101
|
Oprescu SN, Griffin LB, Beg AA, Antonellis A. Predicting the pathogenicity of aminoacyl-tRNA synthetase mutations. Methods 2016; 113:139-151. [PMID: 27876679 DOI: 10.1016/j.ymeth.2016.11.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/12/2016] [Accepted: 11/18/2016] [Indexed: 10/24/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) are ubiquitously expressed, essential enzymes responsible for charging tRNA with cognate amino acids-the first step in protein synthesis. ARSs are required for protein translation in the cytoplasm and mitochondria of all cells. Surprisingly, mutations in 28 of the 37 nuclear-encoded human ARS genes have been linked to a variety of recessive and dominant tissue-specific disorders. Current data indicate that impaired enzyme function is a robust predictor of the pathogenicity of ARS mutations. However, experimental model systems that distinguish between pathogenic and non-pathogenic ARS variants are required for implicating newly identified ARS mutations in disease. Here, we outline strategies to assist in predicting the pathogenicity of ARS variants and urge cautious evaluation of genetic and functional data prior to linking an ARS mutation to a human disease phenotype.
Collapse
Affiliation(s)
- Stephanie N Oprescu
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Laurie B Griffin
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, United States; Medical Scientist Training Program, and University of Michigan Medical School, Ann Arbor, MI, United States
| | - Asim A Beg
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Anthony Antonellis
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, United States; Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
102
|
Szczepanowska K, Maiti P, Kukat A, Hofsetz E, Nolte H, Senft K, Becker C, Ruzzenente B, Hornig-Do HT, Wibom R, Wiesner RJ, Krüger M, Trifunovic A. CLPP coordinates mitoribosomal assembly through the regulation of ERAL1 levels. EMBO J 2016; 35:2566-2583. [PMID: 27797820 DOI: 10.15252/embj.201694253] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 09/14/2016] [Accepted: 09/20/2016] [Indexed: 11/09/2022] Open
Abstract
Despite being one of the most studied proteases in bacteria, very little is known about the role of ClpXP in mitochondria. We now present evidence that mammalian CLPP has an essential role in determining the rate of mitochondrial protein synthesis by regulating the level of mitoribosome assembly. Through a proteomic approach and the use of a catalytically inactive CLPP, we produced the first comprehensive list of possible mammalian ClpXP substrates involved in the regulation of mitochondrial translation, oxidative phosphorylation, and a number of metabolic pathways. We further show that the defect in mitoribosomal assembly is a consequence of the accumulation of ERAL1, a putative 12S rRNA chaperone, and novel ClpXP substrate. The presented data suggest that the timely removal of ERAL1 from the small ribosomal subunit is essential for the efficient maturation of the mitoribosome and a normal rate of mitochondrial translation.
Collapse
Affiliation(s)
- Karolina Szczepanowska
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.,Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, Cologne, Germany
| | - Priyanka Maiti
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.,Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, Cologne, Germany
| | - Alexandra Kukat
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.,Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, Cologne, Germany
| | - Eduard Hofsetz
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.,Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, Cologne, Germany
| | - Hendrik Nolte
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.,Institute for Genetics, University of Cologne, Cologne, Germany
| | - Katharina Senft
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.,Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, Cologne, Germany
| | - Christina Becker
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.,Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, Cologne, Germany
| | | | - Hue-Tran Hornig-Do
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.,Institute for Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Rolf Wibom
- Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Rudolf J Wiesner
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.,Institute for Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Marcus Krüger
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.,Institute for Genetics, University of Cologne, Cologne, Germany
| | - Aleksandra Trifunovic
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany .,Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|
103
|
Lerat J, Jonard L, Loundon N, Christin-Maitre S, Lacombe D, Goizet C, Rouzier C, Van Maldergem L, Gherbi S, Garabedian EN, Bonnefont JP, Touraine P, Mosnier I, Munnich A, Denoyelle F, Marlin S. An Application of NGS for Molecular Investigations in Perrault Syndrome: Study of 14 Families and Review of the Literature. Hum Mutat 2016; 37:1354-1362. [PMID: 27650058 DOI: 10.1002/humu.23120] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/07/2016] [Accepted: 09/08/2016] [Indexed: 12/11/2022]
Abstract
Perrault syndrome (PS) is a rare autosomal recessive condition characterized by deafness and gonadic dysgenesis. Recently, mutations in five genes have been identified: C10orf2, CLPP, HARS2, HSD17B4, and LARS2. Probands included are presented with sensorineural deafness associated with gonadic dysgenesis. DNA was sequenced using next-generation sequencing (NGS) with a panel of 35 deafness genes including the five Perrault genes. Exonic variations known as pathogenic mutations or detected with <1% frequency in public databases were extracted and subjected to segregation analysis within each family. Both mutations and low coverage regions were analyzed by Sanger sequencing. Fourteen female index patients were included. The screening in four cases has been extended to four family members presenting with PS phenotype. For four unrelated patients (28.6%), causative mutations were identified: three homozygous mutations in C10orf2, CLPP, and HARS2, and one compound heterozygous mutation in LARS2. Three additional heterozygous mutations in LARS2 and HSD17B4 were found in three independent familial cases. All these missense mutations were verified by Sanger sequencing. Familial segregation analyses confirmed the molecular diagnosis in all cases carrying biallelic mutations. Because of NGS, molecular analysis confirmed the clinical diagnosis of PS in 28.6% of our cohort and four novel mutations were found in four Perrault genes. For the unsolved cases, exome sequencing should be performed to search for a sixth unknown PS gene.
Collapse
Affiliation(s)
- Justine Lerat
- Otorhinolaryngologie et chirurgie cervico-faciale, Centre Hospitalier Universitaire Dupuytren, Limoges, France
| | - Laurence Jonard
- Laboratoire de Génétique Moléculaire, Centre de Référence des Surdités Génétiques, Hôpital Necker, AP-HP, Paris, France
| | - Natalie Loundon
- Otorhinolaryngologie pédiatrique, Centre de Référence des Surdités Génétiques, Hôpital Necker, AP-HP, Paris, France
| | | | - Didier Lacombe
- Génétique Médicale, Centre Hospitalier Universitaire Pellegrin, Bordeaux, France
| | - Cyril Goizet
- Génétique Médicale, Centre Hospitalier Universitaire Pellegrin, Bordeaux, France
| | - Cécile Rouzier
- Génétique Médicale, Centre Hospitalier Universitaire, Hôpital l'Archet, Nice, France
| | - Lionel Van Maldergem
- Génétique Médicale, Centre Hospitalier Universitaire, Hôpital Saint Jacques, Besançon, France
| | - Souad Gherbi
- Génétique Médicale, Centre de Référence des Surdités Génétiques, Hôpital Necker, AP-HP, Paris, France
| | - Eréa-Nöel Garabedian
- Otorhinolaryngologie pédiatrique, Centre de Référence des Surdités Génétiques, Hôpital Necker, AP-HP, Paris, France
| | - Jean-Paul Bonnefont
- Laboratoire de Génétique Moléculaire, Centre de Référence des Surdités Génétiques, Hôpital Necker, AP-HP, Paris, France
| | - Philippe Touraine
- Endocrinologie et Médecine de la Reproduction, Hôpital de la Pitié Salpétrière, AP-HP, Paris, France
| | - Isabelle Mosnier
- Otorhinolaryngologie et chirurgie cervico-faciale, Hôpital de la Pitié Salpétrière, AP-HP, Paris, France
| | - Arnold Munnich
- Génétique Médicale, Hôpital Necker, AP-HP, Paris, France
| | - Françoise Denoyelle
- Otorhinolaryngologie pédiatrique, Centre de Référence des Surdités Génétiques, Hôpital Necker, AP-HP, Paris, France
| | - Sandrine Marlin
- Génétique Médicale, Centre de Référence des Surdités Génétiques, Hôpital Necker, AP-HP, Paris, France
| |
Collapse
|
104
|
Chen Y, Hu L, Wang X, Sun C, Lin X, Li L, Mei L, Huang Z, Yang T, Wu H. Characterization of a knock-in mouse model of the homozygous p.V37I variant in Gjb2. Sci Rep 2016; 6:33279. [PMID: 27623246 PMCID: PMC5020688 DOI: 10.1038/srep33279] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/24/2016] [Indexed: 11/30/2022] Open
Abstract
The homozygous p.V37I variant in GJB2 is prevalent in East and Southeast Asians and may lead to mild-to-moderate hearing loss with reduced penetrance. To investigate the pathogenic mechanism underlying this variant, we generated a knock-in mouse model of homozygous p.V37I by an embryonic stem cell gene targeting method. Auditory brainstem response test showed that the knock-in mice developed progressive, mild-to-moderate hearing loss over the first 4–9 months. Overall no significant developmental and morphological abnormality was observed in the knock-in mouse cochlea, while confocal immunostaining and electron microscopic scanning revealed minor loss of the outer hair cells. Gene expression microarray analysis identified 105 up-regulated and 43 down-regulated genes in P5 knock-in mouse cochleae (P < 0.05 adjusted by the Benjamini & Hochberg method), among which four top candidate genes with the highest fold-changes or implication to deafness Fcer1g, Nnmt and Lars2 and Cuedc1 were verified by quantitative real-time PCR. Our study demonstrated that the homozygous p.V37I knock-in mouse modeled the hearing phenotype of the human patients and can serve as a useful animal model for further studies. The differentially expressed genes identified in this study may shed new insights into the understanding of the pathogenic mechanism and the phenotypic modification of homozygous p.V37I.
Collapse
Affiliation(s)
- Ying Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.,Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lingxiang Hu
- Ear Institute, Shanghai Jiaotong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.,Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xueling Wang
- Ear Institute, Shanghai Jiaotong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.,Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Changling Sun
- Ear Institute, Shanghai Jiaotong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.,Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xin Lin
- Ear Institute, Shanghai Jiaotong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.,Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lei Li
- Ear Institute, Shanghai Jiaotong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.,Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ling Mei
- Ear Institute, Shanghai Jiaotong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.,Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhiwu Huang
- Ear Institute, Shanghai Jiaotong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.,Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Tao Yang
- Ear Institute, Shanghai Jiaotong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.,Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hao Wu
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.,Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
105
|
Seiferling D, Szczepanowska K, Becker C, Senft K, Hermans S, Maiti P, König T, Kukat A, Trifunovic A. Loss of CLPP alleviates mitochondrial cardiomyopathy without affecting the mammalian UPRmt. EMBO Rep 2016; 17:953-64. [PMID: 27154400 DOI: 10.15252/embr.201642077] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/12/2016] [Indexed: 11/09/2022] Open
Abstract
The mitochondrial matrix protease CLPP plays a central role in the activation of the mitochondrial unfolded protein response (UPR(mt)) in Caenorhabditis elegans Far less is known about mammalian UPR(mt) signaling, although similar roles were assumed for central players, including CLPP To better understand the mammalian UPR(mt) signaling, we deleted CLPP in hearts of DARS2-deficient animals that show robust induction of UPR(mt) due to strong dysregulation of mitochondrial translation. Remarkably, our results clearly show that mammalian CLPP is neither required for, nor it regulates the UPR(mt) in mammals. Surprisingly, we demonstrate that a strong mitochondrial cardiomyopathy and diminished respiration due to DARS2 deficiency can be alleviated by the loss of CLPP, leading to an increased de novo synthesis of individual OXPHOS subunits. These results question our current understanding of the UPR(mt) signaling in mammals, while introducing CLPP as a possible novel target for therapeutic intervention in mitochondrial diseases.
Collapse
Affiliation(s)
- Dominic Seiferling
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, Cologne, Germany
| | - Karolina Szczepanowska
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, Cologne, Germany
| | - Christina Becker
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, Cologne, Germany
| | - Katharina Senft
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, Cologne, Germany
| | - Steffen Hermans
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, Cologne, Germany
| | - Priyanka Maiti
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, Cologne, Germany
| | - Tim König
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Institute for Genetics, University of Cologne, Cologne, Germany
| | - Alexandra Kukat
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, Cologne, Germany
| | - Aleksandra Trifunovic
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|
106
|
Kinnersley B, Kamatani Y, Labussière M, Wang Y, Galan P, Mokhtari K, Delattre JY, Gousias K, Schramm J, Schoemaker MJ, Swerdlow A, Fleming SJ, Herms S, Heilmann S, Nöthen MM, Simon M, Sanson M, Lathrop M, Houlston RS. Search for new loci and low-frequency variants influencing glioma risk by exome-array analysis. Eur J Hum Genet 2016; 24:717-24. [PMID: 26264438 PMCID: PMC4677454 DOI: 10.1038/ejhg.2015.170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 05/31/2015] [Accepted: 06/23/2015] [Indexed: 12/30/2022] Open
Abstract
To identify protein-altering variants (PAVs) for glioma, we analysed Illumina HumanExome BeadChip exome-array data on 1882 glioma cases and 8079 controls from three independent European populations. In addition to single-variant tests we incorporated information on the predicted functional consequences of PAVs and analysed sets of genes with a higher likelihood of having a role in glioma on the basis of the profile of somatic mutations documented by large-scale sequencing initiatives. Globally there was a strong relationship between effect size and PAVs predicted to be damaging (P=2.29 × 10(-49)); however, these variants which are most likely to impact on risk, are rare (MAF<5%). Although no single variant showed an association which was statistically significant at the genome-wide threshold a number represented promising associations - BRCA2:c.9976A>T, p.(Lys3326Ter), which has been shown to influence breast and lung cancer risk (odds ratio (OR)=2.3, P=4.00 × 10(-4) for glioblastoma (GBM)) and IDH2:c.782G>A, p.(Arg261His) (OR=3.21, P=7.67 × 10(-3), for non-GBM). Additionally, gene burden tests revealed a statistically significant association for HARS2 and risk of GBM (P=2.20 × 10(-6)). Genome scans of low-frequency PAVs represent a complementary strategy to identify disease-causing variants compared with scans based on tagSNPs. Strategies to lessen the multiple testing burden by restricting analysis to PAVs with higher priors affords an opportunity to maximise study power.
Collapse
Affiliation(s)
- Ben Kinnersley
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey, UK
| | | | | | - Yufei Wang
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Pilar Galan
- Université Paris 13 Sorbonne Paris Cité, Inserm (U557), Cnam, Bobigny, France
| | - Karima Mokhtari
- Sorbonne Universités UPMC Univ Paris 06, INSERM CNRS, Paris, France
- AP-HP, GH Pitié-Salpêtrière, Service de Neurologie Mazarin, Paris, France
| | - Jean-Yves Delattre
- Sorbonne Universités UPMC Univ Paris 06, INSERM CNRS, Paris, France
- AP-HP, GH Pitié-Salpêtrière, Service de Neurologie Mazarin, Paris, France
- Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | | | - Johannes Schramm
- Department of Neurosurgery, University of Bonn Medical Center, Bonn, Germany
| | - Minouk J Schoemaker
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Anthony Swerdlow
- Division of Breast Cancer Research, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Sarah J Fleming
- Centre for Epidemiology and Biostatistics, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Stefan Herms
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Biomedicine, Division of Medical Genetics, University of Basel, Basel, Switzerland
| | | | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Matthias Simon
- Department of Neurosurgery, University of Bonn Medical Center, Bonn, Germany
| | - Marc Sanson
- Sorbonne Universités UPMC Univ Paris 06, INSERM CNRS, Paris, France
- AP-HP, GH Pitié-Salpêtrière, Service de Neurologie Mazarin, Paris, France
- Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Mark Lathrop
- Foundation Jean Dausset-CEPH, Paris, France
- AP-HP, GH Pitié-Salpêtrière, Service de Neurologie Mazarin, Paris, France
- Department of Human Genetics, Génome Québec, McGill University, Montreal, QC, Canada
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey, UK
| |
Collapse
|
107
|
Demain LAM, Urquhart JE, O'Sullivan J, Williams SG, Bhaskar SS, Jenkinson EM, Lourenco CM, Heiberg A, Pearce SH, Shalev SA, Yue WW, Mackinnon S, Munro KJ, Newbury-Ecob R, Becker K, Kim MJ, O' Keefe RT, Newman WG. Expanding the genotypic spectrum of Perrault syndrome. Clin Genet 2016; 91:302-312. [PMID: 26970254 DOI: 10.1111/cge.12776] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/07/2016] [Accepted: 03/07/2016] [Indexed: 12/28/2022]
Abstract
Perrault syndrome is a rare autosomal recessive disorder characterized by sensorineural hearing loss (SNHL) in both sexes and primary ovarian insufficiency in 46, XX karyotype females. Biallelic variants in five genes are reported to be causative: HSD17B4, HARS2, LARS2, CLPP and C10orf2. Here we present eight families affected by Perrault syndrome. In five families we identified novel or previously reported variants in HSD17B4, LARS2, CLPP and C10orf2. The proband from each family was whole exome sequenced and variants confirmed by Sanger sequencing. A female was compound heterozygous for a known, p.(Gly16Ser) and novel, p.(Val82Phe) variant in D-bifunctional protein (HSD17B4). A family was homozygous for mitochondrial leucyl aminocyl tRNA synthetase (mtLeuRS) (LARS2) p.(Thr522Asn), previously associated with Perrault syndrome. A further family was compound heterozygous for mtLeuRS, p.(Thr522Asn) and a novel variant, p.(Met117Ile). Affected individuals with LARS2 variants had low frequency SNHL, a feature previously described in Perrault syndrome. A female with significant neurological disability was compound heterozygous for p.(Arg323Gln) and p.(Asn399Ser) variants in Twinkle (C10orf2). A male was homozygous for a novel variant in CLPP, p.(Cys144Arg). In three families there were no putative pathogenic variants in these genes confirming additional disease-causing genes remain unidentified. We have expanded the spectrum of disease-causing variants associated with Perrault syndrome.
