101
|
Trans-generational desensitization and within-generational resensitization of a sucrose-best neuron in the polyphagous herbivore Helicoverpa armigera (Lepidoptera: Noctuidae). Sci Rep 2016; 6:39358. [PMID: 27966640 PMCID: PMC5155215 DOI: 10.1038/srep39358] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/22/2016] [Indexed: 11/08/2022] Open
Abstract
Dietary exposure of insects to a feeding deterrent substance for hours to days can induce habituation and concomitant desensitization of the response of peripheral gustatory neurons to such a substance. In the present study, larvae of the herbivore Helicoverpa armigera were fed on diets containing either a high, medium or low concentration of sucrose, a major feeding stimulant. The responsiveness of the sucrose-best neuron in the lateral sensilla styloconica on the galea was quantified. Results showed the response of the sucrose-best neuron exposed to high-sucrose diets decreased gradually over successive generations, resulting in complete desensitization in the 5th and subsequent generations. However, the sensitivity was completely restored in the ninth generation after neonate larvae were exposed to low-sucrose diet. These findings demonstrate phenotypic plasticity and exclude inadvertent artificial selection for low sensitivity to sucrose. No significant changes were found in the sensitivity of caterpillars which experienced low- or medium-sucrose diets over the same generations. Such desensitization versus re-sensitization did not generalise to the phagosimulant myo-inositol-sensitive neuron or the feeding deterrent-sensitive neuron. Our results demonstrate that under conditions of high sucrose availability trans-generational desensitization of a neuron sensitive to this feeding stimulant becomes more pronounced whereas re-sensitization occurs within one generation.
Collapse
|
102
|
Morales-Lázaro SL, Lemus L, Rosenbaum T. Regulation of thermoTRPs by lipids. Temperature (Austin) 2016; 4:24-40. [PMID: 28349093 DOI: 10.1080/23328940.2016.1254136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 12/30/2022] Open
Abstract
The family of Transient Receptor Potential (TRP) ion channels is constituted by 7 subfamilies among which are those that respond to temperature, the thermoTRPs. These channels are versatile molecules of a polymodal nature that have been shown to be modulated in various fashions by molecules of a lipidic nature. Some of these molecules interact directly with the channels on specific regions of their structures and some of these promote changes in membrane fluidity or modify their gating properties in response to their agonists. Here, we have discussed how some of these lipids regulate the activity of thermoTRPs and included some of the available evidence for the molecular mechanisms underlying their effects on these channels.
Collapse
Affiliation(s)
- Sara L Morales-Lázaro
- Department of Cognitive Neuroscience, Instituto de Fisiología Celular, Circuito exterior s/n, Universidad Nacional Autónoma de México , Coyoacan, México City, Mexico
| | - Luis Lemus
- Department of Cognitive Neuroscience, Instituto de Fisiología Celular, Circuito exterior s/n, Universidad Nacional Autónoma de México , Coyoacan, México City, Mexico
| | - Tamara Rosenbaum
- Department of Cognitive Neuroscience, Instituto de Fisiología Celular, Circuito exterior s/n, Universidad Nacional Autónoma de México , Coyoacan, México City, Mexico
| |
Collapse
|
103
|
Sturgeon RM, Magoski NS. Diacylglycerol-mediated regulation of Aplysia bag cell neuron excitability requires protein kinase C. J Physiol 2016; 594:5573-92. [PMID: 27198498 DOI: 10.1113/jp272152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/17/2016] [Indexed: 01/15/2023] Open
Abstract
KEY POINTS In Aplysia, reproduction is initiated by the bag cell neurons and a prolonged period of enhanced excitability known as the afterdischarge. Phosphoinositide turnover is upregulated during the afterdischarge resulting in the hydrolysis of phosphatidylinositol-4,5-bisphosphate by phospholipase C (PLC) and the release of diacylglycerol (DAG) and inositol trisphosphate (IP3 ). In whole-cell voltage-clamped cultured bag cell neurons, 1-oleoyl-2-acetyl-sn-glycerol (OAG), a synthetic DAG analogue, activates a dose-dependent, transient, inward current (IOAG ) that is enhanced by IP3 , mimicked by PLC activation and dependent on basal protein kinase C (PKC) activity. OAG depolarizes bag cell neurons and triggers action potential firing in culture, and prolongs electrically stimulated afterdischarges in intact bag cell neuron clusters ex vivo. Although PKC alone cannot activate the current, it is required for IOAG ; this is the first description of required obligate PKC activity working in concert with PLC, DAG and IP3 to maintain the depolarization required for prolonged excitability in Aplysia reproduction. ABSTRACT Following synaptic input, the bag cell neurons of Aplysia undergo a long-term afterdischarge of action potentials to secrete egg-laying hormone and initiate reproduction. Early in the afterdischarge, phospholipase C (PLC) hydrolyses phosphatidylinositol-4,5-bisphosphate into inositol trisphosphate (IP3 ) and diacylglycerol (DAG). In Aplysia, little is known about the action of DAG, or any interaction with IP3 ; thus, we examined the effects of a synthetic DAG analogue, 1-oleoyl-2-acetyl-sn-glycerol (OAG), on whole-cell voltage-clamped cultured bag cell neurons. OAG induced a large, prolonged, Ca(2+) -permeable, concentration-dependent inward current (IOAG ) that reversed at ∼-20 mV and was enhanced by intracellular IP3 . A similar current was evoked by either another DAG analogue, 1,2-dioctanoyl-sn-glycerol (DOG), or activating PLC with N-(3-trifluoromethylphenyl)-2,4,6-trimethylbenzenesulfonamide (m-3M3FBS). IOAG was reduced by the general cation channel blockers Gd(3+) or flufenamic acid. Work in other systems indicated that OAG activates channels independently of protein kinase C (PKC); however, we found pretreating bag cell neurons with any of the PKC inhibitors bisindolylmaleimide, sphinganine, or H7, attenuated IOAG . However, stimulating PKC with phorbol 12-myristate 13-acetate (PMA) did not evoke current or enhance IOAG ; moreover, unlike PMA, OAG failed to trigger PKC, as confirmed by an independent bioassay. Finally, OAG or m-3M3FBS depolarized cultured neurons, and while OAG did not provoke afterdischarges from bag cell neurons in the nervous system, it did double the duration of synaptically elicited afterdischarges. To our knowledge, this is the first report of obligate PKC activity for IOAG gating. An interaction between phosphoinositol metabolites and PKC could control the cation channel to influence afterdischarge duration.
Collapse
Affiliation(s)
- Raymond M Sturgeon
- Department of Biomedical and Molecular Sciences, Physiology Graduate Program, Queen's University, Kingston, ON, Canada, K7L 3N6
| | - Neil S Magoski
- Department of Biomedical and Molecular Sciences, Physiology Graduate Program, Queen's University, Kingston, ON, Canada, K7L 3N6.
| |
Collapse
|
104
|
Abstract
The taste system of animals is used to detect valuable nutrients and harmful compounds in foods. In humans and mice, sweet, bitter, salty, sour and umami tastes are considered the five basic taste qualities. Sweet and umami tastes are mediated by G-protein-coupled receptors, belonging to the T1R (taste receptor type 1) family. This family consists of three members (T1R1, T1R2 and T1R3). They function as sweet or umami taste receptors by forming heterodimeric complexes, T1R1+T1R3 (umami) or T1R2+T1R3 (sweet). Receptors for each of the basic tastes are thought to be expressed exclusively in taste bud cells. Sweet (T1R2+T1R3-expressing) taste cells were thought to be segregated from umami (T1R1+T1R3-expressing) taste cells in taste buds. However, recent studies have revealed that a significant portion of taste cells in mice expressed all T1R subunits and responded to both sweet and umami compounds. This suggests that sweet and umami taste cells may not be segregated. Mice are able to discriminate between sweet and umami tastes, and both tastes contribute to behavioural preferences for sweet or umami compounds. There is growing evidence that T1R3 is also involved in behavioural avoidance of calcium tastes in mice, which implies that there may be a further population of T1R-expressing taste cells that mediate aversion to calcium taste. Therefore the simple view of detection and segregation of sweet and umami tastes by T1R-expressing taste cells, in mice, is now open to re-examination.
Collapse
|
105
|
Jirku M, Lansky Z, Bednarova L, Sulc M, Monincova L, Majer P, Vyklicky L, Vondrasek J, Teisinger J, Bousova K. The characterization of a novel S100A1 binding site in the N-terminus of TRPM1. Int J Biochem Cell Biol 2016; 78:186-193. [PMID: 27435061 DOI: 10.1016/j.biocel.2016.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/11/2016] [Accepted: 07/14/2016] [Indexed: 10/21/2022]
Abstract
Transient receptor potential melastatin-1 channel (TRPM1) is an important mediator of calcium influx into the cell that is expressed in melanoma and ON-bipolar cells. Similar to other members of the TRP channel family, the intracellular N- and C- terminal domains of TRPM1 are expected to play important roles in the modulation of TRPM1 receptor function. Among the most commonly occurring modulators of TRP channels are the cytoplasmically expressed calcium binding proteins calmodulin and S100 calcium-binding protein A1 (S100A1), but the interaction of TRPM1 with S100A1 has not been described yet. Here, using a combination of biophysical and bioinformatics methods, we have determined that the N-terminal L242-E344 region of TRPM1 is a S100A1 binding domain. We show that formation of the TRPM1/S100A1 complex is calcium-dependent. Moreover, our structural model of the complex explained data obtained from fluorescence spectroscopy measurements revealing that the complex formation is facilitated through interactions of clusters positively charged (K271A, R273A, R274A) and hydrophobic (L263A, V270A, L276A) residues at the N-terminus of TRPM1. Taken together, our data suggest a molecular mechanism for the potential regulation of TRPM1 by S100A1.
