101
|
Leaf A. Plasma nonesterified fatty acid concentration as a risk factor for sudden cardiac death: the Paris Prospective Study. Circulation 2001; 104:744-5. [PMID: 11502694 DOI: 10.1161/01.cir.104.7.744] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
102
|
Affiliation(s)
- A Leaf
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02129, USA.
| |
Collapse
|
103
|
Xiao YF, Ke Q, Wang SY, Auktor K, Yang Y, Wang GK, Morgan JP, Leaf A. Single point mutations affect fatty acid block of human myocardial sodium channel alpha subunit Na+ channels. Proc Natl Acad Sci U S A 2001; 98:3606-11. [PMID: 11248125 PMCID: PMC30700 DOI: 10.1073/pnas.061003798] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Suppression of cardiac voltage-gated Na(+) currents is probably one of the important factors for the cardioprotective effects of the n-3 polyunsaturated fatty acids (PUFAs) against lethal arrhythmias. The alpha subunit of the human cardiac Na(+) channel (hH1(alpha)) and its mutants were expressed in human embryonic kidney (HEK293t) cells. The effects of single amino acid point mutations on fatty acid-induced inhibition of the hH1(alpha) Na(+) current (I(Na)) were assessed. Eicosapentaenoic acid (EPA, C20:5n-3) significantly reduced I(Na) in HEK293t cells expressing the wild type, Y1767K, and F1760K of hH1(alpha) Na(+) channels. The inhibition was voltage and concentration-dependent with a significant hyperpolarizing shift of the steady state of I(Na). In contrast, the mutant N406K was significantly less sensitive to the inhibitory effect of EPA. The values of the shift at 1, 5, and 10 microM EPA were significantly smaller for N406K than for the wild type. Coexpression of the beta(1) subunit and N406K further decreased the inhibitory effects of EPA on I(Na) in HEK293t cells. In addition, EPA produced a smaller hyperpolarizing shift of the V(1/2) of the steady-state inactivation in HEK293t cells coexpressing the beta(1) subunit and N406K. These results demonstrate that substitution of asparagine with lysine at the site of 406 in the domain-1-segment-6 region (D1-S6) significantly decreased the inhibitory effect of PUFAs on I(Na), and coexpression with beta(1) decreased this effect even more. Therefore, asparagine at the 406 site in hH1(alpha) may be important for the inhibition by the PUFAs of cardiac voltage-gated Na(+) currents, which play a significant role in the antiarrhythmic actions of PUFAs.
Collapse
Affiliation(s)
- Y F Xiao
- The Charles A. Dana Research Institute and Harvard-Thorndike Laboratory, Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Partitioning of polyunsaturated fatty acids, which prevent cardiac arrhythmias, into phospholipid cell membranes. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)31657-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
105
|
Weinberger B, Carbone T, England S, Kleinfeld AM, Hiatt M, Hegyi T. Effects of perinatal hypoxia on serum unbound free fatty acids and lung inflammatory mediators. BIOLOGY OF THE NEONATE 2001; 79:61-6. [PMID: 11150832 DOI: 10.1159/000047067] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cellular injury during tissue hypoxia is due, in part, to reactive intermediates released by activated leukocytes. We found that the inflammatory mediators tumor necrosis factor (TNF)-alpha, IL-6, and IL-1beta are elevated in situ in lung macrophages on day 14 following exposure of rats to intermittent or chronic hypoxia from birth. Because inflammatory mediators can increase lipolysis in adipocytes, we also measured serum unbound free fatty acids (FFAu)--the biologically active compartment of FFA--in rat pups exposed to intermittent or chronic hypoxia. FFAu values were markedly elevated during the first 2 days of life in all rats, displaying an approximately 3-fold decrease from day 2 to day 3. Exposure to chronic hypoxia significantly increased FFAu levels measured on day 13. Since elevated serum FFAu are known to suppress leukocyte activation, we speculate that increased FFAu levels represent a mechanism for attenuating inflammation and tissue injury following sublethal hypoxia in the perinatal period, either physiologically in the immediate newborn period, or as a late response to ongoing hypoxic insult.
