101
|
Rumfeldt JA, Lepock JR, Meiering EM. Unfolding and Folding Kinetics of Amyotrophic Lateral Sclerosis-Associated Mutant Cu,Zn Superoxide Dismutases. J Mol Biol 2009; 385:278-98. [DOI: 10.1016/j.jmb.2008.10.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 09/26/2008] [Accepted: 10/01/2008] [Indexed: 02/06/2023]
|
102
|
Role of transition metals in the pathogenesis of amyotrophic lateral sclerosis. Biochem Soc Trans 2008; 36:1322-8. [DOI: 10.1042/bst0361322] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
ALS (amyotrophic lateral sclerosis) is a devastating progressive neurodegenerative disorder resulting in selective degeneration of motor neurons in brain and spinal cord and muscle atrophy. In approx. 2% of all cases, the disease is caused by a mutation in the Cu,Zn-superoxide dismutase (SOD1) gene. The transition metals zinc and copper regulate SOD1 protein stability and activity, and disbalance of the homoeostasis of these metals has therefore been implicated in the pathogenesis of ALS. Recent data strengthen the hypothesis that these transition metals are excellent potential targets to develop an effective therapy for ALS.
Collapse
|
103
|
Yon JM, Baek IJ, Lee SR, Kim MR, Lee BJ, Yun YW, Nam SY. Immunohistochemical identification and quantitative analysis of cytoplasmic Cu/Zn superoxide dismutase in mouse organogenesis. J Vet Sci 2008; 9:233-40. [PMID: 18716442 PMCID: PMC2811834 DOI: 10.4142/jvs.2008.9.3.233] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cytoplasmic Cu/Zn superoxide dismutase (SOD1) is an antioxidant enzyme that converts superoxide to hydrogen peroxide in cells. Its spatial distribution matches that of superoxide production, allowing it to protect cells from oxidative stress. SOD1 deficiencies result in embryonic lethality and a wide range of pathologies in mice, but little is known about normal SOD1 protein expression in developing embryos. In this study, the expression pattern of SOD1 was investigated in post-implantation mouse embryos and extraembryonic tissues, including placenta, using Western blotting and immunohistochemical analyses. SOD1 was detected in embryos and extraembryonic tissues from embryonic day (ED) 8.5 to 18.5. The signal in embryos was observed at the lowest level on ED 9.5-11.5, and the highest level on ED 17.5-18.5, while levels remained constant in the surrounding extraembryonic tissues during all developmental stages examined. Immunohistochemical analysis of SOD1 expression on ED 13.5-18.5 revealed its ubiquitous distribution throughout developing organs. In particular, high levels of SOD1 expression were observed in the ependymal epithelium of the choroid plexus, ganglia, sensory cells of the olfactory and vestibulocochlear epithelia, blood cells and vessels, hepatocytes and hematopoietic cells of the liver, lymph nodes, osteogenic tissues, and skin. Thus, SOD1 is highly expressed at late stages of embryonic development in a cell- and tissue-specific manner, and can function as an important antioxidant enzyme during organogenesis in mouse embryos.
Collapse
Affiliation(s)
- Jung-Min Yon
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University, Cheongju 361-763, Korea
| | | | | | | | | | | | | |
Collapse
|
104
|
Watson MR, Lagow RD, Xu K, Zhang B, Bonini NM. A drosophila model for amyotrophic lateral sclerosis reveals motor neuron damage by human SOD1. J Biol Chem 2008; 283:24972-81. [PMID: 18596033 PMCID: PMC2529125 DOI: 10.1074/jbc.m804817200] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Indexed: 01/19/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a motor neuron disease that leads to loss of motor function and early death. About 5% of cases are inherited, with the majority of identified linkages in the gene encoding copper, zinc-superoxide dismutase (SOD1). Strong evidence indicates that the SOD1 mutations confer dominant toxicity on the protein. To provide new insight into mechanisms of ALS, we have generated and characterized a model for familial ALS in Drosophila with transgenic expression of human SOD1. Expression of wild type or disease-linked (A4V, G85R) mutants of human SOD1 selectively in motor neurons induced progressive climbing deficits. These effects were accompanied by defective neural circuit electrophysiology, focal accumulation of human SOD1 protein in motor neurons, and a stress response in surrounding glia. However, toxicity was not associated with oligomerization of SOD1 and did not lead to neuronal loss. These studies uncover cell-autonomous injury by SOD1 to motor neurons in vivo, as well as non-autonomous effects on glia, and provide the foundation for new insight into injury and protection of motor neurons in ALS.
Collapse
Affiliation(s)
- Melanie R. Watson
- Department of Biology,
University of Pennsylvania, the
Department of Neuroscience,
University of Pennsylvania School of Medicine, and the
Howard Hughes Medical Institute,
Philadelphia, Pennsylvania 19104 and the
Department of Zoology, University of
Oklahoma, Norman, Oklahoma 73019
| | - Robert D. Lagow
- Department of Biology,
University of Pennsylvania, the
Department of Neuroscience,
University of Pennsylvania School of Medicine, and the
Howard Hughes Medical Institute,
Philadelphia, Pennsylvania 19104 and the
Department of Zoology, University of
Oklahoma, Norman, Oklahoma 73019
| | - Kexiang Xu
- Department of Biology,
University of Pennsylvania, the
Department of Neuroscience,
University of Pennsylvania School of Medicine, and the
Howard Hughes Medical Institute,
Philadelphia, Pennsylvania 19104 and the
Department of Zoology, University of
Oklahoma, Norman, Oklahoma 73019
| | - Bing Zhang
- Department of Biology,
University of Pennsylvania, the
Department of Neuroscience,
University of Pennsylvania School of Medicine, and the
Howard Hughes Medical Institute,
Philadelphia, Pennsylvania 19104 and the
Department of Zoology, University of
Oklahoma, Norman, Oklahoma 73019
| | - Nancy M. Bonini
- Department of Biology,
University of Pennsylvania, the
Department of Neuroscience,
University of Pennsylvania School of Medicine, and the
Howard Hughes Medical Institute,
Philadelphia, Pennsylvania 19104 and the
Department of Zoology, University of
Oklahoma, Norman, Oklahoma 73019
| |
Collapse
|
105
|
Broom WJ, Greenway M, Sadri-Vakili G, Russ C, Auwarter KE, Glajch KE, Dupre N, Swingler RJ, Purcell S, Hayward C, Sapp PC, McKenna-Yasek D, Valdmanis PN, Bouchard JP, Meininger V, Hosler BA, Glass JD, Polack M, Rouleau GA, Cha JHJ, Hardiman O, Brown RH. 50bp deletion in the promoter for superoxide dismutase 1 (SOD1) reduces SOD1 expression in vitro and may correlate with increased age of onset of sporadic amyotrophic lateral sclerosis. ACTA ACUST UNITED AC 2008; 9:229-37. [PMID: 18608091 DOI: 10.1080/17482960802103107] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The objective was to test the hypothesis that a described association between homozygosity for a 50bp deletion in the SOD1 promoter 1684bp upstream of the SOD1 ATG and an increased age of onset in SALS can be replicated in additional SALS and control sample sets from other populations. Our second objective was to examine whether this deletion attenuates expression of the SOD1 gene. Genomic DNA from more than 1200 SALS cases from Ireland, Scotland, Quebec and the USA was genotyped for the 50bp SOD1 promoter deletion. Reporter gene expression analysis, electrophoretic mobility shift assays and chromatin immunoprecipitation studies were utilized to examine the functional effects of the deletion. The genetic association for homozygosity for the promoter deletion with an increased age of symptom onset was confirmed overall in this further study (p=0.032), although it was only statistically significant in the Irish subset, and remained highly significant in the combined set of all cohorts (p=0.001). Functional studies demonstrated that this polymorphism reduces the activity of the SOD1 promoter by approximately 50%. In addition we revealed that the transcription factor SP1 binds within the 50bp deletion region in vitro and in vivo. Our findings suggest the hypothesis that this deletion reduces expression of the SOD1 gene and that levels of the SOD1 protein may modify the phenotype of SALS within selected populations.
Collapse
Affiliation(s)
- Wendy J Broom
- Day Neuromuscular Research Laboratory, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Yan S, Wu G. Quantitative relationship between mutated amino-acid sequence of human copper-transporting ATPases and their related diseases. Mol Divers 2008; 12:119-29. [PMID: 18688737 DOI: 10.1007/s11030-008-9084-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 07/19/2008] [Indexed: 02/03/2023]
Abstract
Copper-transporting ATPase 1 and 2 (ATP7A and ATP7B) are two highly homologous P-type copper ATPase exporters. Mutations in ATP7A can lead to Menkes disease which is an X-linked disorder of copper deficiency. Mutations in ATP7B can cause Wilson disease which is an autosomal recessive disorder of copper toxicity. In this study, we attempt to build a quantitative relationship between mutated ATPase and Menkes/Wilson disease. First, we use the amino-acid distribution probability as a measure to quantify the difference in ATPase before and after mutation. Second, we use the cross-impact analysis to define the quantitative relationship between mutant ATPase protein and Menkes/Wilson disease, and compute various probabilities. Finally, we use the Bayesian equation to determine the probability that Menkes/Wilson disease is diagnosed under a mutation. The results show (i) the vast majority of mutations lead to the amino-acid distribution probability increase in mutant ATP7As and decrease in ATP7Bs, and (ii) the probability that a mutation causes Menkes/Wilson disease is about nine tenth. Thus we provide a way to use the descriptively probabilistic method to couple the mutation with its clinical outcome after quantifying mutations in proteins.
Collapse
Affiliation(s)
- Shaomin Yan
- Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi, 530007, China
| | | |
Collapse
|
107
|
Cao X, Antonyuk SV, Seetharaman SV, Whitson LJ, Taylor AB, Holloway SP, Strange RW, Doucette PA, Valentine JS, Tiwari A, Hayward LJ, Padua S, Cohlberg JA, Hasnain SS, Hart PJ. Structures of the G85R variant of SOD1 in familial amyotrophic lateral sclerosis. J Biol Chem 2008; 283:16169-77. [PMID: 18378676 PMCID: PMC2414278 DOI: 10.1074/jbc.m801522200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Indexed: 12/11/2022] Open
Abstract
Mutations in the gene encoding human copper-zinc superoxide dismutase (SOD1) cause a dominant form of the progressive neurodegenerative disease amyotrophic lateral sclerosis. Transgenic mice expressing the human G85R SOD1 variant develop paralytic symptoms concomitant with the appearance of SOD1-enriched proteinaceous inclusions in their neural tissues. The process(es) through which misfolding or aggregation of G85R SOD1 induces motor neuron toxicity is not understood. Here we present structures of the human G85R SOD1 variant determined by single crystal x-ray diffraction. Alterations in structure of the metal-binding loop elements relative to the wild type enzyme suggest a molecular basis for the metal ion deficiency of the G85R SOD1 protein observed in the central nervous system of transgenic mice and in purified recombinant G85R SOD1. These findings support the notion that metal-deficient and/or disulfide-reduced mutant SOD1 species contribute to toxicity in SOD1-linked amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Xiaohang Cao
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - Svetlana V. Antonyuk
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - Sai V. Seetharaman
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - Lisa J. Whitson
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - Alexander B. Taylor
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - Stephen P. Holloway
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - Richard W. Strange
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - Peter A. Doucette
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - Joan Selverstone Valentine
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - Ashutosh Tiwari
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - Lawrence J. Hayward
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - Shelby Padua
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - Jeffrey A. Cohlberg
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - S. Samar Hasnain
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - P. John Hart
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| |
Collapse
|
108
|
Mutant SOD1 in cell types other than motor neurons and oligodendrocytes accelerates onset of disease in ALS mice. Proc Natl Acad Sci U S A 2008; 105:7594-9. [PMID: 18492803 DOI: 10.1073/pnas.0802556105] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Dominant mutations in ubiquitously expressed superoxide dismutase (SOD1) cause familial ALS by provoking premature death of adult motor neurons. To test whether mutant damage to cell types beyond motor neurons is required for the onset of motor neuron disease, we generated chimeric mice in which all motor neurons and oligodendrocytes expressed mutant SOD1 at a level sufficient to cause fatal, early-onset motor neuron disease when expressed ubiquitously, but did so in a cellular environment containing variable numbers of non-mutant, non-motor neurons. Despite high-level mutant expression within 100% of motor neurons and oligodendrocytes, in most of these chimeras, the presence of WT non-motor neurons substantially delayed onset of motor neuron degeneration, increasing disease-free life by 50%. Disease onset is therefore non-cell autonomous, and mutant SOD1 damage within cell types other than motor neurons and oligodendrocytes is a central contributor to initiation of motor neuron degeneration.