Collapse
Affiliation(s)
- Michaela Jirku
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Zdenek Lansky
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, 25250 Vestec, Czech Republic
| | - Lucie Bednarova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Miroslav Sulc
- Institute of Microbiology, Czech Academy of Sciences, 14220 Prague, Czech Republic; Faculty of Science, Charles University in Prague, 12843 Prague, Czech Republic
| | - Lenka Monincova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Ladislav Vyklicky
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Jiri Vondrasek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Jan Teisinger
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Kristyna Bousova
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague, Czech Republic; Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague, Czech Republic.
| |
Collapse
|
106
|
Badheka D, Borbiro I, Rohacs T. Transient receptor potential melastatin 3 is a phosphoinositide-dependent ion channel. ACTA ACUST UNITED AC 2016; 146:65-77. [PMID: 26123195 PMCID: PMC4485020 DOI: 10.1085/jgp.201411336] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
PI(4,5)P2 is required for TRPM3 activity, establishing its role as a crucial cofactor for the entire TRPM channel family. Phosphoinositides are emerging as general regulators of the functionally diverse transient receptor potential (TRP) ion channel family. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) has been reported to positively regulate many TRP channels, but in several cases phosphoinositide regulation is controversial. TRP melastatin 3 (TRPM3) is a heat-activated ion channel that is also stimulated by chemical agonists, such as pregnenolone sulfate. Here, we used a wide array of approaches to determine the effects of phosphoinositides on TRPM3. We found that channel activity in excised inside-out patches decreased over time (rundown), an attribute of PI(4,5)P2-dependent ion channels. Channel activity could be restored by application of either synthetic dioctanoyl (diC8) or natural arachidonyl stearyl (AASt) PI(4,5)P2. The PI(4,5)P2 precursor phosphatidylinositol 4-phosphate (PI(4)P) was less effective at restoring channel activity. TRPM3 currents were also restored by MgATP, an effect which was inhibited by two different phosphatidylinositol 4-kinase inhibitors, or by pretreatment with a phosphatidylinositol-specific phospholipase C (PI-PLC) enzyme, indicating that MgATP acted by generating phosphoinositides. In intact cells, reduction of PI(4,5)P2 levels by chemically inducible phosphoinositide phosphatases or a voltage-sensitive 5′-phosphatase inhibited channel activity. Activation of PLC via muscarinic receptors also inhibited TRPM3 channel activity. Overall, our data indicate that TRPM3 is a phosphoinositide-dependent ion channel and that decreasing PI(4,5)P2 abundance limits its activity. As all other members of the TRPM family have also been shown to require PI(4,5)P2 for activity, our data establish PI(4,5)P2 as a general positive cofactor of this ion channel subfamily.
Collapse
Affiliation(s)
- Doreen Badheka
- Department of Pharmacology and Physiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Istvan Borbiro
- Department of Pharmacology and Physiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Tibor Rohacs
- Department of Pharmacology and Physiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| |
Collapse
|
107
|
Epstein JB, Smutzer G, Doty RL. Understanding the impact of taste changes in oncology care. Support Care Cancer 2016; 24:1917-31. [DOI: 10.1007/s00520-016-3083-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/07/2016] [Indexed: 12/22/2022]
|
108
|
Loper HB, La Sala M, Dotson C, Steinle N. Taste perception, associated hormonal modulation, and nutrient intake. Nutr Rev 2016; 73:83-91. [PMID: 26024495 DOI: 10.1093/nutrit/nuu009] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
It is well known that taste perception influences food intake. After ingestion, gustatory receptors relay sensory signals to the brain, which segregates, evaluates, and distinguishes the stimuli, leading to the experience known as "flavor." It is well accepted that five taste qualities – sweet, salty, bitter, sour, and umami – can be perceived by animals. In this review, the anatomy and physiology of human taste buds, the hormonal modulation of taste function, the importance of genetic chemosensory variation, and the influence of gustatory functioning on macronutrient selection and eating behavior are discussed. Individual genotypic variation results in specific phenotypes of food preference and nutrient intake. Understanding the role of taste in food selection and ingestive behavior is important for expanding our understanding of the factors involved in body weight maintenance and the risk of chronic diseases including obesity, atherosclerosis, cancer, diabetes, liver disease, and hypertension.
Collapse
Affiliation(s)
- Hillary B Loper
- H.B. Loper is with the Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA. M. La Sala and C. Dotson are with the Division of Addiction Medicine, Center for Smell and Taste, Department of Neuroscience and Psychiatry, University of Florida College of Medicine, Gainesville, FL, USA. N Steinle is with the Baltimore Veterans Administration Medical Center and University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michael La Sala
- H.B. Loper is with the Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA. M. La Sala and C. Dotson are with the Division of Addiction Medicine, Center for Smell and Taste, Department of Neuroscience and Psychiatry, University of Florida College of Medicine, Gainesville, FL, USA. N Steinle is with the Baltimore Veterans Administration Medical Center and University of Maryland School of Medicine, Baltimore, MD, USA
| | - Cedrick Dotson
- H.B. Loper is with the Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA. M. La Sala and C. Dotson are with the Division of Addiction Medicine, Center for Smell and Taste, Department of Neuroscience and Psychiatry, University of Florida College of Medicine, Gainesville, FL, USA. N Steinle is with the Baltimore Veterans Administration Medical Center and University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nanette Steinle
- H.B. Loper is with the Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA. M. La Sala and C. Dotson are with the Division of Addiction Medicine, Center for Smell and Taste, Department of Neuroscience and Psychiatry, University of Florida College of Medicine, Gainesville, FL, USA. N Steinle is with the Baltimore Veterans Administration Medical Center and University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
109
|
Calcium Entry Through Thermosensory Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:265-304. [PMID: 27161233 DOI: 10.1007/978-3-319-26974-0_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
ThermoTRPs are unique channels that mediate Na(+) and Ca(2+) currents in response to changes in ambient temperature. In combination with their activation by other physical and chemical stimuli, they are considered key integrators of environmental cues into neuronal excitability. Furthermore, roles of thermoTRPs in non-neuronal tissues are currently emerging such as insulin secretion in pancreatic β-cells, and links to cancer. Calcium permeability through thermoTRPs appears a central hallmark for their physiological and pathological activities. Moreover, it is currently being proposed that beyond working as a second messenger, Ca(2+) can function locally by acting on protein complexes near the membrane. Interestingly, thermoTRPs can enhance and expand the inherent plasticity of signalplexes by conferring them temperature, pH and lipid regulation through Ca(2+) signalling. Thus, unveiling the local role of Ca(2+) fluxes induced by thermoTRPs on the dynamics of membrane-attached signalling complexes as well as their significance in cellular processes, are central issues that will expand the opportunities for therapeutic intervention in disorders involving dysfunction of thermoTRP channels.
Collapse
|
110
|
Tang M, Wu GY, Dong XZ, Tang ZX. Phosphoinositide interacting regulator of TRP (Pirt) enhances TRPM8 channel activity in vitro via increasing channel conductance. Acta Pharmacol Sin 2016; 37:98-104. [PMID: 26657057 DOI: 10.1038/aps.2015.110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 11/01/2015] [Indexed: 12/20/2022] Open
Abstract
AIM Pirt is a two-transmembrane domain protein that regulates the function of a variety of ion channels. Our previous study indicated that Pirt acts as a positive endogenous regulator of the TRPM8 channel. The aim of this study was to investigate the mechanism underlying the regulation of TRPM8 channel by Pirt. METHODS HEK293 cells were transfected with TRPM8+Pirt or TRPM8 alone. Menthol (1 mmol/L) was applied through perfusion to induce TRPM8-mediated voltage-dependent currents, which were recorded using a whole-cell recording technique. PIP2 (10 μmol/L) was added into the electrode pipettes (PI was taken as a control). Additionally, cell-attached single-channel recordings were conducted in CHO cells transfected with TRPM8+Pirt or TRPM8 alone, and menthol (1 mmol/L) was added into the pipette solution. RESULTS Either co-transfection with Pirt or intracellular application of PIP2 (but not PI) significantly enhanced menthol-induced TRPM8 currents. Furthermore, Pirt and PIP2 synergistically modulated menthol-induced TRPM8 currents. Single-channel recordings revealed that co-transfection with Pirt significantly increased the single channel conductance. CONCLUSION Pirt and PIP2 synergistically enhance TRPM8 channel activity, and Pirt regulates TRPM8 channel activity by increasing the single channel conductance.
Collapse
|
111
|
Characterization of the part of N-terminal PIP2 binding site of the TRPM1 channel. Biophys Chem 2015; 207:135-42. [DOI: 10.1016/j.bpc.2015.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/23/2015] [Accepted: 10/25/2015] [Indexed: 11/19/2022]
|
112
|
Ablation of TRPM5 in Mice Results in Reduced Body Weight Gain and Improved Glucose Tolerance and Protects from Excessive Consumption of Sweet Palatable Food when Fed High Caloric Diets. PLoS One 2015; 10:e0138373. [PMID: 26397098 PMCID: PMC4580452 DOI: 10.1371/journal.pone.0138373] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 08/27/2015] [Indexed: 01/09/2023] Open
Abstract
The calcium activated cation channel transient receptor potential channel type M5 (TRPM5) is part of the downstream machinery of the taste receptors and have been shown to play a central role in taste signalling. In addition it is also found in other types of chemosensory cells in various parts of the body as well as in pancreatic β-cells. The aim of this study was to investigate the effects of TRPM5 gene ablation on body weight, insulin sensitivity and other metabolic parameters in long-term high caloric diet induced obesity. Trpm5-/- mice gained significantly less body weight and fat mass on both palatable carbohydrate and fat rich cafeteria diet and 60% high fat diet (HFD) and developed less insulin resistance compared to wild type mice. A main finding was the clearly improved glucose tolerance in Trpm5-/- mice compared to wild type mice on cafeteria diet, which was independent of body weight. In addition, it was shown that Trpm5-/- mice consumed the same amount of calories when fed a HFD only or a HFD in combination with a palatable chocolate ball, which is in contrast to wild type mice that increased their caloric intake when fed the combination, mainly due to excessive consumption of the chocolate ball. Thus the palatable sugar containing diet induced overeating was prevented in Trpm5-/- mice. This indicates that sweet taste induced overeating may be a cause for the increased energy intake and glucose intolerance development seen for wild type mice on a sugar and high fat rich cafeteria diet compared to when on a high fat diet. This study point to an important role for the taste signalling system and TRPM5 in diet induced glucose intolerance.
