101
|
Marshall RS, Gemperline DC, Vierstra RD. Purification of 26S Proteasomes and Their Subcomplexes from Plants. Methods Mol Biol 2017; 1511:301-334. [PMID: 27730621 DOI: 10.1007/978-1-4939-6533-5_24] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The 26S proteasome is a highly dynamic, multisubunit, ATP-dependent protease that plays a central role in cellular housekeeping and many aspects of plant growth and development by degrading aberrant polypeptides and key cellular regulators that are first modified by ubiquitin. Although the 26S proteasome was originally enriched from plants over 30 years ago, only recently have significant advances been made in our ability to isolate and study the plant particle. Here, we describe two robust methods for purifying the 26S proteasome and its subcomplexes from Arabidopsis thaliana; one that involves conventional chromatography techniques to isolate the complex from wild-type plants, and another that employs the genetic replacement of individual subunits with epitope-tagged variants combined with affinity purification. In addition to these purification protocols, we describe methods commonly used to analyze the activity and composition of the complex.
Collapse
Affiliation(s)
- Richard S Marshall
- Department of Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI, USA.,Department of Biology, Washington University in St Louis, Campus Box 1137, One Brookings Drive, St. Louis, MO, 63130, USA
| | - David C Gemperline
- Department of Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI, USA
| | - Richard D Vierstra
- Department of Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI, USA. .,Department of Biology, Washington University in St Louis, Campus Box 1137, One Brookings Drive, St. Louis, MO, 63130, USA.
| |
Collapse
|
102
|
Bacterial Proteasomes: Mechanistic and Functional Insights. Microbiol Mol Biol Rev 2016; 81:81/1/e00036-16. [PMID: 27974513 DOI: 10.1128/mmbr.00036-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Regulated proteolysis is essential for the normal physiology of all organisms. While all eukaryotes and archaea use proteasomes for protein degradation, only certain orders of bacteria have proteasomes, whose functions are likely as diverse as the species that use them. In this review, we discuss the most recent developments in the understanding of how proteins are targeted to proteasomes for degradation, including ATP-dependent and -independent mechanisms, and the roles of proteasome-dependent degradation in protein quality control and the regulation of cellular physiology. Furthermore, we explore newly established functions of proteasome system accessory factors that function independently of proteolysis.
Collapse
|
103
|
Liu HM, Ferrington DA, Baumann CW, Thompson LV. Denervation-Induced Activation of the Standard Proteasome and Immunoproteasome. PLoS One 2016; 11:e0166831. [PMID: 27875560 PMCID: PMC5119786 DOI: 10.1371/journal.pone.0166831] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/05/2016] [Indexed: 01/07/2023] Open
Abstract
The standard 26S proteasome is responsible for the majority of myofibrillar protein degradation leading to muscle atrophy. The immunoproteasome is an inducible form of the proteasome. While its function has been linked to conditions of atrophy, its contribution to muscle proteolysis remains unclear. Therefore, the purpose of this study was to determine if the immunoproteasome plays a role in skeletal muscle atrophy induced by denervation. Adult male C57BL/6 wild type (WT) and immunoproteasome knockout lmp7-/-/mecl-1-/- (L7M1) mice underwent tibial nerve transection on the left hindlimb for either 7 or 14 days, while control mice did not undergo surgery. Proteasome activity (caspase-, chymotrypsin-, and trypsin- like), protein content of standard proteasome (β1, β5 and β2) and immunoproteasome (LMP2, LMP7 and MECL-1) catalytic subunits were determined in the gastrocnemius muscle. Denervation induced significant atrophy and was accompanied by increased activities and protein content of the catalytic subunits in both WT and L7M1 mice. Although denervation resulted in a similar degree of muscle atrophy between strains, the mice lacking two immunoproteasome subunits showed a differential response in the extent and duration of proteasome features, including activities and content of the β1, β5 and LMP2 catalytic subunits. The results indicate that immunoproteasome deficiency alters the proteasome’s composition and activities. However, the immunoproteasome does not appear to be essential for muscle atrophy induced by denervation.
Collapse
Affiliation(s)
- Haiming M. Liu
- Department of Physical Medicine and Rehabilitation, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Deborah A. Ferrington
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Cory W. Baumann
- Department of Physical Medicine and Rehabilitation, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - LaDora V. Thompson
- Department of Physical Medicine and Rehabilitation, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
104
|
Ianiri G, Boyce KJ, Idnurm A. Isolation of conditional mutations in genes essential for viability of Cryptococcus neoformans. Curr Genet 2016; 63:519-530. [PMID: 27783209 DOI: 10.1007/s00294-016-0659-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/02/2016] [Accepted: 10/18/2016] [Indexed: 10/20/2022]
Abstract
Discovering the genes underlying fundamental processes that enable cells to live and reproduce is a technical challenge, because loss of gene function in mutants results in organisms that cannot survive. This study describes a forward genetics method to identify essential genes in fungi, based on the propensity for Agrobacterium tumefaciens to insert T-DNA molecules into the promoters or 5' untranslated regions of genes and by placing a conditional promoter within the T-DNA. Insertions of the promoter of the GAL7 gene were made in the human pathogen Cryptococcus neoformans. Nine strains of 960 T-DNA insertional mutants screened grew on media containing galactose, but had impaired growth on media containing glucose, which suppresses expression from GAL7. T-DNA insertions were found in the homologs of IDI1, MRPL37, NOC3, NOP56, PRE3 and RPL17, all of which are essential in ascomycete yeasts Saccharomyces cerevisiae or Schizosaccharomyces pombe. Altering the carbon source in the medium provided a system to identify phenotypes in response to stress agents. The pre3 proteasome subunit mutant was further characterized. The T-DNA insertion and phenotype co-segregate in progeny from a cross, and the growth defect is complemented by the reintroduction of the wild type gene into the insertional mutant. A deletion allele was generated in a diploid strain, this heterozygous strain was sporulated, and analysis of the progeny provided additional genetic evidence that PRE3 is essential. The experimental design is applicable to other fungi and has other forward genetic applications such as to isolate over-expression suppressors or enhance the production of traits of interest.
Collapse
Affiliation(s)
- Giuseppe Ianiri
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA.,Dipartimento di Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, Via F. De Sanctis Snc, 86100, Campobasso, Italy
| | - Kylie J Boyce
- School of BioSciences, BioSciences 2, University of Melbourne, Building 122, Melbourne, VIC, 3010, Australia
| | - Alexander Idnurm
- School of BioSciences, BioSciences 2, University of Melbourne, Building 122, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
105
|
Denamur S, Boland L, Beyaert M, Verstraeten SL, Fillet M, Tulkens PM, Bontemps F, Mingeot-Leclercq MP. Subcellular mechanisms involved in apoptosis induced by aminoglycoside antibiotics: Insights on p53, proteasome and endoplasmic reticulum. Toxicol Appl Pharmacol 2016; 309:24-36. [DOI: 10.1016/j.taap.2016.08.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/20/2016] [Accepted: 08/22/2016] [Indexed: 12/21/2022]
|
106
|
Yedidi RS, Fatehi AK, Enenkel C. Proteasome dynamics between proliferation and quiescence stages of Saccharomyces cerevisiae. Crit Rev Biochem Mol Biol 2016; 51:497-512. [PMID: 27677933 DOI: 10.1080/10409238.2016.1230087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The ubiquitin-proteasome system (UPS) plays a critical role in cellular protein homeostasis and is required for the turnover of short-lived and unwanted proteins, which are targeted by poly-ubiquitination for degradation. Proteasome is the key protease of UPS and consists of multiple subunits, which are organized into a catalytic core particle (CP) and a regulatory particle (RP). In Saccharomyces cerevisiae, proteasome holo-enzymes are engaged in degrading poly-ubiquitinated substrates and are mostly localized in the nucleus during cell proliferation. While in quiescence, the RP and CP are sequestered into motile and reversible storage granules in the cytoplasm, called proteasome storage granules (PSGs). The reversible nature of PSGs allows the proteasomes to be transported back into the nucleus upon exit from quiescence. Nuclear import of RP and CP through nuclear pores occurs via the canonical pathway that includes the importin-αβ heterodimer and takes advantage of the Ran-GTP gradient across the nuclear membrane. Dependent on the growth stage, either inactive precursor complexes or mature holo-enzymes are imported into the nucleus. The present review discusses the dynamics of proteasomes including their assembly, nucleo-cytoplasmic transport during proliferation and the sequestration of proteasomes into PSGs during quiescence. [Formula: see text].
Collapse
Affiliation(s)
| | | | - Cordula Enenkel
- a Department of Biochemistry , University of Toronto , Toronto , Canada
| |
Collapse
|
107
|
Santoro AM, Monaco I, Attanasio F, Lanza V, Pappalardo G, Tomasello MF, Cunsolo A, Rizzarelli E, De Luigi A, Salmona M, Milardi D. Copper(II) ions affect the gating dynamics of the 20S proteasome: a molecular and in cell study. Sci Rep 2016; 6:33444. [PMID: 27633879 PMCID: PMC5025780 DOI: 10.1038/srep33444] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/09/2016] [Indexed: 12/14/2022] Open
Abstract
Due to their altered metabolism cancer cells are more sensitive to proteasome inhibition or changes of copper levels than normal cells. Thus, the development of copper complexes endowed with proteasome inhibition features has emerged as a promising anticancer strategy. However, limited information is available about the exact mechanism by which copper inhibits proteasome. Here we show that Cu(II) ions simultaneously inhibit the three peptidase activities of isolated 20S proteasomes with potencies (IC50) in the micromolar range. Cu(II) ions, in cell-free conditions, neither catalyze red-ox reactions nor disrupt the assembly of the 20S proteasome but, rather, promote conformational changes associated to impaired channel gating. Notably, HeLa cells grown in a Cu(II)-supplemented medium exhibit decreased proteasome activity. This effect, however, was attenuated in the presence of an antioxidant. Our results suggest that if, on one hand, Cu(II)-inhibited 20S activities may be associated to conformational changes that favor the closed state of the core particle, on the other hand the complex effect induced by Cu(II) ions in cancer cells is the result of several concurring events including ROS-mediated proteasome flooding, and disassembly of the 26S proteasome into its 20S and 19S components.