Collapse
Affiliation(s)
- B Weinberger
- Division of Neonatology, Department of Pediatrics, UMDNJ-Robert Wood Johnson Medical School, St. Peter's University Hospital, New Brunswick, NJ 08903, USA.
| | | | | | | | | | | |
Collapse
|
106
|
Renné T, Dedio J, David G, Müller-Esterl W. High molecular weight kininogen utilizes heparan sulfate proteoglycans for accumulation on endothelial cells. J Biol Chem 2000; 275:33688-96. [PMID: 10843988 DOI: 10.1074/jbc.m000313200] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Kininogens, the high molecular weight precursor of vasoactive kinins, bind to a wide variety of cells in a specific, reversible, and saturable manner. The cell docking sites have been mapped to domains D3 and D5(H) of kininogens; however, the corresponding cellular acceptor sites are not fully established. To characterize the major cell binding sites for kininogens exposed by the endothelial cell line EA.hy926, we digested intact cells with trypsin and other proteases and found a time- and concentration-dependent loss of (125)I-labeled high molecular weight kininogen (H-kininogen) binding capacity (up to 82%), indicating that proteins are crucially involved in kininogen cell attachment. Cell surface digestion with heparinases similarly reduced kininogen binding capacity (up to 78%), and the combined action of heparinases and trypsin almost eliminated kininogen binding (up to 85%), suggesting that proteoglycans of the heparan sulfate type are intimately involved. Consistently, inhibitors such as p-nitrophenyl-beta-d-xylopyranoside and chlorate interfering with heparan sulfate proteoglycan biosynthesis reduced the total number of kininogen binding sites in a time- and concentration-dependent manner (up to 67%). In vitro binding studies demonstrated that biotinylated H-kininogen binds to heparan sulfate glycosaminoglycans via domains D3 and D5(H) and that the presence of Zn(2+) promotes this association. Cloning and over-expression of the major endothelial heparan sulfate-type proteoglycans syndecan-1, syndecan-2, syndecan-4, and glypican in HEK293t cells significantly increased total heparan sulfate at the cell surface and thus the number of kininogen binding sites (up to 3. 3-fold). This gain in kininogen binding capacity was completely abolished by treating transfected cells with heparinases. We conclude that heparan sulfate proteoglycans on the surface of endothelial cells provide a platform for the local accumulation of kininogens on the vascular lining. This accumulation may allow the circumscribed release of short-lived kinins from their precursor molecules in close proximity to their sites of action.
Collapse
Affiliation(s)
- T Renné
- Institute for Biochemistry II, Johann Wolfgang Goethe-University of Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | | | | | | |
Collapse
|
107
|
Xiao YF, Wright SN, Wang GK, Morgan JP, Leaf A. Coexpression with beta(1)-subunit modifies the kinetics and fatty acid block of hH1(alpha) Na(+) channels. Am J Physiol Heart Circ Physiol 2000; 279:H35-46. [PMID: 10899039 DOI: 10.1152/ajpheart.2000.279.1.h35] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Voltage-gated cardiac Na(+) channels are composed of alpha- and beta(1)-subunits. In this study beta(1)-subunit was cotransfected with the alpha-subunit of the human cardiac Na(+) channel (hH1(alpha)) in human embryonic kidney (HEK293t) cells. The effects of this coexpression on the kinetics and fatty acid-induced suppression of Na(+) currents were assessed. Current density was significantly greater in HEK293t cells coexpressing alpha- and beta(1)-subunits (I(Na,alpha beta)) than in HEK293t cells expressing alpha-subunit alone (I(Na,alpha)). Compared with I(Na,alpha), the voltage-dependent inactivation and activation of I(Na,alpha beta) were significantly shifted in the depolarizing direction. In addition, coexpression with beta(1)-subunit prolonged the duration of recovery from inactivation. Eicosapentaenoic acid [EPA, C20:5(n-3)] significantly reduced I(Na,alpha beta) in a concentration-dependent manner and at 5 microM shifted the midpoint voltage of the steady-state inactivation by -22 +/- 1 mV. EPA also significantly accelerated channel transition from the resting state to the inactivated state and prolonged the recovery time from inactivation. Docosahexaenoic acid [C22:6(n-3)], alpha-linolenic acid [C18:3(n-3)], and conjugated linoleic acid [C18:2(n-6)] at 5 microM significantly inhibited both I(Na,alpha beta) and I(Na,alpha.) In contrast, saturated and monounsaturated fatty acids had no effects on I(Na,alpha beta). This finding differs from the results for I(Na,alpha), which was significantly inhibited by both saturated and unsaturated fatty acids. Our data demonstrate that functional association of beta(1)-subunit with hH1(alpha) modifies the kinetics and fatty acid block of the Na(+) channel.
