101
|
Moir-Blais TR, Grundy FJ, Henkin TM. Transcriptional activation of the Bacillus subtilis ackA promoter requires sequences upstream of the CcpA binding site. J Bacteriol 2001; 183:2389-93. [PMID: 11244084 PMCID: PMC95151 DOI: 10.1128/jb.183.7.2389-2393.2001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Carbon catabolite protein A (CcpA) is a global regulator of carbon metabolism in gram-positive bacteria, repressing transcription of genes for the utilization of secondary carbon sources in the presence of a readily metabolized carbon source and activating transcription of genes, such as ackA and pta, that are required for carbon excretion. The promoter region of the Bacillus subtilis ackA gene contains two catabolite responsive elements (cre sites), of which only the site closest to the promoter (cre2) binds CcpA to activate transcription. A region immediately upstream of the cre2 site is also important for transcriptional activation. The required elements in this region were further defined by mutagenesis. CcpA binds to the ackA promoter region in gel shift assays even in the presence of mutations in the upstream element that block transcriptional activation, indicating that this region has a function other than promoting binding of CcpA.
Collapse
Affiliation(s)
- T R Moir-Blais
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
102
|
Chaillou S, Postma PW, Pouwels PH. Contribution of the phosphoenolpyruvate:mannose phosphotransferase system to carbon catabolite repression in Lactobacillus pentosus. MICROBIOLOGY (READING, ENGLAND) 2001; 147:671-679. [PMID: 11238974 DOI: 10.1099/00221287-147-3-671] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The role of the Lactobacillus pentosus phosphoenolpyruvate:mannose phosphotransferase system (mannose PTS) in sugar transport and control of sugar utilization was investigated. Growth experiments and measurements of PEP-dependent phosphorylation of sugars, of sugar transport and of catabolic enzyme activity were performed, to compare a wild-type strain with an EIIB(Man) mutant, LPE6, and a ccpA mutant, LPE4. Fructose uptake in wild-type bacteria demonstrated the presence of two fructose-specific PTSs: a high-affinity system, EII(Fru) (K:(m)=52 microM) which is inducible by fructose, and a low-affinity system (K:(m)=300 microM). The latter system was lacking in LPE6 and therefore corresponds to EII(Man). LPE6 was unable to phosphorylate glucose, mannose, N:-acetylglucosamine and 2-deoxyglucose in a PEP-dependent reaction, indicating that these sugars are substrates of EII(Man). Transport and phosphorylation of these compounds was the same in LPE4 and in wild-type bacteria, although growth of LPE4 on these sugars was impaired. In wild-type bacteria and in LPE4 the activity of EII(Fru) was lowered by the presence of EII(Man) substrates in the growth medium, but this decrease was not observed in LPE6. These results indicate that EII(Man) but not CcpA regulates the synthesis of EII(Fru). Mutations in EII(Man) or CcpA resulted in a relief of catabolite repression exerted by EII(Man) substrates on the activity of beta-galactosidase and beta-glucosidase, indicating that EII(Man) and CcpA are important components in catabolite repression in L. pentosus. Fructose-mediated repression of these two enzymes appeared to be correlated with the activity of EII(Fru).
Collapse
Affiliation(s)
- Stéphane Chaillou
- TNO Voeding, Department of Applied Microbiology and Gene Technology, PO box 360 3700 AJ Zeist, The Netherlands2
- EC Slater Institute, BioCentrum, University of Amsterdam, Plantage Muidergracht 12, 1018 TV Amsterdam, The Netherlands1
| | - Pieter W Postma
- EC Slater Institute, BioCentrum, University of Amsterdam, Plantage Muidergracht 12, 1018 TV Amsterdam, The Netherlands1
| | - Peter H Pouwels
- TNO Voeding, Department of Applied Microbiology and Gene Technology, PO box 360 3700 AJ Zeist, The Netherlands2
- EC Slater Institute, BioCentrum, University of Amsterdam, Plantage Muidergracht 12, 1018 TV Amsterdam, The Netherlands1
| |
Collapse
|
103
|
Abstract
The gram-positive bacterium Bacillus subtilisis capable of using numerous carbohydrates as single sources of carbon and energy. In this review, we discuss the mechanisms of carbon catabolism and its regulation. Like many other bacteria, B. subtilis uses glucose as the most preferred source of carbon and energy. Expression of genes involved in catabolism of many other substrates depends on their presence (induction) and the absence of carbon sources that can be well metabolized (catabolite repression). Induction is achieved by different mechanisms, with antitermination apparently more common in B. subtilis than in other bacteria. Catabolite repression is regulated in a completely different way than in enteric bacteria. The components mediating carbon catabolite repression in B. subtilis are also found in many other gram-positive bacteria of low GC content.
Collapse
Affiliation(s)
- J Stülke
- Lehrstuhl für Mikrobiologie, Institut für Mikrobiologie, Biochemie und Genetik der Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|
104
|
Khan SR, Deutscher J, Vishwakarma RA, Monedero V, Bhatnagar NB. The ptsH gene from Bacillus thuringiensis israelensis. Characterization of a new phosphorylation site on the protein HPr. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:521-30. [PMID: 11168390 DOI: 10.1046/j.1432-1327.2001.01878.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ptsH gene from Bacillus thuringiensis israelensis (Bti), coding for the phosphocarrier protein HPr of the phosphotransferase system has been cloned and overexpressed in Escherichia coli. Comparison of its primary sequence with other HPr sequences revealed that the conserved His15 and Ser46 residues were shifted by one amino acid and located at positions 14 and 45, respectively. The biological activity of the protein was not affected by this change. When expressed in a Bacillus subtilis ptsH deletion strain, Bti HPr was able to complement the functions of HPr in sugar uptake and glucose catabolite repression of the gnt and iol operons. A modified form of HPr was detected in Bti cells, and also when Bti ptsH was expressed in E. coli or B. subtilis. This modification was identified as phosphorylation, because alkaline phosphatase treatment converted the modified form to unmodified HPr. The phosphoryl bond in the new form of in vivo phosphorylated HPr was resistant to alkali treatment but sensitive to acid treatment, suggesting phosphorylation at a histidine residue. Replacement of His14 with alanine in Bti HPr prevented formation of the new form of phosphorylated HPr. The phosphorylated HPr was stable at 60 degrees C, in contrast with HPr phosphorylated at the N delta 1 position of His14 with phosphoenolpyruvate and enzyme I. (31)P-NMR spectroscopy was used to show that the new form of P-HPr carried the phosphoryl group bound to the N epsilon 2 position of His14 of Bti HPr. Phosphorylation of HPr at the novel site did not occur when Bti HPr was expressed in an enzyme I-deficient B. subtilis strain. In addition, P-(N epsilon 2)His-HPr did not transfer its phosphoryl group to the purified glucose-specific enzyme IIA domain of B. subtilis.
Collapse
Affiliation(s)
- S R Khan
- Centre for Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | | | | | | | | |
Collapse
|
105
|
Jankovic I, Egeter O, Brückner R. Analysis of catabolite control protein A-dependent repression in Staphylococcus xylosus by a genomic reporter gene system. J Bacteriol 2001; 183:580-6. [PMID: 11133951 PMCID: PMC94913 DOI: 10.1128/jb.183.2.580-586.2001] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2000] [Accepted: 10/27/2000] [Indexed: 11/20/2022] Open
Abstract
A single-copy reporter system for Staphylococcus xylosus has been developed, that uses a promoterless version of the endogenous beta-galactosidase gene lacH as a reporter gene and that allows integration of promoters cloned in front of lacH into the lactose utilization gene cluster by homologous recombination. The system was applied to analyze carbon catabolite repression of S. xylosus promoters by the catabolite control protein CcpA. To test if lacH is a suitable reporter gene, beta-galactosidase activities directed by two promoters known to be subject to CcpA regulation were measured. In these experiments, repression of the malRA maltose utilization operon promoter and autoregulation of the ccpA promoters were confirmed, proving the applicability of the system. Subsequently, putative CcpA operators, termed catabolite-responsive elements (cres), from promoter regions of several S. xylosus genes were tested for their ability to confer CcpA regulation upon a constitutive promoter, P(vegII). For that purpose, cre sequences were placed at position +3 or +4 within the transcribed region of P(vegII). Measurements of beta-galactosidase activities in the presence or absence of glucose yielded repression ratios between two- and eightfold. Inactivation of ccpA completely abolished glucose-dependent regulation. Therefore, the tested cres functioned as operator sites for CcpA. With promoters exclusively regulated by CcpA, signal transduction leading to CcpA activation in S. xylosus was examined. Glucose-dependent regulation was measured in a set of isogenic mutants showing defects in genes encoding glucose kinase GlkA, glucose uptake protein GlcU, and HPr kinase HPrK. GlkA and GlcU deficiency diminished glucose-dependent CcpA-mediated repression, but loss of HPr kinase activity abolished regulation. These results clearly show that HPr kinase provides the essential signal to activate CcpA in S. xylosus. Glucose uptake protein GlcU and glucose kinase GlkA participate in activation, but they are not able to trigger CcpA-mediated regulation independently from HPr kinase.