Collapse
Affiliation(s)
- Anna Maria Santoro
- Istituto di Biostrutture e Bioimmagini - CNR Sede di Catania, Via P. Gaifami, 9- 95126 Catania, Italy
| | - Irene Monaco
- Istituto di Biostrutture e Bioimmagini - CNR Sede di Catania, Via P. Gaifami, 9- 95126 Catania, Italy
- Fondazione RiMed, Via Bandiera 11, 90133, Palermo, Italy
| | - Francesco Attanasio
- Istituto di Biostrutture e Bioimmagini - CNR Sede di Catania, Via P. Gaifami, 9- 95126 Catania, Italy
| | - Valeria Lanza
- Istituto di Biostrutture e Bioimmagini - CNR Sede di Catania, Via P. Gaifami, 9- 95126 Catania, Italy
| | - Giuseppe Pappalardo
- Istituto di Biostrutture e Bioimmagini - CNR Sede di Catania, Via P. Gaifami, 9- 95126 Catania, Italy
| | - Marianna Flora Tomasello
- Istituto di Biostrutture e Bioimmagini - CNR Sede di Catania, Via P. Gaifami, 9- 95126 Catania, Italy
| | - Alessandra Cunsolo
- Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Enrico Rizzarelli
- Istituto di Biostrutture e Bioimmagini - CNR Sede di Catania, Via P. Gaifami, 9- 95126 Catania, Italy
- Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Ada De Luigi
- IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”, Via Giuseppe La Masa 19, 20156, Milano, Italy
| | - Mario Salmona
- IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”, Via Giuseppe La Masa 19, 20156, Milano, Italy
| | - Danilo Milardi
- Istituto di Biostrutture e Bioimmagini - CNR Sede di Catania, Via P. Gaifami, 9- 95126 Catania, Italy
| |
Collapse
|
108
|
Velazquez R, Shaw DM, Caccamo A, Oddo S. Pim1 inhibition as a novel therapeutic strategy for Alzheimer's disease. Mol Neurodegener 2016; 11:52. [PMID: 27412291 PMCID: PMC4944476 DOI: 10.1186/s13024-016-0118-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 07/02/2016] [Indexed: 01/07/2023] Open
Abstract
Background Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder worldwide. Clinically, AD is characterized by impairments of memory and cognitive functions. Accumulation of amyloid-β (Aβ) and neurofibrillary tangles are the prominent neuropathologies in patients with AD. Strong evidence indicates that an imbalance between production and degradation of key proteins contributes to the pathogenesis of AD. The mammalian target of rapamycin (mTOR) plays a key role in maintaining protein homeostasis as it regulates both protein synthesis and degradation. A key regulator of mTOR activity is the proline-rich AKT substrate 40 kDa (PRAS40), which directly binds to mTOR and reduces its activity. Notably, AD patients have elevated levels of phosphorylated PRAS40, which correlate with Aβ and tau pathologies as well as cognitive deficits. Physiologically, PRAS40 phosphorylation is regulated by Pim1, a protein kinase of the protoconcogene family. Here, we tested the effects of a selective Pim1 inhibitor (Pim1i), on spatial reference and working memory and AD-like pathology in 3xTg-AD mice. Results We have identified a Pim1i that crosses the blood brain barrier and reduces PRAS40 phosphorylation. Pim1i-treated 3xTg-AD mice performed significantly better than their vehicle treated counterparts as well as non-transgenic mice. Additionally, 3xTg-AD Pim1i-treated mice showed a reduction in soluble and insoluble Aβ40 and Aβ42 levels, as well as a 45.2 % reduction in Aβ42 plaques within the hippocampus. Furthermore, phosphorylated tau immunoreactivity was reduced in the hippocampus of Pim1i–treated 3xTg-AD mice by 38 %. Mechanistically, these changes were linked to a significant increase in proteasome activity. Conclusion These results suggest that reductions in phosphorylated PRAS40 levels via Pim1 inhibition reduce Aβ and Tau pathology and rescue cognitive deficits by increasing proteasome function. Given that Pim1 inhibitors are already being tested in ongoing human clinical trials for cancer, the results presented here may open a new venue of drug discovery for AD by developing more Pim1 inhibitors.
Collapse
Affiliation(s)
- Ramon Velazquez
- Neurodegenerative Disease Research Center, Biodesign Institute, School of Life Sciences, Arizona State University, 727 E. Tyler Street, Tempe, AZ, 85287-5001, USA
| | - Darren M Shaw
- Neurodegenerative Disease Research Center, Biodesign Institute, School of Life Sciences, Arizona State University, 727 E. Tyler Street, Tempe, AZ, 85287-5001, USA.,School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Antonella Caccamo
- Neurodegenerative Disease Research Center, Biodesign Institute, School of Life Sciences, Arizona State University, 727 E. Tyler Street, Tempe, AZ, 85287-5001, USA
| | - Salvatore Oddo
- Neurodegenerative Disease Research Center, Biodesign Institute, School of Life Sciences, Arizona State University, 727 E. Tyler Street, Tempe, AZ, 85287-5001, USA. .,School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
109
|
Howard GC, Tansey WP. Interaction of Gcn4 with target gene chromatin is modulated by proteasome function. Mol Biol Cell 2016; 27:2735-41. [PMID: 27385344 PMCID: PMC5007093 DOI: 10.1091/mbc.e16-03-0192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/28/2016] [Indexed: 12/18/2022] Open
Abstract
The yeast transcription factor Gcn4 requires a ubiquitin ligase and the proteasome in order to function. Inhibiting proteasome function prevents the interaction of Gcn4 with target gene chromatin, and this activity is suppressed by inactivation of the ubiquitin-selective chaperone Cdc48. Thus proteolysis of Gcn4 is not required for its function. The ubiquitin–proteasome system (UPS) influences gene transcription in multiple ways. One way in which the UPS affects transcription centers on transcriptional activators, the function of which can be stimulated by components of the UPS that also trigger their destruction. Activation of transcription by the yeast activator Gcn4, for example, is attenuated by mutations in the ubiquitin ligase that mediates Gcn4 ubiquitylation or by inhibition of the proteasome, leading to the idea that ubiquitin-mediated proteolysis of Gcn4 is required for its activity. Here we probe the steps in Gcn4 activity that are perturbed by disruption of the UPS. We show that the ubiquitylation machinery and the proteasome control different steps in Gcn4 function and that proteasome activity is required for the ability of Gcn4 to bind to its target genes in the context of chromatin. Curiously, the effect of proteasome inhibition on Gcn4 activity is suppressed by mutations in the ubiquitin-selective chaperone Cdc48, revealing that proteolysis per se is not required for Gcn4 activity. Our data highlight the role of Cdc48 in controlling promoter occupancy by Gcn4 and support a model in which ubiquitylation of activators—not their destruction—is important for function.
Collapse
Affiliation(s)
- Gregory C Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - William P Tansey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
110
|
Doughty TW, Arsenault HE, Benanti JA. Levels of Ycg1 Limit Condensin Function during the Cell Cycle. PLoS Genet 2016; 12:e1006216. [PMID: 27463097 PMCID: PMC4963108 DOI: 10.1371/journal.pgen.1006216] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 07/05/2016] [Indexed: 11/19/2022] Open
Abstract
During mitosis chromosomes are condensed to facilitate their segregation, through a process mediated by the condensin complex. Although several factors that promote maximal condensin activity during mitosis have been identified, the mechanisms that downregulate condensin activity during interphase are largely unknown. Here, we demonstrate that Ycg1, the Cap-G subunit of budding yeast condensin, is cell cycle-regulated with levels peaking in mitosis and decreasing as cells enter G1 phase. This cyclical expression pattern is established by a combination of cell cycle-regulated transcription and constitutive degradation. Interestingly, overexpression of YCG1 and mutations that stabilize Ycg1 each result in delayed cell-cycle entry and an overall proliferation defect. Overexpression of no other condensin subunit impacts the cell cycle, suggesting that Ycg1 is limiting for condensin complex formation. Consistent with this possibility, we find that levels of intact condensin complex are reduced in G1 phase compared to mitosis, and that increased Ycg1 expression leads to increases in both levels of condensin complex and binding to chromatin in G1. Together, these results demonstrate that Ycg1 levels limit condensin function in interphase cells, and suggest that the association of condensin with chromosomes must be reduced following mitosis to enable efficient progression through the cell cycle.
Collapse
Affiliation(s)
- Tyler W. Doughty
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Heather E. Arsenault
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jennifer A. Benanti
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
111
|
Abstract
Interest in bacterial proteasomes was sparked by the discovery that proteasomal degradation is required for the pathogenesis of Mycobacterium tuberculosis, one of the world's deadliest pathogens. Although bacterial proteasomes are structurally similar to their eukaryotic and archaeal homologs, there are key differences in their mechanisms of assembly, activation, and substrate targeting for degradation. In this article, we compare and contrast bacterial proteasomes with their archaeal and eukaryotic counterparts, and we discuss recent advances in our understanding of how bacterial proteasomes function to influence microbial physiology.
Collapse
Affiliation(s)
| | - K Heran Darwin
- Department of Microbiology, New York University School of Medicine, New York, NY 10016;
| |
Collapse
|
112
|
Identification of proteasome subunit beta type 2 associated with deltamethrin detoxification in Drosophila Kc cells by cDNA microarray analysis and bioassay analyses. Gene 2016; 582:85-93. [DOI: 10.1016/j.gene.2016.01.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/22/2016] [Accepted: 01/29/2016] [Indexed: 11/17/2022]
|
113
|
Ghosh R, Hwang SM, Cui Z, Gilda JE, Gomes AV. Different effects of the nonsteroidal anti-inflammatory drugs meclofenamate sodium and naproxen sodium on proteasome activity in cardiac cells. J Mol Cell Cardiol 2016; 94:131-144. [PMID: 27049794 DOI: 10.1016/j.yjmcc.2016.03.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/10/2016] [Accepted: 03/28/2016] [Indexed: 02/06/2023]
Abstract
The use of nonsteroidal anti-inflammatory drugs (NSAIDs) like meclofenamate sodium (MS), used to reduce pain, has been associated with an increased risk of cardiovascular disease (CVD). Naproxen (NAP), another NSAID, is not associated with increased risk of CVD. The molecular mechanism(s) by which NSAIDs induce CVD is unknown. We investigated the effects of MS and NAP on protein homeostasis and cardiotoxicity in rat cardiac H9c2 cells and murine neonatal cardiomyocytes. MS, but not NAP, significantly inhibited proteasome activity and reduced cardiac cell viability at pharmacological levels found in humans. Although proteasome subunit gene and protein expression were unaffected by NSAIDs, MS treated cell lysates showed higher 20S proteasome content, while purified proteasomes from MS treated cells had lower proteasome activity and higher levels of oxidized subunits than proteasomes from control cells. Addition of exogenous proteasome to MS treated cells improved cell viability. Both MS and NAP increased ROS production, but the rate of ROS production was greater in MS than in NAP treated cells. The ROS production is likely from mitochondria, as MS inhibited mitochondrial Complexes I and III, major sources of ROS, while NAP inhibited Complex I. MS also impaired mitochondrial membrane potential while NAP did not. Antioxidants were able to prevent the reduced cell viability caused by MS treatment. These results suggest that NSAIDs induce cardiotoxicity by a ROS dependent mechanism involving mitochondrial and proteasome dysfunction and may explain why some NSAIDs should not be given to patients for long periods.
