101
|
Koellhoffer EC, McCullough LD. The effects of estrogen in ischemic stroke. Transl Stroke Res 2012; 4:390-401. [PMID: 24323337 DOI: 10.1007/s12975-012-0230-5] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 11/12/2012] [Indexed: 12/12/2022]
Abstract
Stroke is a leading cause of death and the most common cause of long-term disability in the USA. Women have a lower incidence of stroke compared with men throughout most of the lifespan which has been ascribed to protective effects of gonadal steroids, most notably estrogen. Due to the lower stroke incidence observed in pre-menopausal women and robust preclinical evidence of neuroprotective and anti-inflammatory properties of estrogen, researchers have focused on the potential benefits of hormones to reduce ischemic brain injury. However, as women age, they are disproportionately affected by stroke, coincident with the loss of estrogen with menopause. The risk of stroke in elderly women exceeds that of men and it is clear that in some settings estrogen can have pro-inflammatory effects. This review will focus on estrogen and inflammation and its interaction with aging.
Collapse
Affiliation(s)
- Edward C Koellhoffer
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | | |
Collapse
|
102
|
Upregulation of CBLL1 in rat brain cortex after lipopolysaccharide treated. J Mol Histol 2012; 44:135-45. [PMID: 23160791 DOI: 10.1007/s10735-012-9467-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 11/01/2012] [Indexed: 12/14/2022]
Abstract
CBLL1 (Casitas B-lineage lymphoma-transforming sequence-like protein 1) also known as Hakai, was originally identified as an E3 ubiquitin-ligase for the E-cadherin complex. Recent data have provided evidences for novel biological functional role of CBLL1 during tumor progression and other diseases. However, its distribution and function in the central nervous system (CNS) remains unclear. In this study, we found CBLL1 was significant up-regulation in cerebral cortex after LPS administration and immunofluorescent labeling indicated that CBLL1 was localized striking in the neurons. We also investigated co-staining of CBLL1 and active-caspase-3 and cyclin D1 in the cerebral cortex following LPS administration. Based on our data, we speculated that CBLL1 might play an important role in neuronal apoptosis following LPS administration and might provide a basis for the further study on its role in cell cycle re-entry in neuroinflammation in CNS.
Collapse
|
103
|
Liu F, McCullough LD. Interactions between age, sex, and hormones in experimental ischemic stroke. Neurochem Int 2012; 61:1255-65. [PMID: 23068990 DOI: 10.1016/j.neuint.2012.10.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 12/27/2022]
Abstract
Age, sex, and gonadal hormones have profound effects on ischemic stroke outcomes, although how these factors impact basic stroke pathophysiology remains unclear. There is a plethora of inconsistent data reported throughout the literature, primarily due to differences in the species examined, the timing and methods used to evaluate injury, the models used, and confusion regarding differences in stroke incidence as seen in clinical populations vs. effects on acute neuroprotection or neurorepair in experimental stroke models. Sex and gonadal hormone exposure have considerable independent impact on stroke outcome, but these factors also interact with each other, and the contribution of each differs throughout the lifespan. The contribution of sex and hormones to experimental stroke will be the focus of this review. Recent advances and our current understanding of age, sex, and hormone interactions in ischemic stroke with a focus on inflammation will be discussed.
Collapse
Affiliation(s)
- Fudong Liu
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | | |
Collapse
|
104
|
De Butte-Smith M, Zukin RS, Etgen AM. Effects of global ischemia and estradiol pretreatment on phosphorylation of Akt, CREB and STAT3 in hippocampal CA1 of young and middle-aged female rats. Brain Res 2012; 1471:118-28. [PMID: 22771860 DOI: 10.1016/j.brainres.2012.06.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 06/22/2012] [Accepted: 06/25/2012] [Indexed: 01/29/2023]
Abstract
Transient global ischemia induces selective, delayed neuronal death of pyramidal neurons in the hippocampal CA1. Whereas long term treatment of middle-aged female rats with estradiol at physiological doses ameliorates neuronal death, the signaling pathways that mediate the neuroprotection are, as yet, unknown. Protein kinase B (Akt) and downstream transcription factors, the cAMP response element binding protein (CREB) and signal transducer and activator of transcription (STAT3) are critical players in cellular survival following injury. The present study was undertaken to determine whether long term estradiol alters the phosphorylation status and activity of Akt, STAT3 and CREB in ovariohysterectomized, middle-aged and young female rats subjected to global ischemia. Irrespective of either hormone or ischemic condition, middle-aged females exhibited lower levels of p-CREB and higher levels of Akt and STAT3 in CA1 than young females, as assessed by Western blot. In middle-aged animals, ischemia increased the phosphorylation status/activity of Akt and STAT3, and decreased the phosphorylation status/activity of CREB in the hippocampal CA1. Whereas estradiol did not detectably alter the phosphorylation status/activity of Akt or STAT3, it prevented the ischemia-induced decrease in nuclear p-CREB. Similar results were observed for the young females. Collectively, these data demonstrate that CREB, STAT3, and Akt are involved in the molecular response to global ischemia and that age influences the status of CREB, STAT3 and Akt activity in CA1 under physiological as well as pathological conditions, further emphasizing the importance of including older rodents in neuroprotection studies.
Collapse
Affiliation(s)
- M De Butte-Smith
- Albert Einstein College of Medicine, Dominick P. Purpura Department of Neuroscience, Bronx, NY 10461, USA
| | | | | |
Collapse
|
105
|
Leon RL, Li X, Huber JD, Rosen CL. Worsened outcome from middle cerebral artery occlusion in aged rats receiving 17β-estradiol. Endocrinology 2012; 153:3386-93. [PMID: 22581460 PMCID: PMC3380301 DOI: 10.1210/en.2011-1859] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Although estrogens are neuroprotective in young adult animal models of stroke, clinical trials demonstrate that estrogens increase the incidence and severity of stroke in aged women. We have previously shown that experimental stroke pathophysiology differs between young adult and aged rats. The aim of this study was to determine the effects of 17β-estradiol after middle cerebral artery occlusion and reperfusion in young adult and aged female rats. Focal embolic stroke was performed by middle cerebral artery occlusion with fibrin clot followed by reperfusion with i.v. human recombinant tissue plasminogen activator. Histological and functional outcomes were measured at 24 h after middle cerebral artery occlusion with fibrin clot. Aged rats treated with 17β-estradiol had significantly increased infarct volumes compared with placebo-treated aged rats. Young adult rats treated with 17β-estradiol had significantly decreased infarct volumes and improved functional outcome compared with ovariectomized young adult rats. Our results suggest that 17β-estradiol may act in an age-dependent manner in the postischemic rat brain. In young adult rats, it is neuroprotective; chronic treatment with 17β-estradiol during aging leads to worsened ischemic brain injury in aged female rats.
Collapse
Affiliation(s)
- Rachel L Leon
- West Virginia University Department of Neurosurgery, Morgantown, West Virginia 26506-9183, USA
| | | | | | | |
Collapse
|
106
|
Inagaki T, Kaneko N, Zukin RS, Castillo PE, Etgen AM. Estradiol attenuates ischemia-induced death of hippocampal neurons and enhances synaptic transmission in aged, long-term hormone-deprived female rats. PLoS One 2012; 7:e38018. [PMID: 22675505 PMCID: PMC3366987 DOI: 10.1371/journal.pone.0038018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Accepted: 05/02/2012] [Indexed: 11/18/2022] Open
Abstract
Background Transient global forebrain ischemia causes selective, delayed death of hippocampal CA1 pyramidal neurons, and the ovarian hormone 17β-estradiol (E2) reduces neuronal loss in young and middle-aged females. The neuroprotective efficacy of E2 after a prolonged period of hormone deprivation is controversial, and few studies examine this issue in aged animals given E2 treatment after induction of ischemia. Methodology/Principal Findings The present study investigated the neuroprotective effects of E2 administered immediately after global ischemia in aged female rats (15–18 months) after 6 months of hormone deprivation. We also used electrophysiological methods to assess whether CA1 synapses in the aging hippocampus remain responsive to E2 after prolonged hormone withdrawal. Animals were ovariohysterectomized and underwent 10 min global ischemia 6 months later. A single dose of E2 (2.25 µg) infused intraventricularly after reperfusion significantly increased cell survival, with 45% of CA1 neurons surviving vs 15% in controls. Ischemia also induced moderate loss of CA3/CA4 pyramidal cells. Bath application of 1 nM E2 onto brain slices derived from non-ischemic aged females after 6 months of hormone withdrawal significantly enhanced excitatory transmission at CA1 synapses evoked by Schaffer collateral stimulation, and normal long-term potentiation (LTP) was induced. The magnitude of LTP and of E2 enhancement of field excitatory postsynaptic potentials was indistinguishable from that recorded in slices from young rats. Conclusions/Significance The data demonstrate that 1) acute post-ischemic infusion of E2 into the brain ventricles is neuroprotective in aged rats after 6 months of hormone deprivation; and 2) E2 enhances synaptic transmission in CA1 pyramidal neurons of aged long-term hormone deprived females. These findings provide evidence that the aging hippocampus remains responsive to E2 administered either in vivo or in vitro even after prolonged periods of hormone withdrawal.
Collapse
Affiliation(s)
- Tomoko Inagaki
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Naoki Kaneko
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - R. Suzanne Zukin
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Pablo E. Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Anne M. Etgen
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
107
|
Guo J, Duckles SP, Weiss JH, Li X, Krause DN. 17β-Estradiol prevents cell death and mitochondrial dysfunction by an estrogen receptor-dependent mechanism in astrocytes after oxygen-glucose deprivation/reperfusion. Free Radic Biol Med 2012; 52:2151-60. [PMID: 22554613 PMCID: PMC3377773 DOI: 10.1016/j.freeradbiomed.2012.03.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 03/07/2012] [Accepted: 03/08/2012] [Indexed: 11/16/2022]
Abstract
17β-Estradiol (E2) has been shown to protect against ischemic brain injury, yet its targets and the mechanisms are unclear. E2 may exert multiple regulatory actions on astrocytes that may greatly contribute to its ability to protect the brain. Mitochondria are recognized as playing central roles in the development of injury during ischemia. Increasing evidence indicates that mitochondrial mechanisms are critically involved in E2-mediated protection. In this study, the effects of E2 and the role of mitochondria were evaluated in primary cultures of astrocytes subjected to an ischemia-like condition of oxygen-glucose deprivation (OGD)/reperfusion. We showed that E2 treatment significantly protects against OGD/reperfusion-induced cell death as determined by cell viability, apoptosis, and lactate dehydrogenase leakage. The protective effects of E2 on astrocytic survival were blocked by an estrogen receptor (ER) antagonist (ICI-182,780) and were mimicked by an ER agonist selective for ERα (PPT), but not by an ER agonist selective for ERβ (DPN). OGD/reperfusion provoked mitochondrial dysfunction as manifested by an increase in cellular reactive oxygen species production, loss of mitochondrial membrane potential, and depletion of ATP. E2 pretreatment significantly inhibited OGD/reperfusion-induced mitochondrial dysfunction, and this effect was also blocked by ICI-182,780. Therefore, we conclude that E2 provides direct protection to astrocytes from ischemic injury by an ER-dependent mechanism, highlighting an important role for ERα. Estrogen protects against mitochondrial dysfunction at the early phase of ischemic injury. However, overall implications for protection against brain ischemia and its complex sequelae await further exploration.