Collapse
|
109
|
Chang HM, Huang YL, Lan CT, Wu UI, Hu ME, Youn SC. Melatonin preserves superoxide dismutase activity in hypoglossal motoneurons of adult rats following peripheral nerve injury. J Pineal Res 2008; 44:172-80. [PMID: 18289169 DOI: 10.1111/j.1600-079x.2007.00505.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Peripheral nerve injury (PNI) produces functional changes in lesioned neurons in which oxidative stress is considered to be the main cause of neuronal damage. As superoxide dismutase (SOD) is an important antioxidative enzyme involved in redox regulation of oxidative stress, the present study determined whether melatonin would exert its beneficial effects by preserving the SOD reactivity following PNI. Adult rats subjected to hypoglossal nerve transection were intraperitoneally injected with melatonin at ones for 3, 7, 14, 30 and 60 days successively. The potential neuroprotective effects of melatonin were quantitatively demonstrated by neuronal nitric oxide synthase (nNOS), mitochondrial manganese SOD (Mn-SOD), and cytosolic copper-zinc SOD (Cu/Zn-SOD) immunohistochemistry. The functional recovery of the lesioned neurons was evaluated by choline acetyltransferase (ChAT) immunohistochemistry along with the electromyographic (EMG) recordings of denervation-induced fibrillation activity. The results indicate that following PNI, the nNOS immunoreactivity was significantly increased in lesioned neurons peaking at 14 days. The up-regulation of nNOS temporally coincided with the reduction of ChAT and SOD in which the Cu/Zn-SOD showed a greater diminution than Mn-SOD. However, following melatonin administration, the nNOS augmentation was successfully suppressed and the activities of Mn-SOD, Cu/Zn-SOD, and ChAT were effectively preserved at all postaxotomy periods. EMG data also showed a decreased fibrillation in melatonin-treated groups, suggesting a potential effect of melatonin in promoting functional recovery. In association with its significant capacity in preserving SOD reactivity, melatonin is suggested to serve as a powerful therapeutic agent for treating PNI-relevant oxidative damage.
Collapse
Affiliation(s)
- Hung-Ming Chang
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan.
| | | | | | | | | | | |
Collapse
|
110
|
Cozzolino M, Ferri A, Carrì MT. Amyotrophic lateral sclerosis: from current developments in the laboratory to clinical implications. Antioxid Redox Signal 2008; 10:405-43. [PMID: 18370853 DOI: 10.1089/ars.2007.1760] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a late-onset progressive degeneration of motor neurons occurring both as a sporadic and a familial disease. The etiology of ALS remains unknown, but one fifth of instances are due to specific gene defects, the best characterized of which is point mutations in the gene coding for Cu/Zn superoxide dismutase (SOD1). Because sporadic and familial ALS affect the same neurons with similar pathology, it is hoped that understanding these gene defects will help in devising therapies effective in both forms. A wealth of evidence has been collected in rodents made transgenic for mutant SOD1, which represent the best available models for familial ALS. Mutant SOD1 likely induces selective vulnerability of motor neurons through a combination of several mechanisms, including protein misfolding, mitochondrial dysfunction, oxidative damage, cytoskeletal abnormalities and defective axonal transport, excitotoxicity, inadequate growth factor signaling, and inflammation. Damage within motor neurons is enhanced by noxious signals originating from nonneuronal neighboring cells, where mutant SOD1 induces an inflammatory response that accelerates disease progression. The clinical implication of these findings is that promising therapeutic approaches can be derived from multidrug treatments aimed at the simultaneous interception of damage in both motor neurons and nonmotor neuronal cells.
Collapse
|
111
|
Selective association of misfolded ALS-linked mutant SOD1 with the cytoplasmic face of mitochondria. Proc Natl Acad Sci U S A 2008; 105:4022-7. [PMID: 18296640 DOI: 10.1073/pnas.0712209105] [Citation(s) in RCA: 212] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mutations in copper/zinc superoxide dismutase (SOD1) are causative for dominantly inherited amyotrophic lateral sclerosis (ALS). Despite high variability in biochemical properties among the disease-causing mutants, a proportion of both dismutase-active and -inactive mutants are stably bound to spinal cord mitochondria. This mitochondrial proportion floats with mitochondria rather than sedimenting to the much higher density of protein, thus eliminating coincidental cosedimentation of protein aggregates with mitochondria. Half of dismutase-active and approximately 90% of dismutase-inactive mutant SOD1 is bound to mitochondrial membranes in an alkali- and salt-resistant manner. Sensitivity to proteolysis and immunoprecipitation with an antibody specific for misfolded SOD1 demonstrate that in all mutant SOD1 models, misfolded SOD1 is deposited onto the cytoplasmic face of the outer mitochondrial membrane, increasing antigenic accessibility of the normally structured electrostatic loop. Misfolded mutant SOD1 binding is both restricted to spinal cord and selective for mitochondrial membranes, implicating exposure to mitochondria of a misfolded mutant SOD1 conformer mediated by a unique, tissue-selective composition of cytoplasmic chaperones, components unique to the cytoplasmic face of spinal mitochondria to which misfolded SOD1 binds, or misfolded SOD1 conformers unique to spinal cord that have a selective affinity for mitochondrial membranes.
Collapse
|
112
|
Luo Y, Xue H, Pardo AC, Mattson MP, Rao MS, Maragakis NJ. Impaired SDF1/CXCR4 signaling in glial progenitors derived from SOD1(G93A) mice. J Neurosci Res 2007; 85:2422-32. [PMID: 17567884 DOI: 10.1002/jnr.21398] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mutations in the superoxide dismutase 1 (SOD1) gene are associated with familial amyotrophic lateral sclerosis (ALS), and the SOD1(G93A) transgenic mouse has been widely used as one animal model for studies of this neurodegenerative disorder. Recently, several reports have shown that abnormalities in neuronal development in other models of neurodegeneration occur much earlier than previously thought. To study the role of mutant SOD1 in glial progenitor biology, we immortalized glial restricted precursors (GRIPs) derived from mouse E11.5 neural tubes of wild-type and SOD1(G93A) mutant mice. Immunocytochemistry using cell lineage markers shows that these cell lines can be maintained as glial progenitors, because they continue to express A2B5, with very low levels of glial fibrillary acidic protein (astrocyte), betaIII-tubulin (neuron), and undetected GalC (oligodendrocyte) markers. RT-PCR and immunoblot analyses indicate that the chemokine receptor CXCR4 is reduced in SOD1(G93A) GRIPs. Subsequently, SOD1(G93A) GRIPs are unable to respond to SDF1alpha to activate ERK1/2 enzymes and the transcription factor CREB. This may be one pathway leading to a reduction in SOD1(G93A) cell migration. These data indicate that the abnormalities in SOD1(G93A) glial progenitor expression of CXCR4 and its mediated signaling and function occur during spinal cord development and highlight nonneuronal (glial) abnormalities in this ALS model.
Collapse
Affiliation(s)
- Yongquan Luo
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, USA
| | | | | | | | | | | |
Collapse
|
113
|
Kovalyov LI, Kovalyova MA, Burakova MV, Eremina LS, Shishkin SS, Shigeev SV, Serebryakova MV, Zakharova MN, Zavalishin IA. Studies of the pathogenesis of slow neuroinfections using proteomic techniques. NEUROCHEM J+ 2007. [DOI: 10.1134/s1819712407040095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
114
|
Son D, Kojima I, Inagi R, Matsumoto M, Fujita T, Nangaku M. Chronic hypoxia aggravates renal injury via suppression of Cu/Zn-SOD: a proteomic analysis. Am J Physiol Renal Physiol 2007; 294:F62-72. [PMID: 17959751 DOI: 10.1152/ajprenal.00113.2007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Accumulating evidence suggests a pathogenic role of chronic hypoxia in various kidney diseases. Chronic hypoxia in the kidney was induced by unilateral renal artery stenosis, followed 7 days later by observation of tubulointerstitial injury. Proteomic analysis of the hypoxic kidney found various altered proteins. Increased proteins included lipocortin-5, calgizzarin, ezrin, and transferrin, whereas the decreased proteins were alpha(2u)-globulin PGCL1, eukaryotic translation elongation factor 1alpha(2), and Cu/Zn superoxide dismutase (SOD1). Among these proteins, we focused on Cu/Zn-SOD, a crucial antioxidant. Western blot analysis and real-time quantitative PCR analysis confirmed the downregulation of Cu/Zn-SOD in the chronic hypoxic kidney. Furthermore, our laser capture microdissection system showed that the expression of Cu/Zn-SOD was predominant in the tubulointerstitium and was decreased by chronic hypoxia. The tubulointerstitial injury estimated by histology and immunohistochemical markers was ameliorated by tempol, a SOD mimetic. This amelioration was associated with a decrease in levels of the oxidative stress markers 4-hydroxyl-2-nonenal and nitrotyrosine. Our in vitro studies utilizing cultured tubular cells revealed a role of TNF-alpha in downregulation of Cu/Zn-SOD. Since the administration of anti-TNF-alpha antibody ameliorated Cu/Zn-SOD suppression, TNF-alpha seems to be one of the suppressants of Cu/Zn-SOD. In conclusion, our proteomic analysis revealed a decrease in Cu/Zn-SOD, at least partly by TNF-alpha, in the chronic hypoxic kidney. This study, for the first time, uncovered maladaptive suppression of Cu/Zn-SOD as a mediator of a vicious cycle of oxidative stress and subsequent renal injury induced by chronic hypoxia.