Collapse
Affiliation(s)
- Rajeshwary Ghosh
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, United States
| | - Soyun M Hwang
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, United States
| | - Ziyou Cui
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, United States
| | - Jennifer E Gilda
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, United States
| | - Aldrin V Gomes
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, United States; Department of Physiology and Membrane Biology, University of California, Davis, CA 95616, United States.
| |
Collapse
|
114
|
Park J, Park E, Jung CK, Kang SW, Kim BG, Jung Y, Kim TH, Lim JY, Lee SE, Min CK, Won KA. Oral proteasome inhibitor with strong preclinical efficacy in myeloma models. BMC Cancer 2016; 16:247. [PMID: 27012957 PMCID: PMC4806471 DOI: 10.1186/s12885-016-2285-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 03/17/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The proteasome is a validated anti-cancer target and various small-molecule inhibitors are currently in clinical development or on the market. However, adverse events and resistance associated with those proteasome inhibitors indicate the need for a new generation of drugs. Therefore, we focused on developing an oral proteasome inhibitor with improved efficacy and safety profiles. METHOD The in vitro inhibition of the 20S proteasome catalytic activities was determined in human multiple myeloma (MM) cellular lysates with fluorogenic peptide substrates specific for each catalytic subunit. Cell cytotoxicity was assessed with the ATP bioluminescence assay using human cell samples from tumor cell lines, MM patients or normal healthy donors. In mice bearing human MM xenografts, a single dose of LC53-0110 was administered orally, and concentration-time profiles of LC53-0110 and the 20S proteasome catalytic activities in plasma, blood, and tumor were determined. The efficacy of repeat-dose compound with regard to tumor growth inhibition in vivo was also evaluated in the same MM xenograft models. RESULTS LC53-0110 is far more specific for the chymotrypsin-like proteolytic (β5) site of the 20S proteasome as compared to bortezomib, carfilzomib, or ixazomib. LC53-0110 treatment showed accumulation of ubiquitinated proteins, inhibited cell viability with a low nM range potency in various tumor cell lines, and showed potent activity on CD138(+) cells isolated from MM patients who are resistant/refractory to current FDA-approved drug treatment. When a single dose was administered orally to tumor-bearing mice, LC53-0110 showed both greater maximum and sustained tumor proteasome inhibition as compared with ixazomib in MM xenograft models. The robust pharmacodynamic responses in tumor correlated with tumor growth regression. In addition, LC53-0151, an analog of LC53-0110, in combination with pomalidomide, a third-generation immunomodulatory drug, showed synergistic inhibition of tumor growth both in vitro and in the xenograft mouse model. CONCLUSIONS In view of the in vitro, in vivo, and ex vivo profiles, further investigation of additional LC compounds in preclinical studies is warranted for the nomination of a clinical development candidate.
Collapse
Affiliation(s)
- Jonghoon Park
- R&D Center, LG Life Sciences, Ltd, Daejeon, South Korea
| | - Eok Park
- R&D Center, LG Life Sciences, Ltd, Daejeon, South Korea
| | | | | | - Byung Gyu Kim
- R&D Center, LG Life Sciences, Ltd, Daejeon, South Korea
| | - Youngjoo Jung
- R&D Center, LG Life Sciences, Ltd, Daejeon, South Korea
| | - Tae Hun Kim
- R&D Center, LG Life Sciences, Ltd, Daejeon, South Korea
| | - Ji-Young Lim
- Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Sung-Eun Lee
- Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Chang-Ki Min
- Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Kwang-Ai Won
- R&D Center, LG Life Sciences, Ltd, Daejeon, South Korea.
| |
Collapse
|
115
|
A unified mechanism for proteolysis and autocatalytic activation in the 20S proteasome. Nat Commun 2016; 7:10900. [PMID: 26964885 PMCID: PMC4792962 DOI: 10.1038/ncomms10900] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/31/2016] [Indexed: 11/28/2022] Open
Abstract
Biogenesis of the 20S proteasome is tightly regulated. The N-terminal propeptides protecting the active-site threonines are autocatalytically released only on completion of assembly. However, the trigger for the self-activation and the reason for the strict conservation of threonine as the active site nucleophile remain enigmatic. Here we use mutagenesis, X-ray crystallography and biochemical assays to suggest that Lys33 initiates nucleophilic attack of the propeptide by deprotonating the Thr1 hydroxyl group and that both residues together with Asp17 are part of a catalytic triad. Substitution of Thr1 by Cys disrupts the interaction with Lys33 and inactivates the proteasome. Although a Thr1Ser mutant is active, it is less efficient compared with wild type because of the unfavourable orientation of Ser1 towards incoming substrates. This work provides insights into the basic mechanism of proteolysis and propeptide autolysis, as well as the evolutionary pressures that drove the proteasome to become a threonine protease. The proteasome, an essential molecular machine, is a threonine protease, but the evolution and the components of its proteolytic centre are unclear. Here, the authors use structural biology and biochemistry to investigate the role of proteasome active site residues on maturation and activity.
Collapse
|
116
|
Wilson DL, Meininger I, Strater Z, Steiner S, Tomlin F, Wu J, Jamali H, Krappmann D, Götz MG. Synthesis and Evaluation of Macrocyclic Peptide Aldehydes as Potent and Selective Inhibitors of the 20S Proteasome. ACS Med Chem Lett 2016; 7:250-5. [PMID: 26985310 DOI: 10.1021/acsmedchemlett.5b00401] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/13/2016] [Indexed: 12/31/2022] Open
Abstract
This research explores the first design and synthesis of macrocyclic peptide aldehydes as potent inhibitors of the 20S proteasome. Two novel macrocyclic peptide aldehydes based on the ring-size of the macrocyclic natural product TMC-95 were prepared and evaluated as inhibitors of the 20S proteasome. Both compounds inhibited in the low nanomolar range and proved to be selective for the proteasome over other serine and cysteine proteases, particularly when compared to linear analogues with similar amino acid sequences. In HeLa cells, both macrocycles efficiently inhibited activation of nuclear factor-κB (NF-κB) transcription factor by blocking proteasomal degradation of the inhibitor protein IκBα after cytokine stimulation. Due to their covalent mechanism of binding these compounds represent a 1000-fold increase in inhibitory potency over previously reported noncovalently binding TMC-95 analogues. Molecular modeling of the macrocyclic peptides confirms the preference of the large S3 pocket for large, hydrophobic residues and the ability to exploit this to improve selectivity of proteasome inhibitors.
Collapse
Affiliation(s)
- David L. Wilson
- Department
of Chemistry, Whitman College, Walla Walla, Washington 99362, United States
| | - Isabel Meininger
- Research
Unit Cellular Signal Integration, Institute of Molecular Toxicology
and Pharmacology, Helmholtz Zentrum München−German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Zack Strater
- Department
of Chemistry, Whitman College, Walla Walla, Washington 99362, United States
| | - Stephanie Steiner
- Department
of Chemistry, Whitman College, Walla Walla, Washington 99362, United States
| | - Frederick Tomlin
- Department
of Chemistry, Whitman College, Walla Walla, Washington 99362, United States
| | - Julia Wu
- Department
of Chemistry, Whitman College, Walla Walla, Washington 99362, United States
| | - Haya Jamali
- Department
of Chemistry, Whitman College, Walla Walla, Washington 99362, United States
| | - Daniel Krappmann
- Research
Unit Cellular Signal Integration, Institute of Molecular Toxicology
and Pharmacology, Helmholtz Zentrum München−German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Marion G. Götz
- Department
of Chemistry, Whitman College, Walla Walla, Washington 99362, United States
| |
Collapse
|
117
|
Scott MR, Rubio MD, Haroutunian V, Meador-Woodruff JH. Protein Expression of Proteasome Subunits in Elderly Patients with Schizophrenia. Neuropsychopharmacology 2016; 41:896-905. [PMID: 26202105 PMCID: PMC4707836 DOI: 10.1038/npp.2015.219] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/12/2015] [Accepted: 06/22/2015] [Indexed: 12/27/2022]
Abstract
The ubiquitin proteasome system (UPS) is a major regulator of protein processing, trafficking, and degradation. While protein ubiquitination is utilized for many cellular processes, one major function of this system is to target proteins to the proteasome for degradation. In schizophrenia, studies have found UPS transcript abnormalities in both blood and brain, and we have previously reported decreased protein expression of ubiquitin-associated proteins in brain. To test whether the proteasome is similarly dysregulated, we measured the protein expression of proteasome catalytic subunits as well as essential subunits from proteasome regulatory complexes in 14 pair-matched schizophrenia and comparison subjects in superior temporal cortex. We found decreased expression of Rpt1, Rpt3, and Rpt6, subunits of the 19S regulatory particle essential for ubiquitin-dependent degradation by the proteasome. Additionally, the α subunit of the 11S αβ regulatory particle, which enhances proteasomal degradation of small peptides and unfolded proteins, was also decreased. Haloperidol-treated rats did not have altered expression of these subunits, suggesting the changes we observed in schizophrenia are likely not due to chronic antipsychotic treatment. Interestingly, expression of the catalytic subunits of both the standard and immunoproteasome were unchanged, suggesting the abnormalities we observed may be specific to the complexed state of the proteasome. Aging has significant effects on the proteasome, and several subunits (20S β2, Rpn10, Rpn13, 11Sβ, and 11Sγ) were significantly correlated with subject age. These data provide further evidence of dysfunction of the ubiquitin-proteasome system in schizophrenia, and suggest that altered proteasome activity may be associated with the pathophysiology of this illness.
Collapse
Affiliation(s)
- Madeline R Scott
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Maria D Rubio
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vahram Haroutunian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James H Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
118
|
Nagels Durand A, Pauwels L, Goossens A. The Ubiquitin System and Jasmonate Signaling. PLANTS 2016; 5:plants5010006. [PMID: 27135226 PMCID: PMC4844421 DOI: 10.3390/plants5010006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/21/2015] [Accepted: 12/28/2015] [Indexed: 01/04/2023]
Abstract
The ubiquitin (Ub) system is involved in most, if not all, biological processes in eukaryotes. The major specificity determinants of this system are the E3 ligases, which bind and ubiquitinate specific sets of proteins and are thereby responsible for target recruitment to the proteasome or other cellular processing machineries. The Ub system contributes to the regulation of the production, perception and signal transduction of plant hormones. Jasmonic acid (JA) and its derivatives, known as jasmonates (JAs), act as signaling compounds regulating plant development and plant responses to various biotic and abiotic stress conditions. We provide here an overview of the current understanding of the Ub system involved in JA signaling.
