101
|
Benítez-Burraco A, Boeckx C. Possible functional links among brain- and skull-related genes selected in modern humans. Front Psychol 2015; 6:794. [PMID: 26136701 PMCID: PMC4468360 DOI: 10.3389/fpsyg.2015.00794] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/26/2015] [Indexed: 12/12/2022] Open
Abstract
The sequencing of the genomes from extinct hominins has revealed that changes in some brain-related genes have been selected after the split between anatomically-modern humans and Neanderthals/Denisovans. To date, no coherent view of these changes has been provided. Following a line of research we initiated in Boeckx and Benítez-Burraco (2014a), we hypothesize functional links among most of these genes and their products, based on the existing literature for each of the gene discussed. The genes we focus on are found mutated in different cognitive disorders affecting modern populations and their products are involved in skull and brain morphology, and neural connectivity. If our hypothesis turns out to be on the right track, it means that the changes affecting most of these proteins resulted in a more globular brain and ultimately brought about modern cognition, with its characteristic generativity and capacity to form and exploit cross-modular concepts, properties most clearly manifested in language.
Collapse
Affiliation(s)
| | - Cedric Boeckx
- Catalan Institute for Research and Advanced Studies , Barcelona, Spain ; Department of Linguistics, Universitat de Barcelona , Barcelona, Spain
| |
Collapse
|
102
|
Cipriani S, Nardelli J, Verney C, Delezoide AL, Guimiot F, Gressens P, Adle-Biassette H. Dynamic Expression Patterns of Progenitor and Pyramidal Neuron Layer Markers in the Developing Human Hippocampus. Cereb Cortex 2015; 26:1255-71. [DOI: 10.1093/cercor/bhv079] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
103
|
Shibata M, Gulden FO, Sestan N. From trans to cis: transcriptional regulatory networks in neocortical development. Trends Genet 2015; 31:77-87. [PMID: 25624274 DOI: 10.1016/j.tig.2014.12.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/19/2014] [Accepted: 12/19/2014] [Indexed: 01/25/2023]
Abstract
Transcriptional mechanisms mediated by the binding of transcription factors (TFs) to cis-acting regulatory elements (CREs) in DNA play crucial roles in directing gene expression. While TFs have been extensively studied, less effort has gone towards the identification and functional characterization of CREs and associated epigenetic modulation. However, owing to methodological and analytical advances, more comprehensive studies of regulatory elements and mechanisms are now possible. We summarize recent progress in integrative analyses of these regulatory components in the development of the cerebral neocortex, the part of the brain involved in cognition and complex behavior. These studies are uncovering not only the underlying transcriptional regulatory networks, but also how these networks are altered across species and in neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Mikihito Shibata
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Forrest O Gulden
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Nenad Sestan
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Department of Psychiatry and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
104
|
Hayano Y, Zhao H, Kobayashi H, Takeuchi K, Norioka S, Yamamoto N. The role of T-cadherin in axonal pathway formation in neocortical circuits. Development 2014; 141:4784-93. [DOI: 10.1242/dev.108290] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cortical efferent and afferent fibers are arranged in a stereotyped pattern in the intermediate zone (IZ). Here, we studied the mechanism of axonal pathway formation by identifying a molecule that is expressed in a subset of cortical axons in the rat. We found that T-cadherin (T-cad), a member of the cadherin family, is expressed in deep-layer cell axons projecting to subcortical structures, but not in upper layer callosal axons projecting to the contralateral cortex. Ectopic expression of T-cad in upper layer cells induced axons to project toward subcortical structures via the upper part of the IZ. Moreover, the axons of deep-layer cells in which T-cad expression was suppressed by RNAi projected towards the contralateral cortex via an aberrant route. These results suggest that T-cad is involved in axonal pathway formation in the developing cortex.
Collapse
Affiliation(s)
- Yuki Hayano
- Neuroscience Laboratories, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hong Zhao
- Neuroscience Laboratories, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroaki Kobayashi
- Neuroscience Laboratories, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kosei Takeuchi
- Department of Biology, Aichi Medical University, Karimata-Yazako, Nagakute, Aichi 480-1195, Japan
| | - Shigemi Norioka
- Laboratories of Biomolecular Networks, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Nobuhiko Yamamoto
- Neuroscience Laboratories, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
105
|
The timing of upper-layer neurogenesis is conferred by sequential derepression and negative feedback from deep-layer neurons. J Neurosci 2014; 34:13259-76. [PMID: 25253869 DOI: 10.1523/jneurosci.2334-14.2014] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The prevailing view of upper-layer (UL) neurogenesis in the cerebral cortex is that progenitor cells undergo successive rounds of asymmetric cell division that restrict the competence and production of UL neurons later in development. However, the recent discovery of UL fate-committed early progenitors raises an alternative perspective concerning their ontogeny. To investigate the emergence of UL progenitors, we manipulated the timing and extent of cortical neurogenesis in vivo in mice. We demonstrated that UL competence is tightly linked to deep-layer (DL) neurogenesis and that this sequence is determined primarily through derepression of Fezf2 by Foxg1 within a closed transcriptional cascade. We further demonstrated that the sequential acquisition of UL competence requires negative feedback, which is propagated from postmitotic DL neurons. Thus, neocortical progenitors integrate intrinsic and extrinsic cues to generate UL neurons through a system that controls the sequence of DL and UL neurogenesis and to scale the production of intracortical projection neurons based on the availability of their subcortical projection neuron counterparts during cortical development and evolution.
Collapse
|
106
|
Okamura-Oho Y, Shimokawa K, Nishimura M, Takemoto S, Sato A, Furuichi T, Yokota H. Broad integration of expression maps and co-expression networks compassing novel gene functions in the brain. Sci Rep 2014; 4:6969. [PMID: 25382412 PMCID: PMC4225549 DOI: 10.1038/srep06969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 10/07/2014] [Indexed: 12/12/2022] Open
Abstract
Using a recently invented technique for gene expression mapping in the whole-anatomy context, termed transcriptome tomography, we have generated a dataset of 36,000 maps of overall gene expression in the adult-mouse brain. Here, using an informatics approach, we identified a broad co-expression network that follows an inverse power law and is rich in functional interaction and gene-ontology terms. Our framework for the integrated analysis of expression maps and graphs of co-expression networks revealed that groups of combinatorially expressed genes, which regulate cell differentiation during development, were present in the adult brain and each of these groups was associated with a discrete cell types. These groups included non-coding genes of unknown function. We found that these genes specifically linked developmentally conserved groups in the network. A previously unrecognized robust expression pattern covering the whole brain was related to the molecular anatomy of key biological processes occurring in particular areas.
Collapse
Affiliation(s)
- Yuko Okamura-Oho
- Brain Research Network (BReNt), 2-2-41 Sakurayama, Zushi-shi, Kanagawa, 249-0005, Japan
- Image Processing Research Team, Extreme Photonics Research Group, RIKEN Center for Advanced Photonics, 2-1 Hirosawa Wako-shi Saitama, 351-0198, Japan
| | - Kazuro Shimokawa
- Department of Health Record Informatics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-chou Aoba-ku Sendai-shi Miyagi, 980-8573, Japan
| | - Masaomi Nishimura
- Image Processing Research Team, Extreme Photonics Research Group, RIKEN Center for Advanced Photonics, 2-1 Hirosawa Wako-shi Saitama, 351-0198, Japan
| | - Satoko Takemoto
- Image Processing Research Team, Extreme Photonics Research Group, RIKEN Center for Advanced Photonics, 2-1 Hirosawa Wako-shi Saitama, 351-0198, Japan
| | - Akira Sato
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, 278-8510, Japan
| | - Teiichi Furuichi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, 278-8510, Japan
| | - Hideo Yokota
- Image Processing Research Team, Extreme Photonics Research Group, RIKEN Center for Advanced Photonics, 2-1 Hirosawa Wako-shi Saitama, 351-0198, Japan
| |
Collapse
|
107
|
Morimoto-Suzki N, Hirabayashi Y, Tyssowski K, Shinga J, Vidal M, Koseki H, Gotoh Y. The polycomb component Ring1B regulates the timed termination of subcerebral projection neuron production during mouse neocortical development. Development 2014; 141:4343-53. [PMID: 25344075 DOI: 10.1242/dev.112276] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the developing neocortex, neural precursor cells (NPCs) sequentially generate various neuronal subtypes in a defined order. Although the precise timing of the NPC fate switches is essential for determining the number of neurons of each subtype and for precisely generating the cortical layer structure, the molecular mechanisms underlying these switches are largely unknown. Here, we show that epigenetic regulation through Ring1B, an essential component of polycomb group (PcG) complex proteins, plays a key role in terminating NPC-mediated production of subcerebral projection neurons (SCPNs). The level of histone H3 residue K27 trimethylation at and Ring1B binding to the promoter of Fezf2, a fate determinant of SCPNs, increased in NPCs as Fezf2 expression decreased. Moreover, deletion of Ring1B in NPCs, but not in postmitotic neurons, prolonged the expression of Fezf2 and the generation of SCPNs that were positive for CTIP2. These results indicate that Ring1B mediates the timed termination of Fezf2 expression and thereby regulates the number of SCPNs.
