101
|
Ota M, Serada S, Naka T, Mori Y. MHC class I molecules are incorporated into human herpesvirus-6 viral particles and released into the extracellular environment. Microbiol Immunol 2014; 58:119-25. [PMID: 24330265 DOI: 10.1111/1348-0421.12121] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 11/22/2013] [Accepted: 12/06/2013] [Indexed: 12/14/2022]
Abstract
Human herpesvirus-6 (HHV-6), which belongs to the betaherpesvirus subfamily, mainly replicates in T lymphocytes. Here, we show that MHC class I molecules are incorporated into HHV-6 viral particles and released into the extracellular environment. In addition, HHV-6A/B-infected T cells showed reduced surface and intracellular expression of MHC class I molecules. The cellular machinery responsible for molecular transport appears to be modified upon HHV-6 infection, causing MHC class I molecules to be transported to virion assembly sites.
Collapse
Affiliation(s)
- Megumi Ota
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | | | | | | |
Collapse
|
102
|
Cytomegalovirus immune evasion by perturbation of endosomal trafficking. Cell Mol Immunol 2014; 12:154-69. [PMID: 25263490 PMCID: PMC4654299 DOI: 10.1038/cmi.2014.85] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/15/2014] [Accepted: 08/16/2014] [Indexed: 12/30/2022] Open
Abstract
Cytomegaloviruses (CMVs), members of the herpesvirus family, have evolved a variety of mechanisms to evade the immune response to survive in infected hosts and to establish latent infection. They effectively hide infected cells from the effector mechanisms of adaptive immunity by eliminating cellular proteins (major histocompatibility Class I and Class II molecules) from the cell surface that display viral antigens to CD8 and CD4 T lymphocytes. CMVs also successfully escape recognition and elimination of infected cells by natural killer (NK) cells, effector cells of innate immunity, either by mimicking NK cell inhibitory ligands or by downregulating NK cell-activating ligands. To accomplish these immunoevasion functions, CMVs encode several proteins that function in the biosynthetic pathway by inhibiting the assembly and trafficking of cellular proteins that participate in immune recognition and thereby, block their appearance at the cell surface. However, elimination of these proteins from the cell surface can also be achieved by perturbation of their endosomal route and subsequent relocation from the cell surface into intracellular compartments. Namely, the physiological route of every cellular protein, including immune recognition molecules, is characterized by specific features that determine its residence time at the cell surface. In this review, we summarize the current understanding of endocytic trafficking of immune recognition molecules and perturbations of the endosomal system during infection with CMVs and other members of the herpesvirus family that contribute to their immune evasion mechanisms.
Collapse
|
103
|
Murat P, Tellam J. Effects of messenger RNA structure and other translational control mechanisms on major histocompatibility complex-I mediated antigen presentation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 6:157-71. [PMID: 25264139 PMCID: PMC4359683 DOI: 10.1002/wrna.1262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/18/2014] [Accepted: 07/23/2014] [Indexed: 12/21/2022]
Abstract
Effective T‐cell surveillance of antigen‐presenting cells is dependent on the expression of an array of antigenic peptides bound to major histocompatibility complex (MHC) class I (MHC‐I) or class II (MHC‐II) molecules. Pathogens co‐evolving with their hosts exploit crucial translational regulatory mechanisms in order to evade host immune recognition and thereby sustain their infection. Evasion strategies that downregulate viral protein synthesis and thereby restrict antigen presentation to cytotoxic T‐cells through the endogenous MHC‐I pathway have been implicated in the pathogenesis of viral‐associated malignancies. An understanding of the mechanisms by which messenger RNA (mRNA) structure modulates both viral mRNA translation and the antigen processing machinery to escape immune surveillance, will stimulate the development of alternative therapeutic strategies focused on RNA‐directed drugs designed to enhance immune responses against infected cells. In this review, we discuss regulatory aspects of the MHC‐I pathway and summarize current knowledge of the role attributed by mRNA structure and other translational regulatory mechanisms in immune evasion. In particular we highlight the impact of recently identified G‐quadruplex structures within virally encoded transcripts as unique regulatory signals for translational control and antigen presentation. WIREs RNA 2015, 6:157–171. doi: 10.1002/wrna.1262 This article is categorized under:
RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems Translation > Translation Regulation
Collapse
Affiliation(s)
- Pierre Murat
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
104
|
Mottet K, Bareiss B, Milne CD, Barry M. The poxvirus encoded ubiquitin ligase, p28, is regulated by proteasomal degradation and autoubiquitination. Virology 2014; 468-470:363-378. [PMID: 25240226 DOI: 10.1016/j.virol.2014.08.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/19/2014] [Accepted: 08/23/2014] [Indexed: 11/30/2022]
Abstract
Virus manipulation of the ubiquitin-proteasome system has become increasingly apparent. Ubiquitin is a 76 amino acid protein that is post-translationally conjugated to target proteins, while poly-ubiquitination subsequently leads to degradation via the 26S proteasome. Target specificity is determined by a large family of ubiquitin ligases. Poxviruses encode p28, a highly conserved ubiquitin ligase expressed in a wide range of poxviruses (J. Virol. 79:597). Here we investigate the relationship between p28 and ubiquitination. Confocal microscopy indicated that orthologs of p28 co-localized with ubiquitin at the virus factory. Flow cytometry assays further demonstrated that p28 was regulated by proteasomal degradation. Moreover, when the ubiquitin ligase activity of p28 was disrupted by mutating the RING domain conjugated ubiquitin still localized to the viral factories, indicating that an unknown ubiquitin ligase(s) was responsible for regulating p28. Our observations indicate that p28 is a ubiquitin ligase that is regulated by ubiquitination and proteasomal degradation.
Collapse
Affiliation(s)
- Kelly Mottet
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, 621 HMRC, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | - Bettina Bareiss
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, 621 HMRC, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | - Craig D Milne
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, 621 HMRC, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | - Michele Barry
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, 621 HMRC, University of Alberta, Edmonton, Alberta, Canada T6G 2S2.
| |
Collapse
|
105
|
Campbell DM, Rappocciolo G, Jenkins FJ, Rinaldo CR. Dendritic cells: key players in human herpesvirus 8 infection and pathogenesis. Front Microbiol 2014; 5:452. [PMID: 25221546 PMCID: PMC4148009 DOI: 10.3389/fmicb.2014.00452] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/11/2014] [Indexed: 11/13/2022] Open
Abstract
Human herpesvirus 8 (HHV-8; Kaposi's sarcoma-associated herpesvirus) is an oncogenic gammaherpesvirus that primarily infects cells of the immune and vascular systems. HHV-8 interacts with and targets professional antigen presenting cells and influences their function. Infection alters the maturation, antigen presentation, and immune activation capabilities of certain dendritic cells (DC) despite non-robust lytic replication in these cells. DC sustains a low level of antiviral functionality during HHV-8 infection in vitro. This may explain the ability of healthy individuals to effectively control this virus without disease. Following an immune compromising event, such as organ transplantation or human immunodeficiency virus type 1 infection, a reduced cellular antiviral response against HHV-8 compounded with skewed DC cytokine production and antigen presentation likely contributes to the development of HHV-8 associated diseases, i.e., Kaposi's sarcoma and certain B cell lymphomas. In this review we focus on the role of DC in the establishment of HHV-8 primary and latent infection, the functional state of DC during HHV-8 infection, and the current understanding of the factors influencing virus-DC interactions in the context of HHV-8-associated disease.
Collapse
Affiliation(s)
- Diana M Campbell
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh Pittsburgh, PA, USA
| | - Giovanna Rappocciolo
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh Pittsburgh, PA, USA
| | - Frank J Jenkins
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh Pittsburgh, PA, USA ; Department of Pathology, School of Medicine, University of Pittsburgh Pittsburgh, PA, USA
| | - Charles R Rinaldo
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh Pittsburgh, PA, USA ; Department of Pathology, School of Medicine, University of Pittsburgh Pittsburgh, PA, USA
| |
Collapse
|
106
|
Major histocompatibility complex class I downregulation induced by equine herpesvirus type 1 pUL56 is through dynamin-dependent endocytosis. J Virol 2014; 88:12802-15. [PMID: 25165105 DOI: 10.1128/jvi.02079-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Equine herpesvirus type 1 (EHV-1) downregulates cell surface expression of major histocompatibility complex class I (MHC-I) in infected cells. We have previously shown that pUL56 encoded by the EHV-1 ORF1 gene regulates the process (G. Ma, S. Feineis, N. Osterrieder, and G. R. Van de Walle, J. Virol. 86:3554-3563, 2012, doi:http://dx.doi.org/10.1128/JVI.06994-11). Here, we report that cell surface MHC-I in EHV-1-infected cells is internalized and degraded in the lysosomal compartment in a pUL56-dependent fashion. pUL56-induced MHC-I endocytosis required dynamin and tyrosine kinase but was independent of clathrin and caveolin-1, the main constituents of the clathrin- and raft/caveola-mediated endocytosis pathways, respectively. Downregulation of cell surface MHC-I was significantly inhibited by the ubiquitin-activating enzyme E1 inhibitor PYR41, indicating that ubiquitination is essential for the process. Finally, we show that downregulation is not specific for MHC-I and that other molecules, including CD46 and CD63, are also removed from the cell surface in a pUL56-dependent fashion. IMPORTANCE We show that alphaherpesvirus induces MHC-I downregulation through endocytosis, which is mediated by pUL56. The dynamin-dependent endocytic pathway is responsible for MHC-I internalization in infected cells. Furthermore, we discovered that this endocytic process can be disrupted by the inhibiting ubiquitin-activating E1 enzyme, which is indispensable for ubiquitination. Finally, pUL56 action extends to a number of cell surface molecules that are significant for host immunity. Therefore, the protein may exert a more general immunomodulatory effect.
Collapse
|
107
|
Interplay between Kaposi's sarcoma-associated herpesvirus and the innate immune system. Cytokine Growth Factor Rev 2014; 25:597-609. [PMID: 25037686 DOI: 10.1016/j.cytogfr.2014.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 06/16/2014] [Indexed: 02/04/2023]
Abstract
Understanding of the innate immune response to viral infections is rapidly progressing, especially with regards to the detection of DNA viruses. Kaposi's sarcoma-associated herpesvirus (KSHV) is a large dsDNA virus that is responsible for three human diseases: Kaposi's sarcoma, primary effusion lymphoma and multicentric Castleman's disease. The major target cells of KSHV (B cells and endothelial cells) express a wide range of pattern recognition receptors (PRRs) and play a central role in mobilizing inflammatory responses. On the other hand, KSHV encodes an array of immune evasion genes, including several pirated host genes, which interfere with multiple aspects of the immune response. This review summarizes current understanding of innate immune recognition of KSHV and the role of immune evasion genes that shape the antiviral and inflammatory responses.
