101
|
Shibata N, Watanabe T, Okitsu T, Sakaguchi M, Takesue M, Kunieda T, Omoto K, Yamamoto S, Tanaka N, Kobayashi N. Establishment of an immortalized human hepatic stellate cell line to develop antifibrotic therapies. Cell Transplant 2003; 12:499-507. [PMID: 12953924 DOI: 10.3727/000000003108747064] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Because human hepatic stellate cells (HSCs) perform a crucial role in the progress of hepatic fibrosis, it is of great value to establish an immortalized human cell line that exhibits HSC characteristics and grows well in tissue cultures for the development of antifibrotic therapies. Thus, we engineered an immortalized human hepatic stellate cell (HSC) line TWNT-4 by retrovirally inducing human telomerase reverse transcriptase (hTERT) into LI 90 cells established from a human liver mesenchymal tumor. Parental LI 90 entered replicative senescence, whereas TWNT-4 showed telomerase activity and proliferated for more than population doubling level (PDL) 200 without any crisis. TWNT-4 expressed platelet-derived growth factor-beta receptor (PDGF-betaR), alpha-smooth muscle actin (alpha-SMA), and type I collagen (alpha1) and was considered to be an activated form of HSCs. Treatment of TWNT-4 cells with either 100 U/ml of IFN-gamma or 1 ng/ml of rapamycin (Rapa) for 14 days led to lower expression of type I collagen (alpha1) at RNA and protein levels. Exposure of TWNT-4 cells to both of IFN-gamma (10 U/ml) and Rapa (0.1 ng/ml) for 14 days effectively decreased the expression of type I collagen (alpha1), PDGF-betaR, and alpha-SMA expression and suppressed TGF-beta1 secretion of TWNT-4 cells. We successfully induced apoptosis by transducing TNF-related apoptosis-inducing ligand (TRAIL) into TWNT-4 cells using adenovirus vectors Ad/GT-TRAIL and Ad/PGK-GV-17. These findings suggested that immortalized activated HSC line TWNT-4 would be a useful means to develop antifibrotic therapies.
Collapse
Affiliation(s)
- Norikuni Shibata
- Division of Gastroenterology, Department of Internal Medicine, Kawasaki Medical School, 577 Matsushima, Kurashiki 701-0114, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Watanabe T, Shibata N, Westerman KA, Okitsu T, Allain JE, Sakaguchi M, Totsugawa T, Maruyama M, Matsumura T, Noguchi H, Yamamoto S, Hikida M, Ohmori A, Reth M, Weber A, Tanaka N, Leboulch P, Kobayashi N. Establishment of immortalized human hepatic stellate scavenger cells to develop bioartificial livers. Transplantation 2003; 75:1873-80. [PMID: 12811248 DOI: 10.1097/01.tp.0000064621.50907.a6] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Maintenance of liver-specific functions has been shown to be stabilized by co-cultivation of hepatocytes with hepatic stellate cells (HSC). Because the limited lifespan of human HSC is a major hurdle to their use, the authors report here the amplification of human HSC populations in vitro by retroviral transfer of human telomerase reverse transcriptase (hTERT). METHODS Human HSC strain LI 90 cells were transduced with a retroviral vector SSR#197 expressing hTERT and green fluorescent protein (GFP) cDNA flanked by a pair of loxP. TWNT-1, one of SSR#197-immortalized HSC, was characterized. Differentiated liver functions were evaluated in an immortalized human hepatocyte NKNT-3-TWNT-1 co-culture system. RESULTS TWNT-1 cells showed differential functions of HSC, including uptake of acetylated low-density lipoproteins and synthesis of collagen type I and hepatocyte growth factor. Efficient excision of the retrovirally transferred hTERT and GFP cDNAs was achieved by TAT-mediated expression of the Cre recombinase and subsequent GFP-negative cell sorting. When co-cultured with TWNT-1 cells, NKNT-3 increased protein expression of the detoxifying cytochrome P450-associated protein isoenzymes 3A4 and 2C9 and urea synthesis. CONCLUSIONS TWNT-1 cells could be valuable in the study of integrated liver functions and contribute to the optimization of liver cell therapies and bioartificial livers.
Collapse
Affiliation(s)
- Takamasa Watanabe
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Abstract
In the postgenomic era the mouse will be central to the challenge of ascribing a function to the 40,000 or so genes that constitute our genome. In this review, we summarize some of the classic and modern approaches that have fueled the recent dramatic explosion in mouse genetics. Together with the sequencing of the mouse genome, these tools will have a profound effect on our ability to generate new and more accurate mouse models and thus provide a powerful insight into the function of human genes during the processes of both normal development and disease.
Collapse
|
104
|
Cai J, Ito M, Nagata H, Westerman KA, Lafleur D, Chowdhury JR, Leboulch P, Fox IJ. Treatment of liver failure in rats with end-stage cirrhosis by transplantation of immortalized hepatocytes. Hepatology 2002; 36:386-94. [PMID: 12143047 DOI: 10.1053/jhep.2002.34614] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
The shortage of organ donors has impeded the development of human hepatocyte transplantation. Immortalized hepatocytes could provide an unlimited supply of transplantable cells. To determine whether immortalized hepatocytes could provide global metabolic support in end-stage liver disease, 35 immortalized rat hepatocyte clones were developed by transduction with the gene encoding the simian virus 40 T antigen (SV40Tag). The SV40Tag sequence and a suicide gene, herpes simplex virus thymidine kinase (HSV-tk), were flanked by loxP sequences so that they could be excised by Cre/lox recombination. When transplanted into the spleens of portacaval-shunted rats, 3 of the 35 immortalized hepatocyte clones prevented the development of hyperammonemia-induced hepatic encephalopathy. The protection was reversed by treatment with ganciclovir, which kills HSV-tk-expressing cells. Transplantation of alginate-encapsulated, immortalized hepatocytes into the spleens of cirrhotic rats resulted in significant improvement in prothrombin time, serum albumin and bilirubin levels, hepatic encephalopathy score, and duration of survival. The metabolic support provided by the immortalized cells equaled that observed after transplantation of primary rat hepatocytes. In conclusion, immortalized hepatocytes can function as well as primary hepatocytes following transplantation and can be engineered to contain safeguards that could make them clinically useful. Further investigation is warranted regarding the mechanisms of loss of mass or function of the transplanted hepatocytes over time and how the relatively few engrafted hepatocytes can ameliorate liver decompensation in cirrhosis.
Collapse
Affiliation(s)
- Jin Cai
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | | | | | | | | | | |
Collapse
|
105
|
Truckenmiller ME, Vawter MP, Zhang P, Conejero-Goldberg C, Dillon-Carter O, Morales N, Cheadle C, Becker KG, Freed WJ. AF5, a CNS cell line immortalized with an N-terminal fragment of SV40 large T: growth, differentiation, genetic stability, and gene expression. Exp Neurol 2002; 175:318-37. [PMID: 12061863 DOI: 10.1006/exnr.2002.7898] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Central nervous system progenitor cells that are self-renewing in culture and also differentiate under controlled conditions are potentially useful for developmental studies and for cell-based therapies. We characterized growth and plasticity properties and gene expression in a rat mesencephalic cell line, AF5, that was immortalized with an N-terminal fragment of SV40 large T (T155g). For over 150 population doublings in culture, the growth rate of AF5 cells remained steady, the cells remained responsive to bFGF, and telomerase activity and telomere lengths were unchanged. While karyotype analyses revealed some chromosomal abnormalities, these were also unchanged over time; additionally, no mutations in p53 gene sequences were found, and wild-type p53 activation was normal. AF5 cells produced PDGF, TGFbeta1, TGFbeta2, and bFGF. Similar to primary progenitor cells, AF5 cells retained their plasticity in culture; they could be propagated in an undifferentiated state as "neurospheres" in serum-free media or as adherent cultures in serum-containing media, and they differentiated when allowed to become confluent. Adherent subconfluent actively growing cultures expressed a marker for immature neurons, nestin, while few cells expressed the mature neuronal cell marker betaIII-tubulin. Confluent cultures ceased growing, developed differentiated morphologies, contained few or no nestin-expressing cells, and acquired betaIII-tubulin expression. Global gene expression was examined using a 15,000 gene microarray, comparing exponential growth with and without bFGF stimulation, and the differentiated state. The AF5 cell line exhibited stable genetic and growth properties over extended periods of time, while retaining the ability to differentiate in vitro. These data suggest that the AF5 cell line may be useful as an in vitro model system for studies of neural differentiation.
