101
|
Williams C, Distel B. Pex13p: docking or cargo handling protein? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1585-91. [PMID: 17056133 DOI: 10.1016/j.bbamcr.2006.09.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Revised: 09/05/2006] [Accepted: 09/06/2006] [Indexed: 11/20/2022]
Abstract
The Src homology 3 (SH3) domain-containing peroxisomal membrane protein Pex13p is an essential component of the import machinery for matrix proteins and forms a binding site for the peroxisomal targeting type I (PTS1) receptor Pex5p. The interaction between these two proteins can be described as novel in several ways. In the yeasts Saccharomyces cerevisiae and Pichia pastoris, the SH3 domain itself is responsible for the interaction but not via the typical P-x-x-P motifs that are common to SH3 ligands as Pex5p lacks such a motif. Instead, a region of Pex5p containing a W-x-x-x-F/Y motif is crucial for this binding. In mammals, again W-x-x-x-F/Y motifs appear to be important for the interaction but the SH3 domain seems not to be the site for Pex5p binding, this being located in the N-terminus of Pex13p. Despite these differences in the details of the Pex13p-Pex5p interaction, the association of the two proteins is a crucial step in Pex5p-mediated protein import into peroxisomes in both yeasts and mammals.
Collapse
Affiliation(s)
- Chris Williams
- Department of Medical Biochemistry, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | |
Collapse
|
102
|
Steinberg SJ, Dodt G, Raymond GV, Braverman NE, Moser AB, Moser HW. Peroxisome biogenesis disorders. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1733-48. [PMID: 17055079 DOI: 10.1016/j.bbamcr.2006.09.010] [Citation(s) in RCA: 338] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 09/05/2006] [Accepted: 09/06/2006] [Indexed: 01/02/2023]
Abstract
Defects in PEX genes impair peroxisome assembly and multiple metabolic pathways confined to this organelle, thus providing the biochemical and molecular bases of the peroxisome biogenesis disorders (PBD). PBD are divided into two types--Zellweger syndrome spectrum (ZSS) and rhizomelic chondrodysplasia punctata (RCDP). Biochemical studies performed in blood and urine are used to screen for the PBD. DNA testing is possible for all of the disorders, but is more challenging for the ZSS since 12 PEX genes are known to be associated with this spectrum of PBD. In contrast, PBD-RCDP is associated with defects in the PEX7 gene alone. Studies of the cellular and molecular defects in PBD patients have contributed significantly to our understanding of the role of each PEX gene in peroxisome assembly.
Collapse
Affiliation(s)
- Steven J Steinberg
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | | | | | | | | | |
Collapse
|
103
|
Rayapuram N, Subramani S. The importomer--a peroxisomal membrane complex involved in protein translocation into the peroxisome matrix. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1613-9. [PMID: 17027097 DOI: 10.1016/j.bbamcr.2006.08.035] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 08/18/2006] [Accepted: 08/23/2006] [Indexed: 12/01/2022]
Abstract
The import of proteins into the peroxisome matrix is an essential step in peroxisome biogenesis, which is critical for normal functioning of most eukaryotic cells. The translocation of proteins across the peroxisome membrane and the dynamic behavior of the import receptors during the import cycle is facilitated by several peroxisome-membrane-associated protein complexes, one of which is called the importomer complex [B. Agne, N.M. Meindl, K. Niederhoff, H. Einwachter, P. Rehling, A. Sickmann, H.E. Meyer, W. Girzalsky, W.H. Kunau, Pex8p: an intraperoxisomal organizer of the peroxisomal import machinery, Mol. Cell 11 (2003) 635-646; P.P. Hazra, I. Suriapranata, W.B. Snyder, S. Subramani, Peroxisome remnants in pex3Delta cells and the requirement of Pex3p for interactions between the peroxisomal docking and translocation subcomplexes, Traffic 3 (2002) 560-574. ]. We provide below a brief historical perspective regarding the importomer and its role in peroxisome biogenesis. We also identify areas in which further work is needed to uncover the physiological role of the importomer.