Collapse
|
108
|
Kimpler LA, Glosson NL, Downs D, Gonyo P, May NA, Hudson AW. Adaptor protein complexes AP-1 and AP-3 are required by the HHV-7 Immunoevasin U21 for rerouting of class I MHC molecules to the lysosomal compartment. PLoS One 2014; 9:e99139. [PMID: 24901711 PMCID: PMC4047081 DOI: 10.1371/journal.pone.0099139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/08/2014] [Indexed: 11/19/2022] Open
Abstract
The human herpesvirus-7 (HHV-7) U21 gene product binds to class I major histocompatibility complex (MHC) molecules and reroutes them to a lysosomal compartment. Trafficking of integral membrane proteins to lysosomes is mediated through cytoplasmic sorting signals that recruit heterotetrameric clathrin adaptor protein (AP) complexes, which in turn mediate protein sorting in post-Golgi vesicular transport. Since U21 can mediate rerouting of class I molecules to lysosomes even when lacking its cytoplasmic tail, we hypothesize the existence of a cellular protein that contains the lysosomal sorting information required to escort class I molecules to the lysosomal compartment. If such a protein exists, we expect that it might recruit clathrin adaptor protein complexes as a means of lysosomal sorting. Here we describe experiments demonstrating that the μ adaptins from AP-1 and AP-3 are involved in U21-mediated trafficking of class I molecules to lysosomes. These experiments support the idea that a cellular protein(s) is necessary for U21-mediated lysosomal sorting of class I molecules. We also examine the impact of transient versus chronic knockdown of these adaptor protein complexes, and show that the few remaining μ subunits in the cells are eventually able to reroute class I molecules to lysosomes.
Collapse
Affiliation(s)
- Lisa A. Kimpler
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Nicole L. Glosson
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Deanna Downs
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Patrick Gonyo
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Nathan A. May
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Amy W. Hudson
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
109
|
Kaposi's sarcoma-associated herpesvirus K3 and K5 ubiquitin E3 ligases have stage-specific immune evasion roles during lytic replication. J Virol 2014; 88:9335-49. [PMID: 24899205 DOI: 10.1128/jvi.00873-14] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
UNLABELLED The downregulation of immune synapse components such as major histocompatibility complex class I (MHC-I) and ICAM-1 is a common viral immune evasion strategy that protects infected cells from targeted elimination by cytolytic effector functions of the immune system. Kaposi's sarcoma-associated herpesvirus (KSHV) encodes two membrane-bound ubiquitin E3 ligases, called K3 and K5, which share the ability to induce internalization and degradation of MHC-I molecules. Although individual functions of K3 and K5 outside the viral genome are well characterized, their roles during the KSHV life cycle are still unclear. In this study, we individually introduced the amino acid-coding sequences of K3 or K5 into a ΔK3 ΔK5 recombinant virus, at either original or interchanged genomic positions. Recombinants harboring coding sequences within the K5 locus showed higher K3 and K5 protein expression levels and more rapid surface receptor downregulation than cognate recombinants in which coding sequences were introduced into the K3 locus. To identify infected cells undergoing K3-mediated downregulation of MHC-I, we employed a novel reporter virus, called red-green-blue-BAC16 (RGB-BAC16), which was engineered to harbor three fluorescent protein expression cassettes: EF1α-monomeric red fluorescent protein 1 (mRFP1), polyadenylated nuclear RNA promoter (pPAN)-enhanced green fluorescent protein (EGFP), and pK8.1-monomeric blue fluorescent protein (tagBFP), marking latent, immediate early, and late viral gene expression, respectively. Analysis of RGB-derived K3 and K5 deletion mutants showed that while the K5-mediated downregulation of MHC-I was concomitant with pPAN induction, the reduction of MHC-I surface expression by K3 was evident in cells that were enriched for pPAN-driven EGFP(high) and pK8.1-driven blue fluorescent protein-positive (BFP(+)) populations. These data support the notion that immunoreceptor downregulation occurs by a sequential process wherein K5 is critical during the immediately early phase and K3 plays a significant role during later stages. IMPORTANCE Although the roles of K3 and K5 outside the viral genome are well characterized, the function of these proteins in the context of the KSHV life cycle has remained unclear, particularly in the case of K3. This study examined the relative contributions of K3 and K5 to the downregulation of MHC-I during the lytic replication of KSHV. We show that while K5 acts immediately upon entry into the lytic phase, K3-mediated downregulation of MHC-I was evident during later stages of lytic replication. The identification of distinctly timed K3 and K5 activities significantly advances our understanding of KSHV-mediated immune evasion. Crucial to this study was the development of a novel recombinant KSHV, called RGB-BAC16, which facilitated the delineation of stage-specific phenotypes.
Collapse
|
110
|
HSV-1 ICP0: An E3 Ubiquitin Ligase That Counteracts Host Intrinsic and Innate Immunity. Cells 2014; 3:438-54. [PMID: 24852129 PMCID: PMC4092860 DOI: 10.3390/cells3020438] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/08/2014] [Indexed: 01/05/2023] Open
Abstract
The herpes simplex virus type 1 (HSV-1) encoded E3 ubiquitin ligase, infected cell protein 0 (ICP0), is required for efficient lytic viral replication and regulates the switch between the lytic and latent states of HSV-1. As an E3 ubiquitin ligase, ICP0 directs the proteasomal degradation of several cellular targets, allowing the virus to counteract different cellular intrinsic and innate immune responses. In this review, we will focus on how ICP0’s E3 ubiquitin ligase activity inactivates the host intrinsic defenses, such as nuclear domain 10 (ND10), SUMO, and the DNA damage response to HSV-1 infection. In addition, we will examine ICP0’s capacity to impair the activation of interferon (innate) regulatory mediators that include IFI16 (IFN γ-inducible protein 16), MyD88 (myeloid differentiation factor 88), and Mal (MyD88 adaptor-like protein). We will also consider how ICP0 allows HSV-1 to evade activation of the NF-κB (nuclear factor kappa B) inflammatory signaling pathway. Finally, ICP0’s paradoxical relationship with USP7 (ubiquitin specific protease 7) and its roles in intrinsic and innate immune responses to HSV-1 infection will be discussed.
Collapse
|
111
|
Hu Z, Usherwood EJ. Immune escape of γ-herpesviruses from adaptive immunity. Rev Med Virol 2014; 24:365-78. [PMID: 24733560 DOI: 10.1002/rmv.1791] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/06/2014] [Accepted: 03/07/2014] [Indexed: 01/23/2023]
Abstract
Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are two γ-herpesviruses identified in humans and are strongly associated with the development of malignancies. Murine γ-herpesvirus (MHV-68) is a naturally occurring rodent pathogen, representing a unique experimental model for dissecting γ-herpesvirus infection and the immune response. These γ-herpesviruses actively antagonize the innate and adaptive antiviral responses, thereby efficiently establishing latent or persistent infections and even promoting development of malignancies. In this review, we summarize immune evasion strategies of γ-herpesviruses. These include suppression of MHC-I-restricted and MHC-II-restricted antigen presentation, impairment of dendritic cell functions, downregulation of costimulatory molecules, activation of virus-specific regulatory T cells, and induction of inhibitory cytokines. There is a focus on how both γ-herpesvirus-derived and host-derived immunomodulators interfere with adaptive antiviral immunity. Understanding immune-evasive mechanisms is essential for developing future immunotherapies against EBV-driven and KSHV-driven tumors.
Collapse
Affiliation(s)
- Zhuting Hu
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | | |
Collapse
|
112
|
Arias C, Weisburd B, Stern-Ginossar N, Mercier A, Madrid AS, Bellare P, Holdorf M, Weissman JS, Ganem D. KSHV 2.0: a comprehensive annotation of the Kaposi's sarcoma-associated herpesvirus genome using next-generation sequencing reveals novel genomic and functional features. PLoS Pathog 2014; 10:e1003847. [PMID: 24453964 PMCID: PMC3894221 DOI: 10.1371/journal.ppat.1003847] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 10/20/2013] [Indexed: 01/08/2023] Open
Abstract
Productive herpesvirus infection requires a profound, time-controlled remodeling of the viral transcriptome and proteome. To gain insights into the genomic architecture and gene expression control in Kaposi's sarcoma-associated herpesvirus (KSHV), we performed a systematic genome-wide survey of viral transcriptional and translational activity throughout the lytic cycle. Using mRNA-sequencing and ribosome profiling, we found that transcripts encoding lytic genes are promptly bound by ribosomes upon lytic reactivation, suggesting their regulation is mainly transcriptional. Our approach also uncovered new genomic features such as ribosome occupancy of viral non-coding RNAs, numerous upstream and small open reading frames (ORFs), and unusual strategies to expand the virus coding repertoire that include alternative splicing, dynamic viral mRNA editing, and the use of alternative translation initiation codons. Furthermore, we provide a refined and expanded annotation of transcription start sites, polyadenylation sites, splice junctions, and initiation/termination codons of known and new viral features in the KSHV genomic space which we have termed KSHV 2.0. Our results represent a comprehensive genome-scale image of gene regulation during lytic KSHV infection that substantially expands our understanding of the genomic architecture and coding capacity of the virus. Kaposi's sarcoma-associated herpesvirus (KSHV) is a cancer-causing agent in immunocompromised patients that establishes long-lasting infections in its hosts. Initially described in 1994 and extensively studied ever since, KSHV molecular biology is understood in broad outline, but many detailed questions are still to be resolved. After almost two decades, specific aspects pertaining to the organization of the KSHV genome as well as the fate of the viral transcripts during the productive stages of infection remain unexplored. Here we use a systematic genome-wide approach to investigate changes in gene and protein expression during the productive stage of infection known as the lytic cycle. We found that the viral genome has a large coding capacity, capable of generating at least 45% more products than initially anticipated by bioinformatic analyses alone, and that it uses multiple strategies to expand its coding capacity well beyond what is determined solely by the DNA sequence of its genome. We also provide an expanded and highly detailed annotation of known and new genomic features in KSHV. We have termed this new architectural and functional annotation KSHV 2.0. Our results indicate that viral genomes are more complex than anticipated, and that they are subject to tight mechanisms of regulation to ensure correct gene expression.
