG acts downstream to H2S and disrupts signaling processes triggered by I/R in part by maintaining low cellular Ca²⁺. In addition, BAY preconditioning did not increase sGC levels, yet increased the response to agents that act on reduced heme-containing sGC. Collectively these actions would contribute to increased nitrate sensitivity and vascular function.
Collapse
Affiliation(s)
- Walter Z Wang
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; and
| | | | | | | | | |
Collapse
|
110
|
Nickel KF, Laux V, Heumann R, von Degenfeld G. Thrombin has biphasic effects on the nitric oxide-cGMP pathway in endothelial cells and contributes to experimental pulmonary hypertension. PLoS One 2013; 8:e63504. [PMID: 23785394 PMCID: PMC3681801 DOI: 10.1371/journal.pone.0063504] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 04/06/2013] [Indexed: 01/29/2023] Open
Abstract
Background A potential role for coagulation factors in pulmonary arterial hypertension has been recently described, but the mechanism of action is currently not known. Here, we investigated the interactions between thrombin and the nitric oxide-cGMP pathway in pulmonary endothelial cells and experimental pulmonary hypertension. Principal Findings Chronic treatment with the selective thrombin inhibitor melagatran (0.9 mg/kg daily via implanted minipumps) reduced right ventricular hypertrophy in the rat monocrotaline model of experimental pulmonary hypertension. In vitro, thrombin was found to have biphasic effects on key regulators of the nitric oxide-cGMP pathway in endothelial cells (HUVECs). Acute thrombin stimulation led to increased expression of the cGMP-elevating factors endothelial nitric oxide synthase (eNOS) and soluble guanylate cyclase (sGC) subunits, leading to increased cGMP levels. By contrast, prolonged exposition of pulmonary endothelial cells to thrombin revealed a characteristic pattern of differential expression of the key regulators of the nitric oxide-cGMP pathway, in which specifically the factors contributing to cGMP elevation (eNOS and sGC) were reduced and the cGMP-hydrolyzing PDE5 was elevated (qPCR and Western blot). In line with the differential expression of key regulators of the nitric oxide-cGMP pathway, a reduction of cGMP by prolonged thrombin stimulation was found. The effects of prolonged thrombin exposure were confirmed in endothelial cells of pulmonary origin (HPAECs and HPMECs). Similar effects could be induced by activation of protease-activated receptor-1 (PAR-1). Conclusion These findings suggest a link between thrombin generation and cGMP depletion in lung endothelial cells through negative regulation of the nitric oxide-cGMP pathway, possibly mediated via PAR-1, which could be of relevance in pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Katrin F. Nickel
- Cardiology Research, Bayer HealthCare AG, Wuppertal, Germany
- Department of Molecular Medicine and Surgery, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Volker Laux
- Cardiology Research, Bayer HealthCare AG, Wuppertal, Germany
| | - Rolf Heumann
- Biochemistry II – Molecular Neurobiochemistry, Ruhr-University Bochum, Bochum, Germany
| | - Georges von Degenfeld
- Common Mechanism Research, Bayer HealthCare AG, Wuppertal, Germany, and Institute for Research in Operative Medicine, University of Witten/Herdecke, Cologne, Germany
- * E-mail:
| |
Collapse
|
111
|
AbdelMaboud NM, Elsaid HH. Endothelial dysfunction and subclinical atherosclerosis as evidenced by the measurement of flow mediated dilatation of brachial artery and carotid intima media thickness in patients with rheumatoid arthritis. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2013. [DOI: 10.1016/j.ejrnm.2012.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
112
|
Abstract
In most humans, obesity is associated with a chronic low-grade inflammatory reaction occurring in several organ tissues, including the adipose tissue. Infiltration of bone marrow derived leukocytes (granulocytes, monocytes, lymphocytes) into expanding adipose depots appears to be an integral component of inflammation in obesity. Circulating leukocytes invade organ tissues mainly through post-capillary venules in the microcirculation. The endothelium of the post-capillary venules acts as a gatekeeper to leukocyte adhesion and extravasation by displacing on its luminal surface adhesion molecules that bind the adhesive receptors expressed on circulating leukocytes. Several studies investigating the impact of obesity on the microcirculation have demonstrated the occurrence of microvascular dysfunction in experimental animal model of obesity, as well as in obese humans. To date though, working hypotheses and study designs have favored the view that microvascular alterations are secondary to adipose tissue dysfunction. Indeed, a significant amount of data exists in the scientific literature to support the concept that microvascular dysfunction may precede and cause adipose tissue inflammation in obesity. Through review of key published data, this article prospectively presents the concept that in response to nutrients overload the vascular endothelium of the microcirculation acutely activates inflammatory pathways that initiate infiltration of leukocytes in visceral adipose tissue, well before weight gain and overt obesity. The anatomical and physiological heterogeneity of different microcirculations is also discussed toward the understanding of how obesity induces different inflammatory phenotypes in visceral and subcutaneous fat depots.
Collapse
Affiliation(s)
- Rosario Scalia
- Department of Physiology and Cardiovascular Research Center, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
113
|
Chan CK, Zhao Y, Liao SY, Zhang YL, Lee MYK, Xu A, Tse HF, Vanhoutte PM. A-FABP and oxidative stress underlie the impairment of endothelium-dependent relaxations to serotonin and the intima-medial thickening in the porcine coronary artery with regenerated endothelium. ACS Chem Neurosci 2013; 4:122-9. [PMID: 23336051 DOI: 10.1021/cn3000873] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 09/22/2012] [Indexed: 01/12/2023] Open
Abstract
Experiments were designed to determine the cause of the selective dysfunction of G(i) proteins, characterized by a reduced endothelium-dependent relaxation to serotonin (5-hydroxytryptamine), in coronary arteries lined with regenerated endothelial cells. Part of the endothelium of the left anterior descending coronary artery of female pigs was removed in vivo to induce regeneration. The animals were treated chronically with vehicle (control), apocynin (antioxidant), or BMS309403 (A-FABP inhibitor) for 28 days before functional examination and histological analysis of segments of coronary arteries with native or regenerated endothelium of the same hearts. Isometric tension was recorded in organ chambers and cumulative concentration-relaxation curves obtained in response to endothelium-dependent [serotonin (G(i) protein mediated activation of eNOS) and bradykinin (G(q) protein mediated activation of eNOS)] and independent [detaNONOate (cGMP-mediated), isoproterenol (cAMP-mediated)] vasodilators. The two inhibitors tested did not acutely affect relaxations of preparations with either native or regenerated endothelium. In the chronically treated groups, however, both apocynin and BMS309403 abolished the reduction in relaxation to serotonin in segments covered with regenerated endothelium and prevented the intima-medial thickening caused by endothelial regeneration, without affecting responses to bradykinin or endothelium-independent agonists (detaNONOate and isoproterenol). Thus, inhibition of either oxidative stress or A-FABP likely prevents both the selective dysfunction of G(i) protein mediated relaxation to serotonin and the neointimal thickening resulting from endothelial regeneration.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Paul M. Vanhoutte
- Department of BIN Fusion
Technology, Chonbuk National University, Jeonju, Korea
| |
Collapse
|
114
|
Jones DA, Andiapen M, Van-Eijl TJA, Webb AJ, Antoniou S, Schilling RJ, Ahluwalia A, Mathur A. The safety and efficacy of intracoronary nitrite infusion during acute myocardial infarction (NITRITE-AMI): study protocol of a randomised controlled trial. BMJ Open 2013; 3:bmjopen-2013-002813. [PMID: 23550096 PMCID: PMC3641434 DOI: 10.1136/bmjopen-2013-002813] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Acute myocardial infarction (AMI) is a major cause of death and disability in the UK and worldwide. Presently, timely and effective reperfusion with primary percutaneous coronary intervention (PPCI) remains the most effective treatment strategy for limiting infarct size, preserving left ventricular ejection fraction (LVEF) and improving clinical outcomes. However, the process of reperfusion can itself induce cardiomyocyte death, known as myocardial reperfusion injury, for which there is currently no effective therapy. Extensive preclinical evidence exists to suggest that sodium nitrite (as a source of endogenous nitric oxide) is an effective therapeutic strategy for preventing myocardial reperfusion injury. The purpose of NITRITE-AMI is to test whether sodium nitrite reduces reperfusion injury and subsequent infarct size in patients undergoing PPCI for MI. METHODS AND DESIGN NITRITE-AMI is a double-blind, randomised, single-centre, placebo-controlled trial to determine whether intracoronary nitrite injection reduces infarct size in patients with myocardial infarction undergoing primary angioplasty. The study will enrol 80 patients presenting with ST-elevation myocardial infarction. Patients will be randomised to receive either a bolus of intracoronary sodium nitrite or placebo (sodium chloride) at the time of PPCI. The primary outcome is infarct size assessed by creatine kinase area under the curve (AUC) over 48 h. Secondary endpoints include troponin T AUC and infarct size, LV dimensions and myocardial salvage index assessed by cardiac MR (CMR), markers of platelet reactivity and inflammation, the safety and tolerability of intracoronary nitrite, and 1 year major adverse cardiac events. ETHICS AND DISSEMINATION The study is approved by the local ethics committee (NRES Committee London West London: 11/LO/1500) and by the Medicines and Healthcare Products Regulatory Agency (MHRA) (EudraCT nr. 2010-022460-12). The results of the trial will be published according to the CONSORT statement and will be presented at conferences and reported in peer-reviewed journals. TRIAL REGISTRATION United Kingdom Clinical Research Network (Study ID 12117), http://clinicaltrials.gov (NCT01584453) and Current Controlled Trials (ISRCTN:38736987).
