101
|
Holland WL, Summers SA. Sphingolipids, insulin resistance, and metabolic disease: new insights from in vivo manipulation of sphingolipid metabolism. Endocr Rev 2008; 29:381-402. [PMID: 18451260 PMCID: PMC2528849 DOI: 10.1210/er.2007-0025] [Citation(s) in RCA: 446] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obesity and dyslipidemia are risk factors for metabolic disorders including diabetes and cardiovascular disease. Sphingolipids such as ceramide and glucosylceramides, while being a relatively minor component of the lipid milieu in most tissues, may be among the most pathogenic lipids in the onset of the sequelae associated with excess adiposity. Circulating factors associated with obesity (e.g., saturated fatty acids, inflammatory cytokines) selectively induce enzymes that promote sphingolipid synthesis, and lipidomic profiling reveals relationships between tissue sphingolipid levels and certain metabolic diseases. Moreover, studies in cultured cells and isolated tissues implicate sphingolipids in certain cellular events associated with diabetes and cardiovascular disease, including insulin resistance, pancreatic beta-cell failure, cardiomyopathy, and vascular dysfunction. However, definitive evidence that sphingolipids contribute to insulin resistance, diabetes, and atherosclerosis has come only recently, as researchers have found that pharmacological inhibition or genetic ablation of enzymes controlling sphingolipid synthesis in rodents ameliorates each of these conditions. Herein we will review the role of ceramide and other sphingolipid metabolites in insulin resistance, beta-cell failure, cardiomyopathy, and vascular dysfunction, focusing on these in vivo studies that identify enzymes controlling sphingolipid metabolism as therapeutic targets for combating metabolic disease.
Collapse
Affiliation(s)
- William L Holland
- Division of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, University of Utah, Salt Lake City, Utah 84132, USA
| | | |
Collapse
|
102
|
Dietrich CR, Han G, Chen M, Berg RH, Dunn TM, Cahoon EB. Loss-of-function mutations and inducible RNAi suppression of Arabidopsis LCB2 genes reveal the critical role of sphingolipids in gametophytic and sporophytic cell viability. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:284-98. [PMID: 18208516 DOI: 10.1111/j.1365-313x.2008.03420.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Serine palmitoyltransferase (SPT) catalyzes the first step in sphingolipid biosynthesis, and downregulation of this enzyme provides a means for exploring sphingolipid function in cells. We have previously demonstrated that Arabidopsis SPT requires LCB1 and LCB2 subunits for activity, as is the case in other eukaryotes. In this study, we show that Arabidopsis has two genes (AtLCB2a and AtLCB2b) that encode functional isoforms of the LCB2 subunit. No alterations in sphingolipid content or growth were observed in T-DNA mutants for either gene, but homozygous double mutants were not recoverable, suggesting that these genes are functionally redundant. Reciprocal crosses conducted with Atlcb2a and Atlcb2b mutants indicated that lethality is associated primarily with the inability to transmit the lcb2 null genotype through the haploid pollen. Consistent with this, approximately 50% of the pollen obtained from plants homozygous for a mutation in one gene and heterozygous for a mutation in the second gene arrested during transition from uni-nucleate microspore to bicellular pollen. Ultrastructural analyses revealed that these pollen grains contained aberrant endomembranes and lacked an intine layer. To examine sphingolipid function in sporophytic cells, Arabidopsis lines were generated that allowed inducible RNAi silencing of AtLCB2b in an Atlcb2a mutant background. Studies conducted with these lines demonstrated that sphingolipids are essential throughout plant development, and that lethality resulting from LCB2 silencing in seedlings could be partially rescued by supplying exogenous long-chain bases. Overall, these studies provide insights into the genetic and biochemical properties of SPT and sphingolipid function in Arabidopsis.
Collapse
Affiliation(s)
- Charles R Dietrich
- USDA-ARS Plant Genetics Research Unit, Donald Danforth Plant Science Center, 975 N. Warson Road, St Louis, MO 63132, USA
| | | | | | | | | | | |
Collapse
|
103
|
Involvement of sphingoid bases in mediating reactive oxygen intermediate production and programmed cell death in Arabidopsis. Cell Res 2008; 17:1030-40. [PMID: 18059378 DOI: 10.1038/cr.2007.100] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Sphingolipids have been suggested to act as second messengers for an array of cellular signaling activities in plant cells, including stress responses and programmed cell death (PCD). However, the mechanisms underpinning these processes are not well understood. Here, we report that an Arabidopsis mutant, fumonisin B1 resistant 11-1 (fbr 11-1), which fails to generate reactive oxygen intermediates (ROIs), is incapable of initiating PCD when the mutant is challenged by fumonisin B(1) (FB(1)), a specific inhibitor of ceramide synthase. Molecular analysis indicated that FBR11 encodes a long-chain base 1 (LCB1) subunit of serine palmitoyltransferase (SPT), which catalyzes the first rate-limiting step of de novo sphingolipid synthesis. Mass spectrometric analysis of the sphingolipid concentrations revealed that whereas the fbr 11-1 mutation did not affect basal levels of sphingoid bases, the mutant showed attenuated formation of sphingoid bases in response to FB(1). By a direct feeding experiment, we show that the free sphingoid bases dihydrosphingosine, phytosphingosine and sphingosine efficiently induce ROI generation followed by cell death. Conversely, ROI generation and cell death induced by dihydrosphingosine were specifically blocked by its phosphorylated form dihydrosphingosine-1-phosphate in a dose-dependent manner, suggesting that the maintenance of homeostasis between a free sphingoid base and its phosphorylated derivative is critical to determining the cell fate. Because alterations of the sphingolipid level occur prior to the ROI production, we propose that the free sphingoid bases are involved in the control of PCD in Arabidopsis, presumably through the regulation of the ROI level upon receiving different developmental or environmental cues.
Collapse
|
104
|
Dickson RC. Thematic review series: sphingolipids. New insights into sphingolipid metabolism and function in budding yeast. J Lipid Res 2008; 49:909-21. [PMID: 18296751 DOI: 10.1194/jlr.r800003-jlr200] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Our understanding of sphingolipid metabolism and functions in the baker's yeast Saccharomyces cerevisiae has progressed substantially in the past 2 years. Yeast sphingolipids contain a C26-acyl moiety, all of the genes necessary to make these long-chain fatty acids have been identified, and a mechanism for how chain length is determined has been proposed. Advances in understanding how the de novo synthesis of ceramide and complex sphingolipids is regulated have been made, and they demonstrate that the Target Of Rapamycin Complex 2 (TORC2) controls ceramide synthase activity. Other work shows that TORC2 regulates the level of complex sphingolipids in a pathway using the Slm1 and Slm2 proteins to control the protein phosphatase calcineurin, which regulates the breakdown of complex sphingolipids. The activity of Slm1 and Slm2 has also been shown to be regulated during heat stress by phosphoinositides and TORC2, along with sphingoid long-chain bases and the Pkh1 and Pkh2 protein kinases, to control the actin cytoskeleton, the trafficking of nutrient transporters, and cell viability. Together, these results provide the first molecular insights into understanding previous genetic interaction data that indicated a connection between sphingolipids and the TORC2 and phosphoinositide signaling networks. This new knowledge provides a foundation for greatly advancing our understanding of sphingolipid biology in yeast.
Collapse
Affiliation(s)
- Robert C Dickson
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536-0509, USA.
| |
Collapse
|
105
|
Stiban J, Caputo L, Colombini M. Ceramide synthesis in the endoplasmic reticulum can permeabilize mitochondria to proapoptotic proteins. J Lipid Res 2007; 49:625-34. [PMID: 18073406 DOI: 10.1194/jlr.m700480-jlr200] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Increased mitochondrial ceramide levels are associated with the initiation of apoptosis. There is evidence that ceramide is causal. Thus, the conversion of the precursor, dihydroceramide, to ceramide by the enzyme dihydroceramide desaturase may be important in preparing the cell for apoptosis. Ceramide can initiate apoptosis by permeabilizing the mitochondrial outer membrane to apoptosis-inducing proteins. However, the mitochondrion's ability to produce ceramide may be limited by its proteome. Here, we show that ceramide synthesized in isolated mammalian endoplasmic reticulum (ER) vesicles from either C8-dihydroceramide or sphingosine to produce long-chain ceramide can transfer to isolated mitochondria. The rate of transfer is consistent with a simple collision model. The transfer of the long-chain ceramide is faster than expected for an uncatalyzed process. Sufficient ceramide is transferred to permeabilize the outer membrane to cytochrome c and adenylate kinase. The mitochondria-associated membranes, ER-like membranes that are tightly associated with isolated mitochondria, can produce enough ceramide to permeabilize the outer membrane transiently. Thus, this ceramide exchange obviates the need for a complete ceramide de novo pathway in mitochondria to increase ceramide levels to the critical value required for functional changes, such as ceramide channel self-assembly followed by protein release.
Collapse
Affiliation(s)
- Johnny Stiban
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
106
|
Yard BA, Carter LG, Johnson KA, Overton IM, Dorward M, Liu H, McMahon SA, Oke M, Puech D, Barton GJ, Naismith JH, Campopiano DJ. The Structure of Serine Palmitoyltransferase; Gateway to Sphingolipid Biosynthesis. J Mol Biol 2007; 370:870-86. [PMID: 17559874 DOI: 10.1016/j.jmb.2007.04.086] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 04/12/2007] [Accepted: 04/18/2007] [Indexed: 11/19/2022]
Abstract
Sphingolipid biosynthesis commences with the condensation of L-serine and palmitoyl-CoA to produce 3-ketodihydrosphingosine (KDS). This reaction is catalysed by the PLP-dependent enzyme serine palmitoyltransferase (SPT; EC 2.3.1.50), which is a membrane-bound heterodimer (SPT1/SPT2) in eukaryotes such as humans and yeast and a cytoplasmic homodimer in the Gram-negative bacterium Sphingomonas paucimobilis. Unusually, the outer membrane of S. paucimobilis contains glycosphingolipid (GSL) instead of lipopolysaccharide (LPS), and SPT catalyses the first step of the GSL biosynthetic pathway in this organism. We report here the crystal structure of the holo-form of S. paucimobilis SPT at 1.3 A resolution. The enzyme is a symmetrical homodimer with two active sites and a monomeric tertiary structure consisting of three domains. The PLP cofactor is bound covalently to a lysine residue (Lys265) as an internal aldimine/Schiff base and the active site is composed of residues from both subunits, located at the bottom of a deep cleft. Models of the human SPT1/SPT2 heterodimer were generated from the bacterial structure by bioinformatics analysis. Mutations in the human SPT1-encoding subunit have been shown to cause a neuropathological disease known as hereditary sensory and autonomic neuropathy type I (HSAN1). Our models provide an understanding of how these mutations may affect the activity of the enzyme.