Collapse
Affiliation(s)
- Carolina Arias
- Novartis Institute for Biomedical Research, Department of Infectious Diseases, Emeryville, California, United States of America
- * E-mail:
| | - Ben Weisburd
- Novartis Vaccines and Diagnostics, Bioinformatics, Emeryville, California, United States of America
| | - Noam Stern-Ginossar
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, United States of America
| | - Alexandre Mercier
- Novartis Institute for Biomedical Research, Department of Infectious Diseases, Emeryville, California, United States of America
| | - Alexis S. Madrid
- Novartis Institute for Biomedical Research, Department of Infectious Diseases, Emeryville, California, United States of America
| | - Priya Bellare
- Novartis Institute for Biomedical Research, Department of Infectious Diseases, Emeryville, California, United States of America
| | - Meghan Holdorf
- Novartis Institute for Biomedical Research, Department of Infectious Diseases, Emeryville, California, United States of America
| | - Jonathan S. Weissman
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, United States of America
| | - Don Ganem
- Novartis Institute for Biomedical Research, Department of Infectious Diseases, Emeryville, California, United States of America
| |
Collapse
|
113
|
Timms RT, Duncan LM, Tchasovnikarova IA, Antrobus R, Smith DL, Dougan G, Weekes MP, Lehner PJ. Haploid genetic screens identify an essential role for PLP2 in the downregulation of novel plasma membrane targets by viral E3 ubiquitin ligases. PLoS Pathog 2013; 9:e1003772. [PMID: 24278019 PMCID: PMC3836740 DOI: 10.1371/journal.ppat.1003772] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/27/2013] [Indexed: 11/19/2022] Open
Abstract
The Kaposi's sarcoma-associated herpesvirus gene products K3 and K5 are viral ubiquitin E3 ligases which downregulate MHC-I and additional cell surface immunoreceptors. To identify novel cellular genes required for K5 function we performed a forward genetic screen in near-haploid human KBM7 cells. The screen identified proteolipid protein 2 (PLP2), a MARVEL domain protein of unknown function, as essential for K5 activity. Genetic loss of PLP2 traps the viral ligase in the endoplasmic reticulum, where it is unable to ubiquitinate and degrade its substrates. Subsequent analysis of the plasma membrane proteome of K5-expressing KBM7 cells in the presence and absence of PLP2 revealed a wide range of novel K5 targets, all of which required PLP2 for their K5-mediated downregulation. This work ascribes a critical function to PLP2 for viral ligase activity and underlines the power of non-lethal haploid genetic screens in human cells to identify the genes involved in pathogen manipulation of the host immune system.
Collapse
Affiliation(s)
- Richard T. Timms
- Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Lidia M. Duncan
- Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Iva A. Tchasovnikarova
- Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Robin Antrobus
- Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Duncan L. Smith
- Paterson Institute for Cancer Research, University of Manchester, Withington, Manchester, United Kingdom
| | - Gordon Dougan
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Michael P. Weekes
- Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Paul J. Lehner
- Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
114
|
Hendricks MR, Bomberger JM. Who's really in control: microbial regulation of protein trafficking in the epithelium. Am J Physiol Cell Physiol 2013; 306:C187-97. [PMID: 24133062 DOI: 10.1152/ajpcell.00277.2013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Due to evolutionary pressure, there are many complex interactions at the interface between pathogens and eukaryotic host cells wherein host cells attempt to clear invading microorganisms and pathogens counter these mechanisms to colonize and invade host tissues. One striking observation from studies focused on this interface is that pathogens have multiple mechanisms to modulate and disrupt normal cellular physiology to establish replication niches and avoid clearance. The precision by which pathogens exert their effects on host cells makes them excellent tools to answer questions about cell physiology of eukaryotic cells. Furthermore, an understanding of these mechanisms at the host-pathogen interface will benefit our understanding of how pathogens cause disease. In this review, we describe a few examples of how pathogens disrupt normal cellular physiology and protein trafficking at epithelial cell barriers to underscore how pathogens modulate cellular processes to cause disease and how this knowledge has been utilized to learn about cellular physiology.
Collapse
Affiliation(s)
- Matthew R Hendricks
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | |
Collapse
|
115
|
Cai Q, Banerjee S, Cervini A, Lu J, Hislop AD, Dzeng R, Robertson ES. IRF-4-mediated CIITA transcription is blocked by KSHV encoded LANA to inhibit MHC II presentation. PLoS Pathog 2013; 9:e1003751. [PMID: 24204280 PMCID: PMC3814934 DOI: 10.1371/journal.ppat.1003751] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/23/2013] [Indexed: 01/18/2023] Open
Abstract
Peptides presentation to T cells by MHC class II molecules is of importance in initiation of immune response to a pathogen. The level of MHC II expression directly influences T lymphocyte activation and is often targeted by various viruses. Kaposi's sarcoma-associated herpesvirus (KSHV) encoded LANA is known to evade MHC class I peptide processing, however, the effect of LANA on MHC class II remains unclear. Here, we report that LANA down-regulates MHC II expression and presentation by inhibiting the transcription of MHC II transactivator (CIITA) promoter pIII and pIV in a dose-dependent manner. Strikingly, although LANA knockdown efficiently disrupts the inhibition of CIITA transcripts from its pIII and pIV promoter region, the expression of HLA-DQβ but no other MHC II molecules was significantly restored. Moreover, we revealed that the presentation of HLA-DQβ enhanced by LANA knockdown did not help LANA-specific CD4+ T cell recognition of PEL cells, and the inhibition of CIITA by LANA is independent of IL-4 or IFN-γ signaling but dependent on the direct interaction of LANA with IRF-4 (an activator of both the pIII and pIV CIITA promoters). This interaction dramatically blocked the DNA-binding ability of IRF-4 on both pIII and pIV promoters. Thus, our data implies that LANA can evade MHC II presentation and suppress CIITA transcription to provide a unique strategy of KSHV escape from immune surveillance by cytotoxic T cells.
Collapse
Affiliation(s)
- Qiliang Cai
- MOE&MOH Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Shuvomoy Banerjee
- Department of Microbiology and the Tumor Virology Program of Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States of America
| | - Amanda Cervini
- Department of Microbiology and the Tumor Virology Program of Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States of America
| | - Jie Lu
- Department of Microbiology and the Tumor Virology Program of Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States of America
| | - Andrew D. Hislop
- School of Cancer Sciences and Medical Research Council Centre for Immune Regulation, The University of Birmingham, Birmingham, United Kingdom
| | - Richard Dzeng
- Department of Microbiology and the Tumor Virology Program of Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States of America
| | - Erle S. Robertson
- Department of Microbiology and the Tumor Virology Program of Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States of America
| |
Collapse
|
116
|
Adhya D, Dutta K, Kundu K, Basu A. Histone deacetylase inhibition by Japanese encephalitis virus in monocyte/macrophages: a novel viral immune evasion strategy. Immunobiology 2013; 218:1235-47. [PMID: 23706498 DOI: 10.1016/j.imbio.2013.04.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 04/21/2013] [Indexed: 12/24/2022]
Abstract
Japanese encephalitis virus (JEV) is a common cause of encephalitis in humans who are dead-end hosts producing negligible viremia. The virus reaches the brain and causes massive inflammation. Our study seeks to understand the virus-host interaction using the murine monocyte/macrophage cell line RAW264.7, an antigen presenting cell involved in eliciting an innate immune response. We have discovered several interesting phenomena occurring in JEV-infected RAW264.7 cells which diverge from established observations. JEV remains inside RAW264.7 and appears to have little negative effect on cell viability. Expression studies of major histocompatibility complexes (MHC) and co-stimulatory molecules show inhibition of antigen presentation. There is enhanced immune suppression creating an anti-viral milieu. Expression of pro-inflammatory cytokines and chemokines is suppressed along with increased expression of anti-inflammatory molecules. Histone deacetylases (HDACs) have known inflammatory properties. In our study, through modulation of HDACs JEV seems to induce a crucial anti-inflammatory and anti-viral role in host macrophages.
Collapse
Affiliation(s)
- Dwaipayan Adhya
- National Brain Research Centre, Manesar, Haryana 122051, India
| | | | | | | |
Collapse
|
117
|
Jochmann R, Pfannstiel J, Chudasama P, Kuhn E, Konrad A, Stürzl M. O-GlcNAc transferase inhibits KSHV propagation and modifies replication relevant viral proteins as detected by systematic O-GlcNAcylation analysis. Glycobiology 2013; 23:1114-30. [PMID: 23580777 DOI: 10.1093/glycob/cwt028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
O-GlcNAcylation is an inducible, highly dynamic and reversible post-translational modification, mediated by a unique enzyme named O-linked N-acetyl-d-glucosamine (O-GlcNAc) transferase (OGT). In response to nutrients, O-GlcNAc levels are differentially regulated on many cellular proteins involved in gene expression, translation, immune reactions, protein degradation, protein-protein interaction, apoptosis and signal transduction. In contrast to eukaryotic cells, little is known about the role of O-GlcNAcylation in the viral life cycle. Here, we show that the overexpression of the OGT reduces the replication efficiency of Kaposi's sarcoma-associated herpesvirus (KSHV) in a dose-dependent manner. In order to investigate the global impact of O-GlcNAcylation in the KSHV life cycle, we systematically analyzed the 85 annotated KSHV-encoded open reading frames for O-GlcNAc modification. For this purpose, an immunoprecipitation (IP) strategy with three different approaches was carried out and the O-GlcNAc signal of the identified proteins was properly controlled for specificity. Out of the 85 KSHV-encoded proteins, 18 proteins were found to be direct targets for O-GlcNAcylation. Selected proteins were further confirmed by mass spectrometry for O-GlcNAc modification. Correlation of the functional annotation and the O-GlcNAc status of KSHV proteins showed that the predominant targets were proteins involved in viral DNA synthesis and replication. These results indicate that O-GlcNAcylation plays a major role in the regulation of KSHV propagation.
Collapse
Affiliation(s)
- Ramona Jochmann
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Schwabachanlage 10, 91054 Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
118
|
Kaposi's sarcoma-associated herpesvirus-encoded viral IRF3 modulates major histocompatibility complex class II (MHC-II) antigen presentation through MHC-II transactivator-dependent and -independent mechanisms: implications for oncogenesis. J Virol 2013; 87:5340-50. [PMID: 23449805 DOI: 10.1128/jvi.00250-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Evasion of immune T cell responses is crucial for persistent viruses to establish a normal carrier state. Most studies on active immune modulation mechanisms have focused on the stage of virus production in infected cells, when large numbers of viral antigens and potential immune modulators are expressed. For oncogenic viruses such as Kaposi's sarcoma-associated herpesvirus (KSHV), which is carried as a lifelong infection, usually with little harmful effect, but can cause various tumors, the immune evasion strategies can also be relevant in the context of tumorigenesis. Here we report that the virus-encoded interferon regulatory factor 3 (vIRF3) latent viral gene expressed in KSHV-related tumors functions as a potent immunevasin. Expression of vIRF3 downregulates surface major histocompatibility complex class II (MHC-II) DR expression with slow kinetics but, more importantly, can substantially inhibit recognition by KSHV-specific CD4 T cells prior to its effects on MHC-II DR downregulation in model cell systems. This property of vIRF3 is only partly due to its ability to inhibit the transcription of CIITA and, thus, MHC-II expression; CIITA-independent inhibition of MHC-II transcripts and another as yet unidentified posttranscriptional mechanism are also involved in qualitatively modulating the availability of specific peptide/MHC-II complexes at the cell surface. Consistent with these observations, the vIRF3-expressing KSHV-associated primary effusion lymphoma (PEL) lines are generally resistant to recognition by KSHV-specific CD4 T cells. Interestingly, some PEL lines exhibit small subpopulations with lower vIRF3 expression that can be recognized. These data implicate vIRF3 as a critical determinant of the MHC-II antigen presentation function in KSHV-associated PELs that is likely to be important in the pathogenesis of these tumors.