Collapse
Affiliation(s)
- Naganand Rayapuram
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, Room 3230 Bonner Hall, 9500 Gilman Drive, UC San Diego, La Jolla, CA 92093-0322, USA
| | | |
Collapse
|
104
|
Léon S, Goodman JM, Subramani S. Uniqueness of the mechanism of protein import into the peroxisome matrix: transport of folded, co-factor-bound and oligomeric proteins by shuttling receptors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1552-64. [PMID: 17011644 DOI: 10.1016/j.bbamcr.2006.08.037] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 08/18/2006] [Accepted: 08/23/2006] [Indexed: 11/30/2022]
Abstract
Based on earlier suggestions that peroxisomes may have arisen from endosymbionts that later lost their DNA, it was expected that protein transport into this organelle would have parallels to systems found in other organelles of endosymbiont origin, such as mitochondria and chloroplasts. This review highlights three features of peroxisomal matrix protein import that make it unique in comparison with these other subcellular compartments - the ability of this organelle to transport folded, co-factor-bound and oligomeric proteins, the dynamics of the import receptors during the matrix protein import cycle and the existence of a peroxisomal quality-control pathway, which insures that the peroxisome membrane is cleared of cargo-free receptors.
Collapse
Affiliation(s)
- Sébastien Léon
- Section of Molecular Biology, Division of Biological Sciences, University California, Room 3230 Bonner Hall, 9500 Gilman Drive, UC San Diego, La Jolla, CA 92093-0322, USA
| | | | | |
Collapse
|
105
|
Hayashi M, Nishimura M. Arabidopsis thaliana--a model organism to study plant peroxisomes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1382-91. [PMID: 17005266 DOI: 10.1016/j.bbamcr.2006.08.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 07/28/2006] [Accepted: 08/18/2006] [Indexed: 10/24/2022]
Abstract
In higher plants, peroxisomes have been believed to play a pivotal role in three metabolic pathways, which are lipid breakdown, photorespiration and H2O2-detoxificaton. Recently, significant progress in the study of plant peroxisomes was established by forward-/reverse-genetics and post-genomic approaches using Arabidopsis thaliana, the first higher plant to have its entire genome sequenced. These studies illustrated that plant peroxisomes have more diverse functions than we previously thought. Research using Arabidopsis thaliana is improving our understanding of the function of plant peroxisomes.
Collapse
Affiliation(s)
- Makoto Hayashi
- National Institute for Basic Biology, Okazaki 444-8585, Japan
| | | |
Collapse
|
106
|
Matsuzono Y, Matsuzaki T, Fujiki Y. Functional domain mapping of peroxin Pex19p: interaction with Pex3p is essential for function and translocation. J Cell Sci 2006; 119:3539-50. [PMID: 16895967 DOI: 10.1242/jcs.03100] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The peroxin Pex19p functions in peroxisomal membrane assembly. Here we mapped functional domains of human Pex19p comprising 299 amino acids. Pex19p mutants deleted in the C-terminal CAAx farnesylation motif, the C-terminal 38 amino acid residues and the N-terminal 11 residues, maintained peroxisome-restoring activity in pex19 cells. The sequence 12-261 was essential for re-establishing peroxisome activity. Pex19p was partly localized to peroxisomes but mostly localized in the cytosol. Pex19p interacted with multiple membrane proteins, including the other two membrane biogenesis peroxins, Pex3p and Pex16p, those involved in matrix protein import such as Pex14p, Pex13p, Pex10p, and Pex26p, peroxisome morphogenesis factor Pex11pbeta, and a PMP70 peroxisome-targeting signal region at residues 1-123. In yeast two-hybrid assays, Pex10p and Pex11pbeta interacted only with full-length Pex19p. Of various truncated Pex19p variants active in translocating to peroxisomes, the mutants with the shortest sequence (residues 12-73 and 40-131) were localized to peroxisomes and competent in binding to Pex3p. Furthermore, membrane peroxins were initially discernible in a cytosolic staining pattern in pex19 cells only when co-expressed with Pex19p and were then localized to peroxisomes in a temporally differentiated manner. Pex19p probably functions as a chaperone for membrane proteins and transports them to peroxisomes by anchoring to Pex3p using residues 12-73 and 40-131.
