101
|
Waldegger S, Barth P, Raber G, Lang F. Cloning and characterization of a putative human serine/threonine protein kinase transcriptionally modified during anisotonic and isotonic alterations of cell volume. Proc Natl Acad Sci U S A 1997; 94:4440-5. [PMID: 9114008 PMCID: PMC20741 DOI: 10.1073/pnas.94.9.4440] [Citation(s) in RCA: 274] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Hepatic metabolism and gene expression are among other regulatory mechanisms controlled by the cellular hydration state, which changes rapidly in response to anisotonicity, concentrative substrate uptake, oxidative stress, and under the influence of hormones such as insulin and glucagon. Differential screening for cell volume sensitive transcripts in a human hepatoma cell line revealed a gene for a putative serine/threonine kinase, h-sgk, which has 98% sequence identity to a serum- and glucocorticoid regulated kinase, sgk, cloned from a rat mammary tumor cell line. h-sgk transcript levels were strongly altered during anisotonic and isotonic cell volume changes. Within 30 min h-sgk RNA was, independent of de novo protein synthesis, induced upon cell shrinkage and, due to a complete stop in h-sgk transcription, reduced upon cell swelling. Comparable changes of sgk transcript levels were observed in a renal epithelial cell line. h-sgk mRNA was detected in all human tissues tested, with the highest levels in pancreas, liver, and heart. The putative serine/threonine protein kinase h-sgk may provide a functional link between the cellular hydration state and metabolic control.
Collapse
Affiliation(s)
- S Waldegger
- Physiologisches Institut I der Eberhard-Karls-Universität, D-72076 Tübingen, Germany
| | | | | | | |
Collapse
|
102
|
Uchiumi T, Longo DL, Ferris DK. Cell cycle regulation of the human polo-like kinase (PLK) promoter. J Biol Chem 1997; 272:9166-74. [PMID: 9083047 DOI: 10.1074/jbc.272.14.9166] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Plk (polo-like kinase) is a serine-threonine kinase that appears to function in mitotic control in mammalian cells. We demonstrated previously that PLK mRNA expression is low at the G1-S transition, increases during S phase, and is maximally expressed during G2-M. In the present study, we have cloned the human PLK gene and analyzed the structure and function of 2 kilobases of its 5'-flanking region. Using synchronized cultures of HeLa cells transfected with PLK promoter/luciferase constructs, we show that the promoter of PLK is activated at S phase and is maximal at G2-M phase. Using various PLK promoter/luciferase constructs, we show that three activating regions are located between 35 and 93 base pairs upstream of the transcription initiation site. We identified a repressor element (CDE/CHR) in the region of the transcription start site, and mutations within this element diminished cell cycle regulation of transcription.
Collapse
Affiliation(s)
- T Uchiumi
- Laboratory of Leukocyte Biology, Division of Cancer Treatment, National Cancer Institute, Frederick Cancer Research and Development Center, Frederick, Maryland 21702-1201, USA
| | | | | |
Collapse
|
103
|
Glover DM, Ohkura H, Tavares A. Polo kinase: the choreographer of the mitotic stage? J Biophys Biochem Cytol 1996; 135:1681-4. [PMID: 8991082 PMCID: PMC2133943 DOI: 10.1083/jcb.135.6.1681] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- D M Glover
- Department of Anatomy & Physiology, University of Dundee, Scotland
| | | | | |
Collapse
|
104
|
Lane HA, Nigg EA. Antibody microinjection reveals an essential role for human polo-like kinase 1 (Plk1) in the functional maturation of mitotic centrosomes. J Cell Biol 1996; 135:1701-13. [PMID: 8991084 PMCID: PMC2133970 DOI: 10.1083/jcb.135.6.1701] [Citation(s) in RCA: 549] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Mammalian polo-like kinase 1 (Plk1) is structurally related to the polo gene product of Drosophila melanogaster, Cdc5p of Saccharomyces cerevisiae, and plo1+ of Schizosaccharomyces pombe, a newly emerging family of serine-threonine kinases implicated in cell cycle regulation. Based on data obtained for its putative homologues in invertebrates and yeasts, human Plk1 is suspected to regulate some fundamental aspect(s) of mitosis, but no direct experimental evidence in support of this hypothesis has previously been reported. In this study, we have used a cell duplication, microinjection assay to investigate the in vivo function of Plk1 in both immortalized (HeLa) and nonimmortalized (Hs68) human cells. Injection of anti-Plk1 antibodies (Plk1+) at various stages of the cell cycle had no effect on the kinetics of DNA replication but severely impaired the ability of cells to divide. Analysis of Plk1(+)-injected, mitotically arrested HeLa cells by fluorescence microscopy revealed abnormal distributions of condensed chromatin and monoastral microtubule arrays that were nucleated from duplicated but unseparated centrosomes. Most strikingly, centrosomes in Plk1(+)-injected cells were drastically reduced in size, and the accumulation of both gamma-tubulin and MPM-2 immunoreactivity was impaired. These data indicate that Plk1 activity is necessary for the functional maturation of centrosomes in late G2/early prophase and, consequently, for the establishment of a bipolar spindle. Additional roles for Plk1 at later stages of mitosis are not excluded, although injection of Plk1+ after the completion of spindle formation did not interfere with cytokinesis. Injection of Plk1+ into nonimmortalized Hs68 cells produced qualitatively similar phenotypes, but the vast majority of the injected Hs68 cells arrested as single, mononucleated cells in G2. This latter observation hints at the existence, in nonimmortalized cells, of a centrosome-maturation checkpoint sensitive to the impairment of Plk1 function.