Collapse
Affiliation(s)
- D A Jones
- Centre of Clinical Pharmacology, Barts NIHR Cardiovascular Biomedical Research Unit, William Harvey Research Institute, Queen Mary University, London, UK
- Department of Cardiology, London Chest Hospital, Barts Health NHS Trust, London, UK
| | - M Andiapen
- Department of Cardiology, London Chest Hospital, Barts Health NHS Trust, London, UK
| | - T J A Van-Eijl
- Centre of Clinical Pharmacology, Barts NIHR Cardiovascular Biomedical Research Unit, William Harvey Research Institute, Queen Mary University, London, UK
| | - A J Webb
- Centre of Clinical Pharmacology, Barts NIHR Cardiovascular Biomedical Research Unit, William Harvey Research Institute, Queen Mary University, London, UK
| | - S Antoniou
- Department of Cardiology, London Chest Hospital, Barts Health NHS Trust, London, UK
| | - R J Schilling
- Centre of Clinical Pharmacology, Barts NIHR Cardiovascular Biomedical Research Unit, William Harvey Research Institute, Queen Mary University, London, UK
- Department of Cardiology, London Chest Hospital, Barts Health NHS Trust, London, UK
| | - A Ahluwalia
- Centre of Clinical Pharmacology, Barts NIHR Cardiovascular Biomedical Research Unit, William Harvey Research Institute, Queen Mary University, London, UK
| | - A Mathur
- Centre of Clinical Pharmacology, Barts NIHR Cardiovascular Biomedical Research Unit, William Harvey Research Institute, Queen Mary University, London, UK
- Department of Cardiology, London Chest Hospital, Barts Health NHS Trust, London, UK
| |
Collapse
|
115
|
Nossaman BD, Kadowitz PJ. Stimulators of soluble guanylyl cyclase: future clinical indications. Ochsner J 2013; 13:147-156. [PMID: 23532174 PMCID: PMC3603178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Soluble guanylyl cyclase (sGC) is expressed in mammalian cytoplasm and catalyzes the synthesis of the second messenger guanosine 3',5'-monophosphate (cGMP) involved in important physiological functions such as relaxation of vascular smooth muscle, inhibition of platelet aggregation, modulation of inflammation, and control of vascular permeability. sGC is the intracellular receptor for nitric oxide (NO) and the active moiety in traditional organic nitrate therapy, recently as an inhalant in the intensive care unit and experimentally in improving microcirculatory flow in shock. However, dysfunction of the heme moiety on sGC occurs in a number of cardiovascular diseases, which reduces NO effectiveness. METHODS In this review, we examine animal studies and early clinical trials on agents that can directly stimulate sGC and may have future clinical application in cardiovascular disease and in perioperative care. CONCLUSIONS Animal and early clinical studies have shown that sGC stimulator agents have great promise for treating cardiopulmonary disorders and may also have a role in modulating the inflammatory response observed in perioperative care.
Collapse
Affiliation(s)
- Bobby D. Nossaman
- Department of Anesthesiology, Section of Critical Care Medicine, Ochsner Clinic Foundation, and
- The University of Queensland School of Medicine, Ochsner Clinical School, New Orleans, LA
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA
| | - Philip J. Kadowitz
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA
| |
Collapse
|
116
|
Schoenfeld MP, Ansari RR, Nakao A, Wink D. A hypothesis on biological protection from space radiation through the use of new therapeutic gases as medical counter measures. Med Gas Res 2012; 2:8. [PMID: 22475015 PMCID: PMC3348081 DOI: 10.1186/2045-9912-2-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 04/04/2012] [Indexed: 12/26/2022] Open
Abstract
Radiation exposure to astronauts could be a significant obstacle for long duration manned space exploration because of current uncertainties regarding the extent of biological effects. Furthermore, concepts for protective shielding also pose a technically challenging issue due to the nature of cosmic radiation and current mass and power constraints with modern exploration technology. The concern regarding exposure to cosmic radiation is biological damage that is associated with increased oxidative stress. It is therefore important and would be enabling to mitigate and/or prevent oxidative stress prior to the development of clinical symptoms and disease. This paper hypothesizes a "systems biology" approach in which a combination of chemical and biological mitigation techniques are used conjunctively. It proposes using new, therapeutic, medical gases as chemical radioprotectors for radical scavenging and as biological signaling molecules for management of the body's response to exposure. From reviewing radiochemistry of water, biological effects of CO, H2, NO, and H2S gas, and mechanisms of radiation biology, it can be concluded that this approach may have therapeutic potential for radiation exposure. Furthermore, it also appears to have similar potential for curtailing the pathogenesis of other diseases in which oxidative stress has been implicated including cardiovascular disease, cancer, chronic inflammatory disease, hypertension, ischemia/reperfusion (IR) injury, acute respiratory distress syndrome, Parkinson's and Alzheimer's disease, cataracts, and aging. We envision applying these therapies through inhalation of gas mixtures or ingestion of water with dissolved gases.
Collapse
Affiliation(s)
- Michael P Schoenfeld
- National Aeronautics and Space Administration Marshall Space Flight Center, Huntsville, Alabama, USA.
| | | | | | | |
Collapse
|
117
|
Jädert C, Petersson J, Massena S, Ahl D, Grapensparr L, Holm L, Lundberg JO, Phillipson M. Decreased leukocyte recruitment by inorganic nitrate and nitrite in microvascular inflammation and NSAID-induced intestinal injury. Free Radic Biol Med 2012; 52:683-692. [PMID: 22178413 DOI: 10.1016/j.freeradbiomed.2011.11.018] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 11/09/2011] [Accepted: 11/12/2011] [Indexed: 01/13/2023]
Abstract
Nitric oxide (NO) generated by vascular NO synthases can exert anti-inflammatory effects, partly through its ability to decrease leukocyte recruitment. Inorganic nitrate and nitrite, from endogenous or dietary sources, have emerged as alternative substrates for NO formation in mammals. Bioactivation of nitrate is believed to require initial reduction to nitrite by oral commensal bacteria. Here we investigated the effects of inorganic nitrate and nitrite on leukocyte recruitment in microvascular inflammation and in NSAID-induced small-intestinal injury. We show that leukocyte emigration in response to the proinflammatory chemokine MIP-2 is reduced by 70% after 7 days of dietary nitrate supplementation as well as by acute intravenous nitrite administration. Nitrite also reduced leukocyte adhesion to a similar extent and this effect was inhibited by the soluble guanylyl cyclase inhibitor ODQ, whereas the effect on emigrated leukocytes was not altered by this treatment. Further studies in TNF-α-stimulated endothelial cells revealed that nitrite dose-dependently reduced the expression of ICAM-1. In rats and mice subjected to a challenge with diclofenac, dietary nitrate prevented the increase in myeloperoxidase and P-selectin levels in small-intestinal tissue. Antiseptic mouthwash, which eliminates oral nitrate reduction, markedly blunted the protective effect of dietary nitrate on P-selectin levels. Despite attenuation of the acute immune response, the overall ability to clear an infection with Staphylococcus aureus was not suppressed by dietary nitrate as revealed by noninvasive IVIS imaging. We conclude that dietary nitrate markedly reduces leukocyte recruitment to inflammation in a process involving attenuation of P-selectin and ICAM-1 upregulation. Bioactivation of dietary nitrate requires intermediate formation of nitrite by oral nitrate-reducing bacteria and then probably further reduction to NO and other bioactive nitrogen oxides in the tissues.