Collapse
Affiliation(s)
- M E Truckenmiller
- Cellular Neurobiology Research Branch, National Institute on Drug Abuse, 5500 Nathan Shock Drive, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Eaton MJ, Herman JP, Jullien N, Lopez TL, Martinez M, Huang J. Immortalized chromaffin cells disimmortalized with Cre/lox site-directed recombination for use in cell therapy for pain after partial nerve injury. Exp Neurol 2002; 175:49-60. [PMID: 12009759 DOI: 10.1006/exnr.2002.7883] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To prepare immortalized adrenal chromaffin cells for eventual clinical use, the immortalizing oncogene must be removed. We have utilized a Cre-mediated excision of a loxP-flanked Tag sequence to test whether immortalized chromaffin cells could be disimmortalized by this method. Cultures of embryonic rat adrenal cells were immortalized with the tsA-TN retroviral vector encoding the loxP-flanked temperature-sensitive allele of SV40 large T antigen (tsA-TN) and a positive/negative neo/HSV-TK sequence for selection with either G418 or gancyclovir, respectively. These cells were then infected with the 1710-CrePR1 bicistronic retroviral vector coding for a form of Cre modulatable by the synthetic steroid RU486. These immortalized loxTsTag/CrePR1/RAD cells expressed immunoreactivities (ir) for all the catecholamine enzymes: tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DbetaH), and phenylethanolamine-N-methyltransferase (PNMT). After initial incubation at 37 degrees C with RU486 for 3 days, followed by the addition of gancyclovir for 7 days, Tag-ir was not detectable in most of the surviving chromaffin cells, compared to 100% expression in immortalized loxTsTag/CreR1/RAD cells not treated with RU486 and gancyclovir. The expression of TH, DbetaH, and PNMT was increased after disimmortalization and the ability of disimmortalized cells to synthesize norepinephrine was also significantly increased compared to immortalized cells. When both types of chromaffin cells were transplanted in a model of neuropathic pain and partial nerve injury, both cell grafts were equally able to reverse the behavioral hypersensitivity induced by the injury. The use of Cre/lox site-directed disimmortalization of chromaffin cells that are able to deliver neuroactive molecules offers a novel approach to cell therapy.
Collapse
Affiliation(s)
- Mary J Eaton
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, 1095 NW 14th Terrace (R-48), Miami, Florida 33136, USA.
| | | | | | | | | | | |
Collapse
|
107
|
Allain JE, Dagher I, Mahieu-Caputo D, Loux N, Andreoletti M, Westerman K, Briand P, Franco D, Leboulch P, Weber A. Immortalization of a primate bipotent epithelial liver stem cell. Proc Natl Acad Sci U S A 2002; 99:3639-44. [PMID: 11904425 PMCID: PMC122576 DOI: 10.1073/pnas.062038599] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Liver regeneration after partial hepatectomy results primarily from the simple division of mature hepatocytes. However, during embryonic and fetal development or in circumstances under which postnatal hepatocytes are injured, organ regeneration is believed to occur from a compartment of epithelial liver stem or progenitor cells with biliary and hepatocytic bipotentiality. The ability to identify, isolate, and transplant epithelial liver stem cells from fetal liver would greatly facilitate the treatment of hepatic diseases currently requiring orthotopic liver transplantation. Here we report the identification and immortalization by retrovirus-mediated transfer of the simian virus 40 large T antigen gene of primate fetal epithelial liver cells with a dual hepatocytic biliary phenotype. These cells grow indefinitely in vitro and express the liver epithelial cell markers cytokeratins 8/18, the hepatocyte-specific markers albumin and alpha-fetoprotein, and the biliary-specific markers cytokeratins 7 and 19. Bipotentiality of gene expression was confirmed by clonal analysis initiated from single cells. Endogenous telomerase also is expressed constitutively. After orthotopic transplantation via the portal vein, approximately 50% of the injected cells integrated into the liver parenchyma of athymic mice without tumorigenicity. Three weeks after transplantation, cells having seeded in the liver parenchyma expressed both albumin and alpha-fetoprotein but had lost expression of cytokeratin 19. These results provide strong evidence for the existence of a bipotent epithelial liver stem cell in nonhuman primates. This unlimited source of donor cells also should enable the establishment of a model of allogenic liver cell transplantation in a large animal closely related to humans and shed light on important questions related to liver organogenesis and differentiation.
Collapse
Affiliation(s)
- Jean-Etienne Allain
- Equipe Mixte Inserm 00-20, Laboratoire de Transfert de Gènes Dans le Foie: Applications Thérapeutiques, Hôpital Antoine-Béclère, 157 Rue de la Porte de Trivaux, 92141 Clamart, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Noguchi H, Kobayashi N, Westerman KA, Sakaguchi M, Okitsu T, Totsugawa T, Watanabe T, Matsumura T, Fujiwara T, Ueda T, Miyazaki M, Tanaka N, Leboulch P. Controlled expansion of human endothelial cell populations by Cre-loxP-based reversible immortalization. Hum Gene Ther 2002; 13:321-34. [PMID: 11812287 DOI: 10.1089/10430340252769833] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Endothelial cells (ECs) play multiple physiological functions and are central to many pathological processes. Various biological studies as well as cell and gene therapy applications would benefit substantially from a procedure that would result in the expansion in culture of large numbers of highly differentiated human ECs. Here, we report the amplification in vitro of human EC populations, which occurred during the first phase of reversible immortalization resulting from the retroviral transfer of an oncogene that was subsequently excised by Cre-loxP-mediated site-specific recombination. Human umbilical vein endothelial cells (HUVECs) and human liver sinusoidal endothelial cells (HLSECs) were transduced with a retroviral vector that expresses the simian virus 40 large T (SV40T) gene flanked by positive and negative selectable markers and a pair of loxP recombination targets. Transduced HUVECs and HLSECs yielded clones with greatly extended life spans, referred to as HNNT-1 and HNNT-2 cells, respectively. HNNT-1 and HNNT-2 cells showed morphological characteristics of ECs and were maintained in culture up to population doubling level (PDL) 80 for HNNT-1 and PDL 65 for HNNT-2 cells. HNNT-1 and HNNT-2 cells were not tumorigenic when transplanted into severe combined immunodeficiency mice and were sensitive to ganciclovir as well as G418. Both cell clones expressed EC markers, which include factor VIII, VEGF receptors (Flt-1 and KDR/Flk-1), and CD34, and endocytosed acetylated low-density lipoproteins. Formation of capillary-like structures in a Matrigel assay was observed with HNNT-1 and HNNT-2 cells until at least PDL 50. Complete elimination of the transferred SV40T gene was achieved in virtually 100% of HNNT-1 and HNNT-2 cells after infection with a recombinant adenovirus expressing the Cre recombinase fused to a nuclear localization signal and subsequent selection with G418. Reverted cells maintained their differentiated EC phenotype. This study extends the utility of the reversible immortalization procedure and provides a means to expand primary human ECs of various sources for basic studies and possible cell and gene therapies.
Collapse
Affiliation(s)
- Hirofumi Noguchi
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Abstract
Although at least 35,000 human genes have been sequenced and mapped, adequate expression or functional information is available for only approximately 15% of them. Gene-trap mutagenesis is a technique that randomly generates loss-of-function mutations and reports the expression of many mouse genes. At present, several large-scale, gene-trap screens are being carried out with various new vectors, which aim to generate a public resource of mutagenized embryonic stem (ES) cells. This resource now includes more than 8,000 mutagenized ES-cell lines, which are freely available, making it an appropriate time to evaluate the recent advances in this area of genomic technology and the technical hurdles it has yet to overcome.