Collapse
Affiliation(s)
- Daisuke Son
- Division of Nephrology and Endocrinology, University of Tokyo School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | | | |
Collapse
|
115
|
Benatar M. What zebras and mice can teach us about familial ALS. Neuromuscul Disord 2007; 17:671-2. [PMID: 17627821 DOI: 10.1016/j.nmd.2007.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Indexed: 11/18/2022]
Affiliation(s)
- Michael Benatar
- Department of Neurology, Emory University, Woodruff Memorial Building, 101 Woodruff Circle, Atlanta, GA 30322, USA
| |
Collapse
|
116
|
Price DL, Koliatsos VE, Wong PC, Pardo CA, Borchelt DR, Lee MK, Cleveland DW, Griffin JW, Hoffman PN, Cork LC, Sisodia SS. Motor neuron disease and model systems: aetiologies, mechanisms and therapies. CIBA FOUNDATION SYMPOSIUM 2007; 196:3-13; discussion 13-7. [PMID: 8866125 DOI: 10.1002/9780470514863.ch2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The phenotypes of many neurological diseases, including motor neuron disease (amyotrophic lateral sclerosis; ALS) and Alzheimer's disease (AD), are determined by the vulnerabilities of populations of nerve cells and the character/ evolution of cellular abnormalities. Because different cell types respond selectively to individual trophic factors, these factors may be useful in ameliorating pathology in cells that express their cognate receptors. To test therapies for ALS and AD, investigators require model systems. Although there are a variety of models of ALS, two models are particularly attractive: transgenic mice that express human superoxide dismutase 1 (SOD-1) mutations linked to familial ALS develop paralysis associated with a gain of adverse property of the mutant SOD; and axotomy of facial axons in neonatal rats, a manipulation that causes retrograde cell degeneration, which can be ameliorated by several trophic factors.
Collapse
Affiliation(s)
- D L Price
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Manni ML, Oury TD. Commentary on "Copper chaperone for Cu,Zn-SOD supplement potentiates the Cu,Zn-SOD function of neuroprotective effects against ischemic neuronal damage in the gerbil hippocampus". Free Radic Biol Med 2007; 43:899-900. [PMID: 17697934 DOI: 10.1016/j.freeradbiomed.2007.06.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 06/21/2007] [Indexed: 02/02/2023]
Affiliation(s)
- Michelle L Manni
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
118
|
Gruzman A, Wood WL, Alpert E, Prasad MD, Miller RG, Rothstein JD, Bowser R, Hamilton R, Wood TD, Cleveland DW, Lingappa VR, Liu J. Common molecular signature in SOD1 for both sporadic and familial amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 2007; 104:12524-9. [PMID: 17636119 PMCID: PMC1941502 DOI: 10.1073/pnas.0705044104] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating motor neuron degenerative disease whose etiology and pathogenesis remain poorly understood. Most cases of ALS ( approximately 90%) are sporadic (SALS), occurring in the absence of genetic associations. Approximately 20% of familial ALS (FALS) cases are due to known mutations in the copper, zinc superoxide dismutase (SOD1) gene. Molecular evidence for a common pathogenesis of SALS and FALS has remained elusive. Here we use covalent chemical modification to reveal an attribute of spinal cord SOD1 common to both SOD1-linked FALS and SALS, but not present in normal or disease-affected tissues from other neurodegenerative diseases, including Alzheimer's, Parkinson's, and Huntington's diseases and spinal muscular atrophy, a non-ALS motor neuron disease. Biotinylation reveals a 32-kDa, covalently cross-linked SOD1-containing protein species produced not only in FALS caused by SOD1 mutation, but also in SALS. These studies use chemical modification as a novel tool for the detection of a disease-associated biomarker. Our results identify a shared molecular event involving a known target gene and suggest a common step in the pathogenesis between SALS and FALS.
Collapse
Affiliation(s)
| | - William L. Wood
- Department of Chemistry, Natural Sciences Complex, University at Buffalo, State University of New York, Buffalo, NY 14260
| | | | | | - Robert G. Miller
- Department of Neurology, California Pacific Medical Center, San Francisco, CA 94115
| | | | - Robert Bowser
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Ronald Hamilton
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Troy D. Wood
- Department of Chemistry, Natural Sciences Complex, University at Buffalo, State University of New York, Buffalo, NY 14260
| | - Don W. Cleveland
- Ludwig Institute for Cancer Research, Departments of Medicine and Neuroscience, University of California at San Diego, La Jolla, CA 92093; and
- **To whom correspondence may be addressed. E-mail: or
| | | | - Jian Liu
- Department of Neuroscience, California Pacific Medical Center Research Institute, San Francisco, CA 94107
- **To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
119
|
Ezzi SA, Urushitani M, Julien JP. Wild-type superoxide dismutase acquires binding and toxic properties of ALS-linked mutant forms through oxidation. J Neurochem 2007; 102:170-8. [PMID: 17394546 DOI: 10.1111/j.1471-4159.2007.04531.x] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent studies suggest that superoxide dismutase (SOD1) may represent a major target of oxidative damage in neurodegenerative diseases. To test the possibility that oxidized species of wild-type (WT) SOD1 might be involved in pathogenic processes, we analyzed the properties of the WT human SOD1 protein after its oxidation in vivo or in vitro by hydrogen peroxide (H2O2) treatment. Using transfected Neuro2a cells expressing WT or amyotrophic lateral sclerosis-linked SOD1 species, we show that exposure to H2O2 modifies the properties of WT SOD1. Western blot analysis of immunoprecipitates from cell lysates revealed that, like mutant SOD1, oxidized WT SOD1 can be conjugated with poly-ubiquitin and can interact with Hsp70. Chromogranin B, a neurosecretory protein that interacts with mutant SOD1 but not with WT SOD1, was co-immunoprecipitated with oxidized WT SOD1 from lysates of Neuro2a cells treated with H2O2. Treatment of microglial cells (line BV2) with either oxidized WT SOD1 or mutant SOD1 recombinant proteins induced tumor necrosis factor-alpha and inducible nitric oxide synthase. Furthermore, exposure of cultured motor neurons to oxidized WT SOD1 caused dose-dependent cell death like mutant SOD1 proteins. These results suggest that WT SOD1 may acquire binding and toxic properties of mutant forms of SOD1 through oxidative damage.
Collapse
Affiliation(s)
- Samer Abou Ezzi
- Department of Anatomy and Physiology, Laval University, Research Centre of CHUL, Québec, Canada
| | | | | |
Collapse
|
120
|
Wang J, Caruano-Yzermans A, Rodriguez A, Scheurmann JP, Slunt HH, Cao X, Gitlin J, Hart PJ, Borchelt DR. Disease-associated mutations at copper ligand histidine residues of superoxide dismutase 1 diminish the binding of copper and compromise dimer stability. J Biol Chem 2007; 282:345-52. [PMID: 17092942 PMCID: PMC2757151 DOI: 10.1074/jbc.m604503200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A subset of superoxide dismutase 1 (Cu/Zn-SOD1) mutants that cause familial amyotrophic lateral sclerosis (FALS) have heightened reactivity with (-)ONOO and H(2)O(2) in vitro. This reactivity requires a copper ion bound in the active site and is a suggested mechanism of motor neuron injury. However, we have found that transgenic mice that express SOD1-H46R/H48Q, which combines natural FALS mutations at ligands for copper and which is inactive, develop motor neuron disease. Using a direct radioactive copper incorporation assay in transfected cells and the established tools of single crystal x-ray diffraction, we now demonstrate that this variant does not stably bind copper. We find that single mutations at copper ligands, including H46R, H48Q, and a quadruple mutant H46R/H48Q/H63G/H120G, also diminish the binding of radioactive copper. Further, using native polyacrylamide gel electrophoresis and a yeast two-hybrid assay, the binding of copper was found to be related to the formation of the stable dimeric enzyme. Collectively, our data demonstrate a relationship between copper and assembly of SOD1 into stable dimers and also define disease-causing SOD1 mutants that are unlikely to robustly produce toxic radicals via copper-mediated chemistry.
Collapse
Affiliation(s)
- Jiou Wang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21205
| | - Amy Caruano-Yzermans
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Angela Rodriguez
- Department of Biochemistry, South Texas Veterans Health Care System, The University of Texas San Antonio Health Sciences Center, San Antonio, Texas 78229
| | - Jonathan P. Scheurmann
- Department of Biochemistry, South Texas Veterans Health Care System, The University of Texas San Antonio Health Sciences Center, San Antonio, Texas 78229
| | - Hilda H. Slunt
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21205
- Department of Neuroscience, Santa Fe Health Alzheimer’s Disease Research Center, McKnight Brain Institute, University of Florida, Gainesville, Florida 32611
| | - Xiaohang Cao
- Department of Biochemistry, South Texas Veterans Health Care System, The University of Texas San Antonio Health Sciences Center, San Antonio, Texas 78229
| | - Jonathan Gitlin
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - P. John Hart
- Department of Biochemistry, South Texas Veterans Health Care System, The University of Texas San Antonio Health Sciences Center, San Antonio, Texas 78229
- X-ray Crystallography Core Laboratory, South Texas Veterans Health Care System, The University of Texas San Antonio Health Sciences Center, San Antonio, Texas 78229
- Geriatric Research, Education, and Clinical Center, Department of Veteran’s Affairs, South Texas Veterans Health Care System, The University of Texas San Antonio Health Sciences Center, San Antonio, Texas 78229
| | - David R. Borchelt
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21205
- Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21205
- Department of Neuroscience, Santa Fe Health Alzheimer’s Disease Research Center, McKnight Brain Institute, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
121
|
Rakhit R, Chakrabartty A. Structure, folding, and misfolding of Cu,Zn superoxide dismutase in amyotrophic lateral sclerosis. Biochim Biophys Acta Mol Basis Dis 2006; 1762:1025-37. [PMID: 16814528 DOI: 10.1016/j.bbadis.2006.05.004] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 05/15/2006] [Accepted: 05/16/2006] [Indexed: 11/16/2022]
Abstract
Fourteen years after the discovery that mutations in Cu, Zn superoxide dismutase (SOD1) cause a subset of familial amyotrophic lateral sclerosis (fALS), the mechanism by which mutant SOD1 exerts toxicity remains unknown. The two principle hypotheses are (a) oxidative damage stemming from aberrant SOD1 redox chemistry, and (b) misfolding of the mutant protein. Here we review the structure and function of wild-type SOD1, as well as the changes to the structure and function in mutant SOD1. The relative merits of the two hypotheses are compared and a common unifying principle is outlined. Lastly, the potential for therapies targeting SOD1 misfolding is discussed.
Collapse
Affiliation(s)
- Rishi Rakhit
- Department of Biochemistry, University of Toronto, University Health Network, Toronto Medical Discovery Tower, Medical and Related Sciences (MaRS), 101 College Street, Toronto, ON, Canada, M5G 1L7
| | | |
Collapse
|
122
|
Barber SC, Mead RJ, Shaw PJ. Oxidative stress in ALS: A mechanism of neurodegeneration and a therapeutic target. Biochim Biophys Acta Mol Basis Dis 2006; 1762:1051-67. [PMID: 16713195 DOI: 10.1016/j.bbadis.2006.03.008] [Citation(s) in RCA: 337] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Accepted: 03/29/2006] [Indexed: 11/20/2022]
Abstract
The cause(s) of amyotrophic lateral sclerosis (ALS) is not fully understood in the vast majority of cases and the mechanisms involved in motor neuron degeneration are multi-factorial and complex. There is substantial evidence to support the hypothesis that oxidative stress is one mechanism by which motor neuron death occurs. This theory becomes more persuasive with the discovery that mutation of the anti-oxidant enzyme, superoxide dismutase 1 (SOD1), causes disease in a significant minority of cases. However, the precise mechanism(s) by which mutant SOD1 leads to motor neuron degeneration have not been defined with certainty, and trials of anti-oxidant therapies have been disappointing. Here, we review the evidence implicating oxidative stress in ALS pathogenesis, discuss how oxidative stress may affect and be affected by other proposed mechanisms of neurodegeneration, and review the trials of various anti-oxidants as potential therapies for ALS.