Collapse
Affiliation(s)
- Jiabin Guo
- Department of Pharmacology (J.G., S.P.D., D.N.K), Department of Neurology (J.H.W.), School of Medicine, University of California, Irvine, CA 92697, USA
- State Key Laboratory of Natural Biomimetic Drugs, Department of Pharmacology, School of Basic Medicine, Peking University, Beijing 100191, China
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Sue P. Duckles
- Department of Pharmacology (J.G., S.P.D., D.N.K), Department of Neurology (J.H.W.), School of Medicine, University of California, Irvine, CA 92697, USA
| | - John H. Weiss
- Department of Pharmacology (J.G., S.P.D., D.N.K), Department of Neurology (J.H.W.), School of Medicine, University of California, Irvine, CA 92697, USA
| | - Xuejun Li
- State Key Laboratory of Natural Biomimetic Drugs, Department of Pharmacology, School of Basic Medicine, Peking University, Beijing 100191, China
| | - Diana N. Krause
- Department of Pharmacology (J.G., S.P.D., D.N.K), Department of Neurology (J.H.W.), School of Medicine, University of California, Irvine, CA 92697, USA
| |
Collapse
|
108
|
Drummond ES, Martins RN, Handelsman DJ, Harvey AR. Altered expression of Alzheimer's disease-related proteins in male hypogonadal mice. Endocrinology 2012; 153:2789-99. [PMID: 22514046 DOI: 10.1210/en.2011-2003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Age-related depletion of estrogens and androgens is associated with an increase in Alzheimer's disease (AD) brain pathology and diminished cognitive function. Here we investigated AD-associated molecular and cellular changes in brains of aged hypogonadal (hpg) male and female mice. hpg Mice have a spontaneous, inactivating genetic mutation in the GnRH gene resulting in life-long deficiency of gonadotropins and gonadal sex hormones. Western blot analysis revealed low levels of amyloid precursor protein and high levels of presenilin 1, amyloid precursor protein C-terminal fragment, and β-amyloid 42 in brains of aged male, but not female, hpg mice. Changes were confined to the hippocampus and were not evident in the cerebellum or other brain tissues. Male hpg mice tended to have lower levels of IL-1β protein than male littermate controls. Immunohistochemical staining of the basal forebrain revealed that male hpg mice had lower choline acetyltransferase levels per neuron compared with controls. These AD-like changes specific to male hpg mice supports a link between androgen depletion and the development of AD pathology.
Collapse
Affiliation(s)
- Eleanor S Drummond
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Western Australia, 6009 Australia.
| | | | | | | |
Collapse
|
109
|
Honoris L, Budoff MJ. Postmenopausal Hormone Therapy: Does It Have a Role in Cardiovascular Prevention Today? CURRENT CARDIOVASCULAR RISK REPORTS 2012. [DOI: 10.1007/s12170-012-0235-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
110
|
Ardelt AA, Carpenter RS, Lobo MR, Zeng H, Solanki RB, Zhang A, Kulesza P, Pike MM. Estradiol modulates post-ischemic cerebral vascular remodeling and improves long-term functional outcome in a rat model of stroke. Brain Res 2012; 1461:76-86. [PMID: 22572084 DOI: 10.1016/j.brainres.2012.04.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 03/30/2012] [Accepted: 04/13/2012] [Indexed: 10/28/2022]
Abstract
We previously observed that 17β-estradiol (E2) augments ischemic borderzone vascular density 10 days after focal cerebral ischemia-reperfusion in rats. We now evaluated the effect of E2 on vascular remodeling, lesional characteristics, and motor recovery up to 30 days after injury. Peri-lesional vascular density in tissue sections from rats treated with 0.72 mg E2 pellets was higher compared to 0.18 mg E2 pellets or placebo (P) pellets: vascular density index, 1.9 ± 0.2 (0.72 mg E2) vs. 1.4 ± 0.2 (0.18 mg E2) vs. 1.5 ± 0.4 (P), p=0.01. This was consistent with perfusion magnetic resonance imaging (MRI) measurements of lesional relative cerebral blood flow (rCBF): 1.89 ± 0.32 (0.72 mg E2) vs. 1.32 ± 0.19 (P), p=0.04. Post-ischemic angiogenesis occurred in P-treated as well as E2-treated rats. There was no treatment-related effect on lesional size, but lesional tissue was better preserved in E2-treated rats: cystic component as a % of total lesion, 30 ± 12 (0.72 mg E2) vs. 29 ± 17 (0.18 mg E2) vs. 61 ± 29 (P), p=0.008. Three weeks after right middle cerebral artery territory injury, rats treated with 0.72 mg E2 pellets used the left forelimb more than P-treated or 0.18 mg E2-treated rats: limb use asymmetry score, 0.09 ± 0.43 (0.72 mg E2) vs. 0.54 ± 0.12 (0.18 mg E2) vs. 0.54 ± 0.40 (P), p=0.05. We conclude that treatment with 0.72 mg E2 pellets beginning one week prior to ischemia/reperfusion and continuing through the one-month recovery period results in augmentation of lesional vascularity and perfusion, as well as improved motor recovery.
Collapse
|
111
|
MacKenzie-Graham AJ, Rinek GA, Avedisian A, Morales LB, Umeda E, Boulat B, Jacobs RE, Toga AW, Voskuhl RR. Estrogen treatment prevents gray matter atrophy in experimental autoimmune encephalomyelitis. J Neurosci Res 2012; 90:1310-23. [PMID: 22411609 DOI: 10.1002/jnr.23019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 12/06/2011] [Accepted: 12/07/2011] [Indexed: 12/13/2022]
Abstract
Gray matter atrophy is an important correlate to clinical disability in multiple sclerosis (MS), and many treatment trials include atrophy as an outcome measure. Atrophy has been shown to occur in experimental autoimmune encephalomyelitis (EAE), the most commonly used animal model of MS. The clinical severity of EAE is reduced in estrogen-reated mice, but it remains unknown whether estrogen treatment can reduce gray matter atrophy in EAE. In this study, mice with EAE were treated with either estrogen receptor (ER)-α ligand or ER-β ligand, and diffusion tensor images (DTI) were collected and neuropathology was performed. DTI showed atrophy in the cerebellar gray matter of vehicle-treated EAE mice compared with healthy controls but not in ER-α or ER-β ligand-treated EAE mice. Neuropathology demonstrated that Purkinje cell numbers were decreased in vehicle-treated EAE mice, whereas neither ER ligand-treated EAE groups showed a decrease. This is the first report of a neuroprotective therapy in EAE that unambiguously prevents gray matter atrophy while sparing a major neuronal cell type. Fractional anisotropy (FA) in the cerebellar white matter was decreased in vehicle- and ER-β ligand-treated but not in ER-α ligand-treated EAE mice. Inflammatory cell infiltration was increased in vehicle- and ER-β ligand-treated but not in ER-α ligand-treated EAE mice. Myelin staining was decreased in vehicle-treated EAE mice and was spared in both ER ligand-treated groups. This is consistent with decreased FA as a potential biomarker for inflammation rather than myelination or axonal damage in the cerebellum in EAE.
Collapse
Affiliation(s)
- Allan J MacKenzie-Graham
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Altunkaynak BZ, Unal D, Altunkaynak ME, Halici Z, Kalkan Y, Keles ON, Aksak S, Selli J, Unal B. Effects of diabetes and ovariectomy on rat hippocampus (a biochemical and stereological study). Gynecol Endocrinol 2012; 28:228-33. [PMID: 21823905 DOI: 10.3109/09513590.2011.593662] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Oxidative stress is one of the main reasons of both menopause and diabetes. So, it plays crucial role in the pathogeneses of that condition and disease. Therefore, the objective of the present study was to investigate the effects of menopause and diabetes upon the hippocampus using a rat model. Adult female Sprague Dawley rats (n = 24) were allocated randomly as follows; control (C group) ovariectomized (O group), diabetic (D group) and ovariectomy plus diabetic groups (DO group) (n = 6; in each group), respectively. For evaluating the results, tissue biochemistry and stereological analysis were made. Biochemistry results (lipid peroxidase (LPO); catalase (CAT); superoxide dismutase (SOD); total glutatyon (GSH); and myeloperoxidase (MPO) values) in Group C-DO were determined as 12.27, 21.88, 23.08 and 29.90 nmol/gr tissue; 59.3, 70.06, 69.7 and 78.1 mmol/min/mg tissue; 174.2, 156.4, 159.7 and 154.6 mmol/min/mg tissue; 3.63, 3.61, 4.21 and 3.97 nmol/mg tissue; and 5.05, 5.68, 5.58 and 6.19 µmol/min/mg tissue, respectively. Moreover, both menopause and diabetes led to change of lipid profiles. There were significant differences between the control and other groups (Group C and D-DO) (p < 0.01) and among experimental groups (p < 0.01) in terms of neuron number. When the volumes of the hippocampus were compared, there were no significant differences between the all groups (P > 0.05). At this point, we suggested that diabetes could aggravate deleterious effects of ovariectomy.
Collapse
Affiliation(s)
- B Z Altunkaynak
- Department of Histology and Embryology, Medical Faculty of Ondokuz Mayıs University, Samsun, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Liu F, Benashski SE, Xu Y, Siegel M, McCullough LD. Effects of chronic and acute oestrogen replacement therapy in aged animals after experimental stroke. J Neuroendocrinol 2012; 24:319-30. [PMID: 22053957 PMCID: PMC3580836 DOI: 10.1111/j.1365-2826.2011.02248.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The effect of oestrogen replacement therapy (ERT) on stroke incidence and severity has been extensively debated. Clinical trials of ERT have demonstrated an increased risk of stroke in treated women, although the study participants were well past menopause when therapy was initiated. It has been suggested that detrimental effects of ERT may be unmasked after prolonged periods of hypoestrogenicity. To date, very few studies have examined the effect of ERT in aged animals, although the timing of replacement may be critical to the neuroprotective effects of ERT. We hypothesised that chronic ERT initiated in late middle age would decrease infarct size in the brain after an induced stroke, whereas acute ERT would have no beneficial effects in aged females. To test this hypothesis, two paradigms of ERT were administered to aged mice of both sexes aiming to determine the effects on stroke outcome and to explore the possible mechanisms by which ERT interacts with age. Female mice that received chronic ERT from 17-20 months of age showed improved stroke outcomes after experimental stroke, whereas females that had acute ERT initiated at 20 months of age did not. Chronic ERT females exhibited diminished levels of nuclear factor kappa B (NF-κB) translocation compared to acute ERT females after stroke. Acute ERT females demonstrated both an increase in nuclear NF-κB and enhanced expression of pro-inflammatory cytokines. In addition, a sexual dimorphic effect of ERT was seen because males benefited from ERT, regardless of the timing of initiation. Aged males had significantly reduced expression of pro-inflammatory markers after stroke compared to age-matched females, suggesting a pro-inflammatory milieu emerges with age in females. These results are consistent with the emerging clinical literature suggesting that ERT should be initiated at the time of menopause to achieve beneficial effects. The present study demonstrates the importance of using appropriate animal models in preclinical studies.