Collapse
Affiliation(s)
- Y F Xiao
- Charles A. Dana Research Institute and Harvard-Thorndike Laboratory, Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA.
| | | | | | | | | |
Collapse
|
108
|
Abstract
Cardiovascular disease (CVD) is a complicated series of disorders that result from the interaction between genetic predisposing mechanisms and environmental factors. Over the last few years substantial progress has been made in defining the molecular basis of several genetically transmitted non-atherosclerotic CVD such as hypertrophic and dilated cardiomyopathies, long-QT syndrome and essential hypertension. This review represents a summary of the current knowledge about the major gene polymorphisms found to be associated with these CVDs. Moreover, we will discuss how the discovery of disease-associated genes will greatly enhance the ability to formulate advanced diagnoses, to define prophylactic therapeutic strategies to prevent or reduce the progression of the disease and, finally, to proceed to the development of new drugs tailored for the specific cellular or molecular functions altered as consequence of the predisposing genes.
Collapse
Affiliation(s)
- P Ferrari
- Prassis Sigma-Tau Research Institute, Settimo Milanese, Milan, Italy
| | | |
Collapse
|
109
|
Nakamura MT. The Return of ω3 Fatty Acids into the Food Supply I. Land-Based Animal Food Products and Their Health Effects. Am J Clin Nutr 2000. [DOI: 10.1093/ajcn/71.5.1215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Manabu T Nakamura
- Department of Human Ecology, University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
110
|
Kim D, Pleumsamran A. Cytoplasmic unsaturated free fatty acids inhibit ATP-dependent gating of the G protein-gated K(+) channel. J Gen Physiol 2000; 115:287-304. [PMID: 10694258 PMCID: PMC2217204 DOI: 10.1085/jgp.115.3.287] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study reports the identification of an endogenous inhibitor of the G protein-gated (K(ACh)) channel and its effect on the K(ACh) channel kinetics. In the presence of acetylcholine in the pipette, K(ACh) channels in inside-out atrial patches were activated by applying GTP to the cytoplasmic side of the membrane. In these patches, addition of physiological concentration of intracellular ATP (4 mM) upregulated K(ACh) channel activity approximately fivefold and induced long-lived openings. However, such ATP-dependent gating is normally not observed in cell-attached patches, indicating that an endogenous substance that inhibits the ATP effect is present in the cell. We searched for such an inhibitor in the cell. ATP-dependent gating of the K(ACh) channel was inhibited by the addition of the cytosolic fraction of rat atrial or brain tissues. The lipid component of the cytosolic fraction was found to contain the inhibitory activity. To identify the lipid inhibitor, we tested the effect of approximately 40 different lipid molecules. Among the lipids tested, only unsaturated free fatty acids such as oleic, linoleic, and arachidonic acids (0.2-2 microM) reversibly inhibited the ATP-dependent gating of native K(ACh) channels in atrial cells and hippocampal neurons, and of recombinant K(ACh) channels (GIRK1/4 and GIRK1/2) expressed in oocytes. Unsaturated free fatty acids also inhibited phosphatidylinositol-4, 5-bisphosphate (PIP(2))-induced changes in K(ACh) channel kinetics but were ineffective against ATP-activated background K(1) channels and PIP(2)-activated K(ATP) channels. These results show that during agonist-induced activation, unsaturated free fatty acids in the cytoplasm help to keep the cardiac and neuronal K(ACh) channels downregulated by antagonizing their ATP-dependent gating. The opposing effects of ATP and free fatty acids represent a novel regulatory mechanism for the G protein-gated K(+) channel.
