101
|
Seiler AE, Ross BN, Rubin R. Inhibition of insulin-like growth factor-1 receptor and IRS-2 signaling by ethanol in SH-SY5Y neuroblastoma cells. J Neurochem 2001; 76:573-81. [PMID: 11208920 DOI: 10.1046/j.1471-4159.2001.00025.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effect of ethanol on insulin-like growth factor-1 (IGF-I)-mediated signal transduction and functional activation in neuronal cells was examined. In human SH-SY5Y neuroblastoma cells, ethanol inhibited tyrosine autophosphorylation of the IGF-I receptor. This corresponded to the inhibition of IGF-I-induced phosphorylation of p42/p44 mitogen-activated/extracellular signal-regulated protein kinase (MAPK) by ethanol. Insulin-related substrate-2 (IRS-2) and focal adhesion kinase phosphorylation were reduced in the presence of ethanol, which corresponded to the prevention of lamellipodia formation (30 min). By contrast, ethanol had no effect on Shc phosphorylation when measured up to 1 h, and did not affect the association of Grb-2 with Shc. Neurite formation at 24 h was similarly unaffected by ethanol. The data indicate that the IGF-I receptor is a target for ethanol in SH-SY5Y cells However, there is diversity in the sensitivity of signaling elements within the IGF-I receptor tyrosine kinase signaling cascades to ethanol, which can be related to the inhibition of specific functional events in neuronal activation.
Collapse
Affiliation(s)
- A E Seiler
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia 19107, USA
| | | | | |
Collapse
|
102
|
LaMontagne KR, Moses MA, Wiederschain D, Mahajan S, Holden J, Ghazizadeh H, Frank DA, Arbiser JL. Inhibition of MAP kinase kinase causes morphological reversion and dissociation between soft agar growth and in vivo tumorigenesis in angiosarcoma cells. THE AMERICAN JOURNAL OF PATHOLOGY 2000; 157:1937-45. [PMID: 11106566 PMCID: PMC1885752 DOI: 10.1016/s0002-9440(10)64832-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Activated ras causes increased activity of several signal transduction systems, including the mitogen-activated protein kinase kinase (MAPKK) pathway and the phosphoinositol-3-kinase (PI-3-K) pathway. We have previously shown that the PI-3-K pathway plays a major role in regulation of ras-mediated tumor angiogenesis in angiosarcoma cells. However, the contribution of the MAPKK pathway to tumorigenesis and angiogenesis is not fully understood. Overexpression of constitutively active forms of MAPKK has previously been shown to transform nonmalignant NIH3T3 fibroblasts, but the effect of down-regulation of MAPKK on tumorigenesis and angiogenesis in a well established tumor has not been fully explored. We introduced a dominant negative MAPKK gene into SVR murine angiosarcoma cells. Introduction of a dominant negative MAPKK causes a significant decrease in proliferation rate in vitro and morphological reversion. Cells expressing the dominant negative MAPKK have a greatly decreased ability to form colonies in soft agar compared with wild-type cells. Despite the decreased cell growth in vitro and inability to grow in soft agar, the cells were equally tumorigenic in nude mice. Our results suggest that the MAPKK pathway is required for soft agar growth of angiosarcoma cells, and separates the phenotypes of soft agar growth versus in vivo tumorigenicity. These findings have implications in the development of signal transduction modulators as potential antineoplastic agents.
Collapse
Affiliation(s)
- K R LaMontagne
- Department of Dermatology and Emory Skin Disease Research Core Center Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Lesort M, Johnson GV. Insulin-like growth factor-1 and insulin mediate transient site-selective increases in tau phosphorylation in primary cortical neurons. Neuroscience 2000; 99:305-16. [PMID: 10938436 DOI: 10.1016/s0306-4522(00)00200-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The modulation of tau phosphorylation and localization in response to insulin-like growth factor-1 or insulin was examined in primary cultures of rat cortical neurons. Insulin and insulin-like growth factor-1 treatment resulted in a rapid and transient increase in tau phosphorylation at specific epitopes. These effects were completely inhibited by lithium, revealing that the insulin and insulin-like growth factor-1 induced changes in tau phosphorylation were mediated by glycogen synthase kinase-3beta. In addition, the increase in tau phosphorylation directly correlated with a transient dissociation of tau from the cytoskeleton, indicating that insulin and insulin-like growth factor-1 treatment resulted in a change in tau localization. Using immunocytochemistry, it was also demonstrated that treatment of neurons with insulin-like growth factor-1 for 3 min resulted in a redistribution of tau to the growth cone and the distal segment of the axons. Further, insulin-like growth factor-1 treatment resulted in an increased immunoreactivity with the phospho-dependent antibody AT8 in the same areas of the axons. Thus, the phosphorylation state and distribution of tau can be modulated by insulin and insulin-like growth factor-1 signaling pathways involving glycogen synthase kinase-3beta. We propose that by transiently increasing tau phosphorylation, insulin and insulin-like growth factor-1 may contribute to the reorganization of the cytoskeleton necessary for the development and growth of the neurites.