Collapse
|
119
|
Lang SM, Bynoe MOF, Karki R, Tartell MA, Means RE. Kaposi's sarcoma-associated herpesvirus K3 and K5 proteins down regulate both DC-SIGN and DC-SIGNR. PLoS One 2013; 8:e58056. [PMID: 23460925 PMCID: PMC3584050 DOI: 10.1371/journal.pone.0058056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 01/31/2013] [Indexed: 02/06/2023] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is the etiological agent of multicentric Castleman’s disease, primary effusion lymphoma and Kaposi’s sarcoma. In this study, we show that like the C-type lectin DC-SIGN, the closely related DC-SIGNR can also enhance KSHV infection. Following infection, they are both targeted for down modulation and our data indicate that the KSHV MARCH-family ubiquitin ligase K5 is mediating this regulation and subsequent targeting for degradation of DC-SIGN and DC-SIGNR in the context of the virus. The closely related viral K3 protein, is also able to target these lectins in exogenous expressions studies, but only weakly during viral infection. In addition to requiring a functional RING-CH domain, several protein trafficking motifs in the C-terminal region of both K3 and K5 are important in regulation of DC-SIGN and DC-SIGNR. Further exploration of this modulation revealed that DC-SIGN is endocytosed from the cell surface in THP-1 monocytes, but degraded from an internal location with minimal endocytosis in HEK-293 cells. Pull-down data indicate that both K3 and K5 preferentially associate with immature forms of the lectins, mediating their ubiquitylation and degradation. Together, these data emphasize the molecular complexities of K3 and K5, while expanding the repertoire of targets of these two viral proteins.
Collapse
Affiliation(s)
- Sabine M. Lang
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Meisha O. F. Bynoe
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Roshan Karki
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Michael A. Tartell
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Robert E. Means
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
120
|
Correa RL, Bruckner FP, de Souza Cascardo R, Alfenas-Zerbini P. The Role of F-Box Proteins during Viral Infection. Int J Mol Sci 2013; 14:4030-49. [PMID: 23429191 PMCID: PMC3588083 DOI: 10.3390/ijms14024030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 12/14/2012] [Accepted: 01/17/2013] [Indexed: 01/10/2023] Open
Abstract
The F-box domain is a protein structural motif of about 50 amino acids that mediates protein–protein interactions. The F-box protein is one of the four components of the SCF (SKp1, Cullin, F-box protein) complex, which mediates ubiquitination of proteins targeted for degradation by the proteasome, playing an essential role in many cellular processes. Several discoveries have been made on the use of the ubiquitin–proteasome system by viruses of several families to complete their infection cycle. On the other hand, F-box proteins can be used in the defense response by the host. This review describes the role of F-box proteins and the use of the ubiquitin–proteasome system in virus–host interactions.
Collapse
Affiliation(s)
- Régis Lopes Correa
- Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-970, Brazil; E-Mails: (R.L.C.); (R.S.C.)
| | - Fernanda Prieto Bruckner
- Department of Microbiology/BIOAGRO, Federal University of Viçosa, Viçosa, MG 36570-000, Brazil; E-Mail:
| | - Renan de Souza Cascardo
- Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-970, Brazil; E-Mails: (R.L.C.); (R.S.C.)
- Department of Microbiology/BIOAGRO, Federal University of Viçosa, Viçosa, MG 36570-000, Brazil; E-Mail:
| | - Poliane Alfenas-Zerbini
- Department of Microbiology/BIOAGRO, Federal University of Viçosa, Viçosa, MG 36570-000, Brazil; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +55-31-3899-2955; Fax: +55-31-3899-2864
| |
Collapse
|
121
|
Development of whole-virus multiplex luminex-based serological assays for diagnosis of infections with kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 homologs in macaques. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:409-19. [PMID: 23345584 DOI: 10.1128/cvi.00673-12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV)/human herpesvirus 8 is a tumorigenic rhadinovirus that is associated with all forms of Kaposi's sarcoma. Current serological detection of KSHV is based on enzyme-linked immunosorbent or immunofluorescence assays that suffer from a variety of problems, including the lack of defined standards for test comparison. While KSHV is the only known human rhadinovirus, two lineages of KSHV-like rhadinoviruses are found in Old World primates: the RV1 lineage includes KSHV and retroperitoneal fibromatosis herpesvirus (RFHV) in macaques, and the RV2 lineage includes RRV and MneRV2 from different macaque species. To develop animal models of KSHV-associated diseases, we developed quantitative multiplex bead-based serological assays to detect antibodies against rhadinovirus antigens. Proteins from KSHV (RV1) and MneRV2 (RV2) virions were coupled to spectrally distinct fluorescent beads and used in Luminex flow cytometry-based assays to detect immune responses in macaques. Both assays showed large dynamic ranges with high levels of seroreactivity to both KSHV and MneRV2 proteins. A large set of macaque serum samples from the Washington National Primate Research Center was screened, and most of the samples (82%) were positive in both assays, consistent with the high level of RV1-RV2 coinfection detected by PCR. The macaque sera showed broad, variable, and unique serological responses to the different viral antigens, allowing an initial seroprevalence to be determined for the macaque viruses. The Luminex assays offer a novel multiplexed approach to assess rhadinovirus infection patterns in both humans and nonhuman primates. This will help advance our understanding of rhadinovirus biology and associated host immunological responses.
Collapse
|
122
|
Knowlton ER, Lepone LM, Li J, Rappocciolo G, Jenkins FJ, Rinaldo CR. Professional antigen presenting cells in human herpesvirus 8 infection. Front Immunol 2013; 3:427. [PMID: 23346088 PMCID: PMC3549500 DOI: 10.3389/fimmu.2012.00427] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 12/24/2012] [Indexed: 12/18/2022] Open
Abstract
Professional antigen presenting cells (APC), i.e., dendritic cells (DC), monocytes/macrophages, and B lymphocytes, are critically important in the recognition of an invading pathogen and presentation of antigens to the T cell-mediated arm of immunity. Human herpesvirus 8 (HHV-8) is one of the few human viruses that primarily targets these APC for infection, altering their cytokine profiles, manipulating their surface expression of MHC molecules, and altering their ability to activate HHV-8-specific T cells. This could be why T cell responses to HHV-8 antigens are not very robust. Of these APC, only B cells support complete, lytic HHV-8 infection. However, both complete and abortive virus replication cycles in APC could directly affect viral pathogenesis and progression to Kaposi's sarcoma (KS) and HHV-8-associated B cell cancers. In this review, we discuss the effects of HHV-8 infection on professional APC and their relationship to the development of KS and B cell lymphomas.
Collapse
Affiliation(s)
- Emilee R Knowlton
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh Pittsburgh, PA, USA
| | | | | | | | | | | |
Collapse
|
123
|
Griffin BD, Gram AM, Mulder A, Van Leeuwen D, Claas FHJ, Wang F, Ressing ME, Wiertz E. EBV BILF1 evolved to downregulate cell surface display of a wide range of HLA class I molecules through their cytoplasmic tail. THE JOURNAL OF IMMUNOLOGY 2013; 190:1672-84. [PMID: 23315076 DOI: 10.4049/jimmunol.1102462] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Coevolution of herpesviruses and their hosts has driven the development of both host antiviral mechanisms to detect and eliminate infected cells and viral ploys to escape immune surveillance. Among the immune-evasion strategies used by the lymphocryptovirus (γ(1)-herpesvirus) EBV is the downregulation of surface HLA class I expression by the virally encoded G protein-coupled receptor BILF1, thereby impeding presentation of viral Ags and cytotoxic T cell recognition of the infected cell. In this study, we show EBV BILF1 to be expressed early in the viral lytic cycle. BILF1 targets a broad range of HLA class I molecules, including multiple HLA-A and -B types and HLA-E. In contrast, HLA-C was only marginally affected. We advance the mechanistic understanding of the process by showing that the cytoplasmic C-terminal tail of EBV BILF1 is required for reducing surface HLA class I expression. Susceptibility to BILF1-mediated downregulation, in turn, is conferred by specific residues in the intracellular tail of the HLA class I H chain. Finally, we explore the evolution of BILF1 within the lymphocryptovirus genus. Although the homolog of BILF1 encoded by the lymphocryptovirus infecting Old World rhesus primates shares the ability of EBV to downregulate cell surface HLA class I expression, this function is not possessed by New World marmoset lymphocryptovirus BILF1. Therefore, this study furthers our knowledge of the evolution of immunoevasive functions by the lymphocryptovirus genus of herpesviruses.
Collapse
Affiliation(s)
- Bryan D Griffin
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Bhatt AP, Damania B. AKTivation of PI3K/AKT/mTOR signaling pathway by KSHV. Front Immunol 2013; 3:401. [PMID: 23316192 PMCID: PMC3539662 DOI: 10.3389/fimmu.2012.00401] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 12/12/2012] [Indexed: 12/21/2022] Open
Abstract
As an obligate intracellular parasite, Kaposi sarcoma-associated herpesvirus (KSHV) relies on the host cell machinery to meet its needs for survival, viral replication, production, and dissemination of progeny virions. KSHV is a gammaherpesvirus that is associated with three different malignancies: Kaposi sarcoma (KS), and two B cell lymphoproliferative disorders, primary effusion lymphoma (PEL) and multicentric Castleman’s disease. KSHV viral proteins modulate the cellular phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway, which is a ubiquitous pathway that also controls B lymphocyte proliferation and development. We review the mechanisms by which KSHV manipulates the PI3K/AKT/mTOR pathway, with a specific focus on B cells.
Collapse
Affiliation(s)
- Aadra P Bhatt
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill Chapel Hill, NC, USA ; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | | |
Collapse
|
125
|
Abstract
The covalent attachment of ubiquitin to a protein is one of the most common post-translational modifications and regulates diverse eukaryotic cellular processes. Ubiquitination of MHC class I was first described in the context of viral proteins which target MHC class I for degradation in the endoplasmic reticulum and at the cell surface. Study of viral-induced MHC class I degradation has been extremely instructive in elucidating cellular pathways for degradation of membrane and secretory proteins. More recently, ubiquitination of endogenous MHC class I heavy chains which fail to achieve their native conformation and undergo endoplasmic-reticulum associated degradation has been demonstrated.In this chapter we describe methods for identification of endogenous ubiquitinated MHC class I heavy chains by MHC class I-immunoprecipitation and ubiquitin-specific immunoblot or by metabolic labeling and immunoprecipitation.
