101
|
Li A, Li A, Mao W, Chen H, Huang S, Qi H, Ye J, Zhang Z, Wang X, Sun F, Zou C, Zhou J. JWA, a novel microtubule-associated protein, regulates homeostasis of intracellular amino acids in PC12 cells. ACTA ACUST UNITED AC 2003. [DOI: 10.1007/bf03184063] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
102
|
Tsang WY, Lemire BD. The role of mitochondria in the life of the nematode, Caenorhabditis elegans. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1638:91-105. [PMID: 12853115 DOI: 10.1016/s0925-4439(03)00079-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondria are essential organelles involved in energy metabolism via oxidative phosphorylation. They play a vital role in diverse biological processes such as aging and apoptosis. In humans, defects in the mitochondrial respiratory chain (MRC) are responsible for or associated with a bewildering variety of diseases. The nematode Caenorhabditis elegans is a simple animal and a powerful genetic and developmental model system. In this review, we discuss how the nematode model system has contributed to our understanding of mitochondrial dynamics, of the genetics and inheritance of the mitochondrial genome, and of the consequences of nuclear and mitochondrial DNA (mtDNA) mutations. Mitochondrial respiration is vital to energy metabolism but also to other aspects of multicellular life such as aging and development. We anticipate that further significant contributions to our understanding of mitochondrial function in animal biology are forthcoming with the C. elegans model system.
Collapse
Affiliation(s)
- William Y Tsang
- Canadian Institutes of Health Research Group in Membrane Protein Research, Department of Biochemistry, University of Alberta, 474 Medical Sciences Bldg., Edmonton, Alberta, Canada T6G 2H7
| | | |
Collapse
|
103
|
Taylor SW, Fahy E, Zhang B, Glenn GM, Warnock DE, Wiley S, Murphy AN, Gaucher SP, Capaldi RA, Gibson BW, Ghosh SS. Characterization of the human heart mitochondrial proteome. Nat Biotechnol 2003; 21:281-6. [PMID: 12592411 DOI: 10.1038/nbt793] [Citation(s) in RCA: 542] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2002] [Accepted: 01/14/2003] [Indexed: 11/08/2022]
Abstract
To gain a better understanding of the critical role of mitochondria in cell function, we have compiled an extensive catalogue of the mitochondrial proteome using highly purified mitochondria from normal human heart tissue. Sucrose gradient centrifugation was employed to partially resolve protein complexes whose individual protein components were separated by one-dimensional PAGE. Total in-gel processing and subsequent detection by mass spectrometry and rigorous bioinformatic analysis yielded a total of 615 distinct protein identifications. All protein pI values, molecular weight ranges, and hydrophobicities were represented. The coverage of the known subunits of the oxidative phosphorylation machinery within the inner mitochondrial membrane was >90%. A significant proportion of identified proteins are involved in signaling, RNA, DNA, and protein synthesis, ion transport, and lipid metabolism. The biochemical roles of 19% of the identified proteins have not been defined. This database of proteins provides a comprehensive resource for the discovery of novel mitochondrial functions and pathways.
Collapse
Affiliation(s)
- Steven W Taylor
- MitoKor, 11494 Sorrento Valley Road, San Diego, California 92121, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Spodnik JH, Wozniak M, Budzko D, Teranishi MA, Karbowski M, Nishizawa Y, Usukura J, Wakabayashi T. Mechanism of leflunomide-induced proliferation of mitochondria in mammalian cells. Mitochondrion 2002; 2:163-79. [PMID: 16120318 DOI: 10.1016/s1567-7249(02)00045-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2001] [Revised: 06/21/2002] [Accepted: 06/28/2002] [Indexed: 12/17/2022]
Abstract
Leflunomide (LFM) is an inhibitor of mitochondrial enzyme dihydroorotate dehydrogenase (DHODH) that catalyzes the conversion of dihydroorotate to orotate coupled with the generation of reactive oxygen species (ROS) from mitochondria. We demonstrate here that LFM causes an unrestrained proliferation of mitochondria both in human osteosarcoma cell line 143B cells and rat liver derived RL-34 cells. Increases in the total mass of mitochondria per cell in LFM-treated cells were evidenced by the application of Green FM or 10-n-nonyl acridine orange to flow cytometry, an enhanced replication of mtDNA and electron microscopy. Externally added uridine improved the disturbance in cell cycle progression in LFM-treated cells, but failed to suppress such unrestrained mitochondrial proliferation. On the contrary, lapacol and 5-fluoroorotate, inhibitors of DHODH besides LFM, suppressed the biogenesis of mitochondria during the cell cycle progression. LFM, but not lapacol or 5-fluoroorotate, caused increases of the intracellular level of acetylated alpha-tubulin. These data suggest that the inhibition of DHODH may not be at least primarily related to the LFM-induced abnormal proliferation of mitochondria, and support our recent published observation that changes in the physicochemical properties of microtubules may be in someway concerned with the biogenesis of mitochondria.
Collapse
Affiliation(s)
- Jan H Spodnik
- Department of Cell Biology and Molecular Pathology, Nagoya University School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | |
Collapse
|
105
|
Kim JA, Mitsukawa K, Yamada MK, Nishiyama N, Matsuki N, Ikegaya Y. Cytoskeleton disruption causes apoptotic degeneration of dentate granule cells in hippocampal slice cultures. Neuropharmacology 2002; 42:1109-18. [PMID: 12128012 DOI: 10.1016/s0028-3908(02)00052-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Colchicine, a potent microtubule-depolymerizing agent, is well known to selectively kill dentate granule cells in the hippocampal formation in vivo. Using organotypic cultures of rat entorhino-hippocampal slices, we confirmed that in vitro exposure to 1 microM and 10 microM of colchicine reproduced a specific degeneration of the granule cells after 24 h. Similar results were obtained with other types of microtubule-disrupting agents, i.e., nocodazole, vinblastine, and Taxol. Interestingly, the actin-depolymerizing agents cytochalasin D and latrunculin A also elicited selective neurotoxicity in the dentate gyrus without affecting survival of hippocampal pyramidal cells. The selective pattern of degeneration was observable 24 h after a brief treatment with the toxins as short as 5 min, but this delayed neuronal death was unlikely to be a result of excitotoxicity because it was virtually unaffected by glutamate receptor antagonists, tetrodotoxin, or extracellular Ca(2+)-free conditions. The damaged tissues contained a large number of TUNEL-positive neurons and exhibited an increased level in caspase-3-like activity, suggesting that cytoskeleton disruption triggers an apoptosis-like process in dentate granule cells. Thus, this study may provide a basis for understanding the distinctive mechanism that supports granule cell survival.
Collapse
Affiliation(s)
- Jeong-Ah Kim
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
106
|
Fuchs F, Prokisch H, Neupert W, Westermann B. Interaction of mitochondria with microtubules in the filamentous fungus Neurospora crassa. J Cell Sci 2002; 115:1931-7. [PMID: 11956324 DOI: 10.1242/jcs.115.9.1931] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The establishment and maintenance of the 3D structure of eukaryotic cells depends on active transport and positioning of organelles along cytoskeletal elements. The biochemical basis of these processes is only poorly understood. We analysed the interaction of mitochondria with microtubules in the filamentous fungus Neurospora crassa. Mitochondria were fluorescently labelled by expression of matrix-targeted green fluorescent protein. Upon isolation, mitochondria collapsed to round spherical structures that were still able to interact with microtubules in vitro. Binding of mitochondria to microtubules was dependent on peripherally associated proteins on the organellar surface, and was sensitive to adenine nucleotides. MMM1, a mitochondrial outer membrane protein important for maintenance of normal mitochondrial morphology, was not required. This suggests that the interaction of mitochondria with the cytoskeleton is independent of MMM1. We conclude that mitochondrial morphology is maintained by a complex interplay of extrinsic and intrinsic factors, including ATP-dependent proteins on the organellar surface.
Collapse
Affiliation(s)
- Florian Fuchs
- Institut für Physiologische Chemie der Universität München, Butenandtstrasse 5, D-81377 Münich, Germany
| | | | | | | |
Collapse
|
107
|
Van Gestel K, Köhler RH, Verbelen JP. Plant mitochondria move on F-actin, but their positioning in the cortical cytoplasm depends on both F-actin and microtubules. JOURNAL OF EXPERIMENTAL BOTANY 2002; 53:659-67. [PMID: 11886885 DOI: 10.1093/jexbot/53.369.659] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Mitochondrion movement and positioning was studied in elongating cultured cells of tobacco (Nicotiana tabacum L.), containing mitochondria-localized green fluorescent protein. In these cells mitochondria are either actively moving in strands of cytoplasm transversing or bordering the vacuole, or immobile positioned in the cortical layer of cytoplasm. Depletion of the cell's ATP stock with the uncoupling agent DNP shows that the movement is much more energy demanding than the positioning. The active movement is F-actin based. It is inhibited by the actin filament disrupting drug latrunculin B, the myosin ATPase inhibitor 2,3-butanedione 2-monoxime and the sulphydryl-modifying agent N-ethylmaleimide. The microtubule disrupting drug oryzalin did not affect the movement of mitochondria itself, but it slightly stimulated the recruitment of cytoplasmic strands, along which mitochondria travel. The immobile mitochondria are often positioned along parallel lines, transverse or oblique to the cell axis, in the cortical cytoplasm of elongated cells. This positioning is mainly microtubule based. After complete disruption of the F-actin, the mitochondria parked themselves into conspicuous parallel arrays transverse or oblique to the cell axis or clustered around chloroplasts and around patches and strands of endoplasmic reticulum. Oryzalin inhibited all positioning of the mitochondria in parallel arrays.