Collapse
Affiliation(s)
- M Lesort
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Alabama 35294, USA
| | | |
Collapse
|
104
|
Nguyen HT, Adam RM, Bride SH, Park JM, Peters CA, Freeman MR. Cyclic stretch activates p38 SAPK2-, ErbB2-, and AT1-dependent signaling in bladder smooth muscle cells. Am J Physiol Cell Physiol 2000; 279:C1155-67. [PMID: 11003596 DOI: 10.1152/ajpcell.2000.279.4.c1155] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cyclic mechanical stretch of bladder smooth muscle cells (SMC) increases rates of DNA synthesis and stimulates transcription of the gene for heparin-binding epidermal growth factor-like growth factor (HB-EGF), an ErbB1/EGF receptor ligand that has been linked to hypertrophic bladder growth. In this study we sought to clarify the signaling pathways responsible for mechanotransduction of the stretch stimulus. HB-EGF mRNA levels, DNA synthesis, and AP-1/Ets DNA binding activities were induced by repetitive stretch of primary culture rat bladder SMC. Inhibitors of the p38 SAPK2 pathway, the angiotensin receptor type 1 (AT1), and the ErbB2 tyrosine kinase reduced each of these activities, while an inhibitor of the extracellular signal-regulated kinase mitogen-activated protein kinase (Erk-MAPK) pathway had no effect. Stretch rapidly activated stress-activated protein kinase 2 (p38 SAPK2) and Jun NH(2)-terminal kinase (JNK)/SAPK pathways but not the Erk-MAPK pathway and induced ErbB2 but not ErbB1 phosphorylation. Angiotensin II (ANG II) a bladder SMC mitogen previously linked to the stretch response, did not activate ErbB2, and ErbB2 activation occurred in response to stretch in the presence of an ANG receptor inhibitor, indicating that activation of the AT1-mediated pathway and the ErbB2-dependent pathway occurs by independent mechanisms. p38 SAPK2 and JNK/SAPK signaling also appeared to be independent of the ErbB2 and AT1 pathways. These findings indicate that stretch-stimulated DNA synthesis and gene expression in normal bladder SMC occur via multiple independent receptor systems (e.g., AT1 and ErbB2) and at least one MAPK pathway (p38 SAPK2). Further, we show that the Erk-MAPK pathway, which in most systems is linked to receptor-dependent cell growth responses, is not involved in progression to DNA synthesis or in the response of the HB-EGF gene to mechanical forces.
Collapse
MESH Headings
- Angiotensin II/metabolism
- Angiotensin II/pharmacology
- Angiotensin Receptor Antagonists
- Animals
- Cell Division/drug effects
- Cells, Cultured
- Enzyme Inhibitors/pharmacology
- Epidermal Growth Factor/genetics
- Epidermal Growth Factor/metabolism
- Gene Expression/physiology
- Heparin-binding EGF-like Growth Factor
- Intercellular Signaling Peptides and Proteins
- JNK Mitogen-Activated Protein Kinases
- MAP Kinase Signaling System/physiology
- Mitogen-Activated Protein Kinases/antagonists & inhibitors
- Mitogen-Activated Protein Kinases/metabolism
- Muscle, Smooth/cytology
- Muscle, Smooth/metabolism
- Periodicity
- Phosphorylation/drug effects
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-ets
- RNA, Messenger/metabolism
- Rats
- Rats, Zucker
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2
- Receptor, ErbB-2/antagonists & inhibitors
- Receptor, ErbB-2/metabolism
- Receptors, Angiotensin/metabolism
- Signal Transduction/physiology
- Stress, Mechanical
- Transcription Factor AP-1/metabolism
- Transcription Factors/metabolism
- Urinary Bladder/cytology
- Urinary Bladder/metabolism
- p38 Mitogen-Activated Protein Kinases
Collapse
Affiliation(s)
- H T Nguyen
- The Urologic Laboratory, Department of Urology, Children's Hospital, and Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
105
|
Silvany RE, Eliazer S, Wolff NC, Ilaria RL. Interference with the constitutive activation of ERK1 and ERK2 impairs EWS/FLI-1-dependent transformation. Oncogene 2000; 19:4523-30. [PMID: 11002425 DOI: 10.1038/sj.onc.1203811] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The chimeric gene EWS/FLI-1, the hallmark of the Ewing's sarcoma and primitive neuroectodermal tumor family, encodes a fusion protein with enhanced transcriptional activation properties and preserved recognition of canonical ETS binding sites. Although EWS/FLI-1 alters the expression of various genes, the precise mechanism by which EWS/FLI-1 acts as an oncogene remains to be defined. In this study we report that members of the mitogen-activated protein kinase (MAPK) signaling pathway, ERK1 and ERK2, are constitutively activated in NIH 3T3 cells expressing EWS/FLI-1. Interference with ERK activation by either highly specific inhibitors of MEK1 or a dominant negative ras mutant profoundly impaired the ability of EWS/FLI-1 to transform NIH3T3 cells to growth in semi-solid medium. An EWS/FLI-1 mutant defective in DNA-binding and transcriptional activation failed to activate ERK and was also defective in 3T3 cell transformation. Constitutive ERK activation was also evident in several human Ewing's sarcoma tumor-derived cell lines. Interestingly, cells expressing the type II EWS/FLI-1 fusion, recently demonstrated more potent in transcriptional activation, showed even greater MAPK activation than cells expressing the more common type I fusion. These results implicate ERK activation in EWS/FLI-1 transformation and suggest that this signaling pathway may be important in the pathogenesis of Ewing's sarcoma. Oncogene (2000) 19, 4523 - 4530.