Collapse
|
113
|
Rohacs T. Phosphoinositide regulation of TRPV1 revisited. Pflugers Arch 2015; 467:1851-69. [PMID: 25754030 PMCID: PMC4537841 DOI: 10.1007/s00424-015-1695-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/12/2015] [Accepted: 02/16/2015] [Indexed: 01/22/2023]
Abstract
The heat- and capsaicin-sensitive transient receptor potential vanilloid 1 ion channel (TRPV1) is regulated by plasma membrane phosphoinositides. The effects of these lipids on this channel have been controversial. Recent articles re-ignited the debate and also offered resolution to place some of the data in a coherent picture. This review summarizes the literature on this topic and provides a detailed and critical discussion on the experimental evidence for the various effects of phosphatidylinositol 4,5-bisphosphayte [PI(4,5)P2 or PIP2] on TRPV1. We conclude that PI(4,5)P2 and potentially its precursor PI(4)P are positive cofactors for TRPV1, acting via direct interaction with the channel, and their depletion by Ca(2+)-induced activation of phospholipase Cδ isoforms (PLCδ) limits channel activity during capsaicin-induced desensitization. Other negatively charged lipids at higher concentrations can also support channel activity, which may explain some controversies in the literature. PI(4,5)P2 also partially inhibits channel activity in some experimental settings, and relief from this inhibition upon PLCβ activation may contribute to sensitization. The negative effect of PI(4,5)P2 is more controversial and its mechanism is less well understood. Other TRP channels from the TRPV and TRPC families may also undergo similar dual regulation by phosphoinositides, thus the complexity of TRPV1 regulation is not unique to this channel.
Collapse
Affiliation(s)
- Tibor Rohacs
- Department of Pharmacology and Physiology Rutgers, New Jersey Medical School, 185 South Orange Ave, Newark, NJ, USA,
| |
Collapse
|
114
|
Abstract
Studies over the last 8 years have identified 3 potential channels that appear to release ATP from Type II cells in response to taste stimuli. These studies have taken different methodological approaches but have all provided data supporting their candidate channel as the ATP release channel. These potential channels include Pannexin 1, Connexins (30 and/or 43), and most recently, the Calhm1 channel. Two papers in this issue of Chemical Senses provide compelling new evidence that Pannexin 1 is not the ATP release channel. Tordoff et al. did a thorough behavioral analysis of the Pannexin1 knock out mouse and found that these animals have the same behavioral responses as wild type mice for 7 different taste stimuli that were tested. Vandenbeuch et al. presented an equally thorough analysis of the gustatory nerve responses in the Pannexin1 knock out mouse and found no differences compared with controls. Thus when the role of Pannexin 1 is analyzed at the systems level, it is not required for normal taste perception. Further studies are needed to determine the role of this hemichannel in taste cells.
Collapse
Affiliation(s)
- Kathryn F Medler
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
115
|
Bousova K, Jirku M, Bumba L, Bednarova L, Sulc M, Franek M, Vyklicky L, Vondrasek J, Teisinger J. PIP2 and PIP3 interact with N-terminus region of TRPM4 channel. Biophys Chem 2015; 205:24-32. [PMID: 26071843 DOI: 10.1016/j.bpc.2015.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/04/2015] [Accepted: 06/06/2015] [Indexed: 01/07/2023]
Abstract
The transient receptor potential melastatin 4 (TRPM4) is a calcium-activated non-selective ion channel broadly expressed in a variety of tissues. Receptor has been identified as a crucial modulator of numerous calcium dependent mechanisms in the cell such as immune response, cardiac conduction, neurotransmission and insulin secretion. It is known that phosphoinositide lipids (PIPs) play a unique role in the regulation of TRP channel function. However the molecular mechanism of this process is still unknown. We characterized the binding site of PIP2 and its structural analogue PIP3 in the E733-W772 proximal region of the TRPM4 N-terminus via biophysical and molecular modeling methods. The specific positions R755 and R767 in this domain were identified as being important for interactions with PIP2/PIP3 ligands. Their mutations caused a partial loss of PIP2/PIP3 binding specificity. The interaction of PIP3 with TRPM4 channels has never been described before. These findings provide new insight into the ligand binding domains of the TRPM4 channel.
Collapse
Affiliation(s)
- Kristyna Bousova
- 2nd Faculty of Medicine, Charles University in Prague, 15006 Prague, Czech Republic; Institute of Physiology, Academy of Sciences of the Czech Republic, 14220 Prague, Czech Republic
| | - Michaela Jirku
- Institute of Physiology, Academy of Sciences of the Czech Republic, 14220 Prague, Czech Republic; Faculty of Science, Charles University in Prague, 12843 Prague, Czech Republic
| | - Ladislav Bumba
- Institute of Microbiology, Academy of Sciences of the Czech Republic, 14220 Prague, Czech Republic
| | - Lucie Bednarova
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 16610 Prague, Czech Republic
| | - Miroslav Sulc
- Institute of Microbiology, Academy of Sciences of the Czech Republic, 14220 Prague, Czech Republic
| | - Miloslav Franek
- 3rd Faculty of Medicine, Charles University in Prague, 10000 Prague, Czech Republic
| | - Ladislav Vyklicky
- Institute of Physiology, Academy of Sciences of the Czech Republic, 14220 Prague, Czech Republic
| | - Jiri Vondrasek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 16610 Prague, Czech Republic
| | - Jan Teisinger
- Institute of Physiology, Academy of Sciences of the Czech Republic, 14220 Prague, Czech Republic.
| |
Collapse
|
116
|
Cvijanovic N, Feinle-Bisset C, Young RL, Little TJ. Oral and intestinal sweet and fat tasting: impact of receptor polymorphisms and dietary modulation for metabolic disease. Nutr Rev 2015; 73:318-334. [DOI: 10.1093/nutrit/nuu026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
117
|
Khatibi Shahidi M, Krivanek J, Kaukua N, Ernfors P, Hladik L, Kostal V, Masich S, Hampl A, Chubanov V, Gudermann T, Romanov R, Harkany T, Adameyko I, Fried K. Three-dimensional Imaging Reveals New Compartments and Structural Adaptations in Odontoblasts. J Dent Res 2015; 94:945-54. [DOI: 10.1177/0022034515580796] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In organized tissues, the precise geometry and the overall shape are critical for the specialized functions that the cells carry out. Odontoblasts are major matrix-producing cells of the tooth and have also been suggested to participate in sensory transmission. However, refined morphologic data on these important cells are limited, which hampers the analysis and understanding of their cellular functions. We took advantage of fluorescent color-coding genetic tracing to visualize and reconstruct in 3 dimensions single odontoblasts, pulp cells, and their assemblages. Our results show distinct structural features and compartments of odontoblasts at different stages of maturation, with regard to overall cellular shape, formation of the main process, orientation, and matrix deposition. We demonstrate previously unanticipated contacts between the processes of pulp cells and odontoblasts. All reported data are related to mouse incisor tooth. We also show that odontoblasts express TRPM5 and Piezo2 ion channels. Piezo2 is expressed ubiquitously, while TRPM5 is asymmetrically distributed with distinct localization to regions proximal to and within odontoblast processes.
Collapse
Affiliation(s)
| | - J. Krivanek
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - N. Kaukua
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - P. Ernfors
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - L. Hladik
- TESCAN ORSAY Holding, Brno, Czech Republic
| | - V. Kostal
- TESCAN ORSAY Holding, Brno, Czech Republic
| | - S. Masich
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - A. Hampl
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - V. Chubanov
- Ludwig-Maximilians-Universität München, Walther-Straub-Institut für Pharmakologie und Toxikologie, München, Germany
| | - T. Gudermann
- Ludwig-Maximilians-Universität München, Walther-Straub-Institut für Pharmakologie und Toxikologie, München, Germany
| | - R.A. Romanov
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - T. Harkany
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Neurosciences, Center of Brain Research, Medical University of Vienna, Vienna, Austria
| | - I. Adameyko
- Department of Molecular Neurosciences, Center of Brain Research, Medical University of Vienna, Vienna, Austria
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - K. Fried
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
118
|
Abstract
Levels of obesity have reached epidemic proportions on a global scale, which has led to considerable increases in health problems and increased risk of several diseases, including cardiovascular and pulmonary diseases, cancer and diabetes mellitus. People with obesity consume more food than is needed to maintain an ideal body weight, despite the discrimination that accompanies being overweight and the wealth of available information that overconsumption is detrimental to health. The relationship between energy expenditure and energy intake throughout an individual's lifetime is far more complicated than previously thought. An improved comprehension of the relationships between taste, palatability, taste receptors and hedonic responses to food might lead to increased understanding of the biological underpinnings of energy acquisition, as well as why humans sometimes eat more than is needed and more than we know is healthy. This Review discusses the role of taste receptors in the tongue, gut, pancreas and brain and their hormonal involvement in taste perception, as well as the relationship between taste perception, overeating and the development of obesity.
Collapse
Affiliation(s)
- Sara Santa-Cruz Calvo
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Biomedical Research Center, Room 09B133, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224-6825, USA
| | - Josephine M Egan
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Biomedical Research Center, Room 09B133, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224-6825, USA
| |
Collapse
|
119
|
Taberner FJ, Fernández-Ballester G, Fernández-Carvajal A, Ferrer-Montiel A. TRP channels interaction with lipids and its implications in disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1818-27. [PMID: 25838124 DOI: 10.1016/j.bbamem.2015.03.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/21/2015] [Accepted: 03/23/2015] [Indexed: 01/21/2023]
Abstract
Transient receptor potential (TRP) proteins are a family of ion channels central for sensory signaling. These receptors and, in particular, those involved in thermal sensing are also involved in pain signaling. Noteworthy, thermosensory receptors are polymodal ion channels that respond to both physical and chemical stimuli, thus integrating different environmental clues. In addition, their activity is modulated by algesic agents and lipidergic substances that are primarily released in pathological states. Lipids and lipid-like molecules have been found that can directly activate some thermosensory channels or modulate their activity by either potentiating or inhibiting it. To date, more than 50 endogenous lipids that can regulate TRP channel activity in sensory neurons have been described, thus representing the majority of known endogenous TRP channel modulators. Lipid modulators of TRP channels comprise lipids from a variety of metabolic pathways, including metabolites of the cyclooxygenase, lipoxygenase and cytochrome-P450 pathways, phospholipids and lysophospholipids. Therefore, TRP-channels are able to integrate and interpret incoming signals from the different metabolic lipid pathways. Taken together, the large number of lipids that can activate, sensitize or inhibit neuronal TRP-channels highlights the pivotal role of these molecules in sensory biology as well as in pain transduction and perception. This article is part of a Special Issue entitled: Lipid-protein interactions. Guest Editors: Amitabha Chattopadhyay and Jean-Marie Ruysschaert.
