101
|
Chiang MC, Chen HM, Lai HL, Chen HW, Chou SY, Chen CM, Tsai FJ, Chern Y. The A2A adenosine receptor rescues the urea cycle deficiency of Huntington's disease by enhancing the activity of the ubiquitin-proteasome system. Hum Mol Genet 2009; 18:2929-42. [PMID: 19443488 DOI: 10.1093/hmg/ddp230] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by a CAG trinucleotide expansion in the Huntingtin (Htt) gene. The resultant mutant Htt protein (mHtt) forms aggregates in the brain and several peripheral tissues (e.g. the liver) and causes devastating neuronal degeneration. Metabolic defects resulting from Htt aggregates in peripheral tissues also contribute to HD pathogenesis. Simultaneous improvement of defects in both the CNS and peripheral tissues is thus the most effective therapeutic strategy and is highly desirable. We earlier showed that an agonist of the A(2A) adenosine receptor (A(2A) receptor), CGS21680 (CGS), attenuates neuronal symptoms of HD. We found herein that the A(2A) receptor also exists in the liver, and that CGS ameliorated the urea cycle deficiency by reducing mHtt aggregates in the liver. By suppressing aggregate formation, CGS slowed the hijacking of a crucial transcription factor (HSF1) and two protein chaperons (Hsp27 and Hsp70) into hepatic Htt aggregates. Moreover, the abnormally high levels of high-molecular-mass ubiquitin conjugates in the liver of an HD mouse model (R6/2) were also ameliorated by CGS. The protective effect of CGS against mHtt-induced aggregate formation was reproduced in two cells lines and was prevented by an antagonist of the A(2A) receptor and a protein kinase A (PKA) inhibitor. Most importantly, the mHtt-induced suppression of proteasome activity was also normalized by CGS through PKA. Our findings reveal a novel therapeutic pathway of A(2A) receptors in HD and further strengthen the concept that the A(2A) receptor can be a drug target in treating HD.
Collapse
Affiliation(s)
- Ming-Chang Chiang
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Douglas PM, Summers DW, Cyr DM. Molecular chaperones antagonize proteotoxicity by differentially modulating protein aggregation pathways. Prion 2009; 3:51-8. [PMID: 19421006 DOI: 10.4161/pri.3.2.8587] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The self-association of misfolded or damaged proteins into ordered amyloid-like aggregates characterizes numerous neurodegenerative disorders. Insoluble amyloid plaques are diagnostic of many disease states. Yet soluble, oligomeric intermediates in the aggregation pathway appear to represent the toxic culprit. Molecular chaperones regulate the fate of misfolded proteins and thereby influence their aggregation state. Chaperones conventionally antagonize aggregation of misfolded, disease proteins and assist in refolding or degradation pathways. Recent work suggests that chaperones may also suppress neurotoxicity by converting toxic, soluble oligomers into benign aggregates. Chaperones can therefore suppress or promote aggregation of disease proteins to ameliorate the proteotoxic accumulation of soluble, assembly intermediates.
Collapse
Affiliation(s)
- Peter M Douglas
- Department of Cell and Developmental Biology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7090, USA
| | | | | |
Collapse
|
103
|
Abstract
Molecular chaperones regulate essential steps in the propagation of yeast prions. Yeast prions possess domains enriched in glutamines and asparagines that act as templates to drive the assembly of native proteins into beta-sheet-rich, amyloid-like fibrils. Several recent studies highlight a significant and complex function for Hsp40 co-chaperones in propagation of prion elements in yeast. Hsp40 co-chaperones bind non-native polypeptides and transfer these clients to Hsp70s for refolding or degradation. How Hsp40 co-chaperones bind amyloid-like prion conformers that are enriched in hydrophilic residues such as glutamines and asparagines is a significant question in the field. Interestingly, selective recognition of amyloid-like conformers by distinct Hsp40s appears to confer opposing actions on prion assembly. For example, the Type I Hsp40 Ydj1 and Type II Hsp40 Sis1 bind different regions within the prion protein Rnq1 and function respectively to inhibit or promote [RNQ(+)] prion assembly. Thus, substrate selectivity enables distinct Hsp40s to act at unique steps in prion propagation.
Collapse
Affiliation(s)
- Daniel W Summers
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7090, USA
| | | | | |
Collapse
|
104
|
Cytoplasmic inclusions of Htt exon1 containing an expanded polyglutamine tract suppress execution of apoptosis in sympathetic neurons. J Neurosci 2009; 28:14401-15. [PMID: 19118173 DOI: 10.1523/jneurosci.4751-08.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Proteins containing extended polyglutamine repeats cause at least nine neurodegenerative disorders, but the mechanisms of disease-related neuronal death remain uncertain. We show that sympathetic neurons containing cytoplasmic inclusions formed by 97 glutamines expressed within human huntingtin exon1-enhanced green fluorescent protein (Q97) undergo a protracted form of nonapoptotic death that is insensitive to Bax deletion or caspase inhibition but is characterized by mitochondrial dysfunction. By treating the neurons with combined cytosine arabinoside and NGF withdrawal, we demonstrate that Q97 confers a powerful resistance to apoptosis at multiple levels: despite normal proapoptotic signaling (elevation of P-ser15-p53 and BimEL), there is no increase of Puma mRNA or Bax activation, both necessary for apoptosis. Even restoration of Bax translocation with overexpressed Puma does not activate apoptosis. We demonstrate that this robust inhibition of apoptosis is caused by Q97-mediated accumulation of Hsp70, which occurs through inhibition of proteasomal activity. Thus, apoptosis is reinstated by short hairpin RNA-mediated knockdown of Hsp70. These findings explain the rarity of apoptotic death in Q97-expressing neurons. Given the proteasomal blockade, we test whether enhancing lysosomal-mediated degradation with rapamycin reduces Q97 accumulation. Rapamycin reduces the amount of nonpathological Q25 by 70% over 3 d, but Q97 accumulation is unaffected. Interestingly, Q47 inclusions form more slowly as a result of constitutive lysosomal degradation, but faster-forming Q97 inclusions escape lysosomal control. Thus, cytoplasmic Q97 inclusions are refractory to clearance by proteasomal and lysosomal systems, leading to a toxicity that dominates over neuroprotective Hsp70. Our findings may explain the rarity of apoptosis but the inevitable cell death associated with polyQ inclusion diseases.
Collapse
|
105
|
Carra S, Brunsting JF, Lambert H, Landry J, Kampinga HH. HspB8 participates in protein quality control by a non-chaperone-like mechanism that requires eIF2{alpha} phosphorylation. J Biol Chem 2008; 284:5523-32. [PMID: 19114712 DOI: 10.1074/jbc.m807440200] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Aggregation of mutated proteins is a hallmark of many neurodegenerative disorders, including Huntington disease. We previously reported that overexpression of the HspB8.Bag3 chaperone complex suppresses mutated huntingtin aggregation via autophagy. Classically, HspB proteins are thought to act as ATP-independent molecular chaperones that can bind unfolded proteins and facilitate their processing via the help of ATP-dependent chaperones such as the Hsp70 machine, in which Bag3 may act as a molecular link between HspB, Hsp70, and the ubiquitin ligases. However, here we show that HspB8 and Bag3 act in a non-canonical manner unrelated to the classical chaperone model. Rather, HspB8 and Bag3 induce the phosphorylation of the alpha-subunit of the translation initiator factor eIF2, which in turn causes a translational shut-down and stimulates autophagy. This function of HspB8.Bag3 does not require Hsp70 and also targets fully folded substrates. HspB8.Bag3 activity was independent of the endoplasmic reticulum (ER) stress kinase PERK, demonstrating that its action is unrelated to ER stress and suggesting that it activates stress-mediated translational arrest and autophagy through a novel pathway.
Collapse
Affiliation(s)
- Serena Carra
- Department of Radiation and Stress Cell Biology, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
106
|
Tokui K, Adachi H, Waza M, Katsuno M, Minamiyama M, Doi H, Tanaka K, Hamazaki J, Murata S, Tanaka F, Sobue G. 17-DMAG ameliorates polyglutamine-mediated motor neuron degeneration through well-preserved proteasome function in an SBMA model mouse. Hum Mol Genet 2008; 18:898-910. [PMID: 19066230 DOI: 10.1093/hmg/ddn419] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The ubiquitin-proteasome system (UPS) is the principal protein degradation system that tags and targets short-lived proteins, as well as damaged or misfolded proteins, for destruction. In spinal and bulbar muscular atrophy (SBMA), the androgen receptor (AR), an Hsp90 client protein, is such a misfolded protein that tends to aggregate in neurons. Hsp90 inhibitors promote the degradation of Hsp90 client proteins via the UPS. In a transgenic mouse model of SBMA, we examined whether a functioning UPS is preserved, if it was capable of degrading polyglutamine-expanded mutant AR, and what might be the therapeutic effects of 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG), an oral Hsp90 inhibitor. Ubiquitin-proteasomal function was well preserved in SBMA mice and was even increased during advanced stages when the mice developed severe phenotypes. Administration of 17-DMAG markedly ameliorated motor impairments in SBMA mice without detectable toxicity and reduced amounts of monomeric and nuclear-accumulated mutant AR. Mutant AR was preferentially degraded in the presence of 17-DMAG in both SBMA cell and mouse models when compared with wild-type AR. 17-DMAG also significantly induced Hsp70 and Hsp40. Thus, 17-DMAG would exert a therapeutic effect on SBMA via preserved proteasome function.