Collapse
Affiliation(s)
- R E Silvany
- Division of Hematology/Oncology, Department of Medicine, Simmons Cancer Center and the Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | |
Collapse
|
106
|
Makarevich A, Sirotkin A, Chrenek P, Bulla J, Hetenyi L. The role of IGF-I, cAMP/protein kinase A and MAP-kinase in the control of steroid secretion, cyclic nucleotide production, granulosa cell proliferation and preimplantation embryo development in rabbits. J Steroid Biochem Mol Biol 2000; 73:123-33. [PMID: 10925211 DOI: 10.1016/s0960-0760(00)00067-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The aim of this study was to investigate the actions of insulin-like growth factor I (IGF-I) on the secretory and proliferative functions of rabbit ovarian cells and on early embryogenesis. It was found that addition of IGF-I at a lower concentration (1 ng/ml) stimulated progesterone secretion by cultured rabbit granulosa cells, whilst higher concentrations of IGF-I (10, 100 ng/ml) were inhibitory. IGF-I had no effect on estradiol secretion. Cyclic AMP secretion was slightly increased after addition of IGF-I at 10 ng/ml, but not by higher concentrations. Cyclic GMP secretion was stimulated by IGF-I at 100 ng/ml only. A blocker of protein kinase A, Rp-cAMPS, did not alter progesterone and estradiol secretion but did prevent the action of IGF-I on progesterone secretion. An immunocytochemical study demonstrated that IGF-I significantly increased the proportion of proliferating cell nuclear antigen-positive (PCNA-positive) cells. Rp-cAMP did not change cell proliferation but partially prevented the proliferation-stimulating effect of IGF-I. IGF-I (100 ng/ml) significantly increased the proportion of divided zygotes and the number of embryos reaching the morula/blastocyst stage. Blockers of PKA, Rp-cAMPS and KT5720, reversed the effects of IGF-I on zygote cleavage and embryo development. Addition of IGF-I (100 ng/ml) significantly increased MAPK within the cells (proportion showing immunoreactivity to ERK-1 and ERK-3 antibodies and intensity of a 42 kDa band related to ERK-2). Rp-cAMPS suppressed the basal ERK-2 immunoreactivity but not that of ERK-1 or ERK-3. It completely inhibited the IGF-I-induced activation of ERK-3 but not that of ERK-1 or ERK-2. This in vitro study demonstrates that IGF-I is a potent stimulator of ovarian secretion, proliferation and embryogenesis in rabbit. Its effects are mediated by cAMP/PKA- and, probably by, MAPK-dependent intracellular mechanisms.
Collapse
Affiliation(s)
- A Makarevich
- Research Institute of Animal Production, Nitra, Slovak Republic.
| | | | | | | | | |
Collapse
|
107
|
Tavarini S, Colombaioni L, Garcia-Gil M. Sphingomyelinase metabolites control survival and apoptotic death in SH-SY5Y neuroblastoma cells. Neurosci Lett 2000; 285:185-8. [PMID: 10806317 DOI: 10.1016/s0304-3940(00)01054-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
There is increasing evidence that sphingolipids are involved in cell survival, differentiation or commitment to death. The effect of different sphingolipids and inhibitors of mitogen-activated protein kinase (MAPK) cascade on SH-SY5Y neuroblastoma cell death has been studied. Permeant ceramide analogues C2-Cer, C8-Cer, and C8-Cer-1-phosphate, but not dihydro C2-Cer induce apoptosis, as shown by Hoechst staining. Inhibition of ceramidase and sphingosine kinase, as well as incubation with sphingosine, decreases cell viability, measured as 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide reduction, whereas addition of sphingosine-1-phosphate increases proliferation. Both PD98059 (MAPKK inhibitor) and SB202190 (p38 MAPK inhibitor) decreased viability, but only SB202190 abolished the effect of ceramide. These results suggest that in SH-SY5Y neuroblastoma cells, death is signalled by increases in ceramide, ceramide-phosphate or sphingosine content through p38 MAPK pathway while survival requires MAPK and high sphingosine-1-phosphate/ceramide ratio.