Collapse
Affiliation(s)
- L A M Demain
- Manchester Centre for Genomic Medicine, Institute of Human Development, University of Manchester, Manchester, UK
| | - J E Urquhart
- Manchester Centre for Genomic Medicine, Institute of Human Development, University of Manchester, Manchester, UK
| | - J O'Sullivan
- Manchester Centre for Genomic Medicine, Institute of Human Development, University of Manchester, Manchester, UK
| | - S G Williams
- Manchester Centre for Genomic Medicine, Institute of Human Development, University of Manchester, Manchester, UK
| | - S S Bhaskar
- Manchester Centre for Genomic Medicine, Institute of Human Development, University of Manchester, Manchester, UK
| | - E M Jenkinson
- Manchester Centre for Genomic Medicine, Institute of Human Development, University of Manchester, Manchester, UK
| | - C M Lourenco
- Clinics Hospital of Ribeirao Preto, University of São Paulo, São Paulo, Brazil
| | - A Heiberg
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - S H Pearce
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK; and Endocrine Department, Newcastle upon Tyne Hospitals, Newcastle upon Tyne, UK
| | - S A Shalev
- The Institute for Genetics, Ha'Emek Medical Centre, Afula, Israel.,Rapapport faculty of Medicine, Technion Haifa, Haifa, Israel
| | - W W Yue
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - S Mackinnon
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - K J Munro
- School of Psychological Sciences, University of Manchester, Manchester, UK.,Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - R Newbury-Ecob
- Clinical Genetics, St Michaels Hospital, Bristol Genetics Laboratory Pathology Sciences, Southmead Hospital Bristol, Bristol, UK
| | - K Becker
- Medical Genetics Center, Munich, Germany
| | - M J Kim
- Department of Obstetrics and Gynecology, The Catholic University of Korea, Seoul, Korea
| | - R T O' Keefe
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - W G Newman
- Manchester Centre for Genomic Medicine, Institute of Human Development, University of Manchester, Manchester, UK.,Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
108
|
Grati M, Yan D, Raval MH, Walsh T, Ma Q, Chakchouk I, Kannan-Sundhari A, Mittal R, Masmoudi S, Blanton SH, Tekin M, King MC, Yengo CM, Liu XZ. MYO3A Causes Human Dominant Deafness and Interacts with Protocadherin 15-CD2 Isoform. Hum Mutat 2016; 37:481-7. [PMID: 26841241 DOI: 10.1002/humu.22961] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/15/2016] [Indexed: 01/10/2023]
Abstract
Hereditary hearing loss (HL) is characterized by both allelic and locus genetic heterogeneity. Both recessive and dominant forms of HL may be caused by different mutations in the same deafness gene. In a family with post-lingual progressive non-syndromic deafness, whole-exome sequencing of genomic DNA from five hearing-impaired relatives revealed a single variant, p.Gly488Glu (rs145970949:G>A) in MYO3A, co-segregating with HL as an autosomal dominant trait. This amino acid change, predicted to be pathogenic, alters a highly conserved residue in the motor domain of MYO3A. The mutation severely alters the ATPase activity and motility of the protein in vitro, and the mutant protein fails to accumulate in the filopodia tips in COS7 cells. However, the mutant MYO3A was able to reach the tips of organotypic inner ear culture hair cell stereocilia, raising the possibility of a local effect on positioning of the mechanoelectrical transduction (MET) complex at the stereocilia tips. To address this hypothesis, we investigated the interaction of MYO3A with the cytosolic tail of the integral tip-link protein protocadherin 15 (PCDH15), a core component of MET complex. Interestingly, we uncovered a novel interaction between MYO3A and PCDH15 shedding new light on the function of myosin IIIA at stereocilia tips.
Collapse
Affiliation(s)
- M'hamed Grati
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Manmeet H Raval
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Tom Walsh
- Departments of Medicine and Genome Sciences, University of Washington, Seattle, Washington
| | - Qi Ma
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Imen Chakchouk
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida.,Laboratoire Procédés de Criblage Moléculaire et Cellulaire, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisie
| | | | - Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Saber Masmoudi
- Laboratoire Procédés de Criblage Moléculaire et Cellulaire, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisie
| | - Susan H Blanton
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida.,Dr. John T. Macdonald Foundation, Department of Human Genetics, and John P. Hussman Institute for Human Genomics, University of Miami, Miami, Florida
| | - Mustafa Tekin
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida.,Dr. John T. Macdonald Foundation, Department of Human Genetics, and John P. Hussman Institute for Human Genomics, University of Miami, Miami, Florida
| | - Mary-Claire King
- Departments of Medicine and Genome Sciences, University of Washington, Seattle, Washington
| | - Christopher M Yengo
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Xue Zhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida.,Dr. John T. Macdonald Foundation, Department of Human Genetics, and John P. Hussman Institute for Human Genomics, University of Miami, Miami, Florida.,Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
109
|
Ognjenović J, Wu J, Matthies D, Baxa U, Subramaniam S, Ling J, Simonović M. The crystal structure of human GlnRS provides basis for the development of neurological disorders. Nucleic Acids Res 2016; 44:3420-31. [PMID: 26869582 PMCID: PMC4838373 DOI: 10.1093/nar/gkw082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/01/2016] [Indexed: 11/25/2022] Open
Abstract
Cytosolic glutaminyl-tRNA synthetase (GlnRS) is the singular enzyme responsible for translation of glutamine codons. Compound heterozygous mutations in GlnRS cause severe brain disorders by a poorly understood mechanism. Herein, we present crystal structures of the wild type and two pathological mutants of human GlnRS, which reveal, for the first time, the domain organization of the intact enzyme and the structure of the functionally important N-terminal domain (NTD). Pathological mutations mapping in the NTD alter the domain structure, and decrease catalytic activity and stability of GlnRS, whereas missense mutations in the catalytic domain induce misfolding of the enzyme. Our results suggest that the reduced catalytic efficiency and a propensity of GlnRS mutants to misfold trigger the disease development. This report broadens the spectrum of brain pathologies elicited by protein misfolding and provides a paradigm for understanding the role of mutations in aminoacyl-tRNA synthetases in neurological diseases.
Collapse
Affiliation(s)
- Jana Ognjenović
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Jiang Wu
- Department of Microbiology and Molecular Genetics, The University of Texas, Health Science Center at Houston, Houston, TX 77030, USA
| | - Doreen Matthies
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ulrich Baxa
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sriram Subramaniam
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jiqiang Ling
- Department of Microbiology and Molecular Genetics, The University of Texas, Health Science Center at Houston, Houston, TX 77030, USA
| | - Miljan Simonović
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
110
|
Khan NA, Govindaraj P, Meena AK, Thangaraj K. Mitochondrial disorders: challenges in diagnosis & treatment. Indian J Med Res 2016; 141:13-26. [PMID: 25857492 PMCID: PMC4405934 DOI: 10.4103/0971-5916.154489] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mitochondrial dysfunctions are known to be responsible for a number of heterogenous clinical presentations with multi-systemic involvement. Impaired oxidative phosphorylation leading to a decrease in cellular energy (ATP) production is the most important cause underlying these disorders. Despite significant progress made in the field of mitochondrial medicine during the last two decades, the molecular mechanisms underlying these disorders are not fully understood. Since the identification of first mitochondrial DNA (mtDNA) mutation in 1988, there has been an exponential rise in the identification of mtDNA and nuclear DNA mutations that are responsible for mitochondrial dysfunction and disease. Genetic complexity together with ever widening clinical spectrum associated with mitochondrial dysfunction poses a major challenge in diagnosis and treatment. Effective therapy has remained elusive till date and is mostly efficient in relieving symptoms. In this review, we discuss the important clinical and genetic features of mitochondrials disorders with special emphasis on diagnosis and treatment.
Collapse
Affiliation(s)
| | | | | | - Kumarasamy Thangaraj
- CSIR-Centre for Cellular & Molecular Biology, Nizam's Institute of Medical Sciences, Hyderabad, India
| |
Collapse
|
111
|
Soldà G, Caccia S, Robusto M, Chiereghin C, Castorina P, Ambrosetti U, Duga S, Asselta R. First independent replication of the involvement of LARS2 in Perrault syndrome by whole-exome sequencing of an Italian family. J Hum Genet 2015; 61:295-300. [PMID: 26657938 PMCID: PMC4817218 DOI: 10.1038/jhg.2015.149] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/09/2015] [Accepted: 11/10/2015] [Indexed: 11/24/2022]
Abstract
Perrault syndrome (MIM #233400) is a rare autosomal recessive disorder characterized by ovarian dysgenesis and primary ovarian insufficiency in females, and progressive hearing loss in both genders. Recently, mutations in five genes (HSD17B4, HARS2, CLPP, LARS2, and C10ORF2) were found to be responsible for Perrault syndrome, although they do not account for all cases of this genetically heterogeneous condition. We used whole-exome sequencing to identify pathogenic variants responsible for Perrault syndrome in an Italian pedigree with two affected siblings. Both patients were compound heterozygous for two novel missense variants within the mitochondrial leucyl-tRNA synthetase (LARS2), NM_015340.3:c.899C>T(p.Thr300Met) and c.1912G>A(p.Glu638Lys). Both variants co-segregated with the phenotype in the family. p.Thr300 and p.Glu638 are evolutionary conserved residues, and are located respectively within the editing domain and immediately before the catalytically important KMSKS motif. Homology modeling using as template the E. coli leucyl-tRNA synthetase provided further insights on the possible pathogenic effects of the identified variants. This represents the first independent replication of the involvement of LARS2 mutations in Perrault syndrome, contributing valuable information for the further understanding of this disease.
Collapse
Affiliation(s)
- Giulia Soldà
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Humanitas Clinical and Research Center, Milan, Italy
| | - Sonia Caccia
- Department of Biomedical and Clinical Sciences "Luigi Sacco", Università degli Studi di Milano - LITA Vialba, Milan, Italy
| | - Michela Robusto
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Humanitas Clinical and Research Center, Milan, Italy
| | - Chiara Chiereghin
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Humanitas Clinical and Research Center, Milan, Italy
| | - Pierangela Castorina
- UO Audiologia, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Umberto Ambrosetti
- UO Audiologia, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.,Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, Milan, Italy
| | - Stefano Duga
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Humanitas Clinical and Research Center, Milan, Italy
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Humanitas Clinical and Research Center, Milan, Italy
| |
Collapse
|
112
|
Fang P, Guo M. Evolutionary Limitation and Opportunities for Developing tRNA Synthetase Inhibitors with 5-Binding-Mode Classification. Life (Basel) 2015; 5:1703-25. [PMID: 26670257 PMCID: PMC4695845 DOI: 10.3390/life5041703] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 12/30/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are enzymes that catalyze the transfer of amino acids to their cognate tRNAs as building blocks for translation. Each of the aaRS families plays a pivotal role in protein biosynthesis and is indispensable for cell growth and survival. In addition, aaRSs in higher species have evolved important non-translational functions. These translational and non-translational functions of aaRS are attractive for developing antibacterial, antifungal, and antiparasitic agents and for treating other human diseases. The interplay between amino acids, tRNA, ATP, EF-Tu and non-canonical binding partners, had shaped each family with distinct pattern of key sites for regulation, with characters varying among species across the path of evolution. These sporadic variations in the aaRSs offer great opportunity to target these essential enzymes for therapy. Up to this day, growing numbers of aaRS inhibitors have been discovered and developed. Here, we summarize the latest developments and structural studies of aaRS inhibitors, and classify them with distinct binding modes into five categories.
Collapse
Affiliation(s)
- Pengfei Fang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA.
| | - Min Guo
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|
113
|
Abstract
As age at pubertal onset declines and age at first pregnancy increases, the mechanisms that regulate female reproductive lifespan become increasingly relevant to population health. The timing of menarche and menopause can have profound effects not only on fertility but also on the risk of diseases such as type 2 diabetes mellitus, cardiovascular disease and breast cancer. Genetic studies have identified dozens of highly penetrant rare mutations associated with reproductive disorders, and also ∼175 common genetic variants associated with the timing of puberty or menopause. These findings, alongside other functional studies, have highlighted a diverse range of mechanisms involved in reproductive ageing, implicating core biological processes such as cell cycle regulation and energy homeostasis. The aim of this article is to review the contribution of such genetic findings to our understanding of the molecular regulation of reproductive timing, as well as the biological basis of the epidemiological links between reproductive ageing and disease risk.
Collapse
Affiliation(s)
- John R.B. Perry
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, CB2 0QQ
| | - Anna Murray
- Genetics of Complex Traits, University of Exeter Medical School, RILD Level 3, Royal Devon & Exeter Hospital, Barrack Road, Exeter, EX2 5DW
| | - Felix R Day
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, CB2 0QQ
| | - Ken K Ong
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, CB2 0QQ
- Department of Paediatrics, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ
| |
Collapse
|
114
|
Riley LG, Rudinger-Thirion J, Schmitz-Abe K, Thorburn DR, Davis RL, Teo J, Arbuckle S, Cooper ST, Campagna DR, Frugier M, Markianos K, Sue CM, Fleming MD, Christodoulou J. LARS2 Variants Associated with Hydrops, Lactic Acidosis, Sideroblastic Anemia, and Multisystem Failure. JIMD Rep 2015; 28:49-57. [PMID: 26537577 DOI: 10.1007/8904_2015_515] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/08/2015] [Accepted: 10/08/2015] [Indexed: 01/22/2023] Open
Abstract
Pathogenic variants in mitochondrial aminoacyl-tRNA synthetases result in a broad range of mitochondrial respiratory chain disorders despite their shared role in mitochondrial protein synthesis. LARS2 encodes the mitochondrial leucyl-tRNA synthetase, which attaches leucine to its cognate tRNA. Sequence variants in LARS2 have previously been associated with Perrault syndrome, characterized by premature ovarian failure and hearing loss (OMIM #615300). In this study, we report variants in LARS2 that are associated with a severe multisystem metabolic disorder. The proband was born prematurely with severe lactic acidosis, hydrops, and sideroblastic anemia. She had multisystem complications with hyaline membrane disease, impaired cardiac function, a coagulopathy, pulmonary hypertension, and progressive renal disease and succumbed at 5 days of age. Whole exome sequencing of patient DNA revealed compound heterozygous variants in LARS2 (c.1289C>T; p.Ala430Val and c.1565C>A; p.Thr522Asn). The c.1565C>A (p.Thr522Asn) LARS2 variant has previously been associated with Perrault syndrome and both identified variants are predicted to be damaging (SIFT, PolyPhen). Muscle and liver samples from the proband did not display marked mitochondrial respiratory chain enzyme deficiency. Immunoblotting of patient muscle and liver showed LARS2 levels were reduced in liver and complex I protein levels were reduced in patient muscle and liver. Aminoacylation assays revealed p.Ala430Val LARS2 had an 18-fold loss of catalytic efficiency and p.Thr522Asn a 9-fold loss compared to wild-type LARS2. We suggest that the identified LARS2 variants are responsible for the severe multisystem clinical phenotype seen in this baby and that mutations in LARS2 can result in variable phenotypes.