Collapse
Affiliation(s)
- Keisuke Tokui
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Garyali P, Siwach P, Singh PK, Puri R, Mittal S, Sengupta S, Parihar R, Ganesh S. The malin-laforin complex suppresses the cellular toxicity of misfolded proteins by promoting their degradation through the ubiquitin-proteasome system. Hum Mol Genet 2008; 18:688-700. [PMID: 19036738 DOI: 10.1093/hmg/ddn398] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Lafora disease (LD), a progressive form of inherited epilepsy, is associated with widespread neurodegeneration and the formation of polyglucosan bodies in the neurons. Laforin, a protein phosphatase, and malin, an E3 ubiquitin ligase, are two of the proteins that are defective in LD. We have shown recently that laforin and malin (referred together as LD proteins) are recruited to aggresome upon proteasomal blockade, possibly to clear misfolded proteins through the ubiquitin-proteasome system (UPS). Here we test this possibility using a variety of cytotoxic misfolded proteins, including the expanded polyglutamine protein, as potential substrates. Laforin and malin, together with Hsp70 as a functional complex, suppress the cellular toxicity of misfolded proteins, and all the three members of this complex are required for this function. Laforin and malin interact with misfolded proteins and promote their degradation through the UPS. LD proteins are recruited to the polyglutamine aggregates and reduce the frequency of aggregate-positive cells. Taken together, our results suggest that the malin-laforin complex is a novel player in the neuronal response to misfolded proteins and could be potential therapeutic targets for neurodegenerative disorders associated with cytotoxic proteins.
Collapse
Affiliation(s)
- Punitee Garyali
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Duennwald ML, Lindquist S. Impaired ERAD and ER stress are early and specific events in polyglutamine toxicity. Genes Dev 2008; 22:3308-19. [PMID: 19015277 DOI: 10.1101/gad.1673408] [Citation(s) in RCA: 240] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Protein misfolding, whether caused by aging, environmental factors, or genetic mutations, is a common basis for neurodegenerative diseases. The misfolding of proteins with abnormally long polyglutamine (polyQ) expansions causes several neurodegenerative disorders, such as Huntington's disease (HD). Although many cellular pathways have been documented to be impaired in HD, the primary triggers of polyQ toxicity remain elusive. We report that yeast cells and neuron-like PC12 cells expressing polyQ-expanded huntingtin (htt) fragments display a surprisingly specific, immediate, and drastic defect in endoplasmic reticulum (ER)-associated degradation (ERAD). We further decipher the mechanistic basis for this defect in ERAD: the entrapment of the essential ERAD proteins Npl4, Ufd1, and p97 by polyQ-expanded htt fragments. In both yeast and mammalian neuron-like cells, overexpression of Npl4 and Ufd1 ameliorates polyQ toxicity. Our results establish that impaired ER protein homeostasis is a broad and highly conserved contributor to polyQ toxicity in yeast, in PC12 cells, and, importantly, in striatal cells expressing full-length polyQ-expanded huntingtin.
Collapse
Affiliation(s)
- Martin L Duennwald
- The Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | |
Collapse
|
109
|
Rousseau E, Kojima R, Hoffner G, Djian P, Bertolotti A. Misfolding of proteins with a polyglutamine expansion is facilitated by proteasomal chaperones. J Biol Chem 2008; 284:1917-29. [PMID: 18986984 PMCID: PMC2615503 DOI: 10.1074/jbc.m806256200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Deposition of misfolded proteins with a polyglutamine expansion is a hallmark of Huntington disease and other neurodegenerative disorders. Impairment of the proteolytic function of the proteasome has been reported to be both a cause and a consequence of polyglutamine accumulation. Here we found that the proteasomal chaperones that unfold proteins to be degraded by the proteasome but also have non-proteolytic functions co-localized with huntingtin inclusions both in primary neurons and in Huntington disease patients and formed a complex independently of the proteolytic particle. Overexpression of Rpt4 or Rpt6 facilitated aggregation of mutant huntingtin and ataxin-3 without affecting proteasomal degradation. Conversely, reducing Rpt6 or Rpt4 levels decreased the number of inclusions in primary neurons, indicating that endogenous Rpt4 and Rpt6 facilitate inclusion formation. In vitro reconstitution experiments revealed that purified 19S particles promote mutant huntingtin aggregation. When fused to the ornithine decarboxylase destabilizing sequence, proteins with expanded polyglutamine were efficiently degraded and did not aggregate. We propose that aggregation of proteins with expanded polyglutamine is not a consequence of a proteolytic failure of the 20S proteasome. Rather, aggregation is elicited by chaperone subunits of the 19S particle independently of proteolysis.
Collapse
Affiliation(s)
- Erwann Rousseau
- MRC Laboratory of Molecular Biology, Hills Rd., Cambridge CB2 0QH, United Kingdom
| | | | | | | | | |
Collapse
|
110
|
Suppression of mutant Huntingtin aggregate formation by Cdk5/p35 through the effect on microtubule stability. J Neurosci 2008; 28:8747-55. [PMID: 18753376 DOI: 10.1523/jneurosci.0973-08.2008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Huntington's disease (HD) is a polyglutamine [poly(Q)] disease with an expanded poly(Q) stretch in the N terminus of the huntingtin protein (htt). A major pathological feature of HD neurons is inclusion bodies, detergent-insoluble aggregates composed of poly(Q)-expanded mutant htt (mhtt). Misfolding of mhtt is thought to confer a toxic property via formation of aggregates. Although toxic molecular species are still debated, it is important to clarify the aggregation mechanism to understand the pathogenesis of mhtt. We show Cdk5/p35 suppresses the formation of mhtt inclusion bodies in cell lines and primary neurons. Although we expressed the N-terminal exon 1 fragment of htt lacking phosphorylation sites for Cdk5 in COS-7 cells, the kinase activity of Cdk5 was required for the suppression. Furthermore, Cdk5/p35 suppressed inclusion formation of atrophin-1, another poly(Q) protein, raising the possibility that Cdk5/p35 generally suppresses inclusion formation of poly(Q) proteins. Microtubules (MTs) were a downstream component of Cdk5/p35 in the suppression of inclusion formation; Cdk5/p35 disrupted MTs, which were required for the formation of inclusions. Moreover, stabilization of MTs by Taxol induced inclusions even with overexpression of Cdk5/p35. The formation of inclusions was also regulated by manipulating the Cdk5/p35 activity in primary rat or mouse cortical neuron cultures. These results indicate that Cdk5-dependent regulation of MT organization is involved in the development of aggregate formation and subsequent pathogenesis of poly(Q) diseases. This Cdk5 inhibition of htt aggregates is a novel mechanism different from htt phosphorylation and interaction with Cdk5 reported previously (Luo et al., 2005; Anne et al., 2007).
Collapse
|
111
|
Gibbs SJ, Braun JEA. Emerging roles of J proteins in neurodegenerative disorders. Neurobiol Dis 2008; 32:196-9. [PMID: 18760363 DOI: 10.1016/j.nbd.2008.07.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 07/18/2008] [Accepted: 07/25/2008] [Indexed: 11/19/2022] Open
Abstract
Several families of proteins called molecular chaperones comprise the cellular machinery that has evolved to maintain protein structure and eliminate misfolded proteins in the cell. In experimental animal models, chaperones have been shown to be powerful inhibitors of neurodegeneration. As such, molecular chaperones represent exciting pharmaceutical targets that potentially eliminate aberrant cellular proteins and slow disease progression. Current evidence indicates that the J protein family is the basis of selective chaperone action in the cell. Hence, J proteins are currently attracting attention as novel therapeutic targets for a number of neurodegenerative disorders.
Collapse
Affiliation(s)
- Sarah J Gibbs
- Department of Physiology and Biophysics, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
112
|
Polyglutamine gene function and dysfunction in the ageing brain. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1779:507-21. [PMID: 18582603 DOI: 10.1016/j.bbagrm.2008.05.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 04/29/2008] [Accepted: 05/30/2008] [Indexed: 11/23/2022]
Abstract
The coordinated regulation of gene expression and protein interactions determines how mammalian nervous systems develop and retain function and plasticity over extended periods of time such as a human life span. By studying mutations that occur in a group of genes associated with chronic neurodegeneration, the polyglutamine (polyQ) disorders, it has emerged that CAG/glutamine stretches play important roles in transcriptional regulation and protein-protein interactions. However, it is still unclear what the many structural and functional roles of CAG and other low-complexity sequences in eukaryotic genomes are, despite being the most commonly shared peptide fragments in such proteomes. In this review we examine the function of genes responsible for at least 10 polyglutamine disorders in relation to the nervous system and how expansion mutations lead to neuronal dysfunction, by particularly focusing on Huntington's disease (HD). We argue that the molecular and cellular pathways that turn out to be dysfunctional during such diseases, as a consequence of a CAG expansion, are also involved in the ageing of the central nervous system. These are pathways that control protein degradation systems (including molecular chaperones), axonal transport, redox-homeostasis and bioenergetics. CAG expansion mutations confer novel properties on proteins that lead to a slow-progressing neuronal pathology and cell death similar to that found in other age-related conditions such as Alzheimer's and Parkinson's diseases.
Collapse
|
113
|
|
114
|
Abstract
Huntington's disease (HD) is a devastating autosomal dominant neurodegenerative disease caused by a CAG trinucleotide repeat expansion encoding an abnormally long polyglutamine tract in the huntingtin protein. Much has been learnt since the mutation was identified in 1993. We review the functions of wild-type huntingtin. Mutant huntingtin may cause toxicity via a range of different mechanisms. The primary consequence of the mutation is to confer a toxic gain of function on the mutant protein and this may be modified by certain normal activities that are impaired by the mutation. It is likely that the toxicity of mutant huntingtin is revealed after a series of cleavage events leading to the production of N-terminal huntingtin fragment(s) containing the expanded polyglutamine tract. Although aggregation of the mutant protein is a hallmark of the disease, the role of aggregation is complex and the arguments for protective roles of inclusions are discussed. Mutant huntingtin may mediate some of its toxicity in the nucleus by perturbing specific transcriptional pathways. HD may also inhibit mitochondrial function and proteasome activity. Importantly, not all of the effects of mutant huntingtin may be cell-autonomous, and it is possible that abnormalities in neighbouring neurons and glia may also have an impact on connected cells. It is likely that there is still much to learn about mutant huntingtin toxicity, and important insights have already come and may still come from chemical and genetic screens. Importantly, basic biological studies in HD have led to numerous potential therapeutic strategies.