Collapse
Affiliation(s)
- Cecilia Jädert
- Department of Physiology and Pharmacology, Karolinska Institute, S-171 77 Stockholm, Sweden
| | - Joel Petersson
- Department of Medical Cell Biology, Uppsala University, S-751 23 Uppsala, Sweden
| | - Sara Massena
- Department of Medical Cell Biology, Uppsala University, S-751 23 Uppsala, Sweden
| | - David Ahl
- Department of Medical Cell Biology, Uppsala University, S-751 23 Uppsala, Sweden
| | - Liza Grapensparr
- Department of Medical Cell Biology, Uppsala University, S-751 23 Uppsala, Sweden
| | - Lena Holm
- Department of Medical Cell Biology, Uppsala University, S-751 23 Uppsala, Sweden
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institute, S-171 77 Stockholm, Sweden.
| | - Mia Phillipson
- Department of Medical Cell Biology, Uppsala University, S-751 23 Uppsala, Sweden.
| |
Collapse
|
118
|
Marazioti A, Bucci M, Coletta C, Vellecco V, Baskaran P, Szabó C, Cirino G, Marques AR, Guerreiro B, Gonçalves AML, Seixas JD, Beuve A, Romão CC, Papapetropoulos A. Inhibition of nitric oxide-stimulated vasorelaxation by carbon monoxide-releasing molecules. Arterioscler Thromb Vasc Biol 2012; 31:2570-6. [PMID: 21836072 DOI: 10.1161/atvbaha.111.229039] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Carbon monoxide (CO) is a weak soluble guanylyl cyclase stimulator, leading to transient increases in cGMP and vasodilation. The aim of the present work was to measure the effect of CO-releasing molecules (CORMs) on the cGMP/nitric oxide (NO) pathway and to evaluate how selected CORMs affect NO-induced vasorelaxation. METHODS AND RESULTS Incubation of smooth muscle cells with some but not all of the CORMs caused a minor increase in cGMP levels. Concentration-response curves were bell-shaped, with higher CORMs concentrations producing lower increases in cGMP levels. Although exposure of cells to CORM-2 enhanced cGMP formation, we observed that the compound inhibited NO-stimulated cGMP accumulation in cells and NO-stimulated soluble guanylyl cyclase activity that could be reversed by superoxide anion scavengers. Reactive oxygen species generation from CORMs was confirmed using luminol-induced chemiluminescence and electron spin resonance. Furthermore, we observed that NO is scavenged by CORM-2. When used alone CORM-2 relaxed vessels through a cGMP-mediated pathway but attenuated NO donor-stimulated vasorelaxation. CONCLUSION We conclude that the CORMs examined have context-dependent effects on vessel tone, as they can directly dilate blood vessels, but also block NO-induced vasorelaxation.
Collapse
Affiliation(s)
- Antonia Marazioti
- Department of Pharmacy, Laboratory of Molecular Pharmacology, University of Patras, Patras, Greece
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Increased endothelial cell-leukocyte interaction in murine schistosomiasis: possible priming of endothelial cells by the disease. PLoS One 2011; 6:e23547. [PMID: 21853150 PMCID: PMC3154496 DOI: 10.1371/journal.pone.0023547] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 07/19/2011] [Indexed: 11/21/2022] Open
Abstract
Background and Aims Schistosomiasis is an intravascular parasitic disease associated with inflammation. Endothelial cells control leukocyte transmigration and vascular permeability being modulated by pro-inflammatory mediators. Recent data have shown that endothelial cells primed in vivo in the course of a disease keep the information in culture. Herein, we evaluated the impact of schistosomiasis on endothelial cell-regulated events in vivo and in vitro. Methodology and Principal Findings The experimental groups consisted of Schistosoma mansoni-infected and age-matched control mice. In vivo infection caused a marked influx of leukocytes and an increased protein leakage in the peritoneal cavity, characterizing an inflamed vascular and cellular profile. In vitro leukocyte-mesenteric endothelial cell adhesion was higher in cultured cells from infected mice as compared to controls, either in the basal condition or after treatment with the pro-inflammatory cytokine tumor necrosis factor (TNF). Nitric oxide (NO) donation reduced leukocyte adhesion to endothelial cells from control and infected groups; however, in the later group the effect was more pronounced, probably due to a reduced NO production. Inhibition of control endothelial NO synthase (eNOS) increased leukocyte adhesion to a level similar to the one observed in the infected group. Besides, the adhesion of control leukocytes to endothelial cells from infected animals is similar to the result of infected animals, confirming that schistosomiasis alters endothelial cells function. Furthermore, NO production as well as the expression of eNOS were reduced in cultured endothelial cells from infected animals. On the other hand, the expression of its repressor protein, namely caveolin-1, was similar in both control and infected groups. Conclusion/Significance Schistosomiasis increases vascular permeability and endothelial cell-leukocyte interaction in vivo and in vitro. These effects are partially explained by a reduced eNOS expression. In addition, our data show that the disease primes endothelial cells in vivo, which keep the acquired phenotype in culture.
Collapse
|
120
|
Wang-Rosenke Y, Mika A, Khadzhynov D, Loof T, Neumayer HH, Peters H. Stimulation of soluble guanylate cyclase improves renal recovery after relief of unilateral ureteral obstruction. J Urol 2011; 186:1142-9. [PMID: 21784461 DOI: 10.1016/j.juro.2011.04.108] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Indexed: 10/18/2022]
Abstract
PURPOSE The antifibrotic effects of soluble guanylate cyclase stimulation and cyclic guanosine monophosphate production have been observed in cases of anti-thy1-induced renal disease. We analyzed the action of the specific soluble guanylate cyclase stimulator BAY 41-8543 on the renal recovery phase in rats with unilateral ureteral obstruction after obstruction was relieved. MATERIALS AND METHODS Sprague-Dawley® rats underwent reversible unilateral ureteral obstruction for 5 days, after which obstruction was relieved. Rats were randomly assigned to unilateral ureteral obstruction and unilateral ureteral obstruction plus BAY 41-8543 (10 mg/kg body weight daily). Seven days after relief of obstruction we determined treatment effects on renal atrophy, apoptosis, fibrosis and nitric oxide/cyclic guanosine monophosphate signaling. RESULTS Untreated obstructed rats showed mildly increased systolic blood pressure, marked tubular atrophy and apoptosis, tubulointerstitial macrophage infiltration and fibrosis. Plasma cyclic guanosine monophosphate levels were unaltered in untreated rats with obstruction while renal soluble guanylate cyclase mRNA expression was increased. BAY 41-8543 administration significantly increased plasma cyclic guanosine monophosphate, which was paralleled by significant decreases in systolic blood pressure, renal tubular diameter, apoptosis and renal macrophage infiltration. Also, soluble guanylate cyclase stimulation decreased tubulointerstitial fibrosis, as shown by tubulointerstitial volume, matrix protein accumulation, α-smooth muscle actin expression, collagen IV deposition and transforming growth factor-β1 mRNA expression. CONCLUSIONS Soluble guanylate cyclase stimulation by BAY 41-8543 increases cyclic guanosine monophosphate production and subsequently enhances renal recovery after unilateral ureteral obstruction relief through an array of pathways. This finding suggests that soluble guanylate cyclase stimulation may serve as a novel treatment approach to restore or preserve renal structure and function in cases of obstructive kidney disease.
Collapse
Affiliation(s)
- Yingrui Wang-Rosenke
- Department of Nephrology and Center for Cardiovascular Research, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
121
|
Sandoo A, Carroll D, Metsios GS, Kitas GD, Veldhuijzen van Zanten JJCS. The association between microvascular and macrovascular endothelial function in patients with rheumatoid arthritis: a cross-sectional study. Arthritis Res Ther 2011; 13:R99. [PMID: 21693023 PMCID: PMC3218914 DOI: 10.1186/ar3374] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 05/27/2011] [Accepted: 06/21/2011] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Patients with rheumatoid arthritis (RA) are at an increased risk for cardiovascular disease (CVD). One of the earliest manifestations of CVD is endothelial dysfunction (ED). ED can occur in both the microcirculation and the macrocirculation, and these manifestations might be relatively independent of each other. Little is known about the association between endothelial function in the microcirculation and the macrocirculation in RA. The objectives of the present study were to examine the relationship between microvascular and macrovascular endothelial function in patients with RA. METHODS Ninety-nine RA patients (72 females, mean age (± SD) 56 ± 12 years), underwent assessments of endothelial-dependent (acetylcholine) and endothelial-independent (sodium nitroprusside) microvascular vasodilatory function (laser Doppler imaging with iontophoresis), as well as endothelial-dependent (flow-mediated dilation) and endothelial-independent (glyceryl trinitrate-mediated dilation) macrovascular vasodilatory function. Vasodilatory function was calculated as the percentage increase after each stimulus was applied relative to baseline values. RESULTS Pearson correlations showed that microvascular endothelial-dependent function was not associated with macrovascular endothelial-dependent function (r (90 patients) = 0.10, P = 0.34). Similarly, microvascular endothelial-independent function was not related to macrovascular endothelial-independent function (r (89 patients) = 0.00, P = 0.99). CONCLUSIONS Microvascular and macrovascular endothelial function were independent of each other in patients with RA, suggesting differential regulation of endothelial function in these two vascular beds. Assessments of both vascular beds may provide more meaningful clinical information on vascular risk in RA, but this hypothesis needs to be confirmed in long-term prospective studies.