Collapse
Affiliation(s)
- K Van Gestel
- Department of Biology, University of Antwerp UIA, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | | | | |
Collapse
|
108
|
Bifulco M, Laezza C, Stingo S, Wolff J. 2',3'-Cyclic nucleotide 3'-phosphodiesterase: a membrane-bound, microtubule-associated protein and membrane anchor for tubulin. Proc Natl Acad Sci U S A 2002; 99:1807-12. [PMID: 11842207 PMCID: PMC122275 DOI: 10.1073/pnas.042678799] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
2',3'-Cyclic nucleotide-3'-phosphodiesterase (CNP) is firmly associated with tubulin from brain tissue and FRTL-5 thyroid cells as demonstrated by copolymerization with microtubules through several warm/cold cycles, the presence of CNP activity in purified tubulin preparations, and identical behavior during various extraction procedures. CNP acts as a microtubule-associated protein in promoting microtubule assembly at low mole ratios. This activity resides in the C terminus of the enzyme, which, by itself, promotes microtubule assembly at higher mole ratios. Phosphorylation of CNP interferes with its assembly-promoting activity, as does deletion of the C terminus, which leads to abnormal microtubule distribution in the cell. Submembranous colocalization of the proteins and CNP-dependent microtubule organization suggest that CNP is a membrane-bound microtubule-associated protein that can link tubulin to membranes and may regulate cytoplasmic microtubule distribution.
Collapse
Affiliation(s)
- Maurizio Bifulco
- Dipartimento di Scienze Farmaceutiche, Università di Salerno, 84084 Fisciano, Salerno, Italy.
| | | | | | | |
Collapse
|
109
|
LIU LEYUAN, VO AMY, LIU GUOQIN, MCKEEHAN WALLACEL. Novel complex integrating mitochondria and the microtubular cytoskeleton with chromosome remodeling and tumor suppressor RASSF1 deduced by in silico homology analysis, interaction cloning in yeast, and colocalization in cultured cells. In Vitro Cell Dev Biol Anim 2002; 38:582-94. [PMID: 12762840 PMCID: PMC3225227 DOI: 10.1290/1543-706x(2002)38<582:ncimat>2.0.co;2] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Availability of the complete sequence of the human genome and sequence homology analysis has accelerated new protein discovery and clues to protein function. Protein-protein interaction cloning suggests multisubunit complexes and pathways. Here, we combine these molecular approaches with cultured cell colocalization analysis to suggest a novel complex and a pathway that integrate the mitochondrial location and the microtubular cytoskeleton with chromosome remodeling, apoptosis, and tumor suppression based on a novel leucine-rich pentatricopeptide repeat-motif-containing protein (LRPPRC) that copurified with the fibroblast growth factor receptor complex. One round of interaction cloning and sequence homology analysis defined a primary LRPPRC complex with novel subunits cat eye syndrome chromosome region candidate 2 (CECR2), ubiquitously expressed transcript (UXT), and chromosome 19 open reading frames 5 (C19ORF5) but still of unknown function. Immuno, deoxyribonucleic acid (DNA), and green fluorescent protein (GFP) tag colocalization analyses revealed that LRPPRC appears in both cytosol and nuclei of cultured cells, colocalizes with mitochondria and beta-tubulin rather than with alpha-actin in the cytosol of interphase cells, and exhibits phase-dependent organization around separating chromosomes in mitotic cells. GFP-tagged CECR2B was strictly nuclear and colocalized with condensed DNA in apoptotic cells. GFP-tagged UXT and GFP-tagged C19ORF5 appeared in both cytosol and nuclei and colocalized with LRPPRC and beta-tubulin. Cells exhibiting nuclear C19ORF5 were apoptotic. Screening for interactive substrates with the primary LRPPRC substrates in the human liver complementary DNA library revealed that CECR2B interacted with chromatin-associated TFIID-associated protein TAFII30 and ribonucleic acid splicing factor SRP40, UXT bridged to CBP/p300-binding factor CITED2 and kinetochore-associated factor BUB3, and C19ORF5 complexed with mitochondria-associated NADH dehydrogenase I and cytochrome c oxidase I. C19ORF5 also interacted with RASSF1, providing a bridge to apoptosis and tumor suppression.
Collapse
|
110
|
Sorour J, Larink O. Toxic effects of benomyl on the ultrastructure during spermatogenesis of the earthworm Eisenia fetida. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2001; 50:180-188. [PMID: 11915954 DOI: 10.1006/eesa.2001.2067] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The present study has investigated the toxic effect of benomyl on the ultrastructure of the male reproductive system and spermatozoa of the earthworm Eiseniafetida in a laboratory experiment. Three different concentrations of benomyl (8.3, 56, 112 mg/kg dry soil) were applied for one week. These applications caused abnormalities in ultrastructure of the cytophore, the spermatogonia, spermatids, and spermatozoa. The alterations include uncomplete forms of acrosomes, nuclear distortion, and disruption of microtubules. These micromorphological changes should be included in a model for predicting environmental hazards.
Collapse
Affiliation(s)
- J Sorour
- Institute of Zoology, Alexandria University, Egypt
| | | |
Collapse
|
111
|
Knuepfer E, Stierhof YD, McKean PG, Smith DF. Characterization of a differentially expressed protein that shows an unusual localization to intracellular membranes in Leishmania major. Biochem J 2001; 356:335-44. [PMID: 11368759 PMCID: PMC1221843 DOI: 10.1042/0264-6021:3560335] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The SHERP genes are found as a tandem pair within the differentially regulated LmcDNA16 locus of Leishmania major. The SHERP gene product (small hydrophilic endoplasmic reticulum-associated protein) is unusual in its small size (6.2 kDa), its acidic pI (4.6) and its exclusive, high-level expression ( approximately 100000 copies per cell) in infective non-replicative parasite stages. No homologues have been found to date. Secondary-structure predictions suggest that SHERP contains an amphiphilic alpha-helix that is presumably involved in protein-protein interactions. SHERP has been localized to the endoplasmic reticulum as well as to the outer mitochondrial membrane in both wild-type and over-expressing parasites. Given the absence of an N-terminal signal sequence, transmembrane-spanning domains or detectable post-translational modifications, it is likely that this hydrophilic molecule is a peripheral membrane protein on the cytosolic face of intracellular membranes. This weak membrane association has been confirmed in cell-fractionation assays, in which SHERP redistributes from the cytoplasmic to the membrane fraction after in vivo cross-linking. SHERP does not appear to be involved in rearrangements of the cytoskeleton or conservation of organelle morphology during parasite differentiation. The role of this novel protein, presumed to be part of a protein complex, in infective parasites that are nutrient-deficient and pre-adapted for intracellular survival in the mammalian host is under investigation.
Collapse
Affiliation(s)
- E Knuepfer
- Wellcome Trust Laboratories for Molecular Parasitology, Department of Biochemistry, Imperial College of Science, Technology and Medicine, London SW7 2AZ, UK
| | | | | | | |
Collapse
|
112
|
Abstract
PC12 pheochromocytoma cells incorporate [(3)H]palmitic acid into tubulin in a time- and cell-density-dependent manner. The plasma membrane-enriched fraction contains most of the radioactivity of the membrane pellet. While palmitoylated tubulin is found in both the cytoplasm and particulate fraction, the bulk of [(3)H]palmitic acid bound to tubulin is present in the crude membrane pellet and the tubulin extracted from the plasma membrane is more heavily palmitoylated than that extracted from endoplasmic reticulum. Detergent-extracted tubulin from plasma membrane is, to a large extent, polymerization competent; a substantial fraction, increasing as a function of labeling time, is not hydroxylamine-labile. The requirement for detergent extraction, the accompanying changes in tubulin properties and the present findings of preferential incorporation of labeled tubulin into plasma membranes, make it clear that direct incorporation of tubulin into the plasma membrane can occur.