Collapse
Affiliation(s)
- Lisa G Riley
- Genetic Metabolic Disorders Research Unit, Kids Research Institute, Children's Hospital at Westmead, Locked Bag 4001, Westmead, NSW, 2145, Australia.
- Discipline of Paediatrics & Child Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia.
| | - Joëlle Rudinger-Thirion
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France
| | - Klaus Schmitz-Abe
- Division of Genetics and Genomics, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - David R Thorburn
- Department of Paediatrics, Murdoch Children's Research Institute and Victorian Clinical Genetics Services, Royal Children's Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Ryan L Davis
- Department of Neurogenetics, Kolling Institute of Medical Research, University of Sydney and Royal North Shore Hospital, Sydney, NSW, Australia
| | - Juliana Teo
- Department of Haematology, Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Susan Arbuckle
- Department of Pathology, Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Sandra T Cooper
- Discipline of Paediatrics & Child Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Institute for Neuroscience and Muscle Research, Kids Research Institute, Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Dean R Campagna
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Magali Frugier
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France
| | - Kyriacos Markianos
- Division of Genetics and Genomics, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
| | - Carolyn M Sue
- Department of Neurogenetics, Kolling Institute of Medical Research, University of Sydney and Royal North Shore Hospital, Sydney, NSW, Australia
| | - Mark D Fleming
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - John Christodoulou
- Genetic Metabolic Disorders Research Unit, Kids Research Institute, Children's Hospital at Westmead, Locked Bag 4001, Westmead, NSW, 2145, Australia
- Discipline of Paediatrics & Child Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Discipline of Genetic Medicine, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
115
|
Vanlander AV, Menten B, Smet J, De Meirleir L, Sante T, De Paepe B, Seneca S, Pearce SF, Powell CA, Vergult S, Michotte A, De Latter E, Vantomme L, Minczuk M, Van Coster R. Two siblings with homozygous pathogenic splice-site variant in mitochondrial asparaginyl-tRNA synthetase (NARS2). Hum Mutat 2015; 36:222-31. [PMID: 25385316 DOI: 10.1002/humu.22728] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/28/2014] [Indexed: 12/13/2022]
Abstract
A homozygous missense mutation (c.822G>C) was found in the gene encoding the mitochondrial asparaginyl-tRNA synthetase (NARS2) in two siblings born to consanguineous parents. These siblings presented with different phenotypes: one had mild intellectual disability and epilepsy in childhood, whereas the other had severe myopathy. Biochemical analysis of the oxidative phosphorylation (OXPHOS) complexes in both siblings revealed a combined complex I and IV deficiency in skeletal muscle. In-gel activity staining after blue native-polyacrylamide gel electrophoresis confirmed the decreased activity of complex I and IV, and, in addition, showed the presence of complex V subcomplexes. Considering the consanguineous descent, homozygosity mapping and whole-exome sequencing were combined revealing the presence of one single missense mutation in the shared homozygous region. The c.822G>C variant affects the 3' splice site of exon 7, leading to skipping of the whole exon 7 and a part of exon 8 in the NARS2 mRNA. In EBV-transformed lymphoblasts, a specific decrease in the amount of charged mt-tRNA(Asn) was demonstrated as compared with controls. This confirmed the pathogenic nature of the variant. To conclude, the reported variant in NARS2 results in a combined OXPHOS complex deficiency involving complex I and IV, making NARS2 a new member of disease-associated aaRS2.
Collapse
Affiliation(s)
- Arnaud V Vanlander
- Department of Pediatric Neurology and Metabolism, Ghent University Hospital, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Wang F, Huang GD, Tian H, Zhong YB, Shi HJ, Li Z, Zhang XS, Wang H, Sun F. Point mutations in KAL1 and the mitochondrial gene MT-tRNA(cys) synergize to produce Kallmann syndrome phenotype. Sci Rep 2015; 5:13050. [PMID: 26278626 PMCID: PMC4642522 DOI: 10.1038/srep13050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 07/14/2015] [Indexed: 11/09/2022] Open
Abstract
Kallmann syndrome (KS) is an inherited developmental disorder defined as the association of hypogonadotropic hypogonadism and anosmia or hyposmia. KS has been shown to be a genetically heterogeneous disease with different modes of inheritance. However, variants in any of the causative genes identified so far are only found in approximately one third of KS patients, thus indicating that other genes or pathways remain to be discovered. Here, we report a large Han Chinese family with inherited KS which harbors two novel variants, KAL1 c.146G>T (p.Cys49Phe) and mitochondrial tRNA(cys) (m.5800A>G). Although two variants can't exert obvious effects on the migration of GnRH neurons, they show the synergistic effect, which can account for the occurrence of the disorder in this family. Furthermore, the disturbance of the mitochondrial cysteinyl-tRNA pathway can significantly affect the migration of GnRH cells in vitro and in vivo by influencing the chemomigration function of anosmin-1. Our work highlights a new mode of inheritance underlay the genetic etiology of KS and provide valuable clues to understand the disease development.
Collapse
Affiliation(s)
- Fei Wang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guo-Dong Huang
- Center for Circadian Clocks, Medical College, Soochow University, Suzhou 215123, Jiangsu, China.,School of Biology &Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Hui Tian
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ying-Bin Zhong
- Center for Circadian Clocks, Medical College, Soochow University, Suzhou 215123, Jiangsu, China.,School of Biology &Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Hui-Juan Shi
- National Population and Family Planning Key Laboratory of Contraceptive Drugs and Devices, Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Zheng Li
- Department of Urology, Shanghai Human Sperm Bank, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Xian-Sheng Zhang
- Departments of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| | - Han Wang
- Center for Circadian Clocks, Medical College, Soochow University, Suzhou 215123, Jiangsu, China.,School of Biology &Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Fei Sun
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
117
|
Qin Y, Jiao X, Simpson JL, Chen ZJ. Genetics of primary ovarian insufficiency: new developments and opportunities. Hum Reprod Update 2015; 21:787-808. [PMID: 26243799 PMCID: PMC4594617 DOI: 10.1093/humupd/dmv036] [Citation(s) in RCA: 323] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/09/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Primary ovarian insufficiency (POI) is characterized by marked heterogeneity, but with a significant genetic contribution. Identifying exact causative genes has been challenging, with many discoveries not replicated. It is timely to take stock of the field, outlining the progress made, framing the controversies and anticipating future directions in elucidating the genetics of POI. METHODS A search for original articles published up to May 2015 was performed using PubMed and Google Scholar, identifying studies on the genetic etiology of POI. Studies were included if chromosomal analysis, candidate gene screening and a genome-wide study were conducted. Articles identified were restricted to English language full-text papers. RESULTS Chromosomal abnormalities have long been recognized as a frequent cause of POI, with a currently estimated prevalence of 10-13%. Using the traditional karyotype methodology, monosomy X, mosaicism, X chromosome deletions and rearrangements, X-autosome translocations, and isochromosomes have been detected. Based on candidate gene studies, single gene perturbations unequivocally having a deleterious effect in at least one population include Bone morphogenetic protein 15 (BMP15), Progesterone receptor membrane component 1 (PGRMC1), and Fragile X mental retardation 1 (FMR1) premutation on the X chromosome; Growth differentiation factor 9 (GDF9), Folliculogenesis specific bHLH transcription factor (FIGLA), Newborn ovary homeobox gene (NOBOX), Nuclear receptor subfamily 5, group A, member 1 (NR5A1) and Nanos homolog 3 (NANOS3) seem likely as well, but mostly being found in no more than 1-2% of a single population studied. Whole genome approaches have utilized genome-wide association studies (GWAS) to reveal loci not predicted on the basis of a candidate gene, but it remains difficult to locate causative genes and susceptible loci were not always replicated. Cytogenomic methods (array CGH) have identified other regions of interest but studies have not shown consistent results, the resolution of arrays has varied and replication is uncommon. Whole-exome sequencing in non-syndromic POI kindreds has only recently begun, revealing mutations in the Stromal antigen 3 (STAG3), Synaptonemal complex central element 1 (SYCE1), minichromosome maintenance complex component 8 and 9 (MCM8, MCM9) and ATP-dependent DNA helicase homolog (HFM1) genes. Given the slow progress in candidate-gene analysis and relatively small sample sizes available for GWAS, family-based whole exome and whole genome sequencing appear to be the most promising approaches for detecting potential genes responsible for POI. CONCLUSION Taken together, the cytogenetic, cytogenomic (array CGH) and exome sequencing approaches have revealed a genetic causation in ∼20-25% of POI cases. Uncovering the remainder of the causative genes will be facilitated not only by whole genome approaches involving larger cohorts in multiple populations but also incorporating environmental exposures and exploring signaling pathways in intragenic and intergenic regions that point to perturbations in regulatory genes and networks.
Collapse
Affiliation(s)
- Yingying Qin
- Center for Reproductive Medicine, Shandong Provincial Hospital, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory for Reproductive Endocrinology of Ministry of Education, Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan 250001, China
| | - Xue Jiao
- Center for Reproductive Medicine, Shandong Provincial Hospital, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory for Reproductive Endocrinology of Ministry of Education, Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan 250001, China
| | - Joe Leigh Simpson
- Research and Global Programs March of Dimes Foundation, White Plains, NY, USA Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong Provincial Hospital, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory for Reproductive Endocrinology of Ministry of Education, Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan 250001, China Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| |
Collapse
|
118
|
McMillan HJ, Humphreys P, Smith A, Schwartzentruber J, Chakraborty P, Bulman DE, Beaulieu CL, Majewski J, Boycott KM, Geraghty MT. Congenital Visual Impairment and Progressive Microcephaly Due to Lysyl-Transfer Ribonucleic Acid (RNA) Synthetase (KARS) Mutations: The Expanding Phenotype of Aminoacyl-Transfer RNA Synthetase Mutations in Human Disease. J Child Neurol 2015; 30:1037-43. [PMID: 25330800 DOI: 10.1177/0883073814553272] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 09/07/2014] [Indexed: 12/20/2022]
Abstract
Aminoacyl-transfer ribonucleic acid (RNA) synthetases (ARSs) are a group of enzymes required for the first step of protein translation. Each aminoacyl-transfer RNA synthetase links a specific amino acid to its corresponding transfer RNA component within the cytoplasm, mitochondria, or both. Mutations in ARSs have been linked to a growing number of diseases. Lysyl-transfer RNA synthetase (KARS) links the amino acid lysine to its cognate transfer RNA. We report 2 siblings with severe infantile visual loss, progressive microcephaly, developmental delay, seizures, and abnormal subcortical white matter. Exome sequencing identified mutations within the KARS gene (NM_005548.2):c.1312C>T; p.Arg438Trp and c.1573G>A; p.Glu525Lys occurring within a highly conserved region of the catalytic domain. Our patients' phenotype is remarkably similar to a phenotype recently reported in glutaminyl-transfer RNA synthetase (QARS), another bifunctional ARS gene. This finding expands the phenotypic spectrum associated with mutations in KARS and draws attention to aminoacyl-transfer RNA synthetase as a group of enzymes that are increasingly being implicated in human disease.
Collapse
Affiliation(s)
- Hugh J McMillan
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Peter Humphreys
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Amanda Smith
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Pranesh Chakraborty
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Dennis E Bulman
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Chandree L Beaulieu
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Jacek Majewski
- Department of Human Genetics, McGill University, Montréal, Quebec, Canada
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael T Geraghty
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
119
|
|
120
|
Ahmed S, Jelani M, Alrayes N, Mohamoud HSA, Almramhi MM, Anshasi W, Ahmed NAB, Wang J, Nasir J, Al-Aama JY. Exome analysis identified a novel missense mutation in the CLPP gene in a consanguineous Saudi family expanding the clinical spectrum of Perrault Syndrome type-3. J Neurol Sci 2015; 353:149-54. [DOI: 10.1016/j.jns.2015.04.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/20/2015] [Accepted: 04/23/2015] [Indexed: 11/15/2022]
|
121
|
Bayram Y, Gulsuner S, Guran T, Abaci A, Yesil G, Gulsuner HU, Atay Z, Pierce SB, Gambin T, Lee M, Turan S, Bober E, Atik MM, Walsh T, Karaca E, Pehlivan D, Jhangiani SN, Muzny D, Bereket A, Buyukgebiz A, Boerwinkle E, Gibbs RA, King MC, Lupski JR. Homozygous loss-of-function mutations in SOHLH1 in patients with nonsyndromic hypergonadotropic hypogonadism. J Clin Endocrinol Metab 2015; 100:E808-14. [PMID: 25774885 PMCID: PMC4422898 DOI: 10.1210/jc.2015-1150] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Hypergonadotropic hypogonadism presents in females with delayed or arrested puberty, primary or secondary amenorrhea due to gonadal dysfunction, and is further characterized by elevated gonadotropins and low sex steroids. Chromosomal aberrations and various specific gene defects can lead to hypergonadotropic hypogonadism. Responsible genes include those with roles in gonadal development or maintenance, sex steroid synthesis, or end-organ resistance to gonadotropins. Identification of novel causative genes in this disorder will contribute to our understanding of the regulation of human reproductive function. OBJECTIVES The aim of this study was to identify and report the gene responsible for autosomal-recessive hypergonadotropic hypogonadism in two unrelated families. DESIGN AND PARTICIPANTS Clinical evaluation and whole-exome sequencing were performed in two pairs of sisters with nonsyndromic hypergonadotropic hypogonadism from two unrelated families. RESULTS Exome sequencing analysis revealed two different truncating mutations in the same gene: SOHLH1 c.705delT (p.Pro235fs*4) and SOHLH1 c.27C>G (p.Tyr9stop). Both mutations were unique to the families and segregation was consistent with Mendelian expectations for an autosomal-recessive mode of inheritance. CONCLUSIONS Sohlh1 was known from previous mouse studies to be a transcriptional regulator that functions in the maintenance and survival of primordial ovarian follicles, but loss-of-function mutations in human females have not been reported. Our results provide evidence that homozygous-truncating mutations in SOHLH1 cause female nonsyndromic hypergonadotropic hypogonadism.
Collapse
Affiliation(s)
- Yavuz Bayram
- Department of Molecular and Human Genetics (Y.B., T.Ga., M.M.A., E.K., D.P., J.R.L.), Baylor College of Medicine, Houston, Texas 77030; Department of Medicine, Division of Medical Genetics (S.G., H.U.G., S.B.P., M.L., T.W., M.-C.K.), University of Washington, Seattle, Washington 98195; Department of Pediatric Endocrinology and Diabetes (T.Gu., Z.A., S.T., A.Be.), Marmara University Hospital, Istanbul, Turkey 34899; Department of Pediatric Endocrinology (A.Ab., E.Bob., A.Bu.), Dokuz Eylül University Faculty of Medicine, Izmir, Turkey 35340; Department of Medical Genetics (G.Y.), Bezmialem University, Istanbul, Turkey 34093; Human Genome Sequencing Center (S.N.J., D.M., E.Boe., R.A.G.), Baylor College of Medicine, Houston, Texas 77030; Human Genetics Center (E.Boe.), University of Texas Health Science Center at Houston, Houston, Texas 77030; Department of Pediatrics (J.R.L.), Baylor College of Medicine, Houston, Texas 77030; and Texas Children's Hospital (J.R.L.), Houston, Texas 77030
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Gao X, Su Y, Chen YL, Han MY, Yuan YY, Xu JC, Xin F, Zhang MG, Huang SS, Wang GJ, Kang DY, Guan LP, Zhang JG, Dai P. Identification of Two Novel Compound Heterozygous PTPRQ Mutations Associated with Autosomal Recessive Hearing Loss in a Chinese Family. PLoS One 2015; 10:e0124757. [PMID: 25919374 PMCID: PMC4412678 DOI: 10.1371/journal.pone.0124757] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 03/05/2015] [Indexed: 11/25/2022] Open
Abstract
Mutations in PTPRQ are associated with deafness in humans due to defects of stereocilia in hair cells. Using whole exome sequencing, we identified responsible gene of family 1572 with autosomal recessively non-syndromic hearing loss (ARNSHL). We also used DNA from 74 familial patients with ARNSHL and 656 ethnically matched control chromosomes to perform extended variant analysis. We identified two novel compound heterozygous missense mutations, c. 3125 A>G p.D1042G (maternal allele) and c.5981 A>G p.E1994G (paternal allele), in the PTPRQ gene, as the cause of recessively inherited sensorineural hearing loss in family 1572. Both variants co-segregated with hearing loss phenotype in family 1572, but were absent in 74 familial patients. Heterozygosity for c. 3125 A>G was identified in two samples from unaffected Chinese individuals (656 chromosomes). Therefore, the hearing loss in this family was caused by two novel compound heterozygous mutations in PTPRQ.