Collapse
Affiliation(s)
- Yuji Matsuzono
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | |
Collapse
|
107
|
Lee JR, Jang HH, Park JH, Jung JH, Lee SS, Park SK, Chi YH, Moon JC, Lee YM, Kim SY, Kim JY, Yun DJ, Cho MJ, Lee KO, Lee SY. Cloning of two splice variants of the rice PTS1 receptor, OsPex5pL and OsPex5pS, and their functional characterization using pex5-deficient yeast and Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 47:457-66. [PMID: 16792693 DOI: 10.1111/j.1365-313x.2006.02797.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Using the rice PEX14 cDNA as a bait in a yeast two-hybrid assay, two splice variants of the type I peroxisomal targeting signal (PTS1) receptor, OsPex5pL and OsPex5pS, were cloned from a pathogen-treated rice leaf cDNA library. The proteins were produced from a single gene by alternative splicing, which generated a full-length variant, OsPEX5L, and a variant that lacked exon 7, OsPEX5S. OsPex5pL contained 11 copies of the pentapeptide motif WXXXF/Y in its N-terminus, and seven tetratricopeptide repeats in its C-terminus. Expression of OsPEX5L and OsPEX5S predominantly occurred in leaf tissues, and was induced by various stresses, such as exposure to the pathogen Magnaporthe grisea, and treatment with fungal elicitor, methyl viologen, NaCl or hydrogen peroxide. The Arabidopsis T-DNA insertional pex5 mutant, Atpex5, which does not germinate in the absence of sucrose and was resistant to indole-3-butyric acid (IBA), was perfectly rescued by over-expression of OsPex5pL, but not by OsPex5pS. Using transient expression of OsPex5pL and OsPex5pS in the Atpex5 mutant, we show that OsPex5pL translocates both PTS1- and PTS2-containing proteins into the peroxisome by interacting with OsPex7p, whereas OsPex5pS is involved only in PTS1-dependent import in Arabidopsis.
Collapse
Affiliation(s)
- Jung Ro Lee
- Environmental Biotechnology National Core Research Center, Gyeongsang National University, Jinju 660-701, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Tamura S, Yasutake S, Matsumoto N, Fujiki Y. Dynamic and functional assembly of the AAA peroxins, Pex1p and Pex6p, and their membrane receptor Pex26p. J Biol Chem 2006; 281:27693-704. [PMID: 16854980 DOI: 10.1074/jbc.m605159200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two AAA peroxins, Pex1p and Pex6p, are encoded by PEX1 and PEX6, the causal genes for peroxisome biogenesis disorders of complementation group 1 (CG1) and CG4, respectively. PEX26 responsible for peroxisome biogenesis disorders of CG8 encodes Pex26p, the recruiter of Pex1p.Pex6p complexes to peroxisomes. We herein assigned the binding regions between human Pex1p and Pex6p and elucidated pivotal roles of the AAA cassettes, called D1 and D2 domains, in Pex1p-Pex6p interaction and peroxisome biogenesis. ATP binding in both AAA cassettes but not ATP hydrolysis in D2 of both Pex1p and Pex6p was prerequisite for Pex1p-Pex6p interaction and their peroxisomal localization. The AAA cassettes, D1 and D2, were essential for peroxisome-restoring activity of Pex1p and Pex6p. In HEK293 cells, endogenous Pex1p was partly localized likely as a homo-oligomer in the cytoplasm, while Pex6p and Pex26p were predominantly localized on peroxisomes. Interaction of Pex1p with Pex6p conferred a conformational change and dissociation of the Pex1p oligomer. These results suggested that Pex1p possesses two distinct oligomeric forms, a homo-oligomer in the cytosol and a hetero-oligomer on peroxisome membranes, possibly playing distinct functions in peroxisome biogenesis.