Collapse
Affiliation(s)
- Astrid Nagels Durand
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium.
| | - Laurens Pauwels
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium.
| | - Alain Goossens
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium.
| |
Collapse
|
119
|
Feng G, Long Y, Peng J, Li Q, Cui Z. Transcriptomic characterization of the dorsal lobes after hepatectomy of the ventral lobe in zebrafish. BMC Genomics 2015; 16:979. [PMID: 26584608 PMCID: PMC4653908 DOI: 10.1186/s12864-015-2145-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/26/2015] [Indexed: 02/08/2023] Open
Abstract
Background The liver possesses an ability of compensatory growth after removing three of five lobes in mammals or one of three lobes in zebrafish. The reenter of hepatocytes into the cell cycle is one of the hallmarks for the initiation of liver compensatory growth, but cellular and molecular mechanisms underlying the activation of hepatocytes remain largely unknown. Results To better understand the process, transcriptional profiles of the remaining liver dorsal lobes in female zebrafish were generated with RNA-seq. About 44 million raw reads were obtained from three sequencing libraries and 71 % of raw reads were mapped to the reference genome of zebrafish. A total number of 5652 genes were differentially expressed in at least one of two time points during the compensatory growth of liver dorsal lobes and classified into different functional categories. A number of genes encoding angiogenesis-related growth factors/ligands and apoptosis-associated cytokines were strongly expressed at 6-h time point after the removal of the ventral lobe. Gene ontology enrichment analysis of genes up-regulated during early stages of liver compensatory growth revealed that small GTPase-mediated signal transduction, RNA processing and intracellular protein transport were the most highly overrepresented biological processes and SNARE interactions in vesicular transport, proteasome and basal transcription factors were the most highly enriched pathways. Moreover, 477 genes differently expressed during liver compensatory growth of both female zebrafish and mice were involved in the response to stimulus, DNA replication, metabolic processes of fatty acid, lipid and steroid, multicellular organismal homeostasis and extracellular matrix constituent secretion. Conclusions Multiple biological processes and signaling pathways are immediately activated in remaining dorsal lobes of female zebrafish right after removal of the ventral lobe and these findings provide crucial clues for further identification of cis-elements and trans-factors that are extensively involved in the initiation of liver compensatory growth. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2145-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guohui Feng
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yong Long
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China.
| | - Jinrong Peng
- Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Qing Li
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China.
| | - Zongbin Cui
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China.
| |
Collapse
|
120
|
Iron Loading Selectively Increases Hippocampal Levels of Ubiquitinated Proteins and Impairs Hippocampus-Dependent Memory. Mol Neurobiol 2015; 53:6228-6239. [DOI: 10.1007/s12035-015-9514-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/27/2015] [Indexed: 12/30/2022]
|
121
|
Santoro AM, Cunsolo A, D'Urso A, Sbardella D, Tundo GR, Ciaccio C, Coletta M, Diana D, Fattorusso R, Persico M, Di Dato A, Fattorusso C, Milardi D, Purrello R. Cationic porphyrins are tunable gatekeepers of the 20S proteasome. Chem Sci 2015; 7:1286-1297. [PMID: 29910886 PMCID: PMC5975898 DOI: 10.1039/c5sc03312h] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/06/2015] [Indexed: 12/17/2022] Open
Abstract
Three homologous cationic porphyrins differently affect the 20S proteasome gating mechanism.
The 20S proteasome is a barrel-shaped enzymatic assembly playing a critical role in proteome maintenance. Access of proteasome substrates to the catalytic chamber is finely regulated through gating mechanisms which involve aromatic and negatively charged residues located at the N-terminal tails of α subunits. However, despite the importance of gates in regulating proteasome function, up to now very few molecules have been shown to interfere with the equilibrium by which the catalytic channel exchanges between the open and closed states. In this light, and inspired by previous results evidencing the antiproteasome potential of cationic porphyrins, here we combine experimental (enzyme kinetics, UV stopped flow and NMR) and computational (bioinformatic analysis and docking studies) approaches to inspect proteasome inhibition by meso-tetrakis(4-N-methylpyridyl)-porphyrin (H2T4) and its two ortho- and meta-isomers. We show that in a first, fast binding event H2T4 accommodates in a pocket made of negatively charged and aromatic residues present in α1 (Asp10, Phe9), α3 (Tyr5), α5 (Asp9, Tyr8), α6 (Asp7, Tyr6) and α7 (Asp9, Tyr8) subunits thereby stabilizing the closed conformation. A second, slower binding mode involves interaction with the grooves which separate the α- from the β-rings. Of note, the proteasome inhibition by ortho- and meta-H2T4 decreases significantly if compared to the parent compound, thus underscoring the role played by spatial distribution of the four peripheral positive charges in regulating proteasome–ligand interactions. We think that our results may pave the way to further studies aimed at rationalizing the molecular basis of novel, and more sophisticated, proteasome regulatory mechanisms.
Collapse
Affiliation(s)
- Anna M Santoro
- Istituto di Biostrutture e Bioimmagini - CNR UOS di Catania , Via P. Gaifami 18 , 95126 Catania , Italy .
| | - Alessandra Cunsolo
- Dipartimento di Scienze Chimiche , Università di Catania , Viale Andrea Doria 6 , 95125 Catania , Italy .
| | - Alessandro D'Urso
- Dipartimento di Scienze Chimiche , Università di Catania , Viale Andrea Doria 6 , 95125 Catania , Italy .
| | - Diego Sbardella
- Dipartimento di Scienze Cliniche e Medicina Traslazionale , Università di Roma Tor Vergata , Via Montpellier 1 , I-00133 Roma , Italy .
| | - Grazia R Tundo
- Dipartimento di Scienze Cliniche e Medicina Traslazionale , Università di Roma Tor Vergata , Via Montpellier 1 , I-00133 Roma , Italy .
| | - Chiara Ciaccio
- Dipartimento di Scienze Cliniche e Medicina Traslazionale , Università di Roma Tor Vergata , Via Montpellier 1 , I-00133 Roma , Italy .
| | - Massimiliano Coletta
- Dipartimento di Scienze Cliniche e Medicina Traslazionale , Università di Roma Tor Vergata , Via Montpellier 1 , I-00133 Roma , Italy .
| | - Donatella Diana
- Istituto di Biostrutture e Bioimmagini , CNR , Via Mezzocannone 16 , 80134 Napoli , Italy
| | - Roberto Fattorusso
- Dipartimento di Scienze e Tecnologie Ambientali , Biologiche e Farmaceutiche , Seconda Università degli Studi Napoli , Via Vivaldi 43 , 81100 , Caserta , Italy .
| | - Marco Persico
- Dipartimento di Farmacia Università di Napoli "Federico II" , Via D. Montesano , 49 I-80131 Napoli , Italy .
| | - Antonio Di Dato
- Dipartimento di Farmacia Università di Napoli "Federico II" , Via D. Montesano , 49 I-80131 Napoli , Italy .
| | - Caterina Fattorusso
- Dipartimento di Farmacia Università di Napoli "Federico II" , Via D. Montesano , 49 I-80131 Napoli , Italy .
| | - Danilo Milardi
- Istituto di Biostrutture e Bioimmagini - CNR UOS di Catania , Via P. Gaifami 18 , 95126 Catania , Italy .
| | - Roberto Purrello
- Dipartimento di Scienze Chimiche , Università di Catania , Viale Andrea Doria 6 , 95125 Catania , Italy .
| |
Collapse
|
122
|
Mechanism of Action of Bortezomib and the New Proteasome Inhibitors on Myeloma Cells and the Bone Microenvironment: Impact on Myeloma-Induced Alterations of Bone Remodeling. BIOMED RESEARCH INTERNATIONAL 2015; 2015:172458. [PMID: 26579531 PMCID: PMC4633537 DOI: 10.1155/2015/172458] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/22/2015] [Accepted: 09/27/2015] [Indexed: 12/17/2022]
Abstract
Multiple myeloma (MM) is characterized by a high capacity to induce alterations in the bone remodeling process. The increase in osteoclastogenesis and the suppression of osteoblast formation are both involved in the pathophysiology of the bone lesions in MM. The proteasome inhibitor (PI) bortezomib is the first drug designed and approved for the treatment of MM patients by targeting the proteasome. However, recently novel PIs have been developed to overcome bortezomib resistance. Interestingly, several preclinical data indicate that the proteasome complex is involved in both osteoclast and osteoblast formation. It is also evident that bortezomib either inhibits osteoclast differentiation induced by the receptor activator of nuclear factor kappa B (NF-κB) ligand (RANKL) or stimulates the osteoblast differentiation. Similarly, the new PIs including carfilzomib and ixazomib can inhibit bone resorption and stimulate the osteoblast differentiation. In a clinical setting, PIs restore the abnormal bone remodeling by normalizing the levels of bone turnover markers. In addition, a bone anabolic effect was described in responding MM patients treated with PIs, as demonstrated by the increase in the osteoblast number. This review summarizes the preclinical and clinical evidence on the effects of bortezomib and other new PIs on myeloma bone disease.
Collapse
|
123
|
Das DS, Ray A, Song Y, Richardson P, Trikha M, Chauhan D, Anderson KC. Synergistic anti-myeloma activity of the proteasome inhibitor marizomib and the IMiD immunomodulatory drug pomalidomide. Br J Haematol 2015; 171:798-812. [PMID: 26456076 DOI: 10.1111/bjh.13780] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/13/2015] [Indexed: 12/22/2022]
Abstract
The proteasome inhibitor bortezomib is an effective therapy for the treatment of relapsed and refractory multiple myeloma (RRMM); however, prolonged treatment can be associated with toxicity, peripheral neuropathy and drug resistance. Our earlier studies showed that the novel proteasome inhibitor marizomib is distinct from bortezomib in its chemical structure, mechanisms of action and effects on proteasomal activities, and that it can overcome bortezomib resistance. Pomalidomide, like lenalidomide, has potent immunomodulatory activity and has been approved by the US Food and Drug Administration for the treatment of RRMM. Here, we demonstrate that combining low concentrations of marizomib with pomalidomide induces synergistic anti-MM activity. Marizomib plus pomalidomide-induced apoptosis is associated with: (i) activation of caspase-8, caspase-9, caspase-3 and PARP cleavage, (ii) downregulation of cereblon (CRBN), IRF4, MYC and MCL1, and (iii) suppression of chymotrypsin-like, caspase-like, and trypsin-like proteasome activities. CRBN-siRNA attenuates marizomib plus pomalidomide-induced MM cells death. Furthermore, marizomib plus pomalidomide inhibits the migration of MM cells and tumour-associated angiogenesis, as well as overcomes cytoprotective effects of bone marrow microenvironment. In human MM xenograft model studies, the combination of marizomib and pomalidomide is well tolerated, inhibits tumour growth and prolongs survival. These preclinical studies provide the rationale for on-going clinical trials of combined marizomib and pomalidomide to improve outcome in patients with RRMM.
Collapse
Affiliation(s)
- Deepika S Das
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Arghya Ray
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yan Song
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Paul Richardson
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Dharminder Chauhan
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kenneth C Anderson
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
124
|
Nasheri N, Ning Z, Figeys D, Yao S, Goto NK, Pezacki JP. Activity-based profiling of the proteasome pathway during hepatitis C virus infection. Proteomics 2015; 15:3815-25. [PMID: 26314548 DOI: 10.1002/pmic.201500169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/28/2015] [Accepted: 08/24/2015] [Indexed: 12/30/2022]
Abstract
Hepatitis C virus (HCV) infection often leads to chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. The stability of the HCV proteins is controlled by ubiquitin-dependent and ubiquitin-independent proteasome pathways. Many viruses modulate proteasome function for their propagation. To examine the interrelationship between HCV and the proteasome pathways we employed a quantitative activity-based protein profiling method. Using this approach we were able to quantify the changes in the activity of several proteasome subunits and found that proteasome activity is drastically reduced by HCV replication. The results imply a link between the direct downregulation of the activity of this pathway and chronic HCV infection.