Collapse
Affiliation(s)
- F. Liu
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - S. E. Benashski
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Y. Xu
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - M. Siegel
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - L. D. McCullough
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
- Department of Neurology, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
114
|
McLarty JL, Meléndez GC, Levick SP, Bennett S, Sabo-Attwood T, Brower GL, Janicki JS. Estrogenic modulation of inflammation-related genes in male rats following volume overload. Physiol Genomics 2012; 44:362-73. [PMID: 22274565 DOI: 10.1152/physiolgenomics.00146.2011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Our laboratory has previously reported significant increases of the proinflammatory cytokine TNF-α in male hearts secondary to sustained volume overload. These elevated levels of TNF-α are accompanied by left ventricular (LV) dilatation and cardiac dysfunction. In contrast, estrogen has been shown to protect against this adverse cardiac remodeling in both female and male rats. The purpose of this study was to determine whether estrogen has an effect on inflammation-related genes that contribute to this estrogen-mediated cardioprotection. Myocardial volume overload was induced by aortocaval fistula in 8 wk old male Sprague-Dawley rats (n = 30), and genes of interest were identified using an inflammatory PCR array in Sham, Fistula, and Fistula + Estrogen-treated (0.02 mg/kg per day beginning 2 wk prior to fistula) groups. A total of 55 inflammatory genes were modified (≥2-fold change) at 3 days postfistula. The number of inflammatory gene was reduced to 21 genes by estrogen treatment, whereas 13 genes were comparably modulated in both fistula groups. The most notable were TNF-α, which was downregulated by estrogen, and the TNF-α receptors, which were differentially regulated by estrogen. Specific genes related to arachidonic acid metabolism were downregulated by estrogen, including cyclooxygenase-1 and -2. Finally, gene expression for the β1-integrin cell adhesion subunit was significantly upregulated in the LV of estrogen-treated animals. Protein levels reflected the changes observed at the gene level. These data suggest that estrogen provides its cardioprotective effects, at least in part, via genomic modulation of numerous inflammation-related genes.
Collapse
Affiliation(s)
- Jennifer L McLarty
- Cell Biology and Anatomy, University of South Carolina-School of Medicine, Columbia, USA
| | | | | | | | | | | | | |
Collapse
|
115
|
Abstract
17β-Oestradiol (E(2)) is an important hormone signal that regulates multiple tissues and functions in the body. This review focuses on the neuroprotective actions of E(2) in the brain against cerebral ischaemia and the potential underlying mechanisms. A particular focus of the review will be on the role of E(2) to attenuate NADPH oxidase activation, superoxide and reactive oxygen species generation and reduce oxidative stress in the ischaemic brain as a potentially key neuroprotective mechanism. Evidence of a potential novel role of extranuclear oestrogen receptors in mediating E(2) signalling and neuroprotective actions is also discussed. An additional subject is the growing evidence indicating that periods of long-term oestrogen deprivation, such as those occurring after menopause or surgical menopause, may lead to loss or attenuation of E(2) signalling and neuroprotective actions in the brain, as well as enhanced sensitivity of the hippocampus to ischaemic stress damage. These findings have important implications with respect to the 'critical period hypothesis', which proposes that oestrogen replacement must be initiated at peri-menopause in humans to exert its beneficial cardiovascular and neural effects. The insights gained from these various studies will prove valuable for guiding future directions in the field.
Collapse
Affiliation(s)
- Darrell Brann
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University Augusta, GA USA 30912
- Corresponding author: Dr. Darrell W. Brann, Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, 1120 15th Street, Augusta, GA 30912, USA, Phone: 706-721-7771,
| | - Limor Raz
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University Augusta, GA USA 30912
| | - Ruimin Wang
- Hebei United University, Experimental and Research Center, Hebei United University, 57 South Jian-she Road, Tangshan, Hebei, 063600, PR China
| | - Ratna Vadlamudi
- Department of Obstetrics & Gynecology, University of Texas Health Science Center at San Antonio, Floyd Curl Drive, San Antonio TX 78229
| | - Quanguang Zhang
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University Augusta, GA USA 30912
- Co-Corresponding author: Dr. Quanguang Zhang, Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, 1120 15th Street, Augusta, GA 30912, USA, Phone: 706-721-7771,
| |
Collapse
|
116
|
Scott E, Zhang QG, Wang R, Vadlamudi R, Brann D. Estrogen neuroprotection and the critical period hypothesis. Front Neuroendocrinol 2012; 33:85-104. [PMID: 22079780 PMCID: PMC3288697 DOI: 10.1016/j.yfrne.2011.10.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/21/2011] [Accepted: 10/24/2011] [Indexed: 12/15/2022]
Abstract
17β-Estradiol (estradiol or E2) is implicated as a neuroprotective factor in a variety of neurodegenerative disorders. This review focuses on the mechanisms underlying E2 neuroprotection in cerebral ischemia, as well as emerging evidence from basic science and clinical studies, which suggests that there is a "critical period" for estradiol's beneficial effect in the brain. Potential mechanisms underlying the critical period are discussed, as are the neurological consequences of long-term E2 deprivation (LTED) in animals and in humans after natural menopause or surgical menopause. We also summarize the major clinical trials concerning postmenopausal hormone therapy (HT), comparing their outcomes with respect to cardiovascular and neurological disease and discussing their relevance to the critical period hypothesis. Finally, potential caveats, controversies and future directions for the field are highlighted and discussed throughout the review.
Collapse
Affiliation(s)
- Erin Scott
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, GA 30912, USA
| | - Quan-guang Zhang
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, GA 30912, USA
| | - Ruimin Wang
- Experimental and Research Center, Hebei United University, 57 South Jian-she Road, Tangshan, Hebei, 063600, PR China
| | - Ratna Vadlamudi
- Department of Obstetrics & Gynecology, University of Texas Health Science Center at San Antonio, Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Darrell Brann
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, GA 30912, USA
| |
Collapse
|
117
|
Rodriguez-Perez AI, Valenzuela R, Villar-Cheda B, Guerra MJ, Labandeira-Garcia JL. Dopaminergic neuroprotection of hormonal replacement therapy in young and aged menopausal rats: role of the brain angiotensin system. Brain 2011; 135:124-38. [PMID: 22189567 DOI: 10.1093/brain/awr320] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
There is a lack of consensus about the effects of the type of menopause (surgical or natural) and of oestrogen replacement therapy on Parkinson's disease. The effects of the timing of replacement therapy and the female's age may explain the observed differences in such effects. However, the mechanisms involved are poorly understood. The renin-angiotensin system mediates the beneficial effects of oestrogen in several tissues, and we have previously shown that dopaminergic cell loss is enhanced by angiotensin via type 1 receptors, which is activated by ageing. In rats, we compared the effects of oestrogen replacement therapy on 6-hydroxydopamine-induced dopaminergic degeneration, nigral renin-angiotensin system activity, activation of the nicotinamide adenine dinucleotide phosphate oxidase complex and levels of the proinflammatory cytokine interleukin-1β in young (surgical) menopausal rats and aged menopausal rats. In young surgically menopausal rats, the renin-angiotensin system activity was higher (i.e. higher angiotensin converting enzyme activity, higher angiotensin type-1 receptor expression and lower angiotensin type-2 receptor expression) than in surgically menopausal rats treated with oestrogen; the nicotinamide adenine dinucleotide phosphate oxidase activity and interleukin-1β expression were also higher in the first group than in the second group. In aged menopausal rats, the levels of nigral renin-angiotensin and nicotinamide adenine dinucleotide phosphate oxidase activity were similar to those observed in surgically menopausal rats. However, oestrogen replacement therapy significantly reduced 6-hydroxydopamine-induced dopaminergic cell loss in young menopausal rats but not in aged rats. Treatment with oestrogen also led to a more marked reduction in nigral renin-angiotensin and nicotinamide adenine dinucleotide phosphate oxidase activity in young surgically menopausal rats (treated either immediately or after a period of hypo-oestrogenicity) than in aged menopausal rats. Interestingly, treatment with the angiotensin type-1 receptor antagonist candesartan led to remarkable reduction in renin-angiotensin system activity and dopaminergic neuron loss in both groups of menopausal rats. This suggests that manipulation of the brain renin-angiotensin system may be an efficient approach for the prevention or treatment of Parkinson's disease in oestrogen-deficient females, together with or instead of oestrogen replacement therapy.
Collapse
Affiliation(s)
- Ana I Rodriguez-Perez
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
118
|
Azcoitia I, Arevalo MA, De Nicola AF, Garcia-Segura LM. Neuroprotective actions of estradiol revisited. Trends Endocrinol Metab 2011; 22:467-73. [PMID: 21889354 DOI: 10.1016/j.tem.2011.08.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/19/2011] [Accepted: 08/03/2011] [Indexed: 12/31/2022]
Abstract
Results from animal experiments showing that estradiol is neuroprotective were challenged 10 years ago by findings indicating an increased risk of dementia and stroke in women over 65 years of age taking conjugated equine estrogens. Our understanding of the complex signaling of estradiol in neural cells has recently clarified the causes of this discrepancy. New data indicate that estradiol may lose its neuroprotective activity or even increase neural damage, a situation that depends on the duration of ovarian hormone deprivation and on age-associated modifications in the levels of other molecules that modulate estradiol action. These studies highlight the complex neuroprotective mechanisms of estradiol and suggest a window of opportunity during which effective hormonal therapy could promote brain function and cognition.