Collapse
Affiliation(s)
- Nao Morimoto-Suzki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Yusuke Hirabayashi
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Kelsey Tyssowski
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Jun Shinga
- RIKEN Center for Allergy and Immunology, Kanagawa, Japan
| | - Miguel Vidal
- RIKEN Center for Allergy and Immunology, Kanagawa, Japan Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | - Yukiko Gotoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
108
|
De novo TBR1 mutations in sporadic autism disrupt protein functions. Nat Commun 2014; 5:4954. [PMID: 25232744 DOI: 10.1038/ncomms5954] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 08/11/2014] [Indexed: 12/25/2022] Open
Abstract
Next-generation sequencing recently revealed that recurrent disruptive mutations in a few genes may account for 1% of sporadic autism cases. Coupling these novel genetic data to empirical assays of protein function can illuminate crucial molecular networks. Here we demonstrate the power of the approach, performing the first functional analyses of TBR1 variants identified in sporadic autism. De novo truncating and missense mutations disrupt multiple aspects of TBR1 function, including subcellular localization, interactions with co-regulators and transcriptional repression. Missense mutations inherited from unaffected parents did not disturb function in our assays. We show that TBR1 homodimerizes, that it interacts with FOXP2, a transcription factor implicated in speech/language disorders, and that this interaction is disrupted by pathogenic mutations affecting either protein. These findings support the hypothesis that de novo mutations in sporadic autism have severe functional consequences. Moreover, they uncover neurogenetic mechanisms that bridge different neurodevelopmental disorders involving language deficits.
Collapse
|
109
|
Chuang HC, Huang TN, Hsueh YP. Neuronal excitation upregulates Tbr1, a high-confidence risk gene of autism, mediating Grin2b expression in the adult brain. Front Cell Neurosci 2014; 8:280. [PMID: 25309323 PMCID: PMC4159980 DOI: 10.3389/fncel.2014.00280] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/24/2014] [Indexed: 12/18/2022] Open
Abstract
The activity-regulated gene expression of transcription factors is required for neural plasticity and function in response to neuronal stimulation. T-brain-1 (TBR1), a critical neuron-specific transcription factor for forebrain development, has been recognized as a high-confidence risk gene for autism spectrum disorders. Here, we show that in addition to its role in brain development, Tbr1 responds to neuronal activation and further modulates the Grin2b expression in adult brains and mature neurons. The expression levels of Tbr1 were investigated using both immunostaining and quantitative reverse transcription polymerase chain reaction (RT-PCR) analyses. We found that the mRNA and protein expression levels of Tbr1 are induced by excitatory synaptic transmission driven by bicuculline or glutamate treatment in cultured mature neurons. The upregulation of Tbr1 expression requires the activation of both α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptors. Furthermore, behavioral training triggers Tbr1 induction in the adult mouse brain. The elevation of Tbr1 expression is associated with Grin2b upregulation in both mature neurons and adult brains. Using Tbr1-deficient neurons, we further demonstrated that TBR1 is required for the induction of Grin2b upon neuronal activation. Taken together with the previous studies showing that TBR1 binds the Grin2b promoter and controls expression of luciferase reporter driven by Grin2b promoter, the evidence suggests that TBR1 directly controls Grin2b expression in mature neurons. We also found that the addition of the calcium/calmodulin-dependent protein kinase II (CaMKII) antagonist KN-93, but not the calcium-dependent phosphatase calcineurin antagonist cyclosporin A, to cultured mature neurons noticeably inhibited Tbr1 induction, indicating that neuronal activation upregulates Tbr1 expression in a CaMKII-dependent manner. In conclusion, our study suggests that Tbr1 plays an important role in adult mouse brains in response to neuronal activation to modulate the activity-regulated gene transcription required for neural plasticity.
Collapse
Affiliation(s)
- Hsiu-Chun Chuang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei Taiwan ; Institute of Molecular Biology, Academia Sinica, Taipei Taiwan
| | - Tzyy-Nan Huang
- Institute of Molecular Biology, Academia Sinica, Taipei Taiwan
| | - Yi-Ping Hsueh
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei Taiwan ; Institute of Molecular Biology, Academia Sinica, Taipei Taiwan
| |
Collapse
|
110
|
Fujimori A, Itoh K, Goto S, Hirakawa H, Wang B, Kokubo T, Kito S, Tsukamoto S, Fushiki S. Disruption of Aspm causes microcephaly with abnormal neuronal differentiation. Brain Dev 2014; 36:661-9. [PMID: 24220505 DOI: 10.1016/j.braindev.2013.10.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 10/11/2013] [Accepted: 10/13/2013] [Indexed: 10/26/2022]
Abstract
AIMS A number of ASPM mutations have been detected in primary microcephaly patients. In order to evaluate the function of ASPM in brain development, we generated model animals of human autosomal recessive primary microcephaly-5 (MCPH5). METHODS In the Aspm knock-out mice, the exon 2-3 of the Aspm gene was encompassed by a pair of loxP signals so that cre-recombinase activity switched the allele from wild-type to null zygotes as frequently, as expected from the Mendelian inheritance. We precisely analyzed the brains of adults and fetuses using immunohistochemistry and morphometry. RESULTS The adult brains of the Aspm(-/-) mice were smaller, especially in the cerebrum. In the barrel field of the somatosensory cortex, layer I was significantly thicker, whereas layer VI was significantly thinner in Aspm(-/-) mice, compared with Aspm(+/+) mice. The total number of cells and the thickness of the cortical plate at embryonic day 16.5 was significantly decreased in Aspm(-/-) mice, compared with Aspm(+/+) mice. Furthermore, the expression of transcription factors, such as Tbr1 and Satb2, was significantly increased in the subplate of the Aspm(-/-) mice. CONCLUSIONS The results suggested that Aspm is essential to the proliferation and differentiation of neural stem/progenitor cells. The Aspm gene loss model provided a novel pathogenetic insight into acquired microcephaly, which can be caused by in utero exposure to both known and unknown teratogens.
Collapse
Affiliation(s)
- Akira Fujimori
- Heavy-Ion Radiobiology Research Group, Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | - Kyoko Itoh
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Shoko Goto
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hirokazu Hirakawa
- Heavy-Ion Radiobiology Research Group, Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | - Bing Wang
- Heavy-Ion Radiobiology Research Group, Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | - Toshiaki Kokubo
- Heavy-Ion Radiobiology Research Group, Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | - Seiji Kito
- Heavy-Ion Radiobiology Research Group, Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | - Satoshi Tsukamoto
- Heavy-Ion Radiobiology Research Group, Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | - Shinji Fushiki
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
111
|
Tuoc TC, Pavlakis E, Tylkowski MA, Stoykova A. Control of cerebral size and thickness. Cell Mol Life Sci 2014; 71:3199-218. [PMID: 24614969 PMCID: PMC11113230 DOI: 10.1007/s00018-014-1590-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/10/2014] [Accepted: 02/13/2014] [Indexed: 11/24/2022]
Abstract
The mammalian neocortex is a sheet of cells covering the cerebrum that provides the structural basis for the perception of sensory inputs, motor output responses, cognitive function, and mental capacity of primates. Recent discoveries promote the concept that increased cortical surface size and thickness in phylogenetically advanced species is a result of an increased generation of neurons, a process that underlies higher cognitive and intellectual performance in higher primates and humans. Here, we review some of the advances in the field, focusing on the diversity of neocortical progenitors in different species and the cellular mechanisms of neurogenesis. We discuss recent views on intrinsic and extrinsic molecular determinants, including the role of epigenetic chromatin modifiers and microRNA, in the control of neuronal output in developing cortex and in the establishment of normal cortical architecture.
Collapse
Affiliation(s)
- Tran Cong Tuoc
- Institute of Neuroanatomy, Universitätsmedizin Göttingen, Kreuzbergring 40, 37075, Göttingen, Germany,
| | | | | | | |
Collapse
|
112
|
Lodato S, Molyneaux BJ, Zuccaro E, Goff LA, Chen HH, Yuan W, Meleski A, Takahashi E, Mahony S, Rinn JL, Gifford DK, Arlotta P. Gene co-regulation by Fezf2 selects neurotransmitter identity and connectivity of corticospinal neurons. Nat Neurosci 2014; 17:1046-54. [PMID: 24997765 PMCID: PMC4188416 DOI: 10.1038/nn.3757] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 06/09/2014] [Indexed: 12/14/2022]
Abstract
The neocortex contains an unparalleled diversity of neuronal subtypes, each defined by distinct traits that are developmentally acquired under the control of subtype-specific and pan-neuronal genes. The regulatory logic that orchestrates the expression of these unique combinations of genes is unknown for any class of cortical neuron. Here, we report that Fezf2 is a selector gene able to regulate the expression of gene sets that collectively define mouse corticospinal motor neurons (CSMN). We find that Fezf2 directly induces the glutamatergic identity of CSMN via activation of Vglut1 (Slc17a7) and inhibits a GABAergic fate by repressing transcription of Gad1. In addition, we identify the axon guidance receptor EphB1 as a target of Fezf2 necessary to execute the ipsilateral extension of the corticospinal tract. Our data indicate that co-regulated expression of neuron subtype-specific and pan-neuronal gene batteries by a single transcription factor is one component of the regulatory logic responsible for the establishment of CSMN identity.