Collapse
Affiliation(s)
- Siân C Barber
- Academic Neurology Unit, Section of Neuroscience, E Floor, Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | | | | |
Collapse
|
123
|
Tiwari A, Hayward LJ. Mutant SOD1 instability: implications for toxicity in amyotrophic lateral sclerosis. NEURODEGENER DIS 2006; 2:115-27. [PMID: 16909016 DOI: 10.1159/000089616] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The biological basis of preferential motor neuron degeneration in amyotrophic lateral sclerosis (ALS) remains incompletely understood, and effective therapies to prevent the lethal consequences of this disorder are not yet available. Since 1993, more than 100 mutant variants of the antioxidant enzyme Cu/Zn superoxide dismutase (SOD1) have been identified in familial ALS. Many studies have sought to distinguish abnormal properties shared by these proteins that may contribute to their toxic effects and cause age-dependent motor neuron loss. Complex networks of cellular interactions and changes associated with aging may link mutant SOD1s and other stresses to motor neuron death in ALS. Our laboratory and collaborators have compared physicochemical properties of biologically metallated wild-type and mutant SOD1 proteins to discern specific vulnerabilities that may be relevant to the mutant toxicity in vivo. X-ray crystal structures obtained from metallated 'wild-type-like' (WTL) SOD1 mutants, which retain the ability to bind copper and zinc and exhibit normal specific activity, indicate a native-like structure with only subtle changes to the backbone fold. In contrast, a group of 'metal-binding region' (MBR) SOD1 mutants that are deficient in copper and zinc exhibit severe thermal destabilization and structural disorder of conserved loops near the metal-binding sites. A growing body of evidence highlights specific stresses in vivo that may perturb well-folded, metallated SOD1 variants and thereby favor an increased burden of partially unfolded, metal-deficient species. For example, WTL SOD1 mutants are more susceptible than wild-type SOD1 to reduction of the intrasubunit disulfide bond between Cys-57 and Cys-146 at physiological pH and temperature. This bond anchors the disulfide loop to the SOD1 beta-barrel and helps to maintain the dimeric configuration of the protein. Cleavage of the disulfide linkage renders the well-folded WTL mutants vulnerable to metal loss and monomerization such that they may resemble the destabilized and locally misfolded MBR mutant species. SOD1 proteins with disordered loops or monomeric structure are expected to be more susceptible to aberrant self-association or detrimental interactions with other cellular constituents. The challenge for future investigations is to relate these abnormal properties of partially unfolded SOD1 to specific mechanisms of toxicity in motor neurons, supporting cells, or target tissues.
Collapse
Affiliation(s)
- Ashutosh Tiwari
- Department of Neurology, University of Massachusetts Medical School, Worcester, 01655, USA
| | | |
Collapse
|
124
|
Svensson AKE, Bilsel O, Kondrashkina E, Zitzewitz JA, Matthews CR. Mapping the folding free energy surface for metal-free human Cu,Zn superoxide dismutase. J Mol Biol 2006; 364:1084-102. [PMID: 17046019 DOI: 10.1016/j.jmb.2006.09.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 09/01/2006] [Accepted: 09/01/2006] [Indexed: 11/17/2022]
Abstract
Mutations at many different sites in the gene encoding human Cu,Zn superoxide dismutase (SOD) are known to be causative agents in amyotrophic lateral sclerosis (ALS). One explanation for the molecular basis of this pathology is the aggregation of marginally soluble, partially structured states whose populations are enhanced in the protein variants. As a benchmark for testing this hypothesis, the equilibrium and kinetic properties of the reversible folding reaction of a metal-free variant of SOD were investigated. Reversibility was achieved by replacing the two non-essential cysteine residues with non-oxidizable analogs, C6A/C111S, to produce apo-AS-SOD. The metal-free pseudo-wild-type protein is folded and dimeric in the absence of chemical denaturants, and its equilibrium folding behavior is well described by an apparent two-state mechanism involving the unfolded monomer and the native dimer. The apparent free energy of folding in the absence of denaturant and at standard state is -20.37(+/- 1.04) kcal (mol dimer)(-1). A global analysis of circular dichroism kinetic traces for both unfolding and refolding reactions, combined with results from small angle X-ray scattering and time-resolved fluorescence anisotropy measurements, supports a sequential mechanism involving the unfolded monomer, a folded monomeric intermediate, and the native dimer. The rate-limiting monomer folding reaction is followed by a near diffusion-limited self-association reaction to form the native dimer. The relative population of the folded monomeric intermediate is predicted not to exceed 0.5% at micromolar concentrations of protein under equilibrium and both strongly unfolding and refolding conditions for metal-free pseudo-wild-type SOD.
Collapse
Affiliation(s)
- Anna-Karin E Svensson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | |
Collapse
|
125
|
Pardo AC, Wong V, Benson LM, Dykes M, Tanaka K, Rothstein JD, Maragakis NJ. Loss of the astrocyte glutamate transporter GLT1 modifies disease in SOD1G93A mice. Exp Neurol 2006; 201:120-30. [PMID: 16753145 DOI: 10.1016/j.expneurol.2006.03.028] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Revised: 03/12/2006] [Accepted: 03/30/2006] [Indexed: 01/09/2023]
Abstract
Recent studies have highlighted the role of astrocytes in the development of motor neuron disease in animal models. The astrocyte glutamate transporter GLT1 is responsible for a significant portion of glutamate transport from the synaptic cleft; regulating synaptic transmission and preventing glutamate excitotoxicity. While previous studies have demonstrated reductions in GLT1 with SOD1-mediated disease progression, it is not well established whether a reduction in this astrocyte-specific transporter alters the pathobiology of motor neuron degeneration in the SOD1(G93A) mouse. In order to address this possible astrocyte-specific influence, we crossed the SOD1(G93A) mouse line with a mouse heterozygous for GLT1 (GLT1+/-) exhibiting a significant reduction in transporter protein. Mice that carried both the SOD1 mutation and a reduced amount of GLT1 (SOD1(G93A)/GLT1+/-) exhibited an increase in the rate of motor decline accompanied by earlier motor neuron loss when compared with SOD1(G93A) mice. A modest reduction in survival was also noted in these mice. Dramatic losses of the GLT1 protein and reduced glutamate transport in the lumbar spinal cords of the SOD1(G93A)/GLT1+/- animals were also observed. GLT1 was not significantly changed in cortices from these animals suggesting that the effect of mutant SOD1 on GLT1 production/function was largely targeted to spinal cord rather than cortical astrocytes. This study suggests that astrocytes, and the astrocyte glutamate transporter GLT1, play a role in modifying disease progression and motor neuron loss in this model.
Collapse
Affiliation(s)
- Andrea C Pardo
- Department of Neurology, Johns Hopkins University, 600 N. Wolfe St., Meyer 6-119, Baltimore, MD 21287, USA
| | | | | | | | | | | | | |
Collapse
|
126
|
Smith RA, Miller TM, Yamanaka K, Monia BP, Condon TP, Hung G, Lobsiger CS, Ward CM, McAlonis-Downes M, Wei H, Wancewicz EV, Bennett CF, Cleveland DW. Antisense oligonucleotide therapy for neurodegenerative disease. J Clin Invest 2006; 116:2290-6. [PMID: 16878173 PMCID: PMC1518790 DOI: 10.1172/jci25424] [Citation(s) in RCA: 389] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Accepted: 06/06/2006] [Indexed: 01/04/2023] Open
Abstract
Neurotoxicity from accumulation of misfolded/mutant proteins is thought to drive pathogenesis in neurodegenerative diseases. Since decreasing levels of proteins responsible for such accumulations is likely to ameliorate disease, a therapeutic strategy has been developed to downregulate almost any gene in the CNS. Modified antisense oligonucleotides, continuously infused intraventricularly, have been demonstrated to distribute widely throughout the CNS of rodents and primates, including the regions affected in the major neurodegenerative diseases. Using this route of administration, we found that antisense oligonucleotides to superoxide dismutase 1 (SOD1), one of the most abundant brain proteins, reduced both SOD1 protein and mRNA levels throughout the brain and spinal cord. Treatment initiated near onset significantly slowed disease progression in a model of amyotrophic lateral sclerosis (ALS) caused by a mutation in SOD1. This suggests that direct delivery of antisense oligonucleotides could be an effective, dosage-regulatable means of treating neurodegenerative diseases, including ALS, where appropriate target proteins are known.
Collapse
Affiliation(s)
- Richard A. Smith
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, California, USA.
The Scripps Research Institute, La Jolla, California, USA.
Center for Neurologic Study, La Jolla, California, USA.
Department of Neurosciences, University of California, San Diego, La Jolla, California, USA.
Isis Pharmaceuticals, Carlsbad, California, USA
| | - Timothy M. Miller
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, California, USA.
The Scripps Research Institute, La Jolla, California, USA.
Center for Neurologic Study, La Jolla, California, USA.
Department of Neurosciences, University of California, San Diego, La Jolla, California, USA.
Isis Pharmaceuticals, Carlsbad, California, USA
| | - Koji Yamanaka
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, California, USA.
The Scripps Research Institute, La Jolla, California, USA.
Center for Neurologic Study, La Jolla, California, USA.
Department of Neurosciences, University of California, San Diego, La Jolla, California, USA.
Isis Pharmaceuticals, Carlsbad, California, USA
| | - Brett P. Monia
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, California, USA.
The Scripps Research Institute, La Jolla, California, USA.
Center for Neurologic Study, La Jolla, California, USA.
Department of Neurosciences, University of California, San Diego, La Jolla, California, USA.
Isis Pharmaceuticals, Carlsbad, California, USA
| | - Thomas P. Condon
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, California, USA.
The Scripps Research Institute, La Jolla, California, USA.
Center for Neurologic Study, La Jolla, California, USA.
Department of Neurosciences, University of California, San Diego, La Jolla, California, USA.
Isis Pharmaceuticals, Carlsbad, California, USA
| | - Gene Hung
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, California, USA.
The Scripps Research Institute, La Jolla, California, USA.
Center for Neurologic Study, La Jolla, California, USA.
Department of Neurosciences, University of California, San Diego, La Jolla, California, USA.
Isis Pharmaceuticals, Carlsbad, California, USA
| | - Christian S. Lobsiger
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, California, USA.
The Scripps Research Institute, La Jolla, California, USA.
Center for Neurologic Study, La Jolla, California, USA.
Department of Neurosciences, University of California, San Diego, La Jolla, California, USA.
Isis Pharmaceuticals, Carlsbad, California, USA
| | - Chris M. Ward
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, California, USA.
The Scripps Research Institute, La Jolla, California, USA.
Center for Neurologic Study, La Jolla, California, USA.
Department of Neurosciences, University of California, San Diego, La Jolla, California, USA.
Isis Pharmaceuticals, Carlsbad, California, USA
| | - Melissa McAlonis-Downes
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, California, USA.
The Scripps Research Institute, La Jolla, California, USA.
Center for Neurologic Study, La Jolla, California, USA.
Department of Neurosciences, University of California, San Diego, La Jolla, California, USA.
Isis Pharmaceuticals, Carlsbad, California, USA
| | - Hongbing Wei
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, California, USA.
The Scripps Research Institute, La Jolla, California, USA.
Center for Neurologic Study, La Jolla, California, USA.
Department of Neurosciences, University of California, San Diego, La Jolla, California, USA.
Isis Pharmaceuticals, Carlsbad, California, USA
| | - Ed V. Wancewicz
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, California, USA.