Collapse
|
115
|
Finkbeiner S, Mitra S. The ubiquitin-proteasome pathway in Huntington's disease. ScientificWorldJournal 2008; 8:421-33. [PMID: 18454252 PMCID: PMC2637619 DOI: 10.1100/tsw.2008.60] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The accumulation of mutant protein is a common feature of neurodegenerative disease. In Huntington's disease, a polyglutamine expansion in the huntingtin protein triggers neuronal toxicity. Accompanying neuronal death, mutant huntingtin aggregates in large macromolecular structures called inclusion bodies. The function of the machinery for intracellular protein degradation is linked to huntingtin toxicity and components of this machinery colocalize with inclusion bodies. An increasing body of evidence implicates the ubiquitin-proteasome pathway in the failure of cells to degrade mutant huntingtin. A number of potential mechanisms that link compromised ubiquitin-proteasome pathway function and neurodegeneration have been proposed and may offer opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Steven Finkbeiner
- Gladstone Institute of Neurological Disease, 1650 Owens St., San Francisco, CA94158, USA
| | | |
Collapse
|
116
|
Kim SA, Chang S, Yoon JH, Ahn SG. TAT-Hsp40 inhibits oxidative stress-mediated cytotoxicity via the inhibition of Hsp70 ubiquitination. FEBS Lett 2008; 582:734-40. [DOI: 10.1016/j.febslet.2008.01.053] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 01/21/2008] [Accepted: 01/29/2008] [Indexed: 11/15/2022]
|
117
|
Davies JE, Sarkar S, Rubinsztein DC. The ubiquitin proteasome system in Huntington's disease and the spinocerebellar ataxias. BMC BIOCHEMISTRY 2007; 8 Suppl 1:S2. [PMID: 18047739 PMCID: PMC2106366 DOI: 10.1186/1471-2091-8-s1-s2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Huntington's disease and several of the spinocerebellar ataxias are caused by the abnormal expansion of a CAG repeat within the coding region of the disease gene. This results in the production of a mutant protein with an abnormally expanded polyglutamine tract. Although these disorders have a clear monogenic cause, each polyglutamine expansion mutation is likely to cause the dysfunction of many pathways and processes within the cell. It has been proposed that the ubiquitin proteasome system is impaired in polyglutamine expansion disorders and that this contributes to pathology. However, this is controversial with some groups demonstrating decreased proteasome activity in polyglutamine expansion disorders, some showing no change in activity and others demonstrating an increase in proteasome activity. It remains unknown whether the ubiquitin proteasome system is a feasible therapeutic target in these disorders. Here we review the conflicting results obtained from different assays performed in a variety of different systems. Publication history: Republished from Current BioData's Targeted Proteins database (TPdb; ).
Collapse
Affiliation(s)
- Janet E Davies
- Department of Medical Genetics, Cambridge Institute for Medical Research, Wellcome/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 2XY, UK
| | | | | |
Collapse
|
118
|
Carra S, Seguin SJ, Lambert H, Landry J. HspB8 chaperone activity toward poly(Q)-containing proteins depends on its association with Bag3, a stimulator of macroautophagy. J Biol Chem 2007; 283:1437-1444. [PMID: 18006506 DOI: 10.1074/jbc.m706304200] [Citation(s) in RCA: 261] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mutations in HspB8, a member of the B group of heat shock proteins (Hsp), have been associated with human neuromuscular disorders. However, the exact function of HspB8 is not yet clear. We previously demonstrated that overexpression of HspB8 in cultured cells prevents the accumulation of aggregation-prone proteins such as the polyglutamine protein Htt43Q. Here we report that HspB8 forms a stable complex with Bag3 in cells and that the formation of this complex is essential for the activity of HspB8. Bag3 overexpression resulted in the accelerated degradation of Htt43Q, whereas Bag3 knockdown prevented HspB8-induced Htt43Q degradation. Additionally, depleting Bag3 caused a reduction in the endogenous levels of LC3-II, a key molecule involved in macroautophagy, whereas overexpressing Bag3 or HspB8 stimulated the formation LC3-II. These results suggested that the HspB8-Bag3 complex might stimulate the degradation of Htt43Q by macroautophagy. This was confirmed by the observation that treatments with macroautophagy inhibitors significantly decreased HspB8- and Bag3-induced degradation of Htt43Q. We conclude that the HspB8 activity is intrinsically dependent on Bag3, a protein that may facilitate the disposal of doomed proteins by stimulating macroautophagy.
Collapse
Affiliation(s)
- Serena Carra
- Centre de Recherche en Cancérologie and Département de Médecine, Université Laval, Québec G1R 2J6, Canada
| | - Samuel J Seguin
- Centre de Recherche en Cancérologie and Département de Médecine, Université Laval, Québec G1R 2J6, Canada
| | - Herman Lambert
- Centre de Recherche en Cancérologie and Département de Médecine, Université Laval, Québec G1R 2J6, Canada
| | - Jacques Landry
- Centre de Recherche en Cancérologie and Département de Médecine, Université Laval, Québec G1R 2J6, Canada.
| |
Collapse
|
119
|
Hunter JM, Lesort M, Johnson GVW. Ubiquitin-proteasome system alterations in a striatal cell model of Huntington's disease. J Neurosci Res 2007; 85:1774-88. [PMID: 17455294 DOI: 10.1002/jnr.21287] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Huntington's disease (HD) is a progressive, autosomal dominant neurodegenerative disease caused by an abnormally expanded CAG repeat in the HD gene. Ubiquitylated aggregates containing mutant huntingtin protein in neurons are hallmarks of HD. Misfolded mutant huntingtin monomers, oligomers, or aggregates may be a result of, and cause, ubiquitin- proteasome dysfunction. To investigate the ubiquitin-proteasome system we designed a series of firefly luciferase reporters targeted selectively to different points along this pathway. These reporters were used to monitor ubiquitin-proteasome system function in a striatal cell culture model of HD. Ubiquitylation processes were not reduced in mutant huntingtin cells but recognition or degradation of ubiquitylated substrates was decreased. We also found mutant huntingtin expressing cells had slight but significant decreases in chymotrypsin-like and caspase-like activities, and an unexpected increase in trypsin-like activity of the proteasome core. General proteasome core inhibitors, as well as selective caspase-like activity inhibitors, were less effective in mutant cells. Finally, treatment with 3-nitropropionic acid, a succinate dehydrogenase inhibitor, had opposite effects on the ubiquitin-proteasome system with activation in wild-type and decreased activity in mutant huntingtin expressing cells. The results of these experiments show clearly selective disruption of the ubiquitin-proteasome system in this cell culture model of HD. The high throughput tools that we have designed and optimized will also be useful in identifying compounds that alter ubiquitin-proteasome system function and to investigate other neurodegenerative diseases such Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Jesse M Hunter
- Department of Cell Biology, and Department of Psychiatry, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | |
Collapse
|
120
|
Rujano MA, Kampinga HH, Salomons FA. Modulation of polyglutamine inclusion formation by the Hsp70 chaperone machine. Exp Cell Res 2007; 313:3568-78. [PMID: 17822698 DOI: 10.1016/j.yexcr.2007.07.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 07/16/2007] [Accepted: 07/19/2007] [Indexed: 11/28/2022]
Abstract
Components of the Hsp70 chaperone machine have been implied in protection against polyglutamine (poly-Q) pathologies. Yet, little is known about specific mechanisms and the rate-limiting components that account for this protective effect. Here, we examined the effects of an Hsp70 chaperone family member (HspA1A) and its cofactors Hsp40 (DnaJB1), Bag-1 and CHIP on poly-Q protein inclusion formation and SDS-insolubilization. Overexpression of HspA1A alone did not suppress inclusion formation, while overexpression of DnaJB1 reduced poly-Q inclusion formation and insolubilization. The reducing effect of DnaJB1 on inclusion formation was enhanced by coexpressing HspA1A, and was dependent on the interaction of DnaJB1 with Hsp70/Hsc70 chaperones. Additionally, two factors connecting Hsp70 activity with protein degradation by the ubiquitin-proteasome system Bag-1 and CHIP slightly decreased the levels of soluble poly-Q protein, but the amount of aggregated protein and fraction of cells with inclusions remained unaltered. Our data suggest that the HspA1A chaperone machine can modulate poly-Q inclusion formation depending on the ratio of its components and that DnaJB1 is the rate-limiting step.
Collapse
Affiliation(s)
- M A Rujano
- Department of Cell Biology, Section of Radiation & Stress Cell Biology, University Medical Center Groningen, University of Groningen, The Netherlands
| | | | | |
Collapse
|
121
|
Rikhvanov EG, Romanova NV, Chernoff YO. Chaperone effects on prion and nonprion aggregates. Prion 2007; 1:217-22. [PMID: 19164915 PMCID: PMC2634534 DOI: 10.4161/pri.1.4.5058] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Accepted: 08/06/2007] [Indexed: 11/19/2022] Open
Abstract
Exposure to high temperature or other stresses induces a synthesis of heat shock proteins. Many of these proteins are molecular chaperones, and some of them help cells to cope with heat-induced denaturation and aggregation of other proteins. In the last decade, chaperones have received increased attention in connection with their role in maintenance and propagation of the Saccharomyces cerevisiae prions, infectious or heritable agents transmitted at the protein level. Recent data suggest that functioning of the chaperones in reactivation of heat-damaged proteins and in propagation of prions is based on the same molecular mechanisms but may lead to different consequences depending on the type of aggregate. In both cases the concerted and balanced action of "chaperones' team," including Hsp104, Hsp70, Hsp40 and possibly other proteins, determines whether a misfolded protein is to be incorporated into an aggregate, rescued to the native state or targeted for degradation.
