101
|
Fredes I, Moreno S, Díaz FP, Gutiérrez RA. Nitrate signaling and the control of Arabidopsis growth and development. CURRENT OPINION IN PLANT BIOLOGY 2019; 47:112-118. [PMID: 30496968 DOI: 10.1016/j.pbi.2018.10.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/05/2018] [Accepted: 10/18/2018] [Indexed: 05/07/2023]
Abstract
Coordination between plant development and nutrient availability ensures a suitable supply of macromolecules for growth and developmental programs. Nitrate is an important source of nitrogen (N) that acts as a signal molecule to modulate gene expression, physiological, growth and developmental responses throughout the life of the plant. New key players in the nitrate signaling pathway have been described and knowledge of the molecular mechanics of how it impacts growth and developmental processes is increasing fast. Importantly, mechanisms for nitrate-control of growth and developmental processes have been proposed for both local as well as systemic responses. This article provides a synthesis of recent insights into molecular mechanisms by which nitrate impacts growth and development over Arabidopsis life-cycle.
Collapse
Affiliation(s)
- Isabel Fredes
- FONDAP Center for Genome Regulation, Millennium Institute for Integrative Biology (iBio), Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avda. Libertador Bernardo O'Higgins 340, Santiago, 8331150, Chile
| | - Sebastián Moreno
- FONDAP Center for Genome Regulation, Millennium Institute for Integrative Biology (iBio), Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avda. Libertador Bernardo O'Higgins 340, Santiago, 8331150, Chile
| | - Francisca P Díaz
- FONDAP Center for Genome Regulation, Millennium Institute for Integrative Biology (iBio), Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avda. Libertador Bernardo O'Higgins 340, Santiago, 8331150, Chile
| | - Rodrigo A Gutiérrez
- FONDAP Center for Genome Regulation, Millennium Institute for Integrative Biology (iBio), Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avda. Libertador Bernardo O'Higgins 340, Santiago, 8331150, Chile.
| |
Collapse
|
102
|
Singh BN, Dwivedi P, Sarma BK, Singh HB. Trichoderma asperellum T42 induces local defense against Xanthomonas oryzae pv. oryzae under nitrate and ammonium nutrients in tobacco. RSC Adv 2019; 9:39793-39810. [PMID: 35541384 PMCID: PMC9076103 DOI: 10.1039/c9ra06802c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/08/2019] [Indexed: 11/23/2022] Open
Abstract
Trichoderma has been explored and found to play a vital role in the defense mechanism of plants. However, its effects on host disease management in the presence of N nutrients remains elusive. The present study aimed to assess the latent effects of Trichoderma asperellum T42 on oxidative burst-mediated defense mechanisms against Xanthomonas oryzae pv. oryzae (Xoo) in tobacco plants fed 10 mM NO3− and 3 mM NH4+ nutrients. The nitrate-fed tobacco plants displayed an increased HR when Xoo infected, which was enhanced in the Trichoderma-treated plants. This mechanism was enhanced by the involvement of Trichoderma, which elicited NO production and enhanced the expression pattern of NO-modulating genes (NR, NOA and ARC). The real-time NO fluorescence intensity was alleviated in the NH4+-fed tobacco plants compared to that fed NO3− nutrient, suggesting the significant role of Trichoderma-elicited NO. The nitrite content and NR activity demonstration further confirmed that nitrate metabolism led to NO generation. The production of ROS (H2O2) in the plant leaves well-corroborated that the disease resistance was mediated through the oxidative burst mechanism. Nitrate application resulted in greater ROS production compared to NH4+ nutrient after Xoo infection at 12 h post-infection (hpi). Additionally, the mechanism of enhanced plant defense under NO3− and NH4+ nutrients mediated by Trichoderma involved NO, ROS production and induction of PR1a MEK3 and antioxidant enzyme transcription level. Moreover, the use of sodium nitroprusside (100 μM) with Xoo suspension in the leaves matched the disease resistance mediated via NO burst. Altogether, this study provides novel insights into the fundamental mechanism behind the role of Trichoderma in the activation of plant defense against non-host pathogens under N nutrients. A hypothetical proposed defense pathway activated during interactions between bacterial pathogen (Xoo) with tobacco plant leaves among treatments.![]()
Collapse
Affiliation(s)
- Bansh Narayan Singh
- Institute of Environment and Sustainable Development
- Banaras Hindu University
- Varanasi 221005
- India