Collapse
Affiliation(s)
- Marian L Burr
- Cambridge Institute for Medical Research, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Jessica M Boname
- Cambridge Institute for Medical Research, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Paul J Lehner
- Cambridge Institute for Medical Research, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
| |
Collapse
|
126
|
Horst D, Geerdink RJ, Gram AM, Stoppelenburg AJ, Ressing ME. Hiding lipid presentation: viral interference with CD1d-restricted invariant natural killer T (iNKT) cell activation. Viruses 2012. [PMID: 23202469 PMCID: PMC3497057 DOI: 10.3390/v4102379] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The immune system plays a major role in protecting the host against viral infection. Rapid initial protection is conveyed by innate immune cells, while adaptive immunity (including T lymphocytes) requires several days to develop, yet provides high specificity and long-lasting memory. Invariant natural killer T (iNKT) cells are an unusual subset of T lymphocytes, expressing a semi-invariant T cell receptor together with markers of the innate NK cell lineage. Activated iNKT cells can exert direct cytolysis and can rapidly release a variety of immune-polarizing cytokines, thereby regulating the ensuing adaptive immune response. iNKT cells recognize lipids in the context of the antigen-presenting molecule CD1d. Intriguingly, CD1d-restricted iNKT cells appear to play a critical role in anti-viral defense: increased susceptibility to disseminated viral infections is observed both in patients with iNKT cell deficiency as well as in CD1d- and iNKT cell-deficient mice. Moreover, viruses have recently been found to use sophisticated strategies to withstand iNKT cell-mediated elimination. This review focuses on CD1d-restricted lipid presentation and the strategies viruses deploy to subvert this pathway.
Collapse
Affiliation(s)
- Daniëlle Horst
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (D.H.); (R.J.G.);
| | - Ruben J. Geerdink
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (D.H.); (R.J.G.);
| | - Anna M. Gram
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (D.H.); (R.J.G.);
| | - Arie J. Stoppelenburg
- Department of Pediatric Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (A.J.S.)
| | - Maaike E. Ressing
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (D.H.); (R.J.G.);
- Author to whom correspondence should be addressed; ; Tel.: +31 88-7550603
| |
Collapse
|
127
|
Abstract
Pathogens exploit several eukaryotic signaling pathways during an infection. They have evolved specific effectors and toxins to hijack host cell machinery for their own benefit. Signaling molecules are preferentially targeted by pathogens because they globally regulate many cellular processes. Both viruses and bacteria manipulate and control pathways that regulate host cell survival and shape, including MAPK signaling, G-protein signaling, signals controlling cytoskeletal dynamics, and innate immune responses.
Collapse
Affiliation(s)
- Neal M Alto
- UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | | |
Collapse
|
128
|
Jahnke M, Trowsdale J, Kelly AP. Structural requirements for recognition of major histocompatibility complex class II by membrane-associated RING-CH (MARCH) protein E3 ligases. J Biol Chem 2012; 287:28779-89. [PMID: 22761441 PMCID: PMC3436574 DOI: 10.1074/jbc.m112.381541] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 06/26/2012] [Indexed: 01/12/2023] Open
Abstract
MARCH E3 ligases play a key role in controlling MHC class II surface expression by regulated ubiquitination of a lysine residue in the β-chain. Little is known concerning how these enzymes target their specific substrates. Here we show that recognition of HLA-DR by MARCH proteins is complex. Several features associated with the transmembrane domain and bordering regions influence the overall efficiency of receptor internalization. A cluster of residues at the interface of the lipid bilayer and the cytosol plays the most important role in MARCH8 recognition of HLA-DRβ. Variation in this sequence also determines specificity of MARCH9 for HLA-DQ. Residues located in helical face four of HLA-DRβ together with a charged residue at the boundary with the stalk region also contribute significantly to recognition. Truncation analysis suggested that a dileucine-like motif in the DRβ cytoplasmic tail influences the efficiency of co-localization of HLA-DR with MARCH8. The DRβ-encoded acceptor lysine functioned optimally when placed in its natural location relative to the bilayer. In the DRα/DRβ dimer most other amino acids in the cytoplasmic tail could be substituted for alanine with minimal influence on function. Our data support a model whereby multiple features of HLA-DR are involved in substrate recognition by MARCH8. The single most important region is located at the interface between the transmembrane domain and the cytosol. Variation in sequence in this location between different class II isotypes controls efficiency of recognition by different MARCH E3 ligases.
Collapse
Affiliation(s)
- Martin Jahnke
- From the Division of Immunology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - John Trowsdale
- From the Division of Immunology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Adrian P. Kelly
- From the Division of Immunology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| |
Collapse
|
129
|
Zagorac GB, Mahmutefendić H, Tomaš MI, Kučić N, Le Bouteiller P, Lučin P. Early endosomal rerouting of major histocompatibility class I conformers. J Cell Physiol 2012; 227:2953-64. [PMID: 21959869 DOI: 10.1002/jcp.23042] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Major histocompatibility class I (MHC-I) molecules are present at the cell surface both as fully conformed trimolecular complexes composed of heavy chain (HC), beta-2-microglobulin (β2m) and peptide, and various open forms, devoid of peptide and/or β2m (open MHC-I conformers). Fully conformed MHC-I complexes and open MHC-I conformers can be distinguished by well characterized monoclonal antibody reagents that recognize their conformational difference in the extracellular domain. In the present study, we used these tools in order to test whether conformational difference in the extracellular domain determines endocytic and endosomal route of plasma membrane (PM) proteins. We analyzed PM localization, internalization, endosomal trafficking, and recycling of human and murine MHC-I proteins on various cell lines. We have shown that fully conformed MHC-I and open MHC-I conformers segregate at the PM and during endosomal trafficking resulting in the exclusion of open MHC-I conformers from the recycling route. This segregation is associated with their partitioning into the membranes of different compositions. As a result, the open MHC-I conformers internalized with higher rate than fully conformed counterparts. Thus, our data suggest the existence of conformation-based protein sorting mechanism in the endosomal system.
Collapse
|
130
|
Butler LM, Jeffery HC, Wheat RL, Long HM, Rae PC, Nash GB, Blackbourn DJ. Kaposi's sarcoma-associated herpesvirus inhibits expression and function of endothelial cell major histocompatibility complex class II via suppressor of cytokine signaling 3. J Virol 2012; 86:7158-66. [PMID: 22532676 PMCID: PMC3416330 DOI: 10.1128/jvi.06908-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 04/12/2012] [Indexed: 01/03/2023] Open
Abstract
Endothelial cells (EC) can present antigen to either CD8(+) T lymphocytes through constitutively expressed major histocompatibility complex class I (MHC-I) or CD4(+) T lymphocytes through gamma interferon (IFN-γ)-induced MHC-II. Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma (KS), an EC neoplasm characterized by dysregulated angiogenesis and a substantial inflammatory infiltrate. KSHV is understood to have evolved strategies to inhibit MHC-I expression on EC and MHC-II expression on primary effusion lymphoma cells, but its effects on EC MHC-II expression are unknown. Here, we report that the KSHV infection of human primary EC inhibits IFN-γ-induced expression of the MHC-II molecule HLA-DR at the transcriptional level. The effect is functionally significant, since recognition by an HLA-DR-restricted CD4(+) T-cell clone in response to cognate antigen presented by KSHV-infected EC was attenuated. Inhibition of HLA-DR expression was also achieved by exposing EC to supernatant from KSHV-inoculated EC before IFN-γ treatment, revealing a role for soluble mediators. IFN-γ-induced phosphorylation of STAT-1 and transcription of CIITA were suppressed in KSHV-inoculated EC via a mechanism involving SOCS3 (suppressor of cytokine signaling 3). Thus, KSHV infection resulted in transcriptional upregulation of SOCS3, and treatment with RNA interference against SOCS3 relieved virus-induced inhibition of IFN-γ-induced STAT-1 phosphorylation. Since cell surface MHC-II molecules present peptide antigens to CD4(+) T lymphocytes that can function either as direct cytolytic effectors or to initiate and regulate adaptive immune responses, inhibition of this antigen-presenting pathway would provide a survival advantage to the virus.
Collapse
Affiliation(s)
| | - H. C. Jeffery
- School of Clinical and Experimental Medicine
- School of Cancer Sciences and CR UK Centre for Cancer Research
| | - R. L. Wheat
- School of Cancer Sciences and CR UK Centre for Cancer Research
| | - H. M. Long
- School of Cancer Sciences and CR UK Centre for Cancer Research
| | - P. C. Rae
- School of Clinical and Experimental Medicine
- School of Cancer Sciences and CR UK Centre for Cancer Research
| | - G. B. Nash
- School of Clinical and Experimental Medicine
| | - D. J. Blackbourn
- School of Cancer Sciences and CR UK Centre for Cancer Research
- MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
131
|
Construction and manipulation of a new Kaposi's sarcoma-associated herpesvirus bacterial artificial chromosome clone. J Virol 2012; 86:9708-20. [PMID: 22740391 DOI: 10.1128/jvi.01019-12] [Citation(s) in RCA: 268] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Efficient genetic modification of herpesviruses such as Kaposi's sarcoma-associated herpesvirus (KSHV) has come to rely on bacterial artificial chromosome (BAC) technology. In order to facilitate this approach, we generated a new KSHV BAC clone, called BAC16, derived from the rKSHV.219 virus, which stems from KSHV and Epstein-Barr virus-coinfected JSC1 primary effusion lymphoma (PEL) cells. Restriction enzyme and complete sequencing data demonstrate that the KSHV of JSC1 PEL cells showed a minimal level of sequence variation across the entire viral genome compared to the complete genomic sequence of other KSHV strains. BAC16 not only stably propagated in both Escherichia coli and mammalian cells without apparent genetic rearrangements, but also was capable of robustly producing infectious virions (∼5 × 10(7)/ml). We also demonstrated the utility of BAC16 by generating deletion mutants of either the K3 or K5 genes, whose products are E3 ligases of the membrane-associated RING-CH (MARCH) family. While previous studies have shown that individual expression of either K3 or K5 results in efficient downregulation of the surface expression of major histocompatibility complex class I (MHC-I) molecules, we found that K5, but not K3, was the primary factor critical for the downregulation of MHC-I surface expression during KSHV lytic reactivation or following de novo infection. The data presented here demonstrate the utility of BAC16 for the generation and characterization of KSHV knockout and mutant recombinants and further emphasize the importance of functional analysis of viral genes in the context of the KSHV genome besides the study of individual gene expression.