Collapse
Affiliation(s)
- H A Lane
- Swiss Institute for Experimental Cancer Research (ISREC), CH-1066 Epalinges, Switzerland
| | | |
Collapse
|
105
|
Tavares AA, Glover DM, Sunkel CE. The conserved mitotic kinase polo is regulated by phosphorylation and has preferred microtubule-associated substrates in Drosophila embryo extracts. EMBO J 1996; 15:4873-83. [PMID: 8890161 PMCID: PMC452225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The Drosophila gene polo encodes a protein kinase required for progression through mitosis. Wild-type polo protein migrates as a tight doublet of 67 kDa which is converted to a single band by phosphatase treatment, which also inactivates the kinase. We have determined putative polo substrates in a cell-free system derived from mutant embryos. Exogenous polo protein kinase phosphorylates proteins of sizes 220 kDa, 85 kDa and 54 kDa, to a greater extent when added to extracts of polo(1)-derived embryos compared with extracts of wild-type embryos, which in both cases have been subject to mild heat treatment to inactivate endogenous kinases. Proteins of the same size are predominantly phosphorylated by the endogenous kinases present in wild-type extracts, and are either not phosphorylated or are poorly phosphorylated in extracts of polo(1)-derived embryos. We show that a specific monoclonal antibody to beta-tubulin precipitates the phosphorylated 54 kDa protein together with an associated 85 kDa protein also phosphorylated by polo protein kinase. Moreover polo binds to an 85 kDa protein which is enriched in microtubule preparations. We discuss the extent to which these in vitro phosphorylation results reflect the effects of mutations in polo on microtubule behaviour during the mitotic cycle.
Collapse
Affiliation(s)
- A A Tavares
- Cancer Research Campaign Cell Cycle Genetics Group, Department of Anatomy and Physiology, Medical Science Institute, The University of Dundee, UK
| | | | | |
Collapse
|
106
|
Fode C, Binkert C, Dennis JW. Constitutive expression of murine Sak-a suppresses cell growth and induces multinucleation. Mol Cell Biol 1996; 16:4665-72. [PMID: 8756623 PMCID: PMC231466 DOI: 10.1128/mcb.16.9.4665] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The murine Sak gene encodes two isoforms of a putative serine/threonine kinase, Sak-a and Sak-b, with a common N-terminal kinase domain and different C-terminal sequences. Sak is expressed primarily at sites where cell division is most active in adult and embryonic tissues (C. Fode, B. Motro, S. Youseli, M. Heffernan, and J. W. Dennis, Proc. Natl. Acad. Sci. USA 91:6388-6392, 1994). In this study, we found that Sak-a transcripts were absent in growth-arrested NIH 3T3 cells, while in cycling cells, mRNA levels increased late in G1 phase and remained elevated through S phase and mitosis before declining early in G1. The half-life of hemagglutinin epitope-tagged Sak-a protein was determined to be approximately 2 to 3 h, and the protein was observed to be multiubiquitinated, a signal for rapid protein degradation. Overexpression of Sak-a protein inhibited colony-forming efficiency in CHO cells. Neither the Sak-b isoform nor Sak-a with a mutation in a strictly conserved residue in the kinase domain (Asp-154-->Asn) conferred growth inhibition, suggesting that both the kinase domain and the C-terminal portion of Sak-a are functional regions of the protein. Sak-a overexpression did not induce a block in the cell cycle. However, expression of HA-Sak-a, but not HA-Sak-b, from a constitutive promoter for 48 h in CHO cells increased the incidence of multinucleated cells. Our results show that Sak-a transcript levels are controlled in a cell cycle-dependent manner and that this precise regulation is necessary for cell growth and the maintenance of nuclear integrity during cell division.