Collapse
Affiliation(s)
- Francisco J Taberner
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Alicante, Spain
| | | | | | - Antonio Ferrer-Montiel
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Alicante, Spain.
| |
Collapse
|
120
|
Yue Z, Xie J, Yu AS, Stock J, Du J, Yue L. Role of TRP channels in the cardiovascular system. Am J Physiol Heart Circ Physiol 2015; 308:H157-82. [PMID: 25416190 PMCID: PMC4312948 DOI: 10.1152/ajpheart.00457.2014] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/14/2014] [Indexed: 12/12/2022]
Abstract
The transient receptor potential (TRP) superfamily consists of a large number of nonselective cation channels with variable degree of Ca(2+)-permeability. The 28 mammalian TRP channel proteins can be grouped into six subfamilies: canonical, vanilloid, melastatin, ankyrin, polycystic, and mucolipin TRPs. The majority of these TRP channels are expressed in different cell types including both excitable and nonexcitable cells of the cardiovascular system. Unlike voltage-gated ion channels, TRP channels do not have a typical voltage sensor, but instead can sense a variety of other stimuli including pressure, shear stress, mechanical stretch, oxidative stress, lipid environment alterations, hypertrophic signals, and inflammation products. By integrating multiple stimuli and transducing their activity to downstream cellular signal pathways via Ca(2+) entry and/or membrane depolarization, TRP channels play an essential role in regulating fundamental cell functions such as contraction, relaxation, proliferation, differentiation, and cell death. With the use of targeted deletion and transgenic mouse models, recent studies have revealed that TRP channels are involved in numerous cellular functions and play an important role in the pathophysiology of many diseases in the cardiovascular system. Moreover, several TRP channels are involved in inherited diseases of the cardiovascular system. This review presents an overview of current knowledge concerning the physiological functions of TRP channels in the cardiovascular system and their contributions to cardiovascular diseases. Ultimately, TRP channels may become potential therapeutic targets for cardiovascular diseases.
Collapse
Affiliation(s)
- Zhichao Yue
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Jia Xie
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Albert S Yu
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Jonathan Stock
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Jianyang Du
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Lixia Yue
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| |
Collapse
|
121
|
Kanageswaran N, Demond M, Nagel M, Schreiner BSP, Baumgart S, Scholz P, Altmüller J, Becker C, Doerner JF, Conrad H, Oberland S, Wetzel CH, Neuhaus EM, Hatt H, Gisselmann G. Deep sequencing of the murine olfactory receptor neuron transcriptome. PLoS One 2015; 10:e0113170. [PMID: 25590618 PMCID: PMC4295871 DOI: 10.1371/journal.pone.0113170] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/25/2014] [Indexed: 11/18/2022] Open
Abstract
The ability of animals to sense and differentiate among thousands of odorants relies on a large set of olfactory receptors (OR) and a multitude of accessory proteins within the olfactory epithelium (OE). ORs and related signaling mechanisms have been the subject of intensive studies over the past years, but our knowledge regarding olfactory processing remains limited. The recent development of next generation sequencing (NGS) techniques encouraged us to assess the transcriptome of the murine OE. We analyzed RNA from OEs of female and male adult mice and from fluorescence-activated cell sorting (FACS)-sorted olfactory receptor neurons (ORNs) obtained from transgenic OMP-GFP mice. The Illumina RNA-Seq protocol was utilized to generate up to 86 million reads per transcriptome. In OE samples, nearly all OR and trace amine-associated receptor (TAAR) genes involved in the perception of volatile amines were detectably expressed. Other genes known to participate in olfactory signaling pathways were among the 200 genes with the highest expression levels in the OE. To identify OE-specific genes, we compared olfactory neuron expression profiles with RNA-Seq transcriptome data from different murine tissues. By analyzing different transcript classes, we detected the expression of non-olfactory GPCRs in ORNs and established an expression ranking for GPCRs detected in the OE. We also identified other previously undescribed membrane proteins as potential new players in olfaction. The quantitative and comprehensive transcriptome data provide a virtually complete catalogue of genes expressed in the OE and present a useful tool to uncover candidate genes involved in, for example, olfactory signaling, OR trafficking and recycling, and proliferation.
Collapse
Affiliation(s)
| | - Marilen Demond
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
- University Duisburg-Essen, Institute of Medical Radiation Biology, Essen, Germany
| | - Maximilian Nagel
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| | | | - Sabrina Baumgart
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| | - Paul Scholz
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| | | | | | - Julia F. Doerner
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| | - Heike Conrad
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
- Cluster of Excellence and DFG Research Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Sonja Oberland
- Pharmacology and Toxicology, University Hospital Jena, Drackendorfer Str. 1, 07747 Jena, Germany
- Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Christian H. Wetzel
- University of Regensburg, Department of Psychiatry and Psychotherapy, Molecular Neurosciences, Regensburg, Germany
| | - Eva M. Neuhaus
- Pharmacology and Toxicology, University Hospital Jena, Drackendorfer Str. 1, 07747 Jena, Germany
- Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Hanns Hatt
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| | - Günter Gisselmann
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| |
Collapse
|
122
|
Jaber L, Zhao FL, Kolli T, Herness S. A physiologic role for serotonergic transmission in adult rat taste buds. PLoS One 2014; 9:e112152. [PMID: 25386961 PMCID: PMC4227708 DOI: 10.1371/journal.pone.0112152] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 10/13/2014] [Indexed: 11/29/2022] Open
Abstract
Of the multiple neurotransmitters and neuropeptides expressed in the mammalian taste bud, serotonin remains both the most studied and least understood. Serotonin is expressed in a subset of taste receptor cells that form synapses with afferent nerve fibers (type III cells) and was once thought to be essential to neurotransmission (now understood as purinergic). However, the discovery of the 5-HT1A serotonin receptor in a subset of taste receptor cells paracrine to type III cell suggested a role in cell-to-cell communication during the processing of taste information. Functional data describing this role are lacking. Using anatomical and neurophysiological techniques, this study proposes a modulatory role for serotonin during the processing of taste information. Double labeling immunocytochemical and single cell RT-PCR technique experiments documented that 5-HT1A-expressing cells co-expressed markers for type II cells, cells which express T1R or T2R receptors and release ATP. These cells did not co-express type III cells markers. Neurophysiological recordings from the chorda tympani nerve, which innervates anterior taste buds, were performed prior to and during intravenous injection of a 5-HT1A receptor antagonist. These experiments revealed that serotonin facilitates processing of taste information for tastants representing sweet, sour, salty, and bitter taste qualities. On the other hand, injection of ondansetron, a 5-HT3 receptor antagonist, was without effect. Collectively, these data support the hypothesis that serotonin is a crucial element in a finely-tuned feedback loop involving the 5-HT1A receptor, ATP, and purinoceptors. It is hypothesized that serotonin facilitates gustatory signals by regulating the release of ATP through ATP-release channels possibly through phosphatidylinositol 4,5-bisphosphate resynthesis. By doing so, 5-HT1A activation prevents desensitization of post-synaptic purinergic receptors expressed on afferent nerve fibers and enhances the afferent signal. Serotonin may thus play a major modulatory role within peripheral taste in shaping the afferent taste signals prior to their transmission across gustatory nerves.
Collapse
Affiliation(s)
- Luc Jaber
- College of Dentistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Fang-li Zhao
- College of Dentistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Tamara Kolli
- College of Dentistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Scott Herness
- College of Dentistry, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
123
|
Abstract
TRP channels are expressed in taste buds, nerve fibers, and keratinocytes in the oronasal cavity. These channels play integral roles in transducing chemical stimuli, giving rise to sensations of taste, irritation, warmth, coolness, and pungency. Specifically, TRPM5 acts downstream of taste receptors in the taste transduction pathway. TRPM5 channels convert taste-evoked intracellular Ca(2+) release into membrane depolarization to trigger taste transmitter secretion. PKD2L1 is expressed in acid-sensitive (sour) taste bud cells but is unlikely to be the transducer for sour taste. TRPV1 is a receptor for pungent chemical stimuli such as capsaicin and for several irritants (chemesthesis). It is controversial whether TRPV1 is present in the taste buds and plays a direct role in taste. Instead, TRPV1 is expressed in non-gustatory sensory afferent fibers and in keratinocytes of the oronasal cavity. In many sensory fibers and epithelial cells lining the oronasal cavity, TRPA1 is also co-expressed with TRPV1. As with TRPV1, TRPA1 transduces a wide variety of irritants and, in combination with TRPV1, assures that there is a broad response to noxious chemical stimuli. Other TRP channels, including TRPM8, TRPV3, and TRPV4, play less prominent roles in chemesthesis and no known role in taste, per se. The pungency of foods and beverages is likely highly influenced by the temperature at which they are consumed, their acidity, and, for beverages, their carbonation. All these factors modulate the activity of TRP channels in taste buds and in the oronasal mucosa.
Collapse
Affiliation(s)
- Stephen D Roper
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, 1600 NW 10th Ave., Miami, FL, 33136, USA,
| |
Collapse
|
124
|
Abstract
Transient Receptor Potential (TRP) channels are activated by stimuli as diverse as heat, cold, noxious chemicals, mechanical forces, hormones, neurotransmitters, spices, and voltage. Besides their presumably similar general architecture, probably the only common factor regulating them is phosphoinositides. The regulation of TRP channels by phosphoinositides is complex. There are a large number of TRP channels where phosphatidylinositol 4,5 bisphosphate [PI(4,5)P2 or PIP2] acts as a positive cofactor, similarly to many other ion channels. In several cases, however, PI(4,5)P2 inhibits TRP channel activity, sometimes even concurrently with the activating effect. This chapter will provide a comprehensive overview of the literature on regulation of TRP channels by membrane phosphoinositides.
