101
|
|
102
|
Social Structure. Anim Behav 2021. [DOI: 10.1007/978-3-030-82879-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
103
|
González-Suárez M, Gonzalez-Voyer A, von Hardenberg A, Santini L. The role of brain size on mammalian population densities. J Anim Ecol 2020; 90:653-661. [PMID: 33354764 DOI: 10.1111/1365-2656.13397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/05/2020] [Indexed: 12/01/2022]
Abstract
The local abundance or population density of different organisms often varies widely. Understanding what determines this variation is an important, but not yet fully resolved question in ecology. Differences in population density are partly driven by variation in body size and diet among organisms. Here we propose that the size of an organism' brain could be an additional, overlooked, driver of mammalian population densities. We explore two possible contrasting mechanisms by which brain size, measured by its mass, could affect population density. First, because of the energetic demands of larger brains and their influence on life history, we predict mammals with larger relative brain masses would occur at lower population densities. Alternatively, larger brains are generally associated with a greater ability to exploit new resources, which would provide a competitive advantage leading to higher population densities among large-brained mammals. We tested these predictions using phylogenetic path analysis, modelling hypothesized direct and indirect relationships between diet, body mass, brain mass and population density for 656 non-volant terrestrial mammalian species. We analysed all data together and separately for marsupials and the four taxonomic orders with most species in the dataset (Carnivora, Cetartiodactyla, Primates, Rodentia). For all species combined, a single model was supported showing lower population density associated with larger brains, larger bodies and more specialized diets. The negative effect of brain mass was also supported for separate analyses in Primates and Carnivora. In other groups (Rodentia, Cetartiodactyla and marsupials) the relationship was less clear: supported models included a direct link from brain mass to population density but 95% confidence intervals of the path coefficients overlapped zero. Results support our hypothesis that brain mass can explain variation in species' average population density, with large-brained species having greater area requirements, although the relationship may vary across taxonomic groups. Future research is needed to clarify whether the role of brain mass on population density varies as a function of environmental (e.g. environmental stability) and biotic conditions (e.g. level of competition).
Collapse
Affiliation(s)
- Manuela González-Suárez
- Ecology and Evolutionary Biology, School of Biological Sciences, University of Reading, Reading, UK
| | - Alejandro Gonzalez-Voyer
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, México, México
| | - Achaz von Hardenberg
- Conservation Biology Research Group, Department of Biological Sciences, University of Chester, Chester, UK
| | - Luca Santini
- Department of Environmental Science, Institute for Wetland and Water Research, Faculty of Science, Radboud University, Nijmegen, The Netherlands.,National Research Council, Institute of Research on Terrestrial Ecosystems (CNR-IRET), Monterotondo (Rome), Italy
| |
Collapse
|
104
|
Forss S, Motes-Rodrigo A, Hrubesch C, Tennie C. Chimpanzees' ( Pan troglodytes) problem-solving skills are influenced by housing facility and captive care duration. PeerJ 2020; 8:e10263. [PMID: 33304648 PMCID: PMC7698692 DOI: 10.7717/peerj.10263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/07/2020] [Indexed: 11/20/2022] Open
Abstract
Although a large body of primate cognition research is done in captive institutions, little is known about how much individuals from different facilities vary in their experiences and cognitive skills. Here we present the results of an experimental study investigating how physical cognitive skills vary between chimpanzees in relation to captive settings and their time in captivity. We tested 59 chimpanzees housed at two different captive facilities (a rehabilitation center (sanctuary) and a zoo) in three problem-solving tasks. Our results showed that chimpanzees at the two housing facilities significantly differed in overall task performance. On average, the sanctuary chimpanzees outperformed the chimpanzees housed at the zoo in the detour reaching task and the honey trap task. However, the zoo chimpanzees performed slightly better on average in the learning task. We propose that, for this particular sample, the documented differences result from a combination of factors, such as prior experience with cognitive testing, motivation levels and varying degrees of human exposure. Within the sanctuary sample, we found that chimpanzees who arrived at an earlier age at the sanctuary and had therefore spent a larger percentage of their lives in a captive environment, were better problem-solvers than those that arrived at a later age to the sanctuary. Thus, rehabilitation and time in captivity contributed to improved physical cognitive skills in sanctuary chimpanzees. Our results highlight the importance of studying intraspecific variation and the effect that previous experience and living conditions might have on physical cognitive skills in non-human apes. Accordingly, we should be cautious when extrapolating findings of cognitive studies from one population to the species as a whole.
Collapse
Affiliation(s)
- Sofia Forss
- Department of Early Prehistory and Quaternary Ecology, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Alba Motes-Rodrigo
- Department of Early Prehistory and Quaternary Ecology, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Christine Hrubesch
- Department of Anthropology, University of Zürich, Leintalzoo, Schwaigern, Germany
| | - Claudio Tennie
- Department of Early Prehistory and Quaternary Ecology, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| |
Collapse
|
105
|
Of Great Apes and Magpies: Initiations into Animal Behaviour. Animals (Basel) 2020; 10:ani10122369. [PMID: 33321971 PMCID: PMC7764213 DOI: 10.3390/ani10122369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Animal encounters have been favourite subjects for a long time and it would scarcely be novel to report such stories for their own sake, even though the ones told here are dramatic enough to stand on their own. The questions addressed in this paper are twofold. The first question is: What influence may particular and dramatic animal encounters have on the human observer and how dependent is such a response on previously held attitudes? This paper provides three cases studies of extraordinary moments that changed the lives of the human participants and turned them into advocates of the species they had encountered. The next question asked is how we can be respectful of animals without anthropomorphising them and study them in ways that help us understand their abilities and their needs rather than impose questions that mean much to the human researcher but could be irrelevant to the species? The examples given here compare and contrast species that are especially close to us (great apes) with studies of those that are distant from us in their evolution (birds) and show how different attitudes change the questions that can be asked by scientists, demonstrably leading to new and even stunning results. Abstract This paper presents three case studies of exceptional human encounters with animals. These particular examples were selected because they enabled analysis of the underlying reasons that led the human participants to respond in new ways to their animal counterparts. The question asked here is whether sudden insights into the needs and abilities of an animal arises purely from an anthropocentric position as empathy because of genetic closeness (e.g., chimpanzees) or is something else and whether new insights can be applied to other phylogenetic orders not close to us, e.g., birds, and change research questions and implicit prejudices and stereotypes. Particularly in avian species, phylogenetically distant from humans, the prejudices (anthroprocentric position) and the belief in human uniqueness (human exceptionalism) might be greater than in the reactions to primates. Interestingly, in studies of great apes, contradictory opinions and controversies about cognitive abilities, especially when compared with humans, tend to be pronounced. Species appropriateness in test designs are desirable present and future goals but here it is suggested how different experiences can also lead to different questions that explode the myth of human uniqueness and then arrive at entirely different and new results in cognitive and affective abilities of the species under investigation.
Collapse
|
106
|
Linking ecology and cognition: does ecological specialisation predict cognitive test performance? Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-020-02923-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
AbstractVariation in cognitive abilities is thought to be linked to variation in brain size, which varies across species with either social factors (Social Intelligence Hypothesis) or ecological challenges (Ecological Intelligence Hypothesis). However, the nature of the ecological processes invoked by the Ecological Intelligence Hypothesis, like adaptations to certain habitat characteristics or dietary requirements, remains relatively poorly known. Here, we review comparative studies that experimentally investigated interspecific variation in cognitive performance in relation to a species’ degree of ecological specialisation. Overall, the relevant literature was biased towards studies of mammals and birds as well as studies focusing on ecological challenges related to diet. We separated ecological challenges into those related to searching for food, accessing a food item and memorising food locations. We found interspecific variation in cognitive performance that can be explained by adaptations to different foraging styles. Species-specific adaptations to certain ecological conditions, like food patch distribution, characteristics of food items or seasonality also broadly predicted variation in cognitive abilities. A species’ innovative problem-solving and spatial processing ability, for example, could be explained by its use of specific foraging techniques or search strategies, respectively. Further, habitat generalists were more likely to outperform habitat specialists. Hence, we found evidence that ecological adaptations and cognitive performance are linked and that the classification concept of ecological specialisation can explain variation in cognitive performance only with regard to habitat, but not dietary specialisation.