Collapse
MESH Headings
- Animals
- Chimera/genetics
- DNA, Recombinant/administration & dosage
- DNA, Recombinant/genetics
- Drosophila melanogaster/genetics
- Electroporation
- Embryo, Mammalian/cytology
- Embryo, Nonmammalian
- Enhancer Elements, Genetic/genetics
- Forecasting
- Gene Library
- Gene Targeting
- Genes/drug effects
- Genes/radiation effects
- Genes, Reporter
- Genetic Vectors/administration & dosage
- Genetic Vectors/genetics
- Lac Operon
- Mice
- Mice, Mutant Strains/genetics
- Mice, Transgenic
- Microinjections
- Mutagenesis, Insertional/methods
- Mutagenesis, Site-Directed
- Mutagens/pharmacology
- Promoter Regions, Genetic/genetics
- Retroviridae/genetics
- Stem Cells
Collapse
Affiliation(s)
- W L Stanford
- Programme in Development and Fetal Health, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Room 983, Toronto, Ontario, Canada M5G 1X5.
| | | | | |
Collapse
|
110
|
Pfeifer A, Brandon EP, Kootstra N, Gage FH, Verma IM. Delivery of the Cre recombinase by a self-deleting lentiviral vector: efficient gene targeting in vivo. Proc Natl Acad Sci U S A 2001; 98:11450-5. [PMID: 11553794 PMCID: PMC58750 DOI: 10.1073/pnas.201415498] [Citation(s) in RCA: 186] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Cre recombinase (Cre) from bacteriophage P1 is an important tool for genetic engineering in mammalian cells. We constructed lentiviral vectors that efficiently deliver Cre in vitro and in vivo. Surprisingly, we found a significant reduction in proliferation and an accumulation in the G(2)/M phase of Cre-expressing cells. To minimize the toxic effect of Cre, we designed a lentiviral vector that integrates into the host genome, expresses Cre in the target cell, and is subsequently deleted from the genome in a Cre-dependent manner. Thus, the activity of Cre terminates its own expression (self-deleting). We showed efficient modification of target genes in vitro and in the brain after transduction with the self-deleting vectors. In contrast to sustained Cre expression, transient expression of Cre from the self-deleting vector induced significantly less cytotoxicity. Such a self-deleting Cre vector is a promising tool for the induction of conditional gene modifications with minimal Cre toxicity in vivo.
Collapse
Affiliation(s)
- A Pfeifer
- The Salk Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
111
|
Kobayashi N, Miyazaki M, Westerman KA, Noguchi H, Sakaguchi M, Totsugawa T, Watanabe T, Matsumura T, Fujiwara T, Leboulch P, Tanaka N, Namba M. Construction of a differentiated human hepatocyte cell line expressing the herpes simplex virus-thymidine kinase gene. ASAIO J 2001; 47:476-80. [PMID: 11575821 DOI: 10.1097/00002480-200109000-00016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Transient support using a hybrid artificial liver (HAL) device is a promising treatment for the patients with acute liver failure. Primary human hepatocytes are an ideal source for HAL therapy; however, the number of human livers available for hepatocyte isolation is limited by competition for use in whole organ transplantation. To overcome this problem, we previously established a highly differentiated human fetal hepatocyte cell line OUMS-29. Considering the potential risk when using these genetically engineered cells in humans, additional safeguards should be added to make the cells more clinically useful. In this work, the herpes simplex virus thymidine kinase (HSVtk) gene was retrovirally introduced into OUMS-29 cells. One of the HSVtk-expressed clones, OUMS-29/thymidine kinase (TK), grew in chemically defined serum free medium and expressed the genes of albumin, asialoglycoprotein receptor, glutamine synthetase, glutathione-S-transferase pi, and blood coagulation factor X. In vitro sensitivity of the cells to ganciclovir was evaluated. Intrasplenic transplantation of 50 x 10(6) OUMS-29/TK cells prolonged the survival of 90% hepatectomized rats compared with medium injection alone (control). In the present study, we have established highly differentiated immortalized human hepatocytes with tight regulation. The cells may be clinically useful for HAL treatment.
Collapse
Affiliation(s)
- N Kobayashi
- First Department of Surgery, Okayama University Medical School, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Kobayashi N, Westerman KA, Taguchi T, Sakaguchi M, Fujiwara T, Urata H, Kishimoto N, Hayashi N, Nakaji S, Murakami T, Leboulch P, Tanaka N. Expansion of human hepatocyte populations by a retroviral gene transfer of simian virus 40 large T antigen. ASAIO J 2001; 47:481-5. [PMID: 11575822 DOI: 10.1097/00002480-200109000-00017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
A hybrid artificial liver (HAL) could be used to treat acute liver failure or to serve as a temporary support until orthotopic liver transplantation is available. Primary human hepatocytes are ideal as a source of hepatic function in a HAL device. However, the worldwide shortage of human livers available for hepatocyte isolation severely limits this form of therapy. A possible alternative is to use a tightly regulated cell line that can be economically grown in culture to have differentiated liver function. In this work, human hepatocytes were immortalized with a retroviral vector SSR#69 expressing the genes of simian virus 40 large T antigen and herpes simplex virus-thymidine kinase. One of the resulting clones, NKNT-3 , showed the gene expression of differentiated liver function and were sensitive to the antiviral agent ganciclovir. When transplanted into the spleen of rats subjected to 90% hepatectomy, NKNT-3 cells prolonged the survival of 90% hepatectomized rats. The cells provide the advantages of unlimited availability, sterility, uniformity, and freedom from pathogens. This work represents a potential novel strategy for resolving the organ shortage that currently limits the use of primary human hepatocytes to develop a HAL.
Collapse
Affiliation(s)
- N Kobayashi
- First Department of Surgery, Okayama University Medical School, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Kobayashi N, Westerman KA, Tanaka N, Fox IJ, Leboulch P. A reversibly immortalized human hepatocyte cell line as a source of hepatocyte-based biological support. Addict Biol 2001; 6:293-300. [PMID: 11900607 DOI: 10.1080/13556210020077019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The application of hepatocyte transplantation (HTX) is increasingly envisioned for temporary metabolic support during acute liver failure and provision of specific liver functions in inherited liver-based metabolic diseases. Compared with whole liver transplantation, HTX is a technically simple procedure and hepatocytes can be cryopreserved for future use. A major limitation of this form of therapy in humans is the worldwide shortage of human livers for isolating an adequate number of transplantable human hepatocyes when needed. Furthermore, the numbers of donor livers available for hepatocyte isolation is limited by competition for their use in whole organ transplantation. Considering the cost of hepatocyte isolation and the need for immediate preparation of consistent and functional cells, it is unlikely that human hepatocytes can be obtained on such a scale to treat a large number of patients with falling liver functions. The utilization of xenogenic hepatocytes will result in additional concerns regarding transmission of infectious pathogens and immunological and physiological incompatibilities between animals and humans. An attractive alternative to primary human hepatocytes is the use of tightly regulated human hepatocyte cell lines. Such cell lines can provide the advantages of unlimited availability, sterility and uniformity. We describe here methods for creating transplantable human hepatocyte cell lines using currently available cell cultures and gene transfer technology.
Collapse
Affiliation(s)
- Naoya Kobayashi
- Department of Gastroenterological Surgery, Transplantation and Surgical Oncology, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan; Japan Human Sciences Foundation
| | | | | | | | | |
Collapse
|
114
|
Muramatsu M, Hanazono Y, Ogasawara Y, Okada T, Mizukami H, Kume A, Mizoguchi H, Ozawa K. Reversible integration of the dominant negative retinoid receptor gene for ex vivo expansion of hematopoietic stem/progenitor cells. Biochem Biophys Res Commun 2001; 285:891-6. [PMID: 11467834 DOI: 10.1006/bbrc.2001.5264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Since hematopoietic stem cells (HSCs) differentiate readily ex vivo resulting in the loss of self-renewal and engraftment abilities, the transient block of differentiation is essential to maintain those abilities during their ex vivo expansion culture. To this end, we developed a method of reversible integration of the dominant negative retinoic acid receptor (DN-RAR) gene, a differentiation-blocking gene, into cells utilizing the Cre/loxP-dependent gene recombination system. The murine immature hematopoietic 32D cells differentiate into mature neutrophils upon G-CSF treatment. However, 32D cells transduced with a retroviral vector expressing the DN-RAR gene put between two loxP sites continued to proliferate without showing differentiation even in the presence of G-CSF. After the cells were fully amplified, the cells were transduced with the Cre recombinase gene. The cells then restored the ability to differentiate into mature neutrophils upon G-CSF treatment. PCR analysis showed that the DN-RAR gene was efficiently removed from the genome by introduction of the Cre gene. This system may eventually be applicable to the ex vivo expansion of HSCs.