Collapse
|
125
|
Mori MX, Inoue R. New experimental trends for phosphoinositides research on ion transporter/channel regulation. J Pharmacol Sci 2014; 126:186-97. [PMID: 25367262 DOI: 10.1254/jphs.14r14cp] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Phosphoinositides(4,5)-bisphosphates [PI(4,5)P2] critically controls membrane excitability, the disruption of which leads to pathophysiological states. PI(4,5)P2 plays a primary role in regulating the conduction and gating properties of ion channels/transporters, through electrostatic and hydrophobic interactions that allow direct associations. In recent years, the development of many molecular tools have brought deep insights into the mechanisms underlying PI(4,5)P2-mediated regulation. This review summarizes the methods currently available to manipulate the cell membrane PI(4,5)P2 level including pharmacological interventions as well as newly designed molecular tools. We concisely introduce materials and experimental designs suitable for the study of PI(4,5)P2-mediated regulation of ion-conducting molecules, in order to assist researchers who are interested in this area. It is our further hope that the knowledge introduced in this review will help to promote our understanding about the pathology of diseases such as cardiac arrhythmias, bipolar disorders, and Alzheimer's disease which are somehow associated with a disruption of PI(4,5)P2 metabolism.
Collapse
Affiliation(s)
- Masayuki X Mori
- Department of Synthetic Chemistry and Biological Chemistry, School of Engineering, Kyoto University, Japan
| | | |
Collapse
|
126
|
Lei YT, Thuault SJ, Launay P, Margolskee RF, Kandel ER, Siegelbaum SA. Differential contribution of TRPM4 and TRPM5 nonselective cation channels to the slow afterdepolarization in mouse prefrontal cortex neurons. Front Cell Neurosci 2014; 8:267. [PMID: 25237295 PMCID: PMC4154465 DOI: 10.3389/fncel.2014.00267] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 08/18/2014] [Indexed: 12/03/2022] Open
Abstract
In certain neurons from different brain regions, a brief burst of action potentials can activate a slow afterdepolarization (sADP) in the presence of muscarinic acetylcholine receptor agonists. The sADP, if suprathreshold, can contribute to persistent non-accommodating firing in some of these neurons. Previous studies have characterized a Ca2+-activated non-selective cation (CAN) current (ICAN) that is thought to underlie the sADP. ICAN depends on muscarinic receptor stimulation and exhibits a dependence on neuronal activity, membrane depolarization and Ca2+-influx similar to that observed for the sADP. Despite the widespread occurrence of sADPs in neurons throughout the brain, the molecular identity of the ion channels underlying these events, as well as ICAN, remains uncertain. Here we used a combination of genetic, pharmacological and electrophysiological approaches to characterize the molecular mechanisms underlying the muscarinic receptor-dependent sADP in layer 5 pyramidal neurons of mouse prefrontal cortex. First, we confirmed that in the presence of the cholinergic agonist carbachol a brief burst of action potentials triggers a prominent sADP in these neurons. Second, we confirmed that this sADP requires activation of a PLC signaling cascade and intracellular calcium signaling. Third, we obtained direct evidence that the transient receptor potential (TRP) melastatin 5 channel (TRPM5), which is thought to function as a CAN channel in non-neural cells, contributes importantly to the sADP in the layer 5 neurons. In contrast, the closely related TRPM4 channel may play only a minor role in the sADP.
Collapse
Affiliation(s)
- Ya-Ting Lei
- Department of Neuroscience, Columbia University Medical Center, New York State Psychiatric Institute New York, NY, USA
| | - Sebastien J Thuault
- Department of Neuroscience, Columbia University Medical Center, New York State Psychiatric Institute New York, NY, USA
| | - Pierre Launay
- Equipe Avenir, Institut National de la Santé et de la Recherche Médicale, Service de Néphrologie, Hôpital Bichat, Université Paris Paris, France
| | | | - Eric R Kandel
- Department of Neuroscience, Columbia University Medical Center, New York State Psychiatric Institute New York, NY, USA ; Howard Hughes Medical Institute, Columbia University New York, NY, USA ; Kavli Institute for Brain Sciences, Columbia University New York, NY, USA ; Department of Psychiatry, Columbia University New York, NY, USA
| | - Steven A Siegelbaum
- Department of Neuroscience, Columbia University Medical Center, New York State Psychiatric Institute New York, NY, USA ; Howard Hughes Medical Institute, Columbia University New York, NY, USA ; Kavli Institute for Brain Sciences, Columbia University New York, NY, USA ; Department of Pharmacology, Columbia University New York, NY, USA
| |
Collapse
|
127
|
Tsai CF, Hsieh TH, Lee JN, Hsu CY, Wang YC, Lai FJ, Kuo KK, Wu HL, Tsai EM, Kuo PL. Benzyl butyl phthalate induces migration, invasion, and angiogenesis of Huh7 hepatocellular carcinoma cells through nongenomic AhR/G-protein signaling. BMC Cancer 2014; 14:556. [PMID: 25081364 PMCID: PMC4131049 DOI: 10.1186/1471-2407-14-556] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 07/18/2014] [Indexed: 01/04/2023] Open
Abstract
Background The widespread use of phthalates as plasticizers has raised public health concerns regarding their adverse effects, including an association with cancer. Although animal investigations have suggested an association between phthalate exposure and hepatocellular carcinoma, the mechanisms are unknown. Methods The hepatocellular carcinoma cell line Huh7 was treated with benzyl butyl phthalate (BBP), and then analyzed by total internal reflection fluorescence microscopy, confocal microscopy and double immunogold transmission electron microscopy. Following BBP treatment, mRNA levels were measured by RT-PCR, protein levels were measured using western blot, and vascular endothelial growth factor levels were measured by an enzyme-linked immunosorbent assay. Cell migration and invasion assays were evaluated by transwell, and angiogenesis were performed by a tube formation assay. Nude mice were used to investigate metastasis and angiogenesis in vivo. Results BBP affected hepatocellular carcinoma progression through the aryl hydrocarbon receptor (AhR) and that benzyl butyl phthalate (BBP) stimulated AhR at the cell surface, which then interacted with G proteins and triggered a downstream signaling cascade. BBP activated AhR through a nongenomic action involving G-protein signaling rather than the classical genomic AhR action. BBP treatment promoted cell migration and invasion in vitro and metastasis in vivo via the AhR/Gβ/PI3K/Akt/NF-κB pathway. In addition, BBP induced both in vitro and in vivo angiogenesis through the AhR/ERK/VEGF pathway. Conclusions These findings suggest a novel nongenomic AhR mechanism involving G-protein signaling induced by phthalates, which contributes to tumor progression of hepatocellular carcinoma. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-556) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Eing-Mei Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan.
| | | |
Collapse
|
128
|
Abstract
Five canonical tastes, bitter, sweet, umami (amino acid), salty, and sour (acid), are detected by animals as diverse as fruit flies and humans, consistent with a near-universal drive to consume fundamental nutrients and to avoid toxins or other harmful compounds. Surprisingly, despite this strong conservation of basic taste qualities between vertebrates and invertebrates, the receptors and signaling mechanisms that mediate taste in each are highly divergent. The identification over the last two decades of receptors and other molecules that mediate taste has led to stunning advances in our understanding of the basic mechanisms of transduction and coding of information by the gustatory systems of vertebrates and invertebrates. In this Review, we discuss recent advances in taste research, mainly from the fly and mammalian systems, and we highlight principles that are common across species, despite stark differences in receptor types.
Collapse
Affiliation(s)
- Emily R Liman
- Section of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA.
| | - Yali V Zhang
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Craig Montell
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA; Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
129
|
Transduction for pheromones in the main olfactory epithelium is mediated by the Ca2+ -activated channel TRPM5. J Neurosci 2014; 34:3268-78. [PMID: 24573286 DOI: 10.1523/jneurosci.4903-13.2014] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Growing evidence suggests that the main olfactory epithelium contains a subset of olfactory sensory neurons (OSNs) responding to pheromones. One candidate subpopulation expresses the calcium activated cation channel TRPM5 (transient receptor potential channel M5). Using GFP driven by the TRPM5 promoter in mice, we show that this subpopulation responds to putative pheromones, urine, and major histocompatibility complex peptides, but not to regular odors or a pheromone detected by other species. In addition, this subpopulation of TRPM5-GFP+ OSNs uses novel transduction. In regular OSNs, odorants elicit activation of the cyclic nucleotide-gated (CNG) channel, leading to Ca2+ gating of Cl- channels; in TRPM5-GFP+ OSNs, the Ca2+ -activated Cl- ANO2 (anoctamin 2) channel is not expressed, and pheromones elicit activation of the CNG channel leading to Ca2+ gating of TRPM5. In conclusion, we show that OSNs expressing TRPM5 respond to pheromones, but not to regular odors through the opening of CNG channels leading to Ca2+ gating of TRPM5.
Collapse
|
130
|
Chaudhari N. Synaptic communication and signal processing among sensory cells in taste buds. J Physiol 2014; 592:3387-92. [PMID: 24665098 DOI: 10.1113/jphysiol.2013.269837] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Taste buds (sensory structures embedded in oral epithelium) show a remarkable diversity of transmitters synthesized and secreted locally. The known transmitters accumulate in a cell type selective manner, with 5-HT and noradrenaline being limited to presynaptic cells, GABA being synthesized in both presynaptic and glial-like cells, and acetylcholine and ATP used for signalling by receptor cells. Each of these transmitters participates in local negative or positive feedback circuits that target particular cell types. Overall, the role of ATP is the best elucidated. ATP serves as a principal afferent transmitter, and also is the key trigger for autocrine positive feedback and paracrine circuits that result in potentiation (via adenosine) or inhibition (via GABA or 5-HT). While many of the cellular receptors and mechanisms for these circuits are known, their impact on sensory detection and perception remains to be elaborated in most instances. This brief review examines what is known, and some of the open questions and controversies surrounding the transmitters and circuits of the taste periphery.