Collapse
Affiliation(s)
- Shigehiko Tamura
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka 812-8581, Japan
| | | | | | | |
Collapse
|
109
|
Tanaka A, Kobayashi S, Fujiki Y. Peroxisome division is impaired in a CHO cell mutant with an inactivating point-mutation in dynamin-like protein 1 gene. Exp Cell Res 2006; 312:1671-84. [PMID: 16529741 DOI: 10.1016/j.yexcr.2006.01.028] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Revised: 01/30/2006] [Accepted: 01/30/2006] [Indexed: 11/17/2022]
Abstract
We earlier isolated a Chinese hamster ovary cell line ZP121 showing morphologically abnormal, tubular peroxisomes, and apparent dysmorphogenesis of mitochondria. Here, we identified an inactivating point-mutation in dynamin-like protein 1 gene, DLP1, responsible for the phenotype of ZP121. One allele of DLP1 possessed a point missense mutation resulting in G363D in the middle region of 699-amino-acid long DLP1, termed DLP1G363D, while the other allele was normal. DLP1G363D was apparently expressed at a higher level than DLP1. Abnormal morphogenesis of peroxisomes as well as mitochondria was restored when wild-type DLP1 was transfected. The GTPase activity of DLP1G363D was barely detectable, indicating that the G363D mutation severely affected the GTPase activity. Moreover, a higher level of DLP1G363D expression in CHO-K1 cells reproduced the ZP121-type phenotype, hence indicating its dominant-negative activity to the wild-type DLP1, most likely by forming a heteromeric tetramer. The G363D mutation also gave rise to a temperature-sensitive phenotype showing normal morphogenesis of peroxisomes and mitochondria at 40 degrees C. Microtubule organization was most likely involved in the elongation of peroxisomes. Furthermore, ZP121 was lowered in the level of phospholipids, plasmalogens, and phosphatidylethanolamine and was less sensitive to oxidative stresses. Thus, ZP121 is the first dlp1 mutant in mammalian cells.
Collapse
Affiliation(s)
- Atsushi Tanaka
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka 812-8581, Japan
| | | | | |
Collapse
|
110
|
Léon S, Zhang L, McDonald WH, Yates J, Cregg JM, Subramani S. Dynamics of the peroxisomal import cycle of PpPex20p: ubiquitin-dependent localization and regulation. ACTA ACUST UNITED AC 2006; 172:67-78. [PMID: 16390998 PMCID: PMC2063535 DOI: 10.1083/jcb.200508096] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We characterize the peroxin PpPex20p from Pichia pastoris and show its requirement for translocation of PTS2 cargoes into peroxisomes. PpPex20p docks at the peroxisomal membrane and translocates into peroxisomes. Its peroxisomal localization requires the docking peroxin Pex14p but not the peroxins Pex2p, Pex10p, and Pex12p, whose absence causes peroxisomal accumulation of Pex20p. Similarities between Pex5p and Pex20p were noted in their protein interactions and dynamics during import, and both contain a conserved NH2-terminal domain. In the absence of the E2-like Pex4p or the AAA proteins Pex1p and Pex6p, Pex20p is degraded via polyubiquitylation of residue K19, and the K19R mutation causes accumulation of Pex20p in peroxisome remnants. Finally, either interference with K48-branched polyubiquitylation or removal of the conserved NH2-terminal domain causes accumulation of Pex20p in peroxisomes, mimicking a defect in its recycling to the cytosol. Our data are consistent with a model in which Pex20p enters peroxisomes and recycles back to the cytosol in an ubiquitin-dependent manner.
Collapse
Affiliation(s)
- Sébastien Léon
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | | | | | | | | | | |
Collapse
|
111
|
Itoh R, Fujiki Y. Functional Domains and Dynamic Assembly of the Peroxin Pex14p, the Entry Site of Matrix Proteins. J Biol Chem 2006; 281:10196-205. [PMID: 16459329 DOI: 10.1074/jbc.m600158200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 41-kDa membrane-anchored peroxin Pex14p functions as the peroxisome targeting signal (PTS) receptor-mediated, initial import site for matrix proteins. We here identify the functional domains of Pex14p involved in the assembly of import site subcomplexes. The minimal region of Pex14p required for restoring impaired protein import in pex14 Chinese hamster ovary cell mutant lies at residues 21-260 in the primary sequence. A highly conserved N-terminal region, encompassing residues 21-70, interacts with the PTS1 receptor Pex5p, Pex13p, and Pex19p that is essential for membrane biogenesis. N-terminal residues 21-140, including a hydrophobic segment at 110-138, function as a topogenic sequence. Site-directed mutagenesis, size fractionation, and chemical cross-linking analyses demonstrate that the coiled-coil domain at residues 156-197 regulates homodimerization of Pex14p. Moreover, AXXXA and GXXXG motifs in the transmembrane segment mediate homomeric oligomerization of Pex14p, giving rise to assembly of high molecular mass complexes and thereby assuring Pex13p-dependent localization of Pex14p to peroxisomes. Pex5p, Pex13p, and Pex19p bind to Pex14p homo-oligomers with different molecular masses, whereas cargo-unloaded Pex5p apparently disassembles Pex14p homo-oligomers. Thus, Pex14p most likely forms several distinct peroxin complexes involved in peroxisomal matrix protein import.