Collapse
Affiliation(s)
- A M Zambito
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20892, USA.
| | | |
Collapse
|
113
|
Karbowski M, Spodnik JH, Teranishi M, Wozniak M, Nishizawa Y, Usukura J, Wakabayashi T. Opposite effects of microtubule-stabilizing and microtubule-destabilizing drugs on biogenesis of mitochondria in mammalian cells. J Cell Sci 2001; 114:281-91. [PMID: 11148130 DOI: 10.1242/jcs.114.2.281] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Distribution of mitochondria as well as other intracellular organelles in mammalian cells is regulated by interphase microtubules. Here, we demonstrate a role of microtubules in the mitochondrial biogenesis using various microtubule-active drugs and human osteosarcoma cell line 143B cells and rat liver-derived RL-34 cells. Depolymerization of microtubules by nocodazole or colchicine, as well as 2-methoxyestradiol, a natural estrogen metabolite, arrested asynchronously cultured cells in G(2)/M phase of cell cycle and at the same time inhibited the mitochondrial mass increase and mtDNA replication. These drugs also inhibited the mitochondrial mass increase in the cells that were synchronized in cell cycle, which should occur during G(1) to G(2) phase progression in normal conditions. However, stabilization of microtubules by taxol did not affect the proliferation of mitochondria during the cell cycle, yet a prolonged incubation of cells with taxol induced an abnormal accumulation of mitochondria in cells arrested in G(2)/M phase of cell cycle. Taxol-induced accumulation of mitochondria was not only demonstrated by mitochondria-specific fluorescent dyes but also evidenced by the examination of cells transfected with yellow fluorescent protein fused with mitochondrial targeting sequence from subunit VIII of human cytochrome c oxidase (pEYFP) and by enhanced mtDNA replication. Two subpopulations of mitochondria were detected in taxol-treated cells: mitochondria with high Delta(psi)(m), detectable either by Mito Tracker Red CMXRos or by Green FM, and those with low Delta(psi)(m), detectable only by Green FM. However, taxol-induced increases in the mitochondrial mass and in the level of acetylated (alpha)-tubulin were abrogated by a co-treatment with taxol and nocodazole or taxol and colchicine. These data strongly suggest that interphase microtubules may be essential for the regulation of mitochondrial biogenesis in mammalian cells.
Collapse
Affiliation(s)
- M Karbowski
- Department of Cell Biology and Molecular Pathology, Nagoya University School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
114
|
Abstract
Mitochondria are essential organelles found in virtually all eukaryotic cells that play key roles in a variety of cellular processes. Mitochondria show a striking heterogeneity in their number, location, and shape in many different cell types. Although the dynamic nature of mitochondria has been known for decades, the molecules and mechanisms that mediate these processes are largely unknown. Recently, several laboratories have isolated and analyzed mutants in the yeast Saccharomyces cerevisiae defective in mitochondrial fusion and division, in the segregation of mitochondria to daughter cells, and in the establishment and maintenance of mitochondrial shape. These studies have identified several proteins that appear to mediate different aspects of mitochondrial morphogenesis. Although it is clear that many additional components have yet to be identified, some of the newly discovered proteins raise intriguing possibilities for how the processes of mitochondrial division, fusion, and segregation occur. Below we summarize our current understanding of the molecules known to be required for yeast mitochondrial dynamics.
Collapse
Affiliation(s)
- R E Jensen
- Department of Cell Biology and Anatomy, Biophysics 100, Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA.
| | | | | | | |
Collapse
|
115
|
Milner DJ, Mavroidis M, Weisleder N, Capetanaki Y. Desmin cytoskeleton linked to muscle mitochondrial distribution and respiratory function. J Cell Biol 2000; 150:1283-98. [PMID: 10995435 PMCID: PMC2150713 DOI: 10.1083/jcb.150.6.1283] [Citation(s) in RCA: 288] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2000] [Accepted: 08/02/2000] [Indexed: 12/28/2022] Open
Abstract
Ultrastructural studies have previously suggested potential association of intermediate filaments (IFs) with mitochondria. Thus, we have investigated mitochondrial distribution and function in muscle lacking the IF protein desmin. Immunostaining of skeletal muscle tissue sections, as well as histochemical staining for the mitochondrial marker enzymes cytochrome C oxidase and succinate dehydrogenase, demonstrate abnormal accumulation of subsarcolemmal clumps of mitochondria in predominantly slow twitch skeletal muscle of desmin-null mice. Ultrastructural observation of desmin-null cardiac muscle demonstrates in addition to clumping, extensive mitochondrial proliferation in a significant fraction of the myocytes, particularly after work overload. These alterations are frequently associated with swelling and degeneration of the mitochondrial matrix. Mitochondrial abnormalities can be detected very early, before other structural defects become obvious. To investigate related changes in mitochondrial function, we have analyzed ADP-stimulated respiration of isolated muscle mitochondria, and ADP-stimulated mitochondrial respiration in situ using saponin skinned muscle fibers. The in vitro maximal rates of respiration in isolated cardiac mitochondria from desmin-null and wild-type mice were similar. However, mitochondrial respiration in situ is significantly altered in desmin-null muscle. Both the maximal rate of ADP-stimulated oxygen consumption and the dissociation constant (K(m)) for ADP are significantly reduced in desmin-null cardiac and soleus muscle compared with controls. Respiratory parameters for desmin-null fast twitch gastrocnemius muscle were unaffected. Additionally, respiratory measurements in the presence of creatine indicate that coupling of creatine kinase and the adenine translocator is lost in desmin-null soleus muscle. This coupling is unaffected in cardiac muscle from desmin-null animals. All of these studies indicate that desmin IFs play a significant role in mitochondrial positioning and respiratory function in cardiac and skeletal muscle.
Collapse
Affiliation(s)
- D J Milner
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
116
|
Cavelier L, Johannisson A, Gyllensten U. Analysis of mtDNA copy number and composition of single mitochondrial particles using flow cytometry and PCR. Exp Cell Res 2000; 259:79-85. [PMID: 10942580 DOI: 10.1006/excr.2000.4949] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondrial DNA (mtDNA) is a multicopy, maternally inherited, genome. Individuals frequently carry a mixture of genetically distinct mtDNA molecules whose proportions may vary between sexual generations or among tissues from the same individual. Analyses of the genetic composition of mitochondria have previously relied on electron microscopy and have not permitted the genotype of single mitochondria to be determined. We have developed flow cytometry techniques to isolate single mitochondrial particles and PCR-based assays to determine the mtDNA copy number and composition of individual particles. In a first application of this method, we studied mitochondrial particles from fibroblast cells heteroplasmic for the tRNA lys(8344) point mutation, associated with myoclonus epilepsy and ragged red fiber (MERRF). Individual mitochondrial particles contained between 0 and 11 mtDNA molecules with a mean of 2.0 (95% CI 1.6-2.4). The majority (75%) of the mitochondrial particles from which a PCR product was obtained contained only one type of mtDNA, consistent with the low mean mtDNA copy number. The method developed may be applied to studies of the copy number and distribution of mtDNA genomes in different cell types.
Collapse
Affiliation(s)
- L Cavelier
- Department of Genetics and Pathology, University of Uppsala, Uppsala, S-751 85, Sweden
| | | | | |
Collapse
|
117
|
Benchimol M, Diniz JA, Ribeiro K. The fine structure of the axostyle and its associations with organelles in Trichomonads. Tissue Cell 2000; 32:178-87. [PMID: 10855704 DOI: 10.1054/tice.2000.0102] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The fine structure of the axostyle in the protists Tritrichomonas foetus and Monocercomonas sp is described using transmission electron microscopy after quick-freezing techniques and immunocytochemistry. The axostyle microtubules presents a lateral projection formed by two protofilaments in addition to the 13 protofilaments normally found in microtubules. The axostyle is associated with other cell structures such as hydrogenosomes, endoplasmic reticulum, sigmoid filaments and glycogen particles. The microtubules of the pelta-axostylar system are connected to each other by bridges regularly spaced with an interval of 9 nm. Labeling of the axostyle was observed after cell incubation with monoclonal antibodies recognizing alpha-tubulin and acetylated-tubulin.
Collapse
Affiliation(s)
- M Benchimol
- Universidade Santa Ursula, Rio de Janeiro, Brazil.
| | | | | |
Collapse
|
118
|
Garland J, Brown G, Beasley J, Brown R. Apoptosis in factor-dependent haematopoietic cells is linked to calcium-sensitive mitochondrial rearrangements and cytoskeletal modulation. Br J Haematol 2000; 109:221-34. [PMID: 10848803 DOI: 10.1046/j.1365-2141.2000.01959.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Apoptosis in murine haematopoietic interleukin (IL)3-dependent cell lines is induced within 6-8 h by IL-3 withdrawal. Direct introduction of cytochrome c by electroporation induces apoptosis within 2 h and was inhibited by caspase inhibitors, such as Z-VADfmk and Z-Dfmk. We report here that apoptosis induced by IL-3 withdrawal was refractory to these inhibitors but was accompanied by striking redistribution of mitochondria, which aggregated into an area associated with centrioles without loss of Deltapsim. Both mitochondrial redistribution and apoptosis were inhibited by the calcium ionophore, ionomycin. Nocodozole, an inhibitor of microtubule assembly, also induced apoptosis, which was unaffected by caspase inhibitors. Although nocodozole did not alter mitochondrial distribution, it significantly reduced Deltapsim, and both reduction of Deltapsim and apoptosis were inhibited by ionomycin. Oligomycin, which inhibits the mitochondrial FoF1 ATPase, similarly induced apoptosis, which was unaffected by caspase inhibitors but was inhibited by ionomycin. Further, oligomycin stimulated the novel formation and release of surface membrane-derived vesicles containing mitochondria with intact Deltapsim; ionomycin also inhibited their production. In all these conditions, Bcl-2 protected cells from apoptosis. Our studies show that apoptosis induced by three very different agents shares insensitivity to caspase inhibitors, suppression by ionomycin and effects on mitochondria, which all appear to be linked to cytoskeletal/microtubule activity. They suggest that microtubules and the cytoskeleton play an important role in apoptosis through mechanisms affecting mitochondria but which are independent of cytochrome c release.