Collapse
Affiliation(s)
- Nirupa Chaudhari
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL, 33146, USA Program in Neurosciences, Miller School of Medicine, University of Miami, Miami, FL, 33146, USA
| |
Collapse
|
131
|
Kang D, Wang J, Hogan JO, Vennekens R, Freichel M, White C, Kim D. Increase in cytosolic Ca2+ produced by hypoxia and other depolarizing stimuli activates a non-selective cation channel in chemoreceptor cells of rat carotid body. J Physiol 2014; 592:1975-92. [PMID: 24591572 DOI: 10.1113/jphysiol.2013.266957] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The current model of O2 sensing by carotid body chemoreceptor (glomus) cells is that hypoxia inhibits the outward K(+) current and causes cell depolarization, Ca(2+) influx via voltage-dependent Ca(2+) channels and a rise in intracellular [Ca(2+)] ([Ca(2+)]i). Here we show that hypoxia (<5% O2), in addition to inhibiting the two-pore domain K(+) channels TASK-1/3 (TASK), indirectly activates an ∼20 pS channel in isolated glomus cells. The 20 pS channel was permeable to K(+), Na(+) and Cs(+) but not to Cl(-) or Ca(2+). The 20 pS channel was not sensitive to voltage. Inhibition of TASK by external acid, depolarization of glomus cells with high external KCl (20 mm) or opening of the Ca(2+) channel with FPL64176 activated the 20 pS channel when 1 mm Ca(2+) was present in the external solution. Ca(2+) (10 μm) applied to the cytosolic side of inside-out patches activated the 20 pS channel. The threshold [Ca(2+)]i for activation of the 20 pS channel in cell-attached patches was ∼200 nm. The reversal potential of the 20 pS channel was estimated to be -28 mV. Our results reveal a sequential mechanism in which hypoxia (<5% O2) first inhibits the K(+) conductance and then activates a Na(+)-permeable, non-selective cation channel via depolarization-induced rise in [Ca(2+)]i. Our results suggest that inhibition of K(+) efflux and stimulation of Na(+) influx both contribute to the depolarization of glomus cells during moderate to severe hypoxia.
Collapse
Affiliation(s)
- Dawon Kang
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA.
| | | | | | | | | | | | | |
Collapse
|
132
|
Transduction for pheromones in the main olfactory epithelium is mediated by the Ca2+ -activated channel TRPM5. J Neurosci 2014. [PMID: 24573286 DOI: 10.1523/jneurosci.4903‐13.2014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Growing evidence suggests that the main olfactory epithelium contains a subset of olfactory sensory neurons (OSNs) responding to pheromones. One candidate subpopulation expresses the calcium activated cation channel TRPM5 (transient receptor potential channel M5). Using GFP driven by the TRPM5 promoter in mice, we show that this subpopulation responds to putative pheromones, urine, and major histocompatibility complex peptides, but not to regular odors or a pheromone detected by other species. In addition, this subpopulation of TRPM5-GFP+ OSNs uses novel transduction. In regular OSNs, odorants elicit activation of the cyclic nucleotide-gated (CNG) channel, leading to Ca2+ gating of Cl- channels; in TRPM5-GFP+ OSNs, the Ca2+ -activated Cl- ANO2 (anoctamin 2) channel is not expressed, and pheromones elicit activation of the CNG channel leading to Ca2+ gating of TRPM5. In conclusion, we show that OSNs expressing TRPM5 respond to pheromones, but not to regular odors through the opening of CNG channels leading to Ca2+ gating of TRPM5.
Collapse
|
133
|
Gees M, Alpizar YA, Luyten T, Parys JB, Nilius B, Bultynck G, Voets T, Talavera K. Differential Effects of Bitter Compounds on the Taste Transduction Channels TRPM5 and IP3 Receptor Type 3. Chem Senses 2014; 39:295-311. [DOI: 10.1093/chemse/bjt115] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
134
|
Taste Receptor Gene Expression Outside the Gustatory System. TOPICS IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1007/7355_2014_79] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
135
|
Abstract
TRPM5 is a Ca(2+)-activated cation channel that mediates signaling in taste and other chemosensory cells. Within taste cells, TRPM5 is the final element in a signaling cascade that starts with the activation of G protein-coupled receptors by bitter, sweet, or umami taste molecules and that requires the enzyme PLCβ2. PLCβ2 breaks down PIP2 into DAG and IP3, and the ensuing release of Ca(2+) from intracellular stores activates TRPM5. Since its initial discovery in the taste system, TRPM5 has been found to be distributed in sparse chemosensory cells located throughout the digestive track, in the respiratory system, and in the olfactory system. It is also found in pancreatic islets, where it contributes to insulin secretion. This review highlights recent work on the mechanisms of the activation of the TRPM5 channel and its regulation by voltage, phosphoinositides, temperature, and pH. The distribution of the channel in the body and its functional contribution to various sensory and nonsensory processes are discussed.
Collapse
Affiliation(s)
- Emily R Liman
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, 3641 Watt Way, Los Angeles, CA, 90089, USA,
| |
Collapse
|
136
|
Baez D, Raddatz N, Ferreira G, Gonzalez C, Latorre R. Gating of thermally activated channels. CURRENT TOPICS IN MEMBRANES 2014; 74:51-87. [PMID: 25366233 DOI: 10.1016/b978-0-12-800181-3.00003-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A class of ion channels that belongs to the transient receptor potential (TRP) superfamily and is present in specialized neurons that project to the skin has evolved as temperature detectors. These channels are classified into subfamilies, namely canonical (TRPC), melastatin (TRPM), ankyrin (TRPA), and vanilloid (TRPV). Some of these channels are activated by heat (TRPM2/4/5, TRPV1-4), while others by cold (TRPA1, TRPC5, and TRPM8). The general structure of these channels is closely related to that of the voltage-dependent K(+) channels, with their subunits containing six transmembrane segments that form tetramers. Thermal TRP channels are polymodal receptors. That is, they can be activated by temperature, voltage, pH, lipids, and agonists. The high temperature sensitivity in these thermal TRP channels is due to a large enthalpy change (∼100 kcal/mol), which is about five times the enthalpy change in voltage-dependent gating. The characterization of the macroscopic currents and single-channel analysis demonstrated that gating by temperature is complex and best described by branched or allosteric models containing several closed and open states. The identification of molecular determinants of temperature sensitivity in TRPV1, TRPA1, and TRPV3 strongly suggest that thermal sensitivity arises from a specific protein domain.
Collapse
Affiliation(s)
- David Baez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Natalia Raddatz
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid, Pozuelo de Alarcón (Madrid), Spain
| | - Gonzalo Ferreira
- Laboratorio de Canales Iónicos, Departamento de Biofísica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Carlos Gonzalez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
137
|
Lukacs V, Rives JM, Sun X, Zakharian E, Rohacs T. Promiscuous activation of transient receptor potential vanilloid 1 (TRPV1) channels by negatively charged intracellular lipids: the key role of endogenous phosphoinositides in maintaining channel activity. J Biol Chem 2013; 288:35003-13. [PMID: 24158445 PMCID: PMC3853253 DOI: 10.1074/jbc.m113.520288] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/18/2013] [Indexed: 11/06/2022] Open
Abstract
The regulation of the heat- and capsaicin-activated transient receptor potential vanilloid 1 (TRPV1) channels by phosphoinositides is controversial. Data in cellular systems support the dependence of TRPV1 activity on phosphoinositides. The purified TRPV1, however, was recently shown to be fully functional in artificial liposomes in the absence of phosphoinositides. Here, we show that several other negatively charged phospholipids, including phosphatidylglycerol, can also support TRPV1 activity in excised patches at high concentrations. When we incorporated TRPV1 into planar lipid bilayers consisting of neutral lipids, capsaicin-induced activity depended on phosphatidylinositol 4,5-bisphosphate. We also found that TRPV1 activity in excised patches ran down and that MgATP reactivated the channel. Inhibition of phosphatidylinositol 4-kinases or enzymatic removal of phosphatidylinositol abolished this effect of MgATP, suggesting that it activated TRPV1 by generating endogenous phosphoinositides. We conclude that endogenous phosphoinositides are positive cofactors for TRPV1 activity. Our data highlight the importance of specificity in lipid regulation of ion channels and may reconcile discordant data obtained in various experimental settings.
Collapse
Affiliation(s)
- Viktor Lukacs
- From the Department of Pharmacology and Physiology, Rutgers New Jersey Medical School, Newark, New Jersey 07103 and
| | - Jan-Michael Rives
- From the Department of Pharmacology and Physiology, Rutgers New Jersey Medical School, Newark, New Jersey 07103 and
| | - Xiaohui Sun
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, Illinois 61605
| | - Eleonora Zakharian
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, Illinois 61605
| | - Tibor Rohacs
- From the Department of Pharmacology and Physiology, Rutgers New Jersey Medical School, Newark, New Jersey 07103 and
| |
Collapse
|
138
|
Gilbertson TA, Khan NA. Cell signaling mechanisms of oro-gustatory detection of dietary fat: advances and challenges. Prog Lipid Res 2013; 53:82-92. [PMID: 24269201 DOI: 10.1016/j.plipres.2013.11.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 11/08/2013] [Indexed: 01/19/2023]
Abstract
CD36 and two G-protein coupled receptors (GPCR), i.e., GPR120 and GPR40, have been implicated in the gustatory perception of dietary fats in rodents. These glycoproteins are coupled to increases in free intracellular Ca²⁺ concentrations, [Ca²⁺](i), during their activation by dietary long-chain fatty acids (LCFA). The transient receptor potential type M5 (TRPM5) channel, activated by [Ca²⁺](i), participates in downstream signaling in taste bud cells (TBC). The mice, knocked-out for expression of CD36, GPR120, GPR40 or TRPM5 have a reduced spontaneous preference for fat. The delayed rectifying K⁺ (DRK) channels believed to lie downstream of these receptors are also important players in fat taste transduction. The trigeminal neurons by triggering increases in [Ca²⁺](i) may influence the taste signal to afferent nerve fibers. Why are there so many taste receptor candidates for one taste modality? We discuss the recent advances on the role of CD36, GPR120, GPR40, TRPM5 and DRK channels, in signal transduction in TBC. We shed light on their cross-talk and delineate their roles in obesity as a better understanding of the molecular mechanisms behind their regulation could eventually lead to new strategies to fight against this condition.