- Department of Plant Physiology
| | - Padmanabh Dwivedi
- Department of Plant Physiology
- Institute of Agricultural Sciences
- Banaras Hindu University
- Varanasi 221005
- India
| | - Birinchi Kumar Sarma
- Department of Mycology and Plant Pathology
- Institute of Agricultural Sciences
- Banaras Hindu University
- Varanasi 221005
- India
| | - Harikesh Bahadur Singh
- Department of Mycology and Plant Pathology
- Institute of Agricultural Sciences
- Banaras Hindu University
- Varanasi 221005
- India
| |
Collapse
|
103
|
Wany A, Foyer CH, Gupta KJ. Nitrate, NO and ROS Signaling in Stem Cell Homeostasis. TRENDS IN PLANT SCIENCE 2018; 23:1041-1044. [PMID: 30316685 DOI: 10.1016/j.tplants.2018.09.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/13/2018] [Accepted: 09/25/2018] [Indexed: 05/05/2023]
Abstract
Shoot and root growth is facilitated by stem cells in the shoot and root apical meristems (SAM and RAM). Recent reports have demonstrated a close link between nitrogen nutrition, nitric oxide (NO), and reactive oxygen species (ROS) in the regulation of SAM and RAM functions in response to nitrogen availability.
Collapse
Affiliation(s)
- Aakanksha Wany
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 110067, New Delhi, India
| | - Christine H Foyer
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | | |
Collapse
|
104
|
Janocha D, Lohmann JU. From signals to stem cells and back again. CURRENT OPINION IN PLANT BIOLOGY 2018; 45:136-142. [PMID: 30014888 PMCID: PMC6250905 DOI: 10.1016/j.pbi.2018.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/06/2018] [Accepted: 06/16/2018] [Indexed: 05/27/2023]
Abstract
During plant development, organ morphology and body architecture are dynamically adjusted in response to a changing environment. This developmental plasticity is based on precisely controlled maintenance of primary, as well as programmed initiation of pluripotent stem cell populations during secondary- and de novo meristem formation (reviewed in [1-3]). Plant stem cells are found exclusively in specific locations that are defined by relative position within the growing tissue. It follows that stem cell fate is primarily instructed by endogenous signals that dynamically define the stem cell niche in response to tissue topography [4]. Furthermore, plant stem cell activity is strongly dependent on developmental stage, suggesting that they are sensitive to long range signaling from distant organs, including the root [5,6••]. And finally, environmental signals exert a major influence allowing plants to cope with the plethora of highly variable environmental parameters during their life-cycle [7]. Integrating tissue level positional information with long range developmental cues, as well as environmental signals requires intricate molecular mechanisms that allow to filter, classify, and balance diverse inputs and translate them into appropriate local cell behavior. In this short review, we aim to highlight advances in identifying the relevant signals, their mode of action, as well as the mechanisms of information processing in stem cells of the shoot apical meristem (SAM).
Collapse
Affiliation(s)
- Denis Janocha
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, D-69120 Heidelberg, Germany
| | - Jan U Lohmann
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, D-69120 Heidelberg, Germany.
| |
Collapse
|
105
|
Luo Y, Tang Y, Zhang X, Li W, Chang Y, Pang D, Xu X, Li Y, Wang Z. Interactions between cytokinin and nitrogen contribute to grain mass in wheat cultivars by regulating the flag leaf senescence process. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.cj.2018.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
106
|
O'Connor DL. Live Confocal Imaging of Brachypodium Spikelet Meristems. Bio Protoc 2018; 8:e3026. [PMID: 34395812 DOI: 10.21769/bioprotoc.3026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/06/2018] [Accepted: 09/10/2018] [Indexed: 11/02/2022] Open
Abstract
Live confocal imaging of fluorescent reporters and stains in plant meristems provides valuable measurements of gene expression, protein dynamics, cell polarity, cell division, and growth. The spikelet meristem in the grass Brachypodium distachyon (Brachypodium) is well suited to live imaging because of the ease of dissection, small meristem size, simple arrangement of organs, and because each plant provides abundant spikelet meristems. Brachypodium is also far easier to genetically transform than other grass species. Presented here is a protocol for the growth, staging, dissection, mounting, and imaging of Brachypodium spikelet meristems for live confocal imaging.