Collapse
Affiliation(s)
- Ryota Itoh
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | |
Collapse
|
112
|
Miyata N, Fujiki Y. Shuttling mechanism of peroxisome targeting signal type 1 receptor Pex5: ATP-independent import and ATP-dependent export. Mol Cell Biol 2006; 25:10822-32. [PMID: 16314507 PMCID: PMC1316942 DOI: 10.1128/mcb.25.24.10822-10832.2005] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Peroxisomal matrix proteins are posttranslationally imported into peroxisomes with the peroxisome-targeting signal 1 receptor, Pex5. The longer isoform of Pex5, Pex5L, also transports Pex7-PTS2 protein complexes. After unloading the cargoes, Pex5 returns to the cytosol. To address molecular mechanisms underlying Pex5 functions, we constructed a cell-free Pex5 translocation system with a postnuclear supernatant fraction from CHO cell lines. In assays using the wild-type CHO-K1 cell fraction, (35)S-labeled Pex5 was specifically imported into and exported from peroxisomes with multiple rounds. (35)S-Pex5 import was also evident using peroxisomes isolated from rat liver. ATP was not required for (35)S-Pex5 import but was indispensable for export. (35)S-Pex5 was imported neither to peroxisome remnants from RING peroxin-deficient cell mutants nor to those from pex14 cells lacking a Pex5-docking site. In contrast, (35)S-Pex5 was imported into the peroxisome remnants of PEX1-, PEX6-, and PEX26-defective cell mutants, including those from patients with peroxisome biogenesis disorders, from which, however, (35)S-Pex5 was not exported, thereby indicating that Pex1 and Pex6 of the AAA ATPase family and their recruiter, Pex26, were essential for Pex5 export. Moreover, we analyzed the (35)S-Pex5-associated complexes on peroxisomal membranes by blue-native polyacrylamide gel electrophoresis. (35)S-Pex5 was in two distinct, 500- and 800-kDa complexes comprising different sets of peroxins, such as Pex14 and Pex2, implying that Pex5 transited between the subcomplexes. Together, results indicated that Pex5 most likely enters peroxisomes, changes its interacting partners, and then exits using ATP energy.
Collapse
Affiliation(s)
- Non Miyata
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Higashi-ku, Fukuoka, Japan
| | | |
Collapse
|
113
|
Madrid K, Jardim A. Peroxin 5-peroxin 14 association in the protozoan Leishmania donovani involves a novel protein-protein interaction motif. Biochem J 2006; 391:105-14. [PMID: 15929724 PMCID: PMC1237144 DOI: 10.1042/bj20050328] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Import of proteins with a PTS1 (peroxisomal targeting signal 1) into the Leishmania glycosomal organelle involves docking of a PTS1-laden LdPEX5 [Leishmania donovani PEX5 (peroxin 5)] receptor to LdPEX14 on the surface of the glycosomal membrane. In higher eukaryotes, the PEX5-PEX14 interaction is mediated by a conserved diaromatic WXXXY/F motif. Site-directed and deletion mutageneses of the three WXXXY/F repeats in LdPEX5 did not abolish the LdPEX5-LdPEX14 association. Analysis of the equilibrium dissociation constant (K(d)) revealed that ldpex5-W53A (Trp53-->Ala), ldpex5-W293A, ldpex5-W176,293A and ldpex5-W53,176,293A mutant receptors were capable of binding LdPEX14 with affinities comparable with wild-type LdPEX5. That the diaromatic motifs were not required for the LdPEX5-LdPEX14 interaction was further verified by deletion analysis that showed that ldpex5 deletion mutants or ldpex5 fragments lacking the WXXXY/F motifs retained LdPEX14 binding activity. Mapping studies of LdPEX5 indicated that the necessary elements required for LdPEX14 association were localized to a region between residues 290 and 323. Finally, mutational analysis of LdPEX14 confirmed that residues 23-63, which encompass the conserved signature sequence AX2FLX7SPX6FLKGKGL/V present in all PEX14 proteins, are essential for LdPEX5 binding.