Collapse
|
132
|
Kaposi's sarcoma-associated herpesvirus ORF54/dUTPase downregulates a ligand for the NK activating receptor NKp44. J Virol 2012; 86:8693-704. [PMID: 22674989 DOI: 10.1128/jvi.00252-12] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) establishes long-term latent infection in humans and can cause cancers in endothelial and B cells. A functioning immune system is vital for restricting viral proliferation and preventing KSHV-dependent neoplasms. While natural killer (NK) lymphocytes are known to target virus-infected cells for destruction, their importance in the anti-KSHV immune response is not currently understood. Activating receptors on NK cells recognize ligands on target cells, including the uncharacterized ligand(s) for NKp44, termed NKp44L. Here we demonstrate that several NK ligands are affected when KSHV-infected cells are induced to enter the lytic program. We performed a screen of most of the known KSHV genes and found that the product of the ORF54 gene could downregulate NKp44L. The ORF54-encoded protein is a dUTPase; however, dUTPase activity is neither necessary nor sufficient for the downregulation of NKp44L. In addition, we find that ORF54 can also target proteins of the cytokine receptor family and the mechanism of downregulation involves perturbation of membrane protein trafficking. The ORF54-related proteins of other human herpesviruses do not possess this activity, suggesting that the KSHV homolog has evolved a novel immunoregulatory function and that the NKp44-NKp44L signaling pathway contributes to antiviral immunity.
Collapse
|
133
|
Equine herpesvirus type 4 UL56 and UL49.5 proteins downregulate cell surface major histocompatibility complex class I expression independently of each other. J Virol 2012; 86:8059-71. [PMID: 22623773 DOI: 10.1128/jvi.00891-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Major histocompatibility complex class I (MHC-I) molecules are critically important in the host defense against various pathogens through presentation of viral peptides to cytotoxic T lymphocytes (CTLs), a process resulting in the destruction of virus-infected cells. Herpesviruses interfere with CTL-mediated elimination of infected cells by various mechanisms, including inhibition of peptide transport and loading, perturbation of MHC-I trafficking, and rerouting and proteolysis of cell surface MHC-I. In this study, we show that equine herpesvirus type 4 (EHV-4) modulates MHC-I cell surface expression through two different mechanisms. First, EHV-4 can lead to a significant downregulation of MHC-I expression at the cell surface through the product of ORF1, a protein expressed with early kinetics from a gene that is homologous to herpes simplex virus 1 UL56. The EHV-4 UL56 protein reduces cell surface MHC-I as early as 4 h after infection. Second, EHV-4 can interfere with MHC-I antigen presentation, starting at 6 h after infection, by inhibition of the transporter associated with antigen processing (TAP) through its UL49.5 protein. Although pUL49.5 has no immediate effect on overall surface MHC-I levels in infected cells, it blocks the supply of antigenic peptides to the endoplasmic reticulum (ER) and transport of peptide-loaded MHC-I to the cell surface. Taken together, our results show that EHV-4 encodes at least two viral immune evasion proteins: pUL56 reduces MHC-I molecules on the cell surface at early times after infection, and pUL49.5 interferes with MHC-I antigen presentation by blocking peptide transport in the ER.
Collapse
|
134
|
Morris VA, Punjabi AS, Wells RC, Wittkopp CJ, Vart R, Lagunoff M. The KSHV viral IL-6 homolog is sufficient to induce blood to lymphatic endothelial cell differentiation. Virology 2012; 428:112-20. [PMID: 22521915 DOI: 10.1016/j.virol.2012.03.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 12/11/2011] [Accepted: 03/13/2012] [Indexed: 10/28/2022]
Abstract
The predominant tumor cell of Kaposi's Sarcoma (KS) is the spindle cell, a cell of endothelial origin that expresses markers of lymphatic endothelium. In culture, Kaposi's Sarcoma-associated herpesvirus (KSHV) infection of blood endothelial cells drives expression of lymphatic endothelial cell specific markers, in a process that requires activation of the gp130 receptor and the JAK2/STAT3 and PI3K/AKT signaling pathways. While expression of each of the KSHV major latent genes in endothelial cells failed to increase expression of lymphatic markers, the viral homolog of human IL-6 (vIL-6) was sufficient for induction and requires the JAK2/STAT3 and PI3K/AKT pathways. Therefore, activation of gp130 and downstream signaling by vIL-6 is sufficient to drive blood to lymphatic endothelial cell differentiation. While sufficient, vIL-6 is not necessary for lymphatic reprogramming in the context of viral infection. This indicates that multiple viral genes are involved and suggests a central importance of this pathway to KSHV pathogenesis.
Collapse
Affiliation(s)
- Valerie A Morris
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | | | | | | | | | | |
Collapse
|
135
|
Suppression of antigen-specific T cell responses by the Kaposi's sarcoma-associated herpesvirus viral OX2 protein and its cellular orthologue, CD200. J Virol 2012; 86:6246-57. [PMID: 22491458 DOI: 10.1128/jvi.07168-11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Regulating appropriate activation of the immune response in the healthy host despite continual immune surveillance dictates that immune responses must be either self-limiting and therefore negatively regulated following their activation or prevented from developing inappropriately. In the case of antigen-specific T cells, their response is attenuated by several mechanisms, including ligation of CTLA-4 and PD-1. Through the study of the viral OX2 (vOX2) immunoregulator encoded by Kaposi's sarcoma-associated herpesvirus (KSHV), we have identified a T cell-attenuating role both for this protein and for CD200, a cellular orthologue of the viral vOX2 protein. In vitro, antigen-presenting cells (APC) expressing either native vOX2 or CD200 suppressed two functions of cognate antigen-specific T cell clones: gamma interferon (IFN-γ) production and mobilization of CD107a, a cytolytic granule component and measure of target cell killing ability. Mechanistically, vOX2 and CD200 expression on APC suppressed the phosphorylation of ERK1/2 mitogen-activated protein kinase in responding T cells. These data provide the first evidence for a role of both KSHV vOX2 and cellular CD200 in the negative regulation of antigen-specific T cell responses. They suggest that KSHV has evolved to harness the host CD200-based mechanism of attenuation of T cell responses to facilitate virus persistence and dissemination within the infected individual. Moreover, our studies define a new paradigm in immune modulation by viruses: the provision of a negative costimulatory signal to T cells by a virus-encoded orthologue of CD200.
Collapse
|
136
|
Identification of host-chromosome binding sites and candidate gene targets for Kaposi's sarcoma-associated herpesvirus LANA. J Virol 2012; 86:5752-62. [PMID: 22419807 DOI: 10.1128/jvi.07216-11] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
LANA is essential for tethering the Kaposi's sarcoma-associated herpesvirus (KSHV) genome to metaphase chromosomes and for modulating host-cell gene expression, but the binding sites in the host-chromosome remain unknown. Here, we use LANA-specific chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-Seq) to identify LANA binding sites in the viral and host-cell genomes of a latently infected pleural effusion lymphoma cell line BCBL1. LANA bound with high occupancy to the KSHV genome terminal repeats (TR) and to a few minor binding sites in the KSHV genome, including the LANA promoter region. We identified 256 putative LANA binding site peaks with P < 0.01 and overlap in two independent ChIP-Seq experiments. We validated several of the high-occupancy binding sites by conventional ChIP assays and quantitative PCR. Candidate cellular LANA binding motifs were identified and assayed for binding to purified recombinant LANA protein in vitro but bound with low affinity compared to the viral TR binding site. More than half of the LANA binding sites (170/256) could be mapped to within 2.5 kb of a cellular gene transcript. Pathways and Gene Ontogeny (GO) analysis revealed that LANA binds to genes within the p53 and tumor necrosis factor (TNF) regulatory network. Further analysis revealed partial overlap of LANA and STAT1 binding sites in several gamma interferon (IFN-γ)-regulated genes. We show that ectopic expression of LANA can downmodulate IFN-γ-mediated activation of a subset of genes, including the TAP1 peptide transporter and proteasome subunit beta type 9 (PSMB9), both of which are required for class I antigen presentation. Our data provide a potential mechanism through which LANA may regulate several host cell pathways by direct binding to gene regulatory elements.
Collapse
|
137
|
Herr RA, Wang X, Loh J, Virgin HW, Hansen TH. Newly discovered viral E3 ligase pK3 induces endoplasmic reticulum-associated degradation of class I major histocompatibility proteins and their membrane-bound chaperones. J Biol Chem 2012; 287:14467-79. [PMID: 22403403 DOI: 10.1074/jbc.m111.325340] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Viral immune invasion proteins are highly effective probes for studying physiological pathways. We report here the characterization of a new viral ubiquitin ligase pK3 expressed by rodent herpesvirus Peru (RHVP) that establishes acute and latent infection in laboratory mice. Our findings show that pK3 binds directly and specifically to class I major histocompatibility proteins (MHCI) in a transmembrane-dependent manner. This binding results in the rapid degradation of the pK3/MHCI complex by a mechanism dependent upon catalytically active pK3. Subsequently, the rapid degradation of pK3/MHCI secondarily causes the slow degradation of membrane bound components of the MHCI peptide loading complex, tapasin, and transporter associated with antigen processing (TAP). Interestingly, this secondary event occurs by cellular endoplasmic reticulum-associated degradation. Cumulatively, our findings show pK3 uses a unique mechanism of substrate detection and degradation compared with other viral or cellular E3 ligases. More importantly, our findings reveal that in the absence of nascent MHCI proteins in the endoplasmic reticulum, the transmembrane proteins TAP and tapasin that facilitate peptide binding to MHCI proteins are degraded by cellular quality control mechanisms.
Collapse
Affiliation(s)
- Roger A Herr
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
138
|
Compeer EB, Flinsenberg TWH, van der Grein SG, Boes M. Antigen processing and remodeling of the endosomal pathway: requirements for antigen cross-presentation. Front Immunol 2012; 3:37. [PMID: 22566920 PMCID: PMC3342355 DOI: 10.3389/fimmu.2012.00037] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 02/16/2012] [Indexed: 12/29/2022] Open
Abstract
Cross-presentation of endocytosed antigen as peptide/class I major histocompatibility complex complexes plays a central role in the elicitation of CD8+ T cell clones that mediate anti-viral and anti-tumor immune responses. While it has been clear that there are specific subsets of professional antigen presenting cells capable of antigen cross-presentation, identification of mechanisms involved is still ongoing. Especially amongst dendritic cells (DC), there are specialized subsets that are highly proficient at antigen cross-presentation. We here present a focused survey on the cell biological processes in the endosomal pathway that support antigen cross-presentation. This review highlights DC-intrinsic mechanisms that facilitate the cross-presentation of endocytosed antigen, including receptor-mediated uptake, maturation-induced endosomal sorting of membrane proteins, dynamic remodeling of endosomal structures and cell surface-directed endosomal trafficking. We will conclude with the description of pathogen-induced deviation of endosomal processing, and discuss how immune evasion strategies pertaining endosomal trafficking may preclude antigen cross-presentation.