Collapse
Affiliation(s)
- J Garland
- Institute of Clinical Science, Exeter University, Noy Scott House, Wonford, Exeter EX2 5EQ, UK. Wood Road, Stevenage, Herts SG1 2NY, UK
| | | | | | | |
Collapse
|
119
|
Murata T, Goshima F, Daikoku T, Inagaki-Ohara K, Takakuwa H, Kato K, Nishiyama Y. Mitochondrial distribution and function in herpes simplex virus-infected cells. J Gen Virol 2000; 81:401-6. [PMID: 10644838 DOI: 10.1099/0022-1317-81-2-401] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
In this study, mitochondria migrated to a perinuclear region in the cytoplasm in herpes simplex virus (HSV)-infected cells. HSV infection did not promote the expression of cytochrome c oxidase subunit 2 but did promote that of stress-responsive HSP60, both of which are known to be components of mitochondria. The levels of cellular ATP and lactate and mitochondrial membrane potential were maintained for at least 6 h but decreased at the late stage of infection. It was also found that the UL41 and UL46 gene products, both of which are known to be tegument proteins, accumulated in the perinuclear region. The clustering of mitochondria and the accumulation of tegument proteins were completely blocked by the addition of nocodazole and vinblastine. These results suggest that mitochondria respond to the stimulation of HSV infection, migrating with tegument proteins along microtubules to a site around the nucleus, and maintain function until at least the middle stage of infection.
Collapse
Affiliation(s)
- T Murata
- Laboratory of Virology, Research Institute for Disease Mechanism and Control, Nagoya University School of Medicine, Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | |
Collapse
|
120
|
Aw TY. Intracellular compartmentation of organelles and gradients of low molecular weight species. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 192:223-53. [PMID: 10553281 DOI: 10.1016/s0074-7696(08)60528-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Intracellular compartmentation of metabolites without intervening membranes is an important concept that has emerged from consideration of the metabolic inhomogeneities associated with a highly organized and structured cytoplasm within mammalian cells. This recognition is primarily due to the development of experimental approaches to measure metabolite or ion concentrations at specific subcellular sites, thereby providing a means to study concentration gradients within the aqueous cytoplasm in intact cells. The presence of mitochondrial clusters has been shown to create gradients of low molecular weight species, such as O2, ATP, and pH, with important implications for substrate supply for function and regulation of cellular processes. Moreover, the existence of kinetically distinct precursor pools has been shown to result in functional compartmentation of biochemical pathways, such as DNA replication and carbohydrate metabolism. The creation of these specialized microzones of metabolism in accordance with their association with cellular organelles or membranal structures may be integral to normal function and regulation of adult mammalian cells.
Collapse
Affiliation(s)
- T Y Aw
- Department of Molecular and Cellular Physiology, Louisiana State University Medical Center, Shreveport 71130, USA
| |
Collapse
|
121
|
Fadeel B, Zhivotovsky B, Orrenius S. All along the watchtower: on the regulation of apoptosis regulators. FASEB J 1999; 13:1647-57. [PMID: 10506569 DOI: 10.1096/fasebj.13.13.1647] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Members of the expanding family of Bcl-2-like proteins have emerged as important regulators of programmed cell death, and recent studies have unearthed numerous mechanisms for regulating the function of these death agonists and antagonists. In addition to the transcriptional control of gene expression, these mechanisms include posttranslational events such as phosphorylation, proteolysis, and the induction of conformational changes, which may either activate or inactivate these molecules. Interaction with homologous and nonhomologous proteins and specific subcellular targeting of Bcl-2-like proteins are other means of fine-tuning the cellular response to noxious stimuli. Recently, considerable attention has turned to the regulation of so-called BH3-only molecules, which appear to act as stress sensors that relay signals to other pro- or antiapoptotic family members. We discuss how the regulation of these apoptosis regulators may control the ultimate fate of the cell.
Collapse
Affiliation(s)
- B Fadeel
- Institute of Environmental Medicine, Division of Toxicology, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | | | | |
Collapse
|
122
|
Nemoto Y, De Camilli P. Recruitment of an alternatively spliced form of synaptojanin 2 to mitochondria by the interaction with the PDZ domain of a mitochondrial outer membrane protein. EMBO J 1999; 18:2991-3006. [PMID: 10357812 PMCID: PMC1171381 DOI: 10.1093/emboj/18.11.2991] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Synaptojanin 1 is an inositol 5'-phosphatase highly enriched in nerve terminals with a putative role in recycling of synaptic vesicles. We have previously described synaptojanin 2, which is more broadly expressed as multiple alternatively spliced forms. Here we have identified and characterized a novel mitochondrial outer membrane protein, OMP25, with a single PDZ domain that specifically binds to a unique motif in the C-terminus of synaptojanin 2A. This motif is encoded by the exon sequence specific to synaptojanin 2A. OMP25 mRNA is widely expressed in rat tissues. OMP25 is localized to the mitochondrial outer membrane via the C-terminal transmembrane region, with the PDZ domain facing the cytoplasm. Overexpression of OMP25 results in perinuclear clustering of mitochondria in transfected cells. This effect is mimicked by enforced expression of synaptojanin 2A on the mitochondrial outer membrane, but not by the synaptojanin 2A mutants lacking the inositol 5'-phosphatase domain. Our findings provide evidence that OMP25 mediates recruitment of synaptojanin 2A to mitochondria and that modulation of inositol phospholipids by synaptojanin 2A may play a role in maintenance of the intracellular distribution of mitochondria.
Collapse
Affiliation(s)
- Y Nemoto
- Department of Cell Biology and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | | |
Collapse
|
123
|
Abstract
The distribution of mitochondria to daughter cells during cell division is an essential feature of cell proliferation. Until recently, it was commonly believed that inheritance of mitochondria and other organelles was a passive process, a consequence of their random diffusion throughout the cytoplasm. A growing recognition of the reticular morphology of mitochondria in many living cells, the association of mitochondria with the cytoskeleton, and the coordinated movements of mitochondria during cellular division and differentiation has illuminated the necessity for a cellular machinery that mediates mitochondrial behavior. Characterization of the underlying molecular components of this machinery is providing insight into mechanisms regulating mitochondrial morphology and distribution.
Collapse
Affiliation(s)
- M P Yaffe
- Department of Biology, University of California, San Diego, La Jolla, CA 92093-0347, USA.
| |
Collapse
|
124
|
Abstract
Proteins that control mitochondrial dynamics in yeast are being identified at a rapid pace. These proteins include cytoskeletal elements that regulate organelle distribution and inheritance and several outer membrane proteins that are required to maintain the branched, mitochondrial reticulum. Interestingly, three of the high molecular weight GTPases encoded by the yeast genome are required for mitochondrial integrity and are potential regulators of mitochondrial branching, distribution, and membrane fusion. The recent finding that mtDNA mixing is restricted in the mitochondrial matrix has stimulated the hunt for the molecular machinery that anchors mitochondrial nucleoids in the organelle. Considering that many aspects of mitochondrial structure and behavior are strikingly similar in different cell types, the functional analyses of these yeast proteins should provide general insights into the mechanisms governing mitochondrial dynamics in all eukaryotes.
Collapse
Affiliation(s)
- G J Hermann
- Department of Biology, University of Utah, Salt Lake City 84112, USA
| | | |
Collapse
|
125
|
Paulin-Levasseur M, Chen G, Larivière C. The 2G2 antibody recognizes an acidic 110-kDa human mitochondrial protein. THE HISTOCHEMICAL JOURNAL 1998; 30:617-25. [PMID: 9870762 DOI: 10.1023/a:1003577609799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Using fluorescence microscopy, the mouse monoclonal antibody 2G2 was found to label mitochondria in human cells, as assessed by double staining with either Rhodamine 123 or a polyclonal antibody to mitochondrial matrix HSP-60 proteins. No reactivity to the 2G2 antibody was detected in cells from mouse, rat and chicken. Immunoblotting analysis demonstrated that the 2G2 antigen corresponds to a human protein with a relative mobility of 110kDa and an approximate isoelectric point of 6.5 that co-partitions with HSP-60 proteins during isolation of mitochondria from HeLa cells. Close examination of the 2G2 staining pattern in HeLa and Fanconi's anaemia cells revealed differences in the morphology and organization of mitochondria in these two cell types. In HeLa cells, mitochondria appear as individual tubular compartments of variable length and are closely associated with vimentin filaments, particularly at the periphery of the nucleus. In Fanconi's anaemia cells, mitochondria have a filamentous shape and form an interconnected cytoplasmic reticulum running in parallel with both vimentin filaments and microtubules. After stabilization with aldehyde- or alcohol-based fixation protocols that optimize the preservation of cytoskeletal components, the epitope targeted by the 2G2 antibody may serve as a valuable marker in the investigation of relationships between mitochondria and other cellular structures in human cells.