Collapse
Affiliation(s)
- Timothy A Gilbertson
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322, USA
| | - Naim A Khan
- INSERM U866, Université de Bourgogne/AgroSup, Dijon 2100, France.
| |
Collapse
|
139
|
Abstract
TRP channels constitute a large superfamily of cation channel forming proteins, all related to the gene product of the transient receptor potential (trp) locus in Drosophila. In mammals, 28 different TRP channel genes have been identified, which exhibit a large variety of functional properties and play diverse cellular and physiological roles. In this article, we provide a brief and systematic summary of expression, function, and (patho)physiological role of the mammalian TRP channels.
Collapse
Affiliation(s)
- Maarten Gees
- Laboratory Ion Channel Research and TRP Research Platform Leuven (TRPLe), KU Leuven, Campus Gasthuisberg, Leuven, Belgium
| | | | | | | |
Collapse
|
140
|
Cai H, Daimon CM, Cong WN, Wang R, Chirdon P, de Cabo R, Sévigny J, Maudsley S, Martin B. Longitudinal analysis of calorie restriction on rat taste bud morphology and expression of sweet taste modulators. J Gerontol A Biol Sci Med Sci 2013; 69:532-44. [PMID: 24077597 DOI: 10.1093/gerona/glt129] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Calorie restriction (CR) is a lifestyle intervention employed to reduce body weight and improve metabolic functions primarily via reduction of ingested carbohydrates and fats. Taste perception is highly related to functional metabolic status and body adiposity. We have previously shown that sweet taste perception diminishes with age; however, relatively little is known about the effects of various lengths of CR upon taste cell morphology and function. We investigated the effects of CR on taste bud morphology and expression of sweet taste-related modulators in 5-, 17-, and 30-month-old rats. In ad libitum (AL) and CR rats, we consistently found the following parameters altered significantly with advancing age: reduction of taste bud size and taste cell numbers per taste bud and reduced expression of sonic hedgehog, type 1 taste receptor 3 (T1r3), α-gustducin, and glucagon-like peptide-1 (GLP-1). In the oldest rats, CR affected a significant reduction of tongue T1r3, GLP-1, and α-gustducin expression compared with age-matched AL rats. Leptin receptor immunopositive cells were elevated in 17- and 30-month-old CR rats compared with age-matched AL rats. These alterations of sweet taste-related modulators, specifically during advanced aging, suggest that sweet taste perception may be altered in response to different lengths of CR.
Collapse
Affiliation(s)
- Huan Cai
- *These authors contributed equally to this work
| | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Simon BR, Parlee SD, Learman BS, Mori H, Scheller EL, Cawthorn WP, Ning X, Gallagher K, Tyrberg B, Assadi-Porter FM, Evans CR, MacDougald OA. Artificial sweeteners stimulate adipogenesis and suppress lipolysis independently of sweet taste receptors. J Biol Chem 2013; 288:32475-32489. [PMID: 24068707 DOI: 10.1074/jbc.m113.514034] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
G protein-coupled receptors mediate responses to a myriad of ligands, some of which regulate adipocyte differentiation and metabolism. The sweet taste receptors T1R2 and T1R3 are G protein-coupled receptors that function as carbohydrate sensors in taste buds, gut, and pancreas. Here we report that sweet taste receptors T1R2 and T1R3 are expressed throughout adipogenesis and in adipose tissues. Treatment of mouse and human precursor cells with artificial sweeteners, saccharin and acesulfame potassium, enhanced adipogenesis. Saccharin treatment of 3T3-L1 cells and primary mesenchymal stem cells rapidly stimulated phosphorylation of Akt and downstream targets with functions in adipogenesis such as cAMP-response element-binding protein and FOXO1; however, increased expression of peroxisome proliferator-activated receptor γ and CCAAT/enhancer-binding protein α was not observed until relatively late in differentiation. Saccharin-stimulated Akt phosphorylation at Thr-308 occurred within 5 min, was phosphatidylinositol 3-kinase-dependent, and occurred in the presence of high concentrations of insulin and dexamethasone; phosphorylation of Ser-473 occurred more gradually. Surprisingly, neither saccharin-stimulated adipogenesis nor Thr-308 phosphorylation was dependent on expression of T1R2 and/or T1R3, although Ser-473 phosphorylation was impaired in T1R2/T1R3 double knock-out precursors. In mature adipocytes, artificial sweetener treatment suppressed lipolysis even in the presence of forskolin, and lipolytic responses were correlated with phosphorylation of hormone-sensitive lipase. Suppression of lipolysis by saccharin in adipocytes was also independent of T1R2 and T1R3. These results suggest that some artificial sweeteners have previously uncharacterized metabolic effects on adipocyte differentiation and metabolism and that effects of artificial sweeteners on adipose tissue biology may be largely independent of the classical sweet taste receptors, T1R2 and T1R3.
Collapse
Affiliation(s)
| | | | | | | | | | - William P Cawthorn
- Departments of Molecular and Integrative Physiology,; Musculoskeletal Research, Lilly Research Laboratories, Indianapolis, Indiana 46285
| | - Xiaomin Ning
- Departments of Molecular and Integrative Physiology
| | | | - Björn Tyrberg
- Cardiovascular and Metabolic Disease, MedImmune LLC, Gaithersburg Headquarters, Gaithersburg, Maryland 20878,; Metabolic Signaling and Disease, Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, Florida 32827
| | | | | | - Ormond A MacDougald
- From the Program in Cellular and Molecular Biology; Departments of Molecular and Integrative Physiology,; Internal Medicine, University of Michigan, Ann Arbor, Michigan 48105,.
| |
Collapse
|
142
|
Rohacs T. Regulation of transient receptor potential channels by the phospholipase C pathway. Adv Biol Regul 2013; 53:341-55. [PMID: 23916247 PMCID: PMC3805701 DOI: 10.1016/j.jbior.2013.07.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 07/01/2013] [Indexed: 11/21/2022]
Abstract
Transient Receptor Potential (TRP) channels were discovered while analyzing visual mutants in Drosophila. The protein encoded by the transient receptor potential (trp) gene is a Ca(2+) permeable cation channel activated downstream of the phospholipase C (PLC) pathway. While searching for homologs in other organisms, a surprisingly large number of mammalian TRP channels was cloned. The regulation of TRP channels is quite diverse, but many of them are either activated downstream of PLC, or modulated by it. This review will summarize the current knowledge on regulation of TRP channels by PLC, with special focus on TRPC-s, which can be considered as effectors of PLC and the heat- and capsaicin-sensitive TRPV1, which is modulated by the PLC pathway in a complex manner.
Collapse
Affiliation(s)
- Tibor Rohacs
- Rutgers, New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
143
|
Okumus S, Demiryürek S, Gürler B, Coskun E, Bozgeyik İ, Oztuzcu S, Kaydu E, Celik O, Erbagcı İ, Demiryürek AT. Association transient receptor potential melastatin channel gene polymorphism with primary open angle glaucoma. Mol Vis 2013; 19:1852-8. [PMID: 24019741 PMCID: PMC3762560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 08/15/2013] [Indexed: 11/01/2022] Open
Abstract
PURPOSE Genetic factors are shown to have a role in the development of primary open angle glaucoma (POAG). The aim of this study was to determine the effects of genetic polymorphisms of transient receptor potential melastatin (TRPM) channel genes on the risk of POAG in a Turkish population. METHODS Genomic DNA was extracted from the leukocytes of the peripheral blood, and 26 single nucleotide polymorphisms in the TRPM channel genes were analyzed in 179 patients with POAG and in 182 healthy controls of similar age by using the BioMark HD dynamic array system. RESULTS There were marked changes in the genotype (TT, 26.8%; CT, 66.7%; CC, 6.5%) and allele (T, 60.1%; C, 39.9%) frequencies for the TRPM5 gene rs34551253 (Ala456Thr, in exon 9) polymorphism in patients when compared to the controls (TT, 11.3%; CT, 74.6%; CC, 14.1%, p = 0.0009; T, 48.6%; A, 51.4%, p = 0.0063). However, no associations with the other 25 polymorphisms studied were found. CONCLUSIONS This is the first study to examine the involvement of TRPM channel gene variations in the risk of incident POAG. This study demonstrated that the TRPM5 gene rs34551253 (Ala456Thr) polymorphism may be associated with increased risk of developing POAG in the Turkish population.
Collapse
Affiliation(s)
- Seydi Okumus
- Department of Ophthalmology, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey
| | - Seniz Demiryürek
- Department of Physiology, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey
| | - Bülent Gürler
- Department of Ophthalmology, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey
| | - Erol Coskun
- Department of Ophthalmology, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey
| | - İbrahim Bozgeyik
- Department of Medical Biology, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey
| | - Serdar Oztuzcu
- Department of Medical Biology, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey
| | - Erdal Kaydu
- Department of Ophthalmology, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey
| | - Oguz Celik
- Department of Ophthalmology, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey
| | - İbrahim Erbagcı
- Department of Ophthalmology, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey
| | - Abdullah T. Demiryürek
- Department of Medical Pharmacology, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey
| |
Collapse
|
144
|
Uchida K, Tominaga M. Extracellular zinc ion regulates transient receptor potential melastatin 5 (TRPM5) channel activation through its interaction with a pore loop domain. J Biol Chem 2013; 288:25950-25955. [PMID: 23884414 DOI: 10.1074/jbc.m113.470138] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transient receptor potential melastatin 5 (TRPM5) channel is a monovalent cation channel activated by intracellular Ca(2+). Expression of this channel is restricted to taste cells, the pancreas and brainstem, and is thought to be involved in controlling membrane potentials. Its endogenous ligands are not well characterized. Here, we show that extracellular application of Zn(2+) inhibits TRPM5 activity. In whole-cell patch-clamp recordings, extracellular application of ZnCl2 inhibited step-pulse-induced TRPM5 currents with 500 nM free intracellular Ca(2+) in a dose-dependent manner (IC50 = 4.3 μM at -80 mV). ZnSO4 also inhibited TRPM5 activity. Extracellular application of ZnCl2 inhibited TRPM5 activation at several temperatures. Furthermore, inhibition by 30 μM ZnCl2 was impaired in TRPM5 mutants in which His at 896, and Glu at 926 and/or Glu at 939 in the outer pore loop were replaced with Gln. From these results, we conclude that extracellular Zn(2+) inhibits TRPM5 channels, and the residues in the outer pore loop of TRPM5 are critically involved in the inhibition.