Collapse
Affiliation(s)
- C Fode
- Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | | | | |
Collapse
|
107
|
Li B, Ouyang B, Pan H, Reissmann PT, Slamon DJ, Arceci R, Lu L, Dai W. Prk, a cytokine-inducible human protein serine/threonine kinase whose expression appears to be down-regulated in lung carcinomas. J Biol Chem 1996; 271:19402-8. [PMID: 8702627 DOI: 10.1074/jbc.271.32.19402] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have cloned and characterized a putative protein serine/threonine kinase termed prk through a combination of polymerase chain reaction and conventional cDNA library screening approaches. There are apparently two distinct domains within prk protein deduced from its nucleotide sequences. The amino-terminal portion has the feature of the catalytic domain of a serine/threonine kinase and shows strong homology to mouse fnk and other polo family kinases including mouse snk, human and murine plk, Drosophila polo, and yeast Cdc5. The carboxyl-terminal portion, presumably the regulatory domain, shares extensive homology to mouse fnk. Northern blotting analyses reveal that prk expression is restricted to a very limited number of tissues with placenta, ovaries, and lung containing detectable amounts of prk mRNA. prk mRNA expression is also detected at a low level in the megakaryocytic cell line Dami, MO7e, and three brain glioma cell lines. In addition, refeeding of serum-deprived MO7e, Dami, and K562 cells of hematopoietic origin and GMOO637D of lung fibroblasts rapidly activates prk mRNA expression with its peak induction around 2 h after serum addition. prk gene activation by the serum requires no new protein synthesis. The recombinant cytokines such as interleukin-3 and thrombopoietin also activate prk mRNA expression in MO7e cells. Furthermore, a survey of RNAs isolated from the tumor and the uninvolved tissues from 18 lung cancer patients reveals that prk mRNA expression is significantly down-regulated in tumor tissues. Southern blotting analysis indicates that the prk gene is present in a single copy in the genome of tumors and normal cells. Taken together, these results suggest that prk expression may be restricted to proliferating cells and involved in the regulation of cell cycle progression. The molecular cloning of prk cDNA will facilitate the study of its biological role as well as its potential role in tumorigenesis.
Collapse
Affiliation(s)
- B Li
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Maiyar AC, Huang AJ, Phu PT, Cha HH, Firestone GL. p53 stimulates promoter activity of the sgk. serum/glucocorticoid-inducible serine/threonine protein kinase gene in rodent mammary epithelial cells. J Biol Chem 1996; 271:12414-22. [PMID: 8647846 DOI: 10.1074/jbc.271.21.12414] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
sgk is a novel member of the serine/threonine protein kinase gene family that is transcriptionally regulated by serum and glucocorticoids in mammary epithelial cells. To functionally determine if the sgk promoter is regulated by the p53 tumor suppressor protein in mammary cells, a series of sgk promoter fragments with 5'-deletions were linked to the bacterial chloramphenicol acetyltransferase gene (sgk-CAT) and transiently co-transfected into nontumorigenic NMuMG or transformed Con8Hd6 mammary epithelial cells with p53 expression plasmids. Wild-type p53, but not mutant p53, strongly stimulated sgk promoter activity in both mammary epithelial cell lines. These effects were mediated by specific regions within the sgk promoter containing p53 DNA-binding sites. The sgk p53 sequence at-1380 to-1345 (site IV) was sufficient to confer p53-dependent transactivation to a heterologous promoter, and p53 was capable of binding to this sequence in vitro as assessed by gel shift analysis. In the nontumorigenic NMuMG epithelial cell line, cotransfection of wild-type p53 strongly stimulated the activities of both the sgk promoter and the well characterized p53-responsive p21/Waf1 promoter, whereas in Rat-2 fibroblasts, wild-type p53 repressed the basal activities of both promoters, revealing that sgk and p21/Waf1 are similarly regulated in a cell type-specific manner. Taken together, these results demonstrate that sgk is a new transcriptional target of p53 in mammary epithelial cells and represent the first example of a hormone-regulated protein kinase gene with a functionally defined p53 promoter recognition element.