Collapse
Affiliation(s)
- Simona Lodato
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Bradley J Molyneaux
- 1] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA. [2] Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Emanuela Zuccaro
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Loyal A Goff
- 1] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA. [2] Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA. [3] Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Hsu-Hsin Chen
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Wen Yuan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Alyssa Meleski
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Emi Takahashi
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shaun Mahony
- 1] Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. [2] Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - John L Rinn
- 1] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA. [2] Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA. [3] Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - David K Gifford
- 1] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA. [2] Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Paola Arlotta
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
113
|
Leone DP, Heavner WE, Ferenczi EA, Dobreva G, Huguenard JR, Grosschedl R, McConnell SK. Satb2 Regulates the Differentiation of Both Callosal and Subcerebral Projection Neurons in the Developing Cerebral Cortex. Cereb Cortex 2014; 25:3406-19. [PMID: 25037921 DOI: 10.1093/cercor/bhu156] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The chromatin-remodeling protein Satb2 plays a role in the generation of distinct subtypes of neocortical pyramidal neurons. Previous studies have shown that Satb2 is required for normal development of callosal projection neurons (CPNs), which fail to extend axons callosally in the absence of Satb2 and instead project subcortically. Here we conditionally delete Satb2 from the developing neocortex and find that neurons in the upper layers adopt some electrophysiological properties characteristic of deep layer neurons, but projections from the superficial layers do not contribute to the aberrant subcortical projections seen in Satb2 mutants. Instead, axons from deep layer CPNs descend subcortically in the absence of Satb2. These data demonstrate distinct developmental roles of Satb2 in regulating the fates of upper and deep layer neurons. Unexpectedly, Satb2 mutant brains also display changes in gene expression by subcerebral projection neurons (SCPNs), accompanied by a failure of corticospinal tract (CST) formation. Altering the timing of Satb2 ablation reveals that SCPNs require an early expression of Satb2 for differentiation and extension of the CST, suggesting that early transient expression of Satb2 in these cells plays an essential role in development. Collectively these data show that Satb2 is required by both CPNs and SCPNs for proper differentiation and axon pathfinding.
Collapse
Affiliation(s)
- Dino P Leone
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Emily A Ferenczi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gergana Dobreva
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - John R Huguenard
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rudolf Grosschedl
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | | |
Collapse
|
114
|
Kumamoto T, Hanashima C. Neuronal subtype specification in establishing mammalian neocortical circuits. Neurosci Res 2014; 86:37-49. [PMID: 25019611 DOI: 10.1016/j.neures.2014.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/21/2014] [Accepted: 06/23/2014] [Indexed: 11/28/2022]
Abstract
The functional integrity of the neocortical circuit relies on the precise production of diverse neuron populations and their assembly during development. In recent years, extensive progress has been made in the understanding of the mechanisms that control differentiation of each neuronal type within the neocortex. In this review, we address how the elaborate neocortical cytoarchitecture is established from a simple neuroepithelium based on recent studies examining the spatiotemporal mechanisms of neuronal subtype specification. We further discuss the critical events that underlie the conversion of the stem amniotes cerebrum to a mammalian-type neocortex, and extend these key findings in the light of mammalian evolution to understand how the neocortex in humans evolved from common ancestral mammals.
Collapse
Affiliation(s)
- Takuma Kumamoto
- Laboratory for Neocortical Development, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Carina Hanashima
- Laboratory for Neocortical Development, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan.
| |
Collapse
|
115
|
Eckler MJ, Chen B. Fez family transcription factors: controlling neurogenesis and cell fate in the developing mammalian nervous system. Bioessays 2014; 36:788-97. [PMID: 24913420 DOI: 10.1002/bies.201400039] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fezf1 and Fezf2 are highly conserved transcription factors that were first identified by their specific expression in the anterior neuroepithelium of Xenopus and zebrafish embryos. These proteins share an N-terminal domain with homology to the canonical engrailed repressor motif and a C-terminal DNA binding domain containing six C2H2 zinc-finger repeats. Over a decade of study indicates that the Fez proteins play critical roles during nervous system development in species as diverse as fruit flies and mice. Herein we discuss recent progress in understanding the functions of Fezf1 and Fezf2 in neurogenesis and cell fate specification during mammalian nervous system development. Going forward we believe that efforts should focus on understanding how expression of these factors is precisely regulated, and on identifying target DNA sequences and interacting partners. Such knowledge may reveal the mechanisms by which Fezf1 and Fezf2 accomplish both independent and redundant functions across diverse tissue and cell types.
Collapse
Affiliation(s)
- Matthew J Eckler
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA, USA
| | | |
Collapse
|
116
|
Kim DS, Ross PJ, Zaslavsky K, Ellis J. Optimizing neuronal differentiation from induced pluripotent stem cells to model ASD. Front Cell Neurosci 2014; 8:109. [PMID: 24782713 PMCID: PMC3990101 DOI: 10.3389/fncel.2014.00109] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 03/25/2014] [Indexed: 01/01/2023] Open
Abstract
Autism spectrum disorder (ASD) is an early-onset neurodevelopmental disorder characterized by deficits in social communication, and restricted and repetitive patterns of behavior. Despite its high prevalence, discovery of pathophysiological mechanisms underlying ASD has lagged due to a lack of appropriate model systems. Recent advances in induced pluripotent stem cell (iPSC) technology and neural differentiation techniques allow for detailed functional analyses of neurons generated from living individuals with ASD. Refinement of cortical neuron differentiation methods from iPSCs will enable mechanistic studies of specific neuronal subpopulations that may be preferentially impaired in ASD. In this review, we summarize recent accomplishments in differentiation of cortical neurons from human pluripotent stems cells and efforts to establish in vitro model systems to study ASD using personalized neurons.
Collapse
Affiliation(s)
- Dae-Sung Kim
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children Toronto, ON, Canada
| | - P Joel Ross
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children Toronto, ON, Canada
| | - Kirill Zaslavsky
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children Toronto, ON, Canada ; Department of Molecular Genetics, University of Toronto Toronto, ON, Canada
| | - James Ellis
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children Toronto, ON, Canada ; Department of Molecular Genetics, University of Toronto Toronto, ON, Canada
| |
Collapse
|
117
|
Eckler MJ, Larkin KA, McKenna WL, Katzman S, Guo C, Roque R, Visel A, Rubenstein JLR, Chen B. Multiple conserved regulatory domains promote Fezf2 expression in the developing cerebral cortex. Neural Dev 2014; 9:6. [PMID: 24618363 PMCID: PMC4008173 DOI: 10.1186/1749-8104-9-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/19/2014] [Indexed: 12/17/2022] Open
Abstract
Background The genetic programs required for development of the cerebral cortex are under intense investigation. However, non-coding DNA elements that control the expression of developmentally important genes remain poorly defined. Here we investigate the regulation of Fezf2, a transcription factor that is necessary for the generation of deep-layer cortical projection neurons. Results Using a combination of chromatin immunoprecipitation followed by high throughput sequencing (ChIP-seq) we mapped the binding of four deep-layer-enriched transcription factors previously shown to be important for cortical development. Building upon this we characterized the activity of three regulatory regions around the Fezf2 locus at multiple stages throughout corticogenesis. We identified a promoter that was sufficient for expression in the cerebral cortex, and enhancers that drove reporter gene expression in distinct forebrain domains, including progenitor cells and cortical projection neurons. Conclusions These results provide insight into the regulatory logic controlling Fezf2 expression and further the understanding of how multiple non-coding regulatory domains can collaborate to control gene expression in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Bin Chen
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA, USA.
| |
Collapse
|
118
|
Fertuzinhos S, Li M, Kawasawa YI, Ivic V, Franjic D, Singh D, Crair M, Sestan N. Laminar and temporal expression dynamics of coding and noncoding RNAs in the mouse neocortex. Cell Rep 2014; 6:938-50. [PMID: 24561256 DOI: 10.1016/j.celrep.2014.01.036] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 10/10/2013] [Accepted: 01/27/2014] [Indexed: 12/30/2022] Open
Abstract
The hallmark of the cerebral neocortex is its organization into six layers, each containing a characteristic set of cell types and synaptic connections. The transcriptional events involved in laminar development and function still remain elusive. Here, we employed deep sequencing of mRNA and small RNA species to gain insights into transcriptional differences among layers and their temporal dynamics during postnatal development of the mouse primary somatosensory neocortex. We identify a number of coding and noncoding transcripts with specific spatiotemporal expression and splicing patterns. We also identify signature trajectories and gene coexpression networks associated with distinct biological processes and transcriptional overlap between these processes. Finally, we provide data that allow the study of potential miRNA and mRNA interactions. Overall, this study provides an integrated view of the laminar and temporal expression dynamics of coding and noncoding transcripts in the mouse neocortex and a resource for studies of neurodevelopment and transcriptome.