The Scripps Research Institute, La Jolla, California, USA.
Center for Neurologic Study, La Jolla, California, USA.
Department of Neurosciences, University of California, San Diego, La Jolla, California, USA.
Isis Pharmaceuticals, Carlsbad, California, USA
| | - C. Frank Bennett
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, California, USA.
The Scripps Research Institute, La Jolla, California, USA.
Center for Neurologic Study, La Jolla, California, USA.
Department of Neurosciences, University of California, San Diego, La Jolla, California, USA.
Isis Pharmaceuticals, Carlsbad, California, USA
| | - Don W. Cleveland
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, California, USA.
The Scripps Research Institute, La Jolla, California, USA.
Center for Neurologic Study, La Jolla, California, USA.
Department of Neurosciences, University of California, San Diego, La Jolla, California, USA.
Isis Pharmaceuticals, Carlsbad, California, USA
| |
Collapse
|
127
|
Culotta VC, Yang M, O'Halloran TV. Activation of superoxide dismutases: putting the metal to the pedal. BIOCHIMICA ET BIOPHYSICA ACTA 2006; 1763:747-58. [PMID: 16828895 PMCID: PMC1633718 DOI: 10.1016/j.bbamcr.2006.05.003] [Citation(s) in RCA: 378] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 05/10/2006] [Accepted: 05/10/2006] [Indexed: 12/25/2022]
Abstract
Superoxide dismutases (SOD) are important anti-oxidant enzymes that guard against superoxide toxicity. Various SOD enzymes have been characterized that employ either a copper, manganese, iron or nickel co-factor to carry out the disproportionation of superoxide. This review focuses on the copper and manganese forms, with particular emphasis on how the metal is inserted in vivo into the active site of SOD. Copper and manganese SODs diverge greatly in sequence and also in the metal insertion process. The intracellular copper SODs of eukaryotes (SOD1) can obtain copper post-translationally, by way of interactions with the CCS copper chaperone. CCS also oxidizes an intrasubunit disulfide in SOD1. Adventitious oxidation of the disulfide can lead to gross misfolding of immature forms of SOD1, particularly with SOD1 mutants linked to amyotrophic lateral sclerosis. In the case of mitochondrial MnSOD of eukaryotes (SOD2), metal insertion cannot occur post-translationally, but requires new synthesis and mitochondrial import of the SOD2 polypeptide. SOD2 can also bind iron in vivo, but is inactive with iron. Such metal ion mis-incorporation with SOD2 can become prevalent upon disruption of mitochondrial metal homeostasis. Accurate and regulated metallation of copper and manganese SOD molecules is vital to cell survival in an oxygenated environment.
Collapse
Affiliation(s)
- Valeria Cizewski Culotta
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
128
|
Faiz M, Acarin L, Peluffo H, Villapol S, Castellano B, González B. Antioxidant Cu/Zn SOD: Expression in postnatal brain progenitor cells. Neurosci Lett 2006; 401:71-6. [PMID: 16567040 DOI: 10.1016/j.neulet.2006.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 03/01/2006] [Accepted: 03/01/2006] [Indexed: 01/19/2023]
Abstract
Precursor cells have been shown to be affected by oxidative stress, in vivo and vitro, but little is known about the expression of antioxidant mechanisms in neuronal/glial differentiation. We have characterized the expression of Cu/Zn superoxide dismutase (Cu/Zn SOD), one of the main antioxidant proteins involved in the breakdown of superoxide, in the immature rat dorsolateral subventricular zone (SVZ), rostral migratory stream (RMS) and hippocampal subgranular zone (SGZ). Progenitor cells were identified immunohistochemically on cryostat sections by 5'Bromodeoxyuridine (BrdU) incorporation and expressing cells were further characterized using double labeling for progenitor markers. In the SVZ, only a subpopulation of BrdU+ cells, mostly found in the medial SVZ, expressed Cu/Zn SOD. These cells were mostly nestin+ and some were also vimentin+. In contrast, in the lateral SVZ few Cu/Zn SOD+/BrdU+ cells were found. These were primarily nestin+, vimentin-, showed some PSA-NCAM expression, but only a few were NG2+. In the RMS and SGZ virtually all BrdU+ progenitors were Cu/Zn SOD+ and expressed nestin and vimentin. Some RMS cells were also PSA-NCAM+. These findings show a heterogeneous expression of Cu/Zn SOD in restricted cell types in the germinative zones and suggest a role for antioxidant Cu/Zn SOD in progenitor cells of the immature rat brain.
Collapse
Affiliation(s)
- Maryam Faiz
- Department of Cell Biology, Physiology and Immunology, Unit of Medical Histology, and Institute of Neurosciences, Universitat Autònoma de Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
129
|
Furukawa Y, O'Halloran TV. Posttranslational modifications in Cu,Zn-superoxide dismutase and mutations associated with amyotrophic lateral sclerosis. Antioxid Redox Signal 2006; 8:847-67. [PMID: 16771675 PMCID: PMC1633719 DOI: 10.1089/ars.2006.8.847] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Activation of the enzyme Cu,Zn-superoxide dismutase (SOD1) involves several posttranslational modifications including copper and zinc binding, as well as formation of the intramolecular disulfide bond. The copper chaperone for SOD1, CCS, is responsible for intracellular copper loading in SOD1 under most physiological conditions. Recent in vitro and in vivo assays reveal that CCS not only delivers copper to SOD1 under stringent copper limitation, but it also facilitates the stepwise conversion of the disulfide-reduced immature SOD1 to the active disulfide-containing enzyme. The two new functions attributed to CCS, (i.e., O(2)-dependent sulfhydryl oxidase- and disulfide isomerase-like activities) indicate that this protein has attributes of the larger class of molecular chaperones. The CCS-dependent activation of SOD1 is dependent upon oxygen availability, suggesting that the cell only loads copper and activates this enzyme when O(2)-based oxidative stress is present. Thiol/disulfide status as well as metallation state of SOD1 significantly affects its structure and protein aggregation, which are relevant in pathologies of a neurodegenerative disease, amyotrophic lateral sclerosis (ALS). The authors review here a mechanism for posttranslational activation of SOD1 and discuss models for ALS in which the most immature forms of the SOD1 polypeptide exhibits propensity to form toxic aggregates.
Collapse
Affiliation(s)
- Yoshiaki Furukawa
- Department of Chemistry, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, USA
| | | |
Collapse
|
130
|
Danzeisen R, Achsel T, Bederke U, Cozzolino M, Crosio C, Ferri A, Frenzel M, Gralla EB, Huber L, Ludolph A, Nencini M, Rotilio G, Valentine JS, Carrì MT. Superoxide dismutase 1 modulates expression of transferrin receptor. J Biol Inorg Chem 2006; 11:489-98. [PMID: 16680451 DOI: 10.1007/s00775-006-0099-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Accepted: 03/01/2006] [Indexed: 10/24/2022]
Abstract
Copper-zinc superoxide dismutase (SOD1) plays a protective role against the toxicity of superoxide, and studies in Saccharomyces cerevisiae and in Drosophila have suggested an additional role for SOD1 in iron metabolism. We have studied the effect of the modulation of SOD1 levels on iron metabolism in a cultured human glial cell line and in a mouse motoneuronal cell line. We observed that levels of the transferrin receptor and the iron regulatory protein 1 were modulated in response to altered intracellular levels of superoxide dismutase activity, carried either by wild-type SOD1 or by an SOD-active amyotrophic lateral sclerosis (ALS) mutant enzyme, G93A-SOD1, but not by a superoxide dismutase inactive ALS mutant, H46R-SOD1. Ferritin expression was also increased by wild-type SOD1 overexpression, but not by mutant SOD1s. We propose that changes in superoxide levels due to alteration of SOD1 activity affect iron metabolism in glial and neuronal cells from higher eukaryotes and that this may be relevant to diseases of the nervous system.
Collapse
Affiliation(s)
- Ruth Danzeisen
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Peluffo H, Acarin L, Arís A, González P, Villaverde A, Castellano B, González B. Neuroprotection from NMDA excitotoxic lesion by Cu/Zn superoxide dismutase gene delivery to the postnatal rat brain by a modular protein vector. BMC Neurosci 2006; 7:35. [PMID: 16638118 PMCID: PMC1462999 DOI: 10.1186/1471-2202-7-35] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Accepted: 04/25/2006] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Superoxide mediated oxidative stress is a key neuropathologic mechanism in acute central nervous system injuries. We have analyzed the neuroprotective efficacy of the transient overexpression of antioxidant enzyme Cu/Zn Superoxide dismutase (SOD) after excitotoxic injury to the immature rat brain by using a recently constructed modular protein vector for non-viral gene delivery termed NLSCt. For this purpose, animals were injected with the NLSCt vector carrying the Cu/Zn SOD or the control GFP transgenes 2 hours after intracortical N-methyl-D-aspartate (NMDA) administration, and daily functional evaluation was performed. Moreover, 3 days after, lesion volume, neuronal degeneration and nitrotyrosine immunoreactivity were evaluated. RESULTS Overexpression of Cu/Zn SOD transgene after NMDA administration showed improved functional outcome and a reduced lesion volume at 3 days post lesion. In secondary degenerative areas, increased neuronal survival as well as decreased numbers of degenerating neurons and nitrotyrosine immunoreactivity was seen. Interestingly, injection of the NLSCt vector carrying the control GFP transgene also displayed a significant neuroprotective effect but less pronounced. CONCLUSION When the appropriate levels of Cu/Zn SOD are expressed transiently after injury using the non-viral modular protein vector NLSCt a neuroprotective effect is seen. Thus recombinant modular protein vectors may be suitable for in vivo gene therapy, and Cu/Zn SOD should be considered as an interesting therapeutic transgene.
Collapse
Affiliation(s)
- Hugo Peluffo
- Unitat d'Histologia, Torre M5, Facultat de Medicina, Departament de Biologia Cel.lular, Fisiologia i Immunologia, and Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Spain
| | - Laia Acarin
- Unitat d'Histologia, Torre M5, Facultat de Medicina, Departament de Biologia Cel.lular, Fisiologia i Immunologia, and Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Spain
| | - Anna Arís
- Institut de Biotecnologia i de Biomedicina and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193, Spain
| | - Pau González
- Unitat d'Histologia, Torre M5, Facultat de Medicina, Departament de Biologia Cel.lular, Fisiologia i Immunologia, and Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Spain
| | - Antoni Villaverde
- Institut de Biotecnologia i de Biomedicina and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193, Spain
| | - Bernardo Castellano
- Unitat d'Histologia, Torre M5, Facultat de Medicina, Departament de Biologia Cel.lular, Fisiologia i Immunologia, and Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Spain
| | - Berta González
- Unitat d'Histologia, Torre M5, Facultat de Medicina, Departament de Biologia Cel.lular, Fisiologia i Immunologia, and Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Spain
| |
Collapse
|
132
|
Avossa D, Grandolfo M, Mazzarol F, Zatta M, Ballerini L. Early signs of motoneuron vulnerability in a disease model system: Characterization of transverse slice cultures of spinal cord isolated from embryonic ALS mice. Neuroscience 2006; 138:1179-94. [PMID: 16442737 DOI: 10.1016/j.neuroscience.2005.12.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 11/10/2005] [Accepted: 12/02/2005] [Indexed: 10/25/2022]
Abstract
Mutations in the SOD1 gene are associated with familial amyotrophic lateral sclerosis. The mechanisms by which these mutations lead to cell loss within the spinal cord ventral horns are unknown. In the present report we used the G93A transgenic mouse model of amyotrophic lateral sclerosis to develop and characterize an in vitro tool for the investigation of subtle alterations of spinal tissue prior to frank neuronal degeneration. To this aim, we developed organotypic slice cultures from wild type and G93A embryonic spinal cords. We combined immunocytochemistry and electron microscopy techniques to compare wild type and G93A spinal cord tissues after 14 days of growth under standard in vitro conditions. By SMI32 and choline acetyl transferase immunostaining, the distribution and morphology of motoneurons were compared in the two culture groups. Wild type and mutant cultures displayed no differences in the analyzed parameters as well as in the number of motoneurons. Similar results were observed when glial fibrillary acidic protein and myelin basic protein-positive cells were examined. Cell types within the G93A slice underwent maturation and slices could be maintained in culture for at least 3 weeks when prepared from embryos. Electron microscopy investigation confirmed the absence of early signs of mitochondria vacuolization or protein aggregate formation in G93A ventral horns. However, a significantly different ratio between inhibitory and excitatory synapses was present in G93A cultures, when compared with wild type ones, suggesting the expression of subtle synaptic dysfunction in G93A cultured tissue. When compared with controls, G93A motoneurons exhibited increased vulnerability to AMPA glutamate receptor-mediated excitotoxic stress prior to clear disease appearance. This in vitro disease model may thus represent a valuable tool to test early mechanisms contributing to motoneuron degeneration and potential therapeutic molecular interventions.