Collapse
Affiliation(s)
- M Muramatsu
- Division of Genetic Therapeutics, Center for Molecular Medicine, Tochigi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Abstract
Normal somatic cells have a finite life span due in part to their inability to maintain telomere length and chromosome stability. Immortalization strategies based on recent advances in telomere biology and aging research have led to the creation of genetically stable, nontumorigenic immortalized cell lines. Reversible immortalization, using the Cre-lox recombination and excision system, has been developed for the expansion of primary cells for cell based clinical therapies. Immortalized human hepatocyte cell lines with differentiated liver functions would find broad applications in biomedical research, especially for pharmacology and toxicology, artificial liver support, and hepatocyte transplantation. The biological basis of these new immortalization methods and their application to human hepatocytes is reviewed.
Collapse
Affiliation(s)
- S M Cascio
- MultiCell Associates, Inc., 55 Access Road, Warwick, RI 02886, U.S.A.
| |
Collapse
|
116
|
Sterling RK, Fisher RA. Liver transplantation. Living donor, hepatocyte, and xenotransplantation. Clin Liver Dis 2001; 5:431-60, vii. [PMID: 11385971 DOI: 10.1016/s1089-3261(05)70173-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Liver transplantation is now accepted as effective therapy in the treatment of acute and chronic hepatic failure. Improvements in surgical techniques and immune suppression have led to 5-year survival rates that exceed 70% in most centers. The success of transplantation has led to a dramatic increase in the number of candidates to over 14,000 places on the national waiting list. While the number of patients in need of transplantation increases, there has been little growth in the supply of available cadaveric organs, resulting in an organ shortage crisis. With waiting times often exceeding 1 to 2 years, the waiting list mortality now exceeds 10% in most regions. Several novel approaches have been developed to address the growing disparity between the limited supply and excessive demand for suitable organs.
Collapse
Affiliation(s)
- R K Sterling
- Section of Hepatology, Division of Transplantation, Medical College of Virginia at Virginia Commonwealth University, Richmond, Virginia, USA.
| | | |
Collapse
|
117
|
Romano G, Reiss K, Tu X, Peruzzi F, Belletti B, Wang JY, Zanocco-Marani T, Baserga R. Efficient in vitro and in vivo gene regulation of a retrovirally delivered pro-apoptotic factor under the control of the Drosophila HSP70 promoter. Gene Ther 2001; 8:600-7. [PMID: 11320406 DOI: 10.1038/sj.gt.3301441] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2000] [Accepted: 01/30/2001] [Indexed: 11/08/2022]
Abstract
We have developed a self-inactivating retroviral vector system with an internal, inducible Drosophila HSP70 promoter. This vector system delivers the desired transgene into cells rapidly and efficiently. It generates mixed populations of transduced cells where the transgene is inducible, and does not require the isolation of specific clones. Since the transgene is not expressed (or poorly expressed) at the restrictive condition (34 degrees C), mixed populations can be selected in which tumor suppressors or other inhibitory genes can be strongly induced upon changing the conditions (39 degrees C or the plant amino acid L-canavanine). This retroviral vector should be very useful for the expression of sequences that are poorly tolerated by cells, and is also active in animals.
Collapse
Affiliation(s)
- G Romano
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
118
|
Kobayashi N, Noguchi H, Watanabe T, Matsumura T, Totsugawa T, Fujiwara T, Tanaka N. Role of immortalized hepatocyte transplantation in acute liver failure. Transplant Proc 2001; 33:645-6. [PMID: 11266997 DOI: 10.1016/s0041-1345(00)02182-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- N Kobayashi
- First Department of Surgery, Okayama University Medical School, Okayama, Japan
| | | | | | | | | | | | | |
Collapse
|
119
|
Kobayashi N, Noguchi H, Watanabe T, Matsumura T, Totsugawa T, Fujiwara T, Tanaka N. A tightly regulated immortalized human fetal hepatocyte cell line to develop a bioartificial liver. Transplant Proc 2001; 33:1948-9. [PMID: 11267582 DOI: 10.1016/s0041-1345(00)02723-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- N Kobayashi
- First Department of Surgery, Okayama University Medical School, 2-5-1 Shikata-cho, 700-8558, Okayama, Japan
| | | | | | | | | | | | | |
Collapse
|
120
|
Schmidt EE, Taylor DS, Prigge JR, Barnett S, Capecchi MR. Illegitimate Cre-dependent chromosome rearrangements in transgenic mouse spermatids. Proc Natl Acad Sci U S A 2000; 97:13702-7. [PMID: 11087830 PMCID: PMC17639 DOI: 10.1073/pnas.240471297] [Citation(s) in RCA: 255] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The bacteriophage P1 Cre/loxP system has become a powerful tool for in vivo manipulation of the genomes of transgenic mice. Although in vitro studies have shown that Cre can catalyze recombination between cryptic "pseudo-loxP" sites in mammalian genomes, to date there have been no reports of loxP-site infidelity in transgenic animals. We produced lines of transgenic mice that use the mouse Protamine 1 (Prm1) gene promoter to express Cre recombinase in postmeiotic spermatids. All male founders and all Cre-bearing male descendents of female founders were sterile; females were unaffected. Sperm counts, sperm motility, and sperm morphology were normal, as was the mating behavior of the transgenic males and the production of two-celled embryos after mating. Mice that expressed similar levels of a derivative transgene that carries an inactive Cre exhibited normal male fertility. Analyses of embryos from matings between sterile Cre-expressing males and wild-type females indicated that Cre-catalyzed chromosome rearrangements in the spermatids that lead to abortive pregnancies with 100% penetrance. Similar Cre-mediated, but loxP-independent, genomic alterations may also occur in somatic tissues that express Cre, but, because of the greater difficulty of assessing deleterious effects of somatic mutations, these may go undetected. This study indicates that, following the use of the Cre/loxP site-specific recombination systems in vivo, it is prudent to eliminate or inactivate the Cre recombinase gene as rapidly as possible.
Collapse
Affiliation(s)
- E E Schmidt
- Department of Veterinary Molecular Biology, Marsh Laboratories, Montana State University, Bozeman, MT 59715, USA
| | | | | | | | | |
Collapse
|
121
|
Kobayashi N, Noguchi H, Totsugawa T, Watanabe T, Matsumura T, Fujiwara T, Tanaka N. Reversible immortalization of adult human hepatocytes(1). Transplant Proc 2000; 32:2331-2. [PMID: 11120187 DOI: 10.1016/s0041-1345(00)01686-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- N Kobayashi
- First Department of Surgery, Okayama University Medical School, Okayama, Japan
| | | | | | | | | | | | | |
Collapse
|
122
|
Cai J, Ito M, Westerman KA, Kobayashi N, Leboulch P, Fox IJ. Construction of a non-tumorigenic rat hepatocyte cell line for transplantation: reversal of hepatocyte immortalization by site-specific excision of the SV40 T antigen. J Hepatol 2000; 33:701-8. [PMID: 11097476 DOI: 10.1016/s0168-8278(00)80299-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND/AIMS Hepatocytes immortalized with a temperature-sensitive SV40 large T antigen (SV40Tag) function as well as primary hepatocytes following transplantation to reverse hepatic encephalopathy and improve survival in rodents with liver failure. The continued presence of SV40Tag in the conditionally immortalized hepatocytes may increase the risk of malignant tumor growth in transplant recipients. METHODS We immortalized hepatocytes using a recombinant retrovirus containing the gene encoding SV40Tag flanked by loxP recombination target sites. Excision of SV40Tag from immortalized cells could then be accomplished by site-specific recombination with Cre-recombinase. RESULTS Cells immortalized with this recombinant virus expressed SV40Tag and doubled in number every 48 h. After excision of the gene encoding SV40Tag with Cre-recombinase, cells stopped growing, DNA synthesis fell by 90%, and production of liver-specific mRNAs was either increased or became newly detectable. In addition, the morphology and epithelial cell polarity of the cells became more characteristic of differentiated hepatocytes. To determine their malignant potential, immortalized hepatocytes were transfected to express a second oncogene, activated H-ras. SV40Tag+/H-ras+-immortalized cells were capable of anchorage-independent growth and developed into tumors when injected in severe combined immunodeficiency mice. While Cre-recombinase delivery by recombinant adenovirus infection was not 100% efficient, when SV40Tag excision occurred anchorage-independent growth stopped and tumor formation in immunodeficient mice was abolished. Immortalized hepatocytes also contained the gene encoding herpes simplex virus thymidine kinase and treatment with ganciclovir produced complete regression of established tumors in mice. CONCLUSIONS These studies extend previous work that indicates that a transplantable hepatocyte cell line could be developed for clinical use.