Collapse
Affiliation(s)
- Kleber P. Madrid
- Institute of Parasitology, McGill University, Macdonald Campus, Ste. Anne de Bellevue, Quebec, Canada H9X 3V9
| | - Armando Jardim
- Institute of Parasitology, McGill University, Macdonald Campus, Ste. Anne de Bellevue, Quebec, Canada H9X 3V9
- To whom correspondence should be addressed (email )
| |
Collapse
|
114
|
Matsuzono Y, Fujiki Y. In vitro transport of membrane proteins to peroxisomes by shuttling receptor Pex19p. J Biol Chem 2005; 281:36-42. [PMID: 16280322 DOI: 10.1074/jbc.m509819200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The peroxin Pex19p comprising 299 amino acids functions in peroxisomal membrane assembly. We here developed a cell-free system for transport of membrane proteins to peroxisomes. Pex19p interacts with multiple membrane peroxins, including other membrane biogenesis peroxins, Pex16p and Pex26p, involved in matrix protein import. Cell-free synthesized, 35S-labeled Pex19p was targeted to subcellular fractions containing peroxisomes from Chinese hamster ovary-K1 cells as well as peroxisomes isolated from rat liver in an ATP-dependent manner. Such translocation was also reproduced with in vitro synthesized 35S-Pex16p with two transmembrane segments and C-tail anchor-type 35S-Pex26p, upon incubation with 35S-Pex19p in the reaction mixtures containing isolated peroxisomes. The transported 35S-Pex16p and 35S-Pex26p were integrated into membranes as assessed by the sodium carbonate extraction method. Peroxisome-associated and partly Na2CO3-resistant 35S-Pex19p was released to the cytosolic fraction upon incubation in the absence of ATP, whereas 35S-Pex16p and 35S-Pex26p remained in the membranes. Furthermore, not only 35S-Pex19p but also 35S-Pex19p complexes each with 35S-Pex16p and 35S-Pex26p were bound to 35S-Pex3p in vitro. Together, these results strongly suggested that Pex19p translocates the membrane peroxins from the cytosol to peroxisomes in an ATP- and Pex3p-dependent manner and then shuttles back to the cytosol.
Collapse
Affiliation(s)
- Yuji Matsuzono
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka 812-8581, Japan
| | | |
Collapse
|
115
|
Abstract
Genetic and proteomic approaches have led to the identification of 32 proteins, collectively called peroxins, which are required for the biogenesis of peroxisomes. Some are responsible for the division and inheritance of peroxisomes; however, most peroxins have been implicated in the topogenesis of peroxisomal proteins. Peroxisomal membrane and matrix proteins are synthesized on free ribosomes in the cytosol and are imported post-translationally into pre-existing organelles (Lazarow PB & Fujiki Y (1985) Annu Rev Cell Biol1, 489-530). Progress has been made in the elucidation of how these proteins are targeted to the organelle. In addition, the understanding of the composition of the peroxisomal import apparatus and the order of events taking place during the cascade of peroxisomal protein import has increased significantly. However, our knowledge on the basic principles of peroxisomal membrane protein insertion or translocation of peroxisomal matrix proteins across the peroxisomal membrane is rather limited. The latter is of particular interest as the peroxisomal import machinery accommodates folded, even oligomeric, proteins, which distinguishes this apparatus from the well characterized translocons of other organelles. Furthermore, the origin of the peroxisomal membrane is still enigmatic. Recent observations suggest the existence of two classes of peroxisomal membrane proteins. Newly synthesized class I proteins are directly targeted to and inserted into the peroxisomal membrane, while class II proteins reach their final destination via the endoplasmic reticulum or a subcompartment thereof, which would be in accord with the idea that the peroxisomal membrane might be derived from the endoplasmic reticulum.