Collapse
Affiliation(s)
- D Avossa
- Neurobiology Sector and Istituto Nazionale di Fisica della Materia Unit, International School for Advanced Studies, via Beirut 2-4, 34014 Trieste, Italy
| | | | | | | | | |
Collapse
|
133
|
Cozzolino M, Ferri A, Ferraro E, Rotilio G, Cecconi F, Carrì MT. Apaf1 mediates apoptosis and mitochondrial damage induced by mutant human SOD1s typical of familial amyotrophic lateral sclerosis. Neurobiol Dis 2006; 21:69-79. [PMID: 16046141 DOI: 10.1016/j.nbd.2005.06.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Revised: 06/08/2005] [Accepted: 06/15/2005] [Indexed: 11/22/2022] Open
Abstract
Several studies have indicated that apoptotic pathways are responsible for the loss of motor neurons that constitute the hallmark of amyotrophic lateral sclerosis (ALS). In this study, we demonstrate that apoptosis induced by the expression of several mutant Cu,Zn superoxide dismutases (SOD1) typical of familial ALS is mediated by Apaf1, a scaffold protein involved in neural development. Using different cell lines of neuronal origin and modulating the expression of both mutant SOD1s and Apaf1, we show that the removal of Apaf1 prevents cells death. Interestingly, intercepting activation of the caspases cascade is also effective in preventing both the mitochondrial damage and the increase in the production of reactive oxygen species induced by fALS-SOD1, even in the presence of cytochrome c release. This death pathway may be crucial also for the pathogenesis of the sporadic form of the disease, where markers of increased oxidative stress and mitochondria damage have been found.
Collapse
Affiliation(s)
- Mauro Cozzolino
- Lab. di Neurochimica, Centro di Neurobiologia Sperimentale Mondino-Tor Vergata-Santa Lucia, Rome, Italy
| | | | | | | | | | | |
Collapse
|
134
|
Tiwari A, Xu Z, Hayward LJ. Aberrantly Increased Hydrophobicity Shared by Mutants of Cu,Zn-Superoxide Dismutase in Familial Amyotrophic Lateral Sclerosis. J Biol Chem 2005; 280:29771-9. [PMID: 15958382 DOI: 10.1074/jbc.m504039200] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
More than 100 different mutations in the gene encoding Cu,Zn-superoxide dismutase (SOD1) cause preferential motor neuron degeneration in familial amyotrophic lateral sclerosis (ALS). Although the cellular target(s) of mutant SOD1 toxicity have not been precisely specified, evidence to date supports the hypothesis that ALS-related mutations may increase the burden of partially unfolded SOD1 species. Influences that may destabilize SOD1 in vivo include impaired metal ion binding, reduction of the intrasubunit disulfide bond, or oxidative modification. In this study, we observed that metal-deficient as-isolated SOD1 mutants (H46R, G85R, D124V, D125H, and S134N) with disordered electrostatic and zinc-binding loops exhibited aberrant binding to hydrophobic beads in the absence of other destabilizing agents. Other purified ALS-related mutants that can biologically incorporate nearly normal amounts of stabilizing zinc ions (A4V, L38V, G41S, D90A, and G93A) exhibited maximal hydrophobic behavior after exposure to both a disulfide reducing agent and a metal chelator, while normal SOD1 was more resistant to these agents. Moreover, we detected hydrophobic SOD1 species in lysates from affected tissues in G85R and G93A mutant but not wildtype SOD1 transgenic mice. These findings suggest that a susceptibility to the cellular disulfide reducing environment and zinc loss may convert otherwise stable SOD1 mutants into metal-deficient forms with locally destabilized electrostatic and zinc-binding loops. These abnormally hydrophobic SOD1 species may promote aberrant interactions of the enzyme with itself or with other cellular constituents to produce toxicity in familial ALS.
Collapse
Affiliation(s)
- Ashutosh Tiwari
- Department of Neurology, University of Massachusetts Medical School, Worcester, 01655, USA
| | | | | |
Collapse
|
135
|
Rizzardini M, Mangolini A, Lupi M, Ubezio P, Bendotti C, Cantoni L. Low levels of ALS-linked Cu/Zn superoxide dismutase increase the production of reactive oxygen species and cause mitochondrial damage and death in motor neuron-like cells. J Neurol Sci 2005; 232:95-103. [PMID: 15850589 DOI: 10.1016/j.jns.2005.02.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2004] [Revised: 11/30/2004] [Accepted: 02/10/2005] [Indexed: 11/29/2022]
Abstract
Mutations of Cu/Zn superoxide dismutase (SOD1) are found in patients with familial amyotrophic lateral sclerosis (FALS). A cellular model of FALS was developed by stably transfecting the motor neuron-like cell line NSC-34 with human wild type (wt) or mutant (G93A) SOD1. Expression levels of G93ASOD1 were close to those seen in the human disease. The presence of G93ASOD1 did not alter cell proliferation but toxicity was evident when the cells were in the growth plateau phase. Flow cytometry analysis indicated that, in this phase, G93ASOD1 significantly lowered viability and that the level of reactive oxygen species was significantly higher in living G93ASOD1 cells compared to wt SOD1 cells. Biparametric analysis of mitochondrial membrane potential and viability of transfected cells highlighted a peculiar population of damaged cells with strong mitochondrial depolarization in the G93ASOD1 cells. Mitochondrial function seemed related to the level of the mutant protein since MTT conversion decreased when expression of G93ASOD1 doubled after treating cells with sodium butyrate. The mutant protein rendered G93ASOD1 cells more sensitive to mitochondrial dysfunction induced by stimuli that alter cellular free radical homeostasis, like serum withdrawal, depletion of glutathione by ethacrynic acid or rotenone-mediated inhibition of complex I of the mitochondrial electron transport chain. In conclusion, even a small amount of mutant SOD1 put motor neurons in a condition of oxidative stress and mitochondrial damage that causes cell vulnerability and death.
Collapse
Affiliation(s)
- Milena Rizzardini
- Laboratory of Molecular Pathology, Istituto di Ricerche Farmacologiche Mario Negri, Via Eritrea 62, 20157 Milan, Italy
| | | | | | | | | | | |
Collapse
|
136
|
Kirkinezos IG, Bacman SR, Hernandez D, Oca-Cossio J, Arias LJ, Perez-Pinzon MA, Bradley WG, Moraes CT. Cytochrome c association with the inner mitochondrial membrane is impaired in the CNS of G93A-SOD1 mice. J Neurosci 2005; 25:164-72. [PMID: 15634778 PMCID: PMC6725219 DOI: 10.1523/jneurosci.3829-04.2005] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A "gain-of-function" toxic property of mutant Cu-Zn superoxide dismutase 1 (SOD1) is involved in the pathogenesis of some familial cases of amyotrophic lateral sclerosis (ALS). Expression of a mutant form of the human SOD1 gene in mice causes a degeneration of motor neurons, leading to progressive muscle weakness and hindlimb paralysis. Transgenic mice overexpressing a mutant human SOD1 gene (G93A-SOD1) were used to examine the mitochondrial involvement in familial ALS. We observed a decrease in mitochondrial respiration in brain and spinal cord of the G93A-SOD1 mice. This decrease was significant only at the last step of the respiratory chain (complex IV), and it was not observed in transgenic wild-type SOD1 and nontransgenic mice. Interestingly, this decrease was evident even at a very early age in mice, long before any clinical symptoms arose. The effect seemed to be CNS specific, because no decrease was observed in liver mitochondria. Differences in complex IV respiration between brain mitochondria of G93A-SOD1 and control mice were abolished when reduced cytochrome c was used as an electron donor, pinpointing the defect to cytochrome c. Submitochondrial studies showed that cytochrome c in the brain of G93A-SOD1 mice had a reduced association with the inner mitochondrial membrane (IMM). Brain mitochondrial lipids, including cardiolipin, had increased peroxidation in G93A-SOD1 mice. These results suggest a mechanism by which mutant SOD1 can disrupt the association of cytochrome c with the IMM, thereby priming an apoptotic program.
Collapse
Affiliation(s)
- Ilias G Kirkinezos
- Department of Cell Biology and Anatomy, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | | | | | | | |
Collapse
|
137
|
Lobsiger CS, Garcia ML, Ward CM, Cleveland DW. Altered axonal architecture by removal of the heavily phosphorylated neurofilament tail domains strongly slows superoxide dismutase 1 mutant-mediated ALS. Proc Natl Acad Sci U S A 2005; 102:10351-6. [PMID: 16002469 PMCID: PMC1177385 DOI: 10.1073/pnas.0503862102] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Eliminating assembled neurofilaments (NFs) from axons or misaccumulating NFs in motor neuron cell bodies strongly slows disease in mouse models of mutant superoxide dismutase 1 (SOD1)-induced amyotrophic lateral sclerosis. One proposal for how reducing axonal NFs can increase survival is that the multiphosphorylated tail domains of the two larger NF subunits act in motor neuron cell bodies as phosphorylation sinks where they mitigate cyclin-dependent kinase 5 dysregulation induced by mutant SOD1. Elimination by gene targeting in mice of the NF medium and NF heavy tail domains and their 58 known phosphorylation sites accelerates aberrant phosphorylation of other neuronal substrates while leaving overall NF content unaltered. However, disease onset is significantly delayed and survival is extended, inconsistent with the ameliorative property of altered NF content protecting by serving as substrates for dysregulation of any NF kinase. Moreover, at comparable disease stages significantly more surviving motor neurons and axons were found in SOD1 mutant mice deleted in the NF tails than in similar mice with wild-type NFs. This finding supports noncell autonomous toxicity in SOD1 mutant-mediated amyotrophic lateral sclerosis: removal of the NF tails slows damage developed directly within motor neurons, but SOD1 mutant damage within nonneuronal supporting cells reduces motor neuron functionality.