Collapse
Affiliation(s)
- A C Maiyar
- Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | | | | | | | |
Collapse
|
109
|
Lee KS, Yuan YL, Kuriyama R, Erikson RL. Plk is an M-phase-specific protein kinase and interacts with a kinesin-like protein, CHO1/MKLP-1. Mol Cell Biol 1995; 15:7143-51. [PMID: 8524282 PMCID: PMC230970 DOI: 10.1128/mcb.15.12.7143] [Citation(s) in RCA: 216] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
PLK (STPK13) encodes a murine protein kinase closely related to those encoded by the Drosophila melanogaster polo gene and the Saccharomyces cerevisiae CDC5 gene, which are required for normal mitotic and meiotic divisions. Affinity-purified antibody generated against the C-terminal 13 amino acids of Plk specifically recognizes a single polypeptide of 66 kDa in MELC, NIH 3T3, and HeLa cellular extracts. The expression levels of both poly(A)+ PLK mRNA and its encoded protein are most abundant about 17 h after serum stimulation of NIH 3T3 cells. Plk protein begins to accumulate at the S/G2 boundary and reaches the maximum level at the G2/M boundary in continuously cycling cells. Concurrent with cyclin B-associated cdc2 kinase activity, Plk kinase activity sharply peaks at the onset of mitosis. Plk enzymatic activity gradually decreases as M phase proceeds but persists longer than cyclin B-associated cdc2 kinase activity. Plk is localized to the area surrounding the chromosomes in prometaphase, appears condensed as several discrete bands along the spindle axis at the interzone in anaphase, and finally concentrates at the midbody during telophase and cytokinesis. Plk and CHO1/mitotic kinesin-like protein 1 (MKLP-1), which induces microtubule bundling and antiparallel movement in vitro, are colocalized during late M phase. In addition, CHO1/MKLP-1 appears to interact with Plk in vivo and to be phosphorylated by Plk-associated kinase activity in vitro.
Collapse
Affiliation(s)
- K S Lee
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | |
Collapse
|
110
|
Hamanaka R, Smith MR, O'Connor PM, Maloid S, Mihalic K, Spivak JL, Longo DL, Ferris DK. Polo-like kinase is a cell cycle-regulated kinase activated during mitosis. J Biol Chem 1995; 270:21086-91. [PMID: 7673138 DOI: 10.1074/jbc.270.36.21086] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Previously, we demonstrated that expression of polo-like kinase (PLK) is required for cellular DNA synthesis and that overexpression of PLK is sufficient to induce DNA synthesis. We now report that the endogenous levels of PLK, its phosphorylation status, and protein kinase activity are tightly regulated during cell cycle progression. PLK protein is low in G1, accumulates during S and G2M, and is rapidly reduced after mitosis. During mitosis, PLK is phosphorylated on serine, and its serine threonine kinase function is activated at a time close to that of p34cdc2. The phosphorylated form of PLK migrates with reduced mobility on SDS-polyacrylamide gel electrophoresis, and dephosphorylation by purified protein phosphatase 2A converts it to the more rapidly migrating form and reduces the total amount of PLK kinase activity. Purified p34cdc2-cyclin B complex can phosphorylate PLK protein in vitro but causes little increase in PLK kinase activity.
Collapse
Affiliation(s)
- R Hamanaka
- Laboratory of Leukocyte Biology, National Cancer Institute-Frederick Cancer Research and Development Center, Maryland 21702-1201, USA
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Matsubara N, Yanagisawa M, Nishimune Y, Obinata M, Matsui Y. Murine polo like kinase 1 gene is expressed in meiotic testicular germ cells and oocytes. Mol Reprod Dev 1995; 41:407-15. [PMID: 7576608 DOI: 10.1002/mrd.1080410403] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To identify key molecules that regulate germ cell proliferation and differentiation, we have attempted to isolate protein kinase genes preferentially expressed in germ line cells. One such cDNA cloned from murine embryonic germ(EG) cells encodes a nonreceptor type serine/threonine kinase and is predominantly expressed in the testis, ovary, and spleen of adult mouse. The nucleotide sequence of the entire coding regions shows that this clone, designated Plk1(polo like kinase 1), is identical with STPK13 previously cloned from murine erythro-leukemia cells. The protein encoded by Plk1 is closely related to the product of Drosophila polo that plays a role in mitosis and meiosis. To define the role of Plk1 in germ cell development, we have examined its expression in murine gonads by in situ hybridization. Here we show that the Plk1 gene is specifically expressed in spermatocytes of diplotene and diakinesis stage, in secondary spermatocytes, and in round spermatids in testes. It is also expressed in growing oocytes and ovulated eggs. The pattern of expression of the Plk1 gene suggests that the gene product is involved in completion of meiotic division, and like the Drosophila polo protein, is a maternal factor active in embryos at the early cleavage stage.