Collapse
Affiliation(s)
- S Tavarini
- Departments of Physiology and Biochemistry, University of Pisa, via S. Zeno 31, 56127, Pisa, Italy
| | | | | |
Collapse
|
108
|
Raghunath M, Patti R, Bannerman P, Lee CM, Baker S, Sutton LN, Phillips PC, Damodar Reddy C. A novel kinase, AATYK induces and promotes neuronal differentiation in a human neuroblastoma (SH-SY5Y) cell line. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 77:151-62. [PMID: 10837911 DOI: 10.1016/s0169-328x(00)00048-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Apoptosis Associated Tyrosine Kinase (AATYK), a novel protein recently isolated from differentiating 32D mouse myeloid cells, contains a putative tyrosine kinase domain and several binding motifs for src homology 2 (SH-2) and src homology 3 (SH-3) domain containing proteins. We observed that AATYK is expressed in different regions of the brain. Although it might play a role in normal nervous system development by modulating apoptosis, little is known regarding its function in the brain or its intracellular localization and kinase activity. Recognizing its homology with Insulin like growth factor-I (IGF-I) receptor (IGF-IR) and the critical role of IGF-I in neuronal survival, we hypothesized that AATYK plays an important role in neuronal differentiation/apoptosis. To test this hypothesis, we transfected the human adrenergic neuroblastoma (NB):SH-SY5Y cells with AATYK cDNA under a tetracycline-repressible promoter and established stable cell lines that readily express AATYK on removal of tetracycline. AATYK immunoprecipitated from these cell lysates is an active kinase. Indirect immunofluorescent staining of the clones revealed AATYK to be localized in the cytoplasm. By itself, AATYK overexpression for short duration (2-3 days) did not induce differentiation in the stable SH-SY5Y clones. On the other hand, overexpression for longer periods (7-8 days) per se, significantly (P<0.05-0.001) increased the percent of differentiated cells as well as the neurite length. AATYK-induced differentiation was in the same range as the differentiation induced by agents like all-trans retinoic acid (RA), 12-O-Tetradecanoyl phorbol 13-acetate (TPA) and IGF-I. In addition, AATYK significantly promoted the neuronal differentiation induced by these agents. Our results demonstrate for the first time that AATYK is an active, non-receptor, cytosolic kinase which induces neuronal differentiation and also promotes differentiation induced by other agents in the SH-SY5Y cells.
Collapse
Affiliation(s)
- M Raghunath
- Division of Neuro-Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104 USA
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Dews M, Prisco M, Peruzzi F, Romano G, Morrione A, Baserga R. Domains of the insulin-like growth factor I receptor required for the activation of extracellular signal-regulated kinases. Endocrinology 2000; 141:1289-300. [PMID: 10746631 DOI: 10.1210/endo.141.4.7414] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The type 1 insulin-like growth factor receptor (IGF-IR) activates the extracellular signal-regulated kinases (ERK1 and -2). The two major substrates of the IGF-IR, insulin receptor substrate-1 (IRS-1) and the Shc proteins, are known to contribute to this activation. We investigated the domains of the IGF-IR required for the activation of the ERK proteins. To facilitate this study, we used a cell line (32D cells) that lacks IRS-1. In the absence of IRS-1, ERK activation is inhibited if the IGF-IR is mutated at two domains: tyrosine Y950 and a serine quartet at 1280-1283. Expression of IRS-1 in 32D cells expressing the double mutant IGF-IR restores ERK activation. The importance of the C-terminus of the IGF-IR in ERK activation (in the absence of IRS-1) is confirmed by the failure of the insulin receptor to give a sustained activation of ERK. In this model system, there is a good, but not exact, correlation between ERK activation and cell survival after withdrawal of growth factors.
Collapse
Affiliation(s)
- M Dews
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | |
Collapse
|
110
|
Delaney CL, Cheng HL, Feldman EL. Insulin-like growth factor-I prevents caspase-mediated apoptosis in Schwann cells. JOURNAL OF NEUROBIOLOGY 1999; 41:540-8. [PMID: 10590177 DOI: 10.1002/(sici)1097-4695(199912)41:4<540::aid-neu9>3.0.co;2-p] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Both neurons and glia succumb to programmed cell death (PCD) when deprived of growth factors at critical periods in development or following injury. Insulin-like growth factor-I (IGF-I) prevents apoptosis in neurons in vitro. To investigate whether IGF-I can protect Schwann cells (SC) from apoptosis, SC were harvested from postnatal day 3 rats and maintained in serum-containing media until confluency. When cells were switched to serum-free defined media (DM) for 12-72 h, they underwent PCD. Addition of insulin or IGF-I prevented apoptosis. Bisbenzamide staining revealed nuclear condensation and formation of apoptotic bodies in SC grown in DM alone, but SC grown in DM plus IGF-I had normal nuclear morphology. The phosphatidylinositol 3-kinase (PI 3-K) inhibitor LY294002 blocked IGF-I-mediated protection. Caspase-3 activity was rapidly activated upon serum withdrawal in SC, and the caspase inhibitor BAF blocked apoptosis. These results suggest that IGF-I rescues SC from apoptosis via PI 3-K signaling which is upstream from caspase activation.