Collapse
Affiliation(s)
- Beverley A Yard
- School of Chemistry, EaStCHEM, The University of Edinburgh, West Mains Road, Edinburgh, EH9 3JJ, Scotland, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Cowart LA, Hannun YA. Selective Substrate Supply in the Regulation of Yeast de Novo Sphingolipid Synthesis. J Biol Chem 2007; 282:12330-40. [PMID: 17322298 DOI: 10.1074/jbc.m700685200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The heat stress response of Saccharomyces cerevisiae is characterized by transient cell cycle arrest, altered gene expression, degradation of nutrient permeases, trehalose accumulation, and translation initiation of heat shock proteins. Importantly heat stress also induces de novo sphingolipid synthesis upon which many of these subprograms of the heat stress response depend. Despite extensive data addressing the roles for sphingolipids in heat stress, the mechanism(s) by which heat induces sphingolipid synthesis remains unknown. This study was undertaken to determine the events and/or factors required for heat stress-induced sphingolipid synthesis. Data presented indicate that heat does not directly alter the in vitro activity of serine palmitoyltransferase (SPT), the enzyme responsible for initiating de novo sphingolipid synthesis. Moreover deletion of the small peptide Tsc3p, which is thought to maximize SPT activity, specifically reduced production of C(20) sphingolipid species by over 70% but did not significantly decrease overall sphingoid base production. In contrast, the fatty-acid synthase inhibitor cerulenin nearly completely blocked sphingoid base production after heat, indicating a requirement for endogenous fatty acids for heat-mediated sphingoid base synthesis. Consistent with this, genetic studies show that fatty acid import does not contribute to heat-induced de novo synthesis under normal conditions. Interestingly the absence of medium serine also ameliorated heat-induced sphingoid base production, indicating a requirement for exogenous serine for the response, and consistent with this finding, disruption of synthesis of endogenous serine did not affect heat-induced sphingolipid synthesis. Serine uptake assays indicated that heat increased serine uptake from medium by 100% during the first 10 min of heat stress. Moreover treatments that increase serine uptake in the absence of heat including acute medium acidification and glucose treatment also enhanced de novo sphingoid base synthesis equivalent to that induced by heat stress. These data agree with findings from mammalian systems that availability of substrates is a key determinant of flux through sphingolipid synthesis. Moreover data presented here indicate that SPT activity can be driven by several factors that increase serine uptake in the absence of heat. These findings may provide insights into the many systems in which de novo synthesis is increased in the absence of elevated in vitro SPT activity.
Collapse
Affiliation(s)
- L Ashley Cowart
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina , Charleston, South Carolina 29425, USA
| | | |
Collapse
|
108
|
Kihara A, Mitsutake S, Mizutani Y, Igarashi Y. Metabolism and biological functions of two phosphorylated sphingolipids, sphingosine 1-phosphate and ceramide 1-phosphate. Prog Lipid Res 2007; 46:126-44. [PMID: 17449104 DOI: 10.1016/j.plipres.2007.03.001] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sphingolipids are major lipid constituents of the eukaryotic plasma membrane. Without certain sphingolipids, cells and/or embryos cannot survive, indicating that sphingolipids possess important physiological functions that are not substituted for by other lipids. One such role may be signaling. Recent studies have revealed that some sphingolipid metabolites, such as long-chain bases (LCBs; sphingosine (Sph) in mammals), long-chain base 1-phosphates (LCBPs; sphingosine 1-phosphate (S1P) in mammals), ceramide (Cer), and ceramide 1-phosphate (C1P), act as signaling molecules. The addition of phosphate groups to LCB/Sph and Cer generates LCBP/S1P and C1P, respectively. These phospholipids exhibit completely different functions than those of their precursors. In this review, we describe recent advances in understanding the functions of LCBP/S1P and C1P in mammals and in the yeast Saccharomyces cerevisiae. Since LCB/Sph, LCBP/S1P, Cer, and C1P are mutually convertible, regulation of not only the total amount of the each lipid but also of the overall balance in cellular levels is important. Therefore, we describe in detail their metabolic pathways, as well as the genes involved in each reaction.
Collapse
Affiliation(s)
- Akio Kihara
- Laboratory of Biomembrane and Biofunctional Chemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Nishi 6-Choume, Sapporo, Japan.
| | | | | | | |
Collapse
|
109
|
Loukin SH, Kung C, Saimi Y. Lipid perturbations sensitize osmotic down-shock activated Ca2+ influx, a yeast "deletome" analysis. FASEB J 2007; 21:1813-20. [PMID: 17314135 DOI: 10.1096/fj.06-7898com] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Osmotic down shock causes an immediate influx of Ca2+ in yeast, likely through a membrane stretch-sensitive channel. To see how this channel is constituted and regulated, we screened the collection of 4,906 yeast gene deletants for major changes in this response by luminomtery. We discovered deletants that responded very strongly to much milder down shocks than wild-type required, but show little changes in up-shock response. Of all the possibilities (general metabolism, ion distribution, cytoskeleton, cell wall, membrane receptors, etc.), most of the over-responders turned out to be deleted of proteins functioning in the biogenesis of phospholipids, sphingolipids, or ergosterol. Other over-responders are annotated to have vesicular transport defects, traceable to lipid defects in some cases. The deletant lacking the de novo synthesis of phosphatidylcholine, opi3delta, is by far the strongest over-responder. opi3 deletion does not cause non-specific leakage but greatly sensitizes the force-sensing Ca2+-influx mechanism. Choline supplementation normalizes the opi3delta response. Thus, the osmotic-pressure induced stretch force apparently controls channel activities through lipids. This unbiased examination of the yeast genome supports the view that forces intrinsic to the bilayer are determined by the geometry of the lipids and these forces, in turn, govern the activities of proteins embedded therein.
Collapse
Affiliation(s)
- Stephen H Loukin
- Laboratory of Molecular Biology, University of Wisconsin, Madison, WI 53706, USA.
| | | | | |
Collapse
|
110
|
Chen M, Han G, Dietrich CR, Dunn TM, Cahoon EB. The essential nature of sphingolipids in plants as revealed by the functional identification and characterization of the Arabidopsis LCB1 subunit of serine palmitoyltransferase. THE PLANT CELL 2006; 18:3576-93. [PMID: 17194770 PMCID: PMC1785403 DOI: 10.1105/tpc.105.040774] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2005] [Revised: 10/24/2006] [Accepted: 11/10/2006] [Indexed: 05/13/2023]
Abstract
Serine palmitoyltransferase (SPT) catalyzes the first step of sphingolipid biosynthesis. In yeast and mammalian cells, SPT is a heterodimer that consists of LCB1 and LCB2 subunits, which together form the active site of this enzyme. We show that the predicted gene for Arabidopsis thaliana LCB1 encodes a genuine subunit of SPT that rescues the sphingolipid long-chain base auxotrophy of Saccharomyces cerevisiae SPT mutants when coexpressed with Arabidopsis LCB2. In addition, homozygous T-DNA insertion mutants for At LCB1 were not recoverable, but viability was restored by complementation with the wild-type At LCB1 gene. Furthermore, partial RNA interference (RNAi) suppression of At LCB1 expression was accompanied by a marked reduction in plant size that resulted primarily from reduced cell expansion. Sphingolipid content on a weight basis was not changed significantly in the RNAi suppression plants, suggesting that plants compensate for the downregulation of sphingolipid synthesis by reduced growth. At LCB1 RNAi suppression plants also displayed altered leaf morphology and increases in relative amounts of saturated sphingolipid long-chain bases. These results demonstrate that plant SPT is a heteromeric enzyme and that sphingolipids are essential components of plant cells and contribute to growth and development.
Collapse
Affiliation(s)
- Ming Chen
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | | | | | | | | |
Collapse
|
111
|
Han G, Gable K, Yan L, Allen MJ, Wilson WH, Moitra P, Harmon JM, Dunn TM. Expression of a novel marine viral single-chain serine palmitoyltransferase and construction of yeast and mammalian single-chain chimera. J Biol Chem 2006; 281:39935-42. [PMID: 17090526 DOI: 10.1074/jbc.m609365200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The genus Coccolithovirus is a recently discovered group of viruses that infect the globally important marine calcifying microalga Emiliania huxleyi. Surprisingly, the viral genome contains a cluster of putative sphingolipid biosynthetic genes not found in other viral genus. To address the role of these genes in viral pathogenesis, the ehv050 gene predicted to encode a serine palmitoyltransferase (SPT), the first and rate-limiting enzyme of sphingolipid biosynthesis, was expressed and characterized in Saccharomyces cerevisiae. We show that the encoded protein is indeed a fully functional, endoplasmic reticulum-localized, single-chain SPT. In eukaryotes SPT is a heterodimer comprised of long chain base 1 (LCB1) and LCB2 subunits. Sequence alignment and mutational analysis showed that the N-terminal domain of the viral protein most closely resembled the LCB2 subunit and the C-terminal domain most closely resembled the LCB1 subunit. Regardless of whether the viral protein was expressed as a single polypeptide or as two independent domains, it exhibited an unusual preference for myristoyl-CoA rather than palmitoyl-CoA. This preference was reflected by the increased presence of C16-sphingoid bases in yeast cells expressing the viral protein. The occurrence of a single-chain SPT suggested to us that it might be possible to create other fusion SPTs with unique properties. Remarkably, when the two subunits of the yeast SPT were thus expressed, the single-chain chimera was functional and displayed a novel substrate preference. This suggests that expression of other multisubunit membrane proteins as single-chain chimera could provide a powerful approach to the characterization of integral membrane proteins.