Collapse
Affiliation(s)
- Sofia Fertuzinhos
- Department of Neurobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Mingfeng Li
- Department of Neurobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yuka Imamura Kawasawa
- Department of Neurobiology, Yale School of Medicine, New Haven, CT 06510, USA; Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Vedrana Ivic
- Department of Neurobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Daniel Franjic
- Department of Neurobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Darshani Singh
- Department of Neurobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Michael Crair
- Department of Neurobiology, Yale School of Medicine, New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Nenad Sestan
- Department of Neurobiology, Yale School of Medicine, New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
119
|
Marín O, Müller U. Lineage origins of GABAergic versus glutamatergic neurons in the neocortex. Curr Opin Neurobiol 2014; 26:132-41. [PMID: 24549207 DOI: 10.1016/j.conb.2014.01.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/17/2014] [Accepted: 01/22/2014] [Indexed: 01/11/2023]
Abstract
Neocortical circuits are assembled from subtypes of glutamatergic excitatory and GABAergic inhibitory neurons with divergent anatomical and molecular signatures and unique physiological properties. Excitatory neurons derive from progenitors in the pallium, whereas inhibitory neurons originate from progenitors in the subpallium. Both classes of neurons subsequently migrate along well-defined routes to their final target area, where they integrate into common neuronal circuits. Recent findings show that neuronal diversity within the lineages of excitatory and inhibitory neurons is in part already established at the level of progenitor cells before migration. This poses challenges for our understanding of how radial units of interconnected excitatory and inhibitory neurons are assembled from progenitors that are spatially segregated and diverse in nature.
Collapse
Affiliation(s)
- Oscar Marín
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Spain.
| | - Ulrich Müller
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
120
|
Guo C, Eckler MJ, McKenna WL, McKinsey GL, Rubenstein JLR, Chen B. Fezf2 expression identifies a multipotent progenitor for neocortical projection neurons, astrocytes, and oligodendrocytes. Neuron 2014; 80:1167-74. [PMID: 24314728 DOI: 10.1016/j.neuron.2013.09.037] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2013] [Indexed: 10/25/2022]
Abstract
Progenitor cells in the cerebral cortex sequentially generate distinct classes of projection neurons. Recent work suggests the cortex may contain intrinsically fate-restricted progenitors marked by expression of Cux2. However, the heterogeneity of the neocortical ventricular zone as well as the contribution of lineage-restricted progenitors to the overall cortical neurogenic program remains unclear. Here, we utilize in vivo genetic fate mapping to demonstrate that Fezf2-expressing radial glial cells (RGCs) exist throughout cortical development and sequentially generate all major projection neuron subtypes and glia. Moreover, we show that the vast majority of CUX2⁺ cells in the VZ and SVZ are migrating interneurons derived from the subcortical telencephalon. Examination of the embryonic cortical progenitor population demonstrates that Cux2⁺ RGCs generate both deep- and upper-layer projection neurons. These results identify Fezf2⁺ radial glial cells as a multipotent neocortical progenitor and suggest that the existence, and molecular identity, of laminar-fate-restricted RGCs awaits further investigation.
Collapse
Affiliation(s)
- Chao Guo
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | | | | | | | | | | |
Collapse
|
121
|
Willsey AJ, Sanders SJ, Li M, Dong S, Tebbenkamp AT, Muhle RA, Reilly SK, Lin L, Fertuzinhos S, Miller JA, Murtha MT, Bichsel C, Niu W, Cotney J, Ercan-Sencicek AG, Gockley J, Gupta AR, Han W, He X, Hoffman EJ, Klei L, Lei J, Liu W, Liu L, Lu C, Xu X, Zhu Y, Mane SM, Lein ES, Wei L, Noonan JP, Roeder K, Devlin B, Sestan N, State MW. Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism. Cell 2014; 155:997-1007. [PMID: 24267886 DOI: 10.1016/j.cell.2013.10.020] [Citation(s) in RCA: 652] [Impact Index Per Article: 65.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 08/02/2013] [Accepted: 10/07/2013] [Indexed: 01/08/2023]
Abstract
Autism spectrum disorder (ASD) is a complex developmental syndrome of unknown etiology. Recent studies employing exome- and genome-wide sequencing have identified nine high-confidence ASD (hcASD) genes. Working from the hypothesis that ASD-associated mutations in these biologically pleiotropic genes will disrupt intersecting developmental processes to contribute to a common phenotype, we have attempted to identify time periods, brain regions, and cell types in which these genes converge. We have constructed coexpression networks based on the hcASD "seed" genes, leveraging a rich expression data set encompassing multiple human brain regions across human development and into adulthood. By assessing enrichment of an independent set of probable ASD (pASD) genes, derived from the same sequencing studies, we demonstrate a key point of convergence in midfetal layer 5/6 cortical projection neurons. This approach informs when, where, and in what cell types mutations in these specific genes may be productively studied to clarify ASD pathophysiology.
Collapse
Affiliation(s)
- A Jeremy Willsey
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Roberts JM, Ennajdaoui H, Edmondson C, Wirth B, Sanford J, Chen B. Splicing factor TRA2B is required for neural progenitor survival. J Comp Neurol 2014; 522:372-92. [PMID: 23818142 PMCID: PMC3855887 DOI: 10.1002/cne.23405] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/20/2013] [Accepted: 06/21/2013] [Indexed: 01/08/2023]
Abstract
Alternative splicing of pre-mRNAs can rapidly regulate the expression of large groups of proteins. The RNA binding protein TRA2B (SFRS10) plays well-established roles in developmentally regulated alternative splicing during Drosophila sexual differentiation. TRA2B is also essential for mammalian embryogenesis and is implicated in numerous human diseases. Precise regulation of alternative splicing is critical to the development and function of the central nervous system; however, the requirements for specific splicing factors in neurogenesis are poorly understood. This study focuses on the role of TRA2B in mammalian brain development. We show that, during murine cortical neurogenesis, TRA2B is expressed in both neural progenitors and cortical projection neurons. Using cortex-specific Tra2b mutant mice, we show that TRA2B depletion results in apoptosis of the neural progenitor cells as well as disorganization of the cortical plate. Thus, TRA2B is essential for proper development of the cerebral cortex.
Collapse
Affiliation(s)
- Jacqueline M Roberts
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Hanane Ennajdaoui
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Carina Edmondson
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Brunhilde Wirth
- Institute of Human Genetics, Institute for Genetics and Center for Molecular Medicine Cologne, University of Cologne, Cologne 50931, Germany
| | - Jeremy Sanford
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Bin Chen
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
123
|
Greig LC, Woodworth MB, Galazo MJ, Padmanabhan H, Macklis JD. Molecular logic of neocortical projection neuron specification, development and diversity. Nat Rev Neurosci 2013; 14:755-69. [PMID: 24105342 DOI: 10.1038/nrn3586] [Citation(s) in RCA: 594] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The sophisticated circuitry of the neocortex is assembled from a diverse repertoire of neuronal subtypes generated during development under precise molecular regulation. In recent years, several key controls over the specification and differentiation of neocortical projection neurons have been identified. This work provides substantial insight into the 'molecular logic' underlying cortical development and increasingly supports a model in which individual progenitor-stage and postmitotic regulators are embedded within highly interconnected networks that gate sequential developmental decisions. Here, we provide an integrative account of the molecular controls that direct the progressive development and delineation of subtype and area identity of neocortical projection neurons.
Collapse
|
124
|
Leyva-Díaz E, López-Bendito G. In and out from the cortex: development of major forebrain connections. Neuroscience 2013; 254:26-44. [PMID: 24042037 DOI: 10.1016/j.neuroscience.2013.08.070] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 12/21/2022]
Abstract
In this review we discuss recent advances in the understanding of the development of forebrain projections attending to their origin, fate determination, and axon guidance. Major forebrain connections include callosal, corticospinal, corticothalamic and thalamocortical projections. Although distinct transcriptional programs specify these subpopulations of projecting neurons, the mechanisms involved in their axonal development are similar. Guidance by short- and long-range molecular cues, interaction with intermediate target populations and activity-dependent mechanisms contribute to their development. Moreover, some of these connections interact with each other showing that the development of these axonal tracts is a well-orchestrated event. Finally, we will recapitulate recent discoveries that challenge the field of neural wiring that show that these forebrain connections can be changed once formed. The field of reprogramming has arrived to postmitotic cortical neurons and has showed us that forebrain connectivity is not immutable and might be changed by manipulations in the transcriptional program of matured cells.
Collapse
Affiliation(s)
- E Leyva-Díaz
- Instituto de Neurociencias de Alicante, CSIC & Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Spain.
| | | |
Collapse
|
125
|
Hong J, Zhang H, Kawase-Koga Y, Sun T. MicroRNA function is required for neurite outgrowth of mature neurons in the mouse postnatal cerebral cortex. Front Cell Neurosci 2013; 7:151. [PMID: 24062642 PMCID: PMC3772315 DOI: 10.3389/fncel.2013.00151] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/25/2013] [Indexed: 12/18/2022] Open
Abstract
The structure of the postnatal mammalian cerebral cortex is an assembly of numerous mature neurons that exhibit proper neurite outgrowth and axonal and dendritic morphology. While many protein coding genes are shown to be involved in neuronal maturation, the role of microRNAs (miRNAs) in this process is also becoming evident. We here report that blocking miRNA biogenesis in differentiated neurons results in microcephaly like phenotypes in the postnatal mouse brain. The smaller brain defect is not caused by defective neurogenesis, altered neuronal migration or significant neuronal cell death. Surprisingly, a dramatic increase in neuronal packing density within the postnatal brain is observed. Loss of miRNA function causes shorter neurite outgrowth and smaller soma size of mature neurons in vitro. Our results reveal the impact of miRNAs on normal development of neuronal morphology and brain function. Because neurite outgrowth is critical for neuroregeneration, our studies further highlight the importance of miRNAs in the treatment of neurological diseases.