Collapse
Affiliation(s)
- Kunitoshi Uchida
- From the Division of Cell Signaling, National Institute for Physiological Sciences (Okazaki Institutes for Integrative Bioscience), National Institutes of Natural Sciences, Okazaki 444-8787, Japan and; the Department of Physiological Sciences, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan.
| | - Makoto Tominaga
- From the Division of Cell Signaling, National Institute for Physiological Sciences (Okazaki Institutes for Integrative Bioscience), National Institutes of Natural Sciences, Okazaki 444-8787, Japan and; the Department of Physiological Sciences, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan.
| |
Collapse
|
145
|
Abstract
Phosphoinositides (PIs) make up only a small fraction of cellular phospholipids, yet they control almost all aspects of a cell's life and death. These lipids gained tremendous research interest as plasma membrane signaling molecules when discovered in the 1970s and 1980s. Research in the last 15 years has added a wide range of biological processes regulated by PIs, turning these lipids into one of the most universal signaling entities in eukaryotic cells. PIs control organelle biology by regulating vesicular trafficking, but they also modulate lipid distribution and metabolism via their close relationship with lipid transfer proteins. PIs regulate ion channels, pumps, and transporters and control both endocytic and exocytic processes. The nuclear phosphoinositides have grown from being an epiphenomenon to a research area of its own. As expected from such pleiotropic regulators, derangements of phosphoinositide metabolism are responsible for a number of human diseases ranging from rare genetic disorders to the most common ones such as cancer, obesity, and diabetes. Moreover, it is increasingly evident that a number of infectious agents hijack the PI regulatory systems of host cells for their intracellular movements, replication, and assembly. As a result, PI converting enzymes began to be noticed by pharmaceutical companies as potential therapeutic targets. This review is an attempt to give an overview of this enormous research field focusing on major developments in diverse areas of basic science linked to cellular physiology and disease.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
146
|
Abdoul-Azize S, Selvakumar S, Sadou H, Besnard P, Khan NA. Ca2+ signaling in taste bud cells and spontaneous preference for fat: unresolved roles of CD36 and GPR120. Biochimie 2013; 96:8-13. [PMID: 23774298 DOI: 10.1016/j.biochi.2013.06.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 06/06/2013] [Indexed: 01/21/2023]
Abstract
Recent compelling evidences from rodent and human studies raise the possibility for an additional sixth taste modality devoted to oro-gustatory perception of dietary lipids. Understanding the mechanisms underlying oro-gustatory detection of dietary fat is critical for the prevention and treatment of obesity. A number of studies have suggested that lingual CD36, a glycoprotein, highly expressed by circumvallate papillae of the tongue, is implicated in the perception of dietary fat taste. G protein-coupled receptors (GPCRs) are important signaling molecules for many aspects of cellular functions. It has been shown that these receptors, particularly GPR120, are also involved in lipid taste perception. We have shown that dietary long-chain fatty acids (LCFAs), in CD36-positive taste bud cells (TBC), induce increases in free intracellular Ca(2+) concentrations, [Ca(2+)]i, by recruiting Ca(2+) from endoplasmic reticulum (ER) pool via inositol 1,4,5-triphosphate production, followed by Ca(2+) influx via opening of store-operated Ca(2+) (SOC) channels. GPR120 is also coupled to increases in [Ca(2+)]i by dietary fatty acids. We observed that stromal interaction molecule 1 (STIM1), a sensor of Ca(2+) depletion in the ER, mediated fatty acid-induced Ca(2+) signaling and spontaneous preference for fat in the mouse. In this review article, we discuss the recent advances and unresolved roles of CD36 and GPR120 in lipid taste signaling in taste bud cells.
Collapse
Affiliation(s)
- Souleymane Abdoul-Azize
- Physiologie de la Nutrition & Toxicologie, UMR U866 INSERM/Université de Bourgogne/Agro-Sup, 6 Boulevard Gabriel, Dijon 21000, France; Laboratoire de Nutrition, Université Abdou Moumouni, Niamey, Niger
| | | | | | | | | |
Collapse
|
147
|
Mony P, Tokar T, Pang P, Fiegel A, Meullenet JF, Seo HS. Temperature of served water can modulate sensory perception and acceptance of food. Food Qual Prefer 2013. [DOI: 10.1016/j.foodqual.2012.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
148
|
Mitrovic S, Nogueira C, Cantero-Recasens G, Kiefer K, Fernández-Fernández JM, Popoff JF, Casano L, Bard FA, Gomez R, Valverde MA, Malhotra V. TRPM5-mediated calcium uptake regulates mucin secretion from human colon goblet cells. eLife 2013; 2:e00658. [PMID: 23741618 PMCID: PMC3667631 DOI: 10.7554/elife.00658] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 04/23/2013] [Indexed: 12/23/2022] Open
Abstract
Mucin 5AC (MUC5AC) is secreted by goblet cells of the respiratory tract and, surprisingly, also expressed de novo in mucus secreting cancer lines. siRNA-mediated knockdown of 7343 human gene products in a human colonic cancer goblet cell line (HT29-18N2) revealed new proteins, including a Ca(2+)-activated channel TRPM5, for MUC5AC secretion. TRPM5 was required for PMA and ATP-induced secretion of MUC5AC from the post-Golgi secretory granules. Stable knockdown of TRPM5 reduced a TRPM5-like current and ATP-mediated Ca(2+) signal. ATP-induced MUC5AC secretion depended strongly on Ca(2+) influx, which was markedly reduced in TRPM5 knockdown cells. The difference in ATP-induced Ca(2+) entry between control and TRPM5 knockdown cells was abrogated in the absence of extracellular Ca(2+) and by inhibition of the Na(+)/Ca(2+) exchanger (NCX). Accordingly, MUC5AC secretion was reduced by inhibition of NCX. Thus TRPM5 activation by ATP couples TRPM5-mediated Na(+) entry to promote Ca(2+) uptake via an NCX to trigger MUC5AC secretion. DOI:http://dx.doi.org/10.7554/eLife.00658.001.
Collapse
Affiliation(s)
- Sandra Mitrovic
- Department of Cell and Developmental Biology , Centre for Genomic Regulation , Barcelona , Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Ambient temperature affects the temperature threshold for TRPM8 activation through interaction of phosphatidylinositol 4,5-bisphosphate. J Neurosci 2013; 33:6154-9. [PMID: 23554496 DOI: 10.1523/jneurosci.5672-12.2013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cold sensation is an important and fundamental sense for animals and it is known to be affected by ambient temperature. Transient Receptor Potential Melastatin 8 (TRPM8), a nonselective cation channel expressed in a subset of peripheral afferent fibers, acts as a cold sensor, having an activation threshold of ∼28°C. Although the cold temperature threshold of TRPM8 is affected by menthol or pH, ambient temperature has not been reported to affect it. Because the cold temperature threshold was thought to be unchanged by alterations in ambient temperature, the relativity of temperature sensing in different ambient temperatures could not be understood at the level of molecular function of thermosensitive TRP channels. Here, we show that ambient temperature changed the temperature threshold for activation of human and rat TRPM8 in a heterologous expression system and cold responses in mouse DRG neurons. Moreover, reducing the level of cellular phosphatidylinositol 4,5-bisphosphate (PIP2) attenuated changes in the cold temperature threshold after alterations in ambient temperature. A single amino acid mutation at position 1008 in the C terminus of TRPM8 (arginine to glutamine) also attenuated changes in the cold temperature threshold induced by ambient temperature. These findings suggest that ambient temperature does affect the temperature threshold for TRPM8 activation through interaction of PIP2.
Collapse
|
150
|
Li WL, Chen ML, Liu SS, Li GL, Gu TY, Liang P, Qin YM, Zhan YH, Quan Y, Zhang GH. Sweet preference modified by early experience in mice and the related molecular modulations on the peripheral pathway. J Mol Neurosci 2013; 51:225-36. [PMID: 23606220 DOI: 10.1007/s12031-013-0011-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 04/01/2013] [Indexed: 12/19/2022]
Abstract
The sweet taste is of immense interest to scientists and has been intensively studied during the last two decades. However, the sweet preference modification and the related mechanisms are still unclear. In this study, we try to establish a mice model with manipulated sweet taste preference and explore the involved possible molecular mechanisms. The animals were exposed to acesulfame-K via maternal milk during lactation and the sweet preference tests were carried out when they grew to adulthood. Our results showed that the preference thresholds for sweet taste were increased in adults by early acesulfame-K exposure and the preference ratios for sweet tastants at low or preferred concentrations were decreased. Moreover, by means of qRT-PCR and Western blot, we observed the increased expression of leptin receptor Ob-Rb and downregulation of Gα-gustducin protein in the soft palate. Thereby, the sweet taste sensitivity may be modified by early sweetener experience during lactation. Along the peripheral sweet sensory pathway, the sweet regulator receptors Ob-Rb, CB1 and components of sweet transduction signal Gα-gustducin and T1R2 in both the soft palate and tongue may be cooperatively involved in the plastic development of sweet taste.
Collapse
Affiliation(s)
- Wei-Li Li
- Sensory Science Laboratory, School of Bioscience and Food Engineering, Changshu Institute of Technology, Nansanhuan Road 99, Changshu, 215500, Jiangsu Province, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|