Collapse
|
107
|
Szabo B, Noble DWA, Whiting MJ. Learning in non-avian reptiles 40 years on: advances and promising new directions. Biol Rev Camb Philos Soc 2020; 96:331-356. [PMID: 33073470 DOI: 10.1111/brv.12658] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 01/06/2023]
Abstract
Recently, there has been a surge in cognition research using non-avian reptile systems. As a diverse group of animals, non-avian reptiles [turtles, the tuatara, crocodylians, and squamates (lizards, snakes and amphisbaenids)] are good model systems for answering questions related to cognitive ecology, from the role of the environment on the brain, behaviour and learning, to how social and life-history factors correlate with learning ability. Furthermore, given their variable social structure and degree of sociality, studies on reptiles have shown that group living is not a pre-condition for social learning. Past research has demonstrated that non-avian reptiles are capable of more than just instinctive reactions and basic cognition. Despite their ability to provide answers to fundamental questions in cognitive ecology, and a growing literature, there have been no recent systematic syntheses of research in this group. Here, we systematically, and comprehensively review studies on reptile learning. We identify 92 new studies investigating learning in reptiles not included in previous reviews on this topic - affording a unique opportunity to provide a more in-depth synthesis of existing work, its taxonomic distribution, the types of cognitive domains tested and methodologies that have been used. Our review therefore provides a major update on our current state of knowledge and ties the collective evidence together under nine umbrella research areas: (i) habituation of behaviour, (ii) animal training through conditioning, (iii) avoiding aversive stimuli, (iv) spatial learning and memory, (v) learning during foraging, (vi) quality and quantity discrimination, (vii) responding to change, (viii) solving novel problems, and (ix) social learning. Importantly, we identify knowledge gaps and propose themes which offer important future research opportunities including how cognitive ability might influence fitness and survival, testing cognition in ecologically relevant situations, comparing cognition in invasive and non-invasive populations of species, and social learning. To move the field forward, it will be immensely important to build upon the descriptive approach of testing whether a species can learn a task with experimental studies elucidating causal reasons for cognitive variation within and among species. With the appropriate methodology, this young but rapidly growing field of research should advance greatly in the coming years providing significant opportunities for addressing general questions in cognitive ecology and beyond.
Collapse
Affiliation(s)
- Birgit Szabo
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia.,Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50a, Bern, 3032, Switzerland
| | - Daniel W A Noble
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Martin J Whiting
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| |
Collapse
|
108
|
Cross FR, Carvell GE, Jackson RR, Grace RC. Arthropod Intelligence? The Case for Portia. Front Psychol 2020; 11:568049. [PMID: 33154726 PMCID: PMC7591756 DOI: 10.3389/fpsyg.2020.568049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/07/2020] [Indexed: 12/17/2022] Open
Abstract
Macphail’s “null hypothesis,” that there are no differences in intelligence, qualitative, or quantitative, between non-human vertebrates has been controversial. This controversy can be useful if it encourages interest in acquiring a detailed understanding of how non-human animals express flexible problem-solving capacity (“intelligence”), but limiting the discussion to vertebrates is too arbitrary. As an example, we focus here on Portia, a spider with an especially intricate predatory strategy and a preference for other spiders as prey. We review research on pre-planned detours, expectancy violation, and a capacity to solve confinement problems where, in each of these three contexts, there is experimental evidence of innate cognitive capacities and reliance on internal representation. These cognitive capacities are related to, but not identical to, intelligence. When discussing intelligence, as when discussing cognition, it is more useful to envisage a continuum instead of something that is simply present or not; in other words, a continuum pertaining to flexible problem-solving capacity for “intelligence” and a continuum pertaining to reliance on internal representation for “cognition.” When envisaging a continuum pertaining to intelligence, Daniel Dennett’s notion of four Creatures (Darwinian, Skinnerian, Popperian, and Gregorian) is of interest, with the distinction between Skinnerian and Popperian Creatures being especially relevant when considering Portia. When we consider these distinctions, a case can be made for Portia being a Popperian Creature. Like Skinnerian Creatures, Popperian Creatures express flexible problem solving capacity, but the manner in which this capacity is expressed by Popperian Creatures is more distinctively cognitive.
Collapse
Affiliation(s)
- Fiona R Cross
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,International Centre of Insect Physiology and Ecology, Mbita Point, Kenya
| | - Georgina E Carvell
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
| | - Robert R Jackson
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,International Centre of Insect Physiology and Ecology, Mbita Point, Kenya
| | - Randolph C Grace
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
109
|
|
110
|
Fichtel C, Dinter K, Kappeler PM. The lemur baseline: how lemurs compare to monkeys and apes in the Primate Cognition Test Battery. PeerJ 2020; 8:e10025. [PMID: 33024643 PMCID: PMC7520086 DOI: 10.7717/peerj.10025] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/02/2020] [Indexed: 11/20/2022] Open
Abstract
Primates have relatively larger brains than other mammals even though brain tissue is energetically costly. Comparative studies of variation in cognitive skills allow testing of evolutionary hypotheses addressing socioecological factors driving the evolution of primate brain size. However, data on cognitive abilities for meaningful interspecific comparisons are only available for haplorhine primates (great apes, Old- and New World monkeys) although strepsirrhine primates (lemurs and lorises) serve as the best living models of ancestral primate cognitive skills, linking primates to other mammals. To begin filling this gap, we tested members of three lemur species (Microcebus murinus, Varecia variegata, Lemur catta) with the Primate Cognition Test Battery, a comprehensive set of experiments addressing physical and social cognitive skills that has previously been used in studies of haplorhines. We found no significant differences in cognitive performance among lemur species and, surprisingly, their average performance was not different from that of haplorhines in many aspects. Specifically, lemurs' overall performance was inferior in the physical domain but matched that of haplorhines in the social domain. These results question a clear-cut link between brain size and cognitive skills, suggesting a more domain-specific distribution of cognitive abilities in primates, and indicate more continuity in cognitive abilities across primate lineages than previously thought.
Collapse
Affiliation(s)
- Claudia Fichtel
- Behavioral Ecology & Sociobiology Unit, German Primate Center, Göttingen, Germany
- Leibniz-ScienceCampus Primate Cognition, Göttingen, Germany
| | - Klara Dinter
- Behavioral Ecology & Sociobiology Unit, German Primate Center, Göttingen, Germany
| | - Peter M Kappeler
- Behavioral Ecology & Sociobiology Unit, German Primate Center, Göttingen, Germany
- Department of Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, Georg-August Universität, Göttingen, Germany
| |
Collapse
|
111
|
Environmental variability supports chimpanzee behavioural diversity. Nat Commun 2020; 11:4451. [PMID: 32934202 PMCID: PMC7493986 DOI: 10.1038/s41467-020-18176-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 08/07/2020] [Indexed: 11/18/2022] Open
Abstract
Large brains and behavioural innovation are positively correlated, species-specific traits, associated with the behavioural flexibility animals need for adapting to seasonal and unpredictable habitats. Similar ecological challenges would have been important drivers throughout human evolution. However, studies examining the influence of environmental variability on within-species behavioural diversity are lacking despite the critical assumption that population diversification precedes genetic divergence and speciation. Here, using a dataset of 144 wild chimpanzee (Pan troglodytes) communities, we show that chimpanzees exhibit greater behavioural diversity in environments with more variability — in both recent and historical timescales. Notably, distance from Pleistocene forest refugia is associated with the presence of a larger number of behavioural traits, including both tool and non-tool use behaviours. Since more than half of the behaviours investigated are also likely to be cultural, we suggest that environmental variability was a critical evolutionary force promoting the behavioural, as well as cultural diversification of great apes. Environmental variability is one potential driver of behavioural and cultural diversity in humans and other animals. Here, the authors show that chimpanzee behavioural diversity is higher in habitats that are more seasonal and historically unstable, and in savannah woodland relative to forested sites.