Collapse
Affiliation(s)
- Janet Hong
- Department of Cell and Developmental Biology, Cornell University Weill Medical College New York, NY, USA
| | | | | | | |
Collapse
|
126
|
Sorensen SA, Bernard A, Menon V, Royall JJ, Glattfelder KJ, Desta T, Hirokawa K, Mortrud M, Miller JA, Zeng H, Hohmann JG, Jones AR, Lein ES. Correlated gene expression and target specificity demonstrate excitatory projection neuron diversity. ACTA ACUST UNITED AC 2013; 25:433-49. [PMID: 24014670 DOI: 10.1093/cercor/bht243] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The neocortex contains diverse populations of excitatory neurons segregated by layer and further definable by their specific cortical and subcortical projection targets. The current study describes a systematic approach to identify molecular correlates of specific projection neuron classes in mouse primary somatosensory cortex (S1), using a combination of in situ hybridization (ISH) data mining, marker gene colocalization, and combined retrograde labeling with ISH for layer-specific marker genes. First, we identified a large set of genes with specificity for each cortical layer, and that display heterogeneous patterns within those layers. Using these genes as markers, we find extensive evidence for the covariation of gene expression and projection target specificity in layer 2/3, 5, and 6, with individual genes labeling neurons projecting to specific subsets of target structures. The combination of gene expression and target specificity imply a great diversity of projection neuron classes that is similar to or greater than that of GABAergic interneurons. The covariance of these 2 phenotypic modalities suggests that these classes are both discrete and genetically specified.
Collapse
Affiliation(s)
| | - Amy Bernard
- Allen Institute for Brain Science, Seattle, WA 98040, USA
| | - Vilas Menon
- Allen Institute for Brain Science, Seattle, WA 98040, USA
| | | | | | - Tsega Desta
- Allen Institute for Brain Science, Seattle, WA 98040, USA
| | - Karla Hirokawa
- Allen Institute for Brain Science, Seattle, WA 98040, USA
| | - Marty Mortrud
- Allen Institute for Brain Science, Seattle, WA 98040, USA
| | | | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA 98040, USA
| | - John G Hohmann
- Allen Institute for Brain Science, Seattle, WA 98040, USA
| | - Allan R Jones
- Allen Institute for Brain Science, Seattle, WA 98040, USA
| | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA 98040, USA
| |
Collapse
|
127
|
Prenatal exposure to suberoylanilide hydroxamic acid perturbs corticogenesis. Neurosci Res 2013; 77:42-9. [DOI: 10.1016/j.neures.2013.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 06/14/2013] [Accepted: 06/26/2013] [Indexed: 11/30/2022]
|
128
|
Wenger AM, Clarke SL, Notwell JH, Chung T, Tuteja G, Guturu H, Schaar BT, Bejerano G. The enhancer landscape during early neocortical development reveals patterns of dense regulation and co-option. PLoS Genet 2013; 9:e1003728. [PMID: 24009522 PMCID: PMC3757057 DOI: 10.1371/journal.pgen.1003728] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 07/03/2013] [Indexed: 11/18/2022] Open
Abstract
Genetic studies have identified a core set of transcription factors and target genes that control the development of the neocortex, the region of the human brain responsible for higher cognition. The specific regulatory interactions between these factors, many key upstream and downstream genes, and the enhancers that mediate all these interactions remain mostly uncharacterized. We perform p300 ChIP-seq to identify over 6,600 candidate enhancers active in the dorsal cerebral wall of embryonic day 14.5 (E14.5) mice. Over 95% of the peaks we measure are conserved to human. Eight of ten (80%) candidates tested using mouse transgenesis drive activity in restricted laminar patterns within the neocortex. GREAT based computational analysis reveals highly significant correlation with genes expressed at E14.5 in key areas for neocortex development, and allows the grouping of enhancers by known biological functions and pathways for further studies. We find that multiple genes are flanked by dozens of candidate enhancers each, including well-known key neocortical genes as well as suspected and novel genes. Nearly a quarter of our candidate enhancers are conserved well beyond mammals. Human and zebrafish regions orthologous to our candidate enhancers are shown to most often function in other aspects of central nervous system development. Finally, we find strong evidence that specific interspersed repeat families have contributed potentially key developmental enhancers via co-option. Our analysis expands the methodologies available for extracting the richness of information found in genome-wide functional maps.
Collapse
Affiliation(s)
- Aaron M. Wenger
- Department of Computer Science, Stanford University, Stanford, California, United States of America
| | - Shoa L. Clarke
- Department of Genetics, Stanford University, Stanford, California, United States of America
| | - James H. Notwell
- Department of Computer Science, Stanford University, Stanford, California, United States of America
| | - Tisha Chung
- Department of Developmental Biology, Stanford University, Stanford, California, United States of America
| | - Geetu Tuteja
- Department of Developmental Biology, Stanford University, Stanford, California, United States of America
| | - Harendra Guturu
- Department of Electrical Engineering, Stanford University, Stanford, California, United States of America
| | - Bruce T. Schaar
- Department of Developmental Biology, Stanford University, Stanford, California, United States of America
| | - Gill Bejerano
- Department of Computer Science, Stanford University, Stanford, California, United States of America
- Department of Developmental Biology, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
129
|
Cobos I, Seeley WW. Human von Economo neurons express transcription factors associated with Layer V subcerebral projection neurons. Cereb Cortex 2013; 25:213-20. [PMID: 23960210 DOI: 10.1093/cercor/bht219] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The von Economo neurons (VENs) are large bipolar Layer V projection neurons found chiefly in the anterior cingulate and frontoinsular cortices. Although VENs have been linked to prevalent illnesses such as frontotemporal dementia, autism, and schizophrenia, little is known about VEN identity, including their major projection targets. Here, we undertook a developmental transcription factor expression study, focusing on markers associated with specific classes of Layer V projection neurons. Using mRNA in situ hybridization, we found that VENs prominently express FEZF2 and CTIP2, transcription factors that regulate the fate and differentiation of subcerebral projection neurons, in humans aged 3 months to 65 years. In contrast, few VENs expressed markers associated with callosal or corticothalamic projections. These findings suggest that VENs may represent a specialized Layer V projection neuron for linking cortical autonomic control sites to brainstem or spinal cord regions.
Collapse
Affiliation(s)
- Inma Cobos
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94158, USA Current address: Department of Pathology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
130
|
Evsyukova I, Plestant C, Anton ES. Integrative mechanisms of oriented neuronal migration in the developing brain. Annu Rev Cell Dev Biol 2013; 29:299-353. [PMID: 23937349 DOI: 10.1146/annurev-cellbio-101512-122400] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The emergence of functional neuronal connectivity in the developing cerebral cortex depends on neuronal migration. This process enables appropriate positioning of neurons and the emergence of neuronal identity so that the correct patterns of functional synaptic connectivity between the right types and numbers of neurons can emerge. Delineating the complexities of neuronal migration is critical to our understanding of normal cerebral cortical formation and neurodevelopmental disorders resulting from neuronal migration defects. For the most part, the integrated cell biological basis of the complex behavior of oriented neuronal migration within the developing mammalian cerebral cortex remains an enigma. This review aims to analyze the integrative mechanisms that enable neurons to sense environmental guidance cues and translate them into oriented patterns of migration toward defined areas of the cerebral cortex. We discuss how signals emanating from different domains of neurons get integrated to control distinct aspects of migratory behavior and how different types of cortical neurons coordinate their migratory activities within the developing cerebral cortex to produce functionally critical laminar organization.
Collapse
Affiliation(s)
- Irina Evsyukova
- Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599;
| | | | | |
Collapse
|
131
|
Kmet M, Guo C, Edmondson C, Chen B. Directed differentiation of human embryonic stem cells into corticofugal neurons uncovers heterogeneous Fezf2-expressing subpopulations. PLoS One 2013; 8:e67292. [PMID: 23826257 PMCID: PMC3691138 DOI: 10.1371/journal.pone.0067292] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/17/2013] [Indexed: 12/24/2022] Open
Abstract
Understanding how neuronal diversity is achieved within the cerebral cortex remains a major challenge in neuroscience. The advent of human embryonic stem cells (hESCs) as a model system provides a unique opportunity to study human corticogenesis in vitro and to identify the mechanisms that promote neuronal differentiation to achieve neuronal diversity in human brain. The transcription factor Fezf2 is necessary and sufficient for the specification of subcerebral projection neurons in mouse. However, its function during human corticogenesis is poorly understood. This study reports the differentiation of a hFezf2-YFP hESC reporter line into corticofugal projection neurons capable of extending axons toward the spinal cord upon transplantation into neonatal mouse brains. Additionally, we show that triple inhibition of the TGFß/BMP/Wnt-Shh pathway promotes the generation of hFezf2-expressing cells in vitro. Finally, this study unveils the isolation of two novel and distinct populations of hFezf2-YFP expressing cells reminiscent of the distinct Fezf2-expressing neuronal subtypes in the developing mouse brain. Overall our data suggest that the directed differentiation of hESCs into corticofugal neurons provides a useful model to identify the molecular mechanisms regulating human corticofugal differentiation and survival.