Collapse
Affiliation(s)
- Xue Gao
- Department of Otorhinolaryngology, Head and Neck Surgery, PLA General Hospital, Beijing, P. R. China
- Department of Otolaryngology, Hainan Branch of PLA General Hospital, Sanya, P. R. China
- Department of Otorhinolaryngology, the Second Artillery General Hospital, Beijing, P. R. China
| | - Yu Su
- Department of Otorhinolaryngology, Head and Neck Surgery, PLA General Hospital, Beijing, P. R. China
- Department of Otolaryngology, Hainan Branch of PLA General Hospital, Sanya, P. R. China
| | | | - Ming-Yu Han
- Department of Otorhinolaryngology, Head and Neck Surgery, PLA General Hospital, Beijing, P. R. China
| | - Yong-Yi Yuan
- Department of Otorhinolaryngology, Head and Neck Surgery, PLA General Hospital, Beijing, P. R. China
- Department of Otolaryngology, Hainan Branch of PLA General Hospital, Sanya, P. R. China
| | - Jin-Cao Xu
- Department of Otorhinolaryngology, the Second Artillery General Hospital, Beijing, P. R. China
| | - Feng Xin
- Department of Otorhinolaryngology, Head and Neck Surgery, PLA General Hospital, Beijing, P. R. China
| | - Mei-Guang Zhang
- Department of Otorhinolaryngology, the Second Artillery General Hospital, Beijing, P. R. China
| | - Sha-Sha Huang
- Department of Otorhinolaryngology, Head and Neck Surgery, PLA General Hospital, Beijing, P. R. China
| | - Guo-Jian Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, PLA General Hospital, Beijing, P. R. China
| | - Dong-Yang Kang
- Department of Otorhinolaryngology, Head and Neck Surgery, PLA General Hospital, Beijing, P. R. China
| | | | | | - Pu Dai
- Department of Otorhinolaryngology, Head and Neck Surgery, PLA General Hospital, Beijing, P. R. China
- Department of Otolaryngology, Hainan Branch of PLA General Hospital, Sanya, P. R. China
- * E-mail:
| |
Collapse
|
123
|
Motley WW, Griffin LB, Mademan I, Baets J, De Vriendt E, De Jonghe P, Antonellis A, Jordanova A, Scherer SS. A novel AARS mutation in a family with dominant myeloneuropathy. Neurology 2015; 84:2040-7. [PMID: 25904691 DOI: 10.1212/wnl.0000000000001583] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 02/10/2015] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE To determine the genetic cause of neurodegeneration in a family with myeloneuropathy. METHODS We studied 5 siblings in a family with a mild, dominantly inherited neuropathy by clinical examination and electrophysiology. One patient had a sural nerve biopsy. After ruling out common genetic causes of axonal Charcot-Marie-Tooth disease, we sequenced 3 tRNA synthetase genes associated with neuropathy. RESULTS All affected family members had a mild axonal neuropathy, and 3 of 4 had lower extremity hyperreflexia, evidence of a superimposed myelopathy. A nerve biopsy showed evidence of chronic axonal loss. All affected family members had a heterozygous missense mutation c.304G>C (p.Gly102Arg) in the alanyl-tRNA synthetase (AARS) gene; this allele was not identified in unaffected individuals or control samples. The equivalent change in the yeast ortholog failed to complement a strain of yeast lacking AARS function, suggesting that the mutation is damaging. CONCLUSION A novel mutation in AARS causes a mild myeloneuropathy, a novel phenotype for patients with mutations in one of the tRNA synthetase genes.
Collapse
Affiliation(s)
- William W Motley
- From the Department of Neurology (W.W.M., S.S.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; the Cellular and Molecular Biology Program (L.B.G., A.A.), Medical Science Training Program (L.B.G.), and the Departments of Human Genetics (A.A.) and Neurology (A.A.), University of Michigan Medical School, Ann Arbor; the Neurogenetics Group (I.M., J.B., P.D.J.) and the Molecular Neurogenomics Group (E.D.V., A.J.), VIB, Department of Molecular Genetics, University of Antwerp; the Neurogenetics Laboratory (I.M., J.B., E.D.V., P.D.J., A.J.), Institute Born-Bunge, University of Antwerp; and the Department of Neurology (J.B., P.D.J.), Antwerp University Hospital, Belgium
| | - Laurie B Griffin
- From the Department of Neurology (W.W.M., S.S.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; the Cellular and Molecular Biology Program (L.B.G., A.A.), Medical Science Training Program (L.B.G.), and the Departments of Human Genetics (A.A.) and Neurology (A.A.), University of Michigan Medical School, Ann Arbor; the Neurogenetics Group (I.M., J.B., P.D.J.) and the Molecular Neurogenomics Group (E.D.V., A.J.), VIB, Department of Molecular Genetics, University of Antwerp; the Neurogenetics Laboratory (I.M., J.B., E.D.V., P.D.J., A.J.), Institute Born-Bunge, University of Antwerp; and the Department of Neurology (J.B., P.D.J.), Antwerp University Hospital, Belgium
| | - Inès Mademan
- From the Department of Neurology (W.W.M., S.S.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; the Cellular and Molecular Biology Program (L.B.G., A.A.), Medical Science Training Program (L.B.G.), and the Departments of Human Genetics (A.A.) and Neurology (A.A.), University of Michigan Medical School, Ann Arbor; the Neurogenetics Group (I.M., J.B., P.D.J.) and the Molecular Neurogenomics Group (E.D.V., A.J.), VIB, Department of Molecular Genetics, University of Antwerp; the Neurogenetics Laboratory (I.M., J.B., E.D.V., P.D.J., A.J.), Institute Born-Bunge, University of Antwerp; and the Department of Neurology (J.B., P.D.J.), Antwerp University Hospital, Belgium
| | - Jonathan Baets
- From the Department of Neurology (W.W.M., S.S.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; the Cellular and Molecular Biology Program (L.B.G., A.A.), Medical Science Training Program (L.B.G.), and the Departments of Human Genetics (A.A.) and Neurology (A.A.), University of Michigan Medical School, Ann Arbor; the Neurogenetics Group (I.M., J.B., P.D.J.) and the Molecular Neurogenomics Group (E.D.V., A.J.), VIB, Department of Molecular Genetics, University of Antwerp; the Neurogenetics Laboratory (I.M., J.B., E.D.V., P.D.J., A.J.), Institute Born-Bunge, University of Antwerp; and the Department of Neurology (J.B., P.D.J.), Antwerp University Hospital, Belgium
| | - Els De Vriendt
- From the Department of Neurology (W.W.M., S.S.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; the Cellular and Molecular Biology Program (L.B.G., A.A.), Medical Science Training Program (L.B.G.), and the Departments of Human Genetics (A.A.) and Neurology (A.A.), University of Michigan Medical School, Ann Arbor; the Neurogenetics Group (I.M., J.B., P.D.J.) and the Molecular Neurogenomics Group (E.D.V., A.J.), VIB, Department of Molecular Genetics, University of Antwerp; the Neurogenetics Laboratory (I.M., J.B., E.D.V., P.D.J., A.J.), Institute Born-Bunge, University of Antwerp; and the Department of Neurology (J.B., P.D.J.), Antwerp University Hospital, Belgium
| | - Peter De Jonghe
- From the Department of Neurology (W.W.M., S.S.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; the Cellular and Molecular Biology Program (L.B.G., A.A.), Medical Science Training Program (L.B.G.), and the Departments of Human Genetics (A.A.) and Neurology (A.A.), University of Michigan Medical School, Ann Arbor; the Neurogenetics Group (I.M., J.B., P.D.J.) and the Molecular Neurogenomics Group (E.D.V., A.J.), VIB, Department of Molecular Genetics, University of Antwerp; the Neurogenetics Laboratory (I.M., J.B., E.D.V., P.D.J., A.J.), Institute Born-Bunge, University of Antwerp; and the Department of Neurology (J.B., P.D.J.), Antwerp University Hospital, Belgium
| | - Anthony Antonellis
- From the Department of Neurology (W.W.M., S.S.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; the Cellular and Molecular Biology Program (L.B.G., A.A.), Medical Science Training Program (L.B.G.), and the Departments of Human Genetics (A.A.) and Neurology (A.A.), University of Michigan Medical School, Ann Arbor; the Neurogenetics Group (I.M., J.B., P.D.J.) and the Molecular Neurogenomics Group (E.D.V., A.J.), VIB, Department of Molecular Genetics, University of Antwerp; the Neurogenetics Laboratory (I.M., J.B., E.D.V., P.D.J., A.J.), Institute Born-Bunge, University of Antwerp; and the Department of Neurology (J.B., P.D.J.), Antwerp University Hospital, Belgium
| | - Albena Jordanova
- From the Department of Neurology (W.W.M., S.S.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; the Cellular and Molecular Biology Program (L.B.G., A.A.), Medical Science Training Program (L.B.G.), and the Departments of Human Genetics (A.A.) and Neurology (A.A.), University of Michigan Medical School, Ann Arbor; the Neurogenetics Group (I.M., J.B., P.D.J.) and the Molecular Neurogenomics Group (E.D.V., A.J.), VIB, Department of Molecular Genetics, University of Antwerp; the Neurogenetics Laboratory (I.M., J.B., E.D.V., P.D.J., A.J.), Institute Born-Bunge, University of Antwerp; and the Department of Neurology (J.B., P.D.J.), Antwerp University Hospital, Belgium
| | - Steven S Scherer
- From the Department of Neurology (W.W.M., S.S.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; the Cellular and Molecular Biology Program (L.B.G., A.A.), Medical Science Training Program (L.B.G.), and the Departments of Human Genetics (A.A.) and Neurology (A.A.), University of Michigan Medical School, Ann Arbor; the Neurogenetics Group (I.M., J.B., P.D.J.) and the Molecular Neurogenomics Group (E.D.V., A.J.), VIB, Department of Molecular Genetics, University of Antwerp; the Neurogenetics Laboratory (I.M., J.B., E.D.V., P.D.J., A.J.), Institute Born-Bunge, University of Antwerp; and the Department of Neurology (J.B., P.D.J.), Antwerp University Hospital, Belgium.
| |
Collapse
|
124
|
Horiguchi T, Fuka M, Fujisawa K, Tanimura A, Miyoshi K, Murakami R, Noma T. Adenylate kinase 2 deficiency limits survival and regulates various genes during larval stages of Drosophila melanogaster. THE JOURNAL OF MEDICAL INVESTIGATION 2015; 61:137-50. [PMID: 24705759 DOI: 10.2152/jmi.61.137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Adenylate kinase isozyme 2 (AK2) is located in mitochondrial intermembrane space and regulates energy metabolism by reversibly converting ATP and AMP to 2 ADPs. We previously demonstrated that disruption of the Drosophila melanogaster AK2 gene (Dak2) resulted in growth arrest during the larval stage and subsequent death. Two other groups found that human AK2 mutations cause reticular dysgenesis, a form of severe combined immunodeficiency (SCID) that is associated with severe hematopoietic defects and sensorineural deafness. However, the mechanisms underlying differential outcomes of AK2 deficiency in Drosophila and human systems remain unknown. In this study, effects of tissue-specific inactivation of the Dak2 gene on Drosophila development were analyzed using RNAi-mediated gene knockdown. In addition, to investigate the roles of AK2 in the regulation of gene expression during development, microarray analysis was performed using RNA from first and second instar larvae of Dak2-deficient mutant and wild-type D. melanogaster. Knockdown of Dak2 in all germ layers caused cessation of growth and subsequent death of flies. Microarray analysis revealed that Dak2 deficiency downregulates various genes, particularly those involved in the proteasomal function and in mitochondrial translation machinery. These data indicate that adenine nucleotide interconversion by Dak2 is crucial for developmental processes of Drosophila melanogaster.
Collapse
Affiliation(s)
- Taigo Horiguchi
- Department of Molecular Biology, Institute of Health Biosciences, the University of Tokushima Graduate School
| | | | | | | | | | | | | |
Collapse
|
125
|
Webb BD, Wheeler PG, Hagen JJ, Cohen N, Linderman MD, Diaz GA, Naidich TP, Rodenburg RJ, Houten SM, Schadt EE. Novel, compound heterozygous, single-nucleotide variants in MARS2 associated with developmental delay, poor growth, and sensorineural hearing loss. Hum Mutat 2015; 36:587-92. [PMID: 25754315 DOI: 10.1002/humu.22781] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 02/24/2015] [Indexed: 11/08/2022]
Abstract
Novel, single-nucleotide mutations were identified in the mitochondrial methionyl amino-acyl tRNA synthetase gene (MARS2) via whole exome sequencing in two affected siblings with developmental delay, poor growth, and sensorineural hearing loss.We show that compound heterozygous mutations c.550C>T:p.Gln 184* and c.424C>T:p.Arg142Trp in MARS2 lead to decreased MARS2 protein levels in patient lymphoblasts. Analysis of respiratory complex enzyme activities in patient fibroblasts revealed decreased complex I and IV activities. Immunoblotting of patient fibroblast and lymphoblast samples revealed reduced protein levels of NDUFB8 and COXII, representing complex I and IV, respectively. Additionally, overexpression of wild-type MARS2 in patient fibroblasts increased NDUFB8 and COXII protein levels. These findings suggest that recessive single-nucleotide mutations in MARS2 are causative for a new mitochondrial translation deficiency disorder with a primary phenotype including developmental delay and hypotonia. Identification of additional patients with single-nucleotide mutations in MARS2 is necessary to determine if pectus carinatum is also a consistent feature of this syndrome.
Collapse
Affiliation(s)
- Bryn D Webb
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York.,Icahn Institute for Genomics and Multi-Scale Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Patricia G Wheeler
- Department of Pediatrics, Division of Genetics, Nemours Children's Clinic, Orlando, Florida
| | - Jacob J Hagen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ninette Cohen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Michael D Linderman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Icahn Institute for Genomics and Multi-Scale Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - George A Diaz
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Thomas P Naidich
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Richard J Rodenburg
- Department of Pediatrics, Nijmegen Center for Mitochondrial Disorders, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sander M Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Icahn Institute for Genomics and Multi-Scale Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Icahn Institute for Genomics and Multi-Scale Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
126
|
Simons C, Griffin LB, Helman G, Golas G, Pizzino A, Bloom M, Murphy JLP, Crawford J, Evans SH, Topper S, Whitehead MT, Schreiber JM, Chapman KA, Tifft C, Lu KB, Gamper H, Shigematsu M, Taft RJ, Antonellis A, Hou YM, Vanderver A. Loss-of-function alanyl-tRNA synthetase mutations cause an autosomal-recessive early-onset epileptic encephalopathy with persistent myelination defect. Am J Hum Genet 2015; 96:675-81. [PMID: 25817015 DOI: 10.1016/j.ajhg.2015.02.012] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/19/2015] [Indexed: 11/30/2022] Open
Abstract
Mutations in genes encoding aminoacyl-tRNA synthetases are known to cause leukodystrophies and genetic leukoencephalopathies-heritable disorders that result in white matter abnormalities in the central nervous system. Here we report three individuals (two siblings and an unrelated individual) with severe infantile epileptic encephalopathy, clubfoot, absent deep tendon reflexes, extrapyramidal symptoms, and persistently deficient myelination on MRI. Analysis by whole exome sequencing identified mutations in the nuclear-encoded alanyl-tRNA synthetase (AARS) in these two unrelated families: the two affected siblings are compound heterozygous for p.Lys81Thr and p.Arg751Gly AARS, and the single affected child is homozygous for p.Arg751Gly AARS. The two identified mutations were found to result in a significant reduction in function. Mutations in AARS were previously associated with an autosomal-dominant inherited form of axonal neuropathy, Charcot-Marie-Tooth disease type 2N (CMT2N). The autosomal-recessive AARS mutations identified in the individuals described here, however, cause a severe infantile epileptic encephalopathy with a central myelin defect and peripheral neuropathy, demonstrating that defects of alanyl-tRNA charging can result in a wide spectrum of disease manifestations.