Collapse
|
112
|
Complex Economic Behavior Patterns Are Constructed from Finite, Genetically Controlled Modules of Behavior. Cell Rep 2020; 28:1814-1829.e6. [PMID: 31412249 PMCID: PMC7476553 DOI: 10.1016/j.celrep.2019.07.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 02/22/2019] [Accepted: 07/12/2019] [Indexed: 12/18/2022] Open
Abstract
Complex ethological behaviors could be constructed from finite modules that are reproducible functional units of behavior. Here, we test this idea for foraging and develop methods to dissect rich behavior patterns in mice. We uncover discrete modules of foraging behavior reproducible across different strains and ages, as well as nonmodular behavioral sequences. Modules differ in terms of form, expression frequency, and expression timing and are expressed in a probabilistically determined order. Modules shape economic patterns of feeding, exposure, activity, and perseveration responses. The modular architecture of foraging changes developmentally, and different developmental, genetic, and parental effects are found to shape the expression of specific modules. Dissecting modules from complex patterns is powerful for phenotype analysis. We discover that both parental alleles of the imprinted Prader-Willi syndrome gene Magel2 are functional in mice but regulate different modules. Our study found that complex economic patterns are built from finite, genetically controlled modules. The principles and mechanisms involved in constructing complex behavior patterns are not well defined. Stacher Hörndli et al. find that complex foraging patterns in mice are constructed from finite modules, defined as significantly reproducible behavioral sequences. Modules are expressed in a probabilistically defined order to construct complex patterns and controlled by genetic mechanisms.
Collapse
|
113
|
Liu J, Yang C, Yu J, Wang H, Møller AP, Liang W. Egg recognition and brain size in a cuckoo host. Behav Processes 2020; 180:104223. [PMID: 32841719 DOI: 10.1016/j.beproc.2020.104223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 11/28/2022]
Abstract
The evolution of animal brain size and cognitive ability is a topic of central significance in evolutionary ecology. Interspecific brood parasitism imposes severe selection pressures on hosts favoring the evolution of cuckoo egg recognition and rejection. However, recognizing and rejecting foreign parasitic eggs are enormous cognitive challenges for cuckoo hosts, which might select for an increase in brain size in birds with this capacity. To explore the association between cuckoo parasitism and the evolution of brain size in cinereous tits (Parus cinereus), we used two types of experimental parasitic eggs, real mimetic white-rumped munia (Lonchura striata) eggs and non-mimetic blue model eggs, to test the egg recognition ability of female cinereous tits, thereby comparing brain size variation among individuals that were able to recognize foreign eggs and those that lacked this ability. Interestingly, our results however did not support the prediction that cuckoo parasitism selects for an increase in brain size of host birds, since brain size of egg rejecters was not significantly larger than that of accepters. Hence, this study suggested that the evolution of cognitive ability did not allow recognition of foreign eggs by female cinereous tits. That was the case despite the evolution of a larger brain may have allowed for a reduction in the cost of brood parasitism by cuckoos.
Collapse
Affiliation(s)
- Jianping Liu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, 571158, China.
| | - Canchao Yang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, 571158, China.
| | - Jiangping Yu
- Jilin Engineering Laboratory for Avian Ecology and Conservation Genetics, School of Life Sciences, Northeast Normal University, Changchun, 130024, China; Ministry of Education Key Laboratory of Vegetation Ecology, School of Life Sciences, Northeast Normal University, Changchun, 130024, China.
| | - Haitao Wang
- Jilin Engineering Laboratory for Avian Ecology and Conservation Genetics, School of Life Sciences, Northeast Normal University, Changchun, 130024, China; Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun, 130024, China.
| | - Anders Pape Møller
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China; Ecologie Systématique Evolution, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, F-91405, Orsay Cedex, France.
| | - Wei Liang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, 571158, China.
| |
Collapse
|
114
|
Abstract
This paper aimed to explore and clarify the concept of behavioral flexibility. A selective literature review explored how the concept of behavioral flexibility has been used in ways that range from acknowledging the fact that animals’ behavior is not always bounded by instinctual constraints, to describing the variation between species in their capacity for innovative foraging, a capacity that has repeatedly been linked to having a brain larger than would be predicted from body size. This wide range of usages of a single term has led to some conceptual confusion. We sought to find a more precise meaning for behavioral flexibility by representing it within a simple formal model of problem solving. The key to our model is to distinguish between an animal’s state of knowledge about the world and its observable behavior, using a construct of response strength to represent that underlying knowledge. We modelled behavioral flexibility as a parameter in the function that transforms response strengths into observable response probabilities. We tested this model in simulations based on some recent experimental work on animal problem solving. Initial results showed that parametric manipulation can mimic some of the behavioral effects that have been attributed to flexibility.
Collapse
|
115
|
Boussard A, Buechel SD, Amcoff M, Kotrschal A, Kolm N. Brain size does not predict learning strategies in a serial reversal learning test. J Exp Biol 2020; 223:jeb224741. [PMID: 32561630 PMCID: PMC7413604 DOI: 10.1242/jeb.224741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/10/2020] [Indexed: 11/20/2022]
Abstract
Reversal learning assays are commonly used across a wide range of taxa to investigate associative learning and behavioural flexibility. In serial reversal learning, the reward contingency in a binary discrimination is reversed multiple times. Performance during serial reversal learning varies greatly at the interspecific level, as some animals adopt a rule-based strategy that enables them to switch quickly between reward contingencies. A larger relative brain size, generating enhanced learning ability and increased behavioural flexibility, has been proposed to be an important factor underlying this variation. Here, we experimentally tested this hypothesis at the intraspecific level. We used guppies (Poecilia reticulata) artificially selected for small and large relative brain size, with matching differences in neuron number, in a serial reversal learning assay. We tested 96 individuals over 10 serial reversals and found that learning performance and memory were predicted by brain size, whereas differences in efficient learning strategies were not. We conclude that variation in brain size and neuron number is important for variation in learning performance and memory, but these differences are not great enough to cause the larger differences in efficient learning strategies observed at higher taxonomic levels.
Collapse
Affiliation(s)
- Annika Boussard
- Department of Zoology/Ethology, Stockholm University, Svante Arrhenius väg 18B, 10691 Stockholm, Sweden
| | - Séverine D Buechel
- Department of Zoology/Ethology, Stockholm University, Svante Arrhenius väg 18B, 10691 Stockholm, Sweden
| | - Mirjam Amcoff
- Department of Zoology/Ethology, Stockholm University, Svante Arrhenius väg 18B, 10691 Stockholm, Sweden
| | - Alexander Kotrschal
- Department of Zoology/Ethology, Stockholm University, Svante Arrhenius väg 18B, 10691 Stockholm, Sweden
- Behaviour Ecology, Wageningen University, De Elst 1, 6708wd Wageningen, The Netherlands
| | - Niclas Kolm
- Department of Zoology/Ethology, Stockholm University, Svante Arrhenius väg 18B, 10691 Stockholm, Sweden
| |
Collapse
|
116
|
Tibbetts EA, Wong E, Bonello S. Wasps Use Social Eavesdropping to Learn about Individual Rivals. Curr Biol 2020; 30:3007-3010.e2. [DOI: 10.1016/j.cub.2020.05.053] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/01/2020] [Accepted: 05/14/2020] [Indexed: 01/05/2023]
|
117
|
Cantor M, Aplin LM, Farine DR. A primer on the relationship between group size and group performance. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.06.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
118
|
Lockwood PL, Apps MAJ, Chang SWC. Is There a 'Social' Brain? Implementations and Algorithms. Trends Cogn Sci 2020; 24:802-813. [PMID: 32736965 DOI: 10.1016/j.tics.2020.06.011] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/21/2022]
Abstract
A fundamental question in psychology and neuroscience is the extent to which cognitive and neural processes are specialised for social behaviour, or are shared with other 'non-social' cognitive, perceptual, and motor faculties. Here we apply the influential framework of Marr (1982) across research in humans, monkeys, and rodents to propose that information processing can be understood as 'social' or 'non-social' at different levels. We argue that processes can be socially specialised at the implementational and/or the algorithmic level, and that changing the goal of social behaviour can also change social specificity. This framework could provide important new insights into the nature of social behaviour across species, facilitate greater integration, and inspire novel theoretical and empirical approaches.