Collapse
Affiliation(s)
- Aamer Sandoo
- Department of Rheumatology, Dudley Group of Hospitals NHS Trust, Russells Hall Hospital, Pensnett Road, Dudley, DY1 2HQ, West Midlands, UK.
| | | | | | | | | |
Collapse
|
122
|
Affiliation(s)
- Johannes-Peter Stasch
- Institute of Pharmacy, Martin Luther University, Halle, and the Cardiology Research, Bayer HealthCare AG, Wuppertal, Germany.
| | | | | |
Collapse
|
123
|
Villar IC, Scotland RS, Khambata RS, Chan M, Duchene J, Sampaio AL, Perretti M, Hobbs AJ, Ahluwalia A. Suppression of endothelial P-selectin expression contributes to reduced cell trafficking in females: an effect independent of NO and prostacyclin. Arterioscler Thromb Vasc Biol 2011; 31:1075-83. [PMID: 21350195 PMCID: PMC3501711 DOI: 10.1161/atvbaha.111.223545] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 02/10/2011] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Sex hormones underlie the lower incidence of cardiovascular disease in premenopausal women. Vascular inflammation is involved in the pathogenesis of several cardiovascular diseases and it has been reported that sex hormones modulate inflammatory responses but mechanisms responsible for these effects are not yet fully established. Herein, we assessed whether sex differences in leukocyte recruitment might exist and investigated the underlying mechanisms involved in this response. METHODS AND RESULTS Treatment with interleukin-1β (IL-1β) or tumor necrosis factor-α caused leukocyte rolling, adhesion, and emigration in mesenteric postcapillary venules in vivo that was substantially reduced in female mice compared with male mice; this difference was abolished by ovariectomy and partially restored by estrogen replacement. Deletion of endothelial nitric oxide (NO) synthase or cyclooxygenase-1 alone or in combination did not alter the leukocyte recruitment in IL-1β-treated females but significantly enhanced this response in male mice. Treatment of murine pulmonary endothelial cells with IL-1β increased expression of P-selectin in male but not female cells. CONCLUSIONS We have demonstrated a profound estrogen-dependent and NO and prostacyclin-independent suppression of leukocyte recruitment in females.
Collapse
|
124
|
Bullen ML, Miller AA, Andrews KL, Irvine JC, Ritchie RH, Sobey CG, Kemp-Harper BK. Nitroxyl (HNO) as a vasoprotective signaling molecule. Antioxid Redox Signal 2011; 14:1675-86. [PMID: 20673125 DOI: 10.1089/ars.2010.3327] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Nitroxyl (HNO), the one electron reduced and protonated form of nitric oxide (NO(•)), is rapidly emerging as a novel nitrogen oxide with distinct pharmacology and therapeutic advantages over its redox sibling. Whilst the cardioprotective effects of HNO in heart failure have been established, it is apparent that HNO may also confer a number of vasoprotective properties. Like NO(•), HNO induces vasodilatation, inhibits platelet aggregation, and limits vascular smooth muscle cell proliferation. In addition, HNO can be putatively generated within the vasculature, and recent evidence suggests it also serves as an endothelium-derived relaxing factor (EDRF). Significantly, HNO targets signaling pathways distinct from NO(•) with an ability to activate K(V) and K(ATP) channels in resistance arteries, cause coronary vasodilatation in part via release of calcitonin-gene related peptide (CGRP), and exhibits resistance to scavenging by superoxide and vascular tolerance development. As such, HNO synthesis and bioavailability may be preserved and/or enhanced during disease states, in particular those associated with oxidative stress. Moreover, it may compensate, in part, for a loss of NO(•) signaling. Here we explore the vasoprotective actions of HNO and discuss the therapeutic potential of HNO donors in the treatment of vascular dysfunction.
Collapse
Affiliation(s)
- Michelle L Bullen
- Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
125
|
Soluble guanylate cyclase activation with cinaciguat: a new approach to the treatment of decompensated heart failure. Cardiol Rev 2011; 19:23-9. [PMID: 21135599 DOI: 10.1097/crd.0b013e3181fc1c10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Heart failure (HF) remains a major cause of morbidity and mortality in the United States despite recent advances in its treatment. The nitric oxide -soluble guanylate cyclase (sGC)-cyclic 3', 5'-guanosine monophosphate pathway is a key signaling cascade involved in many physiologic processes. Derangements of the cascade may play an important role in the pathophysiology of HF and other diseases. Organic nitrates, which derive their action from their metabolic conversion to nitric oxide, exploit this pathway therapeutically. They are a mainstay of treatment for acute HF, but the development of tolerance with chronic administration limits their long-term efficacy. The development of a novel class of sGC activators has shown in both animal and preliminary clinical trials to improve hemodynamics without tolerance, while preserving renal function in patients with HF. A phase II clinical program using the sGC activator cinaciguat (BAY 58-2667) is now in progress in patients with symptomatic HF to further evaluate the efficacy and safety of this treatment approach.
Collapse
|
126
|
Nitric oxide affects IL-6 expression in human peripheral blood mononuclear cells involving cGMP-dependent modulation of NF-κB activity. Cytokine 2011; 54:282-8. [PMID: 21414799 DOI: 10.1016/j.cyto.2011.02.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 02/14/2011] [Accepted: 02/15/2011] [Indexed: 01/08/2023]
Abstract
Interleukin 6 (IL-6) and nitric oxide (NO) are important mediators of the inflammatory response. We report that in human peripheral blood mononuclear cells (PBMCs), NO exerts a biphasic effect on the expression of IL-6. Using sodium nitroprusside (SNP) and S-nitrosoglutathione (GSNO) as NO-donating compounds, we observed that both mRNA and protein levels of IL-6 increased at lower (≤10μM) and decreased at higher (>100μM) concentrations of NO donors. Changes in the expression of IL-6 correlated with changes in the activity of NF-κB, which increased at lower and decreased at higher concentrations of both NO donors as shown by the electrophoretic mobility shift assay (EMSA). The effects of NO on NF-κB activity were cGMP-dependent because they were reversed in the presence of ODQ, the inhibitor of soluble guanylyl cyclase (sGC), and KT5823, the inhibitor of cGMP-dependent protein kinase (PKG). Moreover, the membrane permeable analog of cGMP (8-Br-cGMP) mimicked the effect of the NO donors. These observations show that NO, depending on its concentration, may act in human PBMCs as a stimulator of IL-6 expression involving the sGC/cGMP/PKG pathway.
Collapse
|
127
|
Andersson KE, de Groat WC, McVary KT, Lue TF, Maggi M, Roehrborn CG, Wyndaele JJ, Melby T, Viktrup L. Tadalafil for the treatment of lower urinary tract symptoms secondary to benign prostatic hyperplasia: pathophysiology and mechanism(s) of action. Neurourol Urodyn 2011; 30:292-301. [PMID: 21284024 DOI: 10.1002/nau.20999] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 07/06/2010] [Indexed: 12/18/2022]
Abstract
BACKGROUND The PDE5 inhibitor tadalafil is investigation for the treatment of lower urinary tract symptoms (LUTS) in men with benign prostatic hyperplasia (BPH). Several clinical studies of tadalafil and other PDE5 inhibitors have reported significant symptom reduction but limited urinary flow rate improvement. This manuscript reviews the published literature describing the pathophysiology of male LUTS, with an emphasis on mechanisms that may be modulated or improved by phosphodiesterase type 5 (PDE5) inhibition. METHODS Literature (through March 2010) was obtained via Medline searches and from the individual reviewers files. Articles were selected for review based on describing in vitro, preclinical, or clinical studies of pathological processes contributing to LUTS, or possible effects of PDE5 inhibition in the lower urinary tract. RESULTS Major mechanisms contributing to LUTS include: reduced nitric oxide/cyclic guanosine monophosphate signaling; increased RhoA kinase pathway activity; autonomic overactivity; increased bladder afferent activity; and pelvic ischemia. Tadalafil and other PDE5 inhibitors have demonstrated beneficial effects on smooth muscle relaxation, smooth muscle and endothelial cell proliferation, nerve activity, and tissue perfusion that may impact LUTS in men. CONCLUSIONS The pathophysiology of male LUTS is complex and not completely understood. LUTS may occur independently of BPH or secondary to BPH but in both cases involve obstructive or irritative mechanisms with substantial pathophysiological overlap. While the precise mechanism remains unclear, inhibition of PDE5 seems to have an effect on several pathways that may impact LUTS.