Collapse
|
126
|
Abstract
Numerous organelles are repositioned during myogenic differentiation and are maintained in an asymmetric distribution throughout the life span of a myotube. It is likely that members of the kinesin superfamily may be responsible for some or all of these microtubule-dependent movements. Consequently, we have attempted to identify kinesin-like molecules expressed throughout myogenesis. Using a standard PCR-based strategy, we cloned two kinesin-like molecules from a rat myogenic cell line, L6. Sequence analysis of the first of these, KIF3C, defines it as a novel member of the KIF3 subfamily of kinesin-like proteins. KIF3C is expressed throughout myogenesis as well as in numerous rat tissues. Like other members of the KIF3 subfamily, KIF3C has an N-terminal motor domain. The second molecule identified is a rat homolog of murine KIF1B, a putative mitochondrial transporter. KIF1B is also expressed ubiquitously both in myogenic cells at all stages and in a variety of rat tissues.
Collapse
Affiliation(s)
- K Faire
- Department of Anatomy and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | |
Collapse
|
127
|
Rojo G, Chamorro M, Salas ML, Viñuela E, Cuezva JM, Salas J. Migration of mitochondria to viral assembly sites in African swine fever virus-infected cells. J Virol 1998; 72:7583-8. [PMID: 9696857 PMCID: PMC110008 DOI: 10.1128/jvi.72.9.7583-7588.1998] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
An examination by electron microscopy of the viral assembly sites in Vero cells infected with African swine fever virus showed the presence of large clusters of mitochondria located in their proximity. These clusters surround viral factories that contain assembling particles but not factories where only precursor membranes are seen. Immunofluorescence microscopy revealed that these accumulations of mitochondria are originated by a massive migration of the organelle to the virus assembly sites. Virus infection also promoted the induction of the mitochondrial stress-responsive proteins p74 and cpn 60 together with a dramatic shift in the ultrastructural morphology of the mitochondria toward that characteristic of actively respiring organelles. The clustering of mitochondria around the viral factory was blocked in the presence of the microtubule-disassembling drug nocodazole, indicating that these filaments are implicated in the transport of the mitochondria to the virus assembly sites. The results presented are consistent with a role for the mitochondria in supplying the energy that the virus morphogenetic processes may require and make of the African swine fever virus-infected cell a paradigm to investigate the mechanisms involved in the sorting of mitochondria within the cell.
Collapse
Affiliation(s)
- G Rojo
- Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
128
|
Rappaport L, Oliviero P, Samuel JL. Cytoskeleton and mitochondrial morphology and function. Mol Cell Biochem 1998; 184:101-5. [PMID: 9746315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
It has been well established that the cytoskeleton is an essential modulator of cell morphology and motility, intracytoplasmic transport and mitosis, however cytoskeletal linkage to the organelles has not been unequivocally demonstrated. Indeed, cytoskeleton appears to be essential in determining and modulating gene phenotype as a function of cellular environment. According to recent studies, the organization of the cytoskeleton network together with associated protein(s) could be essential in regulating mitochondrial function and particularly the permeability of the mitochondrial outer membrane to ADP. The aim of this chapter is to summarize the main properties of the cytoskeletal environment of mitochondria and the possible role(s) of this network in mitochondrial function in myocytes.
Collapse
Affiliation(s)
- L Rappaport
- Unité 127 INSERM, IFR Circulation, University D Diderot, Hôpital Lariboisière, Paris, France
| | | | | |
Collapse
|
129
|
Fields SD, Conrad MN, Clarke M. The S. cerevisiae CLU1 and D. discoideum cluA genes are functional homologues that influence mitochondrial morphology and distribution. J Cell Sci 1998; 111 ( Pt 12):1717-27. [PMID: 9601101 DOI: 10.1242/jcs.111.12.1717] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cluA gene, encoding a novel 150 kDa protein, was recently characterized in Dictyostelium discoideum; disruption of cluA impaired cytokinesis and caused mitochondria to cluster at the cell center. The genome of Saccharomyces cerevisiae contains an open reading frame (CLU1) that encodes a protein that is 27% identical, 50% similar, to this Dictyostelium protein. Deletion of CLU1 from S. cerevisiae did not affect cell viability, growth properties, sporulation efficiency, or frequency of occurrence of cells lacking functional mitochondria. However, in clu1Delta cells the mitochondrial reticulum, which is normally highly branched, was condensed to one side of the cell. Transformation of cluA- Dictyostelium mutants with the yeast CLU1 gene yielded amoebae that divided normally and had dispersed mitochondria. The mitochondria in cluA- Dictyostelium cells complemented with CLU1 were not as widely scattered as in cluA+ Dictyostelium cells, but formed loose clusters throughout the cytoplasm. These results indicate that the products of the CLU1 and cluA genes, in spite of their limited homology, are functional homologues.
Collapse
Affiliation(s)
- S D Fields
- Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | |
Collapse
|
130
|
Abstract
During mitosis, not only the genetic material stored in the nucleus but also the constituents of the cytoplasm should be equally partitioned between the daughter cells. For this sake, the dividing cell goes through an extensive structural reorganization and transport along the endocytic and exocytic pathways is temporarily arrested. Early in prophase, the radiating array of cytoplasmic microtubules disassembles and the membrane systems of the secretory apparatus start to split up. In metaphase, the nuclear envelope fragments and the condensing chromosomes associate with the forming mitotic spindle. The cisternal and tubular elements of the endoplasmic reticulum and the Golgi complex break down into small vesicles, presumably as the result of an imbalance between vesicle budding and fusion. In anaphase, the two sets of chromosomes are pulled apart and a cleavage furrow forms halfway between the spindle poles. Since most organelles occur in multiple and widely dispersed copies at this stage, they will be evenly distributed between the daughter cells. During telophase and cytokinesis, the preceding fragmentation process is reversed. A nuclear envelope reappears around the chromosomes and cytoplasmic microtubules reassemble. The endoplasmic reticulum is rebuilt as a continuous system of flattened cisternae and tubules. Stacks of Golgi cisternae arise from small vesicles and are rearranged in an interconnected network. In parallel, the biosynthetic functions of the cell are normalized and intracellular membrane traffic is resumed.
Collapse
Affiliation(s)
- J Thyberg
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institutet, Stockholm, Sweden.
| | | |
Collapse
|
131
|
Roudebush M, Slabe T, Sundaram V, Hoppel CL, Golubic M, Stacey DW. Neurofibromin colocalizes with mitochondria in cultured cells. Exp Cell Res 1997; 236:161-72. [PMID: 9344596 DOI: 10.1006/excr.1997.3712] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Mutations in neurofibromatosis type 1 target the gene coding for neurofibromin. While neurofibromin is able to accelerate the rate of GTP hydrolysis by cellular Ras proteins, its biological function is not well understood. To gain information regarding its function, the intracellular localization of neurofibromin was analyzed in cultured cell lines using polyclonal antisera raised against four neurofibromin-specific peptides, three from the carboxyl terminus and one from the amino terminus. In methanol-fixed cells distinct rod-like structures distributed throughout the cytoplasm were recognized by the antisera. Similar structures were seen with each antiserum, including affinity-purified antibodies, and in each of the cultured cell lines tested. Similar structures were seen in paraformaldehyde-fixed cells. Double staining experiments showed that these structures colocalize with mitochondria, but not with actin, beta-tubulin, or endoplasmic reticulum. When actin or tubulin structures within the cell were disrupted by separate antimitotic drugs, these stained structures retained their shape. Neurofibromin association with mitochondria was confirmed biochemically when highly purified mitochondrial fractions from bovine heart tissue were shown in Western analysis to contain neurofibromin. This association might be helpful in predicting identification of some of the cellular proteins with which neurofibromin interacts.