Collapse
Affiliation(s)
- Patricia L Lockwood
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK; Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK.
| | - Matthew A J Apps
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK; Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Steve W C Chang
- Department of Psychology, Yale University, New Haven, CT, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA; Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
119
|
Gurven MD, Davison RJ, Kraft TS. The optimal timing of teaching and learning across the life course. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190500. [PMID: 32475325 PMCID: PMC7293159 DOI: 10.1098/rstb.2019.0500] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2020] [Indexed: 11/12/2022] Open
Abstract
The evolutionary biologist W. D. Hamilton (Hamilton 1966 J. Theor. Biol.12, 12-45. (doi:10.1016/0022-5193(66)90184-6)) famously showed that the force of natural selection declines with age, and reaches zero by the age of reproductive cessation. However, in social species, the transfer of fitness-enhancing resources by postreproductive adults increases the value of survival to late ages. While most research has focused on intergenerational food transfers in social animals, here we consider the potential fitness benefits of information transfer, and investigate the ecological contexts where pedagogy is likely to occur. Although the evolution of teaching is an important topic in behavioural biology and in studies of human cultural evolution, few formal models of teaching exist. Here, we present a modelling framework for predicting the timing of both information transfer and learning across the life course, and find that under a broad range of conditions, optimal patterns of information transfer in a skills-intensive ecology often involve postreproductive aged teachers. We explore several implications among human subsistence populations, evaluating the cost of hunting pedagogy and the relationship between activity skill complexity and the timing of pedagogy for several subsistence activities. Long lifespan and extended juvenility that characterize the human life history likely evolved in the context of a skills-intensive ecological niche with multi-stage pedagogy and multigenerational cooperation. This article is part of the theme issue 'Life history and learning: how childhood, caregiving and old age shape cognition and culture in humans and other animals'.
Collapse
|
120
|
Audet JN. Neurobiological and Ecological Correlates of Avian Innovation. Integr Comp Biol 2020; 60:955-966. [PMID: 32681794 DOI: 10.1093/icb/icaa107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In the wild, particularly in rapidly changing conditions, being capable of solving new problems can increase an animal's chances of survival and reproduction. In the current context of widespread habitat destruction and increasing urbanization, innovativeness might be a crucial trait. In the past few decades, birds have proven to be a model taxon for the study of innovation, thanks to the abundant literature on avian innovation reports. Innovation databases in birds have been successfully employed to assess associations between innovativeness and other traits such as invasion success, life history, generalism, and brain encephalization. In order to more directly assess the causes of variation in innovation, a complementary approach consists in measuring innovativeness in wild-caught animals using problem-solving tasks that mimic innovations in the field. This method can allow for finer scale evaluation of ecological and neural correlates of innovation. Here, I review some of the most important findings on the correlates of innovation, with a particular focus on neural ones. I conclude by discussing avenues for future research, which I suggest should focus on neurobiology.
Collapse
|
121
|
Szabo B, Damas-Moreira I, Whiting MJ. Can Cognitive Ability Give Invasive Species the Means to Succeed? A Review of the Evidence. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
122
|
Johnston IG, Røyrvik EC. Data-Driven Inference Reveals Distinct and Conserved Dynamic Pathways of Tool Use Emergence across Animal Taxa. iScience 2020; 23:101245. [PMID: 32629611 PMCID: PMC7306607 DOI: 10.1016/j.isci.2020.101245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/24/2020] [Accepted: 06/04/2020] [Indexed: 11/29/2022] Open
Abstract
Tool use is a striking aspect of animal behavior, but it is hard to infer how the capacity for different types of tool use emerged across animal taxa. Here we address this question with HyperTraPS, a statistical approach that uses contemporary observations to infer the likely orderings in which different types of tool use (digging, reaching, and more) were historically acquired. Strikingly, despite differences linked to environment and family, many similarities in these appear across animal taxa, suggesting some universality in the process of tool use acquisition across different animals and environments. Four broad classes of tool use are supported, progressing from simple object manipulations (acquired relatively early) to more complex interactions and abstractions (acquired relatively late or not at all). This data-driven, comparative approach supports existing and suggests new mechanistic hypotheses, predicts future and possible unobserved behaviors, and sheds light on patterns of tool use emergence across animals. Historical pathways of tool use acquisition inferred from large catalog of data Striking similarities in acquisition pathways across environments and lineages Acquisitions of different modes of tool use broadly follow conceptual complexity Wild/domestic differences and predictions of future/unobserved behaviors quantified
Collapse
Affiliation(s)
- Iain G Johnston
- Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Bergen, Bergen, Norway; Alan Turing Institute, London, UK.
| | - Ellen C Røyrvik
- Department of Clinical Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
123
|
Abstract
A defining feature of human culture is that knowledge and technology continually improve over time. Such cumulative cultural evolution (CCE) probably depends far more heavily on how reliably information is preserved than on how efficiently it is refined. Therefore, one possible reason that CCE appears diminished or absent in other species is that it requires accurate but specialized forms of social learning at which humans are uniquely adept. Here, we develop a Bayesian model to contrast the evolution of high-fidelity social learning, which supports CCE, against low-fidelity social learning, which does not. We find that high-fidelity transmission evolves when (1) social and (2) individual learning are inexpensive, (3) traits are complex, (4) individual learning is abundant, (5) adaptive problems are difficult and (6) behaviour is flexible. Low-fidelity transmission differs in many respects. It not only evolves when (2) individual learning is costly and (4) infrequent but also proves more robust when (3) traits are simple and (5) adaptive problems are easy. If conditions favouring the evolution of high-fidelity transmission are stricter (3 and 5) or harder to meet (2 and 4), this could explain why social learning is common, but CCE is rare.
Collapse
Affiliation(s)
- Marcel Montrey
- Department of Psychology, McGill University, Montreal, Canada
| | - Thomas R Shultz
- School of Computer Science, McGill University, Montreal, Canada
| |
Collapse
|
124
|
Bandini E, Motes-Rodrigo A, Steele MP, Rutz C, Tennie C. Examining the mechanisms underlying the acquisition of animal tool behaviour. Biol Lett 2020; 16:20200122. [PMID: 32486940 PMCID: PMC7336849 DOI: 10.1098/rsbl.2020.0122] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Despite major advances in the study of animal tool behaviour, researchers continue to debate how exactly certain behaviours are acquired. While specific mechanisms, such as genetic predispositions or action copying, are sometimes suspected to play a major role in behavioural acquisition, controlled experiments are required to provide conclusive evidence. In this opinion piece, we refer to classic ethological methodologies to emphasize the need for studying the relative contributions of different factors to the emergence of specific tool behaviours. We describe a methodology, consisting of a carefully staged series of baseline and social-learning conditions, that enables us to tease apart the roles of different mechanisms in the development of behavioural repertoires. Experiments employing our proposed methodology will not only advance our understanding of animal learning and culture, but as a result, will also help inform hypotheses about human cognitive, cultural and technological evolution. More generally, our conceptual framework is suitable for guiding the detailed investigation of other seemingly complex animal behaviours.
Collapse
Affiliation(s)
- Elisa Bandini
- Department for Early Prehistory and Quaternary Ecology, The University of Tübingen, Tübingen 72070, Germany
| | - Alba Motes-Rodrigo
- Department for Early Prehistory and Quaternary Ecology, The University of Tübingen, Tübingen 72070, Germany
| | - Matthew P Steele
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, UK
| | - Christian Rutz
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, UK
| | - Claudio Tennie
- Department for Early Prehistory and Quaternary Ecology, The University of Tübingen, Tübingen 72070, Germany
| |
Collapse
|
125
|
Richerson PJ, Boyd R. The human life history is adapted to exploit the adaptive advantages of culture. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190498. [PMID: 32475331 PMCID: PMC7293148 DOI: 10.1098/rstb.2019.0498] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Humans evolved from an ape ancestor that was highly intelligent, moderately social and moderately dependent on cultural adaptations for subsistence technology (tools). By the late Pleistocene, humans had become highly dependent on culture for subsistence and for rules to organize a complex social life. Adaptation by cultural traditions transformed our life history, leading to an extended juvenile period to learn subsistence and social skills, post-reproductive survival to help conserve and transmit skills, a dependence on social support for mothers of large-brained, very dependent and nutrient-demanding offspring, males devoting substantial effort to provisioning rather than mating, and the cultivation of large social networks to tap pools in information unavailable to less social species. One measure of the success of the exploitation of culture is that the minimum inter-birth interval of humans is nearly half that of our ape relatives. Another measure is the wide geographical distribution of humans compared with other apes, based on subsistence systems adapted to fine-scale spatial environmental variation. An important macro-evolutionary question is why our big-brained, culture-intensive life-history strategy evolved so recently and in only our lineage. We suggest that increasing spatial and temporal variation in the Pleistocene favoured cultural adaptations. This article is part of the theme issue 'Life history and learning: how childhood, caregiving and old age shape cognition and culture in humans and other animals'.