Collapse
Affiliation(s)
- Karl-Erik Andersson
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Abstract
Nitric oxide (NO) is just one member of a new class of gaseous signalling molecules with fundamental actions in biology. In higher vertebrates it has key roles in maintaining haemostasis and in smooth muscle (especially vascular smooth muscle), neurons and the gastrointestinal tract. It is intimately involved in regulating all aspects of our lives from waking, digestion, sexual function, perception of pain and pleasure, memory recall and sleeping. Finally, the way it continues to function in our bodies will influence how we degenerate with age. It will likely play a role in our deaths through cardiovascular disease, stroke, diabetes and cancer. Our ability to control NO signalling and to use NO effectively in therapy must therefore have a major bearing on the future quality and duration of human life.
Collapse
Affiliation(s)
- David G Hirst
- School of Pharmacy, Queen's University Belfast, BT9 7BL Belfast, UK.
| | | |
Collapse
|
129
|
Sandoo A, van Zanten JJCSV, Metsios GS, Carroll D, Kitas GD. The endothelium and its role in regulating vascular tone. Open Cardiovasc Med J 2010; 4:302-12. [PMID: 21339899 PMCID: PMC3040999 DOI: 10.2174/1874192401004010302] [Citation(s) in RCA: 542] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 11/22/2010] [Accepted: 11/23/2010] [Indexed: 12/16/2022] Open
Abstract
The endothelium forms an important part of the vasculature and is involved in promoting an atheroprotective environment via the complementary actions of endothelial cell-derived vasoactive factors. Disruption of vascular homeostasis can lead to the development of endothelial dysfunction which in turn contributes to the early and late stages of atherosclerosis. In recent years an increasing number of non-invasive vascular tests have been developed to assess vascular structure and function in different clinical populations. The present review aims to provide an insight into the anatomy of the vasculature as well as the underlying endothelial cell physiology. In addition, an in-depth overview of the current methods used to assess vascular function and structure is provided as well as their link to certain clinical populations.
Collapse
Affiliation(s)
- Aamer Sandoo
- School of Sport and Exercise Sciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
| | | | | | | | | |
Collapse
|
130
|
Ramesh S, Morrell CN, Tarango C, Thomas GD, Yuhanna IS, Girardi G, Herz J, Urbanus RT, de Groot PG, Thorpe PE, Salmon JE, Shaul PW, Mineo C. Antiphospholipid antibodies promote leukocyte-endothelial cell adhesion and thrombosis in mice by antagonizing eNOS via β2GPI and apoER2. J Clin Invest 2010; 121:120-31. [PMID: 21123944 DOI: 10.1172/jci39828] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 10/13/2010] [Indexed: 01/13/2023] Open
Abstract
In antiphospholipid syndrome (APS), antiphospholipid antibodies (aPL) binding to β2 glycoprotein I (β2GPI) induce endothelial cell-leukocyte adhesion and thrombus formation via unknown mechanisms. Here we show that in mice both of these processes are caused by the inhibition of eNOS. In studies of cultured human, bovine, and mouse endothelial cells, the promotion of monocyte adhesion by aPL entailed decreased bioavailable NO, and aPL fully antagonized eNOS activation by diverse agonists. Similarly, NO-dependent, acetylcholine-induced increases in carotid vascular conductance were impaired in aPL-treated mice. The inhibition of eNOS was caused by antibody recognition of domain I of β2GPI and β2GPI dimerization, and it was due to attenuated eNOS S1179 phosphorylation mediated by protein phosphatase 2A (PP2A). Furthermore, LDL receptor family member antagonism with receptor-associated protein (RAP) prevented aPL inhibition of eNOS in cell culture, and ApoER2-/- mice were protected from aPL inhibition of eNOS in vivo. Moreover, both aPL-induced increases in leukocyte-endothelial cell adhesion and thrombus formation were absent in eNOS-/- and in ApoER2-/- mice. Thus, aPL-induced leukocyte-endothelial cell adhesion and thrombosis are caused by eNOS antagonism, which is due to impaired S1179 phosphorylation mediated by β2GPI, apoER2, and PP2A. Our results suggest that novel therapies for APS can now be developed targeting these mechanisms.
Collapse
Affiliation(s)
- Sangeetha Ramesh
- Division of Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Jones AW, Durante W, Korthuis RJ. Heme oxygenase-1 deficiency leads to alteration of soluble guanylate cyclase redox regulation. J Pharmacol Exp Ther 2010; 335:85-91. [PMID: 20605906 PMCID: PMC2957777 DOI: 10.1124/jpet.110.169755] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 07/02/2010] [Indexed: 01/19/2023] Open
Abstract
Heme oxygenase-1 knockout, H(mox)1(-/-), mice exhibit exacerbated vascular lesions after ischemia-reperfusion and mechanical injury. Surprisingly, we found no studies that reported contractile responses and sensitivity to vasorelaxants in H(mox)1(-/-) mice. The contractile responses [superior mesenteric arteries (SMA), from female H(mox)1(-/-) mice] exhibited increased sensitivity to phenylephrine (p < 0.001). Cumulative addition of acetylcholine relaxed SMA, with the residual contraction remaining 2 times higher in H(mox)1(-/-) mice (p < 0.001). Sodium nitroprusside (SNP, an NO donor) and 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole [YC-1; acts directly on soluble guanylate cyclase (sGC)] led to further relaxation, yet the residual contraction remained 2 to 3 times higher in H(mox)1(-/-) than H(mox)1(+/+) mice (p < 0.001). Branches from H(mox)1(-/-) mesenteric and renal arteries also showed reduced relaxation (p < 0.025). Relaxation of SMA was measured to 4-({(4-carboxybutyl) [2-(5-fluoro-2-{[4'-(trifluoromethyl) biphenyl-4-yl] methoxy}phenyl)ethyl]amino}benzoic acid (BAY 60-2770), which is a more effective activator of oxidized/heme-free sGC; and to 5-cyclopropyl-2-{1-(2-fluoro-benzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl}-pyrimidin-4-ylamine (BAY 41-2272), a more effective stimulator of reduced sGC. H(mox)1(-/-) arteries were 15 times more sensitive to BAY 60-2770 (p < 0.025) than were H(mox)1(+/+) arteries. Pretreatment with 1H-[1,2,4]oxadiazolo[3,4-a]quinoxalin-1-one (ODQ), an oxidizer of sGC, predictably shifted the BAY 60-2770 response of H(mox)1(+/+) to the left (p < 0.01) and BAY 41-2272 response to the right (p < 0.01). ODQ had little effect on the responses of H(mox)1(-/-) arteries, indicating that much of sGC was oxidized/heme-free. Western analyses of sGC in SMA indicated that both α1 and β1 subunit levels were reduced to <50% of H(mox)1(+/+) level (p < 0.025). These findings support the hypothesis that the antioxidant function of H(mox)1 plays a significant role in the maintenance of sGC in a reduced state, which is resistant to degradation and is sensitive to NO. This function may be especially important in reducing vascular damage during ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Allan W Jones
- Department of Medical Pharmacology, and Physiology, University of Missouri-Columbia, Columbia, MO 65212, USA.
| | | | | |
Collapse
|
132
|
Abstract
Since the discovery of nitric oxide (NO), which is released from endothelial cells as the main mediator of vasodilation, its target, the soluble guanylyl cyclase (sGC), has become a focus of interest for the treatment of diseases associated with endothelial dysfunction. NO donors were developed to suppress NO deficiency; however, tolerance to organic nitrates was reported. Non-NO-based drugs targeting sGC were developed to overcome the problem of tolerance. In this review, we briefly describe the process of sGC activation by its main physiological activator NO and the advances in the development of drugs capable of activating sGC in a NO-independent manner. sGC stimulators, as some of these drugs are called, require the integrity of the reduced heme moiety of the prosthetic group within the sGC and therefore are called heme-dependent stimulators. Other drugs are able to activate sGC independent of heme moiety and are hence called heme-independent activators. Because pathologic conditions modulate sGC and oxidize the heme moiety, the heme-independent sGC activators could potentially become drugs of choice because of their higher affinity to the oxidized enzyme. However, these drugs are still undergoing clinical trials and are not available for clinical use.