Collapse
Affiliation(s)
- M Roudebush
- Department of Molecular Biology, Cleveland Clinic Foundation, Ohio 44195-5285, USA
| | | | | | | | | | | |
Collapse
|
132
|
Fisk HA, Yaffe MP. Mutational analysis of Mdm1p function in nuclear and mitochondrial inheritance. J Cell Biol 1997; 138:485-94. [PMID: 9245780 PMCID: PMC2141631 DOI: 10.1083/jcb.138.3.485] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/1997] [Revised: 06/13/1997] [Indexed: 02/04/2023] Open
Abstract
Nuclear and mitochondrial transmission to daughter buds of Saccharomyces cerevisiae depends on Mdm1p, an intermediate filament-like protein localized to numerous punctate structures distributed throughout the yeast cell cytoplasm. These structures disappear and organelle inheritance is disrupted when mdm1 mutant cells are incubated at the restrictive temperature. To characterize further the function of Mdm1p, new mutant mdm1 alleles that confer temperature-sensitive growth and defects in organelle inheritance but produce stable Mdm1p structures were isolated. Microscopic analysis of the new mdm1 mutants revealed three phenotypic classes: Class I mutants showed defects in both mitochondrial and nuclear transmission; Class II alleles displayed defective mitochondrial inheritance but had no effect on nuclear movement; and Class III mutants showed aberrant nuclear inheritance but normal mitochondrial distribution. Class I and II mutants also exhibited altered mitochondrial morphology, possessing primarily small, round mitochondria instead of the extended tubular structures found in wild-type cells. Mutant mdm1 alleles affecting nuclear transmission were of two types: Class Ia and IIIa mutants were deficient for nuclear movement into daughter buds, while Class Ib and IIIb mutants displayed a complete transfer of all nuclear DNA into buds. The mutations defining all three allelic classes mapped to two distinct domains within the Mdm1p protein. Genetic crosses of yeast strains containing different mdm1 alleles revealed complex genetic interactions including intragenic suppression, synthetic phenotypes, and intragenic complementation. These results support a model of Mdm1p function in which a network comprised of multimeric assemblies of the protein mediates two distinct cellular processes.
Collapse
Affiliation(s)
- H A Fisk
- Department of Biology, University of California, San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
133
|
Hermann GJ, King EJ, Shaw JM. The yeast gene, MDM20, is necessary for mitochondrial inheritance and organization of the actin cytoskeleton. J Cell Biol 1997; 137:141-53. [PMID: 9105043 PMCID: PMC2139847 DOI: 10.1083/jcb.137.1.141] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In Saccharomyces cerevisiae, the growing bud inherits a portion of the mitochondrial network from the mother cell soon after it emerges. Although this polarized transport of mitochondria is thought to require functions of the cytoskeleton, there are conflicting reports concerning the nature of the cytoskeletal element involved. Here we report the isolation of a yeast mutant, mdm20, in which both mitochondrial inheritance and actin cables (bundles of actin filaments) are disrupted. The MDM20 gene encodes a 93-kD polypeptide with no homology to other characterized proteins. Extra copies of TPM1, a gene encoding the actin filament-binding protein tropomyosin, suppress mitochondrial inheritance defects and partially restore actin cables in mdm20 delta cells. Synthetic lethality is also observed between mdm20 and tpm1 mutant strains. Overexpression of a second yeast tropomyosin, Tpm2p, rescues mutant phenotypes in the mdm20 strain to a lesser extent. Together, these results provide compelling evidence that mitochondrial inheritance in yeast is an actin-mediated process. MDM20 and TPM1 also exhibit the same pattern of genetic interactions; mutations in MDM20 are synthetically lethal with mutations in BEM2 and MYO2 but not SAC6. Although MDM20 and TPM1 are both required for the formation and/or stabilization of actin cables, mutations in these genes disrupt mitochondrial inheritance and nuclear segregation to different extents. Thus, Mdm20p and Tpm1p may act in vivo to establish molecular and functional heterogeneity of the actin cytoskeleton.
Collapse
Affiliation(s)
- G J Hermann
- Department of Biology, University of Utah, Salt Lake City 84112, USA
| | | | | |
Collapse
|
134
|
Abstract
The problem for the steroidogenic cell if it is to accelerate steroid synthesis in response to trophic stimulation, consists in moving cholesterol from the sites of synthesis and storage to mitochondria at an accelerated rate. The most intensely studied situation is that in which the sterol is stored as ester in lipid droplets. Cholesterol ester must be de-esterified and transported to mitochondria where steroid synthesis begins. Since droplets and mitochondria are now known to be attached to intermediate filaments and since these structures are not contractile, it appears to be necessary to invoke the actions of other cytoskeletal elements. Actin microfilaments are involved in cholesterol transport so that it is tempting to propose that the contractile properties of actomyosin are used in this process. It is known that an energy-dependent contractile process involving actin is capable of disrupting intermediate filaments. Since the intermediate filaments appear to act by keeping lipid droplets and mitochondria apart, disruption of the filaments accompanied by a contractile process would be expected to allow these two structures to come together. This would open the way for the transfer of cholesterol to the steroidogenic pathway. This should be regarded as a first step. The events necessary for entry of cholesterol from droplets into the mitochondria remain to be clarified. In addition, the transport process for newly synthesized cholesterol that is not stored in droplets, is still not understood. At least four protein kinase enzymes have been identified in the cytoskeletons of adrenal cells, namely, Ca2+/calmodulin-dependent kinase, protein kinase (Ca2+ and phospholipid-dependent), myosin light chain kinase, and protein kinase A (cyclic AMP-dependent). The Ca2+/calmodulin kinase promotes transport of cholesterol to mitochondria and does so under conditions in which phosphorylation of vimentin and myosin light chain occurs. Phosphorylation of vimentin results in disruption of intermediate filaments while phosphorylation of light chain promotes contraction of the actomyosin ring. It now appears that intermediate filaments are cross-linked by actin filaments so that such contraction would be expected to produce significant structural changes in the cytoskeleton and the attached organelles. Although the details of the changes taking place in the organ in vivo are not known, the potential for interaction between droplets and mitochondria as the result of these changes in intermediate filaments and actomyosin, is clear. Protein kinase C is activated by ACTH and cyclic AMP, although this activation does not appear to be directly involved in the regulation of steroid synthesis. Nevertheless, vimentin is a substrate for this enzyme, and changes in the organisation of vimentin filaments and the attached organelles under the influence of protein kinase C have been reported in other cells. Presumably these changes represent part of the response to ACTH because when protein kinase C is activated by phorbol ester, the cytoskeletal changes necessary for rounding up take place but such changes are not accompanied by increased steroid synthesis. Protein kinase A causes rounding of adrenal cells. and cytoskeletons. This kinase also causes increased cholesterol transport and, hence, stimulation of steroid synthesis. The enzyme also causes phosphorylation of vimentin but with a different cytoskeletal reorganisation from that seen with the other three kinase enzymes. Clearly phosphorylation plays a major role in these responses. Phosphorylation alters the morphology and the functions of the cytoskeleton and this, in turn, is associated with accelerated cholesterol transport. It is now necessary to define the details of the specific phosphorylation reactions that occur during the response to ACTH, that is, which amino acids are phosphorylated and to what extent by each of the kinase enzymes.
Collapse
Affiliation(s)
- P F Hall
- Department of Endocrinology, Prince of Wales Hospital, Randwick, NSW, Australia
| | | |
Collapse
|
135
|
Pereira AJ, Dalby B, Stewart RJ, Doxsey SJ, Goldstein LS. Mitochondrial association of a plus end-directed microtubule motor expressed during mitosis in Drosophila. J Cell Biol 1997; 136:1081-90. [PMID: 9060472 PMCID: PMC2132485 DOI: 10.1083/jcb.136.5.1081] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/1996] [Revised: 11/12/1996] [Indexed: 02/03/2023] Open
Abstract
The kinesin superfamily is a large group of proteins (kinesin-like proteins [KLPs]) that share sequence similarity with the microtubule (MT) motor kinesin. Several members of this superfamily have been implicated in various stages of mitosis and meiosis. Here we report our studies on KLP67A of Drosophila. DNA sequence analysis of KLP67A predicts an MT motor protein with an amino-terminal motor domain. To prove this directly, KLP67A expressed in Escherichia coli was shown in an in vitro motility assay to move MTs in the plus direction. We also report expression analyses at both the mRNA and protein level, which implicate KLP67A in the localization of mitochondria in undifferentiated cell types. In situ hybridization studies of the KLP67A mRNA during embryogenesis and larval central nervous system development indicate a proliferation-specific expression pattern. Furthermore, when affinity-purified anti-KLP67A antisera are used to stain blastoderm embryos, mitochondria in the region of the spindle asters are labeled. These data suggest that KLP67A is a mitotic motor of Drosophila that may have the unique role of positioning mitochondria near the spindle.