Collapse
Affiliation(s)
- N Matsubara
- Department of Cell Biology, Tohoku University, Sendai, Japan
| | | | | | | | | |
Collapse
|
112
|
Golsteyn RM, Mundt KE, Fry AM, Nigg EA. Cell cycle regulation of the activity and subcellular localization of Plk1, a human protein kinase implicated in mitotic spindle function. J Cell Biol 1995; 129:1617-28. [PMID: 7790358 PMCID: PMC2291169 DOI: 10.1083/jcb.129.6.1617] [Citation(s) in RCA: 370] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Correct assembly and function of the mitotic spindle during cell division is essential for the accurate partitioning of the duplicated genome to daughter cells. Protein phosphorylation has long been implicated in controlling spindle function and chromosome segregation, and genetic studies have identified several protein kinases and phosphatases that are likely to regulate these processes. In particular, mutations in the serine/threonine-specific Drosophila kinase polo, and the structurally related kinase Cdc5p of Saccharomyces cerevisae, result in abnormal mitotic and meiotic divisions. Here, we describe a detailed analysis of the cell cycle-dependent activity and subcellular localization of Plk1, a recently identified human protein kinase with extensive sequence similarity to both Drosophila polo and S. cerevisiae Cdc5p. With the aid of recombinant baculoviruses, we have established a reliable in vitro assay for Plk1 kinase activity. We show that the activity of human Plk1 is cell cycle regulated, Plk1 activity being low during interphase but high during mitosis. We further show, by immunofluorescent confocal laser scanning microscopy, that human Plk1 binds to components of the mitotic spindle at all stages of mitosis, but undergoes a striking redistribution as cells progress from metaphase to anaphase. Specifically, Plk1 associates with spindle poles up to metaphase, but relocalizes to the equatorial plane, where spindle microtubules overlap (the midzone), as cells go through anaphase. These results indicate that the association of Plk1 with the spindle is highly dynamic and that Plk1 may function at multiple stages of mitotic progression. Taken together, our data strengthen the notion that human Plk1 may represent a functional homolog of polo and Cdc5p, and they suggest that this kinase plays an important role in the dynamic function of the mitotic spindle during chromosome segregation.
Collapse
Affiliation(s)
- R M Golsteyn
- Swiss Institute for Experimental Cancer Research (ISREC), Epalinges
| | | | | | | |
Collapse
|
113
|
Ohkura H, Hagan IM, Glover DM. The conserved Schizosaccharomyces pombe kinase plo1, required to form a bipolar spindle, the actin ring, and septum, can drive septum formation in G1 and G2 cells. Genes Dev 1995; 9:1059-73. [PMID: 7744248 DOI: 10.1101/gad.9.9.1059] [Citation(s) in RCA: 307] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have identified a Schizosaccharomyces pombe gene with homology to the budding yeast gene CDC5, the Drosophila gene polo, and the mammalian family of genes encoding polo-like kinases. Disruption of this gene, plo1+, indicates that it is essential. Loss of plo1+ function leads to a mitotic arrest in which condensed chromosomes are associated with a monopolar spindle or to the failure of septation following the completion of nuclear division. In the latter case, cells show a failure both in the formation of an F-actin ring and in the deposition of septal material, suggesting that plo1+ function is required high in the regulatory cascade that controls septation. The overexpression of plo1+ in wild-type cells also results in the formation of monopolar spindles but also induces the formation of multiple septa without nuclear division. Septation can also be induced in the absence of mitotic commitment and concomitant spindle formation by the overexpression of plo1+ in cdc25-22 or cdc2-33 cells arrested in G2; in G1 cells arrested at Start by the cdc10-V50 mutation, or in cells lacking the cyclin B homolog cdc13 that undergo repeated S phases in the absence of mitosis.
Collapse
Affiliation(s)
- H Ohkura
- Department of Anatomy and Physiology, University of Dundee, UK
| | | | | |
Collapse
|
114
|
Donohue PJ, Alberts GF, Guo Y, Winkles JA. Identification by targeted differential display of an immediate early gene encoding a putative serine/threonine kinase. J Biol Chem 1995; 270:10351-7. [PMID: 7730342 DOI: 10.1074/jbc.270.17.10351] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Fibroblast growth factor (FGF)-1 mitogenic signal transduction is mediated in part by gene products that are specifically expressed in response to cell surface receptor binding and activation. We have used a targeted differential display method to identify FGF-1-inducible genes in murine NIH 3T3 fibroblasts. Here we report that one of these genes is predicted to encode a novel serine/threonine-specific protein kinase. This putative kinase has been named Fnk, for FGF-inducible kinase. The deduced Fnk amino acid sequence has 49, 36, 33, 32, and 22% overall identity to mouse serum-inducible kinase (Snk), mouse polo-like kinase (Plk), Drosophila polo, Saccharomyces Cdc5, and mouse Snk/Plk-akin kinase (Sak), respectively. These proteins are all members of the polo subfamily of structurally related serine/threonine kinases. The Plk, polo, Cdc5, and Sak kinases are required for cell division. FGF-1 induction of Fnk mRNA expression is first detected at 30 min after mitogen addition, reflects transcriptional activation, and does not require de novo protein synthesis. FGF-2, platelet-derived growth factor-BB, calf serum, or phorbol myristate acetate treatment of quiescent cells also induces fnk gene expression. Fnk mRNA is expressed in vivo in a tissue-specific manner, with relatively high levels detected in newborn and adult mouse skin. These results indicate that Fnk may be a transiently expressed protein kinase involved in the early signaling events required for growth factor-stimulated cell cycle progression.