Collapse
Affiliation(s)
- Ewoud Bernardus Compeer
- Department of Pediatric Immunology, University Medical Center Utrecht/Wilhelmina Children's Hospital Utrecht, Netherlands
| | | | | | | |
Collapse
|
139
|
Lee HR, Brulois K, Wong L, Jung JU. Modulation of Immune System by Kaposi's Sarcoma-Associated Herpesvirus: Lessons from Viral Evasion Strategies. Front Microbiol 2012; 3:44. [PMID: 22403573 PMCID: PMC3293256 DOI: 10.3389/fmicb.2012.00044] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Accepted: 01/27/2012] [Indexed: 12/14/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV), a member of the herpesvirus family, has evolved to establish a long-term, latent infection of cells such that while they carry the viral genome gene expression is highly restricted. Latency is a state of cryptic viral infection associated with genomic persistence in their host and this hallmark of KSHV infection leads to several clinical-epidemiological diseases such as KS, a plasmablastic variant of multicentric Castleman's disease, and primary effusion lymphoma upon immune suppression of infected hosts. In order to sustain efficient life-long persistency as well as their life cycle, KSHV dedicates a large portion of its genome to encode immunomodulatory proteins that antagonize its host's immune system. In this review, we will describe our current knowledge of the immune evasion strategies employed by KSHV at distinct stages of its viral life cycle to control the host's immune system.
Collapse
Affiliation(s)
- Hye-Ra Lee
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California Los Angeles, CA, USA
| | | | | | | |
Collapse
|
140
|
Ashizawa A, Higashi C, Masuda K, Ohga R, Taira T, Fujimuro M. The Ubiquitin System and Kaposi's Sarcoma-Associated Herpesvirus. Front Microbiol 2012; 3:66. [PMID: 22375140 PMCID: PMC3284729 DOI: 10.3389/fmicb.2012.00066] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 02/07/2012] [Indexed: 11/28/2022] Open
Abstract
Ubiquitination is a post-translational modification in which one or more ubiquitin molecules are covalently linked to lysine residues of target proteins. The ubiquitin system plays a key role in the regulation of protein degradation, which contributes to cell signaling, vesicular trafficking, apoptosis, and immune regulation. Bacterial and viral pathogens exploit the cellular ubiquitin system by encoding their own proteins to serve their survival and replication in infected cells. Recent studies have revealed that Kaposi’s sarcoma-associated herpesvirus (KSHV) manipulates the ubiquitin system of infected cells to facilitate cell proliferation, anti-apoptosis, and evasion from immunity. This review summarizes recent developments in our understanding of the molecular mechanisms used by KSHV to interact with the cellular ubiquitin machinery.
Collapse
Affiliation(s)
- Akira Ashizawa
- Department of Molecular Cell Biology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi Yamanashi, Japan
| | | | | | | | | | | |
Collapse
|
141
|
Galbas T, Thibodeau J. Cell-type specific regulation of MARCH1 E3 ubiquitin ligase by the anti-inflammatory cytokine IL-10. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/oji.2012.24020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
142
|
Rebl A, Köbis JM, Fischer U, Takizawa F, Verleih M, Wimmers K, Goldammer T. MARCH5 gene is duplicated in rainbow trout, but only fish-specific gene copy is up-regulated after VHSV infection. FISH & SHELLFISH IMMUNOLOGY 2011; 31:1041-1050. [PMID: 21939770 DOI: 10.1016/j.fsi.2011.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/19/2011] [Accepted: 09/06/2011] [Indexed: 05/31/2023]
Abstract
Ubiquitination regulates the activity, stability, and localization of a wide variety of proteins. Several mammalian MARCH ubiquitin E3 ligase proteins have been suggested to control cell surface immunoreceptors. The mitochondrial protein MARCH5 is a positive regulator of Toll-like receptor 7-mediated NF-κB activation in mammals. In the present study, duplicated MARCH5-like cDNA sequences were isolated from rainbow trout (Oncorhynchus mykiss) comprising open reading frames of 882 bp (MARCH5A) and 885 bp (MARCH5B), respectively. Trout MARCH5A and MARCH5B-encoding sequences share only 65% sequence identity. Phylogenetic analyses including an additionally isolated MARCH5-like sequence from whitefish (Coregonus maraena) suggest that teleosts possess an additional MARCH5 gene copy resulting from a fish-specific whole genome duplication. Coding sequences of MARCH5A and MARCH5B genes from trout are distributed over six exons. Hypothetical MARCH5 proteins from trout comprise four transmembrane helices and a single motif similar to a RING variant domain (RINGv) including eight highly conserved cysteine and histidine residues. A 'reverse-northern blot' analysis revealed furthermore a MARCH5B Δexon5 transcript variant. Both MARCH5 genes from trout show a strain-, tissue- and cell-specific expression profile indicating different functional roles. Fish-specific MARCH5A gene for instance might be involved in defense mechanisms, since in vivo-challenge with the viral pathogen VHSV caused a significant 1.7-fold elevated copy number of the respective gene in gills four days after infection, whereas MARCH5B transcript level did not increase.
Collapse
Affiliation(s)
- Alexander Rebl
- Leibniz-Institut für Nutztierbiologie (FBN), Fachbereich Molekularbiologie, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | | | | | | | | | | | | |
Collapse
|
143
|
Neurons are MHC class I-dependent targets for CD8 T cells upon neurotropic viral infection. PLoS Pathog 2011; 7:e1002393. [PMID: 22114563 PMCID: PMC3219726 DOI: 10.1371/journal.ppat.1002393] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 10/07/2011] [Indexed: 01/08/2023] Open
Abstract
Following infection of the central nervous system (CNS), the immune system is faced with the challenge of eliminating the pathogen without causing significant damage to neurons, which have limited capacities of renewal. In particular, it was thought that neurons were protected from direct attack by cytotoxic T lymphocytes (CTL) because they do not express major histocompatibility class I (MHC I) molecules, at least at steady state. To date, most of our current knowledge on the specifics of neuron-CTL interaction is based on studies artificially inducing MHC I expression on neurons, loading them with exogenous peptide and applying CTL clones or lines often differentiated in culture. Thus, much remains to be uncovered regarding the modalities of the interaction between infected neurons and antiviral CD8 T cells in the course of a natural disease. Here, we used the model of neuroinflammation caused by neurotropic Borna disease virus (BDV), in which virus-specific CTL have been demonstrated as the main immune effectors triggering disease. We tested the pathogenic properties of brain-isolated CD8 T cells against pure neuronal cultures infected with BDV. We observed that BDV infection of cortical neurons triggered a significant up regulation of MHC I molecules, rendering them susceptible to recognition by antiviral CTL, freshly isolated from the brains of acutely infected rats. Using real-time imaging, we analyzed the spatio-temporal relationships between neurons and CTL. Brain-isolated CTL exhibited a reduced mobility and established stable contacts with BDV-infected neurons, in an antigen- and MHC-dependent manner. This interaction induced rapid morphological changes of the neurons, without immediate killing or impairment of electrical activity. Early signs of neuronal apoptosis were detected only hours after this initial contact. Thus, our results show that infected neurons can be recognized efficiently by brain-isolated antiviral CD8 T cells and uncover the unusual modalities of CTL-induced neuronal damage. When a virus infects the brain, it is important to quickly block viral replication without causing excessive damage to neurons, which are not easily renewed. Cytotoxic T lymphocytes (CTL) are one of the main actors for virus elimination. However, the question of whether CTL are indeed capable of destroying infected neurons remains controversial. For this work, we analyzed the characteristics of interactions between infected neurons and CTL using neurotropic Borna disease virus (BDV). This virus infects neurons and triggers severe inflammation in the brain. We isolated CTL directly from the brains of rats infected with BDV and analyzed their interaction with primary cultures of neurons. Using live-cell fluorescence microscopy, we observed that CTL were arrested upon encounter with infected neurons and that they established stable contacts with them. Thereafter, infected neurons exhibited rapid changes in permeability but remained alive and electrically active for several hours, before ultimately being destroyed. Our study shows that neurons can indeed be recognized by CTL, an important observation for a better understanding of the physiopathology of virus-induced brain inflammation. In addition, it reveals that neurons are relatively resistant to CTL-induced killing, which may open a window of opportunity for new treatments.
Collapse
|
144
|
Leang RS, Wu TT, Hwang S, Liang LT, Tong L, Truong JT, Sun R. The anti-interferon activity of conserved viral dUTPase ORF54 is essential for an effective MHV-68 infection. PLoS Pathog 2011; 7:e1002292. [PMID: 21998588 PMCID: PMC3188543 DOI: 10.1371/journal.ppat.1002292] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 08/15/2011] [Indexed: 12/13/2022] Open
Abstract
Gammaherpesviruses such as KSHV and EBV establish lifelong persistent infections through latency in lymphocytes. These viruses have evolved several strategies to counteract the various components of the innate and adaptive immune systems. We conducted an unbiased screen using the genetically and biologically related virus, MHV-68, to find viral ORFs involved in the inhibition of type I interferon signaling and identified a conserved viral dUTPase, ORF54. Here we define the contribution of ORF54 in type I interferon inhibition by ectopic expression and through the use of genetically modified MHV-68. ORF54 and an ORF54 lacking dUTPase enzymatic activity efficiently inhibit type I interferon signaling by inducing the degradation of the type I interferon receptor protein IFNAR1. Subsequently, we show in vitro that the lack of ORF54 causes a reduction in lytic replication in the presence of type I interferon signaling. Investigation of the physiological consequence of IFNAR1 degradation and importance of ORF54 during MHV-68 in vivo infection demonstrates that ORF54 has an even greater impact on persistent infection than on lytic replication. MHV-68 lacking ORF54 expression is unable to efficiently establish latent infection in lymphocytes, although it replicates relatively normally in lung tissues. However, infection of IFNAR−/− mice alleviates this phenotype, emphasizing the specific role of ORF54 in type I interferon inhibition. Infection of mice and cells by a recombinant MHV-68 virus harboring a site specific mutation in ORF54 rendering the dUTPase inactive demonstrates that dUTPase enzymatic activity is not required for anti-interferon function of ORF54. Moreover, we find that dUTPase activity is dispensable at all stages of MHV-68 infection analyzed. Overall, our data suggest that ORF54 has evolved anti-interferon activity in addition to its dUTPase enzymatic activity, and that it is actually the anti-interferon role that renders ORF54 critical for establishing an effective persistent infection of MHV-68. Human gammaherpesviruses, Kaposi's sarcoma-associated herpesvirus and Epstein-Barr virus, are the cause of several malignancies, especially in patients immunocompromised due to HIV infection. The study of these human gammaherpesviruses is difficult due to their inability to replicate in cell culture and the lack of a small-animal model. Murine gammaherpesvirus-68 is a genetically and biologically similar virus that is utilized as a mouse model because it offers such advantages as the ability to replicate in cell culture, a manipulatable genome, and infection of mice. In this study, we have identified viral open reading frame 54 (ORF54) as an inhibitor of innate immunity, specifically of the type I interferon response. Although ORF54 is a conserved viral dUTPase, we found that its anti-interferon activity does not require its enzymatic activity. Through infection of cells and mice, we define the critical role of ORF54 in establishing persistent latent infection of MHV-68 by inducing the degradation of the type I interferon receptor. Our studies provide new insights into the far reaching effects of type I interferon signaling and the dual role of ORF54. This work could aid in the development of vaccine strategies to gammaherpesvirus infection.