Collapse
Affiliation(s)
- Christian S Lobsiger
- Ludwig Institute for Cancer Research and Department of Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
138
|
Liu J, Shinobu LA, Ward CM, Young D, Cleveland DW. Elevation of the Hsp70 chaperone does not effect toxicity in mouse models of familial amyotrophic lateral sclerosis. J Neurochem 2005; 93:875-82. [PMID: 15857390 DOI: 10.1111/j.1471-4159.2005.03054.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mutations in copper/zinc superoxide dismutase (SOD1) account for 10-20% of a familial form of amyotrophic lateral sclerosis (ALS). A common feature of SOD1 mutants is abnormal aggregation of the aberrant SOD1 in neurons and glia. We now report that in ALS transgenic mouse models the constitutively expressed heat shock protein 70 (Hsp70) is mislocalized into aggregates together with mutant SOD1 and ubiquitin. Forcing increased synthesis of Hsp70 ameliorates both aggregate formation and toxicity in primary motor neurons in culture. However, chronic increase in an inducible form of Hsp70 to about 10-fold its normal level is shown here not to affect disease course or pathology developed in mice from accumulation of any of three familial ALS causing SOD1 mutants with different underlying biochemical characteristics. Therefore, increasing Hsp70 to a level that is protective in mouse models of acute ischemic insult and selected neurodegenerative disorders is not sufficient to ameliorate mutant SOD1-mediated toxicity.
Collapse
Affiliation(s)
- Jian Liu
- Ludwig Institute for Cancer Research and Department of Neurosciences, University of California, San Diego, La Jolla, 92093, USA
| | | | | | | | | |
Collapse
|
139
|
Miller TM, Kaspar BK, Kops GJ, Yamanaka K, Christian LJ, Gage FH, Cleveland DW. Virus-delivered small RNA silencing sustains strength in amyotrophic lateral sclerosis. Ann Neurol 2005; 57:773-6. [PMID: 15852369 PMCID: PMC1351126 DOI: 10.1002/ana.20453] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mutations in superoxide dismutase cause a subset of familial amyotrophic lateral sclerosis and provoke progressive paralysis when expressed in mice. After retrograde transport to the spinal cord following injection into muscles, an adeno-associated virus carrying a gene that encodes a small interfering RNA was shown to target superoxide dismutase messenger RNA for degradation. The corresponding decrease in mutant superoxide dismutase in spinal motor neurons preserved grip strength. This finding provides proof of principle for the selective reduction of any neuronal protein and supports intramuscular injections of a small interfering RNA-encoding virus as a viable therapy for this type of familial amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Timothy M. Miller
- From the Ludwig Institute for Cancer Research and
- Neurosciences Department, University of California, San Diego
| | - Brian K. Kaspar
- Salk Institute for Biological Studies, La Jolla, CA; and
- Columbus Children Research Institute, Columbus, OH
| | | | | | | | - Fred H. Gage
- Salk Institute for Biological Studies, La Jolla, CA; and
| | - Don W. Cleveland
- From the Ludwig Institute for Cancer Research and
- Neurosciences Department, University of California, San Diego
- Address correspondence to Dr Cleveland, CMM-East 3080, Ludwig Institute for Cancer Research, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093., E-mail:
| |
Collapse
|
140
|
Peluffo H, Acarin L, Faiz M, Castellano B, Gonzalez B. Cu/Zn superoxide dismutase expression in the postnatal rat brain following an excitotoxic injury. J Neuroinflammation 2005; 2:12. [PMID: 15929797 PMCID: PMC1164430 DOI: 10.1186/1742-2094-2-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Accepted: 06/01/2005] [Indexed: 01/11/2023] Open
Abstract
Background In the nervous system, as in other organs, Cu/Zn superoxide dismutase (Cu/Zn SOD) is a key antioxidant enzyme involved in superoxide detoxification in normal cellular metabolism and after cell injury. Although it has been suggested that immature brain has a different susceptibility to oxidative damage than adult brain, the distribution and cell-specific expression of this enzyme in immature brain and after postnatal brain damage has not been documented. Methods In this study, we used immunohistochemistry and western blot to analyze the expression of Cu/Zn SOD in intact immature rat brain and in immature rat brain after an NMDA-induced excitotoxic cortical injury performed at postnatal day 9. Double immunofluorescence labelling was used to identify Cu/Zn SOD-expressing cell populations. Results In intact immature brain, Cu/Zn SOD enzyme was widely expressed at high levels in neurons mainly located in cortical layers II, III and V, in the sub-plate, in the pyriform cortex, in the hippocampus, and in the hypothalamus. Glial fibrillary acidic protein-positive cells only showed Cu/Zn SOD expression in the glia limitans and in scattered cells of the ventricle walls. No expression was detected in interfascicular oligodendroglia, microglia or endothelial cells. Following excitotoxic damage, neuronal Cu/Zn SOD was rapidly downregulated (over 2–4 hours) at the injection site before neurodegeneration signals and TUNEL staining were observed. Later, from 1 day post-lesion onward, an upregulation of Cu/Zn SOD was found due to increased expression in astroglia. A further increase was observed at 3, 5 and 7 days that corresponded to extensive induction of Cu/Zn SOD in highly reactive astrocytes and in the astroglial scar. Conclusion We show here that, in the intact immature brain, the expression of Cu/Zn SOD was mainly found in neurons. When damage occurs, a strong and very rapid downregulation of this enzyme precedes neuronal degeneration, and is followed by an upregulation of Cu/Zn SOD in astroglial cells.
Collapse
Affiliation(s)
- Hugo Peluffo
- Unit of Histology, Department Of Cell Biology, Physiology, and Immunology; Autonomous University of Barcelona, 08193, Spain
- Institute of Neuroscience, Autonomous University of Barcelona, 08193, Spain
| | - Laia Acarin
- Unit of Histology, Department Of Cell Biology, Physiology, and Immunology; Autonomous University of Barcelona, 08193, Spain
- Institute of Neuroscience, Autonomous University of Barcelona, 08193, Spain
| | - Maryam Faiz
- Unit of Histology, Department Of Cell Biology, Physiology, and Immunology; Autonomous University of Barcelona, 08193, Spain
- Institute of Neuroscience, Autonomous University of Barcelona, 08193, Spain
| | - Bernardo Castellano
- Unit of Histology, Department Of Cell Biology, Physiology, and Immunology; Autonomous University of Barcelona, 08193, Spain
- Institute of Neuroscience, Autonomous University of Barcelona, 08193, Spain
| | - Berta Gonzalez
- Unit of Histology, Department Of Cell Biology, Physiology, and Immunology; Autonomous University of Barcelona, 08193, Spain
- Institute of Neuroscience, Autonomous University of Barcelona, 08193, Spain
| |
Collapse
|
141
|
Vande Velde C, Garcia ML, Yin X, Trapp BD, Cleveland DW. The neuroprotective factor Wlds does not attenuate mutant SOD1-mediated motor neuron disease. Neuromolecular Med 2005; 5:193-203. [PMID: 15626820 DOI: 10.1385/nmm:5:3:193] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Revised: 09/15/2004] [Accepted: 09/20/2004] [Indexed: 11/11/2022]
Abstract
Selective degeneration and death of motor neurons in SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS) is accompanied by axonal disorganization and reduced slow axonal transport in the three most frequently used mouse models of mutant SOD1-mediated ALS. To test whether suppression of axonal degeneration (frequently known as Wallerian degeneration) could slow disease development, we took advantage of a spontaneous mouse mutant Wld(s) (Wallerian degeneration slow) in which the programmed axonal degenerative process that is normally activated after axonal injury is significantly delayed. Despite its effectiveness in delaying axonal loss in other neurodegenerative models, the presence of Wld(s) did not slow disease onset, ameliorate mutant motor neuron death, axonal degeneration, or preserve synaptic attachments in mice that develop disease from ALS-linked SOD1 mutants SOD1G37R or SOD1G85R. However, presynaptic endings in both the presence and absence of Wld(s) showed high accumulations of mitochondria and synaptic vesicles, implicating errors of retrograde transport as a consequence of SOD1-mutant damage to axons.
Collapse
Affiliation(s)
- Christine Vande Velde
- Ludwig Institute for Cancer Research and Departments of Medicine and Neuroscience, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
142
|
Watanabe Y, Yasui K, Nakano T, Doi K, Fukada Y, Kitayama M, Ishimoto M, Kurihara S, Kawashima M, Fukuda H, Adachi Y, Inoue T, Nakashima K. Mouse motor neuron disease caused by truncated SOD1 with or without C-terminal modification. ACTA ACUST UNITED AC 2005; 135:12-20. [PMID: 15857664 DOI: 10.1016/j.molbrainres.2004.11.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Revised: 11/08/2004] [Accepted: 11/13/2004] [Indexed: 11/29/2022]
Abstract
Mutation of Cu/Zn superoxide dismutase (SOD1) contributes to a portion of the cases of familial amyotrophic lateral sclerosis (FALS). We previously reported on a FALS family whose members had a mutant form of SOD1 characterized by a 2-base pair (bp) deletion at codon 126 of the SOD1 gene. To investigate the cellular consequences of this mutation, we produced transgenic mice that expressed normal and mutated copies of human SOD1: wild-type SOD1 (W), wild-type SOD1 with a FLAG epitope at C-terminal (WF), mutated SOD1 with the 2-bp deletion (D), and SOD1 with the 2-bp deletion with FLAG (DF). The mice heterozygotic for the human mutated SOD1 (D and DF) showed distinct ALS-like motor symptoms, whereas the mice heterozygotic for the normal SOD1 (W and WF) mice did not. Homozygotes of D and DF lines showed the ALS symptoms at an earlier age and died earlier than the heterozygotes. By Northern blot analysis, the mRNAs for all human SOD1s were confirmed in these lines. All the human SOD1 proteins, except the D mutant, were detectable by immunoblot. The D protein was only confirmed when it was concentrated by immunoprecipitation. Neuropathologically, loss of spinal motor neurons and reactive gliosis were common features in the symptomatic lines. The remaining motor neurons in these mice also exhibited eosinophilic inclusions. The biochemical and pathological characteristics of these mice are quite similar to those of human FALS patients with same mutation. This intriguing model will provide an important source of information of the pathogenesis of FALS.
Collapse
Affiliation(s)
- Yasuhiro Watanabe
- Department of Neurology, Institute of Neurological Sciences, Faculty of Medicine, Tottori University, Nishi-cho 36-1,Yonago 683-8504, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Ikeda K, Aoki M, Kawazoe Y, Sakamoto T, Hayashi Y, Ishigaki A, Nagai M, Kamii R, Kato S, Itoyama Y, Watabe K. Motoneuron degeneration after facial nerve avulsion is exacerbated in presymptomatic transgenic rats expressing human mutant Cu/Zn superoxide dismutase. J Neurosci Res 2005; 82:63-70. [PMID: 16108072 DOI: 10.1002/jnr.20621] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We investigated motoneuron degeneration after proximal nerve injury in presymptomatic transgenic (tg) rats expressing human mutant Cu/Zn superoxide dismutase (SOD1). The right facial nerves of presymptomatic tg rats expressing human H46R or G93A SOD1 and their non-tg littermates were avulsed, and facial nuclei were examined at 2 weeks postoperation. Nissl-stained cell counts revealed that facial motoneuron loss after avulsion was exacerbated in H46R- and G93A-tg rats compared with their non-tg littermates. The loss of motoneurons in G93A-tg rats after avulsion was significantly greater than that in H46R-tg rats. Intense cytoplasmic immunolabeling for SOD1 in injured motoneurons after avulsion was demonstrated in H46R- and G93A-tg rats but not in their littermates. Facial axotomy did not induce significant motoneuron loss nor enhance SOD1 immunoreactivity in these tg rats and non-tg littermates at 2 weeks postoperation, although both axotomy and avulsion elicited intense immunolabeling for activating transcription factor-3, phosphorylated c-Jun, and phosphorylated heat shock protein 27 in injured motoneurons of all these animals. The present data indicate the increased vulnerability of injured motoneurons after avulsion in the presymptomatic mutant SOD1-tg rats.