Collapse
Affiliation(s)
- Eugene G Rikhvanov
- Siberian Institute of Plant Physiology and Biochemistry, Russian Academy of Sciences, Irkutsk, Russia
| | | | | |
Collapse
|
122
|
Salma A, Tsiapos A, Lazaridis I. The viral SV40 T antigen cooperates with dj2 to enhance hsc70 chaperone function. FEBS J 2007; 274:5021-7. [PMID: 17760891 DOI: 10.1111/j.1742-4658.2007.06019.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Simian virus 40 large T antigen is a J-domain-containing protein with multiple functions. Among its numerous activities, T antigen can bind heat shock cognate 70 (hsc70) but the biological significance of this interaction has not been fully understood. Here, we show that T antigen can act as an hsc70 co-chaperone enhancing the protein-folding ability of the hsc70 chaperone machine. We also show that T antigen exerts its function in collaboration with the mammalian homologue of DnaJ. Moreover, we show that the participation of T antigen in the hsc70 chaperone machine has cell-type-specific characteristics.
Collapse
Affiliation(s)
- Athanasia Salma
- Laboratory of General Biology, Medical School, University of Ioannina, Greece
| | | | | |
Collapse
|
123
|
Eskenazi BR, Wilson-Rich NS, Starks PT. A Darwinian approach to Huntington's disease: subtle health benefits of a neurological disorder. Med Hypotheses 2007; 69:1183-9. [PMID: 17689877 DOI: 10.1016/j.mehy.2007.02.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Accepted: 02/22/2007] [Indexed: 01/04/2023]
Abstract
Huntington's disease (HD) is a neurodegenerative disorder that, unlike most autosomal dominant disorders, is not being selected against. One explanation for the maintenance of the mutant HD allele is that it is transparent to natural selection because disease symptoms typically occur subsequent to an individual's peak reproductive years. While true, this observation does not explain the population-level increase in HD. The increase in HD is at least partly the result of enhanced fitness: HD+ individuals have more offspring than unaffected relatives. This phenomenon has previously been explained as the result of elevated promiscuity of HD+ individuals. For this to be true, disease symptoms must be expressed during the otherwise asymptomatic peak reproductive years and promiscuity must increase offspring production; however, neither prediction is supported by data. Instead, new data suggest that the mutant HD allele bestows health benefits on its carriers. HD+ individuals show elevated levels of the tumor suppressor protein p53 and experience significantly less cancer than unaffected siblings. We hypothesize that the mutant HD allele elevates carriers' immune activity and thus HD+ individuals are, on average, healthier than HD- individuals during reproductive years. As health and reproductive output are positively related, data suggest a counterintuitive relationship: health benefits may lead to an increased prevalence of Huntington's disease.
Collapse
|
124
|
Chernoff YO. Stress and prions: lessons from the yeast model. FEBS Lett 2007; 581:3695-701. [PMID: 17509571 PMCID: PMC2695654 DOI: 10.1016/j.febslet.2007.04.075] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 04/20/2007] [Accepted: 04/21/2007] [Indexed: 10/23/2022]
Abstract
Yeast self-perpetuating amyloids (prions) provide a convenient model for studying the cellular control of highly ordered aggregates involved in mammalian protein assembly disorders. The very ability of an amyloid to propagate a prion state in yeast is determined by its interactions with the stress-inducible chaperone Hsp104. Prion formation and propagation are also influenced by other stress-related chaperones (Hsp70 and Hsp40), and by alterations of the protein trafficking and degradation networks. Some stress conditions induce prion formation or loss. It is proposed that prions arise as byproducts of the reversible assembly of highly ordered complexes, protecting certain proteins during unfavorable conditions.
Collapse
Affiliation(s)
- Yury O Chernoff
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA.
| |
Collapse
|
125
|
Hinault MP, Ben-Zvi A, Goloubinoff P. Chaperones and proteases: cellular fold-controlling factors of proteins in neurodegenerative diseases and aging. J Mol Neurosci 2007; 30:249-65. [PMID: 17401151 DOI: 10.1385/jmn:30:3:249] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/11/2022]
Abstract
The formation of toxic protein aggregates is a common denominator to many neurodegenerative diseases and aging. Accumulation of toxic, possibly infectious protein aggregates induces a cascade of events, such as excessive inflammation, the production of reactive oxygen species, apoptosis and neuronal loss. A network of highly conserved molecular chaperones and of chaperone-related proteases controls the fold-quality of proteins in the cell. Most molecular chaperones can passively prevent protein aggregation by binding misfolding intermediates. Some molecular chaperones and chaperone-related proteases, such as the proteasome, can also hydrolyse ATP to forcefully convert stable harmful protein aggregates into harmless natively refoldable, or protease-degradable, polypeptides. Molecular chaperones and chaperone-related proteases thus control the delicate balance between natively folded functional proteins and aggregation-prone misfolded proteins, which may form during the lifetime and lead to cell death. Abundant data now point at the molecular chaperones and the proteases as major clearance mechanisms to remove toxic protein aggregates from cells, delaying the onset and the outcome of protein-misfolding diseases. Therapeutic approaches include treatments and drugs that can specifically induce and sustain a strong chaperone and protease activity in cells and tissues prone to toxic protein aggregations.
Collapse
Affiliation(s)
- Marie-Pierre Hinault
- DBMV, Faculty of Biology and Medicine, Lausanne University, CH-1015 Lausanne, Switzerland
| | | | | |
Collapse
|
126
|
Adachi H, Waza M, Katsuno M, Tanaka F, Doyu M, Sobue G. Pathogenesis and molecular targeted therapy of spinal and bulbar muscular atrophy. Neuropathol Appl Neurobiol 2007; 33:135-51. [PMID: 17359355 DOI: 10.1111/j.1365-2990.2007.00830.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spinal and bulbar muscular atrophy (SBMA) or Kennedy's disease is a motor neurone disease characterized by muscle atrophy, weakness, contraction fasciculations and bulbar involvement. SBMA mainly affects males, while females are usually asymptomatic. SBMA is caused by expansion of a polyglutamine (polyQ)-encoding CAG trinucleotide repeat in the androgen receptor (AR) gene. AR belongs to the heat shock protein 90 (Hsp90) client protein family. The histopathologic hallmarks of SBMA are diffuse nuclear accumulation and nuclear inclusions of the mutant AR with expanded polyQ in residual motor neurones in the brainstem and spinal cord as well as in some other visceral organs. There is increasing evidence that the ligand of AR and molecular chaperones play a crucial role in the pathogenesis of SBMA. The success of androgen deprivation therapy in SBMA mouse models has been translated into clinical trials. In addition, elucidation of its pathophysiology using animal models has led to the development of disease-modifying drugs, that is, Hsp90 inhibitor and Hsp inducer, which inhibit the pathogenic process of neuronal degeneration. SBMA is a slowly progressive disease by nature. The degree of nuclear accumulation of mutant AR in scrotal skin epithelial cells was correlated with that in spinal motor neurones in autopsy specimens; therefore, the results of scrotal skin biopsy may be used to assess the efficacy of therapeutic trials. Clinical and pathological parameters that reflect the pathogenic process of SBMA should be extensively investigated.
Collapse
Affiliation(s)
- H Adachi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
127
|
Shelbourne PF, Keller-McGandy C, Bi WL, Yoon SR, Dubeau L, Veitch NJ, Vonsattel JP, Wexler NS, Arnheim N, Augood SJ. Triplet repeat mutation length gains correlate with cell-type specific vulnerability in Huntington disease brain. Hum Mol Genet 2007; 16:1133-42. [PMID: 17409200 DOI: 10.1093/hmg/ddm054] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Huntington disease is caused by the expansion of a CAG repeat encoding an extended glutamine tract in a protein called huntingtin. Here, we provide evidence supporting the hypothesis that somatic increases of mutation length play a role in the progressive nature and cell-selective aspects of HD pathogenesis. Results from micro-dissected tissue and individual laser-dissected cells obtained from human HD cases and knock-in HD mice indicate that the CAG repeat is unstable in all cell types tested although neurons tend to have longer mutation length gains than glia. Mutation length gains occur early in the disease process and continue to accumulate as the disease progresses. In keeping with observed patterns of cell loss, neuronal mutation length gains tend to be more prominent in the striatum than in the cortex of low-grade human HD cases, less so in more advanced cases. Interestingly, neuronal sub-populations of HD mice appear to have different propensities for mutation length gains; in particular, smaller mutation length gains occur in nitric oxide synthase-positive striatal interneurons (a relatively spared cell type in HD) compared with the pan-striatal neuronal population. More generally, the data demonstrate that neuronal changes in HD repeat length can be at least as great, if not greater, than those observed in the germline. The fact that significant CAG repeat length gains occur in non-replicating cells also argues that processes such as inappropriate mismatch repair rather than DNA replication are involved in generating mutation instability in HD brain tissue.
Collapse
|
128
|
Valera AG, Díaz-Hernández M, Hernández F, Lucas JJ. Testing the possible inhibition of proteasome by direct interaction with ubiquitylated and aggregated huntingtin. Brain Res Bull 2007; 72:121-3. [PMID: 17352935 DOI: 10.1016/j.brainresbull.2006.10.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An impairment of the ubiquitin-proteasome system (UPS) has been postulated in Huntington's disease (HD) and in other CAG-triplet repeat disorders. This hypothesis arises from the observation that polyglutamine (polyQ)-containing inclusion bodies that are characteristic of these diseases also contain components of the UPS. However, since that initial discovery, the UPS impairment hypothesis has remained controversial. Recent in vitro enzymatic studies revealed the inability of eukaryotic proteasomes to digest expanded polyQ, thus suggesting that occasional failure of polyQ to exit the proteasome may interfere with its proteolytic function. However, it has also recently been found that in vitro assembled aggregates made of synthetic polyQ fail to inhibit proteasome activity. Here we propose future experiments that may help to ellucidate whether a direct interaction between proteasomes and polyQ stretches or aggregates can result in inhibition of proteasome activity.