Collapse
Affiliation(s)
- Ronika Sitapara Leang
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Ting-Ting Wu
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Seungmin Hwang
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Lidia T. Liang
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Leming Tong
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jennifer T. Truong
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Ren Sun
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
145
|
Corcoran K, Jabbour M, Bhagwandin C, Deymier MJ, Theisen DL, Lybarger L. Ubiquitin-mediated regulation of CD86 protein expression by the ubiquitin ligase membrane-associated RING-CH-1 (MARCH1). J Biol Chem 2011; 286:37168-80. [PMID: 21896490 DOI: 10.1074/jbc.m110.204040] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The activation of naïve T cells requires antigen presentation by dendritic cells (DCs), and the process of antigen presentation is regulated over the course of DC maturation. One key aspect of this regulation is the cell surface up-regulation upon DC maturation of peptide·MHC-II complexes and the costimulatory molecule CD86. It is now clear that these critical induction events involve changes in ubiquitin-dependent trafficking of MHC-II and CD86 by the E3 ligase membrane-associated RING-CH-1 (MARCH1). Although ubiquitin-dependent trafficking of MHC-II has been well characterized, much less is known regarding the post-transcriptional regulation of CD86 expression. Here, we examined the physical and functional interaction between CD86 and MARCH1. We observed that CD86 is rapidly endocytosed in the presence of MARCH1 followed by lysosome-dependent degradation. Furthermore, we found that the association between CD86 and MARCH1 was conferred primarily by the transmembrane domains of the respective proteins. In contrast to MHC-II, which has a single, conserved ubiquitin acceptor site in the cytosolic domain, we found that multiple lysine residues in the cytosolic tail of CD86 could support ubiquitination consistent with the relative lack of sequence conservation across species within the CD86 cytosolic domain. These findings suggest that MARCH1 recruits multiple substrates via transmembrane domain-mediated interactions to permit substrate ubiquitination in the face of diverse cytosolic domain sequences.
Collapse
Affiliation(s)
- Kathleen Corcoran
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | |
Collapse
|
146
|
Gustin JK, Moses AV, Früh K, Douglas JL. Viral takeover of the host ubiquitin system. Front Microbiol 2011; 2:161. [PMID: 21847386 PMCID: PMC3147166 DOI: 10.3389/fmicb.2011.00161] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 07/14/2011] [Indexed: 01/29/2023] Open
Abstract
Like the other more well-characterized post-translational modifications (phosphorylation, methylation, acetylation, acylation, etc.), the attachment of the 76 amino acid ubiquitin (Ub) protein to substrates has been shown to govern countless cellular processes. As obligate intracellular parasites, viruses have evolved the capability to commandeer many host processes in order to maximize their own survival, whether it be to increase viral production or to ensure the long-term survival of latently infected host cells. The first evidence that viruses could usurp the Ub system came from the DNA tumor viruses and Adenoviruses, each of which use Ub to dysregulate the host cell cycle (Scheffner et al., 1990; Querido et al., 2001). Today, the list of viruses that utilize Ub includes members from almost every viral class, encompassing both RNA and DNA viruses. Among these, there are examples of Ub usage at every stage of the viral life cycle, involving both ubiquitination and de-ubiquitination. In addition to viruses that merely modify the host Ub system, many of the large DNA viruses encode their own Ub modifying machinery. In this review, we highlight the latest discoveries regarding the myriad ways that viruses utilize Ub to their advantage.
Collapse
Affiliation(s)
- Jean K Gustin
- Vaccine and Gene Therapy Institute, Oregon Health & Science University Beaverton, OR, USA
| | | | | | | |
Collapse
|
147
|
Evasion and subversion of interferon-mediated antiviral immunity by Kaposi's sarcoma-associated herpesvirus: an overview. J Virol 2011; 85:10934-44. [PMID: 21775463 DOI: 10.1128/jvi.00687-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Viral invasion of a host cell triggers immune responses with both innate and adaptive components. The innate immune response involving the induction of type I interferons (alpha and beta interferons [IFN-α and -β]) constitutes the first line of antiviral defenses. The type I IFNs signal the transcription of a group of antiviral effector proteins, the IFN-stimulated genes (ISGs), which target distinct viral components and distinct stages of the viral life cycle, aiming to eliminate invading viruses. In the case of Kaposi's sarcoma-associated herpesvirus (KSHV), the etiological agent of Kaposi's sarcoma (KS), a sudden upsurge of type I IFN-mediated innate antiviral signals is seen immediately following both primary de novo infection and viral lytic reactivation from latency. Potent subversion of these responses thus becomes mandatory for the successful establishment of a primary infection following viral entry as well as for efficient viral assembly and egress. This review gives a concise overview of the induction of the type I IFN signaling pathways in response to viral infection and provides a comprehensive understanding of the antagonizing effects exerted by KSHV on type I IFN pathways wielded at various stages of the viral life cycle. Information garnered from this review should result in a better understanding of KSHV biology essential for the development of immunotherapeutic strategies targeted toward KSHV-associated malignancies.
Collapse
|
148
|
Eyster CA, Cole NB, Petersen S, Viswanathan K, Früh K, Donaldson JG. MARCH ubiquitin ligases alter the itinerary of clathrin-independent cargo from recycling to degradation. Mol Biol Cell 2011; 22:3218-30. [PMID: 21757542 PMCID: PMC3164467 DOI: 10.1091/mbc.e10-11-0874] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The MARCH family of proteins are membrane-associated E3 ubiquitin ligases that down-regulate surface membrane proteins. Expression of MARCH8 in cells causes the ubiquitination and down-regulation of surface CD98 and CD44—cargo proteins that enter cells by clathrin-independent endocytosis and are usually routed to recycling, not degradation. Following endocytosis, internalized plasma membrane proteins can be recycled back to the cell surface or trafficked to late endosomes/lysosomes for degradation. Here we report on the trafficking of multiple proteins that enter cells by clathrin-independent endocytosis (CIE) and determine that a set of proteins (CD44, CD98, and CD147) found primarily in recycling tubules largely failed to reach late endosomes in HeLa cells, whereas other CIE cargo proteins, including major histocompatibility complex class I protein (MHCI), trafficked to both early endosome antigen 1 (EEA1) and late endosomal compartments in addition to recycling tubules. Expression of the membrane-associated RING-CH 8 (MARCH8) E3 ubiquitin ligase completely shifted the trafficking of CD44 and CD98 proteins away from recycling tubules to EEA1 compartments and late endosomes, resulting in reduced surface levels. Cargo affected by MARCH expression, including CD44, CD98, and MHCI, still entered cells by CIE, suggesting that the routing of ubiquitinated cargo occurs after endocytosis. MARCH8 expression led to direct ubiquitination of CD98 and routing of CD98 to late endosomes/lysosomes.
Collapse
Affiliation(s)
- Craig A Eyster
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
149
|
Matthews NC, Goodier MR, Robey RC, Bower M, Gotch FM. Killing of Kaposi's sarcoma-associated herpesvirus-infected fibroblasts during latent infection by activated natural killer cells. Eur J Immunol 2011; 41:1958-68. [PMID: 21509779 PMCID: PMC3485667 DOI: 10.1002/eji.201040661] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 03/22/2011] [Accepted: 04/13/2011] [Indexed: 11/12/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) establishes life-long infection by evading clearance by the host immune system. In de novo infection and lytic replication, KSHV escapes cytotoxic T cells and NK cells through downregulation of MHC class-I and ICAM-1 molecules and associated antigens involved in forming and sustaining the immunological synapse. However, the efficacy of such mechanisms in the context of the predominantly latent KSHV infection reported in Kaposi's sarcoma (KS) lesions is unclear. Using primary dermal fibroblasts in a novel in vitro model of chronic latent KSHV infection, we generated target cells with viral loads similar to those in spindle cells extracted from KS lesions. We show that latently KSHV-infected fibroblasts had normal levels of MHC-class I, ICAM-1, HLA-E and NKG2D ligand expression, were resistant to NK-cell natural cytotoxicity and were highly susceptible to killing by cytokine-activated immunocompetent NK cells. KSHV-infected fibroblasts expressed normal levels of IFN-γR1 and responded to exogenous IFN-γ by upregulating MHC class I, ICAM-1 and HLA-E and resisting activated NK-cell killing. These data demonstrate that physiologically relevant levels of latent KSHV infection in primary cells cause limited activation of resting NK cells and confer little specific resistance to control by activated NK cells.
Collapse
Affiliation(s)
- Nick C Matthews
- Department of Immunology, Chelsea and Westminster Hospital, Imperial College London, London, UK.
| | | | | | | | | |
Collapse
|
150
|
Barton E, Mandal P, Speck SH. Pathogenesis and host control of gammaherpesviruses: lessons from the mouse. Annu Rev Immunol 2011; 29:351-97. [PMID: 21219186 DOI: 10.1146/annurev-immunol-072710-081639] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gammaherpesviruses are lymphotropic viruses that are associated with the development of lymphoproliferative diseases, lymphomas, as well as other nonlymphoid cancers. Most known gammaherpesviruses establish latency in B lymphocytes. Research on Epstein-Barr virus (EBV) and murine gammaherpesvirus 68 (MHV68/γHV68/MHV4) has revealed a complex relationship between virus latency and the stage of B cell differentiation. Available data support a model in which gammaherpesvirus infection drives B cell proliferation and differentiation. In general, the characterized gammaherpesviruses exhibit a very narrow host tropism, which has severely limited studies on the human gammaherpesviruses EBV and Kaposi's sarcoma-associated herpesvirus. As such, there has been significant interest in developing animal models in which the pathogenesis of gammaherpesviruses can be characterized. MHV68 represents a unique model to define the effects of chronic viral infection on the antiviral immune response.
Collapse
Affiliation(s)
- Erik Barton
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | |
Collapse
|