Collapse
Affiliation(s)
- I Jankovic
- Mikrobielle Genetik, Universität Tübingen, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
106
|
Kotrba P, Inui M, Yukawa H. Bacterial phosphotransferase system (PTS) in carbohydrate uptake and control of carbon metabolism. J Biosci Bioeng 2001. [DOI: 10.1016/s1389-1723(01)80308-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
107
|
Umeyama T, Naruoka A, Horinouchi S. Genetic and biochemical characterization of a protein phosphatase with dual substrate specificity in Streptomyces coelicolor A3(2). Gene 2000; 258:55-62. [PMID: 11111042 DOI: 10.1016/s0378-1119(00)00450-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A gene encoding a protein phosphatase (SppA) with a phosphoesterase motif, which was predicted by the genome project of the Gram-positive bacterium Streptomyces coelicolor A3(2), was cloned by PCR in pET32a(+) and expressed in Escherichia coli. SppA fused to thioredoxin (TRX-SppA) showed distinct heat-stable phosphatase activity toward p-nitrophenyl phosphate with optimal pH 8.0 and optimal temperature 55 degrees C. Mn2+ greatly enhanced enzyme activity, as is found with other protein Ser/Thr phosphatases. TRX-SppA was not inhibited by sodium orthovanadate or okadaic acid, both of which are known to be specific inhibitors of protein phosphatases. TRX-SppA showed phosphatase activity toward not only phosphoThr (pThr) and pTyr but also oligopeptides containing pSer, pThr, and pTyr, indicating that SppA is a protein phosphatase with dual substrate specificity. Disruption of the chromosomal sppA gene resulted in severe impairment of vegetative growth. All of these observations show that SppA, a protein phosphatase with dual specificity, plays an important, but not essential, role in vegetative growth of S. coelicolor A3(2). The presence of a single copy of sppA in all the 13 Streptomyces species examined, as determined by Southern hybridization, suggests a common role of SppA in general in Streptomyces species.
Collapse
Affiliation(s)
- T Umeyama
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | |
Collapse
|
108
|
Audette GF, Engelmann R, Hengstenberg W, Deutscher J, Hayakawa K, Quail JW, Delbaere LT. The 1.9 A resolution structure of phospho-serine 46 HPr from Enterococcus faecalis. J Mol Biol 2000; 303:545-53. [PMID: 11054290 DOI: 10.1006/jmbi.2000.4166] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The histidine-containing phosphocarrier protein HPr is a central component of the phosphoenolpyruvate:sugar phosphotransferase system (PTS), which transfers metabolic carbohydrates across the cell membrane in many bacterial species. In Gram-positive bacteria, phosphorylation of HPr at conserved serine 46 (P-Ser-HPr) plays several regulatory roles within the cell; the major regulatory effect of P-Ser-HPr is its inability to act as a phosphocarrier substrate in the enzyme I reaction of the PTS. In order to investigate the structural nature of HPr regulation by phosphorylation at Ser46, the structure of the P-Ser-HPr from the Gram- positive bacterium Enterococcus faecalis has been determined. X-ray diffraction analysis of P-Ser-HPr crystals provided 10,043 unique reflections, with a 95.1 % completeness of data to 1.9 A resolution. The structure was solved using molecular replacement, with two P-Ser-HPr molecules present in the asymmetric unit. The final R-value and R(Free) are 0.178 and 0.239, respectively. The overall tertiary structure of P-Ser-HPr is that of other HPr structures. However the active site in both P-Ser-HPr molecules was found to be in the "open" conformation. Ala16 of both molecules were observed to be in a state of torsional strain, similar to that seen in the structure of the native HPr from E. faecalis. Regulatory phosphorylation at Ser46 does not induce large structural changes to the HPr molecule. The B-helix was observed to be slightly lengthened as a result of Ser46 phosphorylation. Also, the water mediated Met51-His15 interaction is maintained, again similar to that of the native E. faecalis HPr. The major structural, and thus regulatory, effect of phosphorylation at Ser46 is disruption of the hydrophobic interactions between EI and HPr, in particular the electrostatic repulsion between the phosphoryl group on Ser46 and Glu84 of EI and the prevention of a potential interaction of Met48 with a hydrophobic pocket of EI.
Collapse
Affiliation(s)
- G F Audette
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | | | | | | | | | | | | |
Collapse
|
109
|
Gunnewijk MG, Poolman B. HPr(His approximately P)-mediated phosphorylation differently affects counterflow and proton motive force-driven uptake via the lactose transport protein of Streptococcus thermophilus. J Biol Chem 2000; 275:34080-5. [PMID: 10842178 DOI: 10.1074/jbc.m003513200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The lactose transport protein (LacS) of Streptococcus thermophilus has a C-terminal hydrophilic domain that is homologous to IIA protein and protein domains of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS). The IIA domain of LacS is phosphorylated on His-552 by the general energy coupling proteins of the PTS, which are Enzyme I and HPr. To study the effect of phosphorylation on transport, the LacS protein was purified and incorporated into liposomes with the IIA domain facing outwards. This allowed the phosphorylation of the membrane-reconstituted protein by purified HPr(His approximately P) of S. thermophilus. Phosphorylation of LacS increased the V(max) of counterflow transport, whereas the V(max) of the proton motive force (delta p)-driven lactose uptake was not affected. In line with a range of kinetic studies, we propose that phosphorylation affects the rate constants for the reorientation of the ternary complex (LacS with bound lactose plus proton), which is rate-determining for counterflow but not for delta p-driven transport.
Collapse
Affiliation(s)
- M G Gunnewijk
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | |
Collapse
|
110
|
Warner JB, Krom BP, Magni C, Konings WN, Lolkema JS. Catabolite repression and induction of the Mg(2+)-citrate transporter CitM of Bacillus subtilis. J Bacteriol 2000; 182:6099-105. [PMID: 11029430 PMCID: PMC94744 DOI: 10.1128/jb.182.21.6099-6105.2000] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2000] [Accepted: 08/02/2000] [Indexed: 11/20/2022] Open
Abstract
In Bacillus subtilis the citM gene encodes the Mg(2+)-citrate transporter. A target site for carbon catabolite repression (cre site) is located upstream of citM. Fusions of the citM promoter region, including the cre sequence, to the beta-galactosidase reporter gene were constructed and integrated into the amyE site of B. subtilis to study catabolic effects on citM expression. In parallel with beta-galactosidase activity, the uptake of Ni(2+)-citrate in whole cells was measured to correlate citM promoter activity with the enzymatic activity of the CitM protein. In minimal media, CitM was only expressed when citrate was present. The presence of glucose in the medium completely repressed citM expression; repression was also observed in media containing glycerol, inositol, or succinate-glutamate. Studies with B. subtilis mutants defective in the catabolite repression components HPr, Crh, and CcpA showed that the repression exerted by all these medium components was mediated via the carbon catabolite repression system. During growth on inositol and succinate, the presence of glutamate strongly potentiated the repression of citM expression by glucose. A reasonable correlation between citM promoter activity and CitM transport activity was observed in this study, indicating that the Mg(2+)-citrate uptake activity of B. subtilis is mainly regulated at the transcriptional level.
Collapse
Affiliation(s)
- J B Warner
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9751 NN Haren, The Netherlands
| | | | | | | | | |
Collapse
|
111
|
Zeng X, Galinier A, Saxild HH. Catabolite repression of dra-nupC-pdp operon expression in Bacillus subtilis. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 11):2901-2908. [PMID: 11065368 DOI: 10.1099/00221287-146-11-2901] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Expression of the Bacillus subtilis dra-nupC-pdp operon is subject to catabolite repression by glucose. It was shown that a cis-acting catabolite-responsive element (CRE) sequence located 64 bp downstream of the transcription-start site mediated catabolite repression of the dra-nupC-pdp operon as it does for many other B. subtilis genes. Point mutations in the CRE sequence caused the loss of catabolite repression of the operon. Catabolite repression of dra-nupC-pdp expression was relieved in a ccpA mutant and was found to be dependent on both HPr and the HPr-like protein Crh. Furthermore, a transcription-repair coupling factor, Mfd, was also found to be involved in the glucose repression of dra-nupC-pdp expression. By the use of in vitro gel mobility shift analysis, a specific HPr-P dependent binding of CcpA to the dra CRE site was demonstrated.
Collapse
Affiliation(s)
- Xianmin Zeng
- Department of Microbiology, Technical University of Denmark, Building 301, DK-2800 Lyngby, Denmark1
| | - Anne Galinier
- Institut de Biologie et Chimie des Protéines, CNRS, 7 Passage du Vercors, F-69376 Lyon, Cedex 07, France2
| | - Hans H Saxild
- Department of Microbiology, Technical University of Denmark, Building 301, DK-2800 Lyngby, Denmark1
| |
Collapse
|
112
|
Abstract
In this chapter we review the various methods available to the experimenter to analyse phosphorylated peptides. The initial steps in such an analysis involve the isolation of the phosphopeptides for analysis, and we outline the various current methods such as immobilised metal affinity chromatography, anti-phosphoamino acid antibodies as well as HPLC (High Pressure Liquid Chromatography) and TLC (Thin Layer Chromatography). The isolated peptides can be analysed by chemical modification followed by Edman degradation or by mass spectrometry (MS). We focus on MS methods and give examples illustrating the selective detection and sequencing of phosphopeptides.