Collapse
Affiliation(s)
- J Cai
- Department of Surgery, University of Nebraska Medical Center, Omaha, USA
| | | | | | | | | | | |
Collapse
|
123
|
Kobayashi N, Noguchi H, Fujiwara T, Westerman KA, Leboulch P, Tanaka N. Establishment of a highly differentiated immortalized adult human hepatocyte cell line by retroviral gene transfer. Transplant Proc 2000; 32:2368-9. [PMID: 11120203 DOI: 10.1016/s0041-1345(00)01702-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- N Kobayashi
- First Department of Surgery, Okayama University Medical School, Shikato-cho, Okayama, Japan
| | | | | | | | | | | |
Collapse
|
124
|
Salmon P, Oberholzer J, Occhiodoro T, Morel P, Lou J, Trono D. Reversible immortalization of human primary cells by lentivector-mediated transfer of specific genes. Mol Ther 2000; 2:404-14. [PMID: 11020357 DOI: 10.1006/mthe.2000.0141] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We exploited the ability of lentiviral vectors to govern the stable transduction of cells irrespective of their cycling status to induce the reversible immortalization of human primary cells. First, bicistronic HIV-derived lentiviral vectors expressing GFP- and the HSV1 thymidine kinase and containing the LoxP sequence in their LTR (HLox) were used to transduce HeLa cells. Cre expression led to efficient proviral deletion, and unexcised cells could be eliminated by ganciclovir treatment. A human liver biopsy was then exposed to a combination of HLox vectors that harbored either the SV40 large T (TAg) or the human telomerase (hTERT) DNAs in place of GFP. This led to the isolation of liver sinusoidal endothelial cell (LSEC) clones that exhibited an immortalized phenotype while retaining most of the features of primary hLSEC. Complete growth arrest of these cells was observed in 2 days of Cre expression, and the resulting stationary culture could be kept for at least 2 weeks. Transduction of human adult pancreatic islets with HLox vectors coding for Tag and Bmi-1 also induced the proliferation of insulin-positive cells. These results indicate that lentivectors can be used to mediate the reversible immortalization of primary nondividing cells and should allow for the production of large supplies of a wide variety of human cells for both therapeutic and research purposes.
Collapse
Affiliation(s)
- P Salmon
- Department of Genetics and Microbiology, CMU, Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
125
|
Kobayashi N, Noguchi H, Westerman KA, Matsumura T, Watanabe T, Totsugawa T, Fujiwara T, Leboulch P, Tanaka N. Efficient Cre/loxP site-specific recombination in a HepG2 human liver cell line. Cell Transplant 2000; 9:737-42. [PMID: 11144976 DOI: 10.1177/096368970000900525] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A worldwide shortage of donor livers is a limiting factor of the clinical application of hepatocyte transplantation (HTX). To resolve this issue, we focused on a reversible immortalization system that allows temporary expansion of primary hepatocyte populations by transfer of an oncogene that can be subsequently excised. As a preliminary test toward this goal, we examined the efficacy of Cre/loxP site-specific recombination in a transformed human liver cell line, HepG2. The present study utilized retroviral transfer of a prototypical immortalizing gene, simian virus 40 large T antigen (SV40Tag), flanked by a pair of loxP recombination targets and adenovirus-mediated Cre/loxP recombination. Here we report that complete elimination of the retroviral transferred oncogene was achieved by site-specific recombination using a replication-deficient recombinant adenovirus vector producing Cre recombinase (Ad-Cre).
Collapse
MESH Headings
- Adenoviridae/genetics
- Animals
- Antigens, Polyomavirus Transforming/genetics
- Antigens, Polyomavirus Transforming/immunology
- Antigens, Polyomavirus Transforming/metabolism
- Blotting, Western
- Cell Division
- Cell Line, Transformed
- Defective Viruses/genetics
- Fluorescent Antibody Technique
- Ganciclovir/pharmacology
- Gene Expression
- Gentamicins/pharmacology
- Hepatocytes/cytology
- Hepatocytes/drug effects
- Hepatocytes/metabolism
- Hepatocytes/virology
- Humans
- Integrases/genetics
- Integrases/metabolism
- Mice
- Mice, SCID
- Neoplasms, Experimental/pathology
- RNA, Messenger/biosynthesis
- Recombination, Genetic
- Retroviridae/genetics
- Transduction, Genetic
- Viral Proteins
Collapse
Affiliation(s)
- N Kobayashi
- First Department of Surgery, Okayama University Medical School, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Kobayashi N, Noguchi H, Fujiwara T, Tanaka N. Xenotransplantation of immortalized human hepatocytes for experimental acute liver failure in rats. Transplant Proc 2000; 32:1123-4. [PMID: 10936390 DOI: 10.1016/s0041-1345(00)01155-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- N Kobayashi
- First Department of Surgery, Okayama University Medical School, Okayama, Japan.
| | | | | | | |
Collapse
|
127
|
Guha C, Chowdhury NR, Chowdhury JR. Reversibly immortalized human hepatocytes: an eternal fountain of liver support? Hepatology 2000; 32:440-1. [PMID: 10915758 DOI: 10.1002/hep.510320240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- C Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | |
Collapse
|
128
|
Kobayashi N, Noguchi H, Fujiwara T, Tanaka N. Establishment of a reversibly immortalized human hepatocyte cell line by using Cre/loxP site-specific recombination. Transplant Proc 2000; 32:1121-2. [PMID: 10936389 DOI: 10.1016/s0041-1345(00)01154-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- N Kobayashi
- First Department of Surgery, Okayama University Medical School, Okayama, Japan.
| | | | | | | |
Collapse
|
129
|
Takeuchi Y, Pizzato M. Retrovirus vectors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 465:23-35. [PMID: 10810612 DOI: 10.1007/0-306-46817-4_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Y Takeuchi
- Chester Beatty Laboratories, Institute of Cancer Research, London, England
| | | |
Collapse
|
130
|
Eaton MJ. Emerging cell and molecular strategies for the study and treatment of painful peripheral neuropathies. J Peripher Nerv Syst 2000; 5:59-74. [PMID: 10905465 DOI: 10.1046/j.1529-8027.2000.00006.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pharmacologic treatment for the symptoms of painful neuropathy has been problematic, because there has been limited understanding of the underlying etiologies and systemic levels that an effective dose can have on multiple side effects. The use of molecular methods, such as gene deletion from knockout mice and cellular minipumps for delivery of biologic antinociceptive molecules, has led to a better understanding of the underlying mechanisms of the induction of intractable neuropathic pain. The initiation of an excitatory cascade after injury or disease leads to the induction of various second messenger systems, loss or down-regulation of the endogenous inhibitory spinal GABA system and central sensitization, causing such pain. The development and use of cellular minipumps, immortalized cell lines bioengineered to secrete various antinociceptive molecules for the reversal of neuropathic pain, makes cellular therapy a strategy for clinical use in the next few years. The development of molecular "disimmortalization" technologies will make the use of such engineered cell lines safe for human use. Direct somatic gene transfer for neuropathic pain will eventually overcome the problems associated with transplantation of non-autologous and xenogenic cells. These virus-mediated methods, although at the early stages of evolution and use, offer large-scale production of biologic agents that can be conveniently and confidently used for the long-term relief of chronic neuropathic pain in a clinical setting, without systemic effects or surgical interventions.