Collapse
Affiliation(s)
- D Kim
- Department of Physiology, Finch University of Health Sciences, The Chicago Medical School, North Chicago, Illinois 60064, USA.
| | | |
Collapse
|
111
|
Abstract
In animal feeding studies, and probably in humans, n-3 polyunsaturated fatty acids (PUFAs) prevent fatal ischemia-induced cardiac arrhythmias. We showed that n-3 PUFAs also prevented such arrhythmias in surgically prepared, conscious, exercising dogs. The mechanism of the antiarrhythmic action of n-3 PUFAs has been studied in spontaneously contracting cultured cardiac myocytes of neonatal rats. Adding arrhythmogenic toxins (eg, ouabain, high Ca(2+), lysophosphatidylcholine, beta-adrenergic agonist, acylcarnitine, and the Ca(2+) ionophore) to the myocyte perfusate caused tachycardia, contracture, and fibrillation of the cultured myocytes. Adding eicosapentaenoic acid (EPA: 5-15 micromol/L) to the superfusate before adding the toxins prevented the expected tachyarrhythmias. If the arrhythmias were first induced, adding the EPA to the superfusate terminated the arrhythmias. This antiarrhythmic action occurred with dietary n-3 and n-6 PUFAs; saturated fatty acids and the monounsaturated oleic acid induced no such action. Arachidonic acid (AA; 20:4n-6) is anomalous because in one-third of the tests it provoked severe arrhythmias, which were found to result from cyclooxygenase metabolites of AA. When cyclooxygenase inhibitors were added with the AA, the antiarrhythmic effect was like those of EPA and DHA. The action of the n-3 and n-6 PUFAs is to stabilize electrically every myocyte in the heart by increasing the electrical stimulus required to elicit an action potential by approximately 50% and prolonging the relative refractory time by approximately 150%. These electrophysiologic effects result from an action of the free PUFAs to modulate sodium and calcium currents in the myocytes. The PUFAs also modulate sodium and calcium channels and have anticonvulsant activity in brain cells.
Collapse
Affiliation(s)
- J X Kang
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02129, USA
| | | |
Collapse
|
112
|
Kamlage B, Hartmann L, Gruhl B, Blaut M. Intestinal microorganisms do not supply associated gnotobiotic rats with conjugated linoleic acid. J Nutr 1999; 129:2212-7. [PMID: 10573552 PMCID: PMC7107447 DOI: 10.1093/jn/129.12.2212] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Conjugated linoleic acid (CLA) is produced from linoleic acid (LA) by bacteria in the rumen of herbivores. CLA enters the human diet mainly via milk fat and fatty beef; it acts as an effective anticarcinogen and exhibits other important physiological effects. The objective of the current study was to investigate the capability of a LA-conjugating bacterial community isolated from a human volunteer and associated with germ-free rats to supply the host with CLA. Gnotobiotic rats were fed a diet enriched with esterified LA in the form of sunflower-seed oil. The control group was fed the same diet and remained germ-free. Bacterial cell counts, in vitro LA-conjugation activities, and CLA concentration in feces and in the contents of various intestinal segments were determined. After 10 wk, various tissues were analyzed for CLA concentrations. LA-conjugation activity was found only in feces, cecum and colon content samples from associated rats, but CLA accumulation in various body tissues did not differ significantly between the two groups. The ratio of CLA to LA in feces and in cecal and colonic contents did not differ between groups, indicating that the microorganisms in the cecum and the colon do not synthesize substantial amounts of CLA in vivo and therefore, do not contribute to the CLA supplementation of the host.