Collapse
Affiliation(s)
- M Quadroni
- Biomedical Research Center, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
113
|
Lower BH, Bischoff KM, Kennelly PJ. The archaeon Sulfolobus solfataricus contains a membrane-associated protein kinase activity that preferentially phosphorylates threonine residues in vitro. J Bacteriol 2000; 182:3452-9. [PMID: 10852877 PMCID: PMC101924 DOI: 10.1128/jb.182.12.3452-3459.2000] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The extreme acidothermophilic archaeon Sulfolobus solfataricus harbors a membrane-associated protein kinase activity. Its solubilization and stabilization required detergents, suggesting that this activity resides within an integral membrane protein. The archaeal protein kinase utilized purine nucleotides as phosphoryl donors in vitro. A noticeable preference for nucleotide triphosphates over nucleotide diphosphates and for adenyl nucleotides over the corresponding guanyl ones was observed. The molecular mass of the solubilized, partially purified enzyme was estimated to be approximately 125 kDa by gel filtration chromatography. Catalytic activity resided in a polypeptide with an apparent molecular mass of approximately 67 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Challenges with several exogenous substrates revealed the protein kinase to be relatively selective. Only casein, histone H4, reduced carboxyamidomethylated and maleylated lysozyme, and a peptide modeled after myosin light chains (KKRAARATSNVFA) were phosphorylated to appreciable levels in vitro. All of the aforementioned substrates were phosphorylated on threonine residues, while histone H4 was phosphorylated on serine as well. Substitution of serine for the phosphoacceptor threonine in the myosin light chain peptide produced a noticeably inferior substrate. The protein kinase underwent autophosphorylation on threonine and was relatively insensitive to a set of known inhibitors of "eukaryotic" protein kinases.
Collapse
Affiliation(s)
- B H Lower
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | |
Collapse
|
114
|
Ward DE, van Der Weijden CC, van Der Merwe MJ, Westerhoff HV, Claiborne A, Snoep JL. Branched-chain alpha-keto acid catabolism via the gene products of the bkd operon in Enterococcus faecalis: a new, secreted metabolite serving as a temporary redox sink. J Bacteriol 2000; 182:3239-46. [PMID: 10809705 PMCID: PMC94512 DOI: 10.1128/jb.182.11.3239-3246.2000] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recently the bkd gene cluster from Enterococcus faecalis was sequenced, and it was shown that the gene products constitute a pathway for the catabolism of branched-chain alpha-keto acids. We have now investigated the regulation and physiological role of this pathway. Primer extension analysis identified the presence of a single promoter upstream of the bkd gene cluster. Furthermore, a putative catabolite-responsive element was identified in the promoter region, indicative of catabolite repression. Consistent with this was the observation that expression of the bkd gene cluster is repressed in the presence of glucose, fructose, and lactose. It is proposed that the conversion of the branched-chain alpha-keto acids to the corresponding free acids results in the formation of ATP via substrate level phosphorylation. The utilization of the alpha-keto acids resulted in a marked increase of biomass, equivalent to a net production of 0.5 mol of ATP per mol of alpha-keto acid metabolized. The pathway was active under aerobic as well as anaerobic conditions. However, under anaerobic conditions the presence of a suitable electron acceptor to regenerate NAD(+) from the NADH produced by the branched-chain alpha-keto acid dehydrogenase complex was required for complete conversion of alpha-ketoisocaproate. Interestingly, during the conversion of the branched-chain alpha-keto acids an intermediate was always detected extracellularly. With alpha-ketoisocaproic acid as the substrate this intermediate was tentatively identified as 1, 1-dihydroxy-4-methyl-2-pentanone. This reduced form of alpha-ketoisocaproic acid was found to serve as a temporary redox sink.
Collapse
Affiliation(s)
- D E Ward
- Department of Biochemistry, Wake Forest University Medical Center, Winston-Salem, North Carolina 27157, USA
| | | | | | | | | | | |
Collapse
|
115
|
Dossonnet V, Monedero V, Zagorec M, Galinier A, Pérez-Martínez G, Deutscher J. Phosphorylation of HPr by the bifunctional HPr Kinase/P-ser-HPr phosphatase from Lactobacillus casei controls catabolite repression and inducer exclusion but not inducer expulsion. J Bacteriol 2000; 182:2582-90. [PMID: 10762262 PMCID: PMC111324 DOI: 10.1128/jb.182.9.2582-2590.2000] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/1999] [Accepted: 02/09/2000] [Indexed: 11/20/2022] Open
Abstract
We have cloned and sequenced the Lactobacillus casei hprK gene encoding the bifunctional enzyme HPr kinase/P-Ser-HPr phosphatase (HprK/P). Purified recombinant L. casei HprK/P catalyzes the ATP-dependent phosphorylation of HPr, a phosphocarrier protein of the phosphoenolpyruvate:carbohydrate phosphotransferase system at the regulatory Ser-46 as well as the dephosphorylation of seryl-phosphorylated HPr (P-Ser-HPr). The two opposing activities of HprK/P were regulated by fructose-1,6-bisphosphate, which stimulated HPr phosphorylation, and by inorganic phosphate, which stimulated the P-Ser-HPr phosphatase activity. A mutant producing truncated HprK/P was found to be devoid of both HPr kinase and P-Ser-HPr phosphatase activities. When hprK was inactivated, carbon catabolite repression of N-acetylglucosaminidase disappeared, and the lag phase observed during diauxic growth of the wild-type strain on media containing glucose plus either lactose or maltose was strongly diminished. In addition, inducer exclusion exerted by the presence of glucose on maltose transport in the wild-type strain was abolished in the hprK mutant. However, inducer expulsion of methyl beta-D-thiogalactoside triggered by rapidly metabolizable carbon sources was still operative in ptsH mutants altered at Ser-46 of HPr and the hprK mutant, suggesting that, in contrast to the model proposed for inducer expulsion in gram-positive bacteria, P-Ser-HPr might not be involved in this regulatory process.
Collapse
Affiliation(s)
- V Dossonnet
- Laboratoire de Génétique des Microorganismes, 78850 Thiverval-Grignon, France
| | | | | | | | | | | |
Collapse
|
116
|
Viana R, Monedero V, Dossonnet V, Vadeboncoeur C, Pérez-Martínez G, Deutscher J. Enzyme I and HPr from Lactobacillus casei: their role in sugar transport, carbon catabolite repression and inducer exclusion. Mol Microbiol 2000; 36:570-84. [PMID: 10844647 DOI: 10.1046/j.1365-2958.2000.01862.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We have cloned and sequenced the Lactobacillus casei ptsH and ptsI genes, which encode enzyme I and HPr, respectively, the general components of the phosphoenolpyruvate-carbohydrate phosphotransferase system (PTS). Northern blot analysis revealed that these two genes are organized in a single-transcriptional unit whose expression is partially induced. The PTS plays an important role in sugar transport in L. casei, as was confirmed by constructing enzyme I-deficient L. casei mutants, which were unable to ferment a large number of carbohydrates (fructose, mannose, mannitol, sorbose, sorbitol, amygdaline, arbutine, salicine, cellobiose, lactose, tagatose, trehalose and turanose). Phosphorylation of HPr at Ser-46 is assumed to be important for the regulation of sugar metabolism in Gram-positive bacteria. L. casei ptsH mutants were constructed in which phosphorylation of HPr at Ser-46 was either prevented or diminished (replacement of Ser-46 of HPr with Ala or Thr respectively). In a third mutant, Ile-47 of HPr was replaced with a threonine, which was assumed to reduce the affinity of P-Ser-HPr for its target protein CcpA. The ptsH mutants exhibited a less pronounced lag phase during diauxic growth in a mixture of glucose and lactose, two PTS sugars, and diauxie was abolished when cells were cultured in a mixture of glucose and the non-PTS sugars ribose or maltose. The ptsH mutants synthesizing Ser-46-Ala or Ile-47-Thr mutant HPr were partly or completely relieved from carbon catabolite repression (CCR), suggesting that the P-Ser-HPr/CcpA-mediated mechanism of CCR is common to most low G+C Gram-positive bacteria. In addition, in the three constructed ptsH mutants, glucose had lost its inhibitory effect on maltose transport, providing for the first time in vivo evidence that P-Ser-HPr participates also in inducer exclusion.