Collapse
Affiliation(s)
- Devin Lee O'Connor
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
107
|
Gruel J, Deichmann J, Landrein B, Hitchcock T, Jönsson H. The interaction of transcription factors controls the spatial layout of plant aerial stem cell niches. NPJ Syst Biol Appl 2018; 4:36. [PMID: 30210806 PMCID: PMC6127332 DOI: 10.1038/s41540-018-0072-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 07/25/2018] [Accepted: 07/31/2018] [Indexed: 12/31/2022] Open
Abstract
The plant shoot apical meristem holds a stem cell niche from which all aerial organs originate. Using a computational approach we show that a mixture of monomers and heterodimers of the transcription factors WUSCHEL and HAIRY MERISTEM is sufficient to pattern the stem cell niche, and predict that immobile heterodimers form a regulatory "pocket" surrounding the stem cells. The model achieves to reproduce an array of perturbations, including mutants and tissue size modifications. We also show its ability to reproduce the recently observed dynamical shift of the stem cell niche during the development of an axillary meristem. The work integrates recent experimental results to answer the longstanding question of how the asymmetry of expression between the stem cell marker CLAVATA3 and its activator WUSCHEL is achieved, and recent findings of plasticity in the system.
Collapse
Affiliation(s)
- Jérémy Gruel
- 1Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR UK
| | - Julia Deichmann
- 1Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR UK
| | - Benoit Landrein
- 1Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR UK
| | - Thomas Hitchcock
- 1Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR UK
| | - Henrik Jönsson
- 1Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR UK.,2Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, CB3 0DZ UK.,3Computational Biology and Biological Physics, Lund University, 223 62 Lund, Sweden
| |
Collapse
|
108
|
Ruffel S. Nutrient-Related Long-Distance Signals: Common Players and Possible Cross-Talk. PLANT & CELL PHYSIOLOGY 2018; 59:1723-1732. [PMID: 30085239 DOI: 10.1093/pcp/pcy152] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/19/2018] [Indexed: 05/20/2023]
Abstract
Nutrient fluctuations are more a rule rather than an exception in the life of sessile organisms such as plants. Despite this constraint that adds up to abiotic and biotic stresses, plants are able to accomplish their life cycle thanks to an efficient signaling network that reciprocally controls nutrient acquisition and use with growth and development. The majority of nutrients are acquired by the root system where multiple local signaling pathways that rely on nutrient-sensing systems are implemented to direct root growth toward soil resources. Moreover, long-distance signaling plays an essential role in integrating nutrient availability at the whole-plant level and adjusting nutrient acquisition to plant growth requirements. By studying the signaling network for single mineral nutrients, several long-distance signals traveling between roots and shoots and taking a diversity of forms have been identified and are summarized here. However, the nutritional environment is multifactorial, adding a tremendous complexity for our understanding of the nutrient signaling network as a unique system. For instance, long-distance signals are expected to support this nutrient cross-talk in part, but the mechanisms are still largely unknown. Therefore, the involvement of possible long-distance signals as conveyers of nutrient cross-talk is discussed here together with approaches and strategies that are now considered to build a picture from the nutrient signaling puzzle.
Collapse
Affiliation(s)
- Sandrine Ruffel
- BPMP, INRA, CNRS, Universit� de Montpellier, Montpellier SupAgro, Montpellier, France
| |
Collapse
|
109
|
Pavlů J, Novák J, Koukalová V, Luklová M, Brzobohatý B, Černý M. Cytokinin at the Crossroads of Abiotic Stress Signalling Pathways. Int J Mol Sci 2018; 19:ijms19082450. [PMID: 30126242 PMCID: PMC6121657 DOI: 10.3390/ijms19082450] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 01/13/2023] Open
Abstract
Cytokinin is a multifaceted plant hormone that plays major roles not only in diverse plant growth and development processes, but also stress responses. We summarize knowledge of the roles of its metabolism, transport, and signalling in responses to changes in levels of both macronutrients (nitrogen, phosphorus, potassium, sulphur) and micronutrients (boron, iron, silicon, selenium). We comment on cytokinin's effects on plants' xenobiotic resistance, and its interactions with light, temperature, drought, and salinity signals. Further, we have compiled a list of abiotic stress-related genes and demonstrate that their expression patterns overlap with those of cytokinin metabolism and signalling genes.