Collapse
|
133
|
Fritzsche C, Schleicher U, Bogdan C. Endothelial nitric oxide synthase limits the inflammatory response in mouse cutaneous leishmaniasis. Immunobiology 2010; 215:826-32. [DOI: 10.1016/j.imbio.2010.05.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 05/20/2010] [Indexed: 10/19/2022]
|
134
|
Goel A, Su B, Flavahan S, Lowenstein CJ, Berkowitz DE, Flavahan NA. Increased endothelial exocytosis and generation of endothelin-1 contributes to constriction of aged arteries. Circ Res 2010; 107:242-51. [PMID: 20522806 PMCID: PMC2909353 DOI: 10.1161/circresaha.109.210229] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
RATIONALE Circulating levels of endothelin (ET)-1 and endogenous ET(A)-mediated constriction are increased in human aging. The mechanisms responsible are not known. OBJECTIVE Investigate the storage, release, and activity of ET-1 system in arteries from young and aged Fischer-344 rats. METHODS AND RESULTS After NO synthase inhibition (L-NAME), thrombin contracted aged arteries, which was inhibited by endothelial denudation, ET(A) receptor antagonism (BQ123), and ECE inhibition (phosphoramidon, SM19712) or by inhibiting exocytosis (TAT-NSF, N-ethylmaleimide-sensitive factor inhibitor). Thrombin did not cause endothelium-dependent contraction of young arteries. In aged but not young arteries, thrombin rapidly increased ET-1 release, which was abolished by endothelium denudation or TAT-NSF. L-NAME did not affect ET-1 release. ET-1 immunofluorescent staining was punctate and distinct from von Willebrand factor (VWF). VWF and ET-1 immunofluorescent intensity was similar in young and aged quiescent arteries. Thrombin rapidly increased ET-1 staining and decreased VWF staining in aged but had no effect in young aortas. After L-NAME, thrombin decreased VWF staining in young aortas. NO donor DEA-NONOate (1 to 100 nmol/L) reversed thrombin-induced exocytosis in young (VWF) but not aged L-NAME-treated aortas (VWF, ET-1). Expression of preproET-1 mRNA and ECE-1 mRNA were increased in aged compared to young endothelium. BigET-1 levels and contraction to exogenous BigET-1 (but not ET-1) were also increased in aged compared to young arteries. CONCLUSIONS The stimulated exocytotic release of ET-1 is dramatically increased in aged endothelium. This reflects increased reactivity of exocytosis, increased expression and storage of ET-1 precursor peptides, and increased expression of ECE-1. Altered endothelial exocytosis of ET-1 and other mediators may contribute to cardiovascular pathology in aging.
Collapse
Affiliation(s)
- Aditya Goel
- Department of Anesthesiology, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
135
|
De Bon E, Bonanni G, Saggiorato G, Bassi P, Cella G. Effects of tadalafil on platelets and endothelium in patients with erectile dysfunction and cardiovascular risk factors: a pilot study. Angiology 2010; 61:602-6. [PMID: 20395237 DOI: 10.1177/0003319710362977] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Activation of endothelial cells and platelets is an initial step toward the development of cardiovascular disease. Erectile dysfunction (ED) may be an early manifestation of endotheliopathy. We evaluated the effects of tadalafil on cyclic nucleotides (cGMP and cAMP) and soluble adhesion molecules (E- and P-selectin [ES and PS]). The patients were divided into 2 groups on the basis of the presence (10 patients) or absence (9 patients) of cardiovascular risk factors (dyslipidemia, hypertension, and smoking). Nitric oxide (NO) was unmeasurable in all the patients. Tadalafil administration induced a significant increase in cGMP levels in both groups (P < .01). In contrast, cAMP significantly increased (P < .05) and PS decreased (P < .01) only in patients without cardiovascular risk factors. Tadalafil induced a beneficial effect on platelet activation in patients with ED without cardiovascular risk factors; this effect was not mediated by NO.
Collapse
Affiliation(s)
- Emiliano De Bon
- Department of Cardiological Sciences, University of Padua, Padova, Italy
| | | | | | | | | |
Collapse
|
136
|
Zhuang P, Ji H, Zhang YH, Min ZL, Ni QG, You R. ZJM-289, a novel nitric oxide donor, alleviates the cerebral ischaemic-reperfusion injury in rats. Clin Exp Pharmacol Physiol 2010; 37:e121-7. [DOI: 10.1111/j.1440-1681.2010.05353.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
137
|
Roumeguère T, Zouaoui Boudjeltia K, Babar S, Nuyens V, Rousseau A, Van Antwerpen P, Ducobu J, Wespes E, Vanhaeverbeek M. Effects of Phosphodiesterase Inhibitors on the Inflammatory Response of Endothelial Cells Stimulated by Myeloperoxidase-Modified Low-Density Lipoprotein or Tumor Necrosis Factor Alpha. Eur Urol 2010; 57:522-8. [DOI: 10.1016/j.eururo.2009.01.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2008] [Accepted: 01/13/2009] [Indexed: 10/21/2022]
|
138
|
Momin EN, Schwab KE, Chaichana KL, Miller-Lotan R, Levy AP, Tamargo RJ. Controlled delivery of nitric oxide inhibits leukocyte migration and prevents vasospasm in haptoglobin 2-2 mice after subarachnoid hemorrhage. Neurosurgery 2009; 65:937-45; discussion 945. [PMID: 19834407 DOI: 10.1227/01.neu.0000356974.14230.b8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Cerebral vasospasm is the leading cause of morbidity and mortality after aneurysmal subarachnoid hemorrhage (SAH) occurs. The haptoglobin 2-2 genotype likely increases the risk for developing posthemorrhagic vasospasm, but potential treatments for vasospasm have never been tested in an animal model of this genotype. We used the nitric oxide (NO) donor diethylenetriamine (DETA)/NO incorporated into ethylene/vinyl acetate (EVAc) polymers to evaluate the efficacy of controlled NO repletion in a haptoglobin 2-2 mouse basilar artery SAH model. METHODS Mice were randomized to 3 groups: autologous blood injection and empty polymer implantation into the subarachnoid space (n = 16); blood injection and 30% DETA/NO-EVAc implantation (n = 20); and sham operation (n = 19). At 24 hours after surgery, activity level was assessed on a 3-point scale, and basilar arteries were processed for morphometric measurements. Leukocyte extravasation was assessed by immunohistochemistry (n = 12). RESULTS Treatment with controlled release of NO from DETA/NO-EVAc polymers after SAH resulted in a significant increase in basilar artery lumen patency (73.3% +/- 4.3% versus 96.5% +/- 4.3%, mean +/- standard error of the mean; P = 0.01), a significant improvement in activity after experimental SAH (2.14 +/- 0.14 versus 2.56 +/- 0.10 points; P = 0.025), and a significant decrease in extravasated leukocytes (21 +/- 4.55 versus 6.75 +/- 3.77 leukocytes per high-power field, untreated versus treated mice; P = 0.001). CONCLUSION Treatment with controlled release of NO prevented posthemorrhagic vasospasm in haptoglobin 2-2 mice, and mitigated neurological deficits, suggesting that DETA/NO-EVAc would be an effective therapy in patients with a genotype that confers higher risk for vasospasm after SAH. In addition to smooth muscle relaxation, inhibition of leukocyte migration may contribute to the therapeutic mechanism of NO.