Collapse
Affiliation(s)
- Peter J Richerson
- Department of Environmental Science and Policy, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Robert Boyd
- School of Human Evolution and Social Change, Arizona State University, Tempe AZ, USA
| |
Collapse
|
126
|
Herczeg G, Hafenscher VP, Balázs G, Fišer Ž, Kralj‐Fišer S, Horváth G. Is foraging innovation lost following colonization of a less variable environment? A case study in surface- vs. cave-dwelling Asellus aquaticus. Ecol Evol 2020; 10:5323-5331. [PMID: 32607155 PMCID: PMC7319158 DOI: 10.1002/ece3.6276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/28/2020] [Accepted: 03/20/2020] [Indexed: 11/05/2022] Open
Abstract
Behavioral innovation is a key process for successful colonization of new habitat types. However, it is costly due to the necessary cognitive and neural demands and typically connected to ecological generalism. Therefore, loss of behavioral innovativeness is predicted following colonization of new, simple, and invariable environments. We tested this prediction by studying foraging innovativeness in the freshwater isopod Asellus aquaticus. We sampled its populations along the route of colonizing a thermokarstic water-filled cave (simple, stable habitat with only bacterial mats as food) from surface habitats (variable environment, wide variety of food). The studied cave population separated from the surface populations at least 60,000 years ago. Animals were tested both with familiar and novel food types (cave food: bacterial mats; surface food: decaying leaves). Irrespective of food type, cave individuals were more likely to feed than surface individuals. Further, animals from all populations fed longer on leaves than on bacteria, even though leaves were novel for the cave animals. Our results support that cave A. aquaticus did not lose the ability to use the ancestral (surface) food type after adapting to a simple, stable, and highly specialized habitat.
Collapse
Affiliation(s)
- Gábor Herczeg
- Behavioural Ecology GroupDepartment of Systematic Zoology and EcologyBiological InstituteEötvös Loránd UniversityBudapestHungary
| | - Viktória P. Hafenscher
- Behavioural Ecology GroupDepartment of Systematic Zoology and EcologyBiological InstituteEötvös Loránd UniversityBudapestHungary
| | - Gergely Balázs
- Behavioural Ecology GroupDepartment of Systematic Zoology and EcologyBiological InstituteEötvös Loránd UniversityBudapestHungary
| | - Žiga Fišer
- Department of BiologyBiotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Simona Kralj‐Fišer
- Institute of BiologyResearch Centre of the Slovenian Academy of Sciences and ArtsLjubljanaSlovenia
| | - Gergely Horváth
- Behavioural Ecology GroupDepartment of Systematic Zoology and EcologyBiological InstituteEötvös Loránd UniversityBudapestHungary
| |
Collapse
|
127
|
Uomini N, Fairlie J, Gray RD, Griesser M. Extended parenting and the evolution of cognition. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190495. [PMID: 32475334 DOI: 10.1098/rstb.2019.0495] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Traditional attempts to understand the evolution of human cognition compare humans with other primates. This research showed that relative brain size covaries with cognitive skills, while adaptations that buffer the developmental and energetic costs of large brains (e.g. allomaternal care), and ecological or social benefits of cognitive abilities, are critical for their evolution. To understand the drivers of cognitive adaptations, it is profitable to consider distant lineages with convergently evolved cognitions. Here, we examine the facilitators of cognitive evolution in corvid birds, where some species display cultural learning, with an emphasis on family life. We propose that extended parenting (protracted parent-offspring association) is pivotal in the evolution of cognition: it combines critical life-history, social and ecological conditions allowing for the development and maintenance of cognitive skillsets that confer fitness benefits to individuals. This novel hypothesis complements the extended childhood idea by considering the parents' role in juvenile development. Using phylogenetic comparative analyses, we show that corvids have larger body sizes, longer development times, extended parenting and larger relative brain sizes than other passerines. Case studies from two corvid species with different ecologies and social systems highlight the critical role of life-history features on juveniles' cognitive development: extended parenting provides a safe haven, access to tolerant role models, reliable learning opportunities and food, resulting in higher survival. The benefits of extended juvenile learning periods, over evolutionary time, lead to selection for expanded cognitive skillsets. Similarly, in our ancestors, cooperative breeding and increased group sizes facilitated learning and teaching. Our analyses highlight the critical role of life-history, ecological and social factors that underlie both extended parenting and expanded cognitive skillsets. This article is part of the theme issue 'Life history and learning: how childhood, caregiving and old age shape cognition and culture in humans and other animals'.
Collapse
Affiliation(s)
- Natalie Uomini
- Department of Linguistic and Cultural Evolution, Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, Jena, Germany
| | | | - Russell D Gray
- Department of Linguistic and Cultural Evolution, Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, Jena, Germany.,School of Psychology, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Michael Griesser
- State Key Laboratory of Biocontrol, Department of Ecology and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China.,Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| |
Collapse
|
128
|
Markov AV, Markov MA. Runaway brain-culture coevolution as a reason for larger brains: Exploring the "cultural drive" hypothesis by computer modeling. Ecol Evol 2020; 10:6059-6077. [PMID: 32607213 PMCID: PMC7319167 DOI: 10.1002/ece3.6350] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/01/2020] [Accepted: 04/20/2020] [Indexed: 12/21/2022] Open
Abstract
Scale and tempo of brain expansion in the course of human evolution implies that this process was driven by a positive feedback. The "cultural drive" hypothesis suggests a possible mechanism for the runaway brain-culture coevolution wherein high-fidelity social learning results in accumulation of cultural traditions which, in turn, promote selection for still more efficient social learning. Here we explore this evolutionary mechanism by means of computer modeling. Simulations confirm its plausibility in a social species in a socio-ecological situation that makes the sporadic invention of new beneficial and cognitively demanding behaviors possible. The chances for the runaway brain-culture coevolution increase when some of the culturally transmitted behaviors are individually beneficial while the others are group-beneficial. In this case, "cultural drive" is possible under varying levels of between-group competition and migration. Modeling implies that brain expansion can receive additional boost if the evolving mechanisms of social learning are costly in terms of brain expansion (e.g., rely on complex neuronal circuits) and tolerant to the complexity of information transferred, that is, make it possible to transfer complex skills and concepts easily. Human language presumably fits this description. Modeling also confirms that the runaway brain-culture coevolution can be accelerated by additional positive feedback loops via population growth and life span extension, and that between-group competition and cultural group selection can facilitate the propagation of group-beneficial behaviors and remove maladaptive cultural traditions from the population's culture, which individual selection is unable to do.
Collapse
Affiliation(s)
- Alexander V. Markov
- Faculty of BiologyMoscow State UniversityMoscowRussia
- Paleontological Institute of the Russian Academy of SciencesMoscowRussia
| | - Mikhail A. Markov
- Faculty of BiologyMoscow State UniversityMoscowRussia
- Paleontological Institute of the Russian Academy of SciencesMoscowRussia
| |
Collapse
|
129
|
Using an Innovation Arena to compare wild-caught and laboratory Goffin's cockatoos. Sci Rep 2020; 10:8681. [PMID: 32457402 PMCID: PMC7250841 DOI: 10.1038/s41598-020-65223-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/24/2020] [Indexed: 11/20/2022] Open
Abstract
The ability to innovate, i.e., to exhibit new or modified learned behaviours, can facilitate adaptation to environmental changes or exploiting novel resources. We hereby introduce a comparative approach for studying innovation rate, the ‘Innovation Arena’ (IA), featuring the simultaneous presentation of 20 interchangeable tasks, which subjects encounter repeatedly. The new design allows for the experimental study of innovation per time unit and for uncovering group-specific problem-solving abilities – an important feature for comparing animals with different predispositions and life histories. We applied the IA for the first time to investigate how long-term captivity affects innovative capacities in the Goffin’s cockatoo, an avian model species for animal innovation. We found that fewer temporarily-captive wild birds are inclined to consistently interact with the apparatus in comparison to laboratory-raised birds. However, those that are interested solve a similar number of tasks at a similar rate, indicating no difference in the cognitive ability to solve technical problems. Our findings thus provide a contrast to previous literature, which suggested enhanced cognitive abilities and technical problem-solving skills in long-term captive animals. We discuss the impact and discrepancy between motivation and cognitive ability on innovation rate. Our findings contribute to the debate on how captivity affects innovation in animals.