Collapse
Affiliation(s)
- R Viana
- Instituto de Agroquímica y Tecnología de Alimentos, C.S.I.C., Ap. Correos 73, 46100 Burjassot, Valencia, Spain
| | | | | | | | | | | |
Collapse
|
117
|
Park SH, Park SH, Chin HG, Cho MJ, Martienssen RA, Han CD. Inhibitor of striate conditionally suppresses cell proliferation in variegated maize. Genes Dev 2000. [DOI: 10.1101/gad.14.8.1005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Since the work done by R.A. Emerson in the 1930s, Inhibitor of striate (Isr) has been recognized as a dose-dependent genetic modifier of variegation in chlorotic leaf striping mutants of maize such as striate2 (sr2). We have shown thatIsr specifically inhibits proliferation and differentiation of plastid defective cells in sr2 mutants. Leaf narrowing is due to loss of intermediate veins and ground tissue located at leaf margins, and the few remaining plastid defective cells are of irregular size and aberrant organization. The Isr gene has been cloned by targeted transposon tagging. Isr mRNA is expressed throughout young leaves, but Isr chimeras indicate that the expression ofIsr at leaf margins is sufficient to suppress both the lateral expansion of sr2 leaves and the extent of striping. Isr protein appears to encode a chloroplast protein with sequence similarity to a family of bacterial phosphatases involved in carbon catabolite repression or in carbon metabolism. We propose that the action ofIsr in nuclear and plastid communication could be triggered by carbon stress.
Collapse
|
118
|
Park SH, Chin HG, Cho MJ, Martienssen RA, Han CD. Inhibitor of striate conditionally suppresses cell proliferation in variegated maize. Genes Dev 2000; 14:1005-16. [PMID: 10783171 PMCID: PMC316532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Since the work done by R.A. Emerson in the 1930s, Inhibitor of striate (Isr) has been recognized as a dose-dependent genetic modifier of variegation in chlorotic leaf striping mutants of maize such as striate2 (sr2). We have shown that Isr specifically inhibits proliferation and differentiation of plastid defective cells in sr2 mutants. Leaf narrowing is due to loss of intermediate veins and ground tissue located at leaf margins, and the few remaining plastid defective cells are of irregular size and aberrant organization. The Isr gene has been cloned by targeted transposon tagging. Isr mRNA is expressed throughout young leaves, but Isr chimeras indicate that the expression of Isr at leaf margins is sufficient to suppress both the lateral expansion of sr2 leaves and the extent of striping. Isr protein appears to encode a chloroplast protein with sequence similarity to a family of bacterial phosphatases involved in carbon catabolite repression or in carbon metabolism. We propose that the action of Isr in nuclear and plastid communication could be triggered by carbon stress.
Collapse
Affiliation(s)
- S H Park
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Chinju, Korea
| | | | | | | | | |
Collapse
|
119
|
Huynh PL, Jankovic I, Schnell NF, Brückner R. Characterization of an HPr kinase mutant of Staphylococcus xylosus. J Bacteriol 2000; 182:1895-902. [PMID: 10714994 PMCID: PMC101872 DOI: 10.1128/jb.182.7.1895-1902.2000] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/1999] [Accepted: 12/29/1999] [Indexed: 11/20/2022] Open
Abstract
The Staphylococcus xylosus gene hprK, encoding HPr kinase (HPrK), has been isolated from a genomic library. The HPrK enzyme, purified as a His(6) fusion protein, phosphorylated HPr, the phosphocarrier protein of the bacterial phosphotransferase system, at a serine residue in an ATP-dependent manner, and it also catalyzed the reverse reaction. Therefore, the enzyme constitutes a bifunctional HPr kinase/phosphatase. Insertional inactivation of the gene in the genome of S. xylosus resulted in the concomitant loss of both HPr kinase and His serine-phosphorylated-HPr phosphatase activities in cell extracts, strongly indicating that the HPrK enzyme is also responsible for both reactions in vivo. HPrK deficiency had a profound pleiotropic effect on the physiology of S. xylosus. The hprK mutant strain showed a severe growth defect in complex medium upon addition of glucose. Glucose uptake in glucose-grown cells was strongly enhanced compared with the wild type. Carbon catabolite repression of three tested enzyme activities by glucose, sucrose, and fructose was abolished. These results clearly demonstrate the prominent role of HPr kinase in global control to adjust catabolic capacities of S. xylosus according to the availability of preferred carbon sources.
Collapse
Affiliation(s)
- P L Huynh
- Mikrobielle Genetik, Universität Tübingen, D-72076 Tübingen, Germany
| | | | | | | |
Collapse
|
120
|
Jault JM, Fieulaine S, Nessler S, Gonzalo P, Di Pietro A, Deutscher J, Galinier A. The HPr kinase from Bacillus subtilis is a homo-oligomeric enzyme which exhibits strong positive cooperativity for nucleotide and fructose 1,6-bisphosphate binding. J Biol Chem 2000; 275:1773-80. [PMID: 10636874 DOI: 10.1074/jbc.275.3.1773] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Carbon catabolite repression allows bacteria to rapidly alter the expression of catabolic genes in response to the availability of metabolizable carbon sources. In Bacillus subtilis, this phenomenon is controlled by the HPr kinase (HprK) that catalyzes ATP-dependent phosphorylation of either HPr (histidine containing protein) or Crh (catabolite repression HPr) on residue Ser-46. We report here that B. subtilis HprK forms homo-oligomers constituted most likely of eight subunits. Related to this complex structure, the enzyme displays strong positive cooperativity for the binding of its allosteric activator, fructose 1,6-bisphosphate, as evidenced by either kinetics of its phosphorylation activity or the intrinsic fluorescence properties of its unique tryptophan residue, Trp-235. It is further shown that activation of HPr phosphorylation by fructose 1,6-bisphosphate essentially occurs at low ATP and enzyme concentrations. A positive cooperativity was also detected for the binding of natural nucleotides or their 2'(3')-N-methylanthraniloyl derivatives, in either phosphorylation or fluorescence experiments. Most interestingly, quenching of the HprK tryptophan fluorescence by using either iodide or acrylamide revealed a heterogeneity of tryptophan residues within the population of oligomers, suggesting that the enzyme exists in two different conformations. This result suggests a concerted-symmetry model for the catalytic mechanism of positive cooperativity displayed by HprK.
Collapse
Affiliation(s)
- J M Jault
- Institut de Biologie et Chimie des Protéines, UPR 412 CNRS, 69367 Lyon Cedex 07, France
| | | | | | | | | | | | | |
Collapse
|
121
|
Reizer J, Bachem S, Reizer A, Arnaud M, Saier MH, Stülke J. Novel phosphotransferase system genes revealed by genome analysis - the complete complement of PTS proteins encoded within the genome of Bacillus subtilis. MICROBIOLOGY (READING, ENGLAND) 1999; 145 ( Pt 12):3419-3429. [PMID: 10627040 DOI: 10.1099/00221287-145-12-3419] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacillus subtilis can utilize several sugars as single sources of carbon and energy. Many of these sugars are transported and concomitantly phosphorylated by the phosphoenolpyruvate:sugar phosphotransferase system (PTS). In addition to its role in sugar uptake, the PTS is one of the major signal transduction systems in B. subtilis. In this study, an analysis of the complete set of PTS proteins encoded within the B. subtilis genome is presented. Fifteen sugar-specific PTS permeases were found to be present and the functions of novel PTS permeases were studied based on homology to previously characterized permeases, analysis of the structure of the gene clusters in which the permease encoding genes are located and biochemical analysis of relevant mutants. Members of the glucose, sucrose, lactose, mannose and fructose/mannitol families of PTS permeases were identified. Interestingly, nine pairs of IIB and IIC domains belonging to the glucose and sucrose permease families are present in B. subtilis; by contrast only five Enzyme IIA(Glc)-like proteins or domains are encoded within the B. subtilis genome. Consequently, some of the EIIA(Glc)-like proteins must function in phosphoryl transfer to more than one IIB domain of the glucose and sucrose families. In addition, 13 PTS-associated proteins are encoded within the B. subtilis genome. These proteins include metabolic enzymes, a bifunctional protein kinase/phosphatase, a transcriptional cofactor and transcriptional regulators that are involved in PTS-dependent signal transduction. The PTS proteins and the auxiliary PTS proteins represent a highly integrated network that catalyses and simultaneously modulates carbohydrate utilization in this bacterium.
Collapse
Affiliation(s)
- Jonathan Reizer
- Department of Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA1
| | - Steffi Bachem
- Lehrstuhl für Mikrobiologie, Institut für Mikrobiologie, Biochemie und Genetik der Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058 Erlangen, Germany2
| | - Aiala Reizer
- Department of Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA1
| | - Maryvonne Arnaud
- Unité de Biochimie Microbienne, D épartement des Biotechnologies, Institut Pasteur, 25 rue du Dr Roux, F-75724 Paris Cedex 15, France 3
| | - Milton H Saier
- Department of Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA1
| | - Jörg Stülke
- Lehrstuhl für Mikrobiologie, Institut für Mikrobiologie, Biochemie und Genetik der Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058 Erlangen, Germany2
| |
Collapse
|
122
|
Tobisch S, Zühlke D, Bernhardt J, Stülke J, Hecker M. Role of CcpA in regulation of the central pathways of carbon catabolism in Bacillus subtilis. J Bacteriol 1999; 181:6996-7004. [PMID: 10559165 PMCID: PMC94174 DOI: 10.1128/jb.181.22.6996-7004.1999] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bacillus subtilis two-dimensional (2D) protein index contains almost all glycolytic and tricarboxylic acid (TCA) cycle enzymes, among them the most abundant housekeeping proteins of growing cells. Therefore, a comprehensive study on the regulation of glycolysis and the TCA cycle was initiated. Whereas expression of genes encoding the upper and lower parts of glycolysis (pgi, pfk, fbaA, and pykA) is not affected by the glucose supply, there is an activation of the glycolytic gap gene and the pgk operon by glucose. This activation seems to be dependent on the global regulator CcpA, as shown by 2D polyacrylamide gel electrophoresis analysis as well as by transcriptional analysis. Furthermore, a high glucose concentration stimulates production and excretion of organic acids (overflow metabolism) in the wild type but not in the ccpA mutant. Finally, CcpA is involved in strong glucose repression of almost all TCA cycle genes. In addition to TCA cycle and glycolytic enzymes, the levels of many other proteins are affected by the ccpA mutation. Our data suggest (i) that ccpA mutants are unable to activate glycolysis or carbon overflow metabolism and (ii) that CcpA might be a key regulator molecule, controlling a superregulon of glucose catabolism.