Collapse
Affiliation(s)
- Jaroslav Pavlů
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
- CEITEC-Central European Institute of Technology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
| | - Jan Novák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
| | - Vladěna Koukalová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
| | - Markéta Luklová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
- CEITEC-Central European Institute of Technology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
- CEITEC-Central European Institute of Technology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
- Institute of Biophysics AS CR, 612 00 Brno, Czech Republic.
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
- Phytophthora Research Centre, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
| |
Collapse
|
110
|
Maugarny-Calès A, Laufs P. Getting leaves into shape: a molecular, cellular, environmental and evolutionary view. Development 2018; 145:145/13/dev161646. [PMID: 29991476 DOI: 10.1242/dev.161646] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Leaves arise from groups of undifferentiated cells as small primordia that go through overlapping phases of morphogenesis, growth and differentiation. These phases are genetically controlled and modulated by environmental cues to generate a stereotyped, yet plastic, mature organ. Over the past couple of decades, studies have revealed that hormonal signals, transcription factors and miRNAs play major roles during leaf development, and more recent findings have highlighted the contribution of mechanical signals to leaf growth. In this Review, we discuss how modulating the activity of some of these regulators can generate diverse leaf shapes during development, in response to a varying environment, or between species during evolution.
Collapse
Affiliation(s)
- Aude Maugarny-Calès
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.,Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Patrick Laufs
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| |
Collapse
|
111
|
Poitout A, Crabos A, Petřík I, Novák O, Krouk G, Lacombe B, Ruffel S. Responses to Systemic Nitrogen Signaling in Arabidopsis Roots Involve trans-Zeatin in Shoots. THE PLANT CELL 2018; 30:1243-1257. [PMID: 29764985 PMCID: PMC6048791 DOI: 10.1105/tpc.18.00011] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/19/2018] [Accepted: 05/14/2018] [Indexed: 05/18/2023]
Abstract
Plants face temporal and spatial variation in nitrogen (N) availability. This includes heterogeneity in soil nitrate (NO3-) content. To overcome these constraints, plants modify their gene expression and physiological processes to optimize N acquisition. This plasticity relies on a complex long-distance root-shoot-root signaling network that remains poorly understood. We previously showed that cytokinin (CK) biosynthesis is required to trigger systemic N signaling. Here, we performed split-root experiments and used a combination of CK-related mutant analyses, hormone profiling, transcriptomic analysis, NO3- uptake assays, and root growth measurements to gain insight into systemic N signaling in Arabidopsis thaliana By comparing wild-type plants and mutants affected in CK biosynthesis and ABCG14-dependent root-to-shoot translocation of CK, we revealed an important role for active trans-zeatin (tZ) in systemic N signaling. Both rapid sentinel gene regulation and long-term functional acclimation to heterogeneous NO3- supply, including NO3- transport and root growth regulation, are likely mediated by the integration of tZ content in shoots. Furthermore, shoot transcriptome profiling revealed that glutamate/glutamine metabolism is likely a target of tZ root-to-shoot translocation, prompting an interesting hypothesis regarding shoot-to-root communication. Finally, this study highlights tZ-independent pathways regulating gene expression in shoots as well as NO3- uptake activity in response to total N deprivation.
Collapse
Affiliation(s)
- Arthur Poitout
- BPMP, INRA, CNRS, Université de Montpellier, Montpellier SupAgro, 34090 Montpellier, France
| | - Amandine Crabos
- BPMP, INRA, CNRS, Université de Montpellier, Montpellier SupAgro, 34090 Montpellier, France
| | - Ivan Petřík
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, CZ-78371 Olomouc, Czech Republic
| | - Ondrej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, CZ-78371 Olomouc, Czech Republic
| | - Gabriel Krouk
- BPMP, INRA, CNRS, Université de Montpellier, Montpellier SupAgro, 34090 Montpellier, France
| | - Benoît Lacombe
- BPMP, INRA, CNRS, Université de Montpellier, Montpellier SupAgro, 34090 Montpellier, France
| | - Sandrine Ruffel
- BPMP, INRA, CNRS, Université de Montpellier, Montpellier SupAgro, 34090 Montpellier, France
| |
Collapse
|