Collapse
Affiliation(s)
- Neda Nasheri
- Life Sciences Division, National Research Council of Canada, Ottawa, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Zhibin Ning
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Daniel Figeys
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada.,Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| | - Shao Yao
- Department of Chemistry, National University of Singapore, Singapore
| | - Natalie K Goto
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada.,Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| | - John Paul Pezacki
- Life Sciences Division, National Research Council of Canada, Ottawa, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada.,Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| |
Collapse
|
125
|
Grigoreva TA, Tribulovich VG, Garabadzhiu AV, Melino G, Barlev NA. The 26S proteasome is a multifaceted target for anti-cancer therapies. Oncotarget 2015; 6:24733-49. [PMID: 26295307 PMCID: PMC4694792 DOI: 10.18632/oncotarget.4619] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 07/10/2015] [Indexed: 12/30/2022] Open
Abstract
Proteasomes play a critical role in the fate of proteins that are involved in major cellular processes, including signal transduction, gene expression, cell cycle, replication, differentiation, immune response, cellular response to stress, etc. In contrast to non-specific degradation by lysosomes, proteasomes are highly selective and destroy only the proteins that are covalently labelled with small proteins, called ubiquitins. Importantly, many diseases, including neurodegenerative diseases and cancers, are intimately connected to the activity of proteasomes making them an important pharmacological target. Currently, the vast majority of inhibitors are aimed at blunting the proteolytic activities of proteasomes. However, recent achievements in solving structures of proteasomes at very high resolution provided opportunities to design new classes of small molecules that target other physiologically-important enzymatic activities of proteasomes, including the de-ubiquitinating one. This review attempts to catalog the information available to date about novel classes of proteasome inhibitors that may have important pharmacological ramifications.
Collapse
Affiliation(s)
- Tatyana A Grigoreva
- St. Petersburg State Technological Institute (Technical University), St. Petersburng, Russia
| | | | | | - Gerry Melino
- St. Petersburg State Technological Institute (Technical University), St. Petersburng, Russia
- University of Rome Tor Vergata, Roma, Italy
| | | |
Collapse
|
126
|
Ayabe T, Mizushige T, Ota W, Kawabata F, Hayamizu K, Han L, Tsuji T, Kanamoto R, Ohinata K. A novel Alaska pollack-derived peptide, which increases glucose uptake in skeletal muscle cells, lowers the blood glucose level in diabetic mice. Food Funct 2015; 6:2749-2757. [PMID: 26152190 DOI: 10.1039/c5fo00401b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
We found that the tryptic digest of Alaska pollack protein exhibits a glucose-lowering effect in KK-Ay mice, a type II diabetic model. We then searched for glucose-lowering peptides in the digest. Ala-Asn-Gly-Glu-Val-Ala-Gln-Trp-Arg (ANGEVAQWR) was identified from a peak of the HPLC fraction selected based on the glucose-lowering activity in an insulin resistance test using ddY mice. ANGEVAQWR (3 mg kg(-1)) decreased the blood glucose level after intraperitoneal administration. Among its fragment peptides, the C-terminal tripeptide, Gln-Trp-Arg (QWR, 1 mg kg(-1)), lowered the blood glucose level, suggesting that the C-terminal is critical for glucose-lowering activity. QWR also enhanced glucose uptake into C2C12, a mouse skeletal muscle cell line. QWR did not induce the phosphorylation of serine/threonine protein kinase B (Akt) and adenosine monophosphate-activated protein kinase (AMPK). We also demonstrated that QWR lowered the blood glucose level in NSY and KK-Ay, type II diabetic models.
Collapse
Affiliation(s)
- Tatsuhiro Ayabe
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Wang Z, Dove P, Wang X, Shamas-Din A, Li Z, Nachman A, Oh YJ, Hurren R, Ruschak A, Climie S, Press B, Griffin C, Undzys E, Aman A, Al-awar R, Kay LE, O'Neill D, Trudel S, Slassi M, Schimmer AD. FV-162 is a novel, orally bioavailable, irreversible proteasome inhibitor with improved pharmacokinetics displaying preclinical efficacy with continuous daily dosing. Cell Death Dis 2015; 6:e1815. [PMID: 26158521 PMCID: PMC4650734 DOI: 10.1038/cddis.2015.187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/24/2015] [Accepted: 06/03/2015] [Indexed: 01/15/2023]
Abstract
Approved proteasome inhibitors have advanced the treatment of multiple myeloma but are associated with serious toxicities, poor pharmacokinetics, and most with the inconvenience of intravenous administration. We therefore sought to identify novel orally bioavailable proteasome inhibitors with a continuous daily dosing schedule and improved therapeutic window using a unique drug discovery platform. We employed a fluorine-based medicinal chemistry technology to synthesize 14 novel analogs of epoxyketone-based proteasome inhibitors and screened them for their stability, ability to inhibit the chymotrypsin-like proteasome, and antimyeloma activity in vitro. The tolerability, pharmacokinetics, pharmacodynamic activity, and antimyeloma efficacy of our lead candidate were examined in NOD/SCID mice. We identified a tripeptide epoxyketone, FV-162, as a metabolically stable, potent proteasome inhibitor cytotoxic to human myeloma cell lines and primary myeloma cells. FV-162 had limited toxicity and was well tolerated on a continuous daily dosing schedule. Compared with the benchmark oral irreversible proteasome inhibitor, ONX-0192, FV-162 had a lower peak plasma concentration and longer half-life, resulting in a larger area under the curve (AUC). Oral FV-162 treatment induced rapid, irreversible inhibition of chymotrypsin-like proteasome activity in murine red blood cells and inhibited tumor growth in a myeloma xenograft model. Our data suggest that oral FV-162 with continuous daily dosing schedule displays a favorable safety, efficacy, and pharmacokinetic profile in vivo, identifying it as a promising lead for clinical evaluation in myeloma therapy.
Collapse
Affiliation(s)
- Z Wang
- 1] Princess Margaret Cancer Centre, Toronto, ON, Canada [2] Fluorinov Pharma Inc., Toronto, ON, Canada
| | - P Dove
- Fluorinov Pharma Inc., Toronto, ON, Canada
| | - X Wang
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - A Shamas-Din
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Z Li
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - A Nachman
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Y J Oh
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - R Hurren
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - A Ruschak
- Department of Molecular Genetics, Biochemistry and Chemistry, University of Toronto, Toronto, ON, Canada
| | - S Climie
- Fluorinov Pharma Inc., Toronto, ON, Canada
| | - B Press
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - C Griffin
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - E Undzys
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - A Aman
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - R Al-awar
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - L E Kay
- Department of Molecular Genetics, Biochemistry and Chemistry, University of Toronto, Toronto, ON, Canada
| | - D O'Neill
- 1] Fluorinov Pharma Inc., Toronto, ON, Canada [2] Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - S Trudel
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - M Slassi
- Fluorinov Pharma Inc., Toronto, ON, Canada
| | - A D Schimmer
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| |
Collapse
|
128
|
Pitcher DS, de Mattos-Shipley K, Tzortzis K, Auner HW, Karadimitris A, Kleijnen MF. Bortezomib Amplifies Effect on Intracellular Proteasomes by Changing Proteasome Structure. EBioMedicine 2015; 2:642-8. [PMID: 26288836 PMCID: PMC4534688 DOI: 10.1016/j.ebiom.2015.05.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 05/07/2015] [Indexed: 12/26/2022] Open
Abstract
The proteasome inhibitor Bortezomib is used to treat multiple myeloma (MM). Bortezomib inhibits protein degradation by inactivating proteasomes' active-sites. MM cells are exquisitely sensitive to Bortezomib - exhibiting a low-nanomolar IC(50) - suggesting that minimal inhibition of degradation suffices to kill MM cells. Instead, we report, a low Bortezomib concentration, contrary to expectation, achieves severe inhibition of proteasome activity in MM cells: the degree of inhibition exceeds what one would expect from the small proportion of active-sites that Bortezomib inhibits. Our data indicate that Bortezomib achieves this severe inhibition by triggering secondary changes in proteasome structure that further inhibit proteasome activity. Comparing MM cells to other, Bortezomib-resistant, cancer cells shows that the degree of proteasome inhibition is the greatest in MM cells and only there leads to proteasome stress, providing an explanation for why Bortezomib is effective against MM but not other cancers.
Collapse
Affiliation(s)
| | | | | | | | | | - Maurits F. Kleijnen
- Centre for Haematology, Division of Experimental Medicine, Faculty of Medicine, Imperial College London, Hammersmith Campus, Commonwealth Building 4th Floor, Du Cane Road, London W12 0NN, United Kingdom
| |
Collapse
|
129
|
Proteasome as a Molecular Target of Microcystin-LR. Toxins (Basel) 2015; 7:2221-31. [PMID: 26090622 PMCID: PMC4488699 DOI: 10.3390/toxins7062221] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 05/27/2015] [Accepted: 06/12/2015] [Indexed: 11/17/2022] Open
Abstract
Proteasome degrades proteins in eukaryotic cells. As such, the proteasome is crucial in cell cycle and function. This study proved that microcystin-LR (MC-LR), which is a toxic by-product of algal bloom, can target cellular proteasome and selectively inhibit proteasome trypsin-like (TL) activity. MC-LR at 1 nM can inhibit up to 54% of the purified 20S proteasome TL activity and 43% of the proteasome TL activity in the liver of the cyprinid rare minnow (Gobiocypris rarus). Protein degradation was retarded in GFP-CL1-transfected PC-3 cells because MC-LR inhibited the proteasome TL activity. Docking studies indicated that MC-LR blocked the active site of the proteasome β2 subunit; thus, the proteasome TL activity was inhibited. In conclusion, MC-LR can target proteasome, selectively inhibit proteasome TL activity, and retard protein degradation. This study may be used as a reference of future research on the toxic mechanism of MC-LR.
Collapse
|
130
|
Human Tumor Antigens and Cancer Immunotherapy. BIOMED RESEARCH INTERNATIONAL 2015; 2015:948501. [PMID: 26161423 PMCID: PMC4487697 DOI: 10.1155/2015/948501] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/03/2015] [Indexed: 01/21/2023]
Abstract
With the recent developments of adoptive T cell therapies and the use of new monoclonal antibodies against the immune checkpoints, immunotherapy is at a turning point. Key players for the success of these therapies are the cytolytic T lymphocytes, which are a subset of T cells able to recognize and kill tumor cells. Here, I review the nature of the antigenic peptides recognized by these T cells and the processes involved in their presentation. I discuss the importance of understanding how each antigenic peptide is processed in the context of immunotherapy and vaccine delivery.