Collapse
Affiliation(s)
- Gongshe Han
- Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20184, USA
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Hornemann T, Richard S, Rütti MF, Wei Y, von Eckardstein A. Cloning and initial characterization of a new subunit for mammalian serine-palmitoyltransferase. J Biol Chem 2006; 281:37275-81. [PMID: 17023427 DOI: 10.1074/jbc.m608066200] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Serine-palmitoyltransferase (SPT) catalyzes the rate-limiting step of the de novo synthesis of sphingolipids. SPT is considered to be a heterodimer composed of two subunits, SPTLC1 and SPTLC2. Here we report the identification of a novel, third, SPT subunit (SPTLC3) that shows 68% homology to the SPTLC2 subunit. Quantitative real-time PCR revealed that SPTLC3 expression is highly variable between different human tissues and cell lines. The highest expression was observed in placenta tissue and human trophoblast cell lines. The overexpression of SPTLC3 in Hek293 cells, which otherwise have very little endogenous SPTLC3, led to a 2- to 3-fold increase in cellular SPT activity. Silencing of SPTLC3 expression in HepG2 cells or human trophoblast cells by transfecting SPTLC3-specific siRNA resulted in a significant reduction of cellular SPT activity. The expression of two SPT isoforms could be a cellular mechanism to adjust SPT activity to tissue-specific requirements of sphingolipid synthesis.
Collapse
Affiliation(s)
- Thorsten Hornemann
- Institute for Clinical Chemistry, University Hospital Zürich, Rämistrasse 100, CH-8091 Zürich, Switzerland.
| | | | | | | | | |
Collapse
|
113
|
Kastenmayer JP, Ni L, Chu A, Kitchen LE, Au WC, Yang H, Carter CD, Wheeler D, Davis RW, Boeke JD, Snyder MA, Basrai MA. Functional genomics of genes with small open reading frames (sORFs) in S. cerevisiae. Genome Res 2006; 16:365-73. [PMID: 16510898 PMCID: PMC1415214 DOI: 10.1101/gr.4355406] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Genes with small open reading frames (sORFs; <100 amino acids) represent an untapped source of important biology. sORFs largely escaped analysis because they were difficult to predict computationally and less likely to be targeted by genetic screens. Thus, the substantial number of sORFs and their potential importance have only recently become clear. To investigate sORF function, we undertook the first functional studies of sORFs in any system, using the model eukaryote Saccharomyces cerevisiae. Based on independent experimental approaches and computational analyses, evidence exists for 299 sORFs in the S. cerevisiae genome, representing approximately 5% of the annotated ORFs. We determined that a similar percentage of sORFs are annotated in other eukaryotes, including humans, and 184 of the S. cerevisiae sORFs exhibit similarity with ORFs in other organisms. To investigate sORF function, we constructed a collection of gene-deletion mutants of 140 newly identified sORFs, each of which contains a strain-specific "molecular barcode," bringing the total number of sORF deletion strains to 247. Phenotypic analyses of the new gene-deletion strains identified 22 sORFs required for haploid growth, growth at high temperature, growth in the presence of a nonfermentable carbon source, or growth in the presence of DNA damage and replication-arrest agents. We provide a collection of sORF deletion strains that can be integrated into the existing deletion collection as a resource for the yeast community for elucidating gene function. Moreover, our analyses of the S. cerevisiae sORFs establish that sORFs are conserved across eukaryotes and have important biological functions.
Collapse
Affiliation(s)
- James P Kastenmayer
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20889, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Futerman AH, Riezman H. The ins and outs of sphingolipid synthesis. Trends Cell Biol 2006; 15:312-8. [PMID: 15953549 DOI: 10.1016/j.tcb.2005.04.006] [Citation(s) in RCA: 249] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 04/05/2005] [Accepted: 04/21/2005] [Indexed: 12/13/2022]
Abstract
Sphingolipids are ubiquitous components of eukaryotic cell membranes, where they play important roles in intracellular signaling and in membrane structure. Even though the biochemical pathway of sphingolipid synthesis and its compartmentalization between the endoplasmic reticulum and Golgi apparatus have been known for many years, the molecular identity of the enzymes in this pathway has only recently been elucidated. Here, we summarize progress in the identification and characterization of the enzymes, the transport of ceramide from the endoplasmic reticulum to the Golgi apparatus, and discuss how regulating the synthesis of sphingolipids might impact upon their functions.
Collapse
Affiliation(s)
- Anthony H Futerman
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | |
Collapse
|
115
|
Cowart LA, Obeid LM. Yeast sphingolipids: recent developments in understanding biosynthesis, regulation, and function. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1771:421-31. [PMID: 16997623 PMCID: PMC1868558 DOI: 10.1016/j.bbalip.2006.08.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 08/02/2006] [Accepted: 08/03/2006] [Indexed: 01/28/2023]
Abstract
Sphingolipids function as required membrane components of virtually all eukaryotic cells. Data indicate that members of the sphingolipid family of lipids, including sphingoid bases, sphingoid base phosphates, ceramides, and complex sphingolipids, serve vital functions in cell biology by both direct mechanisms (e.g., binding to G-protein coupled receptors to transduce an extracellular signal) and indirect mechanisms (e.g., facilitating correct intracellular protein transport). Because of the diverse roles these lipids play in cell biology, it is important to understand not only their biosynthetic pathways and regulation of sphingolipid synthesis, but also the mechanisms by which some sphingolipid species with specific functions are modified or converted to other sphingolipid species with alternate functions. Due to many factors including ease of culture and genetic modification, and conservation of major sphingolipid metabolic pathways, Saccharomyces cerevisiae has served as an ideal model system with which to identify enzymes of sphingolipid biosynthesis and to dissect sphingolipid function. Recent exciting developments in sphingolipid synthesis, transport, signaling, and overall biology continue to fuel vigorous investigation and inspire investigations in mammalian sphingolipid biology.
Collapse
Affiliation(s)
- L Ashley Cowart
- Research Service, Department of Veterans Affairs Medical Center, Charleston, SC 29425, USA
| | | |
Collapse
|
116
|
Zink S, Mehlgarten C, Kitamoto HK, Nagase J, Jablonowski D, Dickson RC, Stark MJR, Schaffrath R. Mannosyl-diinositolphospho-ceramide, the major yeast plasma membrane sphingolipid, governs toxicity of Kluyveromyces lactis zymocin. EUKARYOTIC CELL 2005; 4:879-89. [PMID: 15879522 PMCID: PMC1140091 DOI: 10.1128/ec.4.5.879-889.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Kluyveromyces lactis zymocin, a trimeric (alphabetagamma) protein toxin complex, inhibits proliferation of Saccharomyces cerevisiae cells. Here we present an analysis of kti6 mutants, which resist exogenous zymocin but are sensitive to intracellular expression of its inhibitory gamma-toxin subunit, suggesting that KTI6 encodes a factor needed for toxin entry into the cell. Consistent with altered cell surface properties, kti6 cells resist hygromycin B, syringomycin E, and nystatin, antibiotics that require intact membrane potentials or provoke membrane disruption. KTI6 is allelic to IPT1, coding for mannosyl-diinositolphospho-ceramide [M(IP)(2)C] synthase, which produces M(IP)(2)C, the major plasma membrane sphingolipid. kti6 membranes lack M(IP)(2)C and sphingolipid mutants that have reduced levels of M(IP)(2)C precursors, including the sphingolipid building block ceramide survive zymocin. In addition, kti6/ipt1 cells allow zymocin docking but prevent import of its toxic gamma-subunit. Genetic analysis indicates that Kti6 is likely to act upstream of lipid raft proton pump Kti10/Pma1, a previously identified zymocin sensitivity factor. In sum, M(IP)(2)C operates in a plasma membrane step that follows recognition of cell wall chitin by zymocin but precedes the involvement of elongator, the potential toxin target.
Collapse
Affiliation(s)
- Sabrina Zink
- Biologicum, Institut für Genetik, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 10, D-06120 Halle (Saale), Germany
| | | | | | | | | | | | | | | |
Collapse
|
117
|
Hojjati MR, Li Z, Jiang XC. Serine palmitoyl-CoA transferase (SPT) deficiency and sphingolipid levels in mice. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1737:44-51. [PMID: 16216550 DOI: 10.1016/j.bbalip.2005.08.006] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Revised: 08/09/2005] [Accepted: 08/09/2005] [Indexed: 10/25/2022]
Abstract
Sphingolipids play a very important role in cell membrane formation, signal transduction, and plasma lipoprotein metabolism, and all these functions may have an impact on atherosclerotic development. Serine palmitoyl-CoA transferase (SPT) is the key enzyme in sphingolipid biosynthesis. To evaluate in vivo SPT activity and its role in sphingolipid metabolism, we applied homologous recombination to embryonic stem cells, producing mice with long chain base 1 (Sptlc1) and long chain base 2 (Sptlc2), two subunits of SPT, gene deficiency. Homozygous Sptlc11 and Sptlc2 mice are embryonic lethal, whereas heterozygous versions of both animals (Sptlc1(+/-), Sptlc2(+/-)) are healthy. Analysis showed that, compared with WT mice, Sptlc1(+/-) and Sptlc2(+/-) mice had: (1) decreased liver Sptlc1 and Sptlc2 mRNA by 44% and 57% (P<0.01 and P<0.0001, respectively); (2) decreased liver Sptlc1 mass by 50% and Sptlc2 mass by 70% (P<0.01 and P<0.01, respectively), moreover, Sptlc1 mass decreased by 70% in Sptlc2(+/-) mouse liver, while Sptlc2 mass decreased by 53% in Sptlc1(+/-) mouse liver (P<0.001 and P<0.01, respectively); (3) decreased liver SPT activity by 45% and 60% (P<0.01, respectively); (4) decreased liver ceramide (22% and 39%, P<0.05 and P<0.01, respectively) and sphingosine levels (22% and 31%, P<0.05 and P<0.01, respectively); (5) decreased plasma ceramide (45% and 39%, P<0.01, respectively), sphingosine-1-phosphate (31% and 32%, P<0.01, respectively) and sphingosine levels (22.5% and 25%, P<0.01, respectively); (6) dramatically decreased plasma lysosphingomyelin (17-fold and 16-fold, P<0.0001, respectively); and (7) no change of plasma sphingomyelin, triglyceride, total cholesterol, phospholipids, and liver sphingomyelin levels. These results indicated that both Sptlc1 and Sptlc2 interactions are necessary for SPT activity in vivo, and that SPT activity directly influences plasma sphingolipid levels. Furthermore, manipulation of SPT activity might well influence the course of such diseases as atherosclerosis.