Collapse
Affiliation(s)
- P J Donohue
- Department of Molecular Biology, Holland Laboratory, American Red Cross, Rockville, Maryland 20855, USA
| | | | | | | |
Collapse
|
115
|
Woods CM, Zhu J, Coleman T, Bloom SE, Lazarides E. Novel centrosomal protein reveals the presence of multiple centrosomes in turkey (Meleagris gallopavo) bnbn binucleated erythrocytes. J Cell Sci 1995; 108 ( Pt 2):699-710. [PMID: 7769012 DOI: 10.1242/jcs.108.2.699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phenotype of the bnbn hemolytic anemia mutation in the domestic turkey is manifested as binucleation specifically in the definitive erythrocyte lineage, most likely as the consequence of anomolous centrosomal activity (Bloom et al., 1970; Searle and Bloom, 1979). Here we have identified in turkey two variants of the novel, centrosomally-associated erythroid-specific protein p23. One variant is Ca(2+)-sensitive and is highly homologous to its chick counterpart (Zhu et al., 1995, accompanying paper). The other, p21 is a truncated form resulting from a 62 amino acid deletion from the 3′ end and a 40 amino acid insertion at the 5′ end, and appears to lack Ca(2+)-sensitivity. These proteins are localized at the marginal band, centrosomes and nuclear membrane of differentiated erythrocytes. Anti-p23/p21 immunofluorescence revealed the presence of multiple centrosomes in bnbn erythrocytes. We therefore undertook a detailed genetic analysis to determine whether the p21 variant represented the bn mutation. Initial tests of normal BnBn and mutant bnbn individuals suggested that the p23/p21 proteins might be encoded by the Bn/bn genes. However, further genetic tests demonstrated independent segregation for these two genetic loci. Thus, these proteins are encoded by the heretofore undescribed genes, p23/p21, mapping to an autosomal locus in the turkey genome.
Collapse
Affiliation(s)
- C M Woods
- Department of Pharmacology, Merck Research Laboratories, West Point, PA 19486, USA
| | | | | | | | | |
Collapse
|
116
|
Richards JS, Fitzpatrick SL, Clemens JW, Morris JK, Alliston T, Sirois J. Ovarian cell differentiation: a cascade of multiple hormones, cellular signals, and regulated genes. RECENT PROGRESS IN HORMONE RESEARCH 1995; 50:223-54. [PMID: 7740159 DOI: 10.1016/b978-0-12-571150-0.50014-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
During the development of preovulatory follicles, tonic levels of FSH (and steroid) induce expression of aromatase, the LH receptor, and RII beta in a coordinate manner. Despite the similar temporal increase in steady-state levels of mRNA encoding these proteins, the cis-acting DNA elements and trans-acting factors regulating each gene are distinct (Richards, 1993). Whereas the aromatase gene has a TATA motif and a single transcriptional initiation site (Fitzpatrick and Richards, 1993), both the LH receptor (Wang et al., 1992; Tsai-Morris et al., 1993) and RII beta (Kurten et al., 1992; Luo et al., 1992) genes have promoters that are GC rich, lack TATA motifs, and initiate transcription at multiple sites. The aromatase promoter appears to be regulated, in part, by SF-1, a CRE-like region, and possibly another or overlapping region binding an Ad3BP-like factor. The RII beta promoter has a region that binds several nuclear proteins, whose identity is not yet known. Likewise, the LH receptor promoter elements have yet to be clearly defined (Figures 2, 4, and 25; Kurten et al., 1992). FSH can also induce the expression of at least three immediate-early genes that encode novel kinases or kinase-like proteins (Figure 25). One of these is called serum-inducible kinase (snk) (Simmons et al., 1992), another is serum and glucocorticoid regulated kinase (sgk) (Webster et al., 1993), and a third is called pole kinase (Clay et al., 1993). Steady-state levels of snk and sgk mRNA are induced rapidly (within a few hours) by FSH in granulosa cells prior to the appearance of transcripts for aromatase, LH receptor, and RII beta (T. Alliston and J. S. Richards, in preparation). The functional role of these kinases in the initial response of granulosa cells to tonic (not surge) levels of FSH remains to be elucidated. The cellular signaling pathways mediating the effects of the LH surge appear equally or more complex (Fig. 25). Based on data presented herein, as well as on analyses of the cloned and expressed LH receptor (Guderman et al., 1992), it is clear that low concentrations of LH stimulate adenylyl cyclase, cAMP production, and activation of protein kinase A. Higher (surge) concentrations of LH also increase IP3 and activation of protein kinase C. GnRH has been used in several studies to examine the ability of the protein kinase C pathway to mimic effects of high LH.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J S Richards
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
117
|
Holzman LB, Merritt SE, Fan G. Identification, molecular cloning, and characterization of dual leucine zipper bearing kinase. A novel serine/threonine protein kinase that defines a second subfamily of mixed lineage kinases. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47353-x] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
118
|