Collapse
Affiliation(s)
- C L Delaney
- Department of Neurology, University of Michigan, 200 Zina Pitcher Place, 4414 Kresge III, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
111
|
Encinas M, Iglesias M, Llecha N, Comella JX. Extracellular-regulated kinases and phosphatidylinositol 3-kinase are involved in brain-derived neurotrophic factor-mediated survival and neuritogenesis of the neuroblastoma cell line SH-SY5Y. J Neurochem 1999; 73:1409-21. [PMID: 10501184 DOI: 10.1046/j.1471-4159.1999.0731409.x] [Citation(s) in RCA: 215] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Retinoic acid (RA) induces the differentiation of many cell lines, including those derived from neuroblastoma. RA treatment of SH-SY5Y cells induces the appearance of functional Trk B and Trk C receptors. Acute stimulation of RA-predifferentiated SH-SY5Y cells with brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT-3), or neurotrophin 4/5 (NT-4/5), but not nerve growth factor (NGF), induces Trk autophosphorylation, followed by phosphorylation of Akt and the extracellular signal-regulated kinases (ERKs) 1 and 2. In addition, BDNF, NT-3, or NT-4/5, but not NGF, promotes cell survival and neurite outgrowth in serum-free medium. The mitogen-activated protein kinase and ERK kinase (MEK) inhibitor PD98059 blocks BDNF-induced neurite outgrowth and growth-associated protein-43 expression but has no effects on cell survival. On the other hand, the phosphatidylinositol 3-kinase inhibitor LY249002 reverses the survival response elicited by BDNF, leading to a cell death with morphological features of apoptosis.
Collapse
Affiliation(s)
- M Encinas
- Department de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, Catalonia, Spain
| | | | | | | |
Collapse
|
112
|
Cheng HL, Shy M, Feldman EL. Regulation of insulin-like growth factor-binding protein-5 expression during Schwann cell differentiation. Endocrinology 1999; 140:4478-85. [PMID: 10499501 DOI: 10.1210/endo.140.10.7051] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have reported that immortalized Schwann cells (SC) express the insulin-like growth factor I receptor and IGF-binding protein-5 (IGFBP-5). IGF-I promotes SC survival and protects IGFBP-5 in SC-conditioned medium from proteolysis. In the current study we examined the roles of IGF-I and IGFBP-5 in primary SC. IGF-I enhances primary SC differentiation and gene and protein expression of IGFBP-5 and the myelinating protein, P0. SC that stably overexpress human IGFBP-5 also have higher levels of P0 gene expression. The phosphatidylinositol-3 kinase inhibitor (LY294002), but not the mitogen-activated protein kinase kinase inhibitor (PD98059), blocks IGF-I enhancement of IGFBP-5 gene and protein expression. Collectively, these results suggest that IGF-I promotes SC differentiation, and this may occur in part by enhancing IGFBP-5 expression via phosphatidylinositol-3 kinase activation. These data support a link between enhanced IGFBP-5 expression and cellular differentiation.
Collapse
Affiliation(s)
- H L Cheng
- Department of Neurology, University of Michigan, Ann Arbor 48109-0588, USA
| | | | | |
Collapse
|
113
|
Skaletz-Rorowski A, Waltenberger J, Müller JG, Pawlus E, Pinkernell K, Breithardt G. Protein kinase C mediates basic fibroblast growth factor-induced proliferation through mitogen-activated protein kinase in coronary smooth muscle cells. Arterioscler Thromb Vasc Biol 1999; 19:1608-14. [PMID: 10397677 DOI: 10.1161/01.atv.19.7.1608] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Proliferation of coronary smooth muscle cells (cSMCs) contributes to the pathogenesis of arteriosclerosis and restenosis after angioplasty, and basic fibroblast growth factor (bFGF) is a powerful mitogen for cSMCs. In this study, we investigated the involvement of mitogen-activated protein kinase (MAPK), protein kinase C (PKC), and the transcription factor c-myc in bFGF-stimulated mitogenesis, as well as the functional relationship between these factors. cSMC stimulation with bFGF resulted in phosphorylation of p42 MAPK, as well as the phosphorylation and increased expression of c-myc. The MAPK kinase (MEK) inhibitor PD98059 blocked bFGF-stimulated MAPK phosphorylation and resulted in both a decrease of c-myc expression and inhibition of bFGF-stimulated DNA synthesis in cSMCs. bFGF also increased PKC activity in cSMCs in a time-dependent manner. The inhibition of PKC by chelerythrine or its downregulation by phorbol 12-myristate 13-acetate (PMA) inhibited bFGF-induced DNA synthesis and blocked the phosphorylation of MAPK and c-myc expression in response to bFGF. This indicates an involvement of phorbol ester-sensitive PKC isoforms in MAPK activation and mitogenic signaling by bFGF. Western blot analysis revealed the presence of the phorbol ester-sensitive isoforms PKC alpha, epsilon, and gamma as well as the PKC isoforms iota, lambda, micro, and zeta in cSMCs. In this study, we show that the MAPK cascade is required for bFGF-induced proliferation and that phorbol ester-sensitive PKC isoforms contribute to the bFGF-induced cSMC mitogenesis in cSMCs.