Collapse
Affiliation(s)
- Adriana G Valera
- Centro de Biologia Molecular Severo Ochoa, CSIC/UAM, Campus UAM de Cantoblanco, Madrid, Spain
| | | | | | | |
Collapse
|
129
|
Zourlidou A, Gidalevitz T, Kristiansen M, Landles C, Woodman B, Wells DJ, Latchman DS, de Belleroche J, Tabrizi SJ, Morimoto RI, Bates GP. Hsp27 overexpression in the R6/2 mouse model of Huntington's disease: chronic neurodegeneration does not induce Hsp27 activation. Hum Mol Genet 2007; 16:1078-90. [PMID: 17360721 DOI: 10.1093/hmg/ddm057] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Huntington's disease (HD) is caused by an expanded polyglutamine tract in the huntingtin protein. Mitochondrial dysfunction and free radical damage occur in both R6/2 mice and HD patient brains and might play a role in disease pathogenesis. In cell culture systems, heat-shock protein 27 (Hsp27), a small molecular chaperone, suppresses mutant huntingtin-induced reactive oxygen species formation and cell death. To investigate this in vivo, we conducted an extensive phenotypic characterization of mice arising from a cross between R6/2 mice and Hsp27 transgenic mice but did not observe an improvement of the R6/2 phenotype. Hsp27 overexpression had no effect in reducing oxidative stress in the R6/2 brain, assessed by measuring striatal aconitase activity and protein carbonylation levels. Native protein gel analysis revealed that transgenic Hsp27 forms active, large oligomeric species in heat-shocked brain lysates, demonstrating that it is efficiently activated upon stress. In contrast, Hsp27 in double transgenic brains exists predominantly as a low molecular weight, inactive species. This suggests that Hsp27, which is otherwise activatable upon heat shock, remains inactive in the R6/2 model of chronic neurodegeneration. Hsp27 transgenics had been previously shown to be protected from acute stresses such as kainate administration, ischemia/reperfusion heart injury and neonatal nerve injury. Our study is the first to suggest a differential modulation of Hsp27 activation in vivo and, importantly, it illustrates the diverse effect of Hsp27 on acute versus chronic models of disease.
Collapse
Affiliation(s)
- Alexandra Zourlidou
- Department of Medical and Molecular Genetics, King's College London, School of Medicine, London SE1 9RT, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Woulfe JM. Abnormalities of the nucleus and nuclear inclusions in neurodegenerative disease: a work in progress. Neuropathol Appl Neurobiol 2007; 33:2-42. [PMID: 17239006 DOI: 10.1111/j.1365-2990.2006.00819.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases are characterized pathologically by the abnormal accumulation of pathogenic protein species within the cell. Several neurodegenerative diseases feature intranuclear protein aggregation in the form of intranuclear inclusion bodies. Studies of these intranuclear inclusions are providing important clues regarding the cellular pathophysiology of these diseases, as exemplified by recent progress in defining the genetic basis of a subset of frontotemporal dementia cases. The precise role of intranuclear inclusion bodies in disease pathogenesis is currently a focus of debate. The present review provides an overview of the diverse family of neurodegenerative diseases in which nuclear inclusions form part of the neuropathological spectrum. In addition, current pathogenetic concepts relevant to these diseases will be reviewed and arguments for and against a protective role for intranuclear inclusions will be presented. The relationship of pathological intranuclear inclusions to functional intranuclear bodies will also be discussed. Finally, by analogy with pathological intranuclear inclusions, I will speculate on the possibility that intranuclear protein aggregation may represent a constitutive cellular protective mechanism occurring in neurons under physiological conditions.
Collapse
Affiliation(s)
- J M Woulfe
- Department of Pathology, The Ottawa Hospital, University of Ottawa, and Cancer Research Program, The Ottawa Health Research Institute, Ottawa, Canada.
| |
Collapse
|
131
|
Tagawa K, Marubuchi S, Qi ML, Enokido Y, Tamura T, Inagaki R, Murata M, Kanazawa I, Wanker EE, Okazawa H. The induction levels of heat shock protein 70 differentiate the vulnerabilities to mutant huntingtin among neuronal subtypes. J Neurosci 2007; 27:868-80. [PMID: 17251428 PMCID: PMC6672912 DOI: 10.1523/jneurosci.4522-06.2007] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The reason why vulnerabilities to mutant polyglutamine (polyQ) proteins are different among neuronal subtypes is mostly unknown. In this study, we compared the gene expression profiles of three types of primary neurons expressing huntingtin (htt) or ataxin-1. We found that heat shock protein 70 (hsp70), a well known chaperone molecule protecting neurons in the polyQ pathology, was dramatically upregulated only by mutant htt and selectively in the granule cells of the cerebellum. Granule cells, which are insensitive to degeneration in the human Huntington's disease (HD) pathology, lost their resistance by suppressing hsp70 with siRNA, whereas cortical neurons, affected in human HD, gained resistance by overexpressing hsp70. This indicates that induction levels of hsp70 are a critical factor for determining vulnerabilities to mutant htt among neuronal subtypes. CAT (chloramphenicol acetyltransferase) assays showed that CBF (CCAAT box binding factor, CCAAT/enhancer binding protein zeta) activated, but p53 repressed transcription of the hsp70 gene in granule cells. Basal and mutant htt-induced expression levels of p53 were remarkably lower in granule cells than in cortical neurons, suggesting that different magnitudes of p53 are linked to distinct induction levels of hsp70. Surprisingly, however, heat shock factor 1 was not activated in granule cells by mutant htt. Collectively, different levels of hsp70 among neuronal subtypes might be involved in selective neuronal death in the HD pathology.
Collapse
Affiliation(s)
- Kazuhiko Tagawa
- Department of Neuropathology, Medical Research Institute and 21st Century Center of Excellence Program for Brain Integration and Its Disorders, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Shigeki Marubuchi
- Department of Neuropathology, Medical Research Institute and 21st Century Center of Excellence Program for Brain Integration and Its Disorders, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
- Toyama Chemical Company, Toyama 930-8508, Japan
| | - Mei-Ling Qi
- Department of Neuropathology, Medical Research Institute and 21st Century Center of Excellence Program for Brain Integration and Its Disorders, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
- PRESTO, Japan Science and Technology Agency, Kawagoe 332-0012, Japan
| | - Yasushi Enokido
- Department of Neuropathology, Medical Research Institute and 21st Century Center of Excellence Program for Brain Integration and Its Disorders, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Takuya Tamura
- Department of Neuropathology, Medical Research Institute and 21st Century Center of Excellence Program for Brain Integration and Its Disorders, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Reina Inagaki
- Department of Neuropathology, Medical Research Institute and 21st Century Center of Excellence Program for Brain Integration and Its Disorders, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Miho Murata
- PRESTO, Japan Science and Technology Agency, Kawagoe 332-0012, Japan
| | - Ichiro Kanazawa
- National Center for Neurology and Psychiatry, Kodaira 187-8502, Japan, and
| | - Erich E. Wanker
- Max-Delbrück Center for Molecular Medicine, D-13125 Berlin, Germany
| | - Hitoshi Okazawa
- Department of Neuropathology, Medical Research Institute and 21st Century Center of Excellence Program for Brain Integration and Its Disorders, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
- PRESTO, Japan Science and Technology Agency, Kawagoe 332-0012, Japan
| |
Collapse
|
132
|
Wanderer J, Morton AJ. Differential morphology and composition of inclusions in the R6/2 mouse and PC12 cell models of Huntington’s disease. Histochem Cell Biol 2007; 127:473-84. [PMID: 17285342 DOI: 10.1007/s00418-007-0272-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2007] [Indexed: 11/26/2022]
Abstract
The histological hallmark feature of Huntington's disease (HD) and other polyglutamine repeat diseases is the presence of intracellular inclusions. Much work has been devoted to trying to determine the relationship between inclusion formation and neuronal injury. However, little attention has been paid to the variability and characteristics of inclusions themselves. Here, we characterize the morphological and biochemical composition of inclusions in both a transgenic mouse model (R6/2 line) and an inducible cell culture model of HD (iPC12Q74). We identified several morphologically distinct kinds of inclusions in different locations (nuclei, cytoplasm and cellular processes). Ubiquitin colocalized completely with all of these inclusions in both the iPC12Q72 and R6/2 models. In the inclusions in iPC12Q74 cells, the 20S and 11S proteasome subunits colocalized variably, and the 19S subunit did not colocalize at all. In inclusions in R6/2 mouse neurons, the 20S subunit colocalized completely, but neither the 11S nor the 19S subunits colocalized at all. While the role of inclusions in the pathogenesis of HD continues to be debated, we suggest that the content and structure of inclusions vary considerably, not only from cell to cell but even within individual cells. Their role in the pathogenesis of HD is likely to depend on their location as well as their composition.