Collapse
Affiliation(s)
- A J Pereira
- Program in Molecular Medicine, University of Massachusetts Medical Center, Worcester 01605, USA
| | | | | | | | | |
Collapse
|
136
|
Schrader M, Burkhardt JK, Baumgart E, Lüers G, Völkl A, Fahimi HD. The importance of microtubules in determination of shape and intracellular distribution of peroxisomes. Ann N Y Acad Sci 1996; 804:669-71. [PMID: 8993588 DOI: 10.1111/j.1749-6632.1996.tb18660.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- M Schrader
- Institute for Anatomy and Cell Biology (II), University of Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
137
|
Abstract
Mechanisms mediating the inheritance of mitochondria are poorly understood, but recent studies with the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe have begun to identify components that facilitate this essential process. These components have been identified through the analysis of conditional yeast mutants that display aberrant mitochondrial distribution at restrictive conditions. The analysis of these mutants has uncovered several novel proteins that are localized either to cytoskeletal structures or to the mitochondria themselves. Many mitochondrial inheritance mutants also show altered mitochondrial morphology and defects in maintenance of the mitochondrial genome. Although some inheritance components and mechanisms appear to function specifically in certain types of cells, other conserved proteins are likely to mediate mitochondrial behavior in all eukaryotic cells.
Collapse
Affiliation(s)
- K H Berger
- Department of Biology, University of California, San Diego, La Jolla 92093-0347, USA
| | | |
Collapse
|
138
|
Yaffe MP, Harata D, Verde F, Eddison M, Toda T, Nurse P. Microtubules mediate mitochondrial distribution in fission yeast. Proc Natl Acad Sci U S A 1996; 93:11664-8. [PMID: 8876193 PMCID: PMC38115 DOI: 10.1073/pnas.93.21.11664] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The Schizosaccharomyces pombe mutant, ban5-4, displays aberrant mitochondrial distribution. Incubation of this conditional-lethal mutant at the nonpermissive temperature led to aggregated mitochondria that were distributed asymmetrically within the cell. Development of this mitochondrial asymmetry but not mitochondrial aggregation required progression through the cell division cycle. Genetic analysis revealed that ban5-4 is an allele of atb2 encoding alpha 2-tubulin. Consistent with this finding, cells with the cold-sensitive nda3 mutation in beta-tubulin displayed aggregated and asymmetrically distributed mitochondria after incubation at lowered temperatures. These results indicate that microtubules mediate mitochondrial distribution in fission yeast and provide the first genetic evidence for the role of microtubules in mitochondrial movement.
Collapse
Affiliation(s)
- M P Yaffe
- Department of Biology, University of California at San Diego, La Jolla 92093, USA
| | | | | | | | | | | |
Collapse
|
139
|
Evtodienko YV, Teplova VV, Sidash SS, Ichas F, Mazat JP. Microtubule-active drugs suppress the closure of the permeability transition pore in tumour mitochondria. FEBS Lett 1996; 393:86-8. [PMID: 8804430 DOI: 10.1016/0014-5793(96)00875-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We report the effects of anticancer drugs, inhibitors of microtubule organisation, on the mitochondrial permeability transition pore (PTP) in Ehrlich ascites tumour cells. Taxol (5-20 microM) and colchicine (100-500 microM) prevented closing of the cyclosporin A-sensitive PTP. No taxol or colchicine effects on oxidative phosphorylation were observed in the range of concentrations used. We suggest that either membrane-bound tubulin per se can be part of PTP and/or the attachment of mitochondria to the microtubular network is essential for PTP regulation. The taxol inhibition of PTP closure, mediated through interaction with the cytoskeleton, sheds new light on the cytotoxic properties of this anticancer drug.
Collapse
Affiliation(s)
- Y V Evtodienko
- Institute of Theoretical and Experimental Biophysics, Pushchino, Russian Federation
| | | | | | | | | |
Collapse
|
140
|
Odgren PR, Toukatly G, Bangs PL, Gilmore R, Fey EG. Molecular characterization of mitofilin (HMP), a mitochondria-associated protein with predicted coiled coil and intermembrane space targeting domains. J Cell Sci 1996; 109 ( Pt 9):2253-64. [PMID: 8886976 DOI: 10.1242/jcs.109.9.2253] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have identified and characterized a human protein of the mitochondria which we call mitofilin. Using monoclonal and polyclonal antibodies, we have isolated cDNA clones and characterized mitofilin biochemically. It appears as a 90 and 91 kDa doublet in western blots and is translated from a single 2.7 kb mRNA. Antibodies raised against cellular and bacterially-expressed protein given identical cytoplasmic immunofluorescence and immunoblot results. Mitofilin co-localizes with mitochondria in immunofluorescence experiments and co-purifies with mitochondria. Double label studies show co-localization only with mitochondria and not with Golgi or endoplasmic reticulum. Co-localization with mitochondria is retained when actin or tubulin are de-polymerized, and mitofilin is expressed in all human cell types tested. The cDNA encodes a polypeptide with a central alpha-helical region with predicted coiled coil domains flanked by globular amino and carboxy termini. Unlike coiled coil motor proteins, mitofilin is resistant to detergent extraction. The presence of mitochondrial targeting and stop-transfer sequences, along with the accessibility of mitofilin to limited proteolysis suggests that it resides predominantly in the intermembrane space, consistent with immuno-electron micrographs which show mitofilin mainly at the mitochondrial periphery. The cDNA sequence of mitofilin is identical to that recently reported by Icho et al. (1994; Gene 144, 301–306) for a mRNA preferentially expressed in heart muscle (HMP), consistent with the high levels of mitochondria in cardiac myocytes.
Collapse
Affiliation(s)
- P R Odgren
- Department of Cell Biology, University of Massachusetts Medical School, North Worcester, USA
| | | | | | | | | |
Collapse
|
141
|
Pelham RJ, Lin JJ, Wang YL. A high molecular mass non-muscle tropomyosin isoform stimulates retrograde organelle transport. J Cell Sci 1996; 109 ( Pt 5):981-9. [PMID: 8743945 DOI: 10.1242/jcs.109.5.981] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Although non-muscle tropomyosins (TM) have been implicated in various cellular functions, such as stabilization of actin filaments and possibly regulation of organelle transport, their physiological role is still poorly understood. We have probed the role of a high molecular mass isoform of human fibroblast TM, hTM3, in regulating organelle transport by microinjecting an excess amount of bacterially-expressed protein into normal rat kidney (NRK) epithelial cells. The microinjection induced the dramatic retrograde translocation of organelles into the perinuclear area. Microinjection of hTM5, a low molecular mass isoform had no effect on organelle distribution. Fluorescent staining indicated that hTM3 injection stimulated the retrograde movement of both mitochondria and lysosomes. Moreover, both myosin I and cytoplasmic dynein were found to redistribute with the translocated organelles to the perinuclear area, indicating that these organelles were able to move along both microtubules and actin filaments. The involvement of microtubules was further suggested by the partial inhibition of hTM3-induced organelle movement by the microtubule-depolymerizing drug nocodazole. Our results, along with previous genetic and antibody microinjection studies, suggest that hTM3 may be involved in the regulation of organelle transport.
Collapse
Affiliation(s)
- R J Pelham
- Cell Biology Group, Worcester Foundation for Biomedical Research, Shrewsbury, MA 01545, USA
| | | | | |
Collapse
|
142
|
Georgatos SD, Maison C. Integration of intermediate filaments into cellular organelles. INTERNATIONAL REVIEW OF CYTOLOGY 1996; 164:91-138. [PMID: 8575894 DOI: 10.1016/s0074-7696(08)62385-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The intermediate filaments represent core components of the cytoskeleton and are known to interact with several membranous organelles. Classic examples of this are the attachment of keratin filaments to the desmosomes and the association of the lamin filament meshwork with the inner nuclear membrane. At this point, the molecular mechanisms by which the filaments link to membranes are not clearly understood. However, since a substantial body of information has been amassed, the time is now ripe for comparing notes and formulating working hypotheses. With this objective in mind, we review here pioneering studies on this subject, together with work that has appeared more recently in the literature.
Collapse
Affiliation(s)
- S D Georgatos
- Program of Cell Biology, European Molecular Biology Laboratory, Germany
| | | |
Collapse
|
143
|
Interaction between neurofilaments and mitochondria in cultured cells of the rat hippocampus. NEUROPHYSIOLOGY+ 1996. [DOI: 10.1007/bf01054559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
144
|
Gurland G, Gundersen GG. Stable, detyrosinated microtubules function to localize vimentin intermediate filaments in fibroblasts. J Cell Biol 1995; 131:1275-90. [PMID: 8522589 PMCID: PMC2120637 DOI: 10.1083/jcb.131.5.1275] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Separate populations of microtubules (MTs) distinguishable by their level of posttranslationally modified tubulin subunits and by their stability in vivo have been described. In polarized 3T3 cells at the edge of an in vitro wound, we have found a striking preferential coalignment of vimentin intermediate filaments (IFs) with detyrosinated MTs (Glu MTs) rather than with the bulk of the MTs, which were tyrosinated MTs (Tyr MTs). Vimentin IFs were not stabilizing the Glu MTs since collapse of the IF network to a perinuclear location, induced by microinjection of monoclonal anti-IF antibody, had no noticeable effect on the array of Glu MTs. To test whether Glu MTs may affect the organization of IFs we regrew MTs in cells that had been treated with nocodazole to depolymerize all the MTs and to collapse IFs; the reextension of IFs into the lamella lagged behind the rapid regrowth of Tyr MTs, but was correlated with the slower reformation of Glu MTs. Similar realignment of IFs with newly formed Glu MTs was observed in serum-starved cells treated with either serum or taxol to induce the formation of Glu MTs. Next, we microinjected affinity purified antibodies specific for Glu tubulin (polyclonal SG and monoclonal 4B8) and specific for Tyr tubulin (polyclonal W2 and monoclonal YL1/2) into 3T3 cells. Both injected SG and 4B8 antibodies labeled the subset of endogenous Glu MTs; W2 and YL1/2 antibodies labeled virtually all of the cytoplasmic MTs. Injection of SG or 4B8 resulted in the collapse of IFs to a perinuclear region. This collapse was comparable to that observed after complete MT depolymerization by nocodazole. Injection of W2, YL1/2, or nonspecific control IgGs did not result in collapse of the IFs. Taken together, these results show that Glu MTs localize IFs in migrating 3T3 fibroblasts and suggest that detyrosination of tubulin acts as a signal for the recruitment of vimentin IFs to MTs.