Collapse
Affiliation(s)
- B Kamlage
- German Institute of Human Nutrition, Department of Gastrointestinal Microbiology, 14558 Potsdam-Rehbrücke, Germany
| | | | | | | |
Collapse
|
113
|
Leifert WR, McMurchie EJ, Saint DA. Inhibition of cardiac sodium currents in adult rat myocytes by n-3 polyunsaturated fatty acids. J Physiol 1999; 520 Pt 3:671-9. [PMID: 10545135 PMCID: PMC2269607 DOI: 10.1111/j.1469-7793.1999.00671.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. The acute effects of n-3 polyunsaturated fatty acids were determined on whole-cell sodium currents recorded in isolated adult rat ventricular myocytes using patch clamp techniques. 2. The n-3 polyunsaturated fatty acids docosahexaenoic acid (22:6, n-3), eicosapentaenoic acid (20:5, n-3) and alpha-linolenic acid (18:3, n-3) dose-dependently blocked the whole-cell sodium currents evoked by a voltage step to -30 mV from a holding potential of -90 mV with EC50 values of 6.0 +/- 1.2, 16.2 +/- 1.3 and 26.6 +/- 1.3 microM, respectively. 3. Docosahexaenoic acid, eicosapentaenoic acid and alpha-linolenic acid at 25 microM shifted the voltage dependence of activation of the sodium current to more positive potentials by 9.2 +/- 2.0, 10.1 +/- 1.1 and 8.3 +/- 0.9 mV, respectively, and shifted the voltage dependence of inactivation to more negative potentials by 22.3 +/- 0.9, 17.1 +/- 3.7 and 20.5 +/- 1.0 mV, respectively. In addition, the membrane fluidising agent benzyl alcohol (10 mM) shifted the voltage dependence of activation to more positive potentials by 7.8 +/- 2.5 mV and shifted the voltage dependence of inactivation to more negative potentials (by -24.6 +/- 3.6 mV). 4. Linoleic acid (18:2, n-6), oleic acid (18:1, n-9) and stearic acid (18:0) were either ineffective or much less potent at blocking the sodium current or changing the voltage dependence of the sodium current compared with the n-3 fatty acids tested. 5. Docosahexaenoic acid, eicosapentaenoic acid, alpha-linolenic acid and benzyl alcohol significantly increased sarcolemmal membrane fluidity as measured by fluorescence anisotropy (steady-state, rss, values of 0.199 +/- 0. 004, 0.204 +/- 0.006, 0.213 +/- 0.005 and 0.214 +/- 0.009, respectively, compared with 0.239 +/- 0.002 for control), whereas stearic, oleic and linoleic acids did not alter fluidity (the rss was not significantly different from control). 6. The potency of the n-3 fatty acids docosahexaenoic acid, eicosapentaenoic acid and alpha-linolenic acid to block cardiac sodium currents is correlated with their ability to produce an increase in membrane fluidity.
Collapse
Affiliation(s)
- W R Leifert
- CSIRO Human Nutrition, Adelaide, SA 5000, Australia
| | | | | |
Collapse
|
114
|
Xiao Y, Li X. Polyunsaturated fatty acids modify mouse hippocampal neuronal excitability during excitotoxic or convulsant stimulation. Brain Res 1999; 846:112-21. [PMID: 10536218 DOI: 10.1016/s0006-8993(99)01997-6] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The n-3 polyunsaturated fatty acids (PUFAs) reduce cardiac membrane excitability and prevent cardiac arrhythmias in animals and probably in humans. In this study, we assessed the effects of n-3 PUFAs on membrane excitability in mouse hippocampal neurons with both whole-cell current and voltage-clamp methods. Extracellular application of 20 microM eicosapentaenoic acid (EPA, C20:5n-3) significantly reduced the frequency of electrical-evoked action potentials in CA1 neurons of hippocampal slices from 3.8+/-0.7 Hz of control to 2.1+/-0.5 Hz. In addition, EPA significantly hyperpolarized the resting membrane potential and raised the stimulatory threshold of action potentials in CA1 neurons. Another n-3 PUFA, docosahexaenoic acid (DHA, C22:6n-3), had effects on membrane excitability similar to those of EPA. In contrast, EPA ethyl ester, oleic acid (OA, C18:n-9), and stearic acid (SA, C18:0) did not alter the membrane excitability in CA1 neurons. Bath application of pentylenetetrazole (PTZ) or glutamate reduced the stimulatory threshold and increased the frequency of action potentials of hippocampal neurons. EPA restored PTZ- or glutamate-enhanced neuronal excitability to the control level. EPA also suppressed glutamate-activated inward currents. Furthermore, EPA and DHA significantly inhibited the frequency of action potentials without effecting the stimulatory threshold of CA3 neurons. These data demonstrate that n-3 PUFAs modify neuronal membrane excitability under control and drug-stimulated conditions. The sensitivity to these effects of PUFAs varies from neurons of different hippocampal regions.