Collapse
Affiliation(s)
- Eric N Momin
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | | | | | | | | | | |
Collapse
|
139
|
Cauwels A, Buys ES, Thoonen R, Geary L, Delanghe J, Shiva S, Brouckaert P. Nitrite protects against morbidity and mortality associated with TNF- or LPS-induced shock in a soluble guanylate cyclase-dependent manner. ACTA ACUST UNITED AC 2009; 206:2915-24. [PMID: 19934018 PMCID: PMC2806477 DOI: 10.1084/jem.20091236] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nitrite (NO2−), previously viewed as a physiologically inert metabolite and biomarker of the endogenous vasodilator NO, was recently identified as an important biological NO reservoir in vasculature and tissues, where it contributes to hypoxic signaling, vasodilation, and cytoprotection after ischemia–reperfusion injury. Reduction of nitrite to NO may occur enzymatically at low pH and oxygen tension by deoxyhemoglobin, deoxymyoglobin, xanthine oxidase, mitochondrial complexes, or NO synthase (NOS). We show that nitrite treatment, in sharp contrast with the worsening effect of NOS inhibition, significantly attenuates hypothermia, mitochondrial damage, oxidative stress and dysfunction, tissue infarction, and mortality in a mouse shock model induced by a lethal tumor necrosis factor challenge. Mechanistically, nitrite-dependent protection was not associated with inhibition of mitochondrial complex I activity, as previously demonstrated for ischemia–reperfusion, but was largely abolished in mice deficient for the soluble guanylate cyclase (sGC) α1 subunit, one of the principal intracellular NO receptors and signal transducers in the cardiovasculature. Nitrite could also provide protection against toxicity induced by Gram-negative lipopolysaccharide, although higher doses were required. In conclusion, we show that nitrite can protect against toxicity in shock via sGC-dependent signaling, which may include hypoxic vasodilation necessary to maintain microcirculation and organ function, and cardioprotection.
Collapse
Affiliation(s)
- Anje Cauwels
- Department for Molecular Biomedical Research, Flanders Institute for Biotechnology, 9052 Ghent, Belgium.
| | | | | | | | | | | | | |
Collapse
|
140
|
Sovershaev MA, Egorina EM, Hansen JB, Østerud B, Pacher P, Stasch JP, Evgenov OV. Soluble guanylate cyclase agonists inhibit expression and procoagulant activity of tissue factor. Arterioscler Thromb Vasc Biol 2009; 29:1578-86. [PMID: 19592462 PMCID: PMC2938177 DOI: 10.1161/atvbaha.109.192690] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Tissue factor (TF), a major initiator of blood coagulation, contributes to inflammation, atherosclerosis, angiogenesis, and vascular remodeling. Pharmacological agonists of soluble guanylate cyclase (sGC) attenuate systemic and pulmonary hypertension, vascular remodeling, and platelet aggregation. However, the influence of these novel pharmacophores on TF is unknown. METHODS AND RESULTS We evaluated effects of BAY 41-2272 and BAY 58-2667 on expression and activity of TF in human monocytes and umbilical vein endothelial cells (HUVECs). Both compounds reduced expression of active TF protein in monocytes stimulated with lipopolysaccharide, as demonstrated by immunoblotting and a TF procoagulant activity assay. In-cell Western assay revealed that this effect was associated with a marked reduction of total and surface TF presentation. Furthermore, BAY 41-2272 and BAY 58-2667 decreased TF protein expression and the TF-dependent procoagulant activity in HUVECs stimulated with TNF-alpha. The sGC agonists also suppressed transcriptional activity of NF-kappaB. A siRNA-mediated knockdown of the alpha1-subunit of sGC in monocytes and HUVECs confirmed that the inhibitory effect of BAY 41-2272 and BAY 58-2667 on TF expression is mediated through the sGC-dependent mechanisms. CONCLUSIONS Inhibition of TF expression and activity by sGC agonists might provide therapeutic benefits in cardiovascular diseases associated with enhanced procoagulant and inflammatory response.
Collapse
|
141
|
Roumeguère T, Zouaoui Boudjeltia K, Hauzeur C, Schulman C, Vanhaeverbeek M, Wespes E. Is there a rationale for the chronic use of phosphodiesterase-5 inhibitors for lower urinary tract symptoms secondary to benign prostatic hyperplasia? BJU Int 2009; 104:511-7. [PMID: 19239452 DOI: 10.1111/j.1464-410x.2009.08418.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To critically review the physiological roles of phosphodiesterase-5 (PDE5), to explain and support the putative impact and clinical significance of PDE5 inhibitors (PDE5-Is) in the treatment of lower urinary tract symptoms (LUTS) associated with benign prostatic hyperplasia (BPH) and erectile dysfunction (ED), both highly prevalent in men aged > or =50 years, as PDE5-Is are very effective as a first-line therapy for ED, and attractive for further physiological functional investigations. METHODS We searched Medline for peer-reviewed articles in English, from 1991 to 2008, to provide a critical contemporary review of PDE5 pertaining to the potential interest of findings supporting a role for PDE5-Is in LUTS due to BPH. The selection of papers was based on the relevance of subject matter. A critical analysis of available fundamental and clinical data is reported. RESULTS Several studies assessed the role of the nitric oxide/cGMP signalling pathway in the regulation of the prostate tone, with the support of clinical observations. PDE5-Is can also represent a potential mode of action allowing the targeting of transcriptional activity implicated in the regulation of the progression of the inflammatory process involved in BPH. PDE5-Is can inhibit human stromal cell proliferation of the prostate mediated by cGMP accumulation. New targeting hypotheses of pathophysiological processes are also reported. CONCLUSIONS There is evidence that LUTS and ED are strongly linked. This analysis of the regulatory basis of PDE5 biology could indicate several directions of investigation. However, it is necessary to devise well-designed large prospective studies that would produce significant data before this approach becomes a standard of care.
Collapse
Affiliation(s)
- Thierry Roumeguère
- Laboratory of Experimental Medicine, CHU Charleroi, ULB, Montigny -le -Tilleul, Belgium.
| | | | | | | | | | | |
Collapse
|
142
|
Berggreen E, Nyløkken K, Delaleu N, Hajdaragic-Ibricevic H, Jonsson MV. Impaired vascular responses to parasympathetic nerve stimulation and muscarinic receptor activation in the submandibular gland in nonobese diabetic mice. Arthritis Res Ther 2009; 11:R18. [PMID: 19200376 PMCID: PMC2688250 DOI: 10.1186/ar2609] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 01/22/2009] [Accepted: 02/06/2009] [Indexed: 12/02/2022] Open
Abstract
Introduction Decreased vascular responses to salivary gland stimulation are observed in Sjögren's syndrome patients. We investigate whether impaired vascular responses to parasympathetic stimulation and muscarinic receptor activation in salivary glands parallels hyposalivation in an experimental model for Sjögren's syndrome. Methods Blood flow responses in the salivary glands were measured by laser Doppler flowmeter. Muscarinic receptor activation was followed by saliva secretion measurements. Nitric oxide synthesis-mediated blood flow responses were studied after administration of a nitric oxide synthase inhibitor. Glandular autonomic nerves and muscarinic 3 receptor distributions were also investigated. Results Maximal blood flow responses to parasympathetic stimulation and muscarinic receptor activation were significantly lower in nonobese diabetic (NOD) mice compared with BALB/c mice, coinciding with impaired saliva secretion in nonobese diabetic mice (P < 0.005). Nitric oxide synthase inhibitor had less effect on blood flow responses after parasympathetic nerve stimulation in nonobese diabetic mice compared with BALB/c mice (P < 0.02). In nonobese diabetic mice, salivary gland parasympathetic nerve fibres were absent in areas of focal infiltrates. Muscarinic 3 receptor might be localized in the blood vessel walls of salivary glands. Conclusions Impaired vasodilatation in response to parasympathetic nerve stimulation and muscarinic receptor activation may contribute to hyposalivation observed in nonobese diabetic mice. Reduced nitric oxide signalling after parasympathetic nerve stimulation may contribute in part to the impaired blood flow responses. The possibility of muscarinic 3 receptor in the vasculature supports the notion that muscarinic 3 receptor autoantibodies present in nonobese diabetic mice might impair the fluid transport required for salivation. Parasympathetic nerves were absent in areas of focal infiltrates, whereas a normal distribution was found within glandular epithelium. Trial registration The trial registration number for the present study is 79-04/BBB, given by the Norwegian State Commission for Laboratory Animals.