Collapse
|
130
|
Lee D, Daunizeau J. Choosing what we like vs liking what we choose: How choice-induced preference change might actually be instrumental to decision-making. PLoS One 2020; 15:e0231081. [PMID: 32421699 PMCID: PMC7233538 DOI: 10.1371/journal.pone.0231081] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 03/17/2020] [Indexed: 11/19/2022] Open
Abstract
For more than 60 years, it has been known that people report higher (lower) subjective values for items after having selected (rejected) them during a choice task. This phenomenon is coined "choice-induced preference change" or CIPC, and its established interpretation is that of "cognitive dissonance" theory. In brief, if people feel uneasy about their choice, they later convince themselves, albeit not always consciously, that the chosen (rejected) item was actually better (worse) than they had originally estimated. While this might make sense from an intuitive psychological standpoint, it is challenging from a theoretical evolutionary perspective. This is because such a cognitive mechanism might yield irrational biases, whose adaptive fitness would be unclear. In this work, we consider an alternative possibility, namely that CIPC is -at least partially- due to the refinement of option value representations that occurs while people are pondering about choice options. For example, contemplating competing possibilities during a choice may highlight aspects of the alternative options that were not considered before. In the context of difficult decisions, this would enable people to reassess option values until they reach a satisfactory level of confidence. This makes CIPC the epiphenomenal outcome of a cognitive process that is instrumental to the decision. Critically, our hypothesis implies novel predictions about how observed CIPC should relate to two specific meta-cognitive processes, namely: choice confidence and subjective certainty regarding pre-choice value judgments. We test these predictions in a behavioral experiment where participants rate the subjective value of food items both before and after choosing between equally valued items; we augment this traditional design with both reports of choice confidence and subjective certainty about value judgments. The results confirm our predictions and provide evidence that many quantitative features of CIPC (in particular: its relationship with metacognitive judgments) may be explained without ever invoking post-choice cognitive dissonance reduction explanation. We then discuss the relevance of our work in the context of the existing debate regarding the putative cognitive mechanisms underlying CIPC.
Collapse
Affiliation(s)
- Douglas Lee
- Sorbonne University, Paris, France
- Institut du Cerveau et de la Moelle épinière, Paris, France
- INSERM UMRS 1127, Paris, France
| | - Jean Daunizeau
- Sorbonne University, Paris, France
- Institut du Cerveau et de la Moelle épinière, Paris, France
- INSERM UMRS 1127, Paris, France
| |
Collapse
|
131
|
Fernandes HB, Peñaherrera-Aguirre M, Woodley of Menie MA, Figueredo AJ. Macroevolutionary patterns and selection modes for general intelligence (G) and for commonly used neuroanatomical volume measures in primates. INTELLIGENCE 2020. [DOI: 10.1016/j.intell.2020.101456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
132
|
Longman DP, Wells JCK, Stock JT. Human athletic paleobiology; using sport as a model to investigate human evolutionary adaptation. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 171 Suppl 70:42-59. [PMID: 31957878 PMCID: PMC7217212 DOI: 10.1002/ajpa.23992] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/29/2019] [Accepted: 12/12/2019] [Indexed: 11/11/2022]
Abstract
The use of sport as a conceptual framework offers unprecedented opportunities to improve our understanding of what the body does, shedding new light on our evolutionary trajectory, our capacity for adaptation, and the underlying biological mechanisms. This approach has gained traction over recent years. To date, sport has facilitated exploration not only of the evolutionary history of our species as a whole, but also of human variation and adaptation at the interindividual and intraindividual levels. At the species level, analysis of lower and upper limb biomechanics and energetics with respect to walking, running and throwing have led to significant advances in the understanding of human adaptations relative to other hominins. From an interindividual perspective, investigation of physical activity patterns and endurance running performance is affording greater understanding of evolved constraints of energy expenditure, thermoregulatory energetics, signaling theory, and morphological variation. Furthermore, ultra-endurance challenges provoke functional trade-offs, allowing new ground to be broken in the study of life history trade-offs and human adaptability. Human athletic paleobiology-the recruitment of athletes as study participants and the use of contemporary sports as a model for studying evolutionary theory-has great potential. Here, we draw from examples in the literature to provide a review of how the use of athletes as a model system is enhancing understanding of human evolutionary adaptation.
Collapse
Affiliation(s)
- Daniel P. Longman
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK
| | | | - Jay T. Stock
- Department of AnthropologyUniversity of Western OntarioLondonOntarioCanada
- Department of ArchaeologyMax Planck Institute for the Science of Human HistoryJenaGermany
- Department of ArchaeologyUniversity of CambridgeCambridgeUK
| |
Collapse
|
133
|
Ducatez S, Lefebvre L, Sayol F, Audet JN, Sol D. Host Cognition and Parasitism in Birds: A Review of the Main Mechanisms. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
134
|
Bandini E, Harrison RA. Innovation in chimpanzees. Biol Rev Camb Philos Soc 2020; 95:1167-1197. [DOI: 10.1111/brv.12604] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Elisa Bandini
- Department for Early Prehistory and Quaternary Ecology The University of Tübingen Tübingen Germany
| | - Rachel A. Harrison
- Department of Ecology and Evolution University of Lausanne Lausanne Switzerland
| |
Collapse
|
135
|
Tamura M. Extractive foraging on hard‐shelled walnuts and variation of feeding techniques in wild Japanese macaques (
Macaca fuscata
). Am J Primatol 2020; 82:e23130. [DOI: 10.1002/ajp.23130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Masaya Tamura
- Laboratory of Human Evolution Studies, Graduate School of ScienceKyoto University Kyoto Japan
| |
Collapse
|
136
|
Martina C, Cowlishaw G, Carter AJ. Exploring individual variation in associative learning abilities through an operant conditioning task in wild baboons. PLoS One 2020; 15:e0230810. [PMID: 32251443 PMCID: PMC7135308 DOI: 10.1371/journal.pone.0230810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/09/2020] [Indexed: 11/18/2022] Open
Abstract
Cognitive abilities underpin many of the behavioural decisions of animals. However, we still have very little understanding of how and why cognitive abilities vary between individuals of the same species in wild populations. In this study, we assessed the associative learning abilities of wild chacma baboons (Papio ursinus) across two troops in Namibia with a simple operant conditioning task. We evaluated the ability of individuals to correctly associate a particular colour of corn kernels with a distasteful flavour through repeated presentations of two small piles of corn dyed different colours, one of which had been treated with a non-toxic bitter substance. We also assessed whether individual variation in learning ability was associated with particular phenotypic traits (sex, social rank and neophilia) and states (age and prior vigilance). We found no evidence of learning the association either within each trial or across trials, nor any variation based on individuals' phenotypes. This appeared to be due to a high tolerance for bitter foods leading to similar acceptance of both palatable and unpalatable kernels. Earlier avoidance of the bitter kernels during pilot trials suggests this higher tolerance may have been largely driven by a drought during the experiments. Overall, our findings highlight the potential influence of current environmental challenges associated with conducting cognitive tests of animals in the wild.
Collapse
Affiliation(s)
- Claudia Martina
- Department of Anthropology, University College London, London, England, United Kingdom
- The Institute of Zoology, Zoological Society of London, London, England, United Kingdom
| | - Guy Cowlishaw
- The Institute of Zoology, Zoological Society of London, London, England, United Kingdom
| | - Alecia J. Carter
- Department of Anthropology, University College London, London, England, United Kingdom
- The Institute of Zoology, Zoological Society of London, London, England, United Kingdom
- ISEM, Université de Montpellier, Montpellier, France
| |
Collapse
|
137
|
Behavioural plasticity is associated with reduced extinction risk in birds. Nat Ecol Evol 2020; 4:788-793. [PMID: 32251379 DOI: 10.1038/s41559-020-1168-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/04/2020] [Indexed: 11/08/2022]
Abstract
Behavioural plasticity is believed to reduce species vulnerability to extinction, yet global evidence supporting this hypothesis is lacking. We address this gap by quantifying the extent to which birds are observed behaving in novel ways to obtain food in the wild; based on a unique dataset of >3,800 novel behaviours, we show that species with a higher propensity to innovate are at a lower risk of global extinction and are more likely to have increasing or stable populations than less innovative birds. These results mainly reflect a higher tolerance of innovative species to habitat destruction, the main threat for birds.