Collapse
Affiliation(s)
- Iñigo Azcoitia
- Cell Biology, Faculty of Biology, Complutense University of Madrid, E-28040 Madrid, Spain
| | | | | | | |
Collapse
|
119
|
McHale MJ, Sarwar ZU, Cardenas DP, Porter L, Salinas AS, Michalek JE, McManus LM, Shireman PK. Increased fat deposition in injured skeletal muscle is regulated by sex-specific hormones. Am J Physiol Regul Integr Comp Physiol 2011; 302:R331-9. [PMID: 22116509 DOI: 10.1152/ajpregu.00427.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sex differences in skeletal muscle regeneration are controversial; comparisons of regenerative events between sexes have not been rigorously defined in severe injury models. We comprehensively quantified inflammation and muscle regeneration between sexes and manipulated sex-specific hormones to determine effects on regeneration. Cardiotoxin injury was induced in intact, castrated and ovariectomized female and male mice; ovariectomized mice were replaced with low- or high-dose 17-β estradiol (E(2)) or progesterone (P4). Extent of injury was comparable between intact mice, but females were more efficient in removal of necrotic debris, despite similar tissue levels of inflammatory cells and chemokines. Myofiber size during regeneration was equivalent between intact mice and after castration or ovariectomy (OVX) but was decreased (P < 0.001) in ovariectomized mice with high-dose E(2) replacement. Intermuscular adipocytes were absent in uninjured muscle, whereas adipocyte area was increased among regenerated myofibers in all groups. Interestingly, intermuscular fat was greater (P = 0.03) in intact females at day 14 compared with intact males. Furthermore, castration increased (P = 0.01) and OVX decreased adipocyte accumulation. After OVX, E(2), but not P4, replacement decreased (P ≤ 0.03) fat accumulation. In conclusion, sex-dependent differences in regeneration consisted of more efficient removal of necrosis and increased fat deposition in females with similar injury, inflammation, and regenerated myofiber size; high-dose E(2) decreased myofiber size and fat deposition. Adipocyte accumulation in regenerating muscle was influenced by sex-specific hormones. Recovery following muscle injury was different between males and females, and sex-specific hormones contributed to these differences, suggesting that sex-specific treatments could be beneficial after injury.
Collapse
Affiliation(s)
- Matthew J McHale
- Department of Surgery, University of Texas Health Science Center, San Antonio, USA
| | | | | | | | | | | | | | | |
Collapse
|
120
|
Manwani B, McCullough LD. Sexual dimorphism in ischemic stroke: lessons from the laboratory. ACTA ACUST UNITED AC 2011; 7:319-39. [PMID: 21612353 DOI: 10.2217/whe.11.22] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ischemic stroke is emerging as a major health problem for elderly women. Women have lower stroke incidence than men until an advanced age, when the epidemiology of ischemic stroke shifts and incidence rises dramatically in women. Experimental models of rodent stroke have replicated this clinical epidemiology, with exacerbated injury in older compared with young female rodents. Many of the detrimental effects of aging on ischemic stroke outcome in females can be replicated by ovariectomy, suggesting that hormones such as estrogen play a neuroprotective role. However, emerging data suggest that the molecular mechanisms leading to ischemic cell death differ in the two sexes, and these effects may be independent of circulating hormone levels. This article highlights recent clinical and experimental literature on sex differences in stroke outcomes and mechanisms.
Collapse
Affiliation(s)
- Bharti Manwani
- Department of Neurology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | |
Collapse
|
121
|
Kinouchi T, Kitazato KT, Shimada K, Yagi K, Tada Y, Matsushita N, Sumiyoshi M, Satomi J, Kageji T, Nagahiro S. Activation of signal transducer and activator of transcription-3 by a peroxisome proliferator-activated receptor gamma agonist contributes to neuroprotection in the peri-infarct region after ischemia in oophorectomized rats. Stroke 2011; 43:478-83. [PMID: 22076002 DOI: 10.1161/strokeaha.111.618926] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE The role of the phosphorylated signal transducer and activator of transcription-3 (p-STAT3) after cerebral ischemia by the peroxisome proliferator-activated receptor γ (PPARγ) agonist pioglitazone (PGZ) remains controversial. Whether the increase in p-STAT3 by estrogen is mediated by the estrogen receptor α is also obscure. We examined the role of p-STAT3, PPARγ, and estrogen receptor α against ischemic brain damage after PGZ treatment. METHODS Female Wistar rats subjected or not subjected to bilateral oophorectomy were injected with 1.0 or 2.5 mg/kg PGZ 2 days, 1 day, and 1 hour before 90-minute middle cerebral artery occlusion-reperfusion and compared with vehicle-control rats. RESULTS The cortical infarct size was larger in ovariectomized than in nonovarietomized rats; it was reduced by PGZ treatment. Inversely with the reduction of the infarct size, PPARγ, and p-STAT3 but not estrogen receptor α in the peri-infarct area were increased in PGZ-treated compared with vehicle-control rats. The increase in PPARγ and p-STAT3 was associated with the transactivation of antiapoptotic and survival genes and the reduction of caspase-3 in this area. Inhibitors of PPARγ or STAT3 abolished the PGZ-induced neuroprotection and the increase in p-STAT3. More importantly, p-STAT3 increased by PGZ was bound to PPARγ and the complex translocated to the nucleus to dock to the response element through p-STAT3. CONCLUSIONS Our findings suggest that the activation in the peri-infarct region of p-STAT3 and PPARγ by PGZ is essential for neuroprotection after ischemia and that PGZ may be of benefit even in postmenopausal stroke patients.
Collapse
Affiliation(s)
- Tomoya Kinouchi
- Department of Neurosurgery, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15, Kuramoto-cho, Tokushima 770-8503, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Rao AK, Dietrich AK, Ziegler YS, Nardulli AM. 17β-Estradiol-mediated increase in Cu/Zn superoxide dismutase expression in the brain: a mechanism to protect neurons from ischemia. J Steroid Biochem Mol Biol 2011; 127:382-9. [PMID: 21704159 PMCID: PMC3901640 DOI: 10.1016/j.jsbmb.2011.06.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 06/07/2011] [Indexed: 11/17/2022]
Abstract
A number of studies have demonstrated that 17β-estradiol (E(2)) protects the brain from ischemia and yet the mechanism by which this hormone brings about its protective effect is unclear. Interestingly, like E(2), overexpression of the oxidative stress response protein Cu/Zn superoxide dismutase (SOD1), which plays a critical role in regulating reactive oxygen species, also protects the brain from ischemia. Because we previously showed that E(2) treatment of cultured mammary cells increases SOD1 expression, we hypothesized that E(2) might increase SOD1 expression in the brain and that this E(2)-mediated increase in SOD1 expression might help to protect the brain from ischemia. We now show that SOD1 is expressed in cortical neurons, that SOD1 expression is increased by exposure of brain slice cultures to E(2), and that the E(2)-mediated increase in SOD1 expression is further augmented by exposure of brain slice cultures to increased superoxide levels or oxygen and glucose deprivation. Importantly, when cortical neurons are exposed to increased superoxide levels and markers of protein and DNA damage, nitrotyrosine and 8-oxoguanine, respectively, are measured, both protein and DNA damage are reduced. In fact, E(2) reduces nitrotyrosine and 8-oxoguanine levels in brain slice cultures regardless of whether they have or have not been exposed to increased superoxide levels. Likewise, when brain slice cultures are treated with E(2) and deprived of oxygen and glucose, 8-oxoguanine levels are reduced. Taken together, these studies provide a critical link between E(2) treatment, SOD1 expression, and neuroprotection and help to define a mechanism through which E(2)-mediated neuroprotection may be conferred.
Collapse
Affiliation(s)
- Abhi K Rao
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| | | | | | | |
Collapse
|
123
|
Leon RL, Huber JD, Rosen CL. Potential age-dependent effects of estrogen on neural injury. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2450-60. [PMID: 21641373 DOI: 10.1016/j.ajpath.2011.01.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 12/28/2010] [Accepted: 01/07/2011] [Indexed: 12/27/2022]
Abstract
In 2000, approximately 10 million women were receiving hormone replacement therapy (HRT) for alleviation of menopausal symptoms. A number of prior animal studies suggested that HRT may be neuroprotective and cardioprotective. Then, in 2003, reports from the Women's Health Initiative (WHI) indicated that long-term estrogen/progestin supplementation led to increased incidence of stroke. A second branch of the WHI in women with prior hysterectomy found an even stronger correlation between estrogen supplementation alone and stroke incidence. Follow-up analyses of the data, as well as data from other smaller clinical trials, have also demonstrated increased stroke severity in women receiving HRT or estrogen alone. This review examines the studies indicating that estrogen is neuroprotectant in animal models and explores potential reasons why this may not be true in postmenopausal women. Specifically, age-related differences in estrogen receptors and estrogenic actions in the brain are discussed, with the conclusion that animal models of disease must closely mimic human disease to produce clinically relevant results.
Collapse
Affiliation(s)
- Rachel L Leon
- Department of Neurosurgery, West Virginia University, Morgantown, West Virginia, USA
| | | | | |
Collapse
|
124
|
Rodriguez-Perez AI, Valenzuela R, Joglar B, Garrido-Gil P, Guerra MJ, Labandeira-Garcia JL. Renin angiotensin system and gender differences in dopaminergic degeneration. Mol Neurodegener 2011; 6:58. [PMID: 21846363 PMCID: PMC3169490 DOI: 10.1186/1750-1326-6-58] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 08/16/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There are sex differences in dopaminergic degeneration. Men are approximately two times as likely as premenopausal women of the same age to develop Parkinson's disease (PD). It has been shown that the local renin angiotensin system (RAS) plays a prominent role in sex differences in the development of chronic renal and cardiovascular diseases, and there is a local RAS in the substantia nigra and dopaminergic cell loss is enhanced by angiotensin via type 1 (AT1) receptors. RESULTS In the present study, we observed that intrastriatal injection of 6-hydroxydopamine induced a marked loss of dopaminergic neurons in the substantia nigra of male rats, which was significantly higher than the loss induced in ovariectomized female rats given estrogen implants (i.e. rats with estrogen). However, the loss of dopaminergic neurons was significantly lower in male rats treated with the AT1 antagonist candesartan, and similar to that observed in female rats with estrogen. The involvement of the RAS in gender differences in dopaminergic degeneration was confirmed with AT1a-null mice lesioned with the dopaminergic neurotoxin MPTP. Significantly higher expression of AT1 receptors, angiotensin converting enzyme activity, and NADPH-oxidase complex activity, and much lower levels of AT2 receptors were observed in male rats than in female rats with estrogen. CONCLUSIONS The results suggest that brain RAS plays a major role in the increased risk of developing PD in men, and that manipulation of brain RAS may be an efficient approach for neuroprotective treatment of PD in men, without the feminizing effects of estrogen.