Collapse
Affiliation(s)
- Cas Simons
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Laurie B Griffin
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Guy Helman
- Department of Neurology, Children's National Health System, Washington, DC 20010, USA
| | - Gretchen Golas
- Undiagnosed Diseases Program, NIH, National Human Genome Research Institute, Bethesda, MD 20894, USA
| | - Amy Pizzino
- Department of Neurology, Children's National Health System, Washington, DC 20010, USA
| | - Miriam Bloom
- Department of Hospitalist Medicine, Children's National Health System, Washington, DC 20010, USA
| | - Jennifer L P Murphy
- Department of Neurology, Children's National Health System, Washington, DC 20010, USA
| | - Joanna Crawford
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sarah H Evans
- Department of Physical Medicine and Rehabilitation, Children's National Health System, Washington, DC 20010, USA
| | | | - Matthew T Whitehead
- Department of Neuroradiology, Children's National Health System, Washington, DC 20010, USA
| | - John M Schreiber
- Department of Neurology, Children's National Health System, Washington, DC 20010, USA
| | - Kimberly A Chapman
- Department of Genetics, Children's National Health System, Washington, DC 20010, USA; Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010, USA
| | - Cyndi Tifft
- Undiagnosed Diseases Program, NIH, National Human Genome Research Institute, Bethesda, MD 20894, USA
| | - Katrina B Lu
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Howard Gamper
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Megumi Shigematsu
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ryan J Taft
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; Illumina, Inc., San Diego, CA 92122, USA; Departments of Integrated Systems Biology and of Pediatrics, George Washington University, Washington, DC 20052, USA
| | - Anthony Antonellis
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Adeline Vanderver
- Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010, USA; Departments of Integrated Systems Biology and of Pediatrics, George Washington University, Washington, DC 20052, USA.
| |
Collapse
|
127
|
Simon M, Richard EM, Wang X, Shahzad M, Huang VH, Qaiser TA, Potluri P, Mahl SE, Davila A, Nazli S, Hancock S, Yu M, Gargus J, Chang R, Al-sheqaih N, Newman WG, Abdenur J, Starr A, Hegde R, Dorn T, Busch A, Park E, Wu J, Schwenzer H, Flierl A, Florentz C, Sissler M, Khan SN, Li R, Guan MX, Friedman TB, Wu DK, Procaccio V, Riazuddin S, Wallace DC, Ahmed ZM, Huang T, Riazuddin S. Mutations of human NARS2, encoding the mitochondrial asparaginyl-tRNA synthetase, cause nonsyndromic deafness and Leigh syndrome. PLoS Genet 2015; 11:e1005097. [PMID: 25807530 PMCID: PMC4373692 DOI: 10.1371/journal.pgen.1005097] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 02/23/2015] [Indexed: 12/31/2022] Open
Abstract
Here we demonstrate association of variants in the mitochondrial asparaginyl-tRNA synthetase NARS2 with human hearing loss and Leigh syndrome. A homozygous missense mutation ([c.637G>T; p.Val213Phe]) is the underlying cause of nonsyndromic hearing loss (DFNB94) and compound heterozygous mutations ([c.969T>A; p.Tyr323*] + [c.1142A>G; p.Asn381Ser]) result in mitochondrial respiratory chain deficiency and Leigh syndrome, which is a neurodegenerative disease characterized by symmetric, bilateral lesions in the basal ganglia, thalamus, and brain stem. The severity of the genetic lesions and their effects on NARS2 protein structure cosegregate with the phenotype. A hypothetical truncated NARS2 protein, secondary to the Leigh syndrome mutation p.Tyr323* is not detectable and p.Asn381Ser further decreases NARS2 protein levels in patient fibroblasts. p.Asn381Ser also disrupts dimerization of NARS2, while the hearing loss p.Val213Phe variant has no effect on NARS2 oligomerization. Additionally we demonstrate decreased steady-state levels of mt-tRNAAsn in fibroblasts from the Leigh syndrome patients. In these cells we show that a decrease in oxygen consumption rates (OCR) and electron transport chain (ETC) activity can be rescued by overexpression of wild type NARS2. However, overexpression of the hearing loss associated p.Val213Phe mutant protein in these fibroblasts cannot complement the OCR and ETC defects. Our findings establish lesions in NARS2 as a new cause for nonsyndromic hearing loss and Leigh syndrome. Mitochondrial respiratory chain (MRC) disease represents a large and heterogeneous group of energy deficiency disorders. Here we report three mutations in NARS2, a mitochondrial asparaginyl-tRNA synthetase, associated with non-syndromic hearing loss (NSHL) and Leigh syndrome in two independent families. Located in the predicted catalytic domain of the protein, missense mutation p.(Val213Phe) results in NSHL (DFNB94) while compound heterozygous mutation (p.Tyr323*; p.Asn381Ser) is leading to Leigh syndrome with auditory neuropathy. In vivo analysis deemed p.Tyr323* mutant protein to be unstable. Co-immunoprecipitation assays show that p.Asn381Ser mutant disrupts the dimerization ability of NARS2. Leigh syndrome patient fibroblasts exhibit a decreased steady-state level of mt-tRNAAsn. In addition, in these cells, the mitochondrial respiratory chain is deficient, including significantly decreased oxygen consumption rates and electron transport chain activities. These functions can be partially restored with over-expression of wild-type NARS2 but not with p.Val213Phe mutant protein. Our study provides new insights into the genes that are necessary for the function of brain and inner ear sensory cells in humans.
Collapse
Affiliation(s)
- Mariella Simon
- Department of Developmental and Cellular Biology, School of Biological Sciences, University of California, Irvine, Irvine, California, United States of America
- CHOC Childrens’, Division of Metabolics, Orange, California, United States of America
| | - Elodie M. Richard
- Department of Otorhinolaryngology Head & Neck Surgery, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Xinjian Wang
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Mohsin Shahzad
- Department of Otorhinolaryngology Head & Neck Surgery, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Vincent H. Huang
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Tanveer A. Qaiser
- National Center for Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Prasanth Potluri
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia and Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sarah E. Mahl
- Division of Pediatric Otolaryngology Head & Neck Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Antonio Davila
- Smilow Center for Translational Research, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sabiha Nazli
- National Center for Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Saege Hancock
- Trovagene, San Diego, California, United States of America
| | - Margret Yu
- Marshall B Ketchum University, Fullerton, California, United States of America
| | - Jay Gargus
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California, United States of America
| | - Richard Chang
- CHOC Childrens’, Division of Metabolics, Orange, California, United States of America
| | - Nada Al-sheqaih
- Manchester Centre for Genomic Medicine, University of Manchester and Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre (MAHSC), Manchester, United Kingdom
| | - William G. Newman
- Manchester Centre for Genomic Medicine, University of Manchester and Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre (MAHSC), Manchester, United Kingdom
| | - Jose Abdenur
- CHOC Childrens’, Division of Metabolics, Orange, California, United States of America
| | - Arnold Starr
- Department of Neurology and Neurobiology, University of California, Irvine, Irvine, California, United States of America
| | - Rashmi Hegde
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | | | - Anke Busch
- Institute of Molecular Biology, Mainz, Germany
| | - Eddie Park
- Department of Developmental and Cellular Biology, School of Biological Sciences, University of California, Irvine, Irvine, California, United States of America
| | - Jie Wu
- Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, California, United States of America
| | - Hagen Schwenzer
- Architecture et Réactivité de l’ARN, CNRS, University of Strasbourg, IBMC, Strasbourg, France
| | - Adrian Flierl
- Parkinson’s Institute and Clinical Center, Sunnyvale, California, United States of America
| | - Catherine Florentz
- Architecture et Réactivité de l’ARN, CNRS, University of Strasbourg, IBMC, Strasbourg, France
| | - Marie Sissler
- Architecture et Réactivité de l’ARN, CNRS, University of Strasbourg, IBMC, Strasbourg, France
| | - Shaheen N. Khan
- National Center for Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Ronghua Li
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Min-Xin Guan
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Thomas B. Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Doris K. Wu
- Section on Sensory Cell Regeneration and Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Vincent Procaccio
- Biochemistry and Genetics Department, UMR CNRS 6214–INSERM U1083, CHU Angers, Angers, France
| | - Sheikh Riazuddin
- Jinnah Hospital Complex, Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan
- University of Lahore, Lahore, Pakistan
- Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Douglas C. Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia and Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Zubair M. Ahmed
- Department of Otorhinolaryngology Head & Neck Surgery, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Taosheng Huang
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- * E-mail: (TH); (SR)
| | - Saima Riazuddin
- Department of Otorhinolaryngology Head & Neck Surgery, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
- * E-mail: (TH); (SR)
| |
Collapse
|
128
|
Euro L, Konovalova S, Asin-Cayuela J, Tulinius M, Griffin H, Horvath R, Taylor RW, Chinnery PF, Schara U, Thorburn DR, Suomalainen A, Chihade J, Tyynismaa H. Structural modeling of tissue-specific mitochondrial alanyl-tRNA synthetase (AARS2) defects predicts differential effects on aminoacylation. Front Genet 2015; 6:21. [PMID: 25705216 PMCID: PMC4319469 DOI: 10.3389/fgene.2015.00021] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 01/15/2015] [Indexed: 12/21/2022] Open
Abstract
The accuracy of mitochondrial protein synthesis is dependent on the coordinated action of nuclear-encoded mitochondrial aminoacyl-tRNA synthetases (mtARSs) and the mitochondrial DNA-encoded tRNAs. The recent advances in whole-exome sequencing have revealed the importance of the mtARS proteins for mitochondrial pathophysiology since nearly every nuclear gene for mtARS (out of 19) is now recognized as a disease gene for mitochondrial disease. Typically, defects in each mtARS have been identified in one tissue-specific disease, most commonly affecting the brain, or in one syndrome. However, mutations in the AARS2 gene for mitochondrial alanyl-tRNA synthetase (mtAlaRS) have been reported both in patients with infantile-onset cardiomyopathy and in patients with childhood to adulthood-onset leukoencephalopathy. We present here an investigation of the effects of the described mutations on the structure of the synthetase, in an effort to understand the tissue-specific outcomes of the different mutations. The mtAlaRS differs from the other mtARSs because in addition to the aminoacylation domain, it has a conserved editing domain for deacylating tRNAs that have been mischarged with incorrect amino acids. We show that the cardiomyopathy phenotype results from a single allele, causing an amino acid change R592W in the editing domain of AARS2, whereas the leukodystrophy mutations are located in other domains of the synthetase. Nevertheless, our structural analysis predicts that all mutations reduce the aminoacylation activity of the synthetase, because all mtAlaRS domains contribute to tRNA binding for aminoacylation. According to our model, the cardiomyopathy mutations severely compromise aminoacylation whereas partial activity is retained by the mutation combinations found in the leukodystrophy patients. These predictions provide a hypothesis for the molecular basis of the distinct tissue-specific phenotypic outcomes.
Collapse
Affiliation(s)
- Liliya Euro
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki Helsinki, Finland
| | - Svetlana Konovalova
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki Helsinki, Finland
| | - Jorge Asin-Cayuela
- Department of Clinical Chemistry, University of Gothenburg, Sahlgrenska University Hospital Gothenburg, Sweden
| | - Már Tulinius
- Department of Pediatrics, Queen Silvia Children's Hospital, University of Gothenburg Gothenburg, Sweden
| | - Helen Griffin
- Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University Newcastle upon Tyne, UK
| | - Rita Horvath
- Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University Newcastle upon Tyne, UK
| | - Robert W Taylor
- Institute of Neuroscience, Wellcome Trust Centre for Mitochondrial Research, Newcastle University Newcastle upon Tyne, UK
| | - Patrick F Chinnery
- Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University Newcastle upon Tyne, UK
| | - Ulrike Schara
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, University of Essen Essen, Germany
| | - David R Thorburn
- Murdoch Childrens Research Institute, Royal Childrens Hospital and Department of Paediatrics, University of Melbourne Melbourne, VIC, Australia
| | - Anu Suomalainen
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki Helsinki, Finland ; Department of Neurology, Helsinki University Central Hospital Helsinki, Finland
| | - Joseph Chihade
- Department of Chemistry, Carleton College Northfield, MN, USA
| | - Henna Tyynismaa
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki Helsinki, Finland ; Department of Medical Genetics, Haartman Institute, University of Helsinki Helsinki, Finland
| |
Collapse
|
129
|
Kirchner S, Ignatova Z. Emerging roles of tRNA in adaptive translation, signalling dynamics and disease. Nat Rev Genet 2014; 16:98-112. [DOI: 10.1038/nrg3861] [Citation(s) in RCA: 355] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
130
|
Carroll CJ, Brilhante V, Suomalainen A. Next-generation sequencing for mitochondrial disorders. Br J Pharmacol 2014; 171:1837-53. [PMID: 24138576 DOI: 10.1111/bph.12469] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 10/03/2013] [Accepted: 10/13/2013] [Indexed: 12/30/2022] Open
Abstract
A great deal of our understanding of mitochondrial function has come from studies of inherited mitochondrial diseases, but still majority of the patients lack molecular diagnosis. Furthermore, effective treatments for mitochondrial disorders do not exist. Development of therapies has been complicated by the fact that the diseases are extremely heterogeneous, and collecting large enough cohorts of similarly affected individuals to assess new therapies properly has been difficult. Next-generation sequencing technologies have in the last few years been shown to be an effective method for the genetic diagnosis of inherited mitochondrial diseases. Here we review the strategies and findings from studies applying next-generation sequencing methods for the genetic diagnosis of mitochondrial disorders. Detailed knowledge of molecular causes also enables collection of homogenous cohorts of patients for therapy trials, and therefore boosts development of intervention.
Collapse
Affiliation(s)
- C J Carroll
- Research Programs Unit, Molecular Neurology, Biomedicum-Helsinki, University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
131
|
Datt M, Sharma A. Evolutionary and structural annotation of disease-associated mutations in human aminoacyl-tRNA synthetases. BMC Genomics 2014; 15:1063. [PMID: 25476837 PMCID: PMC4298046 DOI: 10.1186/1471-2164-15-1063] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 11/20/2014] [Indexed: 11/10/2022] Open
Abstract
Background Mutation(s) in proteins are a natural byproduct of evolution but can also cause serious diseases. Aminoacyl-tRNA synthetases (aaRSs) are indispensable components of all cellular protein translational machineries, and in humans they drive translation in both cytoplasm and mitochondria. Mutations in aaRSs have been implicated in a plethora of diseases including neurological conditions, metabolic disorders and cancer. Results We have developed an algorithmic approach for genome-wide analyses of sequence substitutions that combines evolutionary, structural and functional information. This pipeline enabled us to super-annotate human aaRS mutations and analyze their linkage to health disorders. Our data suggest that in some but not all cases, aaRS mutations occur in functional and structural sectors where they can manifest their pathological effects by altering enzyme activity or causing structural instability. Further, mutations appear in both solvent exposed and buried regions of aaRSs indicating that these alterations could lead to dysfunctional enzymes resulting in abnormal protein translation routines by affecting inter-molecular interactions or by disruption of non-bonded interactions. Overall, the prevalence of mutations is much higher in mitochondrial aaRSs, and the two most often mutated aaRSs are mitochondrial glutamyl-tRNA synthetase and dual localized glycyl-tRNA synthetase. Out of 63 mutations annotated in this work, only 12 (~20%) were observed in regions that could directly affect aminoacylation activity via either binding to ATP/amino-acid, tRNA or by involvement in dimerization. Mutations in structural cores or at potential biomolecular interfaces account for ~55% mutations while remaining mutations (~25%) remain structurally un-annotated. Conclusion This work provides a comprehensive structural framework within which most defective human aaRSs have been structurally analyzed. The methodology described here could be employed to annotate mutations in other protein families in a high-throughput manner. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1063) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Amit Sharma
- Structural and Computational Biology group, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India.
| |
Collapse
|
132
|
Lin F, Li D, Wang P, Fan D, De J, Zhu W. Autosomal recessive non-syndromic hearing loss is caused by novel compound heterozygous mutations in TMC1 from a Tibetan Chinese family. Int J Pediatr Otorhinolaryngol 2014; 78:2216-21. [PMID: 25458163 DOI: 10.1016/j.ijporl.2014.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/07/2014] [Accepted: 10/10/2014] [Indexed: 10/24/2022]
Abstract
OBJECTIVES Hearing loss is the most common sensory disorder worldwide. Biallelic mutations in 42 different genes have been identified as associated with autosomal recessive non-syndromic hearing loss (ARNSHL). One of the common genes responsible for ARNSHL is TMC1. TMC1 mutations have been reported to cause non-syndromic hearing loss in a variety of populations. The current study is designed to investigate mutations prevalent among Chinese ethnic groups with ARNSHL. METHODS Targeted exome sequencing (TES) was employed to study the genetic causes of two siblings with ARNSHL in a Tibetan Chinese family. Variants identified by TES were further confirmed by Sanger sequencing. RESULTS We identified two distinct variants in the TMC1 gene in two deaf siblings of one Tibetan Chinese family using TES. Both siblings inherited a paternal allele containing a deletion of c.1396_1398AAC (p.Asn466del) and a maternal allele containing an insertion of c.2210_2211insCT (p.Glu737HisfsX2). The former disrupts a highly conserved residue in the large intracellular loop domain adjacent to the fourth transmembrane domain, and the latter causes a truncation of a portion of the C-terminal domain. These variants were compound heterzygous and segregated with the hearing impairment in this family. CONCLUSION The novel compound heterozygous mutant alleles of TMC1 identified in this study were responsible for the ARNSHL in this Tibetan Chinese family. Although compound heterozygous mutations in TMC1 occurring in different TMC1 domains have been previously described in Han Chinese; this result suggests that the TMC1 variants contributing to hereditary deafness in Chinese populations may be more complex than initially assumed and that sequence-based diagnostics will be required for a comprehensive evaluation of ARNSHL.