Collapse
|
131
|
Pereira-Neves A, Gonzaga L, Menna-Barreto RFS, Benchimol M. Characterisation of 20S Proteasome in Tritrichomonas foetus and Its Role during the Cell Cycle and Transformation into Endoflagellar Form. PLoS One 2015; 10:e0129165. [PMID: 26047503 PMCID: PMC4457923 DOI: 10.1371/journal.pone.0129165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/05/2015] [Indexed: 11/30/2022] Open
Abstract
Proteasomes are intracellular complexes that control selective protein degradation in organisms ranging from Archaea to higher eukaryotes. These structures have multiple proteolytic activities that are required for cell differentiation, replication and maintaining cellular homeostasis. Here, we document the presence of the 20S proteasome in the protist parasite Tritrichomonas foetus. Complementary techniques, such as a combination of whole genome sequencing technologies, bioinformatics algorithms, cell fractionation and biochemistry and microscopy approaches were used to characterise the 20S proteasome of T. foetus. The 14 homologues of the typical eukaryotic proteasome subunits were identified in the T. foetus genome. Alignment analyses showed that the main regulatory and catalytic domains of the proteasome were conserved in the predicted amino acid sequences from T. foetus-proteasome subunits. Immunofluorescence assays using an anti-proteasome antibody revealed a labelling distributed throughout the cytosol as punctate cytoplasmic structures and in the perinuclear region. Electron microscopy of a T. foetus-proteasome-enriched fraction confirmed the presence of particles that resembled the typical eukaryotic 20S proteasome. Fluorogenic assays using specific peptidyl substrates detected presence of the three typical peptidase activities of eukaryotic proteasomes in T. foetus. As expected, these peptidase activities were inhibited by lactacystin, a well-known specific proteasome inhibitor, and were not affected by inhibitors of serine or cysteine proteases. During the transformation of T. foetus to endoflagellar form (EFF), also known as pseudocyst, we observed correlations between the EFF formation rates, increases in the proteasome activities and reduced levels of ubiquitin-protein conjugates. The growth, cell cycle and EFF transformation of T. foetus were inhibited after treatment with lactacystin in a dose-dependent manner. Lactacystin treatment also resulted in an accumulation of ubiquitinated proteins and caused increase in the amount of endoplasmic reticulum membranes in the parasite. Taken together, our results suggest that the ubiquitin-proteasome pathway is required for cell cycle and EFF transformation in T. foetus.
Collapse
MESH Headings
- Acetylcysteine/analogs & derivatives
- Acetylcysteine/pharmacology
- Amino Acid Sequence
- Blotting, Western
- Cell Cycle
- Cysteine Proteinase Inhibitors/pharmacology
- Endoplasmic Reticulum/drug effects
- Endoplasmic Reticulum/metabolism
- Endoplasmic Reticulum/ultrastructure
- Flagella/metabolism
- Flagella/ultrastructure
- Life Cycle Stages/drug effects
- Microscopy, Electron, Scanning
- Microscopy, Electron, Transmission
- Microscopy, Fluorescence
- Molecular Sequence Data
- Phylogeny
- Proteasome Endopeptidase Complex/classification
- Proteasome Endopeptidase Complex/genetics
- Proteasome Endopeptidase Complex/metabolism
- Protein Subunits/antagonists & inhibitors
- Protein Subunits/genetics
- Protein Subunits/metabolism
- Protozoan Proteins/genetics
- Protozoan Proteins/metabolism
- Protozoan Proteins/ultrastructure
- Sequence Homology, Amino Acid
- Spores, Protozoan/drug effects
- Spores, Protozoan/metabolism
- Spores, Protozoan/ultrastructure
- Tritrichomonas foetus/genetics
- Tritrichomonas foetus/growth & development
- Tritrichomonas foetus/metabolism
Collapse
Affiliation(s)
- Antonio Pereira-Neves
- Programa de Pós-graduação em Ciências Morfológicas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Fiocruz, Centro de Pesquisa Aggeu Magalhães, Departamento de Microbiologia, Laboratório de Microbiologia e Biologia Celular, Recife, PE, Brazil
| | - Luiz Gonzaga
- Laboratório Nacional de Computação Cientifica (LNCC/MCT), Petrópolis, RJ, Brazil
| | | | - Marlene Benchimol
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- UNIGRANRIO- Universidade do Grande Rio, Duque de Caxias, RJ, Brazil
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- * E-mail:
| |
Collapse
|
132
|
Voigt J, Woestemeyer J. Protease Inhibitors Cause Necrotic Cell Death in Chlamydomonas reinhardtii
by Inducing the Generation of Reactive Oxygen Species. J Eukaryot Microbiol 2015; 62:711-21. [DOI: 10.1111/jeu.12224] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/02/2015] [Accepted: 02/13/2015] [Indexed: 01/19/2023]
Affiliation(s)
- Juergen Voigt
- Institute for Biochemistry; Charité, Charité-Platz 1/Virchowweg 6; D-10117 Berlin Germany
- Institute of Microbiology; Friedrich-Schiller-University; Neugasse 24; D-07743 Jena Germany
| | - Johannes Woestemeyer
- Institute of Microbiology; Friedrich-Schiller-University; Neugasse 24; D-07743 Jena Germany
| |
Collapse
|
133
|
Scotti A, Trapella C, Ferretti V, Gallerani E, Gavioli R, Marastoni M. Studies of C-terminal naphthoquinone dipeptides as 20S proteasome inhibitors. J Enzyme Inhib Med Chem 2015; 31:456-63. [PMID: 25942361 DOI: 10.3109/14756366.2015.1037749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The ubiquitin proteasome pathway is crucial in regulating many processes in the cell. Modulation of proteasome activities has emerged as a powerful strategy for potential therapies against much important pathologies. In particular, specific inhibitors may represent a useful tool for the treatment of tumors. Here, we report studies of a new series of peptide-based analogues bearing a naphthoquinone pharmacophoric unit at the C-terminal position. Some derivatives showed inhibition in the µM range of the post-acidic-like and chymotrypsin-like active sites of the proteasome.
Collapse
Affiliation(s)
| | | | | | - Eleonora Gallerani
- b Department of Life Sciences and Biotechnology , University of Ferrara , Ferrara , Italy
| | - Riccardo Gavioli
- b Department of Life Sciences and Biotechnology , University of Ferrara , Ferrara , Italy
| | | |
Collapse
|
134
|
Comparative study of the biochemical properties of proteasomes in domestic animals. Vet Immunol Immunopathol 2015; 166:43-9. [PMID: 25998106 DOI: 10.1016/j.vetimm.2015.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 03/18/2015] [Accepted: 04/23/2015] [Indexed: 11/30/2022]
Abstract
Information on the biochemical properties of proteasomes is lacking or, at best, only fragmentary for most species of veterinary interest. Moreover, direct comparison of the limited data available on the enzymatic features of proteasomes in domestic animals is rendered difficult due to the heterogeneity of the experimental settings used. This represents a clear drawback in veterinary research, given the crucial involvement of proteasomes in control of several physiological and pathological processes. We performed the first comparative analysis of key biochemical properties of proteasomes obtained from 8 different domestic mammals. Specifically, we investigated the three main peptidase activities of constitutive and immunoproteasomes in parallel and systematically checked the sensitivity of the chymotryptic site to three of the most potent and selective inhibitors available. Overall, there was substantial similarity in the enzymatic features of proteasomes among the species examined, although some interesting species-specific features were observed.
Collapse
|
135
|
The capture proteasome assay: A method to measure proteasome activity in vitro. Anal Biochem 2015; 482:7-15. [PMID: 25912419 DOI: 10.1016/j.ab.2015.04.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/04/2015] [Accepted: 04/08/2015] [Indexed: 11/21/2022]
Abstract
Because of its crucial role in various cellular processes, the proteasome is the focus of intensive research for the development of proteasome inhibitors to treat cancer and autoimmune diseases. Here, we describe a new and easy assay to measure the different proteasome activities in vitro (chymotrypsin-like, caspase-like, and trypsin-like) based on proteasome capture on antibody-coated plates, namely the capture proteasome assay (CAPA). Applying the CAPA to lysates from cells expressing standard proteasome, immunoproteasome, or intermediate proteasomes β5i or β1i-β5i, we can monitor the activity of the four proteasome subtypes. The CAPA provided similar results as the standard whole-cell proteasome-Glo assay without the problem of contaminating proteases requiring inhibitors. However, the profile of trypsin-like activity differed between the two assays. This could be partly explained by the presence of MgSO4 in the proteasome-Glo buffer, which inhibits the trypsin-like activity of the proteasome. The CAPA does not need MgSO4 and, therefore, provides a more precise measurement of the trypsin-like activity. The CAPA provides a quick and accurate method to measure proteasome activity in vitro in a very specific manner and should be useful for the development of proteasome inhibitors.
Collapse
|
136
|
Athané A, Buisson A, Challier M, Beaumatin F, Manon S, Bhatia-Kiššová I, Camougrand N. Insights into the relationship between the proteasome and autophagy in human and yeast cells. Int J Biochem Cell Biol 2015; 64:167-73. [PMID: 25882491 DOI: 10.1016/j.biocel.2015.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/13/2015] [Accepted: 04/03/2015] [Indexed: 11/16/2022]
Abstract
In eukaryotes, the ubiquitin-proteasome system (UPS) and autophagy are two major intracellular protein degradation pathways. Several lines of evidence support the emerging concept of a coordinated and complementary relationship between these two processes, and a particularly interesting finding is that the inhibition of the proteasome induces autophagy. Yet, there is limited knowledge of the regulation of the UPS by autophagy. In this study, we show that the disruption of ATG5 and ATG32 genes in yeast cells under both nutrient-deficient conditions as well as stress that causes mitochondrial dysfunction leads to an activation of proteasome. The same scenario occurs after pharmacological inhibition of basal autophagy in cultured human cells. Our findings underline the view that the two processes are interconnected and tend to compensate, to some extent, for each other's functions.
Collapse
Affiliation(s)
- Axel Athané
- CNRS, IBGC, UMR5095, 1 rue Camille Saint-Saëns, F-33000 Bordeaux, France; Université de Bordeaux, IBGC, UMR5095, 1 rue Camille Saint-Saëns, F-33000 Bordeaux, France
| | - Anthony Buisson
- CNRS, IBGC, UMR5095, 1 rue Camille Saint-Saëns, F-33000 Bordeaux, France; Université de Bordeaux, IBGC, UMR5095, 1 rue Camille Saint-Saëns, F-33000 Bordeaux, France
| | - Marion Challier
- CNRS, IBGC, UMR5095, 1 rue Camille Saint-Saëns, F-33000 Bordeaux, France; Université de Bordeaux, IBGC, UMR5095, 1 rue Camille Saint-Saëns, F-33000 Bordeaux, France
| | - Florian Beaumatin
- CNRS, IBGC, UMR5095, 1 rue Camille Saint-Saëns, F-33000 Bordeaux, France; Université de Bordeaux, IBGC, UMR5095, 1 rue Camille Saint-Saëns, F-33000 Bordeaux, France
| | - Stéphen Manon
- CNRS, IBGC, UMR5095, 1 rue Camille Saint-Saëns, F-33000 Bordeaux, France; Université de Bordeaux, IBGC, UMR5095, 1 rue Camille Saint-Saëns, F-33000 Bordeaux, France
| | - Ingrid Bhatia-Kiššová
- Comenius University, Faculty of Natural Sciences, Department of Biochemistry, Mlynská dolina CH1 84215, Bratislava, Slovak Republic
| | - Nadine Camougrand
- CNRS, IBGC, UMR5095, 1 rue Camille Saint-Saëns, F-33000 Bordeaux, France; Université de Bordeaux, IBGC, UMR5095, 1 rue Camille Saint-Saëns, F-33000 Bordeaux, France.