Collapse
Affiliation(s)
- S Tobisch
- Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität Greifswald, D-17487 Greifswald, Germany
| | | | | | | | | |
Collapse
|
123
|
Martin-Verstraete I, Galinier A, Darbon E, Quentin Y, Kilhoffer MC, Charrier V, Haiech J, Rapoport G, Deutscher J. The Q15H mutation enables Crh, a Bacillus subtilis HPr-like protein, to carry out some regulatory HPr functions, but does not make it an effective phosphocarrier for sugar transport. MICROBIOLOGY (READING, ENGLAND) 1999; 145 ( Pt 11):3195-3204. [PMID: 10589728 DOI: 10.1099/00221287-145-11-3195] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Crh of Bacillus subtilis exhibits 45% sequence identity when compared to histidine-containing protein (HPr), a phosphocarrier protein of the phosphoenolpyruvate (PEP):sugar phosphotransferase system (PTS). Crh can be phosphorylated by ATP at the regulatory Ser-46 and similar to P-Ser-HPr, P-Ser-Crh plays a role in carbon-catabolite repression. The sequence around the phosphorylatable Ser-46 in Crh exhibits strong similarity to the corresponding sequence of HPr of Gram-positive and a few Gram-negative bacteria. In contrast, the catalytic His-15, the site of PEP-dependent phosphorylation in HPr, is replaced with a glutamine in Crh. When Gln-15 was exchanged for a histidyl residue, in vitro PEP-dependent enzyme I-catalysed phosphorylation of the mutant Crh was observed. However, expression of the crhQ15H mutant allele did not restore growth of a ptsH deletion strain on the PTS sugars glucose, fructose or mannitol or on the non-PTS sugar glycerol. In contrast, Q15H mutant Crh could phosphorylate the transcriptional activator LevR as well as LevD, the enzyme IIA of the fructose-specific lev-PTS, which together with enzyme I, HPr and LevE forms the phosphorylation cascade regulating induction of the lev operon via LevR. As a consequence, the constitutive expression from the lev promoter observed in a (delta)ptsH strain became inducible with fructose when the crhQ15H allele was expressed in this strain.
Collapse
Affiliation(s)
| | - Anne Galinier
- Institut de Biologie et Chimie des Protéines, CNRS UPR 412, F-69367 Lyon Cedex 07, France2
| | - Emmanuelle Darbon
- Laboratoire de Génétique des Microorganismes, INRA-CNRS URA 1925,F-78850 Thiverval-Grignon, France3
| | - Yves Quentin
- Laboratoire de Chimie Bactérienne, CNRS UPR 9043, F-13009 Marseille, France4
| | - Marie-Claude Kilhoffer
- Laboratoire de Biophysique, URA 491, Université Louis Pasteur,F-67401 Illkirch Cedex, France5
| | - Véronique Charrier
- Institut de Biologie et Chimie des Protéines, CNRS UPR 412, F-69367 Lyon Cedex 07, France2
| | - Jacques Haiech
- Laboratoire de Biophysique, URA 491, Université Louis Pasteur,F-67401 Illkirch Cedex, France5
| | - Georges Rapoport
- Unité de Biochimie Microbienne, CNRS URA 1300, Institut Pasteur,F-75724 Paris, France1
| | - Josef Deutscher
- Laboratoire de Génétique des Microorganismes, INRA-CNRS URA 1925,F-78850 Thiverval-Grignon, France3
| |
Collapse
|
124
|
Presecan-Siedel E, Galinier A, Longin R, Deutscher J, Danchin A, Glaser P, Martin-Verstraete I. Catabolite regulation of the pta gene as part of carbon flow pathways in Bacillus subtilis. J Bacteriol 1999; 181:6889-97. [PMID: 10559153 PMCID: PMC94162 DOI: 10.1128/jb.181.22.6889-6897.1999] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/1999] [Accepted: 09/02/1999] [Indexed: 11/20/2022] Open
Abstract
In Bacillus subtilis, the products of the pta and ackA genes, phosphotransacetylase and acetate kinase, play a crucial role in the production of acetate, one of the most abundant by-products of carbon metabolism in this gram-positive bacterium. Although these two enzymes are part of the same pathway, only mutants with inactivated ackA did not grow in the presence of glucose. Inactivation of pta had only a weak inhibitory effect on growth. In contrast to pta and ackA in Escherichia coli, the corresponding B. subtilis genes are not cotranscribed. Expression of the pta gene was increased in the presence of glucose, as has been reported for ackA. The effects of the predicted cis-acting catabolite response element (CRE) located upstream from the promoter and of the trans-acting proteins CcpA, HPr, Crh, and HPr kinase on the catabolite regulation of pta were investigated. As for ackA, glucose activation was abolished in ccpA and hprK mutants and in the ptsH1 crh double mutant. Footprinting experiments demonstrated an interaction between CcpA and the pta CRE sequence, which is almost identical to the proposed CRE consensus sequence. This interaction occurs only in the presence of Ser-46-phosphorylated HPr (HPrSer-P) or Ser-46-phosphorylated Crh (CrhSer-P) and fructose-1,6-bisphosphate (FBP). In addition to CcpA, carbon catabolite activation of the pta gene therefore requires at least two other cofactors, FBP and either HPr or Crh, phosphorylated at Ser-46 by the ATP-dependent Hpr kinase.
Collapse
Affiliation(s)
- E Presecan-Siedel
- Unité de Régulation de l'Expression Génétique, Laboratoire des Fermentations, Institut Pasteur, F-75724, Paris, France
| | | | | | | | | | | | | |
Collapse
|
125
|
Plamondon P, Brochu D, Thomas S, Fradette J, Gauthier L, Vaillancourt K, Buckley N, Frenette M, Vadeboncoeur C. Phenotypic consequences resulting from a methionine-to-valine substitution at position 48 in the HPr protein of Streptococcus salivarius. J Bacteriol 1999; 181:6914-21. [PMID: 10559156 PMCID: PMC94165 DOI: 10.1128/jb.181.22.6914-6921.1999] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In gram-positive bacteria, the HPr protein of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) can be phosphorylated on a histidine residue at position 15 (His(15)) by enzyme I (EI) of the PTS and on a serine residue at position 46 (Ser(46)) by an ATP-dependent protein kinase (His approximately P and Ser-P, respectively). We have isolated from Streptococcus salivarius ATCC 25975, by independent selection from separate cultures, two spontaneous mutants (Ga3.78 and Ga3.14) that possess a missense mutation in ptsH (the gene encoding HPr) replacing the methionine at position 48 by a valine. The mutation did not prevent the phosphorylation of HPr at His(15) by EI nor the phosphorylation at Ser(46) by the ATP-dependent HPr kinase. The levels of HPr(Ser-P) in glucose-grown cells of the parental and mutant Ga3.78 were virtually the same. However, mutant cells growing on glucose produced two- to threefold less HPr(Ser-P)(His approximately P) than the wild-type strain, while the levels of free HPr and HPr(His approximately P) were increased 18- and 3-fold, respectively. The mutants grew as well as the wild-type strain on PTS sugars (glucose, fructose, and mannose) and on the non-PTS sugars lactose and melibiose. However, the growth rate of both mutants on galactose, also a non-PTS sugar, decreased rapidly with time. The M48V substitution had only a minor effect on the repression of alpha-galactosidase, beta-galactosidase, and galactokinase by glucose, but this mutation abolished diauxie by rendering cells unable to prevent the catabolism of a non-PTS sugar (lactose, galactose, and melibiose) when glucose was available. The results suggested that the capacity of the wild-type cells to preferentially metabolize glucose over non-PTS sugars resulted mainly from inhibition of the catabolism of these secondary energy sources via a HPr-dependent mechanism. This mechanism was activated following glucose but not lactose metabolism, and it did not involve HPr(Ser-P) as the only regulatory molecule.