Collapse
Affiliation(s)
- Ana I Rodriguez-Perez
- Department of Morphological Sciences, Networking Research Center on Neurodegenerative Diseases (CIBERNED), University of Santiago de Compostela, Santiago de Compostela, E-15782 Spain
| | - Rita Valenzuela
- Department of Morphological Sciences, Networking Research Center on Neurodegenerative Diseases (CIBERNED), University of Santiago de Compostela, Santiago de Compostela, E-15782 Spain
| | - Belen Joglar
- Department of Morphological Sciences, Networking Research Center on Neurodegenerative Diseases (CIBERNED), University of Santiago de Compostela, Santiago de Compostela, E-15782 Spain
| | - Pablo Garrido-Gil
- Department of Morphological Sciences, Networking Research Center on Neurodegenerative Diseases (CIBERNED), University of Santiago de Compostela, Santiago de Compostela, E-15782 Spain
| | - Maria J Guerra
- Department of Morphological Sciences, Networking Research Center on Neurodegenerative Diseases (CIBERNED), University of Santiago de Compostela, Santiago de Compostela, E-15782 Spain
| | - Jose L Labandeira-Garcia
- Department of Morphological Sciences, Networking Research Center on Neurodegenerative Diseases (CIBERNED), University of Santiago de Compostela, Santiago de Compostela, E-15782 Spain
| |
Collapse
|
125
|
Etgen AM, Jover-Mengual T, Zukin RS. Neuroprotective actions of estradiol and novel estrogen analogs in ischemia: translational implications. Front Neuroendocrinol 2011; 32:336-52. [PMID: 21163293 PMCID: PMC3080451 DOI: 10.1016/j.yfrne.2010.12.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 12/06/2010] [Accepted: 12/09/2010] [Indexed: 11/15/2022]
Abstract
This review highlights our investigations into the neuroprotective efficacy of estradiol and other estrogenic agents in a clinically relevant animal model of transient global ischemia, which causes selective, delayed death of hippocampal CA1 neurons and associated cognitive deficits. We find that estradiol rescues a significant number of CA1 pyramidal neurons that would otherwise die in response to global ischemia, and this is true when hormone is provided as a long-term pretreatment at physiological doses or as an acute treatment at the time of reperfusion. In addition to enhancing neuronal survival, both forms of estradiol treatment induce measurable cognitive benefit in young animals. Moreover, estradiol and estrogen analogs that do not bind classical nuclear estrogen receptors retain their neuroprotective efficacy in middle-aged females deprived of ovarian hormones for a prolonged duration (8weeks). Thus, non-feminizing estrogens may represent a new therapeutic approach for treating the neuronal damage associated with global ischemia.
Collapse
Affiliation(s)
- Anne M Etgen
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | | | |
Collapse
|
126
|
Tiidus PM. Benefits of estrogen replacement for skeletal muscle mass and function in post-menopausal females: evidence from human and animal studies. Eurasian J Med 2011; 43:109-14. [PMID: 25610174 PMCID: PMC4261347 DOI: 10.5152/eajm.2011.24] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 06/24/2011] [Indexed: 12/21/2022] Open
Abstract
Age related loss of skeletal muscle mass and strength accelerates with the onset of menopause in women. Recent evidence from human and animal studies provides compelling evidence for the role of estrogen based hormone replacement therapy (HRT) in maintaining and enhancing muscle mass and strength and protecting against muscle damage. The physiological mechanisms by which estrogen can positively influence skeletal muscle mass and strength and protect against post-damage inflammation and disruption are also beginning to emerge. These less well known benefits of estrogen for skeletal muscle coupled with other benefits of estrogen to bone and metabolic health in older females provide further incentives for HRT use to enhance overall health in post-menopausal women. New research also attests to the safety of shorter term HRT in younger post-menopausal females. Overall the benefits of HRT to muscle health and function could assist in offsetting age related loss of muscle mass and function and delay age related morbidity and their use for overall health benefits in aging females should continue to be evaluated.
Collapse
Affiliation(s)
- Peter M. Tiidus
- Department of Kinesiology and Physical Education, Faculty of Science, Wilfrid Laurier University, Waterloo, ON, Canada
| |
Collapse
|
127
|
C terminus of Hsc70-interacting protein (CHIP)-mediated degradation of hippocampal estrogen receptor-alpha and the critical period hypothesis of estrogen neuroprotection. Proc Natl Acad Sci U S A 2011; 108:E617-24. [PMID: 21808025 DOI: 10.1073/pnas.1104391108] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recent work suggests that timing of 17β-estradiol (E2) therapy may be critical for observing a beneficial neural effect. Along these lines, E2 neuroprotection, but not its uterotropic effect, was shown to be lost following long-term E2 deprivation (LTED), and this effect was associated with a significant decrease of estrogen receptor-α (ERα) in the hippocampus but not the uterus. The purpose of the current study was to determine the mechanism underlying the ERα decrease and to determine whether aging leads to a similar loss of hippocampal ERα and E2 sensitivity. The results of the study show that ERα in the rat hippocampal CA1 region but not the uterus undergoes enhanced interaction with the E3 ubiquitin ligase C terminus of heat shock cognate protein 70 (Hsc70)-interacting protein (CHIP) that leads to its ubiquitination/proteasomal degradation following LTED (10-wk ovariectomy). E2 treatment initiated before but not after LTED prevented the enhanced ERα-CHIP interaction and ERα ubiquitination/degradation and was fully neuroprotective against global cerebral ischemia. Administration of a proteasomal inhibitor or CHIP antisense oligonucleotides to knock down CHIP reversed the LTED-induced down-regulation of ERα. Further work showed that these observations extended to natural aging, because aged rats showed enhanced CHIP interaction; ubiquitination and degradation of both hippocampal ERα and ERβ; and, importantly, a correlated loss of E2 neuroprotection against global cerebral ischemia. In contrast, E2 administration to middle-aged rats was still capable of exerting neuroprotection. As a whole, the study provides support for a "critical period" for E2 neuroprotection of the hippocampus and provides important insight into the mechanism underlying the critical period.
Collapse
|
128
|
Pechenino AS, Lin L, Mbai FN, Lee AR, He XM, Stallone JN, Knowlton AA. Impact of aging vs. estrogen loss on cardiac gene expression: estrogen replacement and inflammation. Physiol Genomics 2011; 43:1065-73. [PMID: 21750230 DOI: 10.1152/physiolgenomics.00228.2010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Despite an abundance of evidence to the contrary from animal studies, large clinical trials on humans have shown that estrogen administered to postmenopausal women increases the risk of cardiovascular disease. However, timing may be everything, as estrogen is often administered immediately after ovariectomy (Ovx) in animal studies, while estrogen administration in human studies occurred many years postmenopause. This study investigates the discrepancy by administering 17β-estradiol (E2) in a slow-release capsule to Norway Brown rats both immediately following Ovx and 9 wk post-Ovx (Late), and studying differences in gene expression between these two groups compared with age-matched Ovx and sham-operated animals. Two different types of microarray were used to analyze the left ventricles from these groups: an Affymetrix array (n = 3/group) and an inflammatory cytokines and receptors PCR array (n = 4/group). Key genes were analyzed by Western blotting. Ovx without replacement led to an increase in caspase 3, caspase 9, calpain 2, matrix metalloproteinase (MMP)9, and TNF-α. Caspase 6, STAT3, and CD11b increased in the Late group, while tissue inhibitor of metalloproteinase 2, MMP14, and collagen I α1 were decreased. MADD and fibronectin were increased in both Ovx and Late. TNF-α and inducible nitric oxide synthase (iNOS) protein levels increased with Late replacement. Many of these changes were prevented by early E2 replacement. These findings suggest that increased expression of inflammatory genes, such as TNF-α and iNOS, may be involved in some of the deleterious effects of delayed E2 administration seen in human studies.
Collapse
|
129
|
Katsiki N, Ntaios G, Vemmos K. Stroke, obesity and gender: A review of the literature. Maturitas 2011; 69:239-43. [DOI: 10.1016/j.maturitas.2011.04.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 04/18/2011] [Accepted: 04/19/2011] [Indexed: 01/18/2023]
|
130
|
Abstract
Stroke is the leading cause of disability in the United States and affects 15 million people worldwide. Studies performed in various parts of the world have found differences between sexes in stroke incidence, prevalence, mortality, and outcomes. Although men are at higher risk of stroke for most age groups below age 85 years, after this age the incidence reverses dramatically, with women being much more at risk. Furthermore, recent studies suggest that women have worse recovery than men post-stroke. Many aspects of recovery may influence this outcome, including sex-specific comorbidities, aggressiveness of acute treatment, prevention therapies, and varying degrees of social support and rates of depression. It is important to further define and investigate sex differences in stroke incidence, care, treatment, and outcomes to improve functional recovery in women.
Collapse
Affiliation(s)
- Rebecca W Persky
- Department of Neurology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | | | | |
Collapse
|
131
|
Rubinow DR, Girdler SS. Hormones, heart disease, and health: individualized medicine versus throwing the baby out with the bathwater. Depress Anxiety 2011; 28:E1-E15. [PMID: 21648024 DOI: 10.1002/da.20833] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
It is increasingly axiomatic that depression has widespread adverse physiological effects and, conversely, that a variety of physiological systems impact the risk for developing depression. This convergence of depression and altered physiology is particularly dramatic during midlife--a time during which reproductive failure presages dramatic increases in prevalence of both heart disease and depression. The potentially meaningful and illuminating links between estrogen deficiency, cardiovascular disease (CVD), and depression have largely been obscured, first by assertions, subsequently repudiated, that the perimenopause was not a time of increased risk of depression, and more recently by the denegration of hormone replacement therapy by initial reports of the Women's Health Initiative. Increasingly, however, research has led to unavoidable conclusions that CVD and depression share common, mediating pathogenic processes and that these same processes are dramatically altered by the presence or absence of estrogen (E2). This review summarizes data supporting these contentions with the intent of placing depression and estrogen therapy in their proper physiologic context.
Collapse
Affiliation(s)
- David R Rubinow
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina 27599. USA
| | | |
Collapse
|
132
|
Strom JO, Theodorsson A, Theodorsson E. Hormesis and Female Sex Hormones. Pharmaceuticals (Basel) 2011; 4:726-740. [PMID: 29674603 PMCID: PMC4055875 DOI: 10.3390/ph4050726] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 05/05/2011] [Accepted: 05/10/2011] [Indexed: 01/08/2023] Open
Abstract
Hormone replacement after menopause has in recent years been the subject of intense scientific debate and public interest and has sparked intense research efforts into the biological effects of estrogens and progestagens. However, there are reasons to believe that the doses used and plasma concentrations produced in a large number of studies casts doubt on important aspects of their validity. The concept of hormesis states that a substance can have diametrically different effects depending on the concentration. Even though estrogens and progestagens have proven prone to this kind of dose-response relation in a multitude of studies, the phenomenon remains clearly underappreciated as exemplified by the fact that it is common practice to only use one hormone dose in animal experiments. If care is not taken to adjust the concentrations of estrogens and progestagens to relevant biological conditions, the significance of the results may be questionable. Our aim is to review examples of female sexual steroids demonstrating bidirectional dose-response relations and to discuss this in the perspective of hormesis. Some examples are highlighted in detail, including the effects on cerebral ischemia, inflammation, cardiovascular diseases and anxiety. Hopefully, better understanding of the hormesis phenomenon may result in improved future designs of studies of female sexual steroids.