Collapse
Affiliation(s)
- M J Eaton
- The Miami Project to Cure Paralysis and the Department of Neurological Surgery, University of Miami School of Medicine, Florida 33136, USA.
| |
Collapse
|
131
|
Carnero A, Hudson JD, Hannon GJ, Beach DH. Loss-of-function genetics in mammalian cells: the p53 tumor suppressor model. Nucleic Acids Res 2000; 28:2234-41. [PMID: 10871344 PMCID: PMC102629 DOI: 10.1093/nar/28.11.2234] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Using an improved system for the functional identification of active antisense fragments, we have isolated antisense fragments which inactivate the p53 tumour suppressor gene. These antisense fragments map in two small regions between nt 350 and 700 and nt 800 and 950 of the coding sequence. These antisense fragments appear to act by inhibition of p53 mRNA translation both in vivo and in vitro. Expression of these antisense fragments overcame the p53-induced growth arrest in a cell line which expresses a thermolabile mutant of p53 and extended the in vitro lifespan of primary mouse embryonic fibroblasts. Continued expression of the p53 antisense fragment contributed to immortalisation of primary mouse fibroblasts. Subsequent elimination of the antisense fragment in these immortalised cells led to restoration of p53 expression and growth arrest, indicating that immortal cells continuously require inactivation of p53. Expression of MDM2 or SV40 large T antigen, but not E7 nor oncogenic ras, overcomes the arrest induced by restoration of p53 expression. Functional inactivation of both p21 and bax (by overexpression of Bcl2), but not either alone, allowed some bypass of p53-induced growth arrest, indicating that multiple transcriptional targets of p53 may mediate its antiproliferative action. The ability to conditionally inactivate and subsequently restore normal gene function may be extremely valuable for genetic analysis of genes for which loss-of-function is involved in specific phenotypes.
Collapse
Affiliation(s)
- A Carnero
- Institute of Child Health, London, UK
| | | | | | | |
Collapse
|
132
|
Romano G, Michell P, Pacilio C, Giordano A. Latest developments in gene transfer technology: achievements, perspectives, and controversies over therapeutic applications. Stem Cells 2000; 18:19-39. [PMID: 10661569 DOI: 10.1634/stemcells.18-1-19] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Over the last decade, more than 300 phase I and phase II gene-based clinical trials have been conducted worldwide for the treatment of cancer and monogenic disorders. Lately, these trials have been extended to the treatment of AIDS and, to a lesser extent, cardiovascular diseases. There are 27 currently active gene therapy protocols for the treatment of HIV-1 infection in the USA. Preclinical studies are currently in progress to evaluate the possibility of increasing the number of gene therapy clinical trials for cardiopathies, and of beginning new gene therapy programs for neurologic illnesses, autoimmuno diseases, allergies, regeneration of tissues, and to implement procedures of allogeneic tissues or cell transplantation. In addition, gene transfer technology has allowed for the development of innovative vaccine design, known as genetic immunization. This technique has already been applied in the AIDS vaccine programs in the USA. These programs aim to confer protective immunity against HIV-1 transmission to individuals who are at risk of infection. Research programs have also been considered to develop therapeutic vaccines for patients with AIDS and generate either preventive or therapeutic vaccines against malaria, tuberculosis, hepatitis A, B and C viruses, influenza virus, La Crosse virus, and Ebola virus. The potential therapeutic applications of gene transfer technology are enormous. However, the effectiveness of gene therapy programs is still questioned. Furthermore, there is growing concern over the matter of safety of gene delivery and controversy has arisen over the proposal to begin in utero gene therapy clinical trials for the treatment of inherited genetic disorders. From this standpoint, despite the latest significant achievements reported in vector design, it is not possible to predict to what extent gene therapeutic interventions will be effective in patients, and in what time frame.
Collapse
Affiliation(s)
- G Romano
- Kimmel Cancer Institute, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | | | |
Collapse
|
133
|
Kobayashi N, Fujiwara T, Westerman KA, Inoue Y, Sakaguchi M, Noguchi H, Miyazaki M, Cai J, Tanaka N, Fox IJ, Leboulch P. Prevention of acute liver failure in rats with reversibly immortalized human hepatocytes. Science 2000; 287:1258-62. [PMID: 10678831 DOI: 10.1126/science.287.5456.1258] [Citation(s) in RCA: 275] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Because of a critical shortage in suitable organs, many patients with terminal liver disease die each year before liver transplantation can be performed. Transplantation of isolated hepatocytes has been proposed for the temporary metabolic support of patients awaiting liver transplantation or spontaneous reversion of their liver disease. A major limitation of this form of therapy is the present inability to isolate an adequate number of transplantable hepatocytes. A highly differentiated cell line, NKNT-3, was generated by retroviral transfer in normal primary adult human hepatocytes of an immortalizing gene that can be subsequently and completely excised by Cre/Lox site-specific recombination. When transplanted into the spleen of rats under transient immunosuppression, reversibly immortalized NKNT-3 cells provided life-saving metabolic support during acute liver failure induced by 90% hepatectomy.
Collapse
Affiliation(s)
- N Kobayashi
- First Department of Surgery and Department of Cell Biology, Okayama University Medical School, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Kobayashi N, Miyazaki M, Fukaya K, Inoue Y, Sakaguchi M, Uemura T, Noguchi H, Kondo A, Tanaka N, Namba M. Transplantation of highly differentiated immortalized human hepatocytes to treat acute liver failure. Transplantation 2000; 69:202-7. [PMID: 10670627 DOI: 10.1097/00007890-200001270-00002] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Temporary support of a damaged liver by a bioartificial liver (BAL) devise is a promising approach for the treatment of acute liver failure. Although human primary hepatocytes are an ideal source of hepatic function in BAL, shortage of human livers available for hepatocyte isolation is the limiting factor for the use of this modality. A clonal human hepatocyte cell line that can grow economically in culture and exhibit liver-specific functions should be an attractive solution to this problem. METHODS To test this alternative, primary human fetal hepatocytes were immortalized using Simian virus 40 large T antigen. To investigate the potential of the immortalized cells for BAL, we transplanted the cells into the spleen of adult rats and performed a 90% hepatectomy 12 hr later. RESULTS One of the cloned human liver cell lines, OUMS-29, showed highly differentiated liver functions. Intrasplenic transplanting of 20x10(6) OUMS-29 cells protected the animals from hyperammonemia and the associated hepatic encephalopathy. Survival was significantly prolonged in 90% of hepatectomized rats receiving OUMS-29 cells. CONCLUSIONS A highly differentiated immortalized human hepatocyte cell line, OUMS-29, was able to provide metabolic support during acute liver failure induced by 90% hepatectomy in rats. Essentially unlimited availability of OUMS-29 cells may be clinically useful for BAL treatment.
Collapse
Affiliation(s)
- N Kobayashi
- Department of Cell Biology, Institute of Molecular and Cellular Biology, Okayama University Medical School, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Rinaldi A, Marshall KR, Preston CM. A non-cytotoxic herpes simplex virus vector which expresses Cre recombinase directs efficient site specific recombination. Virus Res 1999; 65:11-20. [PMID: 10564749 DOI: 10.1016/s0168-1702(99)00102-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The coding sequences for the bacteriophage P1 recombinase Cre were cloned into the genome of a herpes simplex virus type 1 (HSV-1) mutant which is severely impaired for the synthesis of immediate early (IE) proteins. The resulting recombinant, virus in1372, expressed functional Cre which mediated the excision in trans of loxP-flanked sequences located in the HSV-1 genome, both in tissue culture cells and in vivo in mouse sensory neurons. Infection with in1372 also resulted in recombination, at high efficiency, between loxP sequences in the cellular genome without causing detectable cytotoxicity. Mutant in1372 is a versatile vector for the delivery of Cre in tissue culture and in vivo.