Collapse
Affiliation(s)
- P Plamondon
- Groupe de Recherche en Ecologie Buccale, Département de Biochimie, Faculté des Sciences et de Génie and Faculté de Médecine Dentaire, Université Laval, Cité Universitaire, Québec, Québec, Canada G1K 7P4
| | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Christiansen I, Hengstenberg W. Staphylococcal phosphoenolpyruvate-dependent phosphotransferase system--two highly similar glucose permeases in Staphylococcus carnosus with different glucoside specificity: protein engineering in vivo? MICROBIOLOGY (READING, ENGLAND) 1999; 145 ( Pt 10):2881-9. [PMID: 10537210 DOI: 10.1099/00221287-145-10-2881] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Previous sequence analysis of the glucose-specific PTS gene locus from Staphylococcus carnosus revealed the unexpected finding of two adjacent, highly similar ORFs, glcA and glcB, each encoding a glucose-specific membrane permease EIICBA(Glc). glcA and glcB show 73% identity at the nucleotide level and glcB is located 131 bp downstream from glcA. Each of the genes is flanked by putative regulatory elements such as a termination stem-loop, promoter and ribosome-binding site, suggesting independent regulation. The finding of putative cis-active operator sequences, CRE (catabolite-responsive elements) suggests additional regulation by carbon catabolite repression. As described previously by the authors, both genes can be expressed in Escherichia coli under control of their own promoters. Two putative promoters are located upstream of glcA, and both were found to initiate transcription in E. coli. Although the two permeases EIICBA(Glc)1 and EIICBA(Glc)2 show 69% identity at the protein level, and despite the common primary substrate glucose, they have different specificities towards glucosides as substrate. EIICBA(Glc)1 phosphorylates glucose in a PEP-dependent reaction with a Km of 12 microM; the reaction can be inhibited by 2-deoxyglucose and methyl beta-D-glucoside. EIICBA(Glc)2 phosphorylates glucose with a Km of 19 microM and this reaction is inhibited by methyl alpha-D-glucoside, methyl beta-D-glucoside, p-nitrophenyl alpha-D-glucoside, o-nitrophenyl beta-D-glucoside and salicin, but unlike other glucose permeases, including EIICBA(Glc)1, not by 2-deoxyglucose. Natural mono- or disaccharides, such as mannose or N-acetylglucosamine, that are transported by other glucose transporters are not phosphorylated by either EIICBA(Glc)1 nor EIICBA(Glc)2, indicating a high specificity for glucose. Together, these findings support the suggestion of evolutionary development of different members of a protein family, by gene duplication and subsequent differentiation. C-terminal fusion of a histidine hexapeptide to both gene products did not affect the activity of the enzymes and allowed their purification by Ni2+-NTA affinity chromatography after expression in a ptsG (EIICB(Glc)) deletion mutant of E. coli. Upstream of glcA, the 3' end of a further ORF encoding 138 amino acid residues of a putative antiterminator of the BglG family was found, as well as a putative target DNA sequence (RAT), which indicates a further regulation by glucose specific antitermination.
Collapse
Affiliation(s)
- I Christiansen
- Department of Microbiology, Ruhr-Universität Bochum, Germany
| | | |
Collapse
|
127
|
Banerjee-Bhatnagar N. Inorganic phosphate regulates CryIVA protoxin expression in Bacillus thuringiensis israelensis. Biochem Biophys Res Commun 1999; 262:359-64. [PMID: 10462480 DOI: 10.1006/bbrc.1999.1094] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of nutritional factors during CryIVA protoxin expression in Bacillus thuringiensis israelensis (Bti) has been investigated. Inorganic phosphate (Pi) was found to stimulate 135 kD protoxin synthesis by Bti cells. There was a corresponding increase in the cryIVA specific mRNA in the presence of Pi. Inorganic phosphate inhibited HPr kinase but activated HPr phosphatase, the two enzymes responsible for regulating the concentration of phosphorylated HPr in the cell. Addition of protein phosphatase inhibitors NaF and calyculin A during resuspension resulted in the inhibition of toxin synthesis by Bti cells. Calyculin A inhibited HPr phosphatase activity in the in vitro assay also. The concentration of phosphorylated HPr was upregulated when the cells were resuspended in the presence of calyculin A, while the levels of the same were lowered in the presence of Pi, as determined by Western blotting the respective cells. The efficiency of sporulation of Bti was not affected when Pi was added alone or along with the phosphatase inhibitor calyculin A.
Collapse
Affiliation(s)
- N Banerjee-Bhatnagar
- International Center For Genetic Engineering and Biotechnology, New Delhi, 110067, India.
| |
Collapse
|
128
|
Butler MJ, Deutscher J, Postma PW, Wilson TJ, Galinier A, Bibb MJ. Analysis of a ptsH homologue from Streptomyces coelicolor A3(2). FEMS Microbiol Lett 1999; 177:279-88. [PMID: 10474194 DOI: 10.1111/j.1574-6968.1999.tb13744.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A ptsH homologue of Streptomyces coelicolor A3(2) was identified in the emerging genome sequence, cloned in Escherichia coli and the S. coelicolor HPr over-produced and purified. The protein was phosphorylated in vitro in a phosphoenolpyruvate (PEP)-dependent manner by purified enzyme I (EI) from Bacillus subtilis, and much less efficiently in an ATP-dependent manner by purified HPr kinase, also from B. subtilis. There was no indication of ATP-dependent phosphorylation of the purified protein by cell extracts of either S. coelicolor or Streptomyces lividans. Deletion of the ptsH homologue from the S. coelicolor and S. lividans chromosomes had no effect on growth when fructose was supplied as sole carbon source, and in S. coelicolor it had no effect on glucose repression of agarase and galactokinase synthesis, suggesting that the HPr encoded by this gene does not play an essential role in fructose transport nor a general role in carbon catabolite repression.
Collapse
Affiliation(s)
- M J Butler
- Department of Genetics, John Innes Centre, Colney, Norwich, UK
| | | | | | | | | | | |
Collapse
|
129
|
Tobisch S, Stülke J, Hecker M. Regulation of the lic operon of Bacillus subtilis and characterization of potential phosphorylation sites of the LicR regulator protein by site-directed mutagenesis. J Bacteriol 1999; 181:4995-5003. [PMID: 10438772 PMCID: PMC93989 DOI: 10.1128/jb.181.16.4995-5003.1999] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lic operon of Bacillus subtilis is required for the transport and degradation of oligomeric beta-glucosides, which are produced by extracellular enzymes on substrates such as lichenan or barley glucan. The lic operon is transcribed from a sigma(A)-dependent promoter and is inducible by lichenan, lichenan hydrolysate, and cellobiose. Induction of the operon requires a DNA sequence with dyad symmetry located immediately upstream of the licBCAH promoter. Expression of the lic operon is positively controlled by the LicR regulator protein, which contains two potential helix-turn-helix motifs, two phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) regulation domains (PRDs), and a domain similar to PTS enzyme IIA (EIIA). The activity of LicR is stimulated by modification (probably phosphorylation) of both PRD-I and PRD-II by the general PTS components and is negatively regulated by modification (probably phosphorylation) of its EIIA domain by the specific EII(Lic) in the absence of oligomeric beta-glucosides. This was shown by the analysis of licR mutants affected in potential phosphorylation sites. Moreover, the lic operon is subject to carbon catabolite repression (CCR). CCR takes place via a CcpA-dependent mechanism and a CcpA-independent mechanism in which the general PTS enzyme HPr is involved.
Collapse
Affiliation(s)
- S Tobisch
- Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität Greifswald, D-17487 Greifswald, Germany
| | | | | |
Collapse
|
130
|
Fiegler H, Bassias J, Jankovic I, Brückner R. Identification of a gene in Staphylococcus xylosus encoding a novel glucose uptake protein. J Bacteriol 1999; 181:4929-36. [PMID: 10438764 PMCID: PMC93981 DOI: 10.1128/jb.181.16.4929-4936.1999] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
By transposon Tn917 mutagenesis, two mutants of Staphylococcus xylosus were isolated that showed higher levels of beta-galactosidase activity in the presence of glucose than the wild type. Both transposons integrated in a gene, designated glcU, encoding a protein involved in glucose uptake in S. xylosus, which is followed by a glucose dehydrogenase gene (gdh). Glucose-mediated repression of beta-galactosidase, alpha-glucosidase, and beta-glucuronidase activities was partially relieved in the mutant strains, while repression by sucrose or fructose remained as strong as in the wild type. In addition to the pleiotropic regulatory effect, integration of the transposons into glcU reduced glucose dehydrogenase activity, suggesting cotranscription of glcU and gdh. Insertional inactivation of the gdh gene and deletion of the glcU gene without affecting gdh expression showed that loss of GlcU function is exclusively responsible for the regulatory defect. Reduced glucose repression is most likely the consequence of impaired glucose uptake in the glcU mutant strains. With cloned glcU, an Escherichia coli mutant deficient in glucose transport could grow with glucose as sole carbon source, provided a functional glucose kinase was present. Therefore, glucose is internalized by glcU in nonphosphorylated form. A gene from Bacillus subtilis, ycxE, that is homologous to glcU, could substitute for glcU in the E. coli glucose growth experiments and restored glucose repression in the S. xylosus glcU mutants. Three more proteins with high levels of similarity to GlcU and YcxE are currently in the databases. It appears that these proteins constitute a novel family whose members are involved in bacterial transport processes. GlcU and YcxE are the first examples whose specificity, glucose, has been determined.