Collapse
Affiliation(s)
- Mohammad Reza Hojjati
- Department of Anatomy and Cell Biology, SUNY Downstate Medical Center, 450 Clarkson Ave. Box 5, Brooklyn, NY 11203, USA
| | | | | |
Collapse
|
118
|
Do JH, Park TK, Choi DK. A computational approach to the inference of sphingolipid pathways from the genome of Aspergillus fumigatus. Curr Genet 2005; 48:134-41. [PMID: 16052358 DOI: 10.1007/s00294-005-0009-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 06/16/2005] [Accepted: 06/23/2005] [Indexed: 10/25/2022]
Abstract
A growing body of evidence suggests that sphingolipids are important bioactive molecules, in addition to being critical structural components of cellular membranes. These molecules have been implicated in regulating cell growth, differentiation, angiogenesis, apoptosis, and senescence. Many of the enzymes involved in sphingolipid biosynthesis are the targets of fungal toxins, thus underscoring the importance of this pathway. An international consortium has made considerable progress in sequencing the genome of Aspergillus fumigatus, one of the most common mold pathogens of humans; however, most genes have not yet been annotated. Here, we have identified genes involved in the sphingolipid pathway of A. fumigatus by comparative analysis with four other fungal species and the gene prediction program GlimmerM. Our results shows that A. fumigatus has most of the sphingolipid pathway genes found in other fungi, except for the CSG2 and IPT1 genes; the former is involved in the mannosylation of inositol phosphorylceramide (IPC) to mannose-inositol-phosphorylceramide and the latter involved in the synthesis of mannose-(inositol-P)(2)-ceramide from mannose-inositol-phosphorylceramide.
Collapse
Affiliation(s)
- Jin Hwan Do
- Bio-food and Drug Research Center, Konkuk University, Chungju 380-701, Korea
| | | | | |
Collapse
|
119
|
Abstract
Previously, a microarray expression study in the yeast Saccharomyces cerevisiae indicated that the ERG28 gene was strongly coregulated with ergosterol biosynthesis. Subsequently, Erg28p was shown to function as an endoplasmic reticulum transmembrane protein, acting as a scaffold to tether the C-4 demethylation enzymatic complex and also to interact with a downstream enzyme, Erg6p. To understand all possible protein interactions involving Erg28p in sterol biosynthesis, a yeast two-hybrid system designed to assess interactions between membrane proteins was used. The Erg28p fusion protein was used as bait to assess interactions with all 14 sterol biosynthetic proteins in a pairwise study based on two reporter systems as well as Western blots demonstrating the release of a transcription factor. Our results indicated that Erg28p not only interacted with the C-4 demethylation enzymes and Erg6p but also with Erg11p and Erg1p. Interactions between Erg28p and seven ergosterol biosynthetic enzymes were confirmed by coimmunoprecipitation experiments. Furthermore, by comparing the reporter gene expression levels, we demonstrate that Erg28p is most closely associated with Erg27p, Erg25p, Erg11p, and Erg6p and less with Erg26p and Erg1p. Based on these results, we suggest that many if not all sterol biosynthetic proteins may be tethered as a large complex.
Collapse
Affiliation(s)
- Caiqing Mo
- Biology Department, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | | |
Collapse
|
120
|
Oskouian B, Saba JD. Death and taxis: what non-mammalian models tell us about sphingosine-1-phosphate. Semin Cell Dev Biol 2005; 15:529-40. [PMID: 15271298 DOI: 10.1016/j.semcdb.2004.05.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a signaling molecule that regulates critical events including mammalian cell proliferation, survival, migration and cell-cell interactions. Most of these signals are triggered by engagement of sphingosine-1-phosphate receptors of the Edg family. However, accumulating evidence derived from investigation of non-mammalian models that lack Edg receptors suggests that sphingosine-1-phosphate-like molecules can act through alternative mechanisms and thereby contribute to morphogenesis, development, reproduction and survival. This review provides an overview of sphingosine-1-phosphate metabolism, the isolation of genes in this pathway employing yeast genetics, the evidence for its influence on non-mammalian development, and the pertinence of these findings to human disease.
Collapse
Affiliation(s)
- Babak Oskouian
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609-1673, USA
| | | |
Collapse
|
121
|
Dobrzyn A, Dobrzyn P, Lee SH, Miyazaki M, Cohen P, Asilmaz E, Hardie DG, Friedman JM, Ntambi JM. Stearoyl-CoA desaturase-1 deficiency reduces ceramide synthesis by downregulating serine palmitoyltransferase and increasing beta-oxidation in skeletal muscle. Am J Physiol Endocrinol Metab 2005; 288:E599-607. [PMID: 15562249 DOI: 10.1152/ajpendo.00439.2004] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Stearoyl-CoA desaturase (SCD) has recently been shown to be a critical control point of lipid partitioning and body weight regulation. Lack of SCD1 function significantly increases insulin sensitivity in skeletal muscles and corrects the hypometabolic phenotype of leptin-deficient ob/ob mice, indicating the direct antilipotoxic action of SCD1 deficiency. The mechanism underlying the metabolic effects of SCD1 mutation is currently unknown. Here we show that SCD1 deficiency reduced the total ceramide content in oxidative skeletal muscles (soleus and red gastrocnemius) by approximately 40%. The mRNA levels and activity of serine palmitoyltransferase (SPT), a key enzyme in ceramide synthesis, as well as the incorporation of [14C]palmitate into ceramide were decreased by approximately 50% in red muscles of SCD1-/- mice. The content of fatty acyl-CoAs, which contribute to de novo ceramide synthesis, was also reduced. The activity and mRNA levels of carnitine palmitoyltransferase I (CPT I) and the rate of beta-oxidation were increased in oxidative muscles of SCD1-/- mice. Furthermore, SCD1 deficiency increased phosphorylation of AMP-activated protein kinase (AMPK), suggesting that AMPK activation may be partially responsible for the increased fatty acid oxidation and decreased ceramide synthesis in red muscles of SCD1-/- mice. SCD1 deficiency also reduced SPT activity and ceramide content and increased AMPK phosphorylation and CPT I activity in muscles of ob/ob mice. Taken together, these results indicate that SCD1 deficiency reduces ceramide synthesis by decreasing SPT expression and increasing the rate of beta-oxidation in oxidative muscles.
Collapse
MESH Headings
- AMP-Activated Protein Kinases
- Acyl Coenzyme A/chemistry
- Acyl Coenzyme A/metabolism
- Acyltransferases/genetics
- Acyltransferases/metabolism
- Animals
- Blotting, Western
- Carnitine O-Palmitoyltransferase/genetics
- Carnitine O-Palmitoyltransferase/metabolism
- Ceramides/biosynthesis
- Ceramides/metabolism
- Down-Regulation/genetics
- Fatty Acids/analysis
- Fatty Acids/metabolism
- Fatty Acids, Nonesterified/analysis
- Fatty Acids, Nonesterified/metabolism
- Gene Expression/genetics
- Leptin/genetics
- Leptin/physiology
- Male
- Mice
- Mice, Knockout
- Mice, Mutant Strains
- Models, Biological
- Multienzyme Complexes/metabolism
- Muscle Fibers, Fast-Twitch/chemistry
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle Fibers, Fast-Twitch/physiology
- Muscle, Skeletal/chemistry
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiology
- Oxidation-Reduction
- Palmitic Acid/metabolism
- Phosphorylation
- Protein Serine-Threonine Kinases/metabolism
- Protein Subunits/genetics
- Protein Subunits/metabolism
- Serine C-Palmitoyltransferase
- Sphingomyelins/metabolism
- Stearoyl-CoA Desaturase/deficiency
- Stearoyl-CoA Desaturase/genetics
Collapse
Affiliation(s)
- Agnieszka Dobrzyn
- Dept. of Biochemistry, Univ. of Wisconsin, 433 Babcock Dr., Madison, WI 53706, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Wills EA, Redinbo MR, Perfect JR, Poeta MD. New potential targets for antifungal development. ACTA ACUST UNITED AC 2005. [DOI: 10.1517/14728222.4.3.265] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
123
|
Natter K, Leitner P, Faschinger A, Wolinski H, McCraith S, Fields S, Kohlwein SD. The spatial organization of lipid synthesis in the yeast Saccharomyces cerevisiae derived from large scale green fluorescent protein tagging and high resolution microscopy. Mol Cell Proteomics 2005; 4:662-72. [PMID: 15716577 DOI: 10.1074/mcp.m400123-mcp200] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The localization pattern of proteins involved in lipid metabolism in the yeast Saccharomyces cerevisiae was determined using C-terminal green fluorescent protein tagging and high resolution confocal laser scanning microscopy. A list of 493 candidate proteins ( approximately 9% of the yeast proteome) was assembled based on proteins of known function in lipid metabolism, their interacting proteins, proteins defined by genetic interactions, and regulatory factors acting on selected genes or proteins. Overall 400 (81%) transformants yielded a positive green fluorescent protein signal, and of these, 248 (62% of the 400) displayed a localization pattern that was not cytosolic. Observations for many proteins with known localization patterns were consistent with published data derived from cell fractionation or large scale localization approaches. However, in many cases, high resolution microscopy provided additional information that indicated that proteins distributed to multiple subcellular locations. The majority of tagged enzymes localized to the endoplasmic reticulum (91), but others localized to mitochondria (27), peroxisomes (17), lipid droplets (23), and vesicles (53). We assembled enzyme localization patterns for phospholipid, sterol, and sphingolipid biosynthetic pathways and propose a model, based on enzyme localization, for concerted regulation of sterol and sphingolipid metabolism that involves shuttling of key enzymes between endoplasmic reticulum, lipid droplets, vesicles, and Golgi.