| |
Collapse
|
137
|
Downey SL, Florea BI, Overkleeft HS, Kisselev AF. Use of Proteasome Inhibitors. ACTA ACUST UNITED AC 2015; 109:9.10.1-9.10.8. [DOI: 10.1002/0471142735.im0910s109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sondra L. Downey
- Norris Cotton Cancer Center and Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth Lebanon New Hampshire
| | - Bogdan I. Florea
- Gorlaeus Laboratories, Leiden Institute of Chemistry and Netherlands Proteomics Centre Leiden The Netherlands
| | - Herman S. Overkleeft
- Gorlaeus Laboratories, Leiden Institute of Chemistry and Netherlands Proteomics Centre Leiden The Netherlands
| | - Alexei F. Kisselev
- Norris Cotton Cancer Center and Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth Lebanon New Hampshire
| |
Collapse
|
138
|
Sagawa M, Tabayashi T, Kimura Y, Tomikawa T, Nemoto-Anan T, Watanabe R, Tokuhira M, Ri M, Hashimoto Y, Iida S, Kizaki M. TM-233, a novel analog of 1'-acetoxychavicol acetate, induces cell death in myeloma cells by inhibiting both JAK/STAT and proteasome activities. Cancer Sci 2015; 106:438-46. [PMID: 25613668 PMCID: PMC4409888 DOI: 10.1111/cas.12616] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 01/13/2015] [Accepted: 01/15/2015] [Indexed: 11/28/2022] Open
Abstract
Although the introduction of bortezomib and immunomodulatory drugs has led to improved outcomes in patients with multiple myeloma, the disease remains incurable. In an effort to identify more potent and well-tolerated agents for myeloma, we have previously reported that 1'-acetoxychavicol acetate (ACA), a natural condiment from South-East Asia, induces apoptotic cell death of myeloma cells in vitro and in vivo through inhibition of NF-κB-related functions. Searching for more potent NF-κB inhibitors, we developed several ACA analogs based on quantitative structure-activity relationship analysis. TM-233, one of these ACA analogs, inhibited cellular proliferation and induced cell death in various myeloma cell lines with a lower IC50 than ACA. Treatment with TM-233 inhibited constitutive activation of JAK2 and STAT3, and then downregulated the expression of anti-apoptotic Mcl-1 protein, but not Bcl-2 and Bcl-xL proteins. In addition, TM-233 rapidly decreased the nuclear expression of NF-κB and also decreased the accumulation of cytosolic NF-κB. We also examined the effects of TM-233 on bortezomib-resistant myeloma cells that we recently established, KMS-11/BTZ and OPM-2/BTZ. TM-233, but not bortezomib, inhibited cellular proliferation and induced cell death in KMS-11/BTZ and OPM-2/BTZ cells. Interestingly, the combination of TM-233 and bortezomib significantly induced cell death in these bortezomib-resistant myeloma cells through inhibition of NF-κB activity. These results indicate that TM-233 could overcome bortezomib resistance in myeloma cells mediated through different mechanisms, possibly inhibiting the JAK/STAT pathway. In conclusion, TM-233 might be a more potent NF-κB inhibitor than ACA, and could overcome bortezomib resistance in myeloma cells.
Collapse
Affiliation(s)
- Morihiko Sagawa
- Department of Hematology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Huber E, Heinemeyer W, Groll M. Bortezomib-Resistant Mutant Proteasomes: Structural and Biochemical Evaluation with Carfilzomib and ONX 0914. Structure 2015; 23:407-17. [DOI: 10.1016/j.str.2014.11.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/13/2014] [Accepted: 11/25/2014] [Indexed: 11/15/2022]
|
140
|
Baranello RJ, Bharani KL, Padmaraju V, Chopra N, Lahiri DK, Greig NH, Pappolla MA, Sambamurti K. Amyloid-beta protein clearance and degradation (ABCD) pathways and their role in Alzheimer's disease. Curr Alzheimer Res 2015; 12:32-46. [PMID: 25523424 PMCID: PMC4820400 DOI: 10.2174/1567205012666141218140953] [Citation(s) in RCA: 233] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 11/16/2014] [Accepted: 12/05/2014] [Indexed: 11/22/2022]
Abstract
Amyloid-β proteins (Aβ) of 42 (Aβ42) and 40 aa (Aβ40) accumulate as senile plaques (SP) and cerebrovascular amyloid protein deposits that are defining diagnostic features of Alzheimer's disease (AD). A number of rare mutations linked to familial AD (FAD) on the Aβ precursor protein (APP), Presenilin-1 (PS1), Presenilin- 2 (PS2), Adamalysin10, and other genetic risk factors for sporadic AD such as the ε4 allele of Apolipoprotein E (ApoE-ε4) foster the accumulation of Aβ and also induce the entire spectrum of pathology associated with the disease. Aβ accumulation is therefore a key pathological event and a prime target for the prevention and treatment of AD. APP is sequentially processed by β-site APP cleaving enzyme (BACE1) and γ-secretase, a multisubunit PS1/PS2-containing integral membrane protease, to generate Aβ. Although Aβ accumulates in all forms of AD, the only pathways known to be affected in FAD increase Aβ production by APP gene duplication or via base substitutions on APP and γ-secretase subunits PS1 and PS2 that either specifically increase the yield of the longer Aβ42 or both Aβ40 and Aβ42. However, the vast majority of AD patients accumulate Aβ without these known mutations. This led to proposals that impairment of Aβ degradation or clearance may play a key role in AD pathogenesis. Several candidate enzymes, including Insulin-degrading enzyme (IDE), Neprilysin (NEP), Endothelin-converting enzyme (ECE), Angiotensin converting enzyme (ACE), Plasmin, and Matrix metalloproteinases (MMPs) have been identified and some have even been successfully evaluated in animal models. Several studies also have demonstrated the capacity of γ-secretase inhibitors to paradoxically increase the yield of Aβ and we have recently established that the mechanism is by skirting Aβ degradation. This review outlines major cellular pathways of Aβ degradation to provide a basis for future efforts to fully characterize the panel of pathways responsible for Aβ turnover.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kumar Sambamurti
- Department of Neurosciences, Medical University of South Carolina, 173 Ashley Avenue, BSB 403, Charleston, SC 29425, USA.
| |
Collapse
|
141
|
Paniagua Soriano G, De Bruin G, Overkleeft HS, Florea BI. Toward understanding induction of oxidative stress and apoptosis by proteasome inhibitors. Antioxid Redox Signal 2014; 21:2419-43. [PMID: 24437477 DOI: 10.1089/ars.2013.5794] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Proteasome inhibitors (PIs) are used in the clinic for the treatment of hematopoietic malignancies. PI inhibitors induce endoplasmatic reticulum (ER) stress and oxidative stress, disruption of signaling pathways, mitochondrial dysfunction, and, eventually, cell death by apoptosis. PIs designated as clinical candidates include natural product derivatives and compounds developed by rational design and feature a wide diversity of structural elements. The vast amount of literature on this topic underscores PIs significance in driving basic research alongside therapeutic benefit. RECENT ADVANCES Research in recent years has brought an in-depth insight into the molecular mechanisms of PI-induced apoptosis. However, there are some paradoxes and controversies in the literature. In this review, the advances and uncertainties, in particular on the time course events that make cells commit to apoptosis, are discussed. In addition, some mechanisms of evolved PI resistance are presented, and speculations on the difference in sensitivity between cell or tumor types are brought forward. The review concludes by giving an outlook of recent methods that may be employed to describe the system biology of how PIs impact cell survival decisions. CRITICAL ISSUES The biology of ER stress, reactive oxygen species (ROS) production, and apoptosis as induced by PIs is not well understood. Absorbed by the strong focus on PIs, one might overlook the importance of proteasome activity activators or modulators and the study of enzymatic pathways that lie up- or downstream from the proteasome function. FUTURE DIRECTIONS An increased understanding of the systems biology at mRNA and protein levels and the kinetics behind the interaction between PIs and cells is imperative. The design and synthesis of subunit specific inhibitors for each of the seven known proteasome activities and for the enzymes associated to proteasomes will aid in unraveling biology of the ubiquitin-proteasome system in relation to ER stress, ROS production, and apoptosis and will generate leads for therapeutic intervention.
Collapse
Affiliation(s)
- Guillem Paniagua Soriano
- Gorlaeus Laboratories, Leiden Institute of Chemistry and Netherlands Proteomics Centre , Leiden, The Netherlands
| | | | | | | |
Collapse
|
142
|
Osellame LD, Duchen MR. Quality control gone wrong: mitochondria, lysosomal storage disorders and neurodegeneration. Br J Pharmacol 2014; 171:1958-72. [PMID: 24116849 PMCID: PMC3976615 DOI: 10.1111/bph.12453] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/04/2013] [Accepted: 09/23/2013] [Indexed: 12/18/2022] Open
Abstract
The eukaryotic cell possesses specialized pathways to turn over and degrade redundant proteins and organelles. Each pathway is unique and responsible for degradation of distinctive cytosolic material. The ubiquitin-proteasome system and autophagy (chaperone-mediated, macro, micro and organelle specific) act synergistically to maintain proteostasis. Defects in this equilibrium can be deleterious at cellular and organism level, giving rise to various disease states. Dysfunction of quality control pathways are implicated in neurodegenerative diseases and appear particularly important in Parkinson's disease and the lysosomal storage disorders. Neurodegeneration resulting from impaired degradation of ubiquitinated proteins and α-synuclein is often accompanied by mitochondrial dysfunction. Mitochondria have evolved to control a diverse number of processes, including cellular energy production, calcium signalling and apoptosis, and like every other organelle within the cell, they must be ‘recycled.’ Failure to do so is potentially lethal as these once indispensible organelles become destructive, leaking reactive oxygen species and activating the intrinsic cell death pathway. This process is paramount in neurons which have an absolute dependence on mitochondrial oxidative phosphorylation as they cannot up-regulate glycolysis. As such, mitochondrial bioenergetic failure can underpin neural death and neurodegenerative disease. In this review, we discuss the links between cellular quality control and neurodegenerative diseases associated with mitochondrial dysfunction, with particular attention to the emerging links between Parkinson's and Gaucher diseases in which defective quality control is a defining factor. LINKED ARTICLES This article is part of a themed issue on Mitochondrial Pharmacology: Energy, Injury & Beyond. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2014.171.issue-8
Collapse
Affiliation(s)
- L D Osellame
- Department of Cell and Developmental Biology and UCL Consortium for Mitochondrial Research, University College London, London, UK
| | | |
Collapse
|
143
|
TNFR1-activated NF-κB signal transduction: regulation by the ubiquitin/proteasome system. Curr Opin Chem Biol 2014; 23:71-7. [DOI: 10.1016/j.cbpa.2014.10.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/20/2014] [Accepted: 10/20/2014] [Indexed: 12/14/2022]
|
144
|
Gu ZC, Enenkel C. Proteasome assembly. Cell Mol Life Sci 2014; 71:4729-45. [PMID: 25107634 PMCID: PMC11113775 DOI: 10.1007/s00018-014-1699-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/30/2014] [Accepted: 07/31/2014] [Indexed: 10/24/2022]
Abstract
In eukaryotic cells, proteasomes are highly conserved protease complexes and eliminate unwanted proteins which are marked by poly-ubiquitin chains for degradation. The 26S proteasome consists of the proteolytic core particle, the 20S proteasome, and the 19S regulatory particle, which are composed of 14 and 19 different subunits, respectively. Proteasomes are the second-most abundant protein complexes and are continuously assembled from inactive precursor complexes in proliferating cells. The modular concept of proteasome assembly was recognized in prokaryotic ancestors and applies to eukaryotic successors. The efficiency and fidelity of eukaryotic proteasome assembly is achieved by several proteasome-dedicated chaperones that initiate subunit incorporation and control the quality of proteasome assemblies by transiently interacting with proteasome precursors. It is important to understand the mechanism of proteasome assembly as the proteasome has key functions in the turnover of short-lived proteins regulating diverse biological processes.