Collapse
Affiliation(s)
- H Fiegler
- Mikrobielle Genetik, Universität Tübingen, D-72076 Tübingen, Germany
| | | | | | | |
Collapse
|
131
|
Zalieckas JM, Wray LV, Fisher SH. trans-acting factors affecting carbon catabolite repression of the hut operon in Bacillus subtilis. J Bacteriol 1999; 181:2883-8. [PMID: 10217782 PMCID: PMC93733 DOI: 10.1128/jb.181.9.2883-2888.1999] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Bacillus subtilis, CcpA-dependent carbon catabolite repression (CCR) mediated at several cis-acting carbon repression elements (cre) requires the seryl-phosphorylated form of both the HPr (ptsH) and Crh (crh) proteins. During growth in minimal medium, the ptsH1 mutation, which prevents seryl phosphorylation of HPr, partially relieves CCR of several genes regulated by CCR. Examination of the CCR of the histidine utilization (hut) enzymes in cells grown in minimal medium showed that neither the ptsH1 nor the crh mutation individually had any affect on hut CCR but that hut CCR was abolished in a ptsH1 crh double mutant. In contrast, the ptsH1 mutation completely relieved hut CCR in cells grown in Luria-Bertani medium. The ptsH1 crh double mutant exhibited several growth defects in glucose minimal medium, including reduced rates of growth and growth inhibition by high levels of glycerol or histidine. CCR is partially relieved in B. subtilis mutants which synthesize low levels of active glutamine synthetase (glnA). In addition, these glnA mutants grow more slowly than wild-type cells in glucose minimal medium. The defects in growth and CCR seen in these mutants are suppressed by mutational inactivation of TnrA, a global nitrogen regulatory protein. The inappropriate expression of TnrA-regulated genes in this class of glnA mutants may deplete intracellular pools of carbon metabolites and thereby result in the reduction of the growth rate and partial relief of CCR.
Collapse
Affiliation(s)
- J M Zalieckas
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
132
|
Martin-Verstraete I, Deutscher J, Galinier A. Phosphorylation of HPr and Crh by HprK, early steps in the catabolite repression signalling pathway for the Bacillus subtilis levanase operon. J Bacteriol 1999; 181:2966-9. [PMID: 10217795 PMCID: PMC93746 DOI: 10.1128/jb.181.9.2966-2969.1999] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Carbon catabolite repression (CCR) of Bacillus subtilis catabolic genes is mediated by CcpA and in part by P-Ser-HPr. For certain operons, Crh, an HPr-like protein, is also implicated in CCR. In this study we demonstrated that in ptsH1 crh1 and hprK mutants, expression of the lev operon was completely relieved from CCR and that both P-Ser-HPr and P-Ser-Crh stimulated the binding of CcpA to the cre sequence of the lev operon.
Collapse
Affiliation(s)
- I Martin-Verstraete
- Unité de Biochimie Microbienne, CNRS URA 1300, Institut Pasteur, F-75724 Paris, France.
| | | | | |
Collapse
|
133
|
Galinier A, Deutscher J, Martin-Verstraete I. Phosphorylation of either crh or HPr mediates binding of CcpA to the bacillus subtilis xyn cre and catabolite repression of the xyn operon. J Mol Biol 1999; 286:307-14. [PMID: 9973552 DOI: 10.1006/jmbi.1998.2492] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Carbon catabolite repression (CCR) of several Bacillus subtilis catabolic genes is mediated by ATP-dependent phosphorylation of Ser46 of the histidine-containing protein (HPr), a phosphocarrier protein of the phosphoenolpyruvate (PEP): sugar phosphotransferase system. A recently discovered HPr-like protein of B. subtilis, Crh, cannot be phosphorylated by PEP and enzyme I but becomes phosphorylated at Ser46 by the ATP-dependent, metabolite-activated HPr kinase. Genetic data suggested that Crh is also implicated in CCR. We here demonstrate that in a ptsH1 crh1 mutant, in which Ser46 of both HPr and Crh is replaced with an alanyl residue, expression of the beta-xylosidase-encoding xynB gene was completely relieved from CCR. No effect on CCR could be observed in strains carrying the crh1 allele, suggesting that under the experimental conditions P-Ser-HPr can substitute for P-Ser-Crh in CCR. By contrast, a ptsH1 mutant was slightly relieved from CCR of xynB, indicating that P-Ser-Crh can substitute only partly for P-Ser-HPr. Mapping experiments allowed us to identify the xyn promoter and a catabolite responsive element (cre) located 229 bp downstream of the transcription start point. Using DNase I footprinting experiments, we could demonstrate that similar to P-Ser-HPr, P-Ser-Crh stimulates binding of CcpA to the xyn cre. Fructose 1,6-bisphosphate was found to strongly enhance binding of the P-Ser-HPr/CcpA and P-Ser-Crh/CcpA complexes to the xyn cre, but had no effect on binding of CcpA alone.
Collapse
Affiliation(s)
- A Galinier
- Institut de Biologie et Chimie des Protéines, CNRS UPR 412, Lyon Cedex 07, F-69367, France
| | | | | |
Collapse
|
134
|
Brochu D, Vadeboncoeur C. The HPr(Ser) kinase of Streptococcus salivarius: purification, properties, and cloning of the hprK gene. J Bacteriol 1999; 181:709-17. [PMID: 9922231 PMCID: PMC93434 DOI: 10.1128/jb.181.3.709-717.1999] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In gram-positive bacteria, HPr, a protein of the phosphoenolpyruvate:sugar phosphotransferase system, is phosphorylated on a serine residue at position 46 by an ATP-dependent protein kinase. The HPr(Ser) kinase of Streptococcus salivarius ATCC 25975 was purified, and the encoding gene (hprK) was cloned by using a nucleotide probe designed from the N-terminal amino acid sequence. The predicted amino acid sequence of the S. salivarius enzyme showed 45% identity with the Bacillus subtilis enzyme, the conserved residues being located mainly in the C-terminal half of the protein. The predicted hprK gene product has a molecular mass of 34,440 Da and a pI of 5.6. These values agree well with those found experimentally by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, molecular sieve chromatography in the presence of guanidine hydrochloride, and chromatofocusing using the purified protein. The native protein migrates on a Superdex 200 HR column as a 330,000-Da protein, suggesting that the HPr(Ser) kinase is a decamer. The enzyme requires Mg2+ for activity and functions optimally at pH 7.5. Unlike the enzyme from other gram-positive bacteria, the HPr(Ser) kinase from S. salivarius is not stimulated by FDP or other glycolytic intermediates. The enzyme is inhibited by inorganic phosphate, and its Kms for HPr and ATP are 31 microM and 1 mM, respectively.
Collapse
Affiliation(s)
- D Brochu
- GREB, Département de Biochimie, Faculté des Sciences et de Génie and Faculté de Médecine Dentaire, GREB, Université Laval, Ste-Foy, Québec, Canada G1K 7P4
| | | |
Collapse
|
135
|
Lindner C, Galinier A, Hecker M, Deutscher J. Regulation of the activity of the Bacillus subtilis antiterminator LicT by multiple PEP-dependent, enzyme I- and HPr-catalysed phosphorylation. Mol Microbiol 1999; 31:995-1006. [PMID: 10048041 DOI: 10.1046/j.1365-2958.1999.01262.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The transcriptional antiterminator LicT regulates the induction and carbon catabolite repression of the Bacillus subtilis bglPH operon. LicT is inactive in mutants affected in one of the two general components of the phosphoenolpyruvate (PEP):glycose phosphotransferase system, enzyme I or histidine-containing protein (HPr). We demonstrate that LicT becomes phosphorylated in the presence of PEP, enzyme I and HPr. The phosphoryl group transfer between HPr and LicT is reversible. Phosphorylation of LicT with PEP, enzyme I and HPr led to the appearance of three additional LicT bands on polyacrylamide-urea gels. These bands probably correspond to one-, two- and threefold phosphorylated LicT. After phosphorylation of LicT with [32P]-PEP, enzyme I and HPr, proteolytic digestion of [32P]-P-LicT, separation of the peptides by reverse-phase chromatography, mass spectrometry and N-terminal sequencing of radiolabelled peptides, three histidyl residues were found to be phosphorylated in LicT. These three histidyl residues (His-159, His-207 and His-269) are conserved in most members of the BglG/SacY family of transcriptional antiterminators. Phosphorylation of LicT in the presence of serylphosphorylated HPr (P-Ser-HPr) was much slower compared with its phosphorylation in the presence of HPr. The slower phosphorylation in the presence of P-Ser-HPr leading to reduced LicT activity is presumed to play a role in a recently described LicT-mediated CcpA-independent carbon catabolite repression mechanism operative for the bglPH operon.