Collapse
Affiliation(s)
- Jonathan Wanderer
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | | |
Collapse
|
133
|
Firdaus WJJ, Wyttenbach A, Giuliano P, Kretz-Remy C, Currie RW, Arrigo AP. Huntingtin inclusion bodies are iron-dependent centers of oxidative events. FEBS J 2007; 273:5428-41. [PMID: 17116244 DOI: 10.1111/j.1742-4658.2006.05537.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Recently, we reported that the transient expression of huntingtin exon1 polypeptide containing polyglutamine tracts of various sizes (httEx1-polyQ) in cell models of Huntington disease generated an oxidative stress whose intensity was CAG repeat expansion-dependent. Here, we have analyzed the intracellular localization of the oxidative events generated by the httEx1-polyQ polypeptides. Analysis of live COS-7 cells as well as neuronal SK-N-SH and PC12 cells incubated with hydroethidine or dichlorofluorescein diacetate revealed oxidation of these probes at the level of the inclusion bodies formed by httEx1-polyQ polypeptides. The intensity and frequency of the oxidative events among the inclusions were CAG repeat expansion-dependent. Electron microscopic analysis of cell sections revealed the presence of oxidation-dependent morphologic alterations in the vicinity of httEx1-polyQ inclusion bodies. Moreover, a high level of oxidized proteins was recovered in partially purified inclusions. We also report that the iron chelator deferroxamine altered the structure, localization and oxidative potential of httEx1-polyQ inclusion bodies. Hence, despite the fact that the formation of inclusion bodies may represent a defense reaction of the cell to eliminate httEx1 mutant polypeptide, this phenomenon appears inherent to the generation of iron-dependent oxidative events that can be deleterious to the cell.
Collapse
Affiliation(s)
- Wance J J Firdaus
- Laboratoire Stress Oxydant, Chaperons et Apoptose, Université Claude Bernard Lyon-1, Villeurbanne, France
| | | | | | | | | | | |
Collapse
|
134
|
Chiang MC, Juo CG, Chang HH, Chen HM, Yi EC, Chern Y. Systematic uncovering of multiple pathways underlying the pathology of Huntington disease by an acid-cleavable isotope-coded affinity tag approach. Mol Cell Proteomics 2007; 6:781-97. [PMID: 17272267 DOI: 10.1074/mcp.m600356-mcp200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Huntington disease (HD) is an autosomal dominant neurodegenerative disease that results from a CAG (glutamine) trinucleotide expansion in exon 1 of huntingtin (Htt). The aggregation of mutant Htt has been implicated in the progression of HD. The earliest degeneration occurs in the striatum. To identify proteins critical for the progression of HD, we applied acid-cleavable ICAT technology to quantitatively determine changes in protein expressions in the striatum of a transgenic HD mouse model (R6/2). The cysteine residues of striatal proteins from HD and wild-type mice were labeled, respectively, with the heavy and light forms of the ICAT reagents. Samples were trypsinized, uncovered by avidin affinity chromatography, and analyzed by nano-LC-MS/MS. Western blot analyses were used to confirm and to calibrate the ICAT ratios. Linear regression was used to uncover a group of proteins that exhibited consistent changes. In two independent ICAT experiments, we identified 427 cysteine-containing striatal proteins among which approximately 66% (203 proteins) were detected in both ICAT experiments. Approximately two-thirds of proteins identified in each ICAT experiment were detected in both ICAT experiments. In total, 68 proteins with altered expressions in HD mice were identified. Elevated expressions of two down-regulated proteins (14-3-3sigma and FKBP12) effectively reduced Htt aggregates in a striatal cell line, supporting the functional relevance of the above findings. Collectively by using a well defined protocol for data analysis, large scale comparisons of protein expressions by ICAT can be reliable and can provide valuable clues for identifying proteins critical for pathophysiological functions.
Collapse
Affiliation(s)
- Ming-Chang Chiang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | | | | | | | | | | |
Collapse
|
135
|
Sawada H, Ishiguro H, Nishii K, Yamada K, Tsuchida K, Takahashi H, Goto J, Kanazawa I, Nagatsu T. Characterization of neuron-specific huntingtin aggregates in human huntingtin knock-in mice. Neurosci Res 2007; 57:559-73. [PMID: 17335925 DOI: 10.1016/j.neures.2007.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 12/18/2006] [Accepted: 01/04/2007] [Indexed: 11/30/2022]
Abstract
Huntington's disease (HD) is caused by a mutation causing expanded polyglutamine tracts in the N-terminal fragment of huntingtin. A pathological hallmark of HD is the formation of aggregates in the striatal neurons. Here we report that ageing human huntingtin knock-in mice expressing mutant human huntingtin contained neuronal huntingtin aggregates, as revealed by immunohistochemical analysis. In heterozygous knock-in mice with 77 CAG repeats, aggregates of N-terminal fragments of huntingtin were specifically formed in nuclei and neuropils in the striatal projection neurons, and in neuropils in their projection regions. This aggregate formation progressed depending on age, became interacted with proteolytic or chaperone proteins, and occurred most prominently in the nucleus accumbens. These mutant mice demonstrated abnormal aggressive behavior. In homozygous knock-in mice, heavy deposits of intranuclear and neuropil aggregates were detected, which extended to other regions; and characteristic large perikaryal aggregates were also found in the affected neurons. However, cell death was not observed among the striatal and affected neurons of these mutant mice. Our results indicate that the polyglutamine aggregates do not necessarily correlate with neuronal death. These human huntingtin knock-in mice should be useful to provide an effective therapeutic approach against HD.
Collapse
Affiliation(s)
- Hirohide Sawada
- Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
136
|
|
137
|
Halliwell B. Proteasomal dysfunction: a common feature of neurodegenerative diseases? Implications for the environmental origins of neurodegeneration. Antioxid Redox Signal 2006; 8:2007-19. [PMID: 17034346 DOI: 10.1089/ars.2006.8.2007] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The neurodegenerative diseases that afflict humans affect different part of the nervous system and have different symptoms and prognoses, yet they have certain things in common. One of them is defects in the clearance of abnormal or other "unwanted" proteins, particularly affecting the proteasome system. In this review, I advance two concepts: (a) that defects in protein clearance can be a fundamental cause of neurodegeneration, and (b) that because proteasome inhibitors are widespread in nature, their ingestion may contribute to "spontaneous" neurodegeneration.
Collapse
Affiliation(s)
- B Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
138
|
Ravikumar B, Rubinsztein DC. Role of autophagy in the clearance of mutant huntingtin: A step towards therapy? Mol Aspects Med 2006; 27:520-7. [PMID: 16973207 DOI: 10.1016/j.mam.2006.08.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Macroautophagy (henceforth referred to simply as autophagy) is a bulk degradation process involved in the clearance of long-lived proteins, protein complexes and organelles. A portion of the cytosol, with its contents to be degraded, is enclosed by double-membrane structures called autophagosomes/autophagic vacuoles, which ultimately fuse with lysosomes where their contents are degraded. In this review, we will describe how induction of autophagy is protective against toxic intracytosolic aggregate-prone proteins that cause a range of neurodegenerative diseases. Autophagy is a key clearance pathway involved in the removal of such proteins, including mutant huntingtin (that causes Huntington's disease), mutant ataxin-3 (that causes spinocerebellar ataxia type 3), forms of tau that cause tauopathies, and forms of alpha-synuclein that cause familial Parkinson's disease. Induction of autophagy enhances the clearance of both soluble and aggregated forms of such proteins, and protects against toxicity of a range of these mutations in cell and animal models. Interestingly, the aggregates formed by mutant huntingtin sequester and inactivate the mammalian target of rapamycin (mTOR), a key negative regulator of autophagy. This results in induction of autophagy in cells with these aggregates.
Collapse
Affiliation(s)
- Brinda Ravikumar
- Department of Medical Genetics, Cambridge Institute for Medical Research, Wellcome/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 2XY, UK
| | | |
Collapse
|
139
|
Fayazi Z, Ghosh S, Marion S, Bao X, Shero M, Kazemi-Esfarjani P. A Drosophila ortholog of the human MRJ modulates polyglutamine toxicity and aggregation. Neurobiol Dis 2006; 24:226-44. [PMID: 16934481 DOI: 10.1016/j.nbd.2006.06.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Revised: 06/19/2006] [Accepted: 06/28/2006] [Indexed: 01/13/2023] Open
Abstract
In the Drosophila eye, proteins with an expanded polyglutamine (polyQ) tract form nuclear and cytoplasmic inclusions and produce cytotoxicity, demonstrated as loss of eye pigmentation and structural integrity. An EP P-element that suppressed the loss of eye pigmentation was inserted 9.7 kb upstream of dmrj, a gene that encodes an ortholog of a brain-enriched cochaperone, the human MRJ (mammalian relative of DnaJ). Despite the large distance between them, quantitative polymerase chain reaction indicated that the EP could overexpress dmrj. In the retina and other neurons, transgenic dMRJ suppressed polyQ toxicity and colocalized with its inclusions. In the photoreceptors, expression of another suppressor with a J domain, dHDJ1, but not dMRJ, prior to expression of expanded polyQs dramatically promoted cytoplasmic aggregation. However, both proteins increased the level of detergent-soluble, monomeric polyQ-expanded proteins. These findings exemplify the functional similarities and differences between J domain proteins in suppressing polyQ toxicity.
Collapse
Affiliation(s)
- Zahra Fayazi
- Department of Physiology and Biophysics, Center for Neuroscience, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | | | | | | | | | | |
Collapse
|
140
|
Firdaus WJJ, Wyttenbach A, Diaz-Latoud C, Currie RW, Arrigo AP. Analysis of oxidative events induced by expanded polyglutamine huntingtin exon 1 that are differentially restored by expression of heat shock proteins or treatment with an antioxidant. FEBS J 2006; 273:3076-93. [PMID: 16817855 DOI: 10.1111/j.1742-4658.2006.05318.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We recently reported that the transient expression of polyglutamine tracts of various size in exon 1 of the huntingtin polypeptide (httEx1) generated abnormally high levels of intracellular reactive oxygen species that directly contributed to cell death. Here, we compared the protection generated by heat shock proteins to that provided by the antioxidant agent N-acetyl-L-cysteine. In cells expressing httEx1 with 72 glutamine repeats (httEx1-72Q), the overexpression of Hsp27 or Hsp70 plus Hdj-1(Hsp40) or treatment of the cells with N-acetyl-L-cysteine inhibited not only mitochondrial membrane potential disruption but also the increase in reactive oxygen species, nitric oxide and protein oxidation. However, only heat shock proteins and not N-acetyl-L-cysteine reduced the size of the inclusion bodies formed by httEx1-72Q. In cells expressing httEx1 polypeptide with 103 glutamine repeats (httEx1-103Q), heat shock proteins neither decreased oxidative damage nor reduced the size of the inclusions. In contrast, N-acetyl-L-cysteine still efficiently decreased the oxidative damage induced by httEx1-103Q polypeptide without altering the inclusions. N-Acetyl-L-cysteine was inactive with regard to proteasome inhibition, whereas heat shock proteins partially restored the caspase-like activity of this protease. These observations suggest some relationships between the presence of inclusion bodies and the oxidative damage induced by httEx1-polyQ.