Collapse
Affiliation(s)
- A Rinaldi
- Medical Research Council Virology Unit, Church Street, Glasgow, UK
| | | | | |
Collapse
|
136
|
Gray JA, Hodges H, Sinden J. Prospects for the clinical application of neural transplantation with the use of conditionally immortalized neuroepithelial stem cells. Philos Trans R Soc Lond B Biol Sci 1999; 354:1407-21. [PMID: 10515001 PMCID: PMC1692656 DOI: 10.1098/rstb.1999.0488] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although neural transplantation has made a relatively successful transition from the animal laboratory to human neurosurgery for the treatment of Parkinson's disease, the use of human embryonic brain tissue as the source of transplants raises difficult ethical and practical problems. These are likely to impede the widespread use of this otherwise promising therapy across the range of types of brain damage to which the results of animal experiments suggest its potential applicability. Various alternative approaches are reviewed briefly, aimed at developing sources of tissue for transplantation that can be maintained in vitro until needed, so obviating the requirement for fresh embryonic tissue at each occasion of surgery. Particularly promising are conditionally immortalized neuroepithelial stem cell lines in which the immortalizing gene is downregulated upon transplantation into a host brain. We describe experiments from our laboratory with the use of cells of this kind, the multipotent MHP clonal cell lines, derived from the developing hippocampus of a transgenic mouse harbouring a temperature-sensitive oncogene. Implanted into the hippocampus of rats and marmosets with damage to the CA1 cell field, the MHP36 line gave rise to healthy surviving grafts and to essentially complete recovery of cognitive function. Postmortem study of the implanted rat brains indicated that MHP36 cells migrate to the region of damage, adopt both neuronal (pyramidal) and glial phenotypes in vivo, and reconstitute the normal laminated appearance of the CA1 cell field. We have previously shown that, when primary differentiated foetal tissue is used as the source of grafts in rats with CA1 damage, there is a stringent requirement for replacement with homotypic CA1 cells. We interpret our results as showing that the MHP36 cell line responds to putative signals associated with damage to the hippocampus and takes up a phenotype appropriate for the repair of this damage; they therefore open the way to the development of a novel strategy with widespread applicability to the treatment of the diseased or damaged human brain.
Collapse
Affiliation(s)
- J A Gray
- Department of Psychology, Institute of Psychiatry, London, UK
| | | | | |
Collapse
|
137
|
Abstract
The ability to isolate multipotential neuroepithelial precursor cells from the mammalian nervous system provides exciting perspectives for the in vitro analysis of early nervous system development and the generation of donor cells for neural repair. New models are needed to study the properties of these cells in vivo. Neural chimeras have revealed a remarkable degree of plasticity in the developmental potential of neuroepithelial precursor cells. Following transplantation into the cerebral ventricle of embryonic hosts, precursors derived from various brain regions and developmental stages participate in host brain development and undergo region-specific differentiation into neurons and glia. These findings indicate that in the developing nervous system, migration and differentiation of neural precursors cells are regulated to a large extent by extrinsic signals. Neural chimeras composed of genetically modified cells will permit the study of the molecular mechanisms underlying these guidance cues, which may eventually be exploited for cell replacement strategies in the adult brain. A key problem in neural transplantation is the availability of suitable donor tissue. Neural chimeras composed of embryonic stem (ES) cell-derived neurons and glia depict ES cells as a versatile and virtually unlimited donor source for neural repair. Generation of interspecies neural chimeras composed of human and rodent cells facilitates the translation of these advances into clinical strategies for human nervous system repair.
Collapse
Affiliation(s)
- O Brüstle
- Department of Neuropathology, University of Bonn Medical Center, Germany.
| |
Collapse
|
138
|
|
139
|
Walters MC, Fiering S, Bouhassira EE, Scalzo D, Goeke S, Magis W, Garrick D, Whitelaw E, Martin DI. The chicken beta-globin 5'HS4 boundary element blocks enhancer-mediated suppression of silencing. Mol Cell Biol 1999; 19:3714-26. [PMID: 10207095 PMCID: PMC84188 DOI: 10.1128/mcb.19.5.3714] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A constitutive DNase I-hypersensitive site 5' of the chicken beta-globin locus, termed 5'HS4 or cHS4, has been shown to insulate a promoter from the effect of an upstream enhancer and to reduce position effects on mini-white expression in Drosophila cells; on the basis of these findings, it has been designated a chromatin insulator. We have examined the effect of the cHS4 insulator in a system that assays both the level of gene expression and the rate of transcriptional silencing. Because transgenes flanked by insulator elements are shielded from position effects in Drosophila cells, we tested the ability of cHS4 to protect transgenes from position effects in mammalian cells. Flanking of an expression vector with the cHS4 insulator in a colony assay did not increase the number of G418-resistant colonies. Using lox/cre-based recombinase-mediated cassette exchange to control integration position, we studied the effect of cHS4 on the silencing of an integrated beta-geo reporter at three genomic sites in K562 erythroleukemia cells. In this assay, enhancers act to suppress silencing but do not increase expression levels. While cHS4 blocked enhancement at each integration site, the strength of the effect varied from site to site. Furthermore, at some sites, cHS4 inhibited the enhancer effect either when placed between the enhancer and the promoter or when placed upstream of the enhancer. These results suggest that the activity of cHS4 is not dominant in all contexts and is unlikely to prevent silencing at all genomic integration sites.
Collapse
Affiliation(s)
- M C Walters
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Gökhan S, Song Q, Mehler MF. Generation and regulation of developing immortalized neural cell lines. Methods 1998; 16:345-58. [PMID: 10071071 DOI: 10.1006/meth.1998.0689] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The genetic and environmental signals that regulate progressive lineage elaboration in the mammalian brain are poorly understood. In addition, characterization of the developmental profiles of early central nervous system (CNS) stem/ progenitor cells and analysis of the mechanisms involved in their clonal expansion, lineage restriction, and cellular maturation have been fragmentary and elusive. These seminal neurodevelopmental issues have been examined using a series of clonally derived neural stem/progenitor cell lines established by retroviral transduction of embryonic (E16.5-E17.5) murine hippocampal and cerebellar cells using temperature-sensitive alleles (A58/U19) of the simian virus (SV) 40 large tumor (T) antigen. Under conditions permissive for T-antigen expression (33 degrees C), single neural stem cells exhibited self-renewal, clonal expansion, and both symmetric and asymmetric modes of cell division. By contrast, at the nonpermissive temperature for T-antigen expression (39 degrees C), specific sets of cytokines potentiated the progressive elaboration of neuronal, oligodendroglial, and astroglial lineage species. These observations demonstrate that a spectrum of genetic and epigenetic signals and distinct cellular processes are involved in orchestrating the evolution of individual neural lineages from regional CNS stem/progenitor species. Further, the availability of conditionally immortalized neural cell lines that can be transplanted back into the mammalian brain may represent an important experimental resource for the detailed characterization of cellular and molecular mechanisms involved in the developmental sculpting, plasticity, and regeneration of the mammalian CNS.
Collapse
Affiliation(s)
- S Gökhan
- Department of Neurology, Rose F. Kennedy Center for Research in Mental Retardation and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
141
|
Arai T, Matsumoto K, Saitoh K, Ui M, Ito T, Murakami M, Kanegae Y, Saito I, Cosset FL, Takeuchi Y, Iba H. A new system for stringent, high-titer vesicular stomatitis virus G protein-pseudotyped retrovirus vector induction by introduction of Cre recombinase into stable prepackaging cell lines. J Virol 1998; 72:1115-21. [PMID: 9445007 PMCID: PMC124585 DOI: 10.1128/jvi.72.2.1115-1121.1998] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We report here on stable prepackaging cell lines which can be converted into packaging cell lines for high-titer vesicular stomatitis virus G protein (VSV-G)-pseudotyped retrovirus vectors by the introduction of Cre recombinase-expressing adenovirus. The generated prepackaging cell lines constitutively express the gag-pol genes and contain an inducible transcriptional unit for the VSV-G gene. From this unit, the introduced Cre recombinase excised both a neomycin resistance (Neo(r)) gene and a poly(A) signal flanked by a tandem pair of loxP sequences and induced transcription of the VSV-G gene from the same promoter as had been used for Neo(r) expression. By inserting an mRNA-destabilizing signal into the 3' untranslated region of the Neo(r) gene to reduce the amount of Neo(r) transcript, we were able efficiently to select the clones capable of inducing VSV-G at high levels. Without the introduction of Cre recombinase, these cell lines produce neither VSV-G nor any detectable infectious virus at all, even after the transduction of a murine leukemia virus-based retrovirus vector encoding beta-galactosidase. They reproducibly produced high-titer virus stocks of VSV-G-pseudotyped retrovirus (1.0 x 10(6) infectious units/ml) from 3 days after the introduction of Cre recombinase. We also present evidence that VSV-G-producing cells are still fully susceptible to transduction by VSV-G pseudotypes. However, in this vector-producing system, which regulates VSV-G pseudotype production in an all-or-none manner, the integration of vector DNA into packaging cell lines would be minimized. We further show that heparin significantly inhibits retransduction of VSV-G pseudotypes in the culture fluids of packaging cell lines, leading to a two- to fourfold increase in the yield of the pseudotypes after induction. This vector-producing system was very stable and should be advantageous in human gene therapy.