Collapse
Affiliation(s)
- Klaus Natter
- Institute of Molecular Biosciences, Spezialforschungsbereich Biomembrane Research Center, University of Graz, Schubertstr. 1, A8010 Graz, Austria
| | | | | | | | | | | | | |
Collapse
|
124
|
Park TS, Panek RL, Mueller SB, Hanselman JC, Rosebury WS, Robertson AW, Kindt EK, Homan R, Karathanasis SK, Rekhter MD. Inhibition of sphingomyelin synthesis reduces atherogenesis in apolipoprotein E-knockout mice. Circulation 2004; 110:3465-71. [PMID: 15545514 DOI: 10.1161/01.cir.0000148370.60535.22] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND In clinical studies, sphingomyelin (SM) plasma levels correlated with the occurrence of coronary heart disease independently of plasma cholesterol levels. We hypothesized that inhibition of SM synthesis would have antiatherogenic effects. To test this hypothesis, apolipoprotein E (apoE)-knockout (KO) mice were treated with myriocin, a potent inhibitor of serine palmitoyltransferase, the rate-limiting enzyme in SM biosynthesis. METHODS AND RESULTS Diet-admix treatment of apoE-KO mice with myriocin in Western diet for 12 weeks lowered SM and sphinganine plasma levels. Decreases in sphinganine and SM concentrations were also observed in the liver and aorta of myriocin-treated animals compared with controls. Inhibition of de novo sphingolipid biosynthesis reduced total cholesterol and triglyceride plasma levels. Cholesterol distribution in lipoproteins demonstrated a decrease in beta-VLDL and LDL cholesterol and an increase in HDL cholesterol. Oil red O staining of total aortas demonstrated reduction of atherosclerotic lesion coverage in the myriocin-treated group. Atherosclerotic plaque area was also reduced in the aortic root and brachiocephalic artery. CONCLUSIONS Inhibition of de novo SM biosynthesis in apoE-KO mice lowers plasma cholesterol and triglyceride levels, raises HDL cholesterol, and prevents development of atherosclerotic lesions.
Collapse
Affiliation(s)
- Tae-Sik Park
- Cardiovascular Pharmacology, Pfizer Global Research and Development, Ann Arbor, Mich 48105, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Sims KJ, Spassieva SD, Voit EO, Obeid LM. Yeast sphingolipid metabolism: clues and connections. Biochem Cell Biol 2004; 82:45-61. [PMID: 15052327 DOI: 10.1139/o03-086] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
This review of sphingolipid metabolism in the budding yeast Saccharomyces cerevisiae contains information on the enzymes and the genes that encode them, as well as connections to other metabolic pathways. Particular attention is given to yeast homologs, domains, and motifs in the sequence, cellular localization of enzymes, and possible protein-protein interactions. Also included are genetic interactions of special interest that provide clues to the cellular biological roles of particular sphingolipid metabolic pathways and specific sphingolipids.
Collapse
Affiliation(s)
- Kellie J Sims
- Department of Biometry and Epidemiology, Medical University of South Carolina, Charleston, 29425, USA
| | | | | | | |
Collapse
|
126
|
Han G, Gable K, Yan L, Natarajan M, Krishnamurthy J, Gupta SD, Borovitskaya A, Harmon JM, Dunn TM. The topology of the Lcb1p subunit of yeast serine palmitoyltransferase. J Biol Chem 2004; 279:53707-16. [PMID: 15485854 DOI: 10.1074/jbc.m410014200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The structural organization and topology of the Lcb1p subunit of yeast and mammalian serine palmitoyltransferases (SPT) were investigated. In the yeast protein, three membrane-spanning domains were identified by insertion of glycosylation and factor Xa cleavage sites at various positions. The first domain of the yeast protein, located between residues 50 and 84, was not required for the stability, membrane association, interaction with Lcb2p, or enzymatic activity. Deletion of the comparable domain of the mammalian protein SPTLC1 also had little effect on its function, demonstrating that this region is not required for membrane localization or heterodimerization with SPTLC2. The second and third membrane-spanning domains of yeast Lcb1p, located between residues 342 and 371 and residues 425 and 457, respectively, create a luminal loop of approximately 60 residues. In contrast to the first membrane-spanning domain, the second and third membrane-spanning domains were both required for Lcb1p stability. In addition, mutations in the luminal loop destabilized the SPT heterodimer indicating that this region of the protein is important for SPT structure and function. Mutations in the extreme carboxyl-terminal region of Lcb1p also disrupted heterodimer formation. Taken together, these data suggest that in contrast to other members of the alpha-oxoamine synthases that are soluble homodimers, the Lcb1p and Lcb2p subunits of the SPT heterodimer may interact in the cytosol, as well as within the membrane and/or the lumen of the endoplasmic reticulum.
Collapse
Affiliation(s)
- Gongshe Han
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20184-4799, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Lynch DV, Dunn TM. An introduction to plant sphingolipids and a review of recent advances in understanding their metabolism and function. THE NEW PHYTOLOGIST 2004; 161:677-702. [PMID: 33873728 DOI: 10.1111/j.1469-8137.2004.00992.x] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Sphingolipids are ubiquitous constituents of eukaryotic cells, and have been intensively investigated in mammals and yeast for decades. Aspects of sphingolipid biochemistry in plants have been explored only recently. To date, progress has been made in determining the structure and occurrence of sphingolipids in plant tissues; in characterizing the enzymatic steps involved in production and turnover of sphingolipids (and, in some cases, the genes encoding the relevant enzymes); and in identifying a variety of biological functions for sphingolipids in plants. Given that these efforts are far from complete and much remains to be learned, this review represents a status report on the burgeoning field of plant sphingolipid biochemistry. Contents Summary 677 I. Introduction 678 II. Plant sphingolipid structure 678 III. Sphingolipid metabolism in plants 683 IV. Sphingolipid functions in plants 693 V. Conclusions 696 Acknowledgements 696 References 696.
Collapse
Affiliation(s)
- Daniel V Lynch
- Department of Biology, Williams College, Williamstown, MA 01267, USA
| | - Teresa M Dunn
- Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
128
|
Uemura S, Kihara A, Inokuchi JI, Igarashi Y. Csg1p and newly identified Csh1p function in mannosylinositol phosphorylceramide synthesis by interacting with Csg2p. J Biol Chem 2003; 278:45049-55. [PMID: 12954640 DOI: 10.1074/jbc.m305498200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Csg1p and Csg2p have been shown to be involved in the synthesis of mannosylinositol phosphorylceramide (MIPC) from inositol phosphorylceramide. YBR161w, termed CSH1 here, encodes a protein that exhibits a strong similarity to Csg1p. To examine whether Csh1p also functions in MIPC synthesis, we performed a [3H]dihydrosphingosine labeling experiment. Deltacsg1 cells exhibited only a reduction in the synthesis of mannosylated sphingolipids compared with wild-type cells, whereas the Deltacsg1 Deltacsh1 double deletion mutant exhibited a total loss. These results indicated that Csg1p and Csh1p have redundant functions in MIPC synthesis. Analyses using Deltacsg1 and Deltacsh1 cells in the Deltaipt1, Deltasur2, or Deltascs7 genetic background demonstrated that Csh1p has a different substrate specificity from Csg1p. We also revealed that Csg2p interacts with both Csg1p and Csh1p. Deletion of the CSG2 gene reduced the Csg1p activity and abolished the Csh1p activity. These results suggested that two distinct inositol phosphorylceramide mannosyltransferase complexes, Csg1p-Csg2p and Csh1p-Csg2p, exist.
Collapse
Affiliation(s)
- Satoshi Uemura
- Department of Biomembrane and Biofunctional Chemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-choume, Kita-ku, Sapporo 060-0812, Japan
| | | | | | | |
Collapse
|
129
|
Mo C, Milla P, Athenstaedt K, Ott R, Balliano G, Daum G, Bard M. In yeast sterol biosynthesis the 3-keto reductase protein (Erg27p) is required for oxidosqualene cyclase (Erg7p) activity. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1633:68-74. [PMID: 12842197 DOI: 10.1016/s1388-1981(03)00088-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In Saccharomyces cerevisiae, the 3-keto reductase (Erg27p) encoded by ERG27 gene is one of the key enzymes involved in the C-4 demethylation of the sterol intermediate, 4,4-dimethylzymosterol. The oxidosqualene cyclase (Erg7p) encoded by the ERG7 gene converts oxidosqualene to lanosterol, the first cyclic component of sterol biosynthesis. In a previous study, we found that erg27 strains grown on cholesterol- or ergosterol-supplemented media did not accumulate lanosterol or 3-ketosterols but rather squalene, oxidosqualene, and dioxidosqualene intermediates normally observed in ERG7 (oxidosqualene cyclase) mutants. These results suggested a possible interaction between these two enzymes. In this study, we present evidence that Erg27p interacts with Erg7p, facilitating the association of Erg7p with lipid particles (LPs) and preventing digestion of Erg7p both in the endoplasmic reticulum (ER) and LPs. We demonstrate that Erg27p is required for oxidosqualene cyclase (Erg7p) activity in LPs, and that Erg27p co-immunoprecipitates with Erg7p in LPs but not in microsomal fractions. While Erg27p is essentially a component of the ER, it can also be detected in LPs. In erg27 strains, a truncated Erg7p mislocalizes to microsomes. Restoration of Erg7p enzyme activity and LPs localization was achieved in an erg27 strain transformed with a plasmid containing a wild-type ERG27 allele. We suggest that the physical interaction of Erg27p with Erg7p is an essential regulatory tool in yeast sterol biosynthesis.
Collapse
Affiliation(s)
- C Mo
- Biology Department, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | |
Collapse
|
130
|
Sperling P, Heinz E. Plant sphingolipids: structural diversity, biosynthesis, first genes and functions. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1632:1-15. [PMID: 12782146 DOI: 10.1016/s1388-1981(03)00033-7] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In mammals and Saccharomyces cerevisiae, sphingolipids have been a subject of intensive research triggered by the interest in their structural diversity and in mammalian pathophysiology as well as in the availability of yeast mutants and suppressor strains. More recently, sphingolipids have attracted additional interest, because they are emerging as an important class of messenger molecules linked to many different cellular functions. In plants, sphingolipids show structural features differing from those found in animals and fungi, and much less is known about their biosynthesis and function. This review focuses on the sphingolipid modifications found in plants and on recent advances in the functional characterization of genes gaining new insight into plant sphingolipid biosynthesis. Recent studies indicate that plant sphingolipids may be also involved in signal transduction, membrane stability, host-pathogen interactions and stress responses.