Collapse
Affiliation(s)
- Jakob O Strom
- Institution of Clinical and Experimental Medicine/Department of Clinical Chemistry, Linkoping University, Linkoping, Sweden.
| | - Annette Theodorsson
- Institution of Clinical and Experimental Medicine/Department of Clinical Chemistry, Linkoping University, Linkoping, Sweden
- Institution of Clinical and Experimental Medicine/Department of Neurosurgery, Linkoping University, Linkoping, Sweden
| | - Elvar Theodorsson
- Institution of Clinical and Experimental Medicine/Department of Clinical Chemistry, Linkoping University, Linkoping, Sweden
| |
Collapse
|
133
|
Greising SM, Carey RS, Blackford JE, Dalton LE, Kosir AM, Lowe DA. Estradiol treatment, physical activity, and muscle function in ovarian-senescent mice. Exp Gerontol 2011; 46:685-93. [PMID: 21570459 DOI: 10.1016/j.exger.2011.04.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 04/19/2011] [Accepted: 04/22/2011] [Indexed: 12/15/2022]
Abstract
Estradiol (E(2)) treatment in young adult, ovariectomized mice increases physical activity and reverses deleterious effects on skeletal muscle. Here we test the hypothesis that E(2) treatment improves muscle function and physical activity in aged, ovarian-senescent mice. Plasma E(2) levels and vaginal cytology confirmed ovarian senescence in 20-month-old C57BL/6 mice. Mice were then randomly divided into activity groups, having access to a running wheel or not, and further into those receiving E(2) or placebo. Placebo-treated mice wheel ran more than E(2)-treated mice (P=0.03), with no difference between treatment groups in cage activities such as time spent being active and ambulation distance (P≥0.55). Soleus muscles from aged mice that wheel ran adapted by getting larger and stronger, irrespective of E(2) status (P≤0.02). Soleus muscle fatigue resistance was greater in mice treated with E(2) (P=0.02), but maximal isometric tetanic force was not affected (P≥0.79). Because E(2) treatment did not improve physical activity or overall muscle function in the aged, ovarian-senescent mice as predicted, a second study was initiated to examine E(2) treatment of young adult mice prematurely ovarian senescent from exposure to the chemical, 4-vinylcyclohexene diepoxide (VCD). Four-month-old C57BL/6 female mice were dosed with oil (control) or VCD. Vaginal cytology confirmed ovarian senescence in all mice treated with VCD 63 days after the onset of dosing, and then a subset of the VCD mice received E(2) (VCD+E(2)). Wheel running distance did not differ among control, VCD, and VCD+E(2) mice (P≥0.34). Soleus muscle concentric, isometric, and eccentric in vitro forces were greater in VCD+E(2) than in VCD mice (P<0.04), indicating beneficial estrogenic effects on muscle function. In general, aged and young mice with senescent ovaries were less responsive to E(2) treatment, in terms of physical activities and muscle function, than what has previously been shown for young, ovariectomized mice. These results bring forth the possibility that some component of the residual, follicle-depleted ovarian tissue influences physical activity in mice or that aging diminishes the responsiveness of skeletal muscle and related tissues to E(2) treatment.
Collapse
Affiliation(s)
- Sarah M Greising
- Program in Physical Therapy and Rehabilitation Sciences, University of Minnesota, School of Medicine, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
134
|
Shimada K, Kitazato KT, Kinouchi T, Yagi K, Tada Y, Satomi J, Kageji T, Nagahiro S. Activation of estrogen receptor-α and of angiotensin-converting enzyme 2 suppresses ischemic brain damage in oophorectomized rats. Hypertension 2011; 57:1161-6. [PMID: 21536991 DOI: 10.1161/hypertensionaha.110.167650] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Like the angiotensin II type 1 receptor blocker, endogenous estrogen (17β-estradiol) is neuroprotective against cerebral ischemia; its effects are thought to be mediated by estrogen receptors (ERs). To verify the role of ERs and the brain renin-angiotensin system in estrogen-deficient rats with ischemia induced by middle cerebral artery occlusion, we compared rats subjected to oophorectomy (OVX(+)) with sham-oophorectomized rats (OVX(-)) and OVX(+) rats treated with 0.3 or 3.0 mg/kg of olmesartan for 2 weeks before middle cerebral artery occlusion. Independent of the blood pressure, the cortical infarct volume was larger in OVX(+) than in OVX(-) rats. It was smaller in olmesartan-pretreated OVX(+) rats. The expression of ERα in the peri-infarct region was correlated with the reduction of cortical infarct but not that of ERβ or G protein-coupled estrogen receptor. Olmesartan prevented ERα downregulation in the cortical peri-infarct area, without affecting ERβ or G protein-coupled estrogen receptor. Olmesartan also increased mRNA expression of angiotensin-converting enzyme 2, Bcl-2, and Bcl-xL and reduced angiotensin II and cleaved caspase 3. These effects were augmented by olmesartan and abolished by the ER inhibitor. In OVX(+) rats treated with the ERα agonist alone, the infarct size was decreased, and the neuroprotective genes were upregulated. These findings suggest that the transactivation of neuroprotective genes and the reduction in brain angiotensin II are ERα dependent and that this may augment neuroprotection together with an angiotensin II type 1 receptor blockade by olmesartan. We present the new insight that the activation of ERα independent of estrogen contributes at least partly to limiting cerebral ischemic damage.
Collapse
Affiliation(s)
- Kenji Shimada
- Department of Neurosurgery, Institute of Health Biosciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
135
|
Barouk S, Hintz T, Li P, Duffy AM, MacLusky NJ, Scharfman HE. 17β-estradiol increases astrocytic vascular endothelial growth factor (VEGF) in adult female rat hippocampus. Endocrinology 2011; 152:1745-51. [PMID: 21343256 PMCID: PMC3075938 DOI: 10.1210/en.2010-1290] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Accepted: 01/25/2011] [Indexed: 01/17/2023]
Abstract
Vascular endothelial growth factor (VEGF) is critical to angiogenesis and vascular permeability. It is also important in the endocrine system, in which VEGF mediates the vascular effects of estrogens in target tissues such as the uterus, a response attributed to an estrogen response element on the VEGF gene. Here we asked whether 17β-estradiol increases VEGF levels in the brain. We focused on the hippocampus, in which 17β-estradiol and VEGF both have important actions, and used immunocytochemistry to evaluate VEGF protein. VEGF immunoreactivity was compared in adult female rats sampled during the estrous cycle when serum levels of 17β-estradiol peak (proestrous morning) as well as when they are low (metestrous morning). In addition, adult rats were ovariectomized and compared after treatment with 17β-estradiol or vehicle. The results demonstrated that VEGF immunoreactivity was increased when serum levels of 17β-estradiol were elevated. Confocal microscopy showed that VEGF immunofluorescence was predominantly nonneuronal, often associated with astrocytes. Glial VEGF labeling was primarily punctate rather than diffuse and labile because glial VEGF immunoreactivity was greatly reduced if tissue sections were left in an aqueous medium overnight. We conclude that VEGF protein in normal female hippocampus is primarily nonneuronal rather than neuronal and suggest that glial VEGF immunoreactivity has been underestimated by past studies with other methods because there is a labile extracellular pool. We suggest that estrogens may exert actions on female hippocampal structure and function by increasing hippocampal VEGF.
Collapse
Affiliation(s)
- Sharon Barouk
- The Nathan Kline Institute, Orangeburg, New York 10962, USA
| | | | | | | | | | | |
Collapse
|
136
|
Rubinow DR, Girdler SS. Hormones, heart disease, and health: individualized medicine versus throwing the baby out with the bathwater. Depress Anxiety 2011; 28:282-96. [PMID: 21456038 DOI: 10.1002/da.20810] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
It is increasingly axiomatic that depression has widespread adverse physiological effects, and conversely that a variety of physiological systems impact the risk for developing depression. This convergence of depression and altered physiology is particularly dramatic during midlife-a time during which reproductive failure presages dramatic increases in prevalence of both heart disease and depression. The potentially meaningful and illuminating links between estrogen (E2) deficiency, cardiovascular disease (CVD), and depression have largely been obscured, first by assertions, subsequently repudiated that the perimenopause was not a time of increased risk of depression, and more recently by the denegration of hormone replacement therapy by initial reports of the Women's Health Initiative. Increasingly, however, research has led to unavoidable conclusions that CVD and depression share common and mediating pathogenic processes and that these same processes are dramatically altered by the presence or absence of E2. This review summarizes data supporting this contention with the intent of placing depression and E2 therapy in their proper physiologic context.
Collapse
Affiliation(s)
- David R Rubinow
- Department of Psychiatry, University of North Carolina at Chapel Hill, NC, USA
| | | |
Collapse
|
137
|
Mechanisms of estrogens' dose-dependent neuroprotective and neurodamaging effects in experimental models of cerebral ischemia. Int J Mol Sci 2011; 12:1533-62. [PMID: 21673906 PMCID: PMC3111617 DOI: 10.3390/ijms12031533] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 02/10/2011] [Accepted: 02/22/2011] [Indexed: 02/08/2023] Open
Abstract
Ever since the hypothesis was put forward that estrogens could protect against cerebral ischemia, numerous studies have investigated the mechanisms of their effects. Despite initial studies showing ameliorating effects, later trials in both humans and animals have yielded contrasting results regarding the fundamental issue of whether estrogens are neuroprotective or neurodamaging. Therefore, investigations of the possible mechanisms of estrogen actions in brain ischemia have been difficult to assess. A recently published systematic review from our laboratory indicates that the dichotomy in experimental rat studies may be caused by the use of insufficiently validated estrogen administration methods resulting in serum hormone concentrations far from those intended, and that physiological estrogen concentrations are neuroprotective while supraphysiological concentrations augment the damage from cerebral ischemia. This evidence offers a new perspective on the mechanisms of estrogens’ actions in cerebral ischemia, and also has a direct bearing on the hormone replacement therapy debate. Estrogens affect their target organs by several different pathways and receptors, and the mechanisms proposed for their effects on stroke probably prevail in different concentration ranges. In the current article, previously suggested neuroprotective and neurodamaging mechanisms are reviewed in a hormone concentration perspective in an effort to provide a mechanistic framework for the dose-dependent paradoxical effects of estrogens in stroke. It is concluded that five protective mechanisms, namely decreased apoptosis, growth factor regulation, vascular modulation, indirect antioxidant properties and decreased inflammation, and the proposed damaging mechanism of increased inflammation, are currently supported by experiments performed in optimal biological settings.
Collapse
|
138
|
Middle cerebral artery occlusion model in rodents: methods and potential pitfalls. J Biomed Biotechnol 2011; 2011:464701. [PMID: 21331357 PMCID: PMC3035178 DOI: 10.1155/2011/464701] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 12/23/2010] [Accepted: 12/23/2010] [Indexed: 11/26/2022] Open
Abstract
A variety of animal models have been developed for modeling ischemic stroke. The middle cerebral artery occlusion (MCAO) model has been utilized extensively, especially in rodents. While the MCAO model provides stroke researchers with an excellent platform to investigate the disease, controversial or even paradoxical results are occasionally seen in the literature utilizing this model. Various factors exert important effects on the outcome in this stroke model, including the age and sex of the animal examined. This paper discusses emerging information on the effects of age and sex on ischemic outcomes after MCAO, with an emphasis on mouse models of stroke.