Collapse
Affiliation(s)
- Ken Ikeda
- Department of Molecular Neuropathology, Tokyo Metropolitan Institute for Neuroscience, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Johnson MA, Macdonald TL. Accelerated CuZn-SOD-mediated oxidation and reduction in the presence of hydrogen peroxide. Biochem Biophys Res Commun 2004; 324:446-50. [PMID: 15465039 DOI: 10.1016/j.bbrc.2004.09.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Indexed: 10/26/2022]
Abstract
Copper, zinc-superoxide dismutase (CuZn-SOD) is a cytosolic, antioxidant enzyme that scavenges potentially damaging superoxide radical (()O(2)(-)). Under the proper conditions, CuZn-SOD also catalyzes the oxidation and reduction of certain small molecules. Here, we demonstrate that increased exposure to hydrogen peroxide (H(2)O(2)), a by-product of the ()O(2)(-) scavenging reaction, dramatically increases the ability of CuZn-SOD to oxidize melatonin and reduce S-nitrosoglutathione (GSNO). After a 15min in vitro incubation with CuZn-SOD and 1mM H(2)O(2), 76% of the melatonin was oxidized, compared to 52% with 0.25mM H(2)O(2), and just 9% without H(2)O(2). Pre-incubation with 1mM H(2)O(2) resulted in a 100% increase in the rate of GSNO breakdown by CuZn-SOD in the presence of glutathione (GSH) compared to untreated CuZn-SOD. Collectively, these data suggest that even small increases in intracellular H(2)O(2) levels may result in the oxidation and/or reduction of small molecules critical for proper cellular function.
Collapse
Affiliation(s)
- Michael A Johnson
- Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, VA 22904, USA.
| | | |
Collapse
|
145
|
Zimmerman MC, Davisson RL. Redox signaling in central neural regulation of cardiovascular function. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2004; 84:125-49. [PMID: 14769433 DOI: 10.1016/j.pbiomolbio.2003.11.009] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
One of the most prominent concepts to emerge in cardiovascular research over the past decade, especially in areas focused on angiotensin II (AngII), is that reactive oxygen species (ROS) are critical signaling molecules in a wide range of cellular processes. Many of the physiological effects of AngII are mediated by ROS, and alterations in AngII-mediated redox mechanisms are implicated in cardiovascular diseases such as hypertension and atherosclerosis. Although most investigations to date have focused on the vasculature as a key player, the nervous system has recently begun to gain attention in this field. Accumulating evidence suggests that ROS have important effects on central neural mechanisms involved in blood pressure regulation, volume homeostasis, and autonomic function, particularly those that involve AngII signaling. Furthermore, oxidant stress in the central nervous system is implicated in the neuro-dysregulation associated with some forms of hypertension and heart failure. The main objective of this review is to discuss the recent progress and prospects for this new field of central redox signaling in cardiovascular regulation, while also addressing the molecular tools that have spurred it forward.
Collapse
Affiliation(s)
- Matthew C Zimmerman
- Department of Anatomy and Cell Biology, Roy J and Lucille A Carver College of Medicine, The University of Iowa, Iowa City 52245, USA
| | | |
Collapse
|
146
|
Kirkinezos IG, Hernandez D, Bradley WG, Moraes CT. An ALS mouse model with a permeable blood-brain barrier benefits from systemic cyclosporine A treatment. J Neurochem 2004; 88:821-6. [PMID: 14756802 DOI: 10.1046/j.1471-4159.2003.02181.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To test potentially beneficial drugs to amyotrophic lateral sclerosis (ALS), we created an ALS mouse model with a permeable blood-brain barrier, by crossing the G93A-SOD1 transgenic mouse with a multiple drug resistance type 1a/b (mdr1a/b) gene knockout mouse. To validate the model, we administered cyclosporine A intraperitoneally to the mice. Cyclosporine A accumulated in the brain and spinal cord of this mouse model, whereas it was unable to penetrate the CNS of mdr1a/b wild-type animals. Systemic administration of cyclosporine A extended the life of the double-mutant male mice by approximately 12%. Surprisingly, the effect was more robust in male mice and only marginal in female mice. These results demonstrate the usefulness of this combined mouse model for the testing of potentially therapeutic drugs and support the role of mitochondrial-mediated apoptosis in the pathway to motor neuron death in SOD1-associated ALS.
Collapse
Affiliation(s)
- Ilias G Kirkinezos
- Department of Cell Biology and Anatomy, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | | | |
Collapse
|
147
|
Rakhit R, Crow JP, Lepock JR, Kondejewski LH, Cashman NR, Chakrabartty A. Monomeric Cu,Zn-superoxide dismutase is a common misfolding intermediate in the oxidation models of sporadic and familial amyotrophic lateral sclerosis. J Biol Chem 2004; 279:15499-504. [PMID: 14734542 DOI: 10.1074/jbc.m313295200] [Citation(s) in RCA: 257] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteinacious intracellular aggregates in motor neurons are a key feature of both sporadic and familial amyotrophic lateral sclerosis (ALS). These inclusion bodies are often immunoreactive for Cu,Zn-superoxide dismutase (SOD1) and are implicated in the pathology of ALS. On the basis of this and a similar clinical presentation of symptoms in the familial (fALS) and sporadic forms of ALS, we sought to investigate the possibility that there exists a common disease-related aggregation pathway for fALS-associated mutant SODs and wild type SOD1. We have previously shown that oxidation of fALS-associated mutant SODs produces aggregates that have the same morphological, structural, and tinctorial features as those found in SOD1 inclusion bodies in ALS. Here, we show that oxidative damage of wild type SOD at physiological concentrations ( approximately 40 microm) results in destabilization and aggregation in vitro. Oxidation of either mutant or wild type SOD1 causes the enzyme to dissociate to monomers prior to aggregation. Only small changes in secondary and tertiary structure are associated with monomer formation. These results indicate a common aggregation prone monomeric intermediate for wild type and fALS-associated mutant SODs and provides a link between sporadic and familial ALS.
Collapse
Affiliation(s)
- Rishi Rakhit
- Departments of Medical Biophysics and Biochemistry, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | | | | | | | | | | |
Collapse
|
148
|
Ilieva H, Nagano I, Murakami T, Shiote M, Shoji M, Abe K. Sustained induction of survival p-AKT and p-ERK signals after transient hypoxia in mice spinal cord with G93A mutant human SOD1 protein. J Neurol Sci 2004; 215:57-62. [PMID: 14568129 DOI: 10.1016/s0022-510x(03)00186-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Expression of survival p-AKT and p-ERK signals was examined by immunohistochemistry and Western blotting in the lumbar spinal cord of 12-week-old presymptomatic mice with human mutant G93A SOD1 gene (transgenic, Tg) and their wild-type (Wt) littermates during normoxia, and 0 and 6 h after 2 h of 9% hypoxia. During normoxia, a stronger p-AKT signal was detected in the nucleus of the motor neurons of Tg animals. At 0 h of recovery from 2 h of hypoxia, both p-AKT and p-ERK signals were induced at a slightly lower level in Tg (1.1-1.2-fold) compared to those of Wt (1.2-1.5-fold) animals. At 6 h of recovery, both p-AKT and p-ERK signals were sustained in the lumbar spinal motor neurons of Tg animals, while those in Wt animals quickly returned to baseline level. As a control, at 6 h of recovery, the hippocampus of Tg animals showed significantly sustained p-AKT levels, but not p-ERK levels, compared to Wt. The current results suggest that the presence of mutant SOD1 alters survival p-AKT and p-ERK signals, possibly to compensate for the acquired gain-of-function of the mutant protein.
Collapse
Affiliation(s)
- Hristelina Ilieva
- Department of Neurology, Graduate School of Medicine and Dentistry, Okayama University, 2-5-1 Shikata-cho, 700-8558 Okayama, Japan
| | | | | | | | | | | |
Collapse
|
149
|
Wharton SB, McDermott CJ, Grierson AJ, Wood JD, Gelsthorpe C, Ince PG, Shaw PJ. The cellular and molecular pathology of the motor system in hereditary spastic paraparesis due to mutation of the spastin gene. J Neuropathol Exp Neurol 2004; 62:1166-77. [PMID: 14656074 DOI: 10.1093/jnen/62.11.1166] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hereditary spastic paraparesis (HSP) is a genetically heterogeneous disorder, the most common cause of which is mutation of the spastin gene. Recent evidence suggests a role for spastin in microtubule dynamics, but the distribution of the protein within the CNS is unknown. The core neuropathology of HSP is distal degeneration of the lateral corticospinal tract and of fasciculus gracilis, but there are few neuropathological studies of cases with a defined mutation. We aimed to determine the distribution of spastin expression in the human CNS and to investigate the cellular pathology of the motor system in HSP due to mutation of the spastin gene. Using an antibody to spastin, we have carried out immunohistochemistry on postmortem brain. We have demonstrated that spastin is a neuronal protein. It is widely expressed in the CNS so that the selectivity of the degeneration in HSP is not due to the normal cellular distribution of the protein. We have identified mutation of the spastin gene in 3 autopsy cases of HSP. Distal degeneration of long tracts in the spinal cord, consistent with a dying back axonopathy, was accompanied by a microglial reaction. The presence of novel hyaline inclusions in anterior horn cells and an alteration in immunostaining for cytoskeletal proteins and mitochondria indicates that long tract degeneration is accompanied by cytopathology in the motor system and may support a role for derangement of cytoskeletal function. All 3 cases also demonstrated evidence of tau pathology outside the motor system, suggesting that the neuropathology is not confined to the motor system in spastin-related HSP.
Collapse
Affiliation(s)
- Stephen B Wharton
- Academic Unit of Pathology, University of Sheffield, Sheffield, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
150
|
Caughey B, Lansbury PT. Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci 2003; 26:267-98. [PMID: 12704221 DOI: 10.1146/annurev.neuro.26.010302.081142] [Citation(s) in RCA: 1279] [Impact Index Per Article: 58.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many neurodegenerative diseases, including Alzheimer's and Parkinson's and the transmissible spongiform encephalopathies (prion diseases), are characterized at autopsy by neuronal loss and protein aggregates that are typically fibrillar. A convergence of evidence strongly suggests that protein aggregation is neurotoxic and not a product of cell death. However, the identity of the neurotoxic aggregate and the mechanism by which it disables and eventually kills a neuron are unknown. Both biophysical studies aimed at elucidating the precise mechanism of in vitro aggregation and animal modeling studies support the emerging notion that an ordered prefibrillar oligomer, or protofibril, may be responsible for cell death and that the fibrillar form that is typically observed at autopsy may actually be neuroprotective. A subpopulation of protofibrils may function as pathogenic amyloid pores. An analogous mechanism may explain the neurotoxicity of the prion protein; recent data demonstrates that the disease-associated, infectious form of the prion protein differs from the neurotoxic species. This review focuses on recent experimental studies aimed at identification and characterization of the neurotoxic protein aggregates.
Collapse
Affiliation(s)
- Byron Caughey
- NIAID, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, USA.
| | | |
Collapse
|