Collapse
Affiliation(s)
- Petra Sperling
- Institut für Allgemeine Botanik, Universität Hamburg, Ohnhorststr. 18, Hamburg D-22609, Germany.
| | | |
Collapse
|
131
|
Hanada K. Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1632:16-30. [PMID: 12782147 DOI: 10.1016/s1388-1981(03)00059-3] [Citation(s) in RCA: 452] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first step in the biosynthesis of sphingolipids is the condensation of serine and palmitoyl CoA, a reaction catalyzed by serine palmitoyltransferase (SPT) to produce 3-ketodihydrosphingosine (KDS). This review focuses on recent advances in the biochemistry and molecular biology of SPT. SPT belongs to a family of pyridoxal 5'-phosphate (PLP)-dependent alpha-oxoamine synthases (POAS). Mammalian SPT is a heterodimer of 53-kDa LCB1 and 63-kDa LCB2 subunits, both of which are bound to the endoplasmic reticulum (ER) most likely with the type I topology, whereas other members of the POAS family are soluble homodimer enzymes. LCB2 appears to be unstable unless it is associated with LCB1. Potent inhibitors of SPT structurally resemble an intermediate in a probable multistep reaction mechanism for SPT. Although SPT is a housekeeping enzyme, its activity is regulated transcriptionally and post-transcriptionally, and its up-regulation is suggested to play a role in apoptosis induced by certain types of stress. Specific missense mutations in the human LCB1 gene cause hereditary sensory neuropathy type I, an autosomal dominantly inherited disease, and these mutations confer dominant-negative effects on SPT activity.
Collapse
Affiliation(s)
- Kentaro Hanada
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku, Tokyo 162-8640, Japan.
| |
Collapse
|
132
|
Batheja AD, Uhlinger DJ, Carton JM, Ho G, D'Andrea MR. Characterization of serine palmitoyltransferase in normal human tissues. J Histochem Cytochem 2003; 51:687-96. [PMID: 12704216 DOI: 10.1177/002215540305100514] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Sphingolipids serve as structural elements of cells and as lipid second messengers. They regulate cellular homeostasis, mitogenesis, and apoptosis. Sphingolipid signaling may also be important in various pathophysiologies such as vascular injury, inflammation, and cancer. Serine palmitoyltransferase (SPT) catalyzes the condensation of serine with palmitoyl-CoA, the first, rate-limiting step in de novo sphingolipid biosynthesis. This integral microsomal membrane protein consists of at least two subunits, SPT1 and SPT2. In this study we analyzed the expression of SPT1 and SPT2 in normal human tissues. Strong SPT1 and SPT2 expression was observed in pyramidal neurons in the brain, in colon epithelium, and in mucosal macrophages. However, SPT2 expression was more prominent than SPT1 in the colon mucosal macrophages, the adrenomedullary chromaffin cells and endothelium, and in the uterine endothelium. SPT2 was localized in both nuclei and cytoplasm of the adrenomedullary chromaffin cells, whereas SPT1 was primarily cytoplasmic. These observations link enhanced SPT expression to proliferating cells, such as the lung, stomach, intestinal epithelium, and renal proximal tubular epithelium, and to potentially activated cells such as neurons, chromaffin cells, and mucosal macrophages. A baseline expression of SPT, established by this study, may serve as a measure for aberrant expression in various disease states.
Collapse
Affiliation(s)
- Ameesha D Batheja
- Drug Discovery, Johnson & Johnson Pharmaceutical Research & Development (JJPRD), Raritan, New Jersey 08869, USA
| | | | | | | | | |
Collapse
|
133
|
Yasuda S, Nishijima M, Hanada K. Localization, topology, and function of the LCB1 subunit of serine palmitoyltransferase in mammalian cells. J Biol Chem 2003; 278:4176-83. [PMID: 12464627 DOI: 10.1074/jbc.m209602200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Serine palmitoyltransferase (SPT), the enzyme catalyzing the initial step in the biosynthesis of sphingolipids, comprises two different subunits, LCB1 and LCB2. LCB1 has a single highly hydrophobic domain near the N terminus. Chinese hamster ovary cell mutant LY-B cells are defective in SPT activity because of the lack of expression of an endogenous LCB1 subunit. Stable expression of LCB1 having an epitope tag at either the N or C terminus restored SPT activity of LY-B cells, suggesting that the epitope tag did not affect the localization or topology of LCB1. Indirect immunostaining showed that the N- and C-terminal epitopes are oriented toward the lumenal and cytosol side, respectively, at the endoplasmic reticulum. Interestingly, there was far less LCB2 in LY-B cells than in wild-type cells, and the amount of LCB2 in LY-B cells was restored to the wild-type level by transfection with LCB1 cDNA. In addition, overproduction of the LCB2 subunit required co-overproduction of the LCB1 subunit. These results indicated that the LCB1 subunit is most likely an integral protein having a single transmembrane domain with a lumenal orientation of its N terminus in the endoplasmic reticulum and that the LCB1 subunit is indispensable for the maintenance of the LCB2 subunit in mammalian cells.
Collapse
Affiliation(s)
- Satoshi Yasuda
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | | | | |
Collapse
|
134
|
Obeid LM, Okamoto Y, Mao C. Yeast sphingolipids: metabolism and biology. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1585:163-71. [PMID: 12531550 DOI: 10.1016/s1388-1981(02)00337-2] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sphingolipids have recently emerged as important bioactive molecules in addition to being critical structural components of cellular membranes. These molecules have been implicated in regulating cell growth, differentiation, angiogenesis, apoptosis, and senescene. To study sphingolipid mediated biology, it is necessary to investigate sphingolipid metabolism and its regulation. The yeast Saccharomyces cerevisiae has allowed such studies to take place as the sphingolipid metabolic and regulatory pathways appear conserved across species. Using yeast genetic approaches most enzymes of sphingolipid metabolism have been identified and cloned which has led to identification of their mammalian homologues. Many of the yeast enzymes are targets of fungal toxins thus underscoring the importance of this pathway in yeast cell regulation. This review focuses on the yeast sphingolipid metabolic pathway and its role in regulation of yeast biology. Implication of the insights gained from yeast to mammalian cell regulation are discussed.
Collapse
Affiliation(s)
- Lina M Obeid
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA.
| | | | | |
Collapse
|
135
|
Perry DK. Serine palmitoyltransferase: role in apoptotic de novo ceramide synthesis and other stress responses. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1585:146-52. [PMID: 12531548 DOI: 10.1016/s1388-1981(02)00335-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Serine palmitoyltransferase is the first and rate-limiting enzyme of sphingolipid synthesis. As such, it is a central control point in the synthesis of bioactivate sphingolipids, and it plays an important role in mediating cellular stress responses. In this review, its role in mediating these responses is discussed within the context of de novo ceramide synthesis. Furthermore, a discussion is provided of its regulation as discerned from both yeast and mammalian studies.
Collapse
Affiliation(s)
- David K Perry
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Hollings Cancer Center, 86 Jonathon Lucas St., P.O. Box 250955, Charleston, SC 29403, USA.
| |
Collapse
|
136
|
Funato K, Vallée B, Riezman H. Biosynthesis and trafficking of sphingolipids in the yeast Saccharomyces cerevisiae. Biochemistry 2002; 41:15105-14. [PMID: 12484746 DOI: 10.1021/bi026616d] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kouichi Funato
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | | | | |
Collapse
|
137
|
Zhang J, Ferreira GC. Transient state kinetic investigation of 5-aminolevulinate synthase reaction mechanism. J Biol Chem 2002; 277:44660-9. [PMID: 12191993 PMCID: PMC3733378 DOI: 10.1074/jbc.m203584200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
5-Aminolevulinate synthase (ALAS), a pyridoxal 5'-phosphate-dependent enzyme, catalyzes the first, and regulatory, step of the heme biosynthetic pathway in nonplant eukaryotes and some bacteria. 5-Aminolevulinate synthase is a dimeric protein having an ordered kinetic mechanism with glycine binding before succinyl-CoA and with aminolevulinate release after CoA and carbon dioxide. Rapid scanning stopped-flow absorption spectrophotometry in conjunction with multiple turnover chemical quenched-flow kinetic analyses and a newly developed CoA detection method were used to examine the ALAS catalytic reaction and identify the rate-determining step. The reaction of glycine with ALAS follows a three-step kinetic process, ascribed to the formation of the Michaelis complex and the pyridoxal 5'-phosphate-glycine aldimine, followed by the abstraction of the glycine pro-R proton from the external aldimine. Significantly, the rate associated with this third step (k(3) = 0.002 s(-1)) is consistent with the rate determined for the ALAS-catalyzed removal of tritium from [2-(3)H(2)]glycine. Succinyl-CoA and acetoacetyl-CoA increased the rate of glycine proton removal approximately 250,000- and 10-fold, respectively, supporting our previous proposal that the physiological substrate, succinyl-CoA, promotes a protein conformational change, which accelerates the conversion of the external aldimine into the initial quinonoid intermediate (Hunter, G. A., and Ferreira, G. C. (1999) J. Biol. Chem. 274, 12222-12228). Rapid scanning stopped-flow and quenched-flow kinetic analyses of the ALAS reaction under single turnover conditions lend evidence for two quinonoid reaction intermediates and a model of the ALAS kinetic mechanism in which product release is at least the partially rate-limiting step. Finally, the carbonyl and carboxylate groups of 5-aminolevulinate play a major protein-interacting role by inducing a conformational change in ALAS and, thus, possibly modulating product release.