Collapse
Affiliation(s)
- A Skaletz-Rorowski
- Institute for Arteriosclerosis Research, University of Münster, Münster, Germany.
| | | | | | | | | | | |
Collapse
|
114
|
Schwarzschild MA, Cole RL, Meyers MA, Hyman SE. Contrasting calcium dependencies of SAPK and ERK activations by glutamate in cultured striatal neurons. J Neurochem 1999; 72:2248-55. [PMID: 10349832 DOI: 10.1046/j.1471-4159.1999.0722248.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Stress-activated protein kinase (SAPK) and extracellular signal-regulated kinase (ERK), both members of the mitogen-activated protein kinase (MAPK) family, may in some circumstances serve opposing functions with respect to cell survival. However, SAPK and ERK can also be coordinately activated in neurons in response to glutamate stimulation of NMDA receptors. To explore the mechanisms of these MAPK activations, we compared the ionic mechanisms mediating SAPK and ERK activations by glutamate. In primary cultures of striatal neurons, glutamatergic activation of ERK and one of its transcription factor targets, CREB, showed a calcium dependence typical of NMDA receptor-mediated responses. In contrast, extracellular calcium was not required for glutamatergic, NMDA receptor-mediated activation of SAPK and phosphorylation of its substrate, c-Jun. Increasing extracellular calcium enhanced ERK activation but reversed SAPK activation, further distinguishing the calcium dependencies of these two NMDA receptor-mediated effects. Finally, reducing extracellular sodium prevented the glutamatergic activation of SAPK but only partially blocked that of ERK. These contrasting ionic dependencies suggest a mechanism by which NMDA receptor activation may, under distinct conditions, differentially regulate neuronal MAPKs and their divergent functions.
Collapse
Affiliation(s)
- M A Schwarzschild
- Department of Neurology, Massachusetts General Hospital, Charlestown 02129, USA
| | | | | | | |
Collapse
|
115
|
Raguenez G, Desire L, Lantrua V, Courtois Y. BCL-2 is upregulated in human SH-SY5Y neuroblastoma cells differentiated by overexpression of fibroblast growth factor 1. Biochem Biophys Res Commun 1999; 258:745-51. [PMID: 10329457 DOI: 10.1006/bbrc.1999.0613] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fibroblast growth factor 1 (FGF1) is a multipotent factor in the development and differentiation of the central nervous system. Recent studies in PC12 cells attribute these effects to high endogenous FGF1 expression. To examine the differentiation mechanisms induced by FGF1, we performed studies in SH-SY5Y human neuroblastoma cells. We monitored the impact of FGF1 overexpression in SH-SY5Y either after addition of exogenous FGF1 and heparin or after stable transfection with the FGF1 eukaryotic expression vector. Under both conditions, the FGF1 endogenous rise caused SH-SY5Y cell differentiation with morphological changes (appearance of neuritic extensions), increased GAP-43 gene expression, decreased of N-myc gene expression, and prolonged long-term survival in serum-free media. These modifications were correlated with Bcl-2 upregulation. These results suggest that there is a link between the endogenous FGF1 signaling pathway and Bcl-2 in neuronal survival modulation.
Collapse
Affiliation(s)
- G Raguenez
- Développement, Vieillissement et Pathologie de la Rétine, INSERM U. 450, Affiliée CNRS, Association Claude Bernard - 29 rue Wilhem, Paris, 75016, France.
| | | | | | | |
Collapse
|
116
|
Miloso M, Bertelli AA, Nicolini G, Tredici G. Resveratrol-induced activation of the mitogen-activated protein kinases, ERK1 and ERK2, in human neuroblastoma SH-SY5Y cells. Neurosci Lett 1999; 264:141-144. [PMID: 10320034 DOI: 10.1016/s0304-3940(99)00194-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphorylation of the mitogen-activated protein (MAP) kinases, extracellular signal-regulated kinase 1 (ERK1) and extracellular signal-regulated kinase 2 (ERK2), induced by resveratrol, a natural antioxidant present in grapes and wine, has been studied in vitro on undifferentiated and differentiated (induction by retinoic acid) SH-SY5Y human neuroblastoma cells. In undifferentiated cells resveratrol 1 microM induced phosphorylation of ERK1 and ERK2, which was already evident at 2 min, peaked at 10 min and persisted at 30 min. A wide range (from 1 pM to 10 microM) of resveratrol concentrations were able to induce phosphorylation of ERK1 and ERK2, while higher concentrations (50-100 microM) inhibited MAP kinases phosphorylation. In retinoic acid (RA) differentiated cells resveratrol (1 microM) induced an evident increase in ERK1 and ERK2 phosphorylation. This study demonstrates that resveratrol, even at very low concentrations, may have a biological effect on neuron-like cells.