Collapse
Affiliation(s)
- Y Xiao
- The Charles A. Dana Research Institute and The Harvard-Thorndike Laboratory, Cardiovascular Division, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| | | |
Collapse
|
115
|
Lee HC, Lu T, Weintraub NL, VanRollins M, Spector AA, Shibata EF. Effects of epoxyeicosatrienoic acids on the cardiac sodium channels in isolated rat ventricular myocytes. J Physiol 1999; 519 Pt 1:153-68. [PMID: 10432346 PMCID: PMC2269481 DOI: 10.1111/j.1469-7793.1999.0153o.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. Whole-cell Na+ currents (holding potential, -80 mV; test potential, -30 mV) in rat myocytes were inhibited by 8, 9-epoxyeicosatrienoic acid (8,9-EET) in a dose-dependent manner with 22+/-4% inhibition at 0.5 microM, 48+/-5% at 1 microM, and 73+/-5% at 5 microM (mean +/- S.E.M., n = 10, P<0.05 for each dose vs. control). Similar results were obtained with 5,6-, 11,12-, and 14,15-EETs, while 8,9-dihydroxyeicosatrienoic acid (DHET) was 3-fold less potent and arachidonic acid was 10- to 20-fold less potent. 2. 8,9-EET produced a dose-dependent, hyperpolarized shift in the steady-state membrane potential at half-maximum inactivation (V ), without changing the slope factor. 8,9-EET had no effect on the steady-state activation of Na+ currents. 3. Inhibition of Na+ currents by 8,9-EET was use dependent, and channel recovery was slowed. The effects of 8,9-EET were greater at depolarized potentials. 4. Single channel recordings showed 8,9-EET did not change the conductance or the number of active Na+ channels, but markedly decreased the probability of Na+ channel opening. These results were associated with a decrease in the channel open time and an increase in the channel closed times. 5. Incubation of cultured cardiac myocytes with 1 microM [3H]8,9-EET showed that 25% of the radioactivity was taken up by the cells over a 2 h period, and most of the uptake was incorporated into phospholipids, principally phosphatidylcholine. Analysis of the medium after a 2 h incubation indicated that 86% of the radioactivity remained as [3H]8,9-EET while 13% was converted into [3H]8,9-DHET. After a 30 min incubation, 1-2% of the [3H]8,9-EET uptake by cells remained as unesterified EET. 6. These results demonstrate that cardiac cells have a high capacity to take up and metabolize 8,9-EET. 8,9-EET is a potent use- and voltage-dependent inhibitor of the cardiac Na+ channels through modulation of the channel gating behaviour.
Collapse
Affiliation(s)
- H C Lee
- Department of Internal Medicine, The University of Iowa College of Medicine, The Veteran Administration Medical Center, Iowa City, IA 52242, USA.
| | | | | | | | | | | |
Collapse
|
116
|
Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto miocardico. Lancet 1999. [PMID: 10465168 DOI: 10.1016/s0140-6736(99)07072-5] [Citation(s) in RCA: 2526] [Impact Index Per Article: 101.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
BACKGROUND There is conflicting evidence on the benefits of foods rich in vitamin E (alpha-tocopherol), n-3 polyunsaturated fatty acids (PUFA), and their pharmacological substitutes. We investigated the effects of these substances as supplements in patients who had myocardial infarction. METHODS From October, 1993, to September, 1995, 11,324 patients surviving recent (< or = 3 months) myocardial infarction were randomly assigned supplements of n-3 PUFA (1 g daily, n=2836), vitamin E (300 mg daily, n=2830), both (n=2830), or none (control, n=2828) for 3.5 years. The primary combined efficacy endpoint was death, non-fatal myocardial infarction, and stroke. Intention-to-treat analyses were done according to a factorial design (two-way) and by treatment group (four-way). FINDINGS Treatment with n-3 PUFA, but not vitamin E, significantly lowered the risk of the primary endpoint (relative-risk decrease 10% [95% CI 1-18] by two-way analysis, 15% [2-26] by four-way analysis). Benefit was attributable to a decrease in the risk of death (14% [3-24] two-way, 20% [6-33] four-way) and cardiovascular death (17% [3-29] two-way, 30% [13-44] four-way). The effect of the combined treatment was similar to that for n-3 PUFA for the primary endpoint (14% [1-26]) and for fatal events (20% [5-33]). INTERPRETATION Dietary supplementation with n-3 PUFA led to a clinically important and statistically significant benefit. Vitamin E had no benefit. Its effects on fatal cardiovascular events require further exploration.