Collapse
Affiliation(s)
- Junshun Zhang
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Florida, Tampa, Florida 33612
| | - Gloria C. Ferreira
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Florida, Tampa, Florida 33612
- Institute for Biomolecular Science, University of South Florida, Tampa, Florida 33612
- H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, Florida 33612
- To whom correspondence should be addressed: Dept. of Biochemistry and Molecular Biology, College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612. Tel.: 813-974-5797; Fax: 813-974-0504;
| |
Collapse
|
138
|
Han G, Gable K, Kohlwein SD, Beaudoin F, Napier JA, Dunn TM. The Saccharomyces cerevisiae YBR159w gene encodes the 3-ketoreductase of the microsomal fatty acid elongase. J Biol Chem 2002; 277:35440-9. [PMID: 12087109 DOI: 10.1074/jbc.m205620200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The YBR159w gene encodes the major 3-ketoreductase activity of the elongase system of enzymes required for very long-chain fatty acid (VLCFA) synthesis. Mutants lacking the YBR159w gene display many of the phenotypes that have previously been described for mutants with defects in fatty acid elongation. These phenotypes include reduced VLCFA synthesis, accumulation of high levels of dihydrosphingosine and phytosphingosine, and accumulation of medium-chain ceramides. In vitro elongation assays confirm that the ybr159Delta mutant is deficient in the reduction of the 3-ketoacyl intermediates of fatty acid elongation. The ybr159Delta mutant also displays reduced dehydration of the 3-OH acyl intermediates of fatty acid elongation, suggesting that Ybr159p is required for the stability or function of the dehydratase activity of the elongase system. Green fluorescent protein-tagged Ybr159p co-localizes and co-immunoprecipitates with other elongating enzymes, Elo3p and Tsc13p. Whereas VLCFA synthesis is essential for viability, the ybr159Delta mutant cells are viable (albeit very slowly growing) and do synthesize some VLCFA. This suggested that a functional ortholog of Ybr159p exists that is responsible for the residual 3-ketoreductase activity. By disrupting the orthologs of Ybr159w in the ybr159Delta mutant we found that the ybr159Deltaayr1Delta double mutant was inviable, suggesting that Ayr1p is responsible for the residual 3-ketoreductase activity.
Collapse
Affiliation(s)
- Gongshe Han
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20184, USA
| | | | | | | | | | | |
Collapse
|
139
|
Mo C, Valachovic M, Randall SK, Nickels JT, Bard M. Protein-protein interactions among C-4 demethylation enzymes involved in yeast sterol biosynthesis. Proc Natl Acad Sci U S A 2002; 99:9739-44. [PMID: 12119386 PMCID: PMC124998 DOI: 10.1073/pnas.112202799] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Saccharomyces cerevisae microarray expression study indicated that an ORF, YER044C, now designated ERG28, was strongly coregulated with ergosterol biosynthesis. Disruption of the ERG28 gene results in slow growth and accumulation of sterol intermediates similar to those observed in erg26 and erg27 null strains, suggesting that the Erg28p may interact with Erg26p and/or Erg27p. In this study, a peptide from human hemagglutinin protein (HA) epitope tag was added to ERG26 and ERG27 genes, and a Myc tag was added to the ERG28 gene to detect interactions between Erg28p and Erg26p/Erg27p. Differential centrifugation showed that Erg26p, Erg27p, and Erg28p are all membrane-associated proteins. Green fluorescent protein-fusion protein localization studies showed that Erg26p, Erg27p, and Erg28p are all located in the endoplasmic reticulum. Solubilized membrane protein coimmunoprecipitation studies using rabbit anti-Erg25p indicated that Erg25p coimmunoprecipitates with both Erg27p and Erg28p. Erg28p was also shown to reciprocally coimmunoprecipitate with Erg27p. However, no coimmunoprecipitation was observed with Erg26p, most likely because of the poor solubilization of this protein. Sucrose gradient ultracentrifugation studies suggested that Erg25p/Erg26p/Erg27p/Erg28p, along with other proteins in sterol biosynthesis, might form a complex between 66 and 200 kDa. Using an anti-HA column with Erg27p-HA and Erg26p-HA as target proteins, a complex containing Erg25p/Erg26p/Erg27p/Erg28p was identified. Thus, we suggest that Erg28p works as a transmembrane scaffold to tether Erg27p and possibly other C-4 demethylation proteins (Erg25p, Erg26p), forming a demethylation complex in the endoplasmic reticulum.
Collapse
Affiliation(s)
- C Mo
- Indiana University-Purdue University Indianapolis, Biology Department, 723 West Michigan Street, Indianapolis, IN 46202, USA
| | | | | | | | | |
Collapse
|
140
|
Affiliation(s)
- Alfred H Merrill
- School of Biology, Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332-0230, USA.
| |
Collapse
|
141
|
Monaghan E, Gable K, Dunn T. Mutations in the Lcb2p subunit of serine palmitoyltransferase eliminate the requirement for the TSC3 gene in Saccharomyces cerevisiae. Yeast 2002; 19:659-70. [PMID: 12185836 DOI: 10.1002/yea.864] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Serine palmitoyltransferase catalyses the committed step in sphingolipid synthesis, the condensation of serine with palmitoyl-CoA to form 3-ketosphinganine. Two proteins, Lcb1p and Lcb2p, are essential for enzyme activity and a third protein, the 80-amino acid Tsc3p, stimulates the activity of serine palmitoyltransferase several-fold. Tsc3p physically associates with a complex of Lcb1p-Lcb2p and stimulates enzyme activity posttranslationally, but its precise function is not known. Tsc3p is essential for cell viability only at elevated temperatures, although serine palmitoyltransferase activity is reduced in the tsc3 delta mutant, even at permissive growth temperatures. Tsc3p is apparently not required for any essential process besides stimulation of serine palmitoyltransferase at 37 degrees C, since providing sphingoid bases to the growth medium reverses the temperature-sensitive growth phenotype of the tsc3 delta mutant. To gain further insight into the function of Tsc3p, suppressor mutants that eliminate the Tsc3p requirement for growth at 37 degrees C were isolated and characterized. These studies show that dominant mutations in the Lcb2p subunit of serine palmitoyltransferase suppress the temperature-sensitive growth phenotype of the tsc3 delta null mutant by increasing the Tsc3p-independent serine palmitoyltransferase activity.
Collapse
Affiliation(s)
- Erin Monaghan
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20184, USA
| | | | | |
Collapse
|
142
|
Dickson RC, Lester RL. Sphingolipid functions in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1583:13-25. [PMID: 12069845 DOI: 10.1016/s1388-1981(02)00210-x] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent advances in understanding sphingolipid metabolism and function in Saccharomyces cerevisiae have moved the field from an embryonic, descriptive phase to one more focused on molecular mechanisms. One advance that has aided many experiments has been the uncovering of genes for the biosynthesis and breakdown of sphingolipids. S. cerevisiae seems on the verge of becoming the first organism in which all sphingolipid metabolic genes are identified. Other advances include the demonstration that S. cerevisiae cells have lipid rafts composed of sphingolipids and ergosterol and that specific proteins associate with rafts. Roles for phytosphingosine (PHS) and dihydrosphingosine (DHS) in heat stress continue to be uncovered including regulation of the transient cell cycle arrest, control of putative signaling pathways that govern cell integrity, endocytosis, movement of the cortical actin cytoskeleton and regulation of protein breakdown in the plasma membrane. Other studies suggest roles for sphingolipids in exocytosis, growth regulation and longevity. Finally, some progress has been made in understanding how sphingolipid synthesis is regulated and how sphingolipid levels are maintained.
Collapse
Affiliation(s)
- Robert C Dickson
- Department of Cellular and Molecular Biochemistry and the Lucille P. Markey Cancer Center, University of Kentucky College of Medicine, Lexington 40536-0298, USA.
| | | |
Collapse
|
143
|
Beaudoin F, Gable K, Sayanova O, Dunn T, Napier JA. A Saccharomyces cerevisiae gene required for heterologous fatty acid elongase activity encodes a microsomal beta-keto-reductase. J Biol Chem 2002; 277:11481-8. [PMID: 11792704 DOI: 10.1074/jbc.m111441200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A number of Saccharomyces cerevisiae membrane-bound oxidoreductases were examined for potential roles in microsomal fatty acid elongation, by assaying heterologous elongating activities in individual deletion mutants. One yeast gene, YBR159w, was identified as being required for activity of both the Caenorhabditis elegans elongase PEA1 (F56H11.4) and the Arabidopsis thaliana elongase FAE1. Ybr159p shows some limited homology to human steroid dehydrogenases and is a member of the short-chain alcohol dehydrogenase superfamily. Disruption of YBR159w is not lethal, in contrast to previous reports, although the mutants are slow growing and display high temperature sensitivity. Both Ybr159p and an Arabidopsis homologue were shown to restore heterologous elongase activities when expressed in ybr159Delta mutants. Biochemical characterization of microsomal preparations from ybr159Delta cells revealed a primary perturbation in beta-ketoacyl reduction, confirming the assignment of YBR159w as encoding a component of the microsomal elongase.
Collapse
Affiliation(s)
- Frédéric Beaudoin
- Institute of Arable Crops Research-Long Ashton Research Station, Long Ashton, Bristol BS41 9AF, United Kingdom
| | | | | | | | | |
Collapse
|
144
|
Gable K, Han G, Monaghan E, Bacikova D, Natarajan M, Williams R, Dunn TM. Mutations in the yeast LCB1 and LCB2 genes, including those corresponding to the hereditary sensory neuropathy type I mutations, dominantly inactivate serine palmitoyltransferase. J Biol Chem 2002; 277:10194-200. [PMID: 11781309 DOI: 10.1074/jbc.m107873200] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It was recently demonstrated that mutations in the human SPTLC1 gene, encoding the Lcb1p subunit of serine palmitoyltransferase (SPT), cause hereditary sensory neuropathy type I . As a member of the subfamily of pyridoxal 5'-phosphate enzymes known as the alpha-oxoamine synthases, serine palmitoyltransferase catalyzes the committed step of sphingolipid synthesis. The residues that are mutated to cause hereditary sensory neuropathy type I reside in a highly conserved region of Lcb1p that is predicted to be a catalytic domain of Lcb1p on the basis of alignments with other members of the alpha-oxoamine synthase family. We found that the corresponding mutations in the LCB1 gene of Saccharomyces cerevisiae reduce serine palmitoyltransferase activity. These mutations are dominant and decrease serine palmitoyltransferase activity by 50% when the wild-type and mutant LCB1 alleles are coexpressed. We also show that serine palmitoyltransferase is an Lcb1p small middle dotLcb2p heterodimer and that the mutated Lcb1p proteins retain their ability to interact with Lcb2p. Modeling studies suggest that serine palmitoyltransferase is likely to have a single active site that lies at the Lcb1p small middle dotLcb2p interface and that the mutations in Lcb1p reside near the lysine in Lcb2p that is expected to form the Schiff's base with the pyridoxal 5'-phosphate cofactor. Furthermore, mutations in this lysine and in a histidine residue that is also predicted to be important for pyridoxal 5'-phosphate binding to Lcb2p also dominantly inactivate SPT similar to the hereditary sensory neuropathy type 1-like mutations in Lcb1p.