Collapse
Affiliation(s)
- Muriel Kmet
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Chao Guo
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Carina Edmondson
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Bin Chen
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail:
| |
Collapse
|
132
|
Post-transcriptional regulatory elements and spatiotemporal specification of neocortical stem cells and projection neurons. Neuroscience 2013; 248:499-528. [PMID: 23727006 DOI: 10.1016/j.neuroscience.2013.05.042] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/15/2013] [Accepted: 05/21/2013] [Indexed: 11/22/2022]
Abstract
The mature neocortex is a unique six-layered mammalian brain region. It is composed of morphologically and functionally distinct subpopulations of primary projection neurons that form complex circuits across the central nervous system. The precisely-timed generation of projection neurons from neural stem cells governs their differentiation, postmitotic specification, and signaling, and is critical for cognitive and sensorimotor ability. Developmental perturbations to the birthdate, location, and connectivity of neocortical neurons are observed in neurological and psychiatric disorders. These facts are highlighting the importance of the precise spatiotemporal development of the neocortex regulated by intricate transcriptional, but also complex post-transcriptional events. Indeed, mRNA transcripts undergo many post-transcriptional regulatory steps before the production of functional proteins, which specify neocortical neural stem cells and subpopulations of neocortical neurons. Therefore, particular attention is paid to the differential post-transcriptional regulation of key transcripts by RNA-binding proteins, including splicing, localization, stability, and translation. We also present a transcriptome screen of candidate molecules associated with post-transcriptional mRNA processing that are differentially expressed at key developmental time points across neocortical prenatal neurogenesis.
Collapse
|
133
|
Pathfinding of corticothalamic axons relies on a rendezvous with thalamic projections. Neuron 2013; 77:472-84. [PMID: 23395374 DOI: 10.1016/j.neuron.2012.11.031] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2012] [Indexed: 12/11/2022]
Abstract
Major outputs of the neocortex are conveyed by corticothalamic axons (CTAs), which form reciprocal connections with thalamocortical axons, and corticosubcerebral axons (CSAs) headed to more caudal parts of the nervous system. Previous findings establish that transcriptional programs define cortical neuron identity and suggest that CTAs and thalamic axons may guide each other, but the mechanisms governing CTA versus CSA pathfinding remain elusive. Here, we show that thalamocortical axons are required to guide pioneer CTAs away from a default CSA-like trajectory. This process relies on a hold in the progression of cortical axons, or waiting period, during which thalamic projections navigate toward cortical axons. At the molecular level, Sema3E/PlexinD1 signaling in pioneer cortical neurons mediates a "waiting signal" required to orchestrate the mandatory meeting with reciprocal thalamic axons. Our study reveals that temporal control of axonal progression contributes to spatial pathfinding of cortical projections and opens perspectives on brain wiring.
Collapse
|
134
|
Watakabe A, Hirokawa J, Ichinohe N, Ohsawa S, Kaneko T, Rockland KS, Yamamori T. Area-specific substratification of deep layer neurons in the rat cortex. J Comp Neurol 2013; 520:3553-73. [PMID: 22678985 DOI: 10.1002/cne.23160] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Gene markers are useful tools to identify cell types for fine mapping of neuronal circuits. Here we report area-specific sublamina structure of the rat cerebral cortex using cholecystokinin (cck) and purkinje cell protein4 (pcp4) mRNAs as the markers for excitatory neuron subtypes in layers 5 and 6. We found a segregated expression, especially pronounced in layer 6, where corticothalamic and corticocortical projecting neurons reside. To examine the relationship between gene expression and projection target, we injected retrograde tracers into several thalamic subnuclei, ventral posterior (VP), posterior (PO), mediodorsal (MD), medial and lateral geniculate nuclei (MGN and LGN); as well as into two cortical areas (M1 and V1). This combination of tracer-in situ hybridization (ISH) experiments revealed that corticocortical neurons predominantly express cck and corticothalamic neurons predominantly express pcp4 mRNAs in all areas tested. In general, cck(+) and pcp4(+) cells occupied the upper and lower compartment of layer 6a, respectively. However, the sublaminar distribution and the relative abundance of cck(+) and pcp4(+) cells were quite distinctive across areas. For example, layer 6 of the prelimbic cortex was almost devoid of cck(+) neurons, and was occupied instead by corticothalamic pcp4(+) neurons. In the lateral areas, such as S2, there was an additional layer of cck(+) cells positioned below the pcp4(+) compartment. The claustrum, which has a tight relationship with the cortex, mostly consisted of cck(+)/pcp4(-) cells. In summary, the combination of gene markers and retrograde tracers revealed a distinct sublaminar organization, with conspicuous cross-area variation in the arrangement and relative density of corticothalamic connections.
Collapse
Affiliation(s)
- Akiya Watakabe
- Division of Brain Biology, National Institute for Basic Biology, Graduate University for Advanced Studies, Okazaki, Japan.
| | | | | | | | | | | | | |
Collapse
|
135
|
Kumamoto T, Toma KI, Gunadi, McKenna WL, Kasukawa T, Katzman S, Chen B, Hanashima C. Foxg1 coordinates the switch from nonradially to radially migrating glutamatergic subtypes in the neocortex through spatiotemporal repression. Cell Rep 2013; 3:931-45. [PMID: 23523356 DOI: 10.1016/j.celrep.2013.02.023] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 10/08/2012] [Accepted: 02/19/2013] [Indexed: 12/19/2022] Open
Abstract
The specification of neuronal subtypes in the cerebral cortex proceeds in a temporal manner; however, the regulation of the transitions between the sequentially generated subtypes is poorly understood. Here, we report that the forkhead box transcription factor Foxg1 coordinates the production of neocortical projection neurons through the global repression of a default gene program. The delayed activation of Foxg1 was necessary and sufficient to induce deep-layer neurogenesis, followed by a sequential wave of upper-layer neurogenesis. A genome-wide analysis revealed that Foxg1 binds to mammalian-specific noncoding sequences to repress over 12 transcription factors expressed in early progenitors, including Ebf2/3, Dmrt3, Dmrta1, and Eya2. These findings reveal an unexpected prolonged competence of progenitors to initiate corticogenesis at a progressed stage during development and identify Foxg1 as a critical initiator of neocorticogenesis through spatiotemporal repression, a system that balances the production of nonradially and radially migrating glutamatergic subtypes during mammalian cortical expansion.
Collapse
Affiliation(s)
- Takuma Kumamoto
- Laboratory for Neocortical Development, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | | | | | | | | | | | | | | |
Collapse
|
136
|
Franco SJ, Müller U. Shaping our minds: stem and progenitor cell diversity in the mammalian neocortex. Neuron 2013; 77:19-34. [PMID: 23312513 DOI: 10.1016/j.neuron.2012.12.022] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2012] [Indexed: 01/08/2023]
Abstract
The neural circuits of the mammalian neocortex are crucial for perception, complex thought, cognition, and consciousness. This circuitry is assembled from many different neuronal subtypes with divergent properties and functions. Here, we review recent studies that have begun to clarify the mechanisms of cell-type specification in the neocortex, focusing on the lineage relationships between neocortical progenitors and subclasses of excitatory projection neurons. These studies reveal an unanticipated diversity in the progenitor pool that requires a revised view of prevailing models of cell-type specification in the neocortex. We propose a "sequential progenitor-diversification model" that integrates current knowledge to explain how projection neuron diversity is achieved by mechanisms acting on proliferating progenitors and their postmitotic offspring. We discuss the implications of this model for our understanding of brain evolution and pathological states of the neocortex.
Collapse
Affiliation(s)
- Santos J Franco
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
137
|
MuhChyi C, Juliandi B, Matsuda T, Nakashima K. Epigenetic regulation of neural stem cell fate during corticogenesis. Int J Dev Neurosci 2013; 31:424-33. [DOI: 10.1016/j.ijdevneu.2013.02.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 01/18/2013] [Accepted: 02/14/2013] [Indexed: 10/27/2022] Open
Affiliation(s)
- Chai MuhChyi
- Laboratory of Molecular NeuroscienceGraduate School of Biological SciencesNara Institute of Science and TechnologyTakayama 8916‐5IkomaNara630‐0192Japan
| | - Berry Juliandi
- Laboratory of Molecular NeuroscienceGraduate School of Biological SciencesNara Institute of Science and TechnologyTakayama 8916‐5IkomaNara630‐0192Japan
- Department of BiologyBogor Agricultural University (IPB)DramagaBogor16680Indonesia
| | - Taito Matsuda
- Laboratory of Molecular NeuroscienceGraduate School of Biological SciencesNara Institute of Science and TechnologyTakayama 8916‐5IkomaNara630‐0192Japan
| | - Kinichi Nakashima
- Laboratory of Molecular NeuroscienceGraduate School of Biological SciencesNara Institute of Science and TechnologyTakayama 8916‐5IkomaNara630‐0192Japan
| |
Collapse
|
138
|
Ikaros promotes early-born neuronal fates in the cerebral cortex. Proc Natl Acad Sci U S A 2013; 110:E716-25. [PMID: 23382203 DOI: 10.1073/pnas.1215707110] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During cerebral cortex development, a series of projection neuron types is generated in a fixed temporal order. In Drosophila neuroblasts, the transcription factor hunchback encodes first-born identity within neural lineages. One of its mammalian homologs, Ikaros, was recently reported to play an equivalent role in retinal progenitor cells, raising the question as to whether Ikaros/Hunchback proteins could be general factors regulating the development of early-born fates throughout the nervous system. Ikaros is also expressed in progenitor cells of the mouse cerebral cortex, and this expression is highest during the early stages of neurogenesis and thereafter decreases over time. Transgenic mice with sustained Ikaros expression in cortical progenitor cells and neurons have developmental defects, including displaced progenitor cells within the cortical plate, increased early neural differentiation, and disrupted cortical lamination. Sustained Ikaros expression results in a prolonged period of generation of deep layer neurons into the stages when, normally, only late-born upper layer neurons are generated, as well as a delayed production of late-born neurons. Consequently, more early-born and fewer late-born neurons are present in the cortex of these mice at birth. This phenotype was observed in all parts of the cortex, including those with minimal structural defects, demonstrating that it is not secondary to abnormalities in cortical morphogenesis. These data suggest that Ikaros plays a similar role in regulating early temporal fates in the mammalian cerebral cortex as Ikaros/Hunchback proteins do in the Drosophila nerve cord.