Collapse
Affiliation(s)
- M Miloso
- Istituto di Anatomia Umana, LITA, Università degli Studi di Milano, Milan, Italy
| | | | | | | |
Collapse
|
117
|
Kim B, Cheng HL, Margolis B, Feldman EL. Insulin receptor substrate 2 and Shc play different roles in insulin-like growth factor I signaling. J Biol Chem 1998; 273:34543-50. [PMID: 9852124 DOI: 10.1074/jbc.273.51.34543] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The major substrates for the type I insulin-like growth factor (IGF-I) receptor are Shc and insulin receptor substrate (IRS) proteins. In the current study, we report that IGF-I induces a sustained tyrosine phosphorylation of Shc and its association with Grb2 in SH-SY5Y human neuroblastoma cells. The time course of Shc tyrosine phosphorylation parallels the time course of IGF-I-stimulated activation of extracellular signal-regulated kinase (ERK). Transfection of SH-SY5Y cells with a p52 Shc mutant decreases Shc tyrosine phosphorylation and Shc-Grb2 association. This results in the inhibition of IGF-I-mediated ERK tyrosine phosphorylation and neurite outgrowth. In contrast, IGF-I induces a transient tyrosine phosphorylation of IRS-2 and an association of IRS-2 with Grb2. The time course of IRS-2 tyrosine phosphorylation and IRS-2-Grb2 and IRS-2-p85 association closely resembles the time course of IGF-I-mediated membrane ruffling. Treating cells with the phosphatidylinositol 3'-kinase inhibitors wortmannin and LY294002 blocks IGF-I-induced membrane ruffling. The ERK kinase inhibitor PD98059, as well as transfection with the p52 Shc mutant, has no effect on IGF-I-mediated membrane ruffling. Immunolocalization studies show IRS-2 and Grb2, but not Shc, concentrated at the tip of the extending growth cone where membrane ruffling is most active. Collectively, these results suggest that the association of Shc with Grb2 is essential for IGF-I-mediated neurite outgrowth, whereas the IRS-2-Grb2-phosphatidylinositol 3'-kinase complex may regulate growth cone extension and membrane ruffling.
Collapse
Affiliation(s)
- B Kim
- Neuroscience Program and Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
118
|
Kim B, Leventhal PS, White MF, Feldman EL. Differential regulation of insulin receptor substrate-2 and mitogen-activated protein kinase tyrosine phosphorylation by phosphatidylinositol 3-kinase inhibitors in SH-SY5Y human neuroblastoma cells. Endocrinology 1998; 139:4881-9. [PMID: 9832424 DOI: 10.1210/endo.139.12.6348] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Insulin-like growth factor I (IGF-I) is a potent neurotropic factor promoting the differentiation and survival of neuronal cells. SH-SY5Y human neuroblastoma cells are a well characterized in vitro model of nervous system growth. We report here that IGF-I stimulated the tyrosine phosphorylation of the type I IGF receptor (IGF-IR) and insulin receptor substrate-2 (IRS-2) in a time- and concentration-dependent manner. These cells lacked IRS-1. After being tyrosine phosphorylated, IRS-2 associated transiently with downstream signaling molecules, including phosphatidylinositol 3-kinase (PI 3-K) and Grb2. Treatment of the cells with PI 3-K inhibitors (wortmannin and LY294002) increased IGF-I-induced tyrosine phosphorylation of IRS-2. We also observed a concomitant increase in the mobility of IRS-2, suggesting that PI 3-K mediates or is required for IRS-2 serine/threonine phosphorylation, and that this phosphorylation inhibits IRS-2 tyrosine phosphorylation. Treatment with PI 3-K inhibitors induced an increased association of IRS-2 with Grb2, probably as a result of the increased IRS-2 tyrosine phosphorylation. However, even though the PI 3-K inhibitors enhanced the association of Grb2 with IRS-2, these compounds suppressed IGF-I-induced mitogen-activated protein kinase activation and neurite outgrowth. Together, these results indicate that although PI 3-K participates in a negative regulation of IRS-2 tyrosine phosphorylation, its activity is required for IGF-IR-mediated mitogen-activated protein kinase activation and neurite outgrowth.