Collapse
Affiliation(s)
- Ken Gable
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20184, USA
| | | | | | | | | | | | | |
Collapse
|
145
|
Tamura K, Mitsuhashi N, Hara-Nishimura I, Imai H. Characterization of an Arabidopsis cDNA encoding a subunit of serine palmitoyltransferase, the initial enzyme in sphingolipid biosynthesis. PLANT & CELL PHYSIOLOGY 2001; 42:1274-81. [PMID: 11726713 DOI: 10.1093/pcp/pce165] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Serine palmitoyltransferase (SPT; EC 2.3.1.50) catalyzes the condensation of serine with palmitoyl-CoA to form 3-ketosphinganine in the first step of de novo sphingolipid biosynthesis. In this study, we describe the cloning and functional characterization of a cDNA from Arabidopsis thaliana encoding the LCB2 subunit of SPT. The Arabidopsis LCB2 (AtLCB2) cDNA contains an open reading frame of 1,467 nucleotides, encoding 489 amino acids. The predicted polypeptide contains three transmembrane helices and a highly conserved motif involved in pyridoxal phosphate binding. Expression of this open reading frame in the Saccharomyces cerevisiae mutant strains defective in SPT activity resulted in the expression of a significant level of sphinganine, suggesting that AtLCB2 cDNA encodes SPT. Southern blot analysis and inspection of the complete Arabidopsis genome sequence database suggest that there is a second LCB2-like gene in Arabidopsis. Expression of a green fluorescent protein (GFP) fusion product in suspension-cultured tobacco BY-2 cells showed that AtLCB2 is localized to the endoplasmic reticulum. AtLCB2 cDNA may be used to study how sphingolipid synthesis is regulated in higher plants.
Collapse
Affiliation(s)
- K Tamura
- Department of Biology, Graduate School of Natural Science, Konan University, Kobe, 658-8501 Japan
| | | | | | | |
Collapse
|
146
|
Bauman M, Mesarić M, Ribar S, Marić V, Tudja M. Natural zeolite clinoptilolite increases the concentrations of sphingoid bases in the yeast Yarrowia lipolytica. J Basic Microbiol 2001; 41:7-16. [PMID: 11314249 DOI: 10.1002/1521-4028(200103)41:1<7::aid-jobm7>3.0.co;2-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In the present paper, we studied the effect of natural zeolite clinoptilolite on sphingolipid metabolism in the yeast Yarrowia lipolytica. We also investigated if zeolite addition had any impact on cell shape and size, as well as on the pH alterations during the culture growth. High performance liquid chromatography analysis of sphingoid bases obtained by acid hydrolysis of complex sphingolipids from Y. lipolytica showed that their concentrations markedly rose upon the zeolite addition. The largest increase among the identified molecular species of sphingoid bases was seen in C18 phytosphingosine, whose levels rose 6.2-fold and 22.3-fold after culturing cells for 24 and 36 hours respectively in the presence of finely ground zeolite. pH measurements of the culture medium showed a similarity between pH profiles of control and zeolite-supplemented cells, suggesting that ion-exchange capacity was not probably responsible for the observed change in sphingolipid metabolism. Scanning electron microscopy revealed that zeolite affected cell size and shape. Y. lipolytica cells grown in the absence of zeolite were oval-shaped with an average cell size of 0.7-2.7 microns, whereas when cultured with zeolite, they were round-shaped and larger, having an average cell size of 1.3-2.9 microns.
Collapse
Affiliation(s)
- M Bauman
- Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, Salata 3, HR-10000 Zagreb, Croatia
| | | | | | | | | |
Collapse
|
147
|
Hannun YA, Luberto C, Argraves KM. Enzymes of sphingolipid metabolism: from modular to integrative signaling. Biochemistry 2001; 40:4893-903. [PMID: 11305904 DOI: 10.1021/bi002836k] [Citation(s) in RCA: 374] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Many enzymes of sphingolipid metabolism are regulated in response to extra- and intracellular stimuli and in turn serve as regulators of levels of bioactive lipids (such as sphingosine, ceramide, sphingosine 1-phosphate, and diacylglycerol), and as such, they serve a prototypical modular function in cell regulation. However, lipid metabolism is also closely interconnected in that a product of one enzyme serves as a substrate for another. Moreover, many cell stimuli regulate more than one of these enzymes, thus adding to the complexity of regulation of lipid metabolism. In this paper, we review the status of enzymes of sphingolipid metabolism in cell regulation and propose a role for these enzymes in integration of cell responses, a role that builds on the modular organization while also taking advantage of the complexity and interconnectedness of lipid metabolism, thus providing for a combinatorial mechanism of generating diversity in cell responses. This may be a general prototype for the involvement of metabolic pathways in cell regulation.
Collapse
Affiliation(s)
- Y A Hannun
- Department of Biochemistry and Molecular Biology, The Medical University of South Carolina, Charleston 29425, USA.
| | | | | |
Collapse
|
148
|
Kohlwein SD, Eder S, Oh CS, Martin CE, Gable K, Bacikova D, Dunn T. Tsc13p is required for fatty acid elongation and localizes to a novel structure at the nuclear-vacuolar interface in Saccharomyces cerevisiae. Mol Cell Biol 2001; 21:109-25. [PMID: 11113186 PMCID: PMC88785 DOI: 10.1128/mcb.21.1.109-125.2001] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The TSC13/YDL015c gene was identified in a screen for suppressors of the calcium sensitivity of csg2Delta mutants that are defective in sphingolipid synthesis. The fatty acid moiety of sphingolipids in Saccharomyces cerevisiae is a very long chain fatty acid (VLCFA) that is synthesized by a microsomal enzyme system that lengthens the palmitate produced by cytosolic fatty acid synthase by two carbon units in each cycle of elongation. The TSC13 gene encodes a protein required for elongation, possibly the enoyl reductase that catalyzes the last step in each cycle of elongation. The tsc13 mutant accumulates high levels of long-chain bases as well as ceramides that harbor fatty acids with chain lengths shorter than 26 carbons. These phenotypes are exacerbated by the deletion of either the ELO2 or ELO3 gene, both of which have previously been shown to be required for VLCFA synthesis. Compromising the synthesis of malonyl coenzyme A (malonyl-CoA) by inactivating acetyl-CoA carboxylase in a tsc13 mutant is lethal, further supporting a role of Tsc13p in VLCFA synthesis. Tsc13p coimmunoprecipitates with Elo2p and Elo3p, suggesting that the elongating proteins are organized in a complex. Tsc13p localizes to the endoplasmic reticulum and is highly enriched in a novel structure marking nuclear-vacuolar junctions.
Collapse
Affiliation(s)
- S D Kohlwein
- SFB Biomembrane Research Center, Department of Biochemistry, Technical University Graz, A8010 Graz, Austria
| | | | | | | | | | | | | |
Collapse
|
149
|
Georgopapadakou NH. Antifungals targeted to sphingolipid synthesis: focus on inositol phosphorylceramide synthase. Expert Opin Investig Drugs 2000; 9:1787-96. [PMID: 11060777 DOI: 10.1517/13543784.9.8.1787] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Currently available antifungal drugs for serious infections have essentially two molecular targets, 14alpha demethylase (azoles) and ergosterol (polyenes). The former is a fungistatic target, vulnerable to resistance development; the latter, while a fungicidal target, is not sufficiently different from the host to ensure high selectivity. Antifungals in clinical development have a third molecular target, beta-1,3-glucan synthase. Drugs aimed at totally new targets are required to increase our chemotherapeutic options and to forestall, alone or in combination chemotherapy, the emergence of drug resistance. Sphingolipids, essential membrane components in eukaryotic cells, but distinct in mammalian and fungal cells, present an attractive new target. Several natural product inhibitors of sphingolipid biosynthesis have been discovered in recent years, some of which act at a step unique to fungi and have potent and selective antifungal activity.
Collapse
Affiliation(s)
- N H Georgopapadakou
- Antimicrobial Research, DuPont Pharmaceuticals, Experimental Station, E400/3456A, PO Box 80400, Wilmington, DE 19880-0400, USA.
| |
Collapse
|
150
|
Hanada K, Hara T, Nishijima M. D-Serine inhibits serine palmitoyltransferase, the enzyme catalyzing the initial step of sphingolipid biosynthesis. FEBS Lett 2000; 474:63-5. [PMID: 10828452 DOI: 10.1016/s0014-5793(00)01579-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Serine palmitoyltransferase (SPT), responsible for the initial step of sphingolipid biosynthesis, catalyzes condensation of palmitoyl coenzyme A and L-serine to produce 3-ketodihydrosphingosine (KDS). For determination of the stereochemical specificity of the amino acid substrate, a competition analysis of the production of [(3)H]KDS from L-[(3)H]serine was performed using purified SPT. D-Serine inhibited [(3)H]KDS production as effectively as non-radioactive L-serine, whereas neither D-alanine nor D-threonine showed any significant effect. Incubation of purified SPT with [palmitoyl 1-(14)C]palmitoyl coenzyme A and D-serine did not produce [(14)C]KDS, while the control incubation with L-serine did. These results suggest that D-serine competes with L-serine for the amino acid recognition site of SPT, but that D-serine is not utilized by this enzyme to produce KDS.
Collapse
Affiliation(s)
- K Hanada
- Department of Biochemistry, National Institute of Infectious Diseases, 1-23-1, Toyama, Tokyo, Japan.
| | | | | |
Collapse
|