Fode C, Motro B, Yousefi S, Heffernan M, Dennis JW. Sak, a murine protein-serine/threonine kinase that is related to the Drosophila polo kinase and involved in cell proliferation. Proc Natl Acad Sci U S A 1994; 91:6388-92. [PMID: 8022793 PMCID: PMC44207 DOI: 10.1073/pnas.91.14.6388] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have isolated murine cDNAs encoding two isoforms of a putative protein-serine/threonine kinase, designated Sak-a and Sak-b, which differ in their noncatalytic C-terminal ends. The kinase domain of Sak is related to the catalytic domains of the Drosophila polo, Saccharomyces cerevisiae CDC5, and murine Snk and Plk kinases, a family of proteins for which a role in controlling cell proliferation has been established (polo, CDC5) or implicated (Snk, Plk). Northern and in situ RNA analyses of Sak gene expression in mouse embryos and adult tissues revealed that expression was associated with mitotic and meiotic cell division. In addition, during embryogenesis, Sak expression was prominent in the respiratory and olfactory mucosa. The pattern of Sak expression and its sequence homology with the polo gene family suggest that the Sak kinase may play a role in cell proliferation. In support of this, cell growth was suppressed by expression of a Sak-a-antisense fragment in CHO cells.
Collapse
Affiliation(s)
- C Fode
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON Canada
| | | | | | | | | |
Collapse
|
119
|
Golsteyn RM, Schultz SJ, Bartek J, Ziemiecki A, Ried T, Nigg EA. Cell cycle analysis and chromosomal localization of human Plk1, a putative homologue of the mitotic kinases Drosophila polo and Saccharomyces cerevisiae Cdc5. J Cell Sci 1994; 107 ( Pt 6):1509-17. [PMID: 7962193 DOI: 10.1242/jcs.107.6.1509] [Citation(s) in RCA: 195] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
polo and CDC5 are two genes required for passage through mitosis in Drosophila melanogaster and Saccharomyces cerevisiae, respectively. Both genes encode structurally related protein kinases that have been implicated in regulating the function of the mitotic spindle. Here, we report the characterization of a human protein kinase that displays extensive sequence similarity to Drosophila polo and S. cerevisiae Cdc5; we refer to this kinase as Plk1 (for polo-like kinase 1). The largest open reading frame of the Plk1 cDNA encodes a protein of 68,254 daltons, and a protein of this size is detected by immunoblotting of HeLa cell extracts with monoclonal antibodies raised against the C-terminal part of Plk1 expressed in Escherichia coli. Northern blot analysis of RNA isolated from human cells and mouse tissues shows that a single Plk1 mRNA of 2.3 kb is highly expressed in tissues with a high mitotic index, consistent with a possible function of Plk1 in cell proliferation. The Plk1 gene maps to position p12 on chromosome 16, a locus for which no associations with neoplastic malignancies are known. The Plk1 protein levels and its distribution change during the cell cycle, in a manner consistent with a role of Plk1 in mitosis. Thus, like Drosophila polo and S. cerevisiae Cdc5, human Plk1 is likely to function in cell cycle progression.
Collapse
Affiliation(s)
- R M Golsteyn
- Swiss Institute for Experimental Cancer Research (ISREC), Epalinges
| | | | | | | | | | | |
Collapse
|
120
|
Holtrich U, Wolf G, Bräuninger A, Karn T, Böhme B, Rübsamen-Waigmann H, Strebhardt K. Induction and down-regulation of PLK, a human serine/threonine kinase expressed in proliferating cells and tumors. Proc Natl Acad Sci U S A 1994; 91:1736-40. [PMID: 8127874 PMCID: PMC43238 DOI: 10.1073/pnas.91.5.1736] [Citation(s) in RCA: 215] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have identified the nucleotide sequence of the cDNA encoding the human counterpart of the mouse gene Plk (polo-like kinase). The sequence of the human gene, PLK, predicts a serine/threonine kinase of 603 aa. Expression of PLK mRNA appeared to be strongly correlated with the mitotic activity of cells. Resting peripheral lymphocytes did not express the gene at all. When primary T cells were activated by phytohemagglutinin, a high level of PLK transcripts resulted within 2-3 days. In some cases, addition of interleukin 2 to these cells increased the expression of PLK mRNA further. In contrast, primary cultures of human peripheral macrophages, which were not dividing under the culture conditions applied, showed very little or no PLK mRNA. Stimulation of these cells by bacterial lipopolysaccharide, an inducer of several cytokines in macrophages, totally abrogated the expression of PLK mRNA. In line with a function of PLK mRNA expression in mitotically active cells is our finding that six immortalized cell lines examined expressed the gene. In A-431 epidermoid carcinoma cells this expression was down-regulated by serum starvation and enhanced after serum was added again. Tumors of various origin (lung, colon, stomach, smooth muscle, and esophagus as well as non-Hodgkin lymphomas) expressed high levels of PLK transcripts in about 80% of the samples studied, whereas PLK mRNA was absent in surrounding tissue, except for colon. The only normal tissues where PLK mRNA expression was observed were colon and placenta, both known to be mitotically active. No PLK transcripts were found in normal adult lung, brain, heart, liver, kidney, skeletal muscle, and pancreas. In Northern blot experiments with RNA from lymphocytes which were treated with phytohemagglutinin and cycloheximide, PLK transcripts were not detectable, suggesting that PLK is not an early growth-response gene.