Collapse
Affiliation(s)
- B Kim
- Department of Neurology, University of Michigan, Ann Arbor 48109-0588, USA
| | | | | | | |
Collapse
|
119
|
Li S, Wattenberg EV. Differential activation of mitogen-activated protein kinases by palytoxin and ouabain, two ligands for the Na+,K+-ATPase. Toxicol Appl Pharmacol 1998; 151:377-84. [PMID: 9707514 DOI: 10.1006/taap.1998.8471] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously demonstrated that the marine toxin and skin tumor promoter palytoxin activates the stress-activated protein kinase/c-Jun N-terminal kinase (JNK), but not the extracellular signal-regulated kinase (ERK), which is typically activated by mitogenic agents. JNK, ERK, and p38, another stress-activated protein kinase, are members of the mitogen-activated protein (MAP) kinase family of serine/threonine kinases, which coordinate the transmission of various signals through the cell. The Na+,K+-ATPase is the putative palytoxin receptor. Therefore, we hypothesized that the Na+,K+-ATPase inhibitor ouabain might also stimulate signaling pathways that activate MAP kinases. Using HeLa and COS7 cells, we found that, although there are similarities between the protein kinase cascades by which palytoxin and ouabain activate JNK, there are also significant differences between the activation of specific MAP kinases by palytoxin and ouabain. Transient expression of dominant negative mutants indicates that ouabain, like palytoxin, activates JNK through a protein kinase cascade that involves the JNK kinase SEK1 but does not require the GTPase Ras. Palytoxin activates JNK and p38 to a greater extent than ouabain. By contrast, ouabain activates ERK to a greater extent than palytoxin. Ouabain blocked palytoxin-stimulated activation of JNK and p38, but not anisomycin-stimulated activation of these kinases, supporting the conclusion that ouabain and palytoxin bind to the same site on the Na+,K+-ATPase. These results suggest that the Na+,K+-ATPase can differentially mediate the activation of MAP kinases by two diverse ligands, palytoxin and ouabain.
Collapse
Affiliation(s)
- S Li
- School of Public Health, University of Minnesota, Minneapolis 55455, USA
| | | |
Collapse
|
120
|
Cheng HL, Feldman EL. Bidirectional regulation of p38 kinase and c-Jun N-terminal protein kinase by insulin-like growth factor-I. J Biol Chem 1998; 273:14560-5. [PMID: 9603971 DOI: 10.1074/jbc.273.23.14560] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously shown that insulin-like growth factor I (IGF-I) activation of the IGF-I receptor rescues SH-SY5Y human neuroblastoma cells from high glucose-mediated programmed cell death (PCD). In the current study, we further explored the potential points in the cell death cascade where IGF-I receptor activation may afford neuroprotection. As an initial step, we examined the effects of the PCD stimulus, high glucose, on stress-activated protein kinases, specifically the two mitogen-activated protein kinases p38 kinase and c-Jun N-terminal kinase (JNK). High glucose treatment activated the tyrosine phosphorylation of both p38 kinase and JNK in a dose- and time-dependent fashion. We next examined the effects of IGF-I on JNK and p38 kinase under normoglycemic and hyperglycemic conditions. IGF-I activated p38 kinase alone and had additive effects on glucose-induced p38 kinase phosphorylation. In contrast, IGF-I inhibited glucose activation of JNK phosphorylation and JNK activity. IGF-I also inhibited the glucose-induced nuclear translocation of JNK, but did not effect glucose-induced translocation of p38 kinase. Finally, IGF-I inhibition of JNK phosphorylation was blocked by the mitogen-activated protein kinase/extracellular signal-regulated kinase inhibitor, PD98059. Collectively, these data imply cross-talk between the mitogen-activated protein kinase pathway and JNK and suggest that IGF-I activation of mitogen-activated protein kinases interferes with JNK activation and protects cells from PCD.
Collapse
Affiliation(s)
- H L Cheng
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
121
|
Feldman EL, Sullivan KA, Kim B, Russell JW. Insulin-like growth factors regulate neuronal differentiation and survival. Neurobiol Dis 1997; 4:201-14. [PMID: 9361296 DOI: 10.1006/nbdi.1997.0156] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Insulin-like growth factor I (IGF-I) and IGF-II are potent trophic factors for motor and sensory neurons and glial cells. The actions of IGF-I and IGF-II are mediated via the IGF-I receptor (IGF-IR). IGF:IGF-IR binding activates distinct signaling cascades, which in turn mediate the trophic effects of the IGFs. We discuss three main IGF coupled events: growth cone motility, long-term neurite outgrowth, and neuroprotection. Our data suggest that IGF-I enhances growth cone motility by promoting reorganization of actin and activation of focal adhesion proteins via the phosphatidylinositol-3 kinase (Pl-3K) pathway. Long-term treatment with IGF-I activates the mitogen-activated protein (MAP) kinase cascade and promotes neurite outgrowth. A separable, but likely linked, action of the IGFs via Pl-3K is protection of neurons from apoptosis. These pleotrophic effects of IGFs suggest that this family of growth factors may have potential clinical utility in the treatment of neurological disorders.
Collapse
Affiliation(s)
- E L Feldman
- Department of Neurology, University of Michigan, Ann Arbor 48109, USA
| | | | | | | |
Collapse
|