Collapse
Affiliation(s)
- Fangzhu Lin
- Department of Otolaryngology-Head and Neck Surgery, First Hospital of Jilin University, Changchun 130021, China
| | - Dejun Li
- Center for Prenatal Diagnosis, First Hospital of Jilin University, Changchun 130021, China
| | - Ping Wang
- Department of Otolaryngology-Head and Neck Surgery, First Hospital of Jilin University, Changchun 130021, China
| | - Dongyan Fan
- School of Medicine, Tibet University, Lhasa 850000, China
| | - Ji De
- School of Medicine, Tibet University, Lhasa 850000, China
| | - Wei Zhu
- Department of Otolaryngology-Head and Neck Surgery, First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
133
|
Venkatesh T, Suresh PS, Tsutsumi R. New insights into the genetic basis of infertility. APPLICATION OF CLINICAL GENETICS 2014; 7:235-43. [PMID: 25506236 PMCID: PMC4259396 DOI: 10.2147/tacg.s40809] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Infertility is a disease of the reproductive system characterized by inability to achieve pregnancy after 12 or more months of regular unprotected sexual intercourse. A variety of factors, including ovulation defects, spermatogenic failure, parental age, obesity, and infections have been linked with infertility, in addition to specific karyotypes and genotypes. The study of genes associated with infertility in rodent models has expanded the field of translational genetics in identifying the underlying cause of human infertility problems. Many intriguing aspects of the molecular basis of infertility in humans remain poorly understood; however, application of genetic knowledge in this field looks promising. The growing literature on the genetics of human infertility disorders deserves attention and a critical concise summary is required. This paper provides information obtained from a systematic analysis of the literature related to current research into the genetics of infertility affecting both sexes.
Collapse
Affiliation(s)
- Thejaswini Venkatesh
- Institute for Stem Cell Biology and Regenerative Medicine, National Centre for Biological Sciences, Bangalore, India
| | | | - Rie Tsutsumi
- University of Tokushima, Institute of Health Bioscience, Department of Public Health and Nutrition, Tokushima, Japan
| |
Collapse
|
134
|
Opitz JM. Serendipity or prepared mind? Recollections of the KOP translocation (1967) and of one form of Perrault syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2014; 166C:387-96. [DOI: 10.1002/ajmg.c.31420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
135
|
Alriyami MZ, Jones MR, Johnsen RC, Banerjee Y, Baillie DL. let-65 is cytoplasmic methionyl tRNA synthetase in C. elegans. Meta Gene 2014; 2:819-30. [PMID: 25606464 PMCID: PMC4287814 DOI: 10.1016/j.mgene.2014.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 02/07/2023] Open
Abstract
Cytoplasmic methionyl tRNA synthetase (MetRS) is one of more than 20 cytoplasmic aminoacyl tRNA synthetase enzymes (ARS). This family of enzymes catalyzes a process fundamental for protein translation. Using a combination of genetic mapping, oligonucleotide array comparative genomic hybridization, and phenotypic correlation, we show that mutations in the essential gene, let-65, reside within the predicted Caenorhabditis elegans homologue of MetRS, which we have named mars-1. We demonstrate that the lethality associated with alleles of let-65 is fully rescued by a transgenic array that spans the mars-1 genomic region. Furthermore, sequence analysis reveals that six let-65 alleles lead to the alteration of highly conserved amino acids.
Collapse
Affiliation(s)
- Maha Z Alriyami
- Department of Molecular Biology and Biochemistry, Simon Fraser University Burnaby, 8888 University Drive, Burnaby, BC V5A 1S6 Canada ; Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, 35, Al-Khod 123, Oman
| | - Martin R Jones
- Genome Sciences Centre, British Columbia Cancer Research Centre, 600 West 10th Avenue, Vancouver, BC V5Z 4E6, Canada
| | - Robert C Johnsen
- Department of Molecular Biology and Biochemistry, Simon Fraser University Burnaby, 8888 University Drive, Burnaby, BC V5A 1S6 Canada
| | - Yajnavalka Banerjee
- Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, 35, Al-Khod 123, Oman
| | - David L Baillie
- Department of Molecular Biology and Biochemistry, Simon Fraser University Burnaby, 8888 University Drive, Burnaby, BC V5A 1S6 Canada
| |
Collapse
|
136
|
Morino H, Pierce SB, Matsuda Y, Walsh T, Ohsawa R, Newby M, Hiraki-Kamon K, Kuramochi M, Lee MK, Klevit RE, Martin A, Maruyama H, King MC, Kawakami H. Mutations in Twinkle primase-helicase cause Perrault syndrome with neurologic features. Neurology 2014; 83:2054-61. [PMID: 25355836 DOI: 10.1212/wnl.0000000000001036] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE To identify the genetic cause in 2 families of progressive ataxia, axonal neuropathy, hyporeflexia, and abnormal eye movements, accompanied by progressive hearing loss and ovarian dysgenesis, with a clinical diagnosis of Perrault syndrome. METHODS Whole-exome sequencing was performed to identify causative mutations in the 2 affected sisters in each family. Family 1 is of Japanese ancestry, and family 2 is of European ancestry. RESULTS In family 1, affected individuals were compound heterozygous for chromosome 10 open reading frame 2 (C10orf2) p.Arg391His and p.Asn585Ser. In family 2, affected individuals were compound heterozygous for C10orf2 p.Trp441Gly and p.Val507Ile. C10orf2 encodes Twinkle, a primase-helicase essential for replication of mitochondrial DNA. Conservation and structural modeling support the causality of the mutations. Twinkle is known also to harbor multiple mutations, nearly all missenses, leading to dominant progressive external ophthalmoplegia type 3 and to recessive mitochondrial DNA depletion syndrome 7, also known as infantile-onset spinocerebellar ataxia. CONCLUSIONS Our study identifies Twinkle mutations as a cause of Perrault syndrome accompanied by neurologic features and expands the phenotypic spectrum of recessive disease caused by mutations in Twinkle. The phenotypic heterogeneity of conditions caused by Twinkle mutations and the genetic heterogeneity of Perrault syndrome call for genomic definition of these disorders.
Collapse
Affiliation(s)
- Hiroyuki Morino
- From the Department of Epidemiology, Research Institute for Radiation Biology and Medicine (H. Morino, Y.M., R.O., K.H.-K., M.K., H.K.), and Department of Clinical Neuroscience & Therapeutics (H. Maruyama), Hiroshima University, Japan; Departments of Medicine (Medical Genetics) and Genome Sciences (S.B.P., T.W., M.K.L., M.-C.K.) and Biochemistry (R.E.K.), University of Washington, Seattle; and Neuromuscular Center (M.N., A.M.), Texas Health Presbyterian Hospital, Dallas
| | - Sarah B Pierce
- From the Department of Epidemiology, Research Institute for Radiation Biology and Medicine (H. Morino, Y.M., R.O., K.H.-K., M.K., H.K.), and Department of Clinical Neuroscience & Therapeutics (H. Maruyama), Hiroshima University, Japan; Departments of Medicine (Medical Genetics) and Genome Sciences (S.B.P., T.W., M.K.L., M.-C.K.) and Biochemistry (R.E.K.), University of Washington, Seattle; and Neuromuscular Center (M.N., A.M.), Texas Health Presbyterian Hospital, Dallas.
| | - Yukiko Matsuda
- From the Department of Epidemiology, Research Institute for Radiation Biology and Medicine (H. Morino, Y.M., R.O., K.H.-K., M.K., H.K.), and Department of Clinical Neuroscience & Therapeutics (H. Maruyama), Hiroshima University, Japan; Departments of Medicine (Medical Genetics) and Genome Sciences (S.B.P., T.W., M.K.L., M.-C.K.) and Biochemistry (R.E.K.), University of Washington, Seattle; and Neuromuscular Center (M.N., A.M.), Texas Health Presbyterian Hospital, Dallas
| | - Tom Walsh
- From the Department of Epidemiology, Research Institute for Radiation Biology and Medicine (H. Morino, Y.M., R.O., K.H.-K., M.K., H.K.), and Department of Clinical Neuroscience & Therapeutics (H. Maruyama), Hiroshima University, Japan; Departments of Medicine (Medical Genetics) and Genome Sciences (S.B.P., T.W., M.K.L., M.-C.K.) and Biochemistry (R.E.K.), University of Washington, Seattle; and Neuromuscular Center (M.N., A.M.), Texas Health Presbyterian Hospital, Dallas
| | - Ryosuke Ohsawa
- From the Department of Epidemiology, Research Institute for Radiation Biology and Medicine (H. Morino, Y.M., R.O., K.H.-K., M.K., H.K.), and Department of Clinical Neuroscience & Therapeutics (H. Maruyama), Hiroshima University, Japan; Departments of Medicine (Medical Genetics) and Genome Sciences (S.B.P., T.W., M.K.L., M.-C.K.) and Biochemistry (R.E.K.), University of Washington, Seattle; and Neuromuscular Center (M.N., A.M.), Texas Health Presbyterian Hospital, Dallas
| | - Marta Newby
- From the Department of Epidemiology, Research Institute for Radiation Biology and Medicine (H. Morino, Y.M., R.O., K.H.-K., M.K., H.K.), and Department of Clinical Neuroscience & Therapeutics (H. Maruyama), Hiroshima University, Japan; Departments of Medicine (Medical Genetics) and Genome Sciences (S.B.P., T.W., M.K.L., M.-C.K.) and Biochemistry (R.E.K.), University of Washington, Seattle; and Neuromuscular Center (M.N., A.M.), Texas Health Presbyterian Hospital, Dallas
| | - Keiko Hiraki-Kamon
- From the Department of Epidemiology, Research Institute for Radiation Biology and Medicine (H. Morino, Y.M., R.O., K.H.-K., M.K., H.K.), and Department of Clinical Neuroscience & Therapeutics (H. Maruyama), Hiroshima University, Japan; Departments of Medicine (Medical Genetics) and Genome Sciences (S.B.P., T.W., M.K.L., M.-C.K.) and Biochemistry (R.E.K.), University of Washington, Seattle; and Neuromuscular Center (M.N., A.M.), Texas Health Presbyterian Hospital, Dallas
| | - Masahito Kuramochi
- From the Department of Epidemiology, Research Institute for Radiation Biology and Medicine (H. Morino, Y.M., R.O., K.H.-K., M.K., H.K.), and Department of Clinical Neuroscience & Therapeutics (H. Maruyama), Hiroshima University, Japan; Departments of Medicine (Medical Genetics) and Genome Sciences (S.B.P., T.W., M.K.L., M.-C.K.) and Biochemistry (R.E.K.), University of Washington, Seattle; and Neuromuscular Center (M.N., A.M.), Texas Health Presbyterian Hospital, Dallas
| | - Ming K Lee
- From the Department of Epidemiology, Research Institute for Radiation Biology and Medicine (H. Morino, Y.M., R.O., K.H.-K., M.K., H.K.), and Department of Clinical Neuroscience & Therapeutics (H. Maruyama), Hiroshima University, Japan; Departments of Medicine (Medical Genetics) and Genome Sciences (S.B.P., T.W., M.K.L., M.-C.K.) and Biochemistry (R.E.K.), University of Washington, Seattle; and Neuromuscular Center (M.N., A.M.), Texas Health Presbyterian Hospital, Dallas
| | - Rachel E Klevit
- From the Department of Epidemiology, Research Institute for Radiation Biology and Medicine (H. Morino, Y.M., R.O., K.H.-K., M.K., H.K.), and Department of Clinical Neuroscience & Therapeutics (H. Maruyama), Hiroshima University, Japan; Departments of Medicine (Medical Genetics) and Genome Sciences (S.B.P., T.W., M.K.L., M.-C.K.) and Biochemistry (R.E.K.), University of Washington, Seattle; and Neuromuscular Center (M.N., A.M.), Texas Health Presbyterian Hospital, Dallas
| | - Alan Martin
- From the Department of Epidemiology, Research Institute for Radiation Biology and Medicine (H. Morino, Y.M., R.O., K.H.-K., M.K., H.K.), and Department of Clinical Neuroscience & Therapeutics (H. Maruyama), Hiroshima University, Japan; Departments of Medicine (Medical Genetics) and Genome Sciences (S.B.P., T.W., M.K.L., M.-C.K.) and Biochemistry (R.E.K.), University of Washington, Seattle; and Neuromuscular Center (M.N., A.M.), Texas Health Presbyterian Hospital, Dallas
| | - Hirofumi Maruyama
- From the Department of Epidemiology, Research Institute for Radiation Biology and Medicine (H. Morino, Y.M., R.O., K.H.-K., M.K., H.K.), and Department of Clinical Neuroscience & Therapeutics (H. Maruyama), Hiroshima University, Japan; Departments of Medicine (Medical Genetics) and Genome Sciences (S.B.P., T.W., M.K.L., M.-C.K.) and Biochemistry (R.E.K.), University of Washington, Seattle; and Neuromuscular Center (M.N., A.M.), Texas Health Presbyterian Hospital, Dallas
| | - Mary-Claire King
- From the Department of Epidemiology, Research Institute for Radiation Biology and Medicine (H. Morino, Y.M., R.O., K.H.-K., M.K., H.K.), and Department of Clinical Neuroscience & Therapeutics (H. Maruyama), Hiroshima University, Japan; Departments of Medicine (Medical Genetics) and Genome Sciences (S.B.P., T.W., M.K.L., M.-C.K.) and Biochemistry (R.E.K.), University of Washington, Seattle; and Neuromuscular Center (M.N., A.M.), Texas Health Presbyterian Hospital, Dallas
| | - Hideshi Kawakami
- From the Department of Epidemiology, Research Institute for Radiation Biology and Medicine (H. Morino, Y.M., R.O., K.H.-K., M.K., H.K.), and Department of Clinical Neuroscience & Therapeutics (H. Maruyama), Hiroshima University, Japan; Departments of Medicine (Medical Genetics) and Genome Sciences (S.B.P., T.W., M.K.L., M.-C.K.) and Biochemistry (R.E.K.), University of Washington, Seattle; and Neuromuscular Center (M.N., A.M.), Texas Health Presbyterian Hospital, Dallas.
| |
Collapse
|
137
|
Ahola S, Isohanni P, Euro L, Brilhante V, Palotie A, Pihko H, Lönnqvist T, Lehtonen T, Laine J, Tyynismaa H, Suomalainen A. Mitochondrial EFTs defects in juvenile-onset Leigh disease, ataxia, neuropathy, and optic atrophy. Neurology 2014; 83:743-51. [PMID: 25037205 DOI: 10.1212/wnl.0000000000000716] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE We report novel defects of mitochondrial translation elongation factor Ts (EFTs), with high carrier frequency in Finland and expand the manifestations of this disease group from infantile cardiomyopathy to juvenile neuropathy/encephalopathy disorders. METHODS DNA analysis, whole-exome analysis, protein biochemistry, and protein modeling. RESULTS We used whole-exome sequencing to find the genetic cause of infantile-onset mitochondrial cardiomyopathy, progressing to juvenile-onset Leigh syndrome, neuropathy, and optic atrophy in 2 siblings. We found novel compound heterozygous mutations, c.944G>A [p.C315Y] and c.856C>T [p.Q286X], in the TSFM gene encoding mitochondrial EFTs. The same p.Q286X variant was found as compound heterozygous with a splice site change in a patient from a second family, with juvenile-onset optic atrophy, peripheral neuropathy, and ataxia. Our molecular modeling predicted the coding-region mutations to cause protein instability, which was experimentally confirmed in cultured patient cells, with mitochondrial translation defect and lacking EFTs. Only a single TSFM mutation has been previously described in different populations, leading to an infantile fatal multisystem disorder with cardiomyopathy. Sequence data from 35,000 Finnish population controls indicated that the heterozygous carrier frequency of p.Q286X change was exceptionally high in Finland, 1:80, but no homozygotes were found in the population, in our mitochondrial disease patient collection, or in an intrauterine fetal death material, suggesting early developmental lethality of the homozygotes. CONCLUSIONS We show that in addition to early-onset cardiomyopathy, TSFM mutations should be considered in childhood and juvenile encephalopathies with optic and/or peripheral neuropathy, ataxia, or Leigh disease.