Collapse
Affiliation(s)
- Wance J J Firdaus
- Laboratoire Stress Oxydant, Chaperons et Apoptose, Centre de Génétique Moléculaire et Cellulaire, Université Claude Bernard Lyon-1, Villeurbanne, France
| | | | | | | | | |
Collapse
|
141
|
Tomai E, Butz K, Lohrey C, von Weizsäcker F, Zentgraf H, Hoppe-Seyler F. Peptide Aptamer-mediated Inhibition of Target Proteins by Sequestration into Aggresomes. J Biol Chem 2006; 281:21345-21352. [PMID: 16717089 DOI: 10.1074/jbc.m604258200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peptide aptamers (PAs) can be employed to block the intracellular function of target proteins. Little is known about the mechanism of PA-mediated protein inhibition. Here, we generated PAs that specifically bound to the duck hepatitis B virus (HBV) core protein. Among them, PA34 strongly blocked duck HBV replication by inhibiting viral capsid formation. We found that PA34 led to a dramatic intracellular redistribution of its target protein into perinuclear inclusion bodies, which exhibit the typical characteristics of aggresomes. As a result, the core protein is efficiently removed from the viral life cycle. Corresponding findings were obtained for bioactive PAs that bind to the HBV core protein or to the human papillomavirus-16 (HPV16) E6 protein, respectively. The observation that PAs induce the specific sequestration of bound proteins into aggresomes defines a novel mechanism as to how this new class of intracellular inhibitors blocks the function of their target proteins.
Collapse
Affiliation(s)
- Evangelia Tomai
- Molecular Therapy of Virus-Associated Cancers Group (F065), German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Karin Butz
- Molecular Therapy of Virus-Associated Cancers Group (F065), German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Claudia Lohrey
- Molecular Therapy of Virus-Associated Cancers Group (F065), German Cancer Research Center, D-69120 Heidelberg, Germany
| | | | - Hanswalter Zentgraf
- Electron Microcopy Group (F090), German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Felix Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers Group (F065), German Cancer Research Center, D-69120 Heidelberg, Germany.
| |
Collapse
|
142
|
Waza M, Adachi H, Katsuno M, Minamiyama M, Tanaka F, Doyu M, Sobue G. Modulation of Hsp90 function in neurodegenerative disorders: a molecular-targeted therapy against disease-causing protein. J Mol Med (Berl) 2006; 84:635-46. [PMID: 16741751 DOI: 10.1007/s00109-006-0066-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Accepted: 03/14/2006] [Indexed: 10/24/2022]
Abstract
Abnormal accumulation of disease-causing protein is a commonly observed characteristic in chronic neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and polyglutamine (polyQ) diseases. A therapeutic approach that could selectively eliminate would be a promising remedy for neurodegenerative disorders. Spinal and bulbar muscular atrophy (SBMA), one of the polyQ diseases, is a late-onset motor neuron disease characterized by proximal muscle atrophy, weakness, contraction fasciculations, and bulbar involvement. The pathogenic gene product is polyQ-expanded androgen receptor (AR), which belongs to the heat shock protein (Hsp) 90 client protein family. 17-Allylamino-17-demethoxygeldanamycin (17-AAG), a novel Hsp90 inhibitor, is a new derivative of geldanamycin that shares its important biological activities but shows less toxicity. 17-AAG is now in phase II clinical trials as a potential anti-cancer agent because of its ability to selectively degrade several oncoproteins. We have recently demonstrated the efficacy and safety of 17-AAG in a mouse model of SBMA. The administration of 17-AAG significantly ameliorated polyQ-mediated motor neuron degeneration by reducing the total amount of mutant AR. 17-AAG accomplished the preferential reduction of mutant AR mainly through Hsp90 chaperone complex formation and subsequent proteasome-dependent degradation. 17-AAG induced Hsp70 and Hsp40 in vivo as previously reported; however, its ability to induce HSPs was limited, suggesting that the HSP induction might support the degradation of mutant protein. The ability of 17-AAG to preferentially degrade mutant protein would be directly applicable to SBMA and other neurodegenerative diseases in which the disease-causing proteins also belong to the Hsp90 client protein family. Our proposed therapeutic approach, modulation of Hsp90 function by 17-AAG treatment, has emerged as a candidate for molecular-targeted therapies for neurodegenerative diseases. This review will consider our research findings and discuss the possibility of a clinical application of 17-AAG to SBMA and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Masahiro Waza
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, 466-8550 Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
143
|
Desai UA, Pallos J, Ma AAK, Stockwell BR, Thompson LM, Marsh JL, Diamond MI. Biologically active molecules that reduce polyglutamine aggregation and toxicity. Hum Mol Genet 2006; 15:2114-24. [PMID: 16720620 DOI: 10.1093/hmg/ddl135] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Polyglutamine expansion in certain proteins causes neurodegeneration in inherited disorders such as Huntington disease and X-linked spinobulbar muscular atrophy. Polyglutamine tracts promote protein aggregation in vitro and in vivo with a strict length-dependence that strongly implicates alternative protein folding and/or aggregation as a proximal cause of cellular toxicity and neurodegeneration. We used an intracellular polyglutamine protein aggregation assay based on fluorescence resonance energy transfer (FRET) to identify inhibitors of androgen receptor (AR) aggregation in three libraries of biologically active small molecules: the Annotated Compound Library, the NINDS Custom Collection and a kinase inhibitor collection. In the primary screen 10 compounds reduced AR aggregation. While 10/10 also reduced huntingtin (Htt) exon 1 aggregation, only 2/10 reduced aggregation of pure polyglutamine peptides. In a PC-12 model 9/10 compounds reduced aggregation. Five out of nine compounds tested in an Htt exon 1 assay of neurodegeneration in Drosophila partially rescued the phenotype. Three of the five compounds effective in flies are FDA-approved drugs. These compounds provide new leads for therapeutic development for the polyglutamine diseases based on their efficacy in mammalian cells and a Drosophila model. The high predictive value of the primary screen suggests that the FRET-based screening assay may be useful for further primary and secondary screens for genes or small molecules that inhibit polyglutamine protein aggregation.
Collapse
Affiliation(s)
- Urvee A Desai
- Department of Neurology and Cellular and Molecular Pharmacology, San Francisco, CA 94143-2280, USA
| | | | | | | | | | | | | |
Collapse
|
144
|
Azfer A, Niu J, Rogers LM, Adamski FM, Kolattukudy PE. Activation of endoplasmic reticulum stress response during the development of ischemic heart disease. Am J Physiol Heart Circ Physiol 2006; 291:H1411-20. [PMID: 16617122 PMCID: PMC1575464 DOI: 10.1152/ajpheart.01378.2005] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Endoplasmic reticulum (ER) stress has been found to be associated with neurodegenerative diseases and diabetes mellitus. Whether ER stress is involved in the development of heart disease is not known. Cardiac-specific expression of monocyte chemoattractant protein-1 (MCP-1) in mice causes the development of ischemic heart disease. Here we report that microarray analysis of gene expression changes in the heart of these transgenic mice revealed that a cluster of ER stress-related genes was transcriptionally activated in the heart during the development of ischemic heart disease. The gene array results were verified by quantitative real-time PCR that showed highly elevated transcript levels of genes involved in unfolded protein response such as ER and cytoplasmic chaperones, oxidoreductases, protein disulfide isomerase (PDI) family, and ER-associated degradation system such as ubiquitin. Immunoblot analysis confirmed the expression of chaperones, PDI, and ubiquitin. Immunohistochemical analyses showed that ER stress proteins were associated mainly with the degenerating cardiomyocytes. A novel ubiquitin fold modifier (Ufm1) that has not been previously associated with ER stress and not found to be induced under any condition was also found to be upregulated in the hearts of MCP mice (transgenic mice that express MCP-1 specifically in the heart). The present results strongly suggest that activation of ER stress response is involved in the development of ischemic heart disease in this murine model.
Collapse
Affiliation(s)
| | | | | | | | - Pappachan E. Kolattukudy
- Address for reprint requests and other correspondence: P. E. Kolattukudy, Biomolecular Science Center, Burnett College of Biomedical Sciences, Univ. of Central Florida, Bldg. 20, Rm. 136, Orlando, FL 32816-2364 (e-mail: )
| |
Collapse
|
145
|
Sherman MY, Gabai VL. Multiple thermometers in mammalian cells: why do cells from homeothermic organisms need to measure temperature? ACTA ACUST UNITED AC 2006; 2006:pe16. [PMID: 16569818 DOI: 10.1126/stke.3282006pe16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Mammalian cells activate survival signaling pathways and other protective mechanisms or induce apoptotic cell death in response to heat stress at temperatures beyond the range of those that they would ever be expected to encounter in vivo. Recent work has demonstrated that heat shock directly activates the apoptotic proteins Bax and Bak, suggesting that these polypeptides function as cellular thermometers in the mitochondrial apoptotic pathway. Here we review this and other heat-activated signaling pathways and propose a model that postulates that these "cellular thermometers" are not designed to sense physiologically irrelevant temperatures but rather to detect a general buildup of abnormal proteins in the cytosol and other cellular compartments.