Collapse
|
117
|
Leaf A, Kang JX, Xiao YF, Billman GE. n-3 fatty acids in the prevention of cardiac arrhythmias. Lipids 1999; 34 Suppl:S187-9. [PMID: 10419144 DOI: 10.1007/bf02562284] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In animals and probably in humans n-3 polyunsaturated fatty acids (PUFA) are antiarrhythmic. A report follows on the recent studies of the antiarrhythmic actions of PUFA. The PUFA stabilize the electrical activity of isolated cardiac myocytes by inhibiting sarcolemmal ion channels, so that a stronger electrical stimulus is required to elicit an action potential and the relative refractory period is markedly prolonged. This appears at present to be the probable major antiarrhythmic mechanism of PUFA.
Collapse
Affiliation(s)
- A Leaf
- Department of Medicine, Massachusetts General Hospital, Charlestown, 02129, USA
| | | | | | | |
Collapse
|
118
|
Abstract
The aim of this review is to provide basic information on the electrophysiological changes during acute ischemia and reperfusion from the level of ion channels up to the level of multicellular preparations. After an introduction, section II provides a general description of the ion channels and electrogenic transporters present in the heart, more specifically in the plasma membrane, in intracellular organelles of the sarcoplasmic reticulum and mitochondria, and in the gap junctions. The description is restricted to activation and permeation characterisitics, while modulation is incorporated in section III. This section (ischemic syndromes) describes the biochemical (lipids, radicals, hormones, neurotransmitters, metabolites) and ion concentration changes, the mechanisms involved, and the effect on channels and cells. Section IV (electrical changes and arrhythmias) is subdivided in two parts, with first a description of the electrical changes at the cellular and multicellular level, followed by an analysis of arrhythmias during ischemia and reperfusion. The last short section suggests possible developments in the study of ischemia-related phenomena.
Collapse
Affiliation(s)
- E Carmeliet
- Centre for Experimental Surgery and Anesthesiology, University of Leuven, Leuven, Belgium
| |
Collapse
|
119
|
Billman GE, Kang JX, Leaf A. Prevention of sudden cardiac death by dietary pure omega-3 polyunsaturated fatty acids in dogs. Circulation 1999; 99:2452-7. [PMID: 10318669 DOI: 10.1161/01.cir.99.18.2452] [Citation(s) in RCA: 293] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Rat diets high in fish oil have been shown to be protective against ischemia-induced fatal ventricular arrhythmias. Increasing evidence suggests that this may also apply to humans. To confirm the evidence in animals, we tested a concentrate of the free fish-oil fatty acids and found them to be antiarrhythmic. In this study, we tested the pure free fatty acids of the 2 major dietary omega-3 polyunsaturated fatty acids in fish oil: cis-5,8,11,14, 17-eicosapentaenoic acid (C20:5omega-3) and cis-4,7,10,13,16, 19-docosahexaenoic acid (C22:6omega-3), and the parent omega-3 fatty acid in some vegetable oils, cis-9,12,15-alpha-linolenic acid (C18:3omega-3), administered intravenously on albumin or a phospholipid emulsion. METHODS AND RESULTS The tests were performed in a dog model of cardiac sudden death. Dogs were prepared with a large anterior wall myocardial infarction produced surgically and an inflatable cuff placed around the left circumflex coronary artery. With the dogs running on a treadmill 1 month after the surgery, occlusion of the left circumflex artery regularly produced ventricular fibrillation in the control tests done 1 week before and after the test, with the omega-3 fatty acids administered intravenously as their pure free fatty acid. With infusion of the eicosapentaenoic acid, 5 of 7 dogs were protected from fatal ventricular arrhythmias (P<0.02). With docosahexaenoic acid, 6 of 8 dogs were protected, and with alpha-linolenic acid, 6 of 8 dogs were also protected (P<0.004 for each). The before and after control studies performed on the same animal all resulted in fatal ventricular arrhythmias, from which they were defibrillated. CONCLUSIONS These results indicate that purified omega-3 fatty acids can prevent ischemia-induced ventricular fibrillation in this dog model of sudden cardiac death.
Collapse
Affiliation(s)
- G E Billman
- Department of Physiology, The Ohio State University, Columbus, Ohio, USA
| | | | | |
Collapse
|
120
|
|