Collapse
Affiliation(s)
- Sofia Ahola
- From the Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (S.A., P.I., L.E., V.B., H.T., A.S.), Institute for Molecular Medicine Finland (A.P.), Department of Medical Genetics, Haartman Institute (H.T.), and Neuroscience Center (A.S.), University of Helsinki; Department of Child Neurology, Children's Hospital (P.I., H.P., T. Lönnqvist), and Department of Neurology (A.S.), Helsinki University Central Hospital, Finland; Analytic and Translational Genetics Unit, Department of Medicine (A.P.), and Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry (A.P.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics (A.P.), Broad Institute of MIT and Harvard, Cambridge, MA; and Department of Pathology (T. Lehtonen, J.L.), University of Turku, Finland
| | - Pirjo Isohanni
- From the Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (S.A., P.I., L.E., V.B., H.T., A.S.), Institute for Molecular Medicine Finland (A.P.), Department of Medical Genetics, Haartman Institute (H.T.), and Neuroscience Center (A.S.), University of Helsinki; Department of Child Neurology, Children's Hospital (P.I., H.P., T. Lönnqvist), and Department of Neurology (A.S.), Helsinki University Central Hospital, Finland; Analytic and Translational Genetics Unit, Department of Medicine (A.P.), and Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry (A.P.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics (A.P.), Broad Institute of MIT and Harvard, Cambridge, MA; and Department of Pathology (T. Lehtonen, J.L.), University of Turku, Finland
| | - Liliya Euro
- From the Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (S.A., P.I., L.E., V.B., H.T., A.S.), Institute for Molecular Medicine Finland (A.P.), Department of Medical Genetics, Haartman Institute (H.T.), and Neuroscience Center (A.S.), University of Helsinki; Department of Child Neurology, Children's Hospital (P.I., H.P., T. Lönnqvist), and Department of Neurology (A.S.), Helsinki University Central Hospital, Finland; Analytic and Translational Genetics Unit, Department of Medicine (A.P.), and Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry (A.P.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics (A.P.), Broad Institute of MIT and Harvard, Cambridge, MA; and Department of Pathology (T. Lehtonen, J.L.), University of Turku, Finland
| | - Virginia Brilhante
- From the Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (S.A., P.I., L.E., V.B., H.T., A.S.), Institute for Molecular Medicine Finland (A.P.), Department of Medical Genetics, Haartman Institute (H.T.), and Neuroscience Center (A.S.), University of Helsinki; Department of Child Neurology, Children's Hospital (P.I., H.P., T. Lönnqvist), and Department of Neurology (A.S.), Helsinki University Central Hospital, Finland; Analytic and Translational Genetics Unit, Department of Medicine (A.P.), and Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry (A.P.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics (A.P.), Broad Institute of MIT and Harvard, Cambridge, MA; and Department of Pathology (T. Lehtonen, J.L.), University of Turku, Finland
| | - Aarno Palotie
- From the Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (S.A., P.I., L.E., V.B., H.T., A.S.), Institute for Molecular Medicine Finland (A.P.), Department of Medical Genetics, Haartman Institute (H.T.), and Neuroscience Center (A.S.), University of Helsinki; Department of Child Neurology, Children's Hospital (P.I., H.P., T. Lönnqvist), and Department of Neurology (A.S.), Helsinki University Central Hospital, Finland; Analytic and Translational Genetics Unit, Department of Medicine (A.P.), and Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry (A.P.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics (A.P.), Broad Institute of MIT and Harvard, Cambridge, MA; and Department of Pathology (T. Lehtonen, J.L.), University of Turku, Finland
| | - Helena Pihko
- From the Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (S.A., P.I., L.E., V.B., H.T., A.S.), Institute for Molecular Medicine Finland (A.P.), Department of Medical Genetics, Haartman Institute (H.T.), and Neuroscience Center (A.S.), University of Helsinki; Department of Child Neurology, Children's Hospital (P.I., H.P., T. Lönnqvist), and Department of Neurology (A.S.), Helsinki University Central Hospital, Finland; Analytic and Translational Genetics Unit, Department of Medicine (A.P.), and Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry (A.P.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics (A.P.), Broad Institute of MIT and Harvard, Cambridge, MA; and Department of Pathology (T. Lehtonen, J.L.), University of Turku, Finland
| | - Tuula Lönnqvist
- From the Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (S.A., P.I., L.E., V.B., H.T., A.S.), Institute for Molecular Medicine Finland (A.P.), Department of Medical Genetics, Haartman Institute (H.T.), and Neuroscience Center (A.S.), University of Helsinki; Department of Child Neurology, Children's Hospital (P.I., H.P., T. Lönnqvist), and Department of Neurology (A.S.), Helsinki University Central Hospital, Finland; Analytic and Translational Genetics Unit, Department of Medicine (A.P.), and Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry (A.P.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics (A.P.), Broad Institute of MIT and Harvard, Cambridge, MA; and Department of Pathology (T. Lehtonen, J.L.), University of Turku, Finland
| | - Tanita Lehtonen
- From the Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (S.A., P.I., L.E., V.B., H.T., A.S.), Institute for Molecular Medicine Finland (A.P.), Department of Medical Genetics, Haartman Institute (H.T.), and Neuroscience Center (A.S.), University of Helsinki; Department of Child Neurology, Children's Hospital (P.I., H.P., T. Lönnqvist), and Department of Neurology (A.S.), Helsinki University Central Hospital, Finland; Analytic and Translational Genetics Unit, Department of Medicine (A.P.), and Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry (A.P.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics (A.P.), Broad Institute of MIT and Harvard, Cambridge, MA; and Department of Pathology (T. Lehtonen, J.L.), University of Turku, Finland
| | - Jukka Laine
- From the Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (S.A., P.I., L.E., V.B., H.T., A.S.), Institute for Molecular Medicine Finland (A.P.), Department of Medical Genetics, Haartman Institute (H.T.), and Neuroscience Center (A.S.), University of Helsinki; Department of Child Neurology, Children's Hospital (P.I., H.P., T. Lönnqvist), and Department of Neurology (A.S.), Helsinki University Central Hospital, Finland; Analytic and Translational Genetics Unit, Department of Medicine (A.P.), and Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry (A.P.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics (A.P.), Broad Institute of MIT and Harvard, Cambridge, MA; and Department of Pathology (T. Lehtonen, J.L.), University of Turku, Finland
| | - Henna Tyynismaa
- From the Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (S.A., P.I., L.E., V.B., H.T., A.S.), Institute for Molecular Medicine Finland (A.P.), Department of Medical Genetics, Haartman Institute (H.T.), and Neuroscience Center (A.S.), University of Helsinki; Department of Child Neurology, Children's Hospital (P.I., H.P., T. Lönnqvist), and Department of Neurology (A.S.), Helsinki University Central Hospital, Finland; Analytic and Translational Genetics Unit, Department of Medicine (A.P.), and Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry (A.P.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics (A.P.), Broad Institute of MIT and Harvard, Cambridge, MA; and Department of Pathology (T. Lehtonen, J.L.), University of Turku, Finland
| | - Anu Suomalainen
- From the Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (S.A., P.I., L.E., V.B., H.T., A.S.), Institute for Molecular Medicine Finland (A.P.), Department of Medical Genetics, Haartman Institute (H.T.), and Neuroscience Center (A.S.), University of Helsinki; Department of Child Neurology, Children's Hospital (P.I., H.P., T. Lönnqvist), and Department of Neurology (A.S.), Helsinki University Central Hospital, Finland; Analytic and Translational Genetics Unit, Department of Medicine (A.P.), and Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry (A.P.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics (A.P.), Broad Institute of MIT and Harvard, Cambridge, MA; and Department of Pathology (T. Lehtonen, J.L.), University of Turku, Finland.
| |
Collapse
|
138
|
Abbott JA, Francklyn CS, Robey-Bond SM. Transfer RNA and human disease. Front Genet 2014; 5:158. [PMID: 24917879 PMCID: PMC4042891 DOI: 10.3389/fgene.2014.00158] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/14/2014] [Indexed: 12/25/2022] Open
Abstract
Pathological mutations in tRNA genes and tRNA processing enzymes are numerous and result in very complicated clinical phenotypes. Mitochondrial tRNA (mt-tRNA) genes are “hotspots” for pathological mutations and over 200 mt-tRNA mutations have been linked to various disease states. Often these mutations prevent tRNA aminoacylation. Disrupting this primary function affects protein synthesis and the expression, folding, and function of oxidative phosphorylation enzymes. Mitochondrial tRNA mutations manifest in a wide panoply of diseases related to cellular energetics, including COX deficiency (cytochrome C oxidase), mitochondrial myopathy, MERRF (Myoclonic Epilepsy with Ragged Red Fibers), and MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes). Diseases caused by mt-tRNA mutations can also affect very specific tissue types, as in the case of neurosensory non-syndromic hearing loss and pigmentary retinopathy, diabetes mellitus, and hypertrophic cardiomyopathy. Importantly, mitochondrial heteroplasmy plays a role in disease severity and age of onset as well. Not surprisingly, mutations in enzymes that modify cytoplasmic and mitochondrial tRNAs are also linked to a diverse range of clinical phenotypes. In addition to compromised aminoacylation of the tRNAs, mutated modifying enzymes can also impact tRNA expression and abundance, tRNA modifications, tRNA folding, and even tRNA maturation (e.g., splicing). Some of these pathological mutations in tRNAs and processing enzymes are likely to affect non-canonical tRNA functions, and contribute to the diseases without significantly impacting on translation. This chapter will review recent literature on the relation of mitochondrial and cytoplasmic tRNA, and enzymes that process tRNAs, to human disease. We explore the mechanisms involved in the clinical presentation of these various diseases with an emphasis on neurological disease.
Collapse
Affiliation(s)
- Jamie A Abbott
- Department of Biochemistry, College of Medicine, University of Vermont Burlington, VT, USA
| | | | - Susan M Robey-Bond
- Department of Biochemistry, College of Medicine, University of Vermont Burlington, VT, USA
| |
Collapse
|
139
|
Abstract
CONTEXT Disorders of sex development (DSDs) may arise from genetic defects in testis or ovary determination. Current analytical technologies and improved understanding of major regulatory pathways have cast new insight into the genetic basis for these disorders. EVIDENCE ACQUISITION A PubMed search was performed for the years 2011-13 using the terms "disorder of sex development," "gonadal dysgenesis," "ovarian dysgenesis," "array CGH," and "whole exome sequencing." Only articles from peer-reviewed journals were included. EVIDENCE SYNTHESIS Key themes that emerged included aberrant regulation of SOX9 via the hTES promoter in 46,XY gonadal DSDs, the role of the MAPK pathway in normal and aberrant gonadal development, and the role of new technologies in identification of gonadal DSDs. CONCLUSIONS With the advent of the robust new technologies of array comparative genomic hybridization and genomic sequencing in recent years, many new sex-determining genes have been identified. These genes have been organized into ovarian- and testicular-determining pathways that can block each other's activities. Identification of a mutation in a sex-determining gene in an individual affected with a DSD may warrant more extensive investigation for other phenotypic effects as well as genetic testing of other family members.
Collapse
Affiliation(s)
- Harry Ostrer
- Departments of Pathology, Genetics, and Pediatrics, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
140
|
Genetics of mitochondrial respiratory chain deficiencies. Rev Neurol (Paris) 2014; 170:309-22. [DOI: 10.1016/j.neurol.2013.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 11/27/2013] [Indexed: 01/21/2023]
|
141
|
Zhang X, Ling J, Barcia G, Jing L, Wu J, Barry BJ, Mochida GH, Hill RS, Weimer JM, Stein Q, Poduri A, Partlow JN, Ville D, Dulac O, Yu TW, Lam ATN, Servattalab S, Rodriguez J, Boddaert N, Munnich A, Colleaux L, Zon LI, Söll D, Walsh CA, Nabbout R. Mutations in QARS, encoding glutaminyl-tRNA synthetase, cause progressive microcephaly, cerebral-cerebellar atrophy, and intractable seizures. Am J Hum Genet 2014; 94:547-58. [PMID: 24656866 DOI: 10.1016/j.ajhg.2014.03.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 03/05/2014] [Indexed: 01/30/2023] Open
Abstract
Progressive microcephaly is a heterogeneous condition with causes including mutations in genes encoding regulators of neuronal survival. Here, we report the identification of mutations in QARS (encoding glutaminyl-tRNA synthetase [QARS]) as the causative variants in two unrelated families affected by progressive microcephaly, severe seizures in infancy, atrophy of the cerebral cortex and cerebellar vermis, and mild atrophy of the cerebellar hemispheres. Whole-exome sequencing of individuals from each family independently identified compound-heterozygous mutations in QARS as the only candidate causative variants. QARS was highly expressed in the developing fetal human cerebral cortex in many cell types. The four QARS mutations altered highly conserved amino acids, and the aminoacylation activity of QARS was significantly impaired in mutant cell lines. Variants p.Gly45Val and p.Tyr57His were located in the N-terminal domain required for QARS interaction with proteins in the multisynthetase complex and potentially with glutamine tRNA, and recombinant QARS proteins bearing either substitution showed an over 10-fold reduction in aminoacylation activity. Conversely, variants p.Arg403Trp and p.Arg515Trp, each occurring in a different family, were located in the catalytic core and completely disrupted QARS aminoacylation activity in vitro. Furthermore, p.Arg403Trp and p.Arg515Trp rendered QARS less soluble, and p.Arg403Trp disrupted QARS-RARS (arginyl-tRNA synthetase 1) interaction. In zebrafish, homozygous qars loss of function caused decreased brain and eye size and extensive cell death in the brain. Our results highlight the importance of QARS during brain development and that epilepsy due to impairment of QARS activity is unusually severe in comparison to other aminoacyl-tRNA synthetase disorders.