Collapse
Affiliation(s)
- Ellen Berggreen
- Department of Biomedicine, Jonas Liesvei 91, Bergen 5009, Norway.
| | | | | | | | | |
Collapse
|
143
|
Ferreira T, Camargo EA, Ribela MTC, Damico DC, Marangoni S, Antunes E, De Nucci G, Landucci EC. Inflammatory oedema induced by Lachesis muta muta (Surucucu) venom and LmTX-I in the rat paw and dorsal skin. Toxicon 2009; 53:69-77. [DOI: 10.1016/j.toxicon.2008.10.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2008] [Revised: 10/12/2008] [Accepted: 10/16/2008] [Indexed: 10/21/2022]
|
144
|
Abstract
Cyclic guanosine 3', 5'-monophosphate (cGMP) plays an integral role in the control of vascular function. Generated from guanylate cyclases in response to the endogenous ligands, nitric oxide (NO) and natriuretic peptides (NPs), cGMP influences a number of vascular cell types and regulates vasomotor tone, endothelial permeability, cell growth and differentiation, as well as platelet and blood cell interactions. Reciprocal regulation of the NO-cGMP and NP-cGMP pathways is evident in the vasculature such that one cGMP generating system may compensate for the dysfunction of the other. Indeed, aberrant cGMP production and/or signalling accompanies many vascular disorders such as hypertension, atherosclerosis, coronary artery disease and diabetic complications. This chapter highlights the main vascular functions of cGMP, its role in disease and the resulting current and potential therapeutic applications. With respect to pulmonary hypertension, heart failure and erectile dysfunction, as well as cGMP signal transduction, the reader is specifically referred to other dedicated chapters.
Collapse
Affiliation(s)
- Barbara Kemp-Harper
- Department of Pharmacology, Monash University, Melbourne (Clayton), VIC, 3800, Australia.
| | | |
Collapse
|
145
|
Abstract
The nitric oxide (NO) signalling pathway is altered in cardiovascular diseases, including systemic and pulmonary hypertension, stroke, and atherosclerosis. The vasodilatory properties of NO have been exploited for over a century in cardiovascular disease, but NO donor drugs and inhaled NO are associated with significant shortcomings, including resistance to NO in some disease states, the development of tolerance during long-term treatment, and non-specific effects such as post-translational modification of proteins. The development of pharmacological agents capable of directly stimulating the NO receptor, soluble guanylate cyclase (sGC), is therefore highly desirable. The benzylindazole compound YC-1 was the first sGC stimulator to be identified; this compound formed a lead structure for the development of optimized sGC stimulators with improved potency and specificity for sGC, including CFM-1571, BAY 41-2272, BAY 41-8543, and BAY 63-2521. In contrast to the NO- and haem-independent sGC activators such as BAY 58-2667, these compounds stimulate sGC activity independent of NO and also act in synergy with NO to produce anti-aggregatory, anti-proliferative, and vasodilatory effects. Recently, aryl-acrylamide compounds were identified independent of YC-1 as sGC stimulators; although structurally dissimilar to YC-1, they have a similar mode of action and promote smooth muscle relaxation. Pharmacological stimulators of sGC may be beneficial in the treatment of a range of diseases, including systemic and pulmonary hypertension, heart failure, atherosclerosis, erectile dysfunction, and renal fibrosis. An sGC stimulator, BAY 63-2521, is currently in clinical development as an oral therapy for patients with pulmonary hypertension. It has demonstrated efficacy in a proof-of-concept study, reducing pulmonary vascular resistance and increasing cardiac output from baseline. A full, phase 2 trial of BAY 63-2521 in pulmonary hypertension is underway.
Collapse
Affiliation(s)
- Johannes-Peter Stasch
- Bayer Schering Pharma AG, Cardiology Research, Pharma Research Center, Wuppertal, 42096, Germany.
| | | |
Collapse
|
146
|
Nakao A, Sugimoto R, Billiar TR, McCurry KR. Therapeutic antioxidant medical gas. J Clin Biochem Nutr 2008; 44:1-13. [PMID: 19177183 PMCID: PMC2613492 DOI: 10.3164/jcbn.08-193r] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 08/05/2008] [Indexed: 12/12/2022] Open
Abstract
Medical gases are pharmaceutical gaseous molecules which offer solutions to medical needs and include traditional gases, such as oxygen and nitrous oxide, as well as gases with recently discovered roles as biological messenger molecules, such as carbon monoxide, nitric oxide and hydrogen sulphide. Medical gas therapy is a relatively unexplored field of medicine; however, a recent increasing in the number of publications on medical gas therapies clearly indicate that there are significant opportunities for use of gases as therapeutic tools for a variety of disease conditions. In this article, we review the recent advances in research on medical gases with antioxidant properties and discuss their clinical applications and therapeutic properties.
Collapse
Affiliation(s)
- Atsunori Nakao
- Thomas E Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
147
|
Martinelli R, Gegg M, Longbottom R, Adamson P, Turowski P, Greenwood J. ICAM-1-mediated endothelial nitric oxide synthase activation via calcium and AMP-activated protein kinase is required for transendothelial lymphocyte migration. Mol Biol Cell 2008; 20:995-1005. [PMID: 19073885 DOI: 10.1091/mbc.e08-06-0636] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
As a gatekeeper of leukocyte trafficking the vasculature fulfills an essential immune function. We have recently shown that paracellular transendothelial lymphocyte migration is controlled by intercellular adhesion molecule 1 (ICAM-1)-mediated vascular endothelial cadherin (VEC) phosphorylation [Turowski et al., J. Cell Sci. 121, 29-37 (2008)]. Here we show that endothelial nitric oxide synthase (eNOS) is a critical regulator of this pathway. ICAM-1 stimulated eNOS by a mechanism that was clearly distinct from that utilized by insulin. In particular, phosphorylation of eNOS on S1177 in response to ICAM-1 activation was regulated by src family protein kinase, rho GTPase, Ca(2+), CaMKK, and AMPK, but not Akt/PI3K. Functional neutralization of any component of this pathway or its downstream effector guanylyl cyclase significantly reduced lymphocyte diapedesis across the endothelial monolayer. In turn, activation of NO signaling promoted lymphocyte transmigration. The eNOS signaling pathway was required for T-cell transmigration across primary rat and human microvascular endothelial cells and also when shear flow was applied, suggesting that this pathway is ubiquitously used. These data reveal a novel and essential role of eNOS in basic immune function and provide a key link in the molecular network governing endothelial cell compliance to diapedesis.
Collapse
Affiliation(s)
- Roberta Martinelli
- Division of Cell Biology, Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
| | | | | | | | | | | |
Collapse
|
148
|
|
149
|
Almeida CB, Traina F, Lanaro C, Canalli AA, Saad STO, Costa FF, Conran N. High expression of the cGMP-specific phosphodiesterase, PDE9A, in sickle cell disease (SCD) and the effects of its inhibition in erythroid cells and SCD neutrophils. Br J Haematol 2008; 142:836-44. [DOI: 10.1111/j.1365-2141.2008.07264.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
150
|
Zhou Z, Pyriochou A, Kotanidou A, Dalkas G, van Eickels M, Spyroulias G, Roussos C, Papapetropoulos A. Soluble guanylyl cyclase activation by HMR-1766 (ataciguat) in cells exposed to oxidative stress. Am J Physiol Heart Circ Physiol 2008; 295:H1763-71. [PMID: 18757489 DOI: 10.1152/ajpheart.51.2008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many vascular diseases are characterized by increased levels of ROS that destroy the biological activity of nitric oxide and limit cGMP formation. In the present study, we investigated the cGMP-forming ability of HMR-1766 in cells exposed to oxidative stress. Pretreatment of smooth muscle cells with H(2)O(2) reduced cGMP production stimulated by sodium nitroprusside (SNP) or BAY 41-2272. However, pretreatment with H(2)O(2) significantly increased HMR-1766 responses. Similar results were obtained with SIN-1, menadione, and rotenone. In addition, HMR-1766 was more effective in stimulating heme-free sGC compared with the wild-type enzyme. Interestingly, in cells expressing heme-free sGC, H(2)O(2) inhibited instead of potentiated HMR-1766 responses, suggesting that the ROS-induced enhancement of cGMP formation was heme dependent. Moreover, using truncated forms of sGC, we observed that the NH(2)-terminus of the beta(1)-subunit is required for the action of HMR-1766. Finally, to study tolerance development to HMR-1766, cells were pretreated with this sGC activator and reexposed to HMR-1766 or SNP. Results from these experiments demonstrated lack of tolerance development to HMR-1766 as well as lack of cross-tolerance with SNP. We conclude that HMR-1766 is an improved sGC activator as it has the ability to activate oxidized/heme-free sGC and is resistant to the development of tolerance; these observations make HMR-1766 a promising agent for treating diseases associated with increased vascular tone combined with enhanced ROS production.
Collapse
Affiliation(s)
- Zongmin Zhou
- George P. Livanos and Marianthi Simou Laboratories, Department of Critical Care and Pulmonary Services, Evangelismos Hospital, University of Athens, Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|