Collapse
Affiliation(s)
- Michael Y Sherman
- Department of Biochemistry, Boston University Medical School, Boston, MA 02118, USA.
| | | |
Collapse
|
146
|
Ravikumar B, Berger Z, Vacher C, O'Kane CJ, Rubinsztein DC. Rapamycin pre-treatment protects against apoptosis. Hum Mol Genet 2006; 15:1209-16. [PMID: 16497721 DOI: 10.1093/hmg/ddl036] [Citation(s) in RCA: 305] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Macroautophagy (generally referred to as autophagy) mediates the bulk degradation of cytoplasmic contents, including proteins and organelles, in lysosomes. Rapamycin, a lipophilic, macrolide antibiotic, induces autophagy by inactivating the protein mammalian target of rapamycin (mTOR). We previously showed that rapamycin protects against mutant huntingtin-induced neurodegeneration in cell, fly and mouse models of Huntington's disease [Ravikumar, B., Duden, R. and Rubinsztein, D.C. (2002) Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum. Mol. Genet., 11, 1107-1117, Ravikumar, B., Vacher, C., Berger, Z., Davies, J.E., Luo, S., Oroz, L.G., Scaravilli, F., Easton, D.F., Duden, R., O'Kane, C.J. et al. (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat. Genet., 36, 585-595]. This protective effect of rapamycin was attributed to enhanced clearance of the mutant protein via autophagy [Ravikumar, B., Duden, R. and Rubinsztein, D.C. (2002) Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum. Mol. Genet., 11, 1107-1117, Ravikumar, B., Vacher, C., Berger, Z., Davies, J.E., Luo, S., Oroz, L.G., Scaravilli, F., Easton, D.F., Duden, R., O'Kane, C.J. et al. (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat. Genet., 36, 585-595]. Here, we show that rapamycin may have additional cytoprotective effects--it protects cells against a range of subsequent pro-apoptotic insults and reduces paraquat toxicity in Drosophila. This protection can be accounted for by enhanced clearance of mitochondria by autophagy, thereby reducing cytosolic cytochrome c release and downstream caspase activation after pro-apoptotic insults. Thus, rapamycin (pro-autophagic) treatment may be useful in certain disease conditions (including various neurodegenerative diseases) where a slow but increased rate of apoptosis is evident, even if they are not associated with overt aggregate formation.
Collapse
Affiliation(s)
- Brinda Ravikumar
- Department of Medical Genetics, Cambridge Institute for Medical Research, Wellcome/MRC Building, Cambridge, UK
| | | | | | | | | |
Collapse
|
147
|
Hodges A, Strand AD, Aragaki AK, Kuhn A, Sengstag T, Hughes G, Elliston LA, Hartog C, Goldstein DR, Thu D, Hollingsworth ZR, Collin F, Synek B, Holmans PA, Young AB, Wexler NS, Delorenzi M, Kooperberg C, Augood SJ, Faull RLM, Olson JM, Jones L, Luthi-Carter R. Regional and cellular gene expression changes in human Huntington's disease brain. Hum Mol Genet 2006; 15:965-77. [PMID: 16467349 DOI: 10.1093/hmg/ddl013] [Citation(s) in RCA: 581] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Huntington's disease (HD) pathology is well understood at a histological level but a comprehensive molecular analysis of the effect of the disease in the human brain has not previously been available. To elucidate the molecular phenotype of HD on a genome-wide scale, we compared mRNA profiles from 44 human HD brains with those from 36 unaffected controls using microarray analysis. Four brain regions were analyzed: caudate nucleus, cerebellum, prefrontal association cortex [Brodmann's area 9 (BA9)] and motor cortex [Brodmann's area 4 (BA4)]. The greatest number and magnitude of differentially expressed mRNAs were detected in the caudate nucleus, followed by motor cortex, then cerebellum. Thus, the molecular phenotype of HD generally parallels established neuropathology. Surprisingly, no mRNA changes were detected in prefrontal association cortex, thereby revealing subtleties of pathology not previously disclosed by histological methods. To establish that the observed changes were not simply the result of cell loss, we examined mRNA levels in laser-capture microdissected neurons from Grade 1 HD caudate compared to control. These analyses confirmed changes in expression seen in tissue homogenates; we thus conclude that mRNA changes are not attributable to cell loss alone. These data from bona fide HD brains comprise an important reference for hypotheses related to HD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Angela Hodges
- Department of Psychological Medicine, Wales College of Medicine and School of Biosciences, Cardiff University, Heath Park, Cardiff CF14 4XN, Wales, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Underwood BR, Broadhurst D, Dunn WB, Ellis DI, Michell AW, Vacher C, Mosedale DE, Kell DB, Barker RA, Grainger DJ, Rubinsztein DC. Huntington disease patients and transgenic mice have similar pro-catabolic serum metabolite profiles. ACTA ACUST UNITED AC 2006; 129:877-86. [PMID: 16464959 DOI: 10.1093/brain/awl027] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
There has been considerable progress recently towards developing therapeutic strategies for Huntington's disease (HD), with several compounds showing beneficial effects in transgenic mouse models. However, human trials in HD are difficult, costly and time-consuming due to the slow disease course, insidious onset and patient-to-patient variability. Identification of molecular biomarkers associated with disease progression will aid the development of effective therapies by allowing further validation of animal models and by providing hopefully more sensitive measures of disease progression. Here, we apply metabolic profiling by gas chromatography-time-of-flight-mass spectrometry to serum samples from human HD patients and a transgenic mouse model in a hypothesis-generating search for disease biomarkers. We observed clear differences in metabolic profiles between transgenic mice and wild-type littermates, with a trend for similar differences in human patients and control subjects. Thus, the metabolites responsible for distinguishing transgenic mice also comprised a metabolic signature tentatively associated with the human disease. The candidate biomarkers composing this HD-associated metabolic signature in mouse and humans are indicative of a change to a pro-catabolic phenotype in early HD preceding symptom onset, with changes in various markers of fatty acid breakdown (including glycerol and malonate) and also in certain aliphatic amino acids. Our data raise the prospect of a robust molecular definition of progression of HD prior to symptom onset, and if validated in a genuinely prospective fashion these biomarker trajectories could facilitate the development of useful therapies for this disease.
Collapse
Affiliation(s)
- Benjamin R Underwood
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Addenbrooke's Hospital, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Leavitt BR, van Raamsdonk JM, Shehadeh J, Fernandes H, Murphy Z, Graham RK, Wellington CL, Raymond LA, Hayden MR. Wild-type huntingtin protects neurons from excitotoxicity. J Neurochem 2006; 96:1121-9. [PMID: 16417581 DOI: 10.1111/j.1471-4159.2005.03605.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Huntingtin is a caspase substrate, and loss of normal huntingtin function resulting from caspase-mediated proteolysis may play a role in the pathogenesis of Huntington disease. Here we tested the hypothesis that increasing huntingtin levels protect striatal neurons from NMDA receptor-mediated excitotoxicity. Cultured striatal neurons from yeast artificial chromosome (YAC)18 transgenic mice over-expressing full-length wild-type huntingtin were dramatically protected from apoptosis and caspase-3 activation compared with cultured striatal neurons from non-transgenic FVB/N littermates and YAC72 mice expressing mutant human huntingtin. NMDA receptor activation induced by intrastriatal injection of quinolinic acid initiated a form of apoptotic neurodegeneration within the striatum of mice that was associated with caspase-3 cleavage of huntingtin in neurons and astrocytes, decreased levels of full-length huntingtin, and the generation of a specific N-terminal caspase cleavage product of huntingtin. In vivo, over-expression of wild-type huntingtin in YAC18 transgenic mice conferred significant protection against NMDA receptor-mediated apoptotic neurodegeneration. These data provide in vitro and in vivo evidence that huntingtin may regulate the balance between neuronal survival and death following acute excitotoxic stress, and that the levels of huntingtin may modulate neuronal sensitivity to excitotoxic neurodegeneration. We suggest that further study of huntingtin's anti-apoptotic function will contribute to our understanding of the pathogenesis of Huntingdon's disease and provide insights into the selective vulnerability of striatal neurons to excitotoxic cell death.
Collapse
Affiliation(s)
- Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, British Colombia Research Institute for Children's and Women's Health, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Berger Z, Davies JE, Luo S, Pasco MY, Majoul I, O'Kane CJ, Rubinsztein DC. Deleterious and protective properties of an aggregate-prone protein with a polyalanine expansion. Hum Mol Genet 2005; 15:453-65. [PMID: 16371423 DOI: 10.1093/hmg/ddi460] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many aggregate-prone proteins, including proteins with long polyglutamine or polyalanine tracts, cause human diseases. Polyalanine proteins may also be present in the tissue of polyglutamine diseases as a result of frameshifting of the primary polyglutamine-encoding (CAG)n repeat mutation. We have generated a Drosophila model expressing green fluorescent protein tagged to 37 alanines that manifests both toxicity and inclusion formation in various tissues. Surprisingly, we show that this aggregate-prone protein with a polyalanine expansion can also protect against polyglutamine toxicity, which can be explained by induction of heat-shock response. A heat-shock response was also seen in an oculopharyngeal muscular dystrophy mouse model expressing an authentic polyalanine-expanded protein. We also show that long polyalanines can protect against a pro-apoptotic stimulus or the toxicity caused by the long polyalanines themselves. Thus, overexpression of an aggregate-prone protein without any normal functions can result in both pathogenic and protective effects in cell culture and in vivo.
Collapse
Affiliation(s)
- Zdenek Berger
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | |
Collapse
|