Collapse
|
138
|
von Eugen K, Tabrik S, Güntürkün O, Ströckens F. A comparative analysis of the dopaminergic innervation of the executive caudal nidopallium in pigeon, chicken, zebra finch, and carrion crow. J Comp Neurol 2020; 528:2929-2955. [PMID: 32020608 DOI: 10.1002/cne.24878] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/16/2020] [Accepted: 01/28/2020] [Indexed: 12/17/2022]
Abstract
Despite the long, separate evolutionary history of birds and mammals, both lineages developed a rich behavioral repertoire of remarkably similar executive control generated by distinctly different brains. The seat for executive functioning in birds is the nidopallium caudolaterale (NCL) and the mammalian equivalent is known as the prefrontal cortex (PFC). Both are densely innervated by dopaminergic fibers, and are an integration center of sensory input and motor output. Whereas the variation of the PFC has been well documented in different mammalian orders, we know very little about the NCL across the avian clade. In order to investigate whether this structure adheres to species-specific variations, this study aimed to describe the trajectory of the NCL in pigeon, chicken, carrion crow and zebra finch. We employed immunohistochemistry to map dopaminergic innervation, and executed a Gallyas stain to visualize the dorsal arcopallial tract that runs between the NCL and the arcopallium. Our analysis showed that whereas the trajectory of the NCL in the chicken is highly comparable to the pigeon, the two Passeriformes show a strikingly different pattern. In both carrion crow and zebra finch, we identified four different subareas of high dopaminergic innervation that span the entire caudal forebrain. Based on their sensory input, motor output, and involvement in dopamine-related cognitive control of the delineated areas here, we propose that at least three morphologically different subareas constitute the NCL in these songbirds. Thus, our study shows that comparable to the PFC in mammals, the NCL in birds varies considerably across species.
Collapse
Affiliation(s)
- Kaya von Eugen
- Institute of Cognitive Neuroscience, Biopsychology, Ruhr University Bochum, Bochum, Germany
| | - Sepideh Tabrik
- Neurologische Klinik, Universitätsklinikum Bergmannsheil GmbH, Bochum, Germany
| | - Onur Güntürkün
- Institute of Cognitive Neuroscience, Biopsychology, Ruhr University Bochum, Bochum, Germany
| | - Felix Ströckens
- Institute of Cognitive Neuroscience, Biopsychology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
139
|
Özer I, Carle T. Back to the light, coevolution between vision and olfaction in the "Dark-flies" (Drosophila melanogaster). PLoS One 2020; 15:e0228939. [PMID: 32045466 PMCID: PMC7012446 DOI: 10.1371/journal.pone.0228939] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/27/2020] [Indexed: 11/19/2022] Open
Abstract
Trade-off between vision and olfaction, the fact that investment in one correlates with decreased investment in the other, has been demonstrated by a wealth of comparative studies. However, there is still no empirical evidence suggesting how these two sensory systems coevolve, i.e. simultaneously or alternatively. The "Dark-flies" (Drosophila melanogaster) constitute a unique model to investigate such relation since they have been reared in the dark since 1954, approximately 60 years (~1500 generations). To observe how vision and olfaction evolve, populations of Dark-flies were reared in normal lighting conditions for 1 (DF1G) and 65 (DF65G) generations. We measured the sizes of the visual (optic lobes, OLs) and olfactory (antennal lobes, ALs) primary centres, as well as the rest of the brain, and compared the results with the original and its genetically most similar strain (Oregon flies). We found that, whereas the ALs decreased in size, the OLs (together with the brain) increased in size in the Dark-flies returned back to the light, both in the DF1G and DF65G. These results experimentally show that trade-off between vision and olfaction occurs simultaneously, and suggests that there are possible genetic and epigenetic processes regulating the size of both optic and antennal lobes. Furthermore, although the Dark-flies were able to mate and survive in the dark with a reduced neural investment, individuals being returned to the light seem to have been selected with reinvestment in visual capabilities despite a potential higher energetic cost.
Collapse
Affiliation(s)
- Ismet Özer
- Institute of Neuroscience, Framlington place, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Thomas Carle
- Institute of Neuroscience, Framlington place, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
140
|
Roberts AI, Roberts SGB. Communicative roots of complex sociality and cognition. Biol Rev Camb Philos Soc 2020; 95:51-73. [PMID: 31608566 DOI: 10.1111/brv.12553] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/14/2019] [Accepted: 09/03/2019] [Indexed: 01/24/2023]
Abstract
Mammals living in more complex social groups typically have large brains for their body size and many researchers have proposed that the primary driver of the increase in brain size through primate and hominin evolution was the selection pressures associated with sociality. Many mammals, and especially primates, use flexible signals that show a high degree of voluntary control and these signals may play an important role in forming and maintaining social relationships between group members. However, the specific role that cognitive skills play in this complex communication, and how in turn this relates to sociality, is still unclear. The hypothesis for the communicative roots of complex sociality and cognition posits that cognitive demands behind the communication needed to form and maintain bonded social relationships in complex social settings drives the link between brain size and sociality. We review the evidence in support of this hypothesis and why key features of cognitively complex communication such as intentionality and referentiality should be more effective in forming and maintaining bonded relationships as compared with less cognitively complex communication. Exploring the link between cognition, communication and sociality provides insights into how increasing flexibility in communication can facilitate the emergence of social systems characterised by bonded social relationships, such as those found in non-human primates and humans. To move the field forward and carry out both within- and among-species comparisons, we advocate the use of social network analysis, which provides a novel way to describe and compare social structure. Using this approach can lead to a new, systematic way of examining social and communicative complexity across species, something that is lacking in current comparative studies of social structure.
Collapse
Affiliation(s)
- Anna I Roberts
- Department of Psychology, University of Chester, Chester, CH1 4BJ, UK
| | - Sam G B Roberts
- School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, L3 3AF, UK
| |
Collapse
|
141
|
Abstract
Cognitive abilities can vary dramatically among species. The relative importance of social and ecological challenges in shaping cognitive evolution has been the subject of a long-running and recently renewed debate, but little work has sought to understand the selective dynamics underlying the evolution of cognitive abilities. Here, we investigate recent selection related to cognition in the paper wasp Polistes fuscatus-a wasp that has uniquely evolved visual individual recognition abilities. We generate high quality de novo genome assemblies and population genomic resources for multiple species of paper wasps and use a population genomic framework to interrogate the probable mode and tempo of cognitive evolution. Recent, strong, hard selective sweeps in P. fuscatus contain loci annotated with functions in long-term memory formation, mushroom body development, and visual processing, traits which have recently evolved in association with individual recognition. The homologous pathways are not under selection in closely related wasps that lack individual recognition. Indeed, the prevalence of candidate cognition loci within the strongest selective sweeps suggests that the evolution of cognitive abilities has been among the strongest selection pressures in P. fuscatus' recent evolutionary history. Detailed analyses of selective sweeps containing candidate cognition loci reveal multiple cases of hard selective sweeps within the last few thousand years on de novo mutations, mainly in noncoding regions. These data provide unprecedented insight into some of the processes by which cognition evolves.
Collapse
|
142
|
Marino L, Rose NA, Visser IN, Rally H, Ferdowsian H, Slootsky V. The harmful effects of captivity and chronic stress on the well-being of orcas (Orcinus orca). J Vet Behav 2020. [DOI: 10.1016/j.jveb.2019.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
143
|
Schuppli C, van Noordwijk M, Atmoko SU, van Schaik C. Early sociability fosters later exploratory tendency in wild immature orangutans. SCIENCE ADVANCES 2020; 6:eaaw2685. [PMID: 31934618 PMCID: PMC6949034 DOI: 10.1126/sciadv.aaw2685] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Exploration is essential for skill acquisition and strongly facilitates cognitive performance. In humans, it is widely known that exploration and later cognitive performance are highly dependent on early social inputs. Here, we aim to shed light on the evolutionary roots of this process by studying the effects of variation in opportunities for social learning on the exploratory tendency of immature orangutans (Pongo spp.) in nature. We based our analyses on mixed cross-sectional, longitudinal data of exploration by immatures and their mothers. Current exploration rates were correlated with levels of past experienced sociability, but not with current food abundance or with maternal condition, and only partly with genetic similarity. We conclude that the dependence of cognitive development on socially triggered exploration, which underlies the construction of cognitive skills such as intelligence, existed before the emergence of the human lineage.