Collapse
Affiliation(s)
- C Lindner
- Institut de Biologie et Chimie des Protéines, Centre National de la Recherche Scientifique, UPR412, Lyon, France
| | | | | | | |
Collapse
|
136
|
Luesink EJ, Beumer CM, Kuipers OP, De Vos WM. Molecular characterization of the Lactococcus lactis ptsHI operon and analysis of the regulatory role of HPr. J Bacteriol 1999; 181:764-71. [PMID: 9922238 PMCID: PMC93441 DOI: 10.1128/jb.181.3.764-771.1999] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Lactococcus lactis ptsH and ptsI genes, encoding the general proteins of the phosphoenolpyruvate-dependent phosphotransferase system, HPr and enzyme I, respectively, were cloned, and the regulatory role of HPr was studied by mutational analysis of its gene. A promoter sequence was identified upstream of the ptsHI operon, and the transcription start site was mapped by primer extension. The results of Northern analyses showed the presence of two glucose-inducible transcripts, one of 0.3 kb containing ptsH and a second of 2.0 kb containing both ptsH and ptsI. Disruption of the ptsH and ptsI genes in strain NZ9800 resulted in a reduced growth rate at the expense of glucose, but no growth at the expense of sucrose and fructose, confirming the dominant role of the phosphotransferase system in the uptake of these sugars in L. lactis. Complementation of the ptsH and ptsI mutants with the intact genes under the control of a regulated promoter resulted in the restoration of the wild-type phenotype. The role of HPr(Ser-P) in the recently established CcpA-mediated control of galactose metabolism as well as glycolysis was analyzed by producing an HPr mutant carrying an aspartic acid on residue 46 which mimicks a phosphorylated serine. The results of these experiments demonstrated the role of HPr(Ser-P) as corepressor in the catabolite repression of the gal operon. Furthermore, we show for the first time that HPr(Ser-P) functions as a coactivator in the CcpA-mediated catabolite activation of the pyruvate kinase and L-lactate dehydrogenase genes.
Collapse
Affiliation(s)
- E J Luesink
- Microbial Ingredients Section, NIZO Food Research, 6710 BA Ede, The Netherlands
| | | | | | | |
Collapse
|
137
|
Kravanja M, Engelmann R, Dossonnet V, Blüggel M, Meyer HE, Frank R, Galinier A, Deutscher J, Schnell N, Hengstenberg W. The hprK gene of Enterococcus faecalis encodes a novel bifunctional enzyme: the HPr kinase/phosphatase. Mol Microbiol 1999; 31:59-66. [PMID: 9987110 DOI: 10.1046/j.1365-2958.1999.01146.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The HPr kinase of Gram-positive bacteria is an ATP-dependent serine protein kinase, which phosphorylates the HPr protein of the bacterial phosphotransferase system (PTS) and is involved in the regulation of carbohydrate metabolism. The hprK gene from Enterococcus faecalis was cloned via polymerase chain reaction (PCR) and sequenced. The deduced amino acid sequence was confirmed by microscale Edman degradation and mass spectrometry combined with collision-induced dissociation of tryptic peptides derived from the HPr kinase of E. faecalis. The gene was overexpressed in Escherichia coli, which does not contain any ATP-dependent HPr kinase or phosphatase activity. The homogeneous recombinant protein exhibits the expected HPr kinase activity as well as a P-Ser-HPr phosphatase activity, which was assumed to be a separate enzyme activity. The bifunctional HPr kinase/phosphatase acts preferentially as a kinase at high ATP levels of 2 mM occurring in glucose-metabolizing Streptococci. At low ATP levels, the enzyme hydrolyses P-Ser-HPr. In addition, high concentrations of phosphate present under starvation conditions inhibit the HPr kinase activity. Thus, a putative function of the enzyme may be to adjust the ratio of HPr and P-Ser-HPr according to the metabolic state of the cell; P-Ser-HPr is involved in carbon catabolite repression and regulates sugar uptake via the phosphotransferase system (PTS). Reinvestigation of the previously described Bacillus subtilis HPr kinase revealed that it also possesses P-Ser-HPr phosphatase activity. However, contrary to the E. faecalis enzyme, ATP alone was not sufficient to switch the phosphatase activity of the B. subtilis enzyme to the kinase activity. A change in activity of the B. subtilis HPr kinase was only observed when fructose-1,6-bisphosphate was also present.
Collapse
|
138
|
Zalieckas JM, Wray LV, Fisher SH. Expression of the Bacillus subtilis acsA gene: position and sequence context affect cre-mediated carbon catabolite repression. J Bacteriol 1998; 180:6649-54. [PMID: 9852010 PMCID: PMC107769 DOI: 10.1128/jb.180.24.6649-6654.1998] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Bacillus subtilis, carbon catabolite repression (CCR) of many genes is mediated at cis-acting carbon repression elements (cre) by the catabolite repressor protein CcpA. Mutations in transcription-repair coupling factor (mfd) partially relieve CCR at cre sites located downstream of transcriptional start sites by abolishing the Mfd-mediated displacement of RNA polymerase stalled at cre sites which act as transcriptional roadblocks. Although the acsA cre is centered 44.5 bp downstream of the acsA transcriptional start site, CCR of acsA expression is not affected by an mfd mutation. When the acsA cre is centered 161.5 bp downstream of the transcriptional start site for the unregulated tms promoter, CCR is partially relieved by the mfd mutation. Since CCR mediated at an acsA cre centered 44.5 bp downstream of the tms start site is not affected by the mfd mutation, the inability of Mfd to modulate CCR of acsA expression most likely results from the location of the acsA cre. Higher levels of CCR were found to occur at cre sites flanked by A+T-rich sequences than at cre sites bordered by G and C nucleotides. This suggests that nucleotides adjacent to the proposed 14-bp cre consensus sequence participate in the formation of the CcpA catabolite repression complex at cre sites. Examination of CCR of acsA expression revealed that this regulation required the Crh and seryl-phosphorylated form of the HPr proteins but not glucose kinase.
Collapse
Affiliation(s)
- J M Zalieckas
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
139
|
Shi L, Potts M, Kennelly PJ. The serine, threonine, and/or tyrosine-specific protein kinases and protein phosphatases of prokaryotic organisms: a family portrait. FEMS Microbiol Rev 1998; 22:229-53. [PMID: 9862122 DOI: 10.1111/j.1574-6976.1998.tb00369.x] [Citation(s) in RCA: 186] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Inspection of the genomes for the bacteria Bacillus subtilis 168, Borrelia burgdorferi B31, Escherichia coli K-12, Haemophilus influenzae KW20, Helicobacter pylori 26695, Mycoplasma genitalium G-37, and Synechocystis sp PCC 6803 and for the archaeons Archaeoglobus fulgidus VC-16 DSM4304, Methanobacterium thermoautotrophicum delta H, and Methanococcus jannaschii DSM2661 revealed that each contains at least one ORF whose predicted product displays sequence features characteristic of eukaryote-like protein-serine/threonine/tyrosine kinases and protein-serine/threonine/tyrosine phosphatases. Orthologs for all four major protein phosphatase families (PPP, PPM, conventional PTP, and low molecular weight PTP) were present in the bacteria surveyed, but not all strains contained all types. The three archaeons surveyed lacked recognizable homologs of the PPM family of eukaryotic protein-serine/threonine phosphatases; and only two prokaryotes were found to contain ORFs for potential phosphatases from all four major families. Intriguingly, our searches revealed a potential ancestral link between the catalytic subunits of microbial arsenate reductases and the protein-tyrosine phosphatases; they share similar ligands (arsenate versus phosphate) and features of their catalytic mechanism (formation of arseno-versus phospho-cysteinyl intermediates). It appears that all prokaryotic organisms, at one time, contained the genetic information necessary to construct protein phosphorylation-dephosphorylation networks that target serine, threonine, and/or tyrosine residues on proteins. However, the potential for functional redundancy among the four protein phosphatase families has led many prokaryotic organisms to discard one, two, or three of the four.
Collapse
Affiliation(s)
- L Shi
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg 24061-0308, USA
| | | | | |
Collapse
|
140
|
Galperin MY, Walker DR, Koonin EV. Analogous enzymes: independent inventions in enzyme evolution. Genome Res 1998; 8:779-90. [PMID: 9724324 DOI: 10.1101/gr.8.8.779] [Citation(s) in RCA: 178] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
It is known that the same reaction may be catalyzed by structurally unrelated enzymes. We performed a systematic search for such analogous (as opposed to homologous) enzymes by evaluating sequence conservation among enzymes with the same enzyme classification (EC) number using sensitive, iterative sequence database search methods. Enzymes without detectable sequence similarity to each other were found for 105 EC numbers (a total of 243 distinct proteins). In 34 cases, independent evolutionary origin of the suspected analogous enzymes was corroborated by showing that they possess different structural folds. Analogous enzymes were found in each class of enzymes, but their overall distribution on the map of biochemical pathways is patchy, suggesting multiple events of gene transfer and selective loss in evolution, rather than acquisition of entire pathways catalyzed by a set of unrelated enzymes. Recruitment of enzymes that catalyze a similar but distinct reaction seems to be a major scenario for the evolution of analogous enzymes, which should be taken into account for functional annotation of genomes. For many analogous enzymes, the bacterial form of the enzyme is different from the eukaryotic one; such enzymes may be promising targets for the development of new antibacterial drugs.
Collapse
Affiliation(s)
- M Y Galperin
- National Center for Biotechnology Information (NCBI), National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | | | | |
Collapse
|