Collapse
Affiliation(s)
- Xiaochang Zhang
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute
| | - Jiqiang Ling
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA; Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Giulia Barcia
- Department of Pediatric Neurology, Centre de Reference Epilepsies Rares, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France; Institut National de la Santé et de la Recherche Médicale U1129, Université Paris Descartes, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale U1129, NeuroSpin, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, 91191 Gif-sur-Yvette, France
| | - Lili Jing
- Howard Hughes Medical Institute; Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jiang Wu
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Brenda J Barry
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute
| | - Ganeshwaran H Mochida
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, MA 02115, USA; Pediatric Neurology Unit, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - R Sean Hill
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute
| | - Jill M Weimer
- Sanford Children's Health Research Center, Sanford Research, 2301 East 60(th) Street North, Sioux Falls, SD 57104, USA
| | - Quinn Stein
- Departments of Pediatrics and Ob/Gyn, Sanford School of Medicine, Sioux Falls, SD 57105, USA
| | - Annapurna Poduri
- Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Jennifer N Partlow
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute
| | - Dorothée Ville
- Department of Pediatric Neurology, Centre Hospitalier Universitaire de Lyon, 69007 Lyon, France
| | - Olivier Dulac
- Department of Pediatric Neurology, Centre de Reference Epilepsies Rares, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France; Institut National de la Santé et de la Recherche Médicale U1129, Université Paris Descartes, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale U1129, NeuroSpin, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, 91191 Gif-sur-Yvette, France
| | - Tim W Yu
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Anh-Thu N Lam
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute
| | - Sarah Servattalab
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute
| | - Jacqueline Rodriguez
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute
| | - Nathalie Boddaert
- Institut National de la Santé et de la Recherche Médicale U781, Department of Pediatric Radiology, Hôpital Necker-Enfants Malades, Imagine institute, Université Paris Descartes, 75006 Paris, France
| | - Arnold Munnich
- Institut National de la Santé et de la Recherche Médicale U781, Department of Genetics, Hôpital Necker-Enfants Malades, Imagine institute, Université Paris Descartes, 75006 Paris, France
| | - Laurence Colleaux
- Institut National de la Santé et de la Recherche Médicale U781, Department of Genetics, Hôpital Necker-Enfants Malades, Imagine institute, Université Paris Descartes, 75006 Paris, France
| | - Leonard I Zon
- Howard Hughes Medical Institute; Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute; Department of Pediatrics, Harvard Medical School, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Rima Nabbout
- Department of Pediatric Neurology, Centre de Reference Epilepsies Rares, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France; Institut National de la Santé et de la Recherche Médicale U1129, Université Paris Descartes, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale U1129, NeuroSpin, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, 91191 Gif-sur-Yvette, France.
| |
Collapse
|
142
|
Lieber DS, Hershman SG, Slate NG, Calvo SE, Sims KB, Schmahmann JD, Mootha VK. Next generation sequencing with copy number variant detection expands the phenotypic spectrum of HSD17B4-deficiency. BMC MEDICAL GENETICS 2014; 15:30. [PMID: 24602372 PMCID: PMC4015298 DOI: 10.1186/1471-2350-15-30] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 02/25/2014] [Indexed: 11/10/2022]
Abstract
Background D-bifunctional protein deficiency, caused by recessive mutations in HSD17B4, is a severe, infantile-onset disorder of peroxisomal fatty acid oxidation. Few affected patients survive past two years of age. Compound heterozygous mutations in HSD17B4 have also been reported in two sisters diagnosed with Perrault syndrome (MIM # 233400), who presented in adolescence with ovarian dysgenesis, hearing loss, and ataxia. Case presentation An adult male presented with cerebellar ataxia, peripheral neuropathy, hearing loss, and azoospermia. The clinical presentation, in combination with biochemical findings in serum, urine, and muscle biopsy, suggested a mitochondrial disorder. Commercial genetic testing of 18 ataxia and mitochondrial disease genes was negative. Targeted exome sequencing followed by analysis of single nucleotide variants and small insertions/deletions failed to reveal a genetic basis of disease. Application of a computational algorithm to infer copy number variants (CNVs) from exome data revealed a heterozygous 12 kb deletion of exons 10–13 of HSD17B4 that was compounded with a rare missense variant (p.A196V) at a highly conserved residue. Retrospective review of patient records revealed mildly elevated ratios of pristanic:phytanic acid and arachidonic:docosahexaenoic acid, consistent with dysfunctional peroxisomal fatty acid oxidation. Conclusion Our case expands the phenotypic spectrum of HSD17B4-deficiency, representing the first male case reported with infertility. Furthermore, it points to crosstalk between mitochondria and peroxisomes in HSD17B4-deficiency and Perrault syndrome.
Collapse
Affiliation(s)
| | | | | | | | | | - Jeremy D Schmahmann
- Ataxia Unit, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114 USA,
| | | |
Collapse
|
143
|
Haack TB, Gorza M, Danhauser K, Mayr JA, Haberberger B, Wieland T, Kremer L, Strecker V, Graf E, Memari Y, Ahting U, Kopajtich R, Wortmann SB, Rodenburg RJ, Kotzaeridou U, Hoffmann GF, Sperl W, Wittig I, Wilichowski E, Schottmann G, Schuelke M, Plecko B, Stephani U, Strom TM, Meitinger T, Prokisch H, Freisinger P. Phenotypic spectrum of eleven patients and five novel MTFMT mutations identified by exome sequencing and candidate gene screening. Mol Genet Metab 2014; 111:342-352. [PMID: 24461907 DOI: 10.1016/j.ymgme.2013.12.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 12/18/2013] [Indexed: 10/25/2022]
Abstract
Defects of mitochondrial oxidative phosphorylation (OXPHOS) are associated with a wide range of clinical phenotypes and time courses. Combined OXPHOS deficiencies are mainly caused by mutations of nuclear genes that are involved in mitochondrial protein translation. Due to their genetic heterogeneity it is almost impossible to diagnose OXPHOS patients on clinical grounds alone. Hence next generation sequencing (NGS) provides a distinct advantage over candidate gene sequencing to discover the underlying genetic defect in a timely manner. One recent example is the identification of mutations in MTFMT that impair mitochondrial protein translation through decreased formylation of Met-tRNA(Met). Here we report the results of a combined exome sequencing and candidate gene screening study. We identified nine additional MTFMT patients from eight families who were affected with Leigh encephalopathy or white matter disease, microcephaly, mental retardation, ataxia, and muscular hypotonia. In four patients, the causal mutations were identified by exome sequencing followed by stringent bioinformatic filtering. In one index case, exome sequencing identified a single heterozygous mutation leading to Sanger sequencing which identified a second mutation in the non-covered first exon. High-resolution melting curve-based MTFMT screening in 350 OXPHPOS patients identified pathogenic mutations in another three index cases. Mutations in one of them were not covered by previous exome sequencing. All novel mutations predict a loss-of-function or result in a severe decrease in MTFMT protein in patients' fibroblasts accompanied by reduced steady-state levels of complex I and IV subunits. Being present in 11 out of 13 index cases the c.626C>T mutation is one of the most frequent disease alleles underlying OXPHOS disorders. We provide detailed clinical descriptions on eleven MTFMT patients and review five previously reported cases.
Collapse
Affiliation(s)
- Tobias B Haack
- Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany
| | - Matteo Gorza
- Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Katharina Danhauser
- Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany
| | - Johannes A Mayr
- Department of Pediatrics, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Birgit Haberberger
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany
| | - Thomas Wieland
- Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Laura Kremer
- Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Valentina Strecker
- Functional Proteomics, SFB 815 core unit, Faculty of Medicine, Goethe-University, 60590 Frankfurt am Main, Germany
| | - Elisabeth Graf
- Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Yasin Memari
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Uwe Ahting
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany
| | - Robert Kopajtich
- Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Saskia B Wortmann
- Nijmegen Center for Mitochondrial Disorders, Department of Pediatrics, Radboud University Nijmegen Medical Centre, Nijmegen 6500 HB, The Netherlands
| | - Richard J Rodenburg
- Nijmegen Center for Mitochondrial Disorders, Department of Pediatrics, Radboud University Nijmegen Medical Centre, Nijmegen 6500 HB, The Netherlands
| | - Urania Kotzaeridou
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital, 69120 Heidelberg, Germany
| | - Georg F Hoffmann
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital, 69120 Heidelberg, Germany
| | - Wolfgang Sperl
- Department of Pediatrics, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Ilka Wittig
- Functional Proteomics, SFB 815 core unit, Faculty of Medicine, Goethe-University, 60590 Frankfurt am Main, Germany
| | - Ekkehard Wilichowski
- Department of Pediatrics and Pediatric Neurology, Universitätsmedizin Göttingen, 37075 Göttingen, Germany
| | - Gudrun Schottmann
- Department of Neuropediatrics and NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, 13125 Berlin, Germany
| | - Markus Schuelke
- Department of Neuropediatrics and NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, 13125 Berlin, Germany
| | - Barbara Plecko
- Department of Neurology, Kinderspital Zürich, Zürich, Switzerland
| | - Ulrich Stephani
- Department of Neuropediatrics, University Hospital, 24105 Kiel, Germany
| | - Tim M Strom
- Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany
| | - Peter Freisinger
- Department of Pediatrics, Inherited Metabolic Disease Centre, Klinikum Reutlingen, 72764 Reutlingen, Germany.
| |
Collapse
|
144
|
Boczonadi V, Horvath R. Mitochondria: impaired mitochondrial translation in human disease. Int J Biochem Cell Biol 2014; 48:77-84. [PMID: 24412566 PMCID: PMC3988845 DOI: 10.1016/j.biocel.2013.12.011] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/13/2013] [Accepted: 12/26/2013] [Indexed: 10/28/2022]
Abstract
Defects of the mitochondrial protein synthesis cause a subgroup of mitochondrial diseases, which are usually associated with decreased activities of multiple respiratory chain (RC) enzymes. The clinical presentations of these disorders are often disabling, progressive or fatal, affecting the brain, liver, skeletal muscle, heart and other organs. Currently there are no effective cures for these disorders and treatment is at best symptomatic. The diagnosis in patients with multiple respiratory chain complex defects is particularly difficult because of the massive number of nuclear genes potentially involved in intra-mitochondrial protein synthesis. Many of these genes are not yet linked to human disease. Whole exome sequencing rapidly changed the diagnosis of these patients by identifying the primary defect in DNA, and preventing the need for invasive and complex biochemical testing. Better understanding of the mitochondrial protein synthesis apparatus will help us to explore disease mechanisms and will provide clues for developing novel therapies.
Collapse
Affiliation(s)
- Veronika Boczonadi
- Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Rita Horvath
- Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
145
|
|
146
|
The Mitochondrial Aminoacyl tRNA Synthetases: Genes and Syndromes. Int J Cell Biol 2014; 2014:787956. [PMID: 24639874 PMCID: PMC3932222 DOI: 10.1155/2014/787956] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 12/01/2013] [Indexed: 02/05/2023] Open
Abstract
Mitochondrial respiratory chain (RC) disorders are a group of genetically and clinically heterogeneous diseases. This is because protein components of the RC are encoded by both mitochondrial and nuclear genomes and are essential in all cells. In addition, the biogenesis and maintenance of mitochondria, including mitochondrial DNA (mtDNA) replication, transcription, and translation, require nuclear-encoded genes. In the past decade, a growing number of syndromes associated with dysfunction of mtDNA translation have been reported. This paper reviews the current knowledge of mutations affecting mitochondrial aminoacyl tRNAs synthetases and their role in the pathogenic mechanisms underlying the different clinical presentations.
Collapse
|
147
|
He H, Teng H, Zhou T, Guo Y, Wang G, Lin M, Sun Y, Si W, Zhou Z, Guo X, Huo R. Unravelling the proteome of adult rhesus monkey ovaries. MOLECULAR BIOSYSTEMS 2014; 10:653-62. [DOI: 10.1039/c3mb70312f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
148
|
Almalki A, Alston CL, Parker A, Simonic I, Mehta SG, He L, Reza M, Oliveira JM, Lightowlers RN, McFarland R, Taylor RW, Chrzanowska-Lightowlers ZM. Mutation of the human mitochondrial phenylalanine-tRNA synthetase causes infantile-onset epilepsy and cytochrome c oxidase deficiency. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1842:56-64. [PMID: 24161539 PMCID: PMC3898479 DOI: 10.1016/j.bbadis.2013.10.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/30/2013] [Accepted: 10/17/2013] [Indexed: 11/24/2022]
Abstract
Mitochondrial aminoacyl-tRNA synthetases (aaRSs) are essential enzymes in protein synthesis since they charge tRNAs with their cognate amino acids. Mutations in the genes encoding mitochondrial aaRSs have been associated with a wide spectrum of human mitochondrial diseases. Here we report the identification of pathogenic mutations (a partial genomic deletion and a highly conserved p. Asp325Tyr missense variant) in FARS2, the gene encoding mitochondrial phenylalanyl-tRNA synthetase, in a patient with early-onset epilepsy and isolated complex IV deficiency in muscle. The biochemical defect was expressed in myoblasts but not in fibroblasts and associated with decreased steady state levels of COXI and COXII protein and reduced steady state levels of the mt-tRNA(Phe) transcript. Functional analysis of the recombinant mutant p. Asp325Tyr FARS2 protein showed an inability to bind ATP and consequently undetectable aminoacylation activity using either bacterial tRNA or human mt-tRNA(Phe) as substrates. Lentiviral transduction of cells with wildtype FARS2 restored complex IV protein levels, confirming that the p.Asp325Tyr mutation is pathogenic, causing respiratory chain deficiency and neurological deficits on account of defective aminoacylation of mt-tRNA(Phe).
Collapse
Affiliation(s)
- Abdulraheem Almalki
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Charlotte L. Alston
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Alasdair Parker
- Child Development Centre, Addenbrooke's Hospital, Cambridge, UK
| | - Ingrid Simonic
- Medical Genetics Laboratories, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Sarju G. Mehta
- Department of Medical Genetics, Addenbrookes Hospital, Cambridge, UK
| | - Langping He
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Mojgan Reza
- Biobank, Institute for Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Jorge M.A. Oliveira
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Robert N. Lightowlers
- The Wellcome Trust Centre for Mitochondrial Research, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Robert McFarland
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Robert W. Taylor
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Zofia M.A. Chrzanowska-Lightowlers
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
149
|
Evolutionary conservation and expression of human RNA-binding proteins and their role in human genetic disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 825:1-55. [PMID: 25201102 DOI: 10.1007/978-1-4939-1221-6_1] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RNA-binding proteins (RBPs) are effectors and regulators of posttranscriptional gene regulation (PTGR). RBPs regulate stability, maturation, and turnover of all RNAs, often binding thousands of targets at many sites. The importance of RBPs is underscored by their dysregulation or mutations causing a variety of developmental and neurological diseases. This chapter globally discusses human RBPs and provides a brief introduction to their identification and RNA targets. We review RBPs based on common structural RNA-binding domains, study their evolutionary conservation and expression, and summarize disease associations of different RBP classes.
Collapse
|
150
|
Agopiantz M, Corbonnois P, Sorlin A, Bonnet C, Klein M, Hubert N, Pascal-Vigneron V, Jonveaux P, Cuny T, Leheup B, Weryha G. Endocrine disorders in Woodhouse-Sakati syndrome: a systematic review of the literature. J Endocrinol Invest 2014; 37:1-7. [PMID: 24464444 DOI: 10.1007/s40618-013-0001-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 11/17/2013] [Indexed: 10/25/2022]
Abstract
First described in 1983, Woodhouse-Sakati syndrome (WSS) is a rare autosomal recessive genetic disorder that leads to a spectrum of hypogonadal symptoms in adolescence. The responsible gene, DCAF17 located on chromosome 2q31.1, was discovered in 2008 and to date nine mutations have been reported in the literature. The aim of the study was to review WSS descriptively in the light of new case reports with focus on endocrine features. Phenotypic description of three patients (two females, one male) with WSS followed in the Endocrinology Department of the University Hospital of Nancy, France, and exhaustive review of the literature using the PUBMED database were performed. Of 72 patients from 29 families with documented WSS who were identified, 39 had undergone genetic testing. WSS was invariably associated with hypogonadism, decreased IGF1 and frontotemporal alopecia starting in childhood. In addition to this triad, some patients exhibited intellectual disabilities of varying severity (87 %), bilateral deafness (76 %), cervicofacial dystonia and limb pain (42 % of cases, rising to 89 % after 25 years) and diabetes (66 %, rising to 96 % after 25 years). The pathophysiology of WSS remains unclear.
Collapse
Affiliation(s)
- M Agopiantz
- Department of Endocrinology and Medical Gynecology, University Hospital of Nancy, University of Lorraine, Rue du Morvan, 54511, Vandœuvre-lès-Nancy, France,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|