Collapse
|
139
|
The CB(1) cannabinoid receptor drives corticospinal motor neuron differentiation through the Ctip2/Satb2 transcriptional regulation axis. J Neurosci 2013; 32:16651-65. [PMID: 23175820 DOI: 10.1523/jneurosci.0681-12.2012] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The generation and specification of pyramidal neuron subpopulations during development relies on a complex network of transcription factors. The CB(1) cannabinoid receptor is the major molecular target of endocannabinoids and marijuana active compounds. This receptor has been shown to influence neural progenitor proliferation and axonal growth, but its involvement in neuronal differentiation and the functional impact in the adulthood caused by altering its signaling during brain development are not known. Here we show that the CB(1) receptor, by preventing Satb2 (special AT-rich binding protein 2)-mediated repression, increased Ctip2 (COUP-TF interacting protein 2) promoter activity, and Ctip2-positive neuron generation. Unbalanced neurogenic fate determination found in complete CB(1)(-/-) mice and in glutamatergic neuron-specific Nex-CB(1)(-/-) mice induced overt alterations in corticospinal motor neuron generation and subcerebral connectivity, thereby resulting in an impairment of skilled motor function in adult mice. Likewise, genetic deletion of CB(1) receptors in Thy1-YFP-H mice elicited alterations in corticospinal tract development. Altogether, these data demonstrate that the CB(1) receptor contributes to the generation of deep-layer cortical neurons by coupling endocannabinoid signals from the neurogenic niche to the intrinsic proneurogenic Ctip2/Satb2 axis, thus influencing appropriate subcerebral projection neuron specification and corticospinal motor function in the adulthood.
Collapse
|
140
|
De la Rossa A, Bellone C, Golding B, Vitali I, Moss J, Toni N, Lüscher C, Jabaudon D. In vivo reprogramming of circuit connectivity in postmitotic neocortical neurons. Nat Neurosci 2013; 16:193-200. [PMID: 23292682 DOI: 10.1038/nn.3299] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 12/06/2012] [Indexed: 11/09/2022]
Abstract
The molecular mechanisms that control how progenitors generate distinct subtypes of neurons, and how undifferentiated neurons acquire their specific identity during corticogenesis, are increasingly understood. However, whether postmitotic neurons can change their identity at late stages of differentiation remains unknown. To study this question, we developed an electrochemical in vivo gene delivery method to rapidly manipulate gene expression specifically in postmitotic neurons. Using this approach, we found that the molecular identity, morphology, physiology and functional input-output connectivity of layer 4 mouse spiny neurons could be specifically reprogrammed during the first postnatal week by ectopic expression of the layer 5B output neuron-specific transcription factor Fezf2. These findings reveal a high degree of plasticity in the identity of postmitotic neocortical neurons and provide a proof of principle for postnatal re-engineering of specific neural microcircuits in vivo.
Collapse
Affiliation(s)
- Andres De la Rossa
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
141
|
Nielsen JV, Thomassen M, Møllgård K, Noraberg J, Jensen NA. Zbtb20 defines a hippocampal neuronal identity through direct repression of genes that control projection neuron development in the isocortex. ACTA ACUST UNITED AC 2013; 24:1216-29. [PMID: 23283686 DOI: 10.1093/cercor/bhs400] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hippocampal pyramidal neurons are important for encoding and retrieval of spatial maps and episodic memories. While previous work has shown that Zbtb20 is a cell fate determinant for CA1 pyramidal neurons, the regulatory mechanisms governing this process are not known. In this study, we demonstrate that Zbtb20 binds to genes that control neuronal subtype specification in the developing isocortex, including Cux1, Cux2, Fezf2, Foxp2, Mef2c, Rorb, Satb2, Sox5, Tbr1, Tle4, and Zfpm2. We show that Zbtb20 represses these genes during ectopic CA1 pyramidal neuron development in transgenic mice. These data reveal a novel regulatory mechanism by which Zbtb20 suppresses the acquisition of an isocortical fate during archicortical neurogenesis to ensure commitment to a CA1 pyramidal neuron fate. We further show that the expression pattern of Zbtb20 is evolutionary conserved in the fetal human hippocampus, where it is complementary to the expression pattern of the Zbtb20 target gene Tbr1. Therefore, the disclosed Zbtb20-mediated transcriptional repressor mechanism may be involved in development of the human archicortex.
Collapse
Affiliation(s)
- Jakob V Nielsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, DK-5000 Odense C, Denmark
| | | | | | | | | |
Collapse
|
142
|
Kwan KY. Transcriptional dysregulation of neocortical circuit assembly in ASD. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 113:167-205. [PMID: 24290386 DOI: 10.1016/b978-0-12-418700-9.00006-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Autism spectrum disorders (ASDs) impair social cognition and communication, key higher-order functions centered in the human neocortex. The assembly of neocortical circuitry is a precisely regulated developmental process susceptible to genetic alterations that can ultimately affect cognitive abilities. Because ASD is an early onset neurodevelopmental disorder that disrupts functions executed by the neocortex, miswiring of neocortical circuits has been hypothesized to be an underlying mechanism of ASD. This possibility is supported by emerging genetic findings and data from imaging studies. Recent research on neocortical development has identified transcription factors as key determinants of neocortical circuit assembly, mediating diverse processes including neuronal specification, migration, and wiring. Many of these TFs (TBR1, SOX5, FEZF2, and SATB2) have been implicated in ASD. Here, I will discuss the functional roles of these transcriptional programs in neocortical circuit development and their neurobiological implications for the emerging etiology of ASD.
Collapse
Affiliation(s)
- Kenneth Y Kwan
- Department of Human Genetics, Molecular & Behavioral Neuroscience Institute (MBNI), University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
143
|
A network of genetic repression and derepression specifies projection fates in the developing neocortex. Proc Natl Acad Sci U S A 2012; 109:19071-8. [PMID: 23144223 DOI: 10.1073/pnas.1216793109] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Neurons within each layer in the mammalian cortex have stereotypic projections. Four genes-Fezf2, Ctip2, Tbr1, and Satb2-regulate these projection identities. These genes also interact with each other, and it is unclear how these interactions shape the final projection identity. Here we show, by generating double mutants of Fezf2, Ctip2, and Satb2, that cortical neurons deploy a complex genetic switch that uses mutual repression to produce subcortical or callosal projections. We discovered that Tbr1, EphA4, and Unc5H3 are critical downstream targets of Satb2 in callosal fate specification. This represents a unique role for Tbr1, implicated previously in specifying corticothalamic projections. We further show that Tbr1 expression is dually regulated by Satb2 and Ctip2 in layers 2-5. Finally, we show that Satb2 and Fezf2 regulate two disease-related genes, Auts2 (Autistic Susceptibility Gene2) and Bhlhb5 (mutated in Hereditary Spastic Paraplegia), providing a molecular handle to investigate circuit disorders in neurodevelopmental diseases.
Collapse
|
144
|
Sohur US, Padmanabhan HK, Kotchetkov IS, Menezes JRL, Macklis JD. Anatomic and molecular development of corticostriatal projection neurons in mice. ACTA ACUST UNITED AC 2012; 24:293-303. [PMID: 23118198 DOI: 10.1093/cercor/bhs342] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Corticostriatal projection neurons (CStrPN) project from the neocortex to ipsilateral and contralateral striata to control and coordinate motor programs and movement. They are clinically important as the predominant cortical population that degenerates in Huntington's disease and corticobasal ganglionic degeneration, and their injury contributes to multiple forms of cerebral palsy. Together with their well-studied functions in motor control, these clinical connections make them a functionally, behaviorally, and clinically important population of neocortical neurons. Little is known about their development. "Intratelencephalic" CStrPN (CStrPNi), projecting to the contralateral striatum, with their axons fully within the telencephalon (intratelencephalic), are a major population of CStrPN. CStrPNi are of particular interest developmentally because they share hodological and axon guidance characteristics of both callosal projection neurons (CPN) and corticofugal projection neurons (CFuPN); CStrPNi send axons contralaterally before descending into the contralateral striatum. The relationship of CStrPNi development to that of broader CPN and CFuPN populations remains unclear; evidence suggests that CStrPNi might be evolutionary "hybrids" between CFuPN and deep layer CPN-in a sense "chimeric" with both callosal and corticofugal features. Here, we investigated the development of CStrPNi in mice-their birth, maturation, projections, and expression of molecular developmental controls over projection neuron subtype identity.