Collapse
|
139
|
Abstract
Women are more susceptible to a variety of autoimmune diseases including systemic lupus erythematosus (SLE), multiple sclerosis (MS), primary biliary cirrhosis, rheumatoid arthritis and Hashimoto's thyroiditis. This increased susceptibility in females compared to males is also present in animal models of autoimmune diseases such as spontaneous SLE in (NZBxNZW)F1 and NZM.2328 mice, experimental autoimmune encephalomyelitis (EAE) in SJL mice, thyroiditis, Sjogren's syndrome in MRL/Mp-lpr/lpr mice and diabetes in non-obese diabetic mice. Indeed, being female confers a greater risk of developing these diseases than any single genetic or environmental risk factor discovered to date. Understanding how the state of being female so profoundly affects autoimmune disease susceptibility would accomplish two major goals. First, it would lead to an insight into the major pathways of disease pathogenesis and, secondly, it would likely lead to novel treatments which would disrupt such pathways.
Collapse
Affiliation(s)
- Rhonda Voskuhl
- Professor, UCLA Dept, of Neurology, Jack H Skirball Chair for Multiple Sclerosis Research, Director, UCLA Multiple Sclerosis Program, Neuroscience Research Building 1, Room 475D, 635 Charles Young Drive South, Los Angeles, CA 90095, USA.
| |
Collapse
|
140
|
Li LZ, Bao YJ, Zhao M. 17beta-estradiol attenuates programmed cell death in cortical pericontusional zone following traumatic brain injury via upregulation of ERalpha and inhibition of caspase-3 activation. Neurochem Int 2010; 58:126-33. [PMID: 21093516 DOI: 10.1016/j.neuint.2010.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 11/04/2010] [Accepted: 11/09/2010] [Indexed: 01/01/2023]
Abstract
Pericontusional zone (PCZ) of traumatic cerebral contusion is a target of pharmacological intervention. It is well studied that 17beta-estradiol has a protective role in ischemic brain injury, but its role in brain protection of traumatic brain damage deserves further investigation, especially in pericontusional zone. Here we show that 17beta-estradiol enhances the protein expression and mRNA induction of estrogen alpha receptor (ERalpha) and prevents from programmed cell death in cortical pericontusional zone. ERalpha specific antagonist blocks this protective effect of 17beta-estradiol. Caspase-3 activation occurs in cortical pericontusional zone of the oil-treated injured rat brain and its activation is inhibited by 17beta-estradiol treatment. Additionally, ERalpha specific antagonist reverses this inhibition. Pan-caspase inhibitor also protect cortical pericontusional zone from programmed cell death. Our present study indicates 17beta-estradiol protects from programmed cell death in cortical pericontusional zone via enhancement of ERalpha and decrease of caspase-3 activation.
Collapse
Affiliation(s)
- Li-Zhuo Li
- Emergency Department, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China.
| | | | | |
Collapse
|
141
|
Actions of estrogens on glial cells: Implications for neuroprotection. Biochim Biophys Acta Gen Subj 2010; 1800:1106-12. [DOI: 10.1016/j.bbagen.2009.10.002] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 09/29/2009] [Accepted: 10/01/2009] [Indexed: 01/21/2023]
|
142
|
Brown CM, Mulcahey TA, Filipek NC, Wise PM. Production of proinflammatory cytokines and chemokines during neuroinflammation: novel roles for estrogen receptors alpha and beta. Endocrinology 2010; 151:4916-25. [PMID: 20685874 PMCID: PMC2946152 DOI: 10.1210/en.2010-0371] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Neuroinflammation is a common feature of many neurological disorders, and it is often accompanied by the release of proinflammatory cytokines and chemokines. Estradiol-17β (E2) exhibits antiinflammatory properties, including the suppression of proinflammatory cytokines, in the central nervous system. However, the mechanisms employed by E2 and the role(s) of estrogen receptors (ERs) ERα and ERβ are unclear. To investigate these mechanisms, we employed an in vivo lipopolysaccharide (LPS) model of systemic inflammation in ovariectomized (OVX) and OVX and E2-treated (OVX+E2) mice. Brain levels of proinflammatory cytokines (IL-1β, IL-6, and IL-12p40) and chemokines (CCL2/MCP-1, CCL3/MIP-1α, CCL5/RANTES, and CXCL1/KC) were quantified in mice at 0 (sham), 3, 6, 12, and 24 h after infection using multiplex protein analysis. E2 treatment inhibited LPS-induced increases in all cytokines. In contrast, E2 treatment only suppressed CCL/RANTES chemokine concentrations. To determine whether ERα and ERβ regulate brain cytokine and chemokine levels, parallel experiments were conducted using ERα knockout and ERβ knockout mice. Our results revealed that both ERα and ERβ regulated proinflammatory cytokine and chemokine production through E2-dependent and E2-independent mechanisms. To assess whether breakdown of the blood-brain barrier is an additional target of E2 against LPS-induced neuroinflammation, we measured Evan's blue extravasation and identified distinct roles for ERα and ERβ. Taken together, these studies identify a dramatic cytokine- and chemokine-mediated neuroinflammatory response that is regulated through ERα- and ERβ-mediated ligand-dependent and ligand-independent mechanisms.
Collapse
Affiliation(s)
- Candice M Brown
- Department of Physiology and Biophysics, University of Washington, Box 356460, Seattle, Washington 98195-4640, USA.
| | | | | | | |
Collapse
|
143
|
Espeland MA, Brunner RL, Hogan PE, Rapp SR, Coker LH, Legault C, Granek I, Resnick SM. Long-term effects of conjugated equine estrogen therapies on domain-specific cognitive function: results from the Women's Health Initiative study of cognitive aging extension. J Am Geriatr Soc 2010; 58:1263-71. [PMID: 20649689 DOI: 10.1111/j.1532-5415.2010.02953.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVES To determine whether small decrements in global cognitive function that conjugated equine estrogen (CEE) therapies have been shown to produce in older women persist after cessation and extend to specific cognitive domains. DESIGN Randomized controlled clinical trial. SETTING Fourteen clinical centers of the Women's Health Initiative. PARTICIPANTS Two thousand three hundred four women aged 65 to 80 free of probable dementia at enrollment. INTERVENTION CEE 0.625 mg/d with or without medroxyprogesterone acetate (MPA, 10 mg/d) and matching placebos. MEASUREMENTS Annual administrations of a battery of cognitive tests during and after the trial. RESULTS Assignment to CEE-based therapies was associated with small mean relative decrements in global cognitive function and several domain-specific cognitive functions during the trial, which largely persisted through up to 4 years after the trial. The strongest statistical evidence was for global cognitive function (0.07-standard deviation decrements during (P=.007) and after (P=.01) the trial. For domain-specific scores, the mean decrements were slightly smaller, were less significant, and tended to be larger for CEE-alone therapy. CONCLUSION CEE-based therapies, when initiated after the age of 65, produce a small broad-based decrement in cognitive function that persists after their use is stopped, but the differences in cognitive function are small and would not be detectable or have clinical significance for an individual woman. Differences in effects between cognitive domains suggest that more than one mechanism may be involved.
Collapse
Affiliation(s)
- Mark A Espeland
- Division of Public Health Sciences, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Selvamani A, Sohrabji F. Reproductive age modulates the impact of focal ischemia on the forebrain as well as the effects of estrogen treatment in female rats. Neurobiol Aging 2010; 31:1618-28. [PMID: 18829137 PMCID: PMC2909345 DOI: 10.1016/j.neurobiolaging.2008.08.014] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 08/02/2008] [Accepted: 08/21/2008] [Indexed: 01/23/2023]
Abstract
While human observational studies and animal studies report a neuroprotective role for estrogen therapy in stroke, the multicenter placebo-controlled Women's Health Initiative (WHI) study concluded that hormone therapy increased the risk for stroke in postmenopausal women. The present study therefore tested the hypothesis that estrogen replacement would increase the severity of a stroke-like injury in females when this replacement occurs after a prolonged hypoestrogenic period, such as the menopause or reproductive senescence, but not when given to females that were normally cycling immediately prior to the hormone replacement. Two groups of female rats were used: multiparous females with normal but lengthened estrus cycles (mature adults), and older multiparous females currently in a persistent acyclic state (reproductive senescent). Animals were either used intact, or were bilaterally ovariectomized and immediately replaced with a 17beta-estradiol pellet or control pellet. Animals were subject to a forelimb placing test (a test for sensorimotor deficit) and thereafter to middle cerebral artery occlusion (MCAo) by stereotaxic injection of the vasoconstrictive peptide endothelin-1, adjacent to the MCA. One week after stroke, behavioral tests were performed again. Cortical and striatal infarct volume, measured from brain slices, was significantly greater in intact reproductive senescent females as compared to intact mature adults. Furthermore, estrogen treatment to ovariectomized mature adult females significantly reduced the cortical infarct volume. Paradoxically, estrogen treatment to ovariectomized reproductive senescent females significantly increased cortical and striatal infarct volumes as compared to control pellet replaced senescent females. Significant post-stroke behavioral deficit was observed in all groups on the side contralateral to the lesion, while senescent females also exhibited deficits on the ipsilateral side, in the cross-midline forelimb placement test. Using an animal model that approximates the natural ovarian aging process, these findings strongly support the hypothesis that the effectiveness of estrogen therapy in protecting brain health may depend critically on the time of initiation with respect to a female's reproductive status.
Collapse
Affiliation(s)
- Amutha Selvamani
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College Station, TX 77843−1114, United States
| | - Farida Sohrabji
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College Station, TX 77843−1114, United States
| |
Collapse
|
145
|
Ovariectomy in aged versus young rats augments matrix metalloproteinase-mediated vasoconstriction in mesenteric arteries. Menopause 2010; 17:516-23. [PMID: 20142791 DOI: 10.1097/gme.0b013e3181c91f04] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Ovarian deficiency is known to undermine vasoprotective mechanisms and accelerate cardiovascular disease in postmenopausal women. In a rat model of menopause (aged ovariectomized [Ovx] rats), we recently revealed a vasoconstrictor pathway mediated by matrix metalloproteinases (MMPs) via cleavage of big endothelin-1 (ET-1). However, the specific impact of aging and/or Ovx on this pathway remains unknown. We hypothesized that aging exacerbates MMP-mediated vasoconstriction in an ovary-deficient state. METHODS Young and aged female Sprague-Dawley rats, either intact or Ovx, were assessed for MMP-dependent vasoreactivity. Dose responses to big ET-1 in the absence or presence of an MMP inhibitor (GM6001) were tested on small mesenteric arteries using a pressure myograph system. MMP levels in the vascular tissue were measured by gelatin zymography. RESULTS Both young Ovx and aged Ovx animals demonstrated a similar increase in the vasoconstriction to big ET-1 compared with the age-matched intact groups. MMP inhibition attenuated big ET-1 response in both Ovx groups and aged controls, but this effect was more pronounced in aged Ovx arteries (area under the curve reduction, 3.8 +/- 0.6 units in aged Ovx rats vs 1.5 +/- 0.5 units in young Ovx rats or 1.8 +/- 0.6 units in aged intact rats; P < 0.05). MMP-2 activity in the vascular tissue increased with age and was further augmented by Ovx. CONCLUSIONS Regardless of age, ovarian loss increases vascular reactivity to big ET-1, which is mediated, in part, by MMP. Superimposed with advancing age, ovarian deficiency further increases the proconstrictor role of MMP, which corresponds with higher MMP-2 levels in the aging vessel wall. MMP-mediated vasoconstriction may be a mechanism contributing to vascular dysfunction in postmenopausal women.