Collapse
Affiliation(s)
- G Gurland
- Department of Pathology, Columbia University, College of Physicians and Surgeons, New York 10032, USA
| | | |
Collapse
|
145
|
Naumann M, Reiners K, Gold R, Schindler R, Paulus W, Klopstock T, Reichmann H. Mitochondrial dysfunction in adult-onset myopathies with structural abnormalities. Acta Neuropathol 1995; 89:152-7. [PMID: 7732787 DOI: 10.1007/bf00296359] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Three patients with chronic progressive external ophthalmoplegia of adult-onset, generalized muscle atrophy and myalgia are described. Two patients fulfilled the histological criteria for centronuclear myopathy, the third those for fiber-type disproportion. Additionally, typical ragged red fibers were found in all muscle specimens, and several muscle fibers were cytochrome c oxidase negative. NADH and succinate dehydrogenase stains showed increased subsarcolemmal accumulation of mitochondria. To determine whether these findings are coincidental or whether they indicated an additional mitochondrial disorder, all patients were investigated using biochemical analysis of the respiratory chain, molecular genetics, magnetic resonance spectroscopy of quadriceps muscle and ergometry. These tests suggested an additional mitochondrial dysfunction. Mitochondrial dysfunction seems to be more common in this group of myopathies than previously estimated, and may be of importance in the pathogenesis of these disorders.
Collapse
Affiliation(s)
- M Naumann
- Department of Neurology, University of Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
146
|
SUZUKI HIROHUMI, KONDO AKIO. Changes in the shapes of cells during formation of the germ disk in the theridiid spider Enoplognatha transversifoveata(Bös. etStr.). INVERTEBR REPROD DEV 1994. [DOI: 10.1080/07924259.1994.9672415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
147
|
Burgess SM, Delannoy M, Jensen RE. MMM1 encodes a mitochondrial outer membrane protein essential for establishing and maintaining the structure of yeast mitochondria. J Cell Biol 1994; 126:1375-91. [PMID: 8089172 PMCID: PMC2290956 DOI: 10.1083/jcb.126.6.1375] [Citation(s) in RCA: 199] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In the yeast Saccharomyces cerevisiae, mitochondria are elongated organelles which form a reticulum around the cell periphery. To determine the mechanism by which mitochondrial shape is established and maintained, we screened yeast mutants for those defective in mitochondrial morphology. One of these mutants, mmm1, is temperature-sensitive for the external shape of its mitochondria. At the restrictive temperature, elongated mitochondria appear to quickly collapse into large, spherical organelles. Upon return to the permissive temperature, wild-type mitochondrial structure is restored. The morphology of other cellular organelles is not affected in mmm1 mutants, and mmm1 does not disrupt normal actin or tubulin organization. Cells disrupted in the MMM1 gene are inviable when grown on nonfermentable carbon sources and show abnormal mitochondrial morphology at all temperatures. The lethality of mmm1 mutants appears to result from the inability to segregate the aberrant-shaped mitochondria into daughter cells. Mitochondrial structure is therefore important for normal cell function. Mmm1p is located in the mitochondrial outer membrane, with a large carboxyl-terminal domain facing the cytosol. We propose that Mmm1p maintains mitochondria in an elongated shape by attaching the mitochondrion to an external framework, such as the cytoskeleton.
Collapse
Affiliation(s)
- S M Burgess
- Department of Cell Biology and Anatomy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | | |
Collapse
|
148
|
Sogo LF, Yaffe MP. Regulation of mitochondrial morphology and inheritance by Mdm10p, a protein of the mitochondrial outer membrane. J Biophys Biochem Cytol 1994; 126:1361-73. [PMID: 8089171 PMCID: PMC2290945 DOI: 10.1083/jcb.126.6.1361] [Citation(s) in RCA: 232] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Yeast cells with the mdm10 mutation possess giant spherical mitochondria and are defective for mitochondrial inheritance. The giant mitochondria display classical features of mitochondrial ultrastructure, yet they appear incapable of movement or division. Genetic analysis indicated that the mutant phenotypes resulted from a single nuclear mutation, and the isolated MDM10 gene restored wild-type mitochondrial distribution and morphology when introduced into mutant cells. MDM10 encodes a protein of 56.2 kD located in the mitochondrial outer membrane. Depletion of Mdm10p from cells led to a condensation of normally extended, tubular mitochondria into giant spheres, and reexpression of the protein resulted in a rapid restoration of normal mitochondrial morphology. These results demonstrate that Mdm10p can control mitochondrial morphology, and that it plays a role in the inheritance of mitochondria.
Collapse
Affiliation(s)
- L F Sogo
- Department of Biology, University of California, San Diego, La Jolla 92093-0347
| | | |
Collapse
|
149
|
Mizuno M, Singer SJ. A possible role for stable microtubules in intracellular transport from the endoplasmic reticulum to the Golgi apparatus. J Cell Sci 1994; 107 ( Pt 5):1321-31. [PMID: 7929638 DOI: 10.1242/jcs.107.5.1321] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intracellular transport of secretory proteins involves at an early stage the formation of vesicles from transitional elements of the endoplasmic reticulum (ER) containing these proteins and the transfer of these vesicles to the cis-face of the Golgi apparatus. We propose that the latter transfer process does not occur by random diffusion, but is instead mediated by tracking along stable microtubules. To test this proposal, we have carried out double immunoelectron microscopic labeling experiments on frozen sections of HepG2 hepatoma cells secreting the protein human serum albumin (HSA). By a cycloheximide treatment protocol, the stage during which the transfer of newly synthesized HSA from the ER to the Golgi apparatus occurs in vivo was determined. Sections of the cells were then double immunolabeled using primary antibodies to HSA and to glu-tubulin, the latter specifically detecting stable microtubules. We observed a significantly high frequency of HSA-containing structures between the ER and the Golgi apparatus with which stable microtubules were closely associated. These results support the proposal that stable microtubules may play a critical role in directing the transfer process from the ER to the Golgi apparatus.
Collapse
Affiliation(s)
- M Mizuno
- Department of Biology, University of California at San Diego, La Jolla 92037
| | | |
Collapse
|
150
|
Bereiter-Hahn J, Vöth M. Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria. Microsc Res Tech 1994; 27:198-219. [PMID: 8204911 DOI: 10.1002/jemt.1070270303] [Citation(s) in RCA: 617] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Mitochondria are semi-autonomous organelles which are endowed with the ability to change their shape (e.g., by elongation, shortening, branching, buckling, swelling) and their location inside a living cell. In addition they may fuse or divide. These dynamics are discussed. Dislocation of mitochondria may result from their interaction with elements of the cytoskeleton, with microtubules in particular, and from processes intrinsic to the mitochondria themselves. Morphological criteria and differences in the fate of some mitochondria argue for the presence of more than one mitochondrial population in some animal cells. Whether these reflect genetic differences remains obscure. Emphasis is laid on the methods for visualizing mitochondria in cells and following their behaviour. Fluorescence methods provide unique possibilities because of their high resolving power and because some of the mitochondria-specific fluorochromes can be used to reveal the membrane potential. Fusion and fission often occur in short time intervals within the same group of mitochondria. At sites of fusion of two mitochondria material of the inner membrane, the matrix compartment seems to accumulate. The original arrangement of the fusion partners is maintained for some minutes. Fission is a dynamic event which, like fusion, in most cases observed in vertebrate cell cultures is not a straight forward process but rather requires several "trials" until the division finally occurs. Regarding fusion and fission hitherto unpublished phase contrast micrographs, and electron micrographs have been included.
Collapse
Affiliation(s)
- J Bereiter-Hahn
- Cinematic Cell Research Group, Johann Wolfgang Goethe Universität, Frankfurt am Main, Germany
| | | |
Collapse
|