Collapse
Affiliation(s)
- Zhu Chao Gu
- Department of Biochemistry, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Toronto, ON M5S 1A8 Canada
| | - Cordula Enenkel
- Department of Biochemistry, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Toronto, ON M5S 1A8 Canada
| |
Collapse
|
145
|
Proteasome subtypes and regulators in the processing of antigenic peptides presented by class I molecules of the major histocompatibility complex. Biomolecules 2014; 4:994-1025. [PMID: 25412285 PMCID: PMC4279167 DOI: 10.3390/biom4040994] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/02/2014] [Accepted: 10/29/2014] [Indexed: 02/07/2023] Open
Abstract
The proteasome is responsible for the breakdown of cellular proteins. Proteins targeted for degradation are allowed inside the proteasome particle, where they are cleaved into small peptides and released in the cytosol to be degraded into amino acids. In vertebrates, some of these peptides escape degradation in the cytosol, are loaded onto class I molecules of the major histocompatibility complex (MHC) and displayed at the cell surface for scrutiny by the immune system. The proteasome therefore plays a key role for the immune system: it provides a continued sampling of intracellular proteins, so that CD8-positive T-lymphocytes can kill cells expressing viral or tumoral proteins. Consequently, the repertoire of peptides displayed by MHC class I molecules at the cell surface depends on proteasome activity, which may vary according to the presence of proteasome subtypes and regulators. Besides standard proteasomes, cells may contain immunoproteasomes, intermediate proteasomes and thymoproteasomes. Cells may also contain regulators of proteasome activity, such as the 19S, PA28 and PA200 regulators. Here, we review the effects of these proteasome subtypes and regulators on the production of antigenic peptides. We also discuss an unexpected function of the proteasome discovered through the study of antigenic peptides: its ability to splice peptides.
Collapse
|
146
|
Wondrak GT, Lobato-Gil S, Aillet F, Lang V, Rodriguez MS. The Ubiquitin-Proteasome System (UPS) as a Cancer Drug Target: Emerging Mechanisms and Therapeutics. STRESS RESPONSE PATHWAYS IN CANCER 2014. [PMCID: PMC7121086 DOI: 10.1007/978-94-017-9421-3_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Ubiquitin-Proteasome System (UPS) plays an important role in the setting of the cellular response to multiple stress signals. Although the primary function of ubiquitin was initially associated with proteolysis, it is now considered as a key regulator of protein function controlling, among other functions, signalling cascades, transcription, apoptosis or oncogenesis. Failure at any level of the UPS is associated with the development of multiple pathologies including metabolic problems, immune diseases, inflammation and cancer. The successful use of the proteasome inhibitor Bortezomib (Velcade) in the treatment of multiple myeloma (MM) and mantle cell lymphoma (MCL) revealed the potential of the UPS as pharmacological target. Ten years later, new inhibitors tackling not only the proteasome but also different subsets of enzymes which conjugate or de-conjugate ubiquitin or ubiquitin-like molecules, have been developed. Most of them are excellent tools to characterize better the emerging molecular mechanisms regulating distinct critical cellular processes. Some of them have been launched already while many others are still in pre-clinical development. This chapter updates some of the most successful efforts to develop and characterize inhibitors of the UPS which tackle mechanisms involved in cancer. Particular attention has been dedicated to updating the status of the clinical trials of these inhibitors.
Collapse
Affiliation(s)
- Georg T. Wondrak
- Dept. of Pharmacology and Toxicology, Univ. of Arizona, College of Pharm. & The Univ. of Arizona Cancer Ctr., Tucson, Arizona USA
| | | | | | | | | |
Collapse
|
147
|
Efficient apoptosis and necrosis induction by proteasome inhibitor: bortezomib in the DLD-1 human colon cancer cell line. Mol Cell Biochem 2014; 398:165-73. [PMID: 25292312 PMCID: PMC4229651 DOI: 10.1007/s11010-014-2216-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/12/2014] [Indexed: 01/06/2023]
Abstract
The inhibition of the 26S proteasome evokes endoplasmic reticulum stress, which has been shown to be implicated in the antitumoral effects of proteasome inhibitors. The cellular and molecular effects of the proteasome inhibitor—bortezomib—on human colon cancer cells are as yet poorly characterized. Bortezomib selectively induces apoptosis in some cancer cells. However, the nature of its selectivity remains unknown. Previously, we demonstrated that, in contrast to normal fibroblasts, bortezomib treatment evoked strong effect on apoptosis of breast cancer cells incubated in hypoxic and normoxic conditions. The study presented here provides novel information on the cellular effects of bortezomib in DLD-1 colon cancer cells line. We observe twofold higher percentage of apoptotic cells incubated for 48 h with 25 and 50 nmol/l of bortezomib in hypoxic conditions and four-, fivefold increase in normoxic conditions in comparison to control cells, incubated without bortezomib. It is of interest that bortezomib evokes strong effect on necrosis of DLD-1 colon cancer cell line. We observe the sixfold increase in necrosis of DLD-1 cells incubated with 25 or 50 nmol/l of bortezomib for 48 h in hypoxia and fourfold increase in normoxic conditions in comparison to adequate controls. We suggest that bortezomib may be candidates for further evaluation as chemotherapeutic agents for human colon cancer.
Collapse
|
148
|
Ali M, Chernova TA, Newnam GP, Yin L, Shanks J, Karpova TS, Lee A, Laur O, Subramanian S, Kim D, McNally JG, Seyfried NT, Chernoff YO, Wilkinson KD. Stress-dependent proteolytic processing of the actin assembly protein Lsb1 modulates a yeast prion. J Biol Chem 2014; 289:27625-39. [PMID: 25143386 PMCID: PMC4183801 DOI: 10.1074/jbc.m114.582429] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/06/2014] [Indexed: 11/06/2022] Open
Abstract
Yeast prions are self-propagating amyloid-like aggregates of Q/N-rich protein that confer heritable traits and provide a model of mammalian amyloidoses. [PSI(+)] is a prion isoform of the translation termination factor Sup35. Propagation of [PSI(+)] during cell division under normal conditions and during the recovery from damaging environmental stress depends on cellular chaperones and is influenced by ubiquitin proteolysis and the actin cytoskeleton. The paralogous yeast proteins Lsb1 and Lsb2 bind the actin assembly protein Las17 (a yeast homolog of human Wiskott-Aldrich syndrome protein) and participate in the endocytic pathway. Lsb2 was shown to modulate maintenance of [PSI(+)] during and after heat shock. Here, we demonstrate that Lsb1 also regulates maintenance of the Sup35 prion during and after heat shock. These data point to the involvement of Lsb proteins in the partitioning of protein aggregates in stressed cells. Lsb1 abundance and cycling between actin patches, endoplasmic reticulum, and cytosol is regulated by the Guided Entry of Tail-anchored proteins pathway and Rsp5-dependent ubiquitination. Heat shock-induced proteolytic processing of Lsb1 is crucial for prion maintenance during stress. Our findings identify Lsb1 as another component of a tightly regulated pathway controlling protein aggregation in changing environments.
Collapse
Affiliation(s)
- Moiez Ali
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Tatiana A Chernova
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322,
| | - Gary P Newnam
- the School of Biology and Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Luming Yin
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - John Shanks
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Tatiana S Karpova
- the Center for Cancer Research Core Fluorescence Imaging Facility, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Andrew Lee
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Oskar Laur
- the Division of Microbiology, Yerkes Research Center, Emory University, Atlanta, Georgia 30329, and
| | - Sindhu Subramanian
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Dami Kim
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - James G McNally
- the Center for Cancer Research Core Fluorescence Imaging Facility, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Nicholas T Seyfried
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Yury O Chernoff
- the School of Biology and Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, the Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia 199034
| | - Keith D Wilkinson
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322,
| |
Collapse
|
149
|
Wu Y, Hu Y, Jin C. ¹H, ¹³C and ¹⁵N resonance assignments of Rpn9, a regulatory subunit of 26S proteasome from Saccharomyces cerevisiae. BIOMOLECULAR NMR ASSIGNMENTS 2014; 8:307-311. [PMID: 23832675 DOI: 10.1007/s12104-013-9506-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 06/29/2013] [Indexed: 06/02/2023]
Abstract
The 26S proteasome is an essential molecular machine for specific protein degradation in eukaryotic cells. The 26S proteasome is formed by a central 20S core particle capped by two 19S regulatory particle (RP) at both ends. The Rpn9 protein is a non-ATPase subunit located in the lid complex of the 19S RP, and is identified to be essential for efficient assembly of yeast 26S proteasome. Bioinformatics analysis of Saccharomyces cerevisiae Rpn9 suggested it contains a PCI domain at the C-terminal region. However, high-resolution structures of either the PCI domain or the full-length Rpn9 still remain elusive. Herein, we report the chemical shift assignments of (1)H, (13)C and (15)N atoms of the individual N- and C-domains, as well as full-length S. cerevisiae Rpn9, which provide the basis for further structural and functional studies of Rpn9 using solution NMR technique.
Collapse
Affiliation(s)
- Yujie Wu
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing, 100871, China
| | | | | |
Collapse
|
150
|
Wu Y, Hu Y, Jin C. ¹H, ¹³C and ¹⁵N resonance assignments of the VWA domain of Saccharomyces cerevisiae Rpn10, a regulatory subunit of 26S proteasome. BIOMOLECULAR NMR ASSIGNMENTS 2014; 8:391-394. [PMID: 24037519 DOI: 10.1007/s12104-013-9525-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 09/06/2013] [Indexed: 06/02/2023]
Abstract
Rpn10 is a ubiquitin receptor of the 26S proteasome, and plays an important role in poly-ubiquitinated proteins recognition in the ubiquitin-proteasome protein degradation pathway. It is located in the 19S regulatory particle and interacts with several subunits of both lid and base complexes. Bioinformatics analysis of yeast Rpn10 suggests that it contains a von Willebrand (VWA domain) and a C-terminal tail containing a Ub-interacting motif. Studies of Saccharomyces cerevisiae Rpn10 suggested that its VWA domain might participate in interactions with subunit from both lid and base subcomplexes of the 19S regulatory particle. Herein, we report the chemical shift assignments of (1)H, (13)C and (15)N atoms of the VWA domain of S. cerevisiae Rpn10, which provide the basis for further structural and functional studies of Rpn10 by solution NMR technique.
Collapse
Affiliation(s)
- Yujie Wu
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing, 100871, China
| | | | | |
Collapse
|