Collapse
Affiliation(s)
- U Shivraj Sohur
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | | | | | | | | |
Collapse
|
145
|
Rouaux C, Bhai S, Arlotta P. Programming and reprogramming neuronal subtypes in the central nervous system. Dev Neurobiol 2012; 72:1085-98. [PMID: 22378700 DOI: 10.1002/dneu.22018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent discoveries in nuclear reprogramming have challenged the dogma that the identity of terminally differentiated cells cannot be changed. The identification of molecular mechanisms that reprogram differentiated cells to a new identity carries profound implications for regenerative medicine across organ systems. The central nervous system (CNS) has historically been considered to be largely immutable. However, recent studies indicate that even the adult CNS is imparted with the potential to change under the appropriate stimuli. Here, we review current knowledge regarding the capability of distinct cells within the CNS to reprogram their identity and consider the role of developmental signals in directing these cell fate decisions. Finally, we discuss the progress and current challenges of using developmental signals to precisely direct the generation of individual neuronal subtypes in the postnatal CNS and in the dish.
Collapse
Affiliation(s)
- Caroline Rouaux
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | | | | |
Collapse
|
146
|
Traylor RN, Dobyns WB, Rosenfeld JA, Wheeler P, Spence JE, Bandholz AM, Bawle EV, Carmany EP, Powell CM, Hudson B, Schultz RA, Shaffer LG, Ballif BC. Investigation of TBR1 Hemizygosity: Four Individuals with 2q24 Microdeletions. Mol Syndromol 2012; 3:102-112. [PMID: 23112752 DOI: 10.1159/000342008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2012] [Indexed: 12/19/2022] Open
Abstract
TBR1 encodes a transcription factor with critical roles in corticogenesis, including cortical neuron migration and axon pathfinding, establishment of regional and laminar identity of cortical neurons, and control of glutamatergic neuronal cell fate. Based upon TBR1's role in cortical development, we sought to investigate TBR1 hemizygosity in individuals referred for genetic evaluation of intellectual disability and developmental delay. We describe 4 patients with microdeletions identified by molecular cytogenetic techniques, encompassing TBR1 and spanning 2q24.1q31.1, ranging in size from 2.17 to 12.34 Mb. Only the patient with the largest deletion had a possible cortical malformation. Mild ventriculomegaly is the only common brain anomaly, present in all patients; a Chiari I malformation is seen in 2 patients, and mega cisterna magna is seen in a third. Our findings are consistent with Tbr1 mouse models showing that hemizygosity of the gene requires additional genetic factors for the manifestation of severe structural brain malformations. Other syndromic features are present in these patients, including autism spectrum disorders, ocular colobomas, and craniosynostosis, features that are likely affected by the deletion of genes other than TBR1.
Collapse
Affiliation(s)
- R N Traylor
- Signature Genomic Laboratories, PerkinElmer Inc., Spokane, Wash., USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Dominguez MH, Ayoub AE, Rakic P. POU-III transcription factors (Brn1, Brn2, and Oct6) influence neurogenesis, molecular identity, and migratory destination of upper-layer cells of the cerebral cortex. ACTA ACUST UNITED AC 2012; 23:2632-43. [PMID: 22892427 DOI: 10.1093/cercor/bhs252] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The upper layers (II-IV) are the most prominent distinguishing feature of mammalian neocortex compared with avian or reptilian dorsal cortex, and are vastly expanded in primates. Although the time-dependent embryonic generation of upper-layer cells is genetically instructed within their parental progenitors, mechanisms governing cell-intrinsic fate transitions remain obscure. POU-homeodomain transcription factors Pou3f3 and Pou3f2 (Brn1 and Brn2) are known to label postmitotic upper-layer cells, and are redundantly required for their production. We find that the onset of Pou3f3/2 expression actually occurs in ventricular zone (VZ) progenitors, and that Pou3f3/2 subsequently label neural progeny switching from deep-layer Ctip2(+) identity to Satb2(+) upper-layer fate as they migrate to proper superficial positions. By using an Engrailed dominant-negative repressor, we show that sustained neurogenesis after the deep- to upper-layer transition requires the proneual action of Pou3fs in VZ progenitors. Conversely, single-gene overexpression of any Pou3f in early neural progenitors is sufficient to specify the precocious birth of Satb2(+) daughter neurons that extend axons to the contralateral hemisphere, as well as exhibit robust pia-directed migration that is characteristic of upper-layer cells. Finally, we demonstrate that Pou3fs influence multiple stages of neurogenesis by suppressing Notch effector Hes5, and promoting the expression of proneural transcription factors Tbr2 and Tbr1.
Collapse
Affiliation(s)
- Martin H Dominguez
- Department of Neurobiology, Yale University School of Medicine and Kavli Institute for Neuroscience, 06510 New Haven, CT, USA
| | | | | |
Collapse
|
148
|
Kwan KY, Lam MMS, Johnson MB, Dube U, Shim S, Rašin MR, Sousa AMM, Fertuzinhos S, Chen JG, Arellano JI, Chan DW, Pletikos M, Vasung L, Rowitch DH, Huang EJ, Schwartz ML, Willemsen R, Oostra BA, Rakic P, Heffer M, Kostović I, Judaš M, Sestan N. Species-dependent posttranscriptional regulation of NOS1 by FMRP in the developing cerebral cortex. Cell 2012; 149:899-911. [PMID: 22579290 DOI: 10.1016/j.cell.2012.02.060] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 12/19/2011] [Accepted: 02/15/2012] [Indexed: 02/06/2023]
Abstract
Fragile X syndrome (FXS), the leading monogenic cause of intellectual disability and autism, results from loss of function of the RNA-binding protein FMRP. Here, we show that FMRP regulates translation of neuronal nitric oxide synthase 1 (NOS1) in the developing human neocortex. Whereas NOS1 mRNA is widely expressed, NOS1 protein is transiently coexpressed with FMRP during early synaptogenesis in layer- and region-specific pyramidal neurons. These include midfetal layer 5 subcortically projecting neurons arranged into alternating columns in the prospective Broca's area and orofacial motor cortex. Human NOS1 translation is activated by FMRP via interactions with coding region binding motifs absent from mouse Nos1 mRNA, which is expressed in mouse pyramidal neurons, but not efficiently translated. Correspondingly, neocortical NOS1 protein levels are severely reduced in developing human FXS cases, but not FMRP-deficient mice. Thus, alterations in FMRP posttranscriptional regulation of NOS1 in developing neocortical circuits may contribute to cognitive dysfunction in FXS.
Collapse
Affiliation(s)
- Kenneth Y Kwan
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Kwan KY, Sestan N, Anton ES. Transcriptional co-regulation of neuronal migration and laminar identity in the neocortex. Development 2012; 139:1535-46. [PMID: 22492350 DOI: 10.1242/dev.069963] [Citation(s) in RCA: 258] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The cerebral neocortex is segregated into six horizontal layers, each containing unique populations of molecularly and functionally distinct excitatory projection (pyramidal) neurons and inhibitory interneurons. Development of the neocortex requires the orchestrated execution of a series of crucial processes, including the migration of young neurons into appropriate positions within the nascent neocortex, and the acquisition of layer-specific neuronal identities and axonal projections. Here, we discuss emerging evidence supporting the notion that the migration and final laminar positioning of cortical neurons are also co-regulated by cell type- and layer-specific transcription factors that play concomitant roles in determining the molecular identity and axonal connectivity of these neurons. These transcriptional programs thus provide direct links between the mechanisms controlling the laminar position and identity of cortical neurons.
Collapse
Affiliation(s)
- Kenneth Y Kwan
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | |
Collapse
|
150
|
Shim S, Kwan KY, Li M, Lefebvre V, Sestan N. Cis-regulatory control of corticospinal system development and evolution. Nature 2012; 486:74-9. [PMID: 22678282 PMCID: PMC3375921 DOI: 10.1038/nature11094] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 03/28/2012] [Indexed: 02/07/2023]
Abstract
The co-emergence of a six-layered cerebral neocortex and its corticospinal output system is one of the evolutionary hallmarks of mammals. However, the genetic programs that underlie their development and evolution remain poorly understood. Here we identify a conserved non-exonic element (E4) that acts as a cortex-specific enhancer for the nearby gene Fezf2 (also known as Fezl and Zfp312), which is required for the specification of corticospinal neuron identity and connectivity. We find that SOX4 and SOX11 functionally compete with the repressor SOX5 in the transactivation of E4. Cortex-specific double deletion of Sox4 and Sox11 leads to the loss of Fezf2 expression, failed specification of corticospinal neurons and, independent of Fezf2, a reeler-like inversion of layers. We show evidence supporting the emergence of functional SOX-binding sites in E4 during tetrapod evolution, and their subsequent stabilization in mammals and possibly amniotes. These findings reveal that SOX transcription factors converge onto a cis-acting element of Fezf2 and form critical components of a regulatory network controlling the identity and connectivity of corticospinal neurons.
Collapse
Affiliation(s)
- Sungbo Shim
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | |
Collapse
|