Collapse
Affiliation(s)
- Caroline Schuppli
- Department of Anthropology, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
- Leipzig Research Center for Early Child Development, Leipzig University, Jahnallee 59, 04109 Leipzig, Germany
| | - Maria van Noordwijk
- Department of Anthropology, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Suci Utami Atmoko
- Fakultas Biologi, Universitas Nasional, Jl. Sawo Manila, RT.14/RW.3, Ps. Minggu, DKI Jakarta, Indonesia
| | - Carel van Schaik
- Department of Anthropology, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
144
|
Socially tolerant lions (Panthera leo) solve a novel cooperative problem. Anim Cogn 2019; 23:327-336. [DOI: 10.1007/s10071-019-01336-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 11/14/2019] [Accepted: 12/05/2019] [Indexed: 11/25/2022]
|
145
|
Johnson-Ulrich L, Benson-Amram S, Holekamp KE. Fitness Consequences of Innovation in Spotted Hyenas. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00443] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
146
|
Triki Z, Levorato E, McNeely W, Marshall J, Bshary R. Population densities predict forebrain size variation in the cleaner fish Labroides dimidiatus. Proc Biol Sci 2019; 286:20192108. [PMID: 31744435 PMCID: PMC6892052 DOI: 10.1098/rspb.2019.2108] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/28/2019] [Indexed: 12/22/2022] Open
Abstract
The 'social brain hypothesis' proposes a causal link between social complexity and either brain size or the size of key brain parts known to be involved in cognitive processing and decision-making. While previous work has focused on comparisons between species, how social complexity affects plasticity in brain morphology at the intraspecific level remains mostly unexplored. A suitable study model is the mutualist 'cleaner' fish Labroides dimidiatus, a species that removes ectoparasites from a variety of 'client' fishes in iterative social interactions. Here, we report a positive relationship between the local density of cleaners, as a proxy of both intra- and interspecific sociality, and the size of the cleaner's brain parts suggested to be associated with cognitive functions, such as the diencephalon and telencephalon (that together form the forebrain). In contrast, the size of the mesencephalon, rhombencephalon, and brain stem, assumed more basal in function, were independent of local fish densities. Selective enlargement of brain parts, that is mosaic brain adjustment, appears to be driven by population density in cleaner fish.
Collapse
Affiliation(s)
- Zegni Triki
- Institute of Biology, University of Neuchâtel, Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Elena Levorato
- Institute of Biology, University of Neuchâtel, Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - William McNeely
- Institute of Biology, University of Neuchâtel, Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Justin Marshall
- Queensland Brain Institute, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Redouan Bshary
- Institute of Biology, University of Neuchâtel, Emile-Argand 11, 2000 Neuchâtel, Switzerland
| |
Collapse
|
147
|
Abstract
Cumulative technological culture (CTC) refers to the increase in the efficiency and complexity of tools and techniques in human populations over generations. A fascinating question is to understand the cognitive origins of this phenomenon. Because CTC is definitely a social phenomenon, most accounts have suggested a series of cognitive mechanisms oriented toward the social dimension (e.g., teaching, imitation, theory of mind, and metacognition), thereby minimizing the technical dimension and the potential influence of non-social, cognitive skills. What if we have failed to see the elephant in the room? What if social cognitive mechanisms were only catalyzing factors and not the sufficient and necessary conditions for the emergence of CTC? In this article, we offer an alternative, unified cognitive approach to this phenomenon by assuming that CTC originates in non-social cognitive skills, namely technical-reasoning skills which enable humans to develop the technical potential necessary to constantly acquire and improve technical information. This leads us to discuss how theory of mind and metacognition, in concert with technical reasoning, can help boost CTC. The cognitive approach developed here opens up promising new avenues for reinterpreting classical issues (e.g., innovation, emulation vs. imitation, social vs. asocial learning, cooperation, teaching, and overimitation) in a field that has so far been largely dominated by other disciplines, such as evolutionary biology, mathematics, anthropology, archeology, economics, and philosophy.
Collapse
|
148
|
Brain structure differences between solitary and social wasp species are independent of body size allometry. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:911-916. [PMID: 31705196 DOI: 10.1007/s00359-019-01374-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 09/12/2019] [Accepted: 10/23/2019] [Indexed: 01/08/2023]
Abstract
Evolutionary transitions in social behavior are often associated with changes in species' brain architecture. A recent comparative analysis showed that the structure of brains of wasps in the family Vespidae differed between solitary and social species: the mushroom bodies, a major integrative brain region, were larger relative to brain size in the solitary species. However, the earlier study did not account for body size effects, and species' relative mushroom body size increases with body size in social Vespidae. Here we extend the previous analysis by measuring the effects of body size variation on brain structure differences between social and solitary vespid wasps. We asked whether total brain volume was greater relative to body size in the solitary species, and whether relative mushroom body size was greater in solitary species, after accounting for body size effects. Both total brain volume and relative mushroom body volume were significantly greater in the solitary species after accounting for body size differences. Therefore, body size allometry did not explain the solitary versus social species differences in brain structure. The evolutionary transition from solitary to social behavior in Vespidae was accompanied by decreases in total brain size and in relative mushroom body size.
Collapse
|
149
|
Holtmann B, Buskas J, Steele M, Solokovskis K, Wolf JBW. Dominance relationships and coalitionary aggression against conspecifics in female carrion crows. Sci Rep 2019; 9:15922. [PMID: 31685854 PMCID: PMC6828704 DOI: 10.1038/s41598-019-52177-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/07/2019] [Indexed: 11/21/2022] Open
Abstract
Cooperation is a prevailing feature of many animal systems. Coalitionary aggression, where a group of individuals engages in coordinated behaviour to the detriment of conspecific targets, is a form of cooperation involving complex social interactions. To date, evidence has been dominated by studies in humans and other primates with a clear bias towards studies of male-male coalitions. We here characterize coalitionary aggression behaviour in a group of female carrion crows consisting of recruitment, coordinated chase, and attack. The individual of highest social rank liaised with the second most dominant individual to engage in coordinated chase and attack of a lower ranked crow on several occasions. Despite active intervention by the third most highly ranked individual opposing the offenders, the attack finally resulted in the death of the victim. All individuals were unrelated, of the same sex, and naïve to the behaviour excluding kinship, reproduction, and social learning as possible drivers. Instead, the coalition may reflect a strategy of the dominant individual to secure long-term social benefits. Overall, the study provides evidence that members of the crow family engage in coordinated alliances directed against conspecifics as a possible means to manipulate their social environment.
Collapse
Affiliation(s)
- Benedikt Holtmann
- Division of Evolutionary Biology, Department of Biology, LMU Munich, Großhaderner Straße 2, 82152, Planegg-Martinsried, Germany. .,Behavioural Ecology Group, Department of Biology, LMU Munich, Großhaderner Straße 2, 82152, Planegg-Martinsried, Germany.
| | - Julia Buskas
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 14-18, 75236, Uppsala, Sweden
| | - Matthew Steele
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 14-18, 75236, Uppsala, Sweden
| | - Kristaps Solokovskis
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 14-18, 75236, Uppsala, Sweden
| | - Jochen B W Wolf
- Division of Evolutionary Biology, Department of Biology, LMU Munich, Großhaderner Straße 2, 82152, Planegg-Martinsried, Germany.,Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 14-18, 75236, Uppsala, Sweden
| |
Collapse
|
150
|
Abstract
In recent decades, a burgeoning literature has documented the cultural transmission of behavior through social learning in numerous vertebrate and invertebrate species. One meaning of “cultural evolution in animals” refers to these discoveries, and I present an overview of key findings. I then address the other meaning of the term focused on cultural changes within a lineage. Such changes in humans, described as “cumulative cultural evolution,” have been spectacular, but relatively little attention has yet been paid to the topic in nonhuman animals, other than asserting that the process is unique to humans. A variety of evidence including both controlled experiments and field observations has begun to challenge this view, and in some behavioral domains, notably birdsong, cultural evolution has been studied for many years. In this review, I dissect concepts of cultural evolution and cumulative culture and appraise the accumulating evidence bearing on their nature and significance for evolutionary biology at large.
Collapse
Affiliation(s)
- Andrew Whiten
- Centre for Social Learning and Cultural Evolution, School of Psychology and Neuroscience, University of St Andrews, St Andrews KY16 9JP, United Kingdom
| |
Collapse
|