Collapse
Affiliation(s)
- T Arai
- Department of Gene Regulation, Institute of Medical Science, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Verhoeyen E, Hauser H, Wirth D. Efficient targeting of retrovirally FRT-tagged chromosomal loci. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s1366-2120(08)70118-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
143
|
Normal neural epithelial precursor cells. Expert Opin Ther Pat 1998. [DOI: 10.1517/13543776.8.1.85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
144
|
|
145
|
Transcriptional Behavior of LCR Enhancer Elements Integrated at the Same Chromosomal Locus by Recombinase-Mediated Cassette Exchange. Blood 1997. [DOI: 10.1182/blood.v90.9.3332] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Efficient integration of transgenes at preselected chromosomal locations was achieved in mammalian cells by recombinase-mediated-cassette-exchange (RMCE), a novel procedure that makes use of the CRE recombinase together with Lox sites bearing different spacer regions. We have applied RMCE to the study of the human β-globin gene Locus Control Region by integrating at the same genetic locus in MEL cells, a LacZ gene driven by the human β-globin promoter linked to HS2 and HS3 alone or in combination with HS4. Expression studies at the cell population level and in individual cells before and after induction of differentiation with hemin or DMSO show that the presence of these enhancers is associated with variegated patterns of expression. We were able to show that the LCR fragments tested act by controlling both the probability of expression and the rate of transcription of the linked β-globin promoter. Both of these factors were also dependent on the state of differentiation of the MELc and on the presence of a second transcription unit located in cis. The ability to manipulate by RMCE constructs integrated into chromosomes should help in the creation of complex, rationally designed, artificial genetic loci.
Collapse
|
146
|
Schübeler D, Mielke C, Bode J. Excision of an integrated provirus by the action of FLP recombinase. In Vitro Cell Dev Biol Anim 1997; 33:825-30. [PMID: 9466689 DOI: 10.1007/s11626-997-0163-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Retroviral vectors can be used to insert a single, intact copy of a transgene into a chromosome. If the duplication of the LTR (long-terminal repeat) that naturally occurs during reverse transcription of the retroviral genome is exploited to introduce two equally oriented FLP recognition target (FRT) sites, a substrate for FLP recombinase is created. A pulse of FLP recombinase activity can then be applied to excise the intervening sequences with the retention of a single LTR. This procedure is of potential use for manipulating an integration site after a period of expression enabling a variety of critical controls. We describe the properties of such a retroviral vector containing a dicistronic expression cassette with a reporter gene in the first and a positive/negative selection marker in the second cistron. This vector permits the selection and control of each step during the sequence of genomic manipulations enabled by site-specific recombination events.
Collapse
Affiliation(s)
- D Schübeler
- Gesellschaft für Biotechnologische Forschung m.b.H., Generegulation und Differenzierung/Genetik von Eukaryonten, Mascheroder Weg, Germany
| | | | | |
Collapse
|
147
|
Vanin EF, Cerruti L, Tran N, Grosveld G, Cunningham JM, Jane SM. Development of high-titer retroviral producer cell lines by using Cre-mediated recombination. J Virol 1997; 71:7820-6. [PMID: 9311869 PMCID: PMC192136 DOI: 10.1128/jvi.71.10.7820-7826.1997] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Retroviral gene transfer is widely used in experimental and human gene therapy applications. We have devised a novel method of generating high-titer retroviral producer cell lines based on the P1 bacteriophage recombinase system Cre-loxP. Incorporation of loxP sites flanking a Neo(r)-SVTK cassette in the proviral DNA allows excision of these selectable markers through expression of Cre recombinase after production of a high-titer producer cell line. The resultant producer line contains a single loxP site flanked by the viral long terminal repeats. Retransfection of this line with the Cre expression vector and a plasmid containing a gene of interest flanked by loxP sites allows insertional recombination of the gene into the favorable preexisting site in the genome and the generation of a new line with a titer equivalent to that of the parental producer cell line. The efficiency of the process is sufficient to allow the generation of multiple new producer lines without the addition of antibiotic resistance genes. We have successfully generated retroviral vectors carrying different genes by using this approach and discuss the potential applications of this method in gene therapy.
Collapse
Affiliation(s)
- E F Vanin
- Rotary Bone Marrow Research Laboratory, Royal Melbourne Hospital Research Foundation, Parkville, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
148
|
Nakamura J, Okamoto T, Schumacher IK, Tabei I, Chowdhury NR, Chowdhury JR, Fox IJ. Treatment of surgically induced acute liver failure by transplantation of conditionally immortalized hepatocytes. Transplantation 1997; 63:1541-7. [PMID: 9197343 DOI: 10.1097/00007890-199706150-00001] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The shortage of human livers available for hepatocyte isolation limits its clinical application. The availability of cloned, conditionally immortalized hepatocytes that could be grown in culture but would lose their transformed phenotype and provide metabolic support upon transplantation would greatly facilitate the treatment of acute liver failure. Toward this goal, we transduced isolated Lewis rat hepatocytes using a replication-defective recombinant retrovirus capable of transferring a gene encoding a thermolabile mutant simian virus 40 T antigen (SV40ts). The cloned, immortalized hepatocytes proliferate at 33 degrees C. At the nonpermissive temperatures (37-39 degrees C), they stop growing and exhibit characteristics of differentiated hepatocytes. These cells did not produce tumors when transplanted in mice with severe combined immunodeficiency disease or in syngeneic rats. To induce acute liver failure, Lewis rats were subjected to 90% hepatectomy (Hpx) and given 5% oral dextrose. All rats that did not undergo hepatocyte transplantation died within 96 hr. Fifty percent of rats that received intrasplenic injection of 10 x 10(6) primary Lewis rat hepatocytes (G2, n=6) or 10 x 10(6) SV40ts-conditionally immortalized (SV40ts-ci) hepatocytes (G3, n=8) 1 day before 90% hepatectomy survived, whereas 80% of rats that received an intraperitoneal injection of 200 x 10(6) primary Lewis rat hepatocytes (G4, n=10) or 200 x 10(6) SV40ts-ci hepatocytes (G5, n=10) on the day of hepatectomy survived. Survival after intraperitoneal injection of a cellular homogenate of 200 x 10(6) primary Lewis rat (G7, n=9) or SV40ts-ci hepatocytes (G8, n=10) on the day of Hpx was 33% and 40%, respectively, whereas survival after intraperitoneal injection of 200 x 10(6) Lewis rat bone marrow cells (G6, n=7) was 29%. Thus, transplanted, conditionally immortalized hepatocytes can be as effective as primary hepatocytes in supporting life during acute liver insufficiency. This work represents the first step in developing an hepatocyte cell line that would partially alleviate the organ-donor shortage and could be of potential clinical value.
Collapse
Affiliation(s)
- J Nakamura
- Department of Surgery, University of Nebraska Medical Center, Omaha 68198, USA
| | | | | | | | | | | | | |
Collapse
|
149
|
Abstract
In the vertebrate central nervous system, multipotential cells have been identified in vitro and in vivo. Defined mitogens cause the proliferation of multipotential cells in vitro, the magnitude of which is sufficient to account for the number of cells in the brain. Factors that control the differentiation of fetal stem cells to neurons and glia have been defined in vitro, and multipotential cells with similar signaling logic can be cultured from the adult central nervous system. Transplanting cells to new sites emphasizes that neuroepithelial cells have the potential to integrate into many brain regions. These results focus attention on how information in external stimuli is translated into the number and types of differentiated cells in the brain. The development of therapies for the reconstruction of the diseased or injured brain will be guided by our understanding of the origin and stability of cell type in the central nervous system.
Collapse
Affiliation(s)
- R McKay
- Laboratory of Molecular Biology, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| |
Collapse
|
150
|
Abstract
The clinical prospect of using neural precursor cells for reconstructive approaches in the nervous system has received strong impetus from a recent series of important experimental findings. Transplantation studies in the developing brain have demonstrated that migration and differentiation of neural precursor cells are regulated predominantly by environmental signals. Several observations suggest that the mature CNS retains at least some of these guidance cues. These findings, together with recent evidence for the persistence of neural stem cells in the adult mammalian brain, have made precursor cell recruitment a new focus in CNS reconstruction.
Collapse
Affiliation(s)
- O Brüstle
- Laboratory of Molecular Biology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-4092, USA.
| | | |
Collapse
|