Collapse
|
146
|
Santen RJ, Allred DC, Ardoin SP, Archer DF, Boyd N, Braunstein GD, Burger HG, Colditz GA, Davis SR, Gambacciani M, Gower BA, Henderson VW, Jarjour WN, Karas RH, Kleerekoper M, Lobo RA, Manson JE, Marsden J, Martin KA, Martin L, Pinkerton JV, Rubinow DR, Teede H, Thiboutot DM, Utian WH. Postmenopausal hormone therapy: an Endocrine Society scientific statement. J Clin Endocrinol Metab 2010; 95:s1-s66. [PMID: 20566620 PMCID: PMC6287288 DOI: 10.1210/jc.2009-2509] [Citation(s) in RCA: 458] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 04/21/2010] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Our objective was to provide a scholarly review of the published literature on menopausal hormonal therapy (MHT), make scientifically valid assessments of the available data, and grade the level of evidence available for each clinically important endpoint. PARTICIPANTS IN DEVELOPMENT OF SCIENTIFIC STATEMENT: The 12-member Scientific Statement Task Force of The Endocrine Society selected the leader of the statement development group (R.J.S.) and suggested experts with expertise in specific areas. In conjunction with the Task Force, lead authors (n = 25) and peer reviewers (n = 14) for each specific topic were selected. All discussions regarding content and grading of evidence occurred via teleconference or electronic and written correspondence. No funding was provided to any expert or peer reviewer, and all participants volunteered their time to prepare this Scientific Statement. EVIDENCE Each expert conducted extensive literature searches of case control, cohort, and randomized controlled trials as well as meta-analyses, Cochrane reviews, and Position Statements from other professional societies in order to compile and evaluate available evidence. No unpublished data were used to draw conclusions from the evidence. CONSENSUS PROCESS A consensus was reached after several iterations. Each topic was considered separately, and a consensus was achieved as to content to be included and conclusions reached between the primary author and the peer reviewer specific to that topic. In a separate iteration, the quality of evidence was judged using the GRADE (Grading of Recommendations, Assessment, Development, and Evaluation) system in common use by The Endocrine Society for preparing clinical guidelines. The final iteration involved responses to four levels of additional review: 1) general comments offered by each of the 25 authors; 2) comments of the individual Task Force members; 3) critiques by the reviewers of the Journal of Clinical Endocrinology & Metabolism; and 4) suggestions offered by the Council and members of The Endocrine Society. The lead author compiled each individual topic into a coherent document and finalized the content for the final Statement. The writing process was analogous to preparation of a multiauthored textbook with input from individual authors and the textbook editors. CONCLUSIONS The major conclusions related to the overall benefits and risks of MHT expressed as the number of women per 1000 taking MHT for 5 yr who would experience benefit or harm. Primary areas of benefit included relief of hot flashes and symptoms of urogenital atrophy and prevention of fractures and diabetes. Risks included venothrombotic episodes, stroke, and cholecystitis. In the subgroup of women starting MHT between ages 50 and 59 or less than 10 yr after onset of menopause, congruent trends suggested additional benefit including reduction of overall mortality and coronary artery disease. In this subgroup, estrogen plus some progestogens increased the risk of breast cancer, whereas estrogen alone did not. Beneficial effects on colorectal and endometrial cancer and harmful effects on ovarian cancer occurred but affected only a small number of women. Data from the various Women's Health Initiative studies, which involved women of average age 63, cannot be appropriately applied to calculate risks and benefits of MHT in women starting shortly after menopause. At the present time, assessments of benefit and risk in these younger women are based on lower levels of evidence.
Collapse
Affiliation(s)
- Richard J Santen
- Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Neuroprotective effects of estrogen treatment on ischemia-induced behavioural deficits in ovariectomized gerbils at different ages. Behav Brain Res 2010; 209:42-8. [DOI: 10.1016/j.bbr.2010.01.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 01/03/2010] [Accepted: 01/11/2010] [Indexed: 02/03/2023]
|
148
|
Estradiol inhibits ongoing autoimmune neuroinflammation and NFkappaB-dependent CCL2 expression in reactive astrocytes. Proc Natl Acad Sci U S A 2010; 107:8416-21. [PMID: 20404154 DOI: 10.1073/pnas.0910627107] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Astroglial reactivity associated with increased production of NFkappaB-dependent proinflammatory molecules is an important component of the pathophysiology of chronic neurological disorders such as multiple sclerosis (MS). The use of estrogens as potential anti-inflammatory and neuroprotective drugs is a matter of debate. Using mouse experimental allergic encephalomyelitis (EAE) as a model of chronic neuroinflammation, we report that implants reproducing pregnancy levels of 17beta-estradiol (E2) alleviate ongoing disease and decrease astrocytic production of CCL2, a proinflammatory chemokine that drives the local recruitment of inflammatory myeloid cells. Immunohistochemistry and confocal imaging reveal that, in spinal cord white matter EAE lesions, reactive astrocytes express estrogen receptor (ER)alpha (and to a lesser extent ERbeta) with a preferential nuclear localization, whereas other cells including infiltrated leukocytes express ERs only in their membranes or cytosol. In cultured rodent astrocytes, E2 or an ERalpha agonist, but not an ERbeta agonist, inhibits TNFalpha-induced CCL2 expression at nanomolar concentrations, and the ER antagonist ICI 182,170 blocks this effect. We show that this anti-inflammatory action is not associated with inhibition of NFkappaB nuclear translocation but rather involves direct repression of NFkappaB-dependent transcription. Chromatin immunoprecipitation assays further indicate that estrogen suppresses TNFalpha-induced NFkappaB recruitment to the CCL2 enhancer. These data uncover reactive astrocytes as an important target for nuclear ERalpha inhibitory action on chemokine expression and suggest that targeting astrocytic nuclear NFkappaB activation with estrogen receptor alpha modulators may improve therapies of chronic neurodegenerative disorders involving astroglial neuroinflammation.
Collapse
|
149
|
Zhang B, Subramanian S, Dziennis S, Jia J, Uchida M, Akiyoshi K, Migliati E, Lewis AD, Vandenbark AA, Offner H, Hurn PD. Estradiol and G1 reduce infarct size and improve immunosuppression after experimental stroke. THE JOURNAL OF IMMUNOLOGY 2010; 184:4087-94. [PMID: 20304826 DOI: 10.4049/jimmunol.0902339] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Reduced risk and severity of stroke in adult females is thought to depend on normal endogenous levels of estrogen, a well-known neuroprotectant and immunomodulator. In male mice, experimental stroke induces immunosuppression of the peripheral immune system, characterized by a reduction in spleen size and cell numbers and decreased cytokine and chemokine expression. However, stroke-induced immunosuppression has not been evaluated in female mice. To test the hypothesis that estradiol (E2) deficiency exacerbates immunosuppression after focal stroke in females, we evaluated the effect of middle cerebral artery occlusion on infarct size and peripheral and CNS immune responses in ovariectomized mice with or without sustained, controlled levels of 17-beta-E2 administered by s.c. implant or the putative membrane estrogen receptor agonist, G1. Both E2- and G1-replacement decreased infarct volume and partially restored splenocyte numbers. Moreover, E2-replacement increased splenocyte proliferation in response to stimulation with anti-CD3/CD28 Abs and normalized aberrant mRNA expression for cytokines, chemokines, and chemokine receptors and percentage of CD4(+)CD25(+)FoxP3(+) T regulatory cells observed in E2-deficient animals. These beneficial changes in peripheral immunity after E2 replacement were accompanied by a profound reduction in expression of the chemokine, MIP-2, and a 40-fold increased expression of CCR7 in the lesioned brain hemisphere. These results demonstrate for the first time that E2 replacement in ovariectomized female mice improves stroke-induced peripheral immunosuppression.
Collapse
Affiliation(s)
- Bing Zhang
- Department of Anesthesiology and Peri-Operative Medicine, Oregon Health and Science University, Portland, OR 97239-3098, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Musicki B, Liu T, Strong TD, Lagoda GA, Bivalacqua TJ, Burnett AL. Post-translational regulation of endothelial nitric oxide synthase (eNOS) by estrogens in the rat vagina. J Sex Med 2010; 7:1768-77. [PMID: 20233295 DOI: 10.1111/j.1743-6109.2010.01750.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Estrogens control vaginal blood flow during female sexual arousal mostly through nitric oxide (NO). Although vascular effects of estrogens are attributed to an increase in endothelial NO production, the mechanisms of endothelial NO synthase (eNOS) regulation by estrogens in the vagina are largely unknown. AIMS Our hypothesis was that estrogens regulate eNOS post-translationally in the vagina, providing a mechanism to affect NO bioavailability without changes in eNOS protein expression. METHODS We measured eNOS phosphorylation and eNOS interaction with caveolin-1 and heat shock protein 90 (HSP90) in the distal and proximal vagina of female rats at diestrus, 7 days after ovariectomy and 2 days after replacement of ovariectomized rats with estradiol-17beta (15 microg). MAIN OUTCOME MEASURES Molecular mechanisms of eNOS regulation by estrogen in the rat vagina. RESULTS We localized phospho-eNOS (Ser-1177) immunohistochemically to the endothelium lining blood vessels and vaginal sinusoids. Estrogen withdrawal decreased phosphorylation of eNOS on its positive regulatory site (Ser-1177) and increased eNOS binding to its negative regulator caveolin-1 (without affecting eNOS/HSP90 interaction), and they were both normalized by estradiol replacement. Protein expressions of phosphorylated Akt (protein kinase B) and extracellular signal-regulated protein kinase 1/2 (ERK1/2) were not affected by estrogen status, suggesting that the effect of estrogens on eNOS (Ser-1177) phosphorylation was not mediated by activated AKT or ERK1/2. eNOS phosphorylation on its negative regulatory site (Ser-114) was increased in the vagina by estrogen withdrawal and normalized by estradiol replacement, implying that the maintenance of low phosphorylation of eNOS on this site by estradiol may limit eNOS interaction with caveolin-1 and preserve the enzyme's activity. Total eNOS, inducible NOS, caveolin-1, and HSP90 protein expressions were not affected by ovariectomy or estradiol replacement in the distal or proximal vagina. CONCLUSIONS These results define novel estrogen signaling mechanisms in the vagina which involve eNOS phosphorylation and eNOS-caveolin-1 interaction.
Collapse
Affiliation(s)
- Biljana Musicki
- Department of Urology, The Johns Hopkins University, Baltimore, MD 21287, USA.
| | | | | | | | | | | |
Collapse
|