Collapse
Affiliation(s)
- U Holtrich
- Chemotherapeutisches Forschungsinstitut, Georg-Speyer-Haus, Frankfurt, Germany
| | | | | | | | | | | | | |
Collapse
|
121
|
Cell cycle- and terminal differentiation-associated regulation of the mouse mRNA encoding a conserved mitotic protein kinase. Mol Cell Biol 1994. [PMID: 7902533 DOI: 10.1128/mcb.13.12.7793] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We determined the nucleotide sequence of a mouse and a human cDNA, which we designate STPK13, that encodes an apparent protein kinase related to that encoded by the Drosophila melanogaster polo gene and the Saccharomyces cerevisiae CDC5 gene. The polo and CDC5 gene products are required for normal mitosis. The STPK13 mRNA is regulated during terminal erythrodifferentiation and during the cell cycle. Within the precommitment period of murine erythroleukemia cell terminal differentiation, most of the poly(A) tail is lost from the STPK13 mRNA, but the body of the mRNA remains unchanged in abundance; this poly(A) loss does not occur in mutant erythroleukemia cells that fail to commit to terminal differentiation. During the cell cycle, the abundance of the body of the STPK13 mRNA fluctuates. The mRNA is present in growing but not in nongrowing cells. It reaches a maximum abundance during G2/M phase, is absent or present at only low levels during G1 phase, and begins to reaccumulate at approximately the middle of S phase. The cell cycle-associated accumulation and loss of the STPK13 mRNA could cause a similar fluctuation in abundance of its encoded protein kinase, thereby providing a maximum amount during M phase, when the kinase is thought to function, and little or none at other times of the cell cycle. Posttranscriptional regulation must be responsible for the cell cycle-associated fluctuations because transcription rates are relatively constant during different times of the cell cycle when there are large differences in mRNA abundance.
Collapse
|
122
|
Affiliation(s)
- C Gonzalez
- Department of Anatomy and Physiology, University of Dundee, Scotland
| | | | | |
Collapse
|
123
|
Lake RJ, Jelinek WR. Cell cycle- and terminal differentiation-associated regulation of the mouse mRNA encoding a conserved mitotic protein kinase. Mol Cell Biol 1993; 13:7793-801. [PMID: 7902533 PMCID: PMC364851 DOI: 10.1128/mcb.13.12.7793-7801.1993] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We determined the nucleotide sequence of a mouse and a human cDNA, which we designate STPK13, that encodes an apparent protein kinase related to that encoded by the Drosophila melanogaster polo gene and the Saccharomyces cerevisiae CDC5 gene. The polo and CDC5 gene products are required for normal mitosis. The STPK13 mRNA is regulated during terminal erythrodifferentiation and during the cell cycle. Within the precommitment period of murine erythroleukemia cell terminal differentiation, most of the poly(A) tail is lost from the STPK13 mRNA, but the body of the mRNA remains unchanged in abundance; this poly(A) loss does not occur in mutant erythroleukemia cells that fail to commit to terminal differentiation. During the cell cycle, the abundance of the body of the STPK13 mRNA fluctuates. The mRNA is present in growing but not in nongrowing cells. It reaches a maximum abundance during G2/M phase, is absent or present at only low levels during G1 phase, and begins to reaccumulate at approximately the middle of S phase. The cell cycle-associated accumulation and loss of the STPK13 mRNA could cause a similar fluctuation in abundance of its encoded protein kinase, thereby providing a maximum amount during M phase, when the kinase is thought to function, and little or none at other times of the cell cycle. Posttranscriptional regulation must be responsible for the cell cycle-associated fluctuations because transcription rates are relatively constant during different times of the cell cycle when there are large differences in mRNA abundance.
Collapse
Affiliation(s)
- R J Lake
- Department of Biochemistry, New York University Medical Center, New York 10016
| | | |
Collapse
|