Collapse
Affiliation(s)
- Ines Heiland
- Ruhr-Universität Bochum, Institut für Physiologische Chemie, Bochum, Germany
| | | |
Collapse
|
116
|
Moyersoen J, Choe J, Fan E, Hol WGJ, Michels PAM. Biogenesis of peroxisomes and glycosomes: trypanosomatid glycosome assembly is a promising new drug target. FEMS Microbiol Rev 2005; 28:603-43. [PMID: 15539076 DOI: 10.1016/j.femsre.2004.06.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Revised: 06/14/2004] [Accepted: 06/15/2004] [Indexed: 10/26/2022] Open
Abstract
In trypanosomatids (Trypanosoma and Leishmania), protozoa responsible for serious diseases of mankind in tropical and subtropical countries, core carbohydrate metabolism including glycolysis is compartmentalized in peculiar peroxisomes called glycosomes. Proper biogenesis of these organelles and the correct sequestering of glycolytic enzymes are essential to these parasites. Biogenesis of glycosomes in trypanosomatids and that of peroxisomes in other eukaryotes, including the human host, occur via homologous processes involving proteins called peroxins, which exert their function through multiple, transient interactions with each other. Decreased expression of peroxins leads to death of trypanosomes. Peroxins show only a low level of sequence conservation. Therefore, it seems feasible to design compounds that will prevent interactions of proteins involved in biogenesis of trypanosomatid glycosomes without interfering with peroxisome formation in the human host cells. Such compounds would be suitable as lead drugs against trypanosomatid-borne diseases.
Collapse
Affiliation(s)
- Juliette Moyersoen
- Research Unit for Tropical Diseases, Christian de Duve Institute of Cellular Pathology and Laboratory of Biochemistry, Université Catholique de Louvain, ICP-TROP 74.39, Avenue Hippocrate 74, B-1200 Brussels, Belgium
| | | | | | | | | |
Collapse
|
117
|
Hayashi M, Yagi M, Nito K, Kamada T, Nishimura M. Differential contribution of two peroxisomal protein receptors to the maintenance of peroxisomal functions in Arabidopsis. J Biol Chem 2005; 280:14829-35. [PMID: 15637057 DOI: 10.1074/jbc.m411005200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peroxisomes in higher plant cells are known to differentiate in function depending on the cell type. Because of the functional differentiation, plant peroxisomes are subdivided into several classes, such as glyoxysomes and leaf peroxisomes. These peroxisomal functions are maintained by import of newly synthesized proteins containing one of two peroxisomal targeting signals known as PTS1 and PTS2. These targeting signals are known to be recognized by the cytosolic receptors, Pex5p and Pex7p, respectively. To demonstrate the contribution of Pex5p and Pex7p to the maintenance of peroxisomal functions in plants, double-stranded RNA constructs were introduced into the genome of Arabidopsis thaliana. Expression of the PEX5 and PEX7 genes was efficiently reduced by the double-stranded RNA-mediated interference in the transgenic Arabidopsis. The Pex5p-deficient Arabidopsis showed reduced activities for both glyoxysomal and leaf peroxisomal functions. An identical phenotype was observed in a transgenic Arabidopsis overexpressing functionally defective Pex5p. In contrast, the Pex7p-deficient Arabidopsis showed reduced activity for glyoxysomal function but not for leaf peroxisomal function. Analyses of peroxisomal protein import in the transgenic Arabidopsis revealed that Pex5p was involved in import of both PTS1-containing proteins and PTS2-containing proteins, whereas Pex7p contributed to the import of only PTS2-containing proteins. Overall, the results indicated that Pex5p and Pex7p play different roles in the maintenance of glyoxysomal and leaf peroxisomal functions in plants.
Collapse
Affiliation(s)
- Makoto Hayashi
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, Japan.
| | | | | | | | | |
Collapse
|
118
|
Schäfer A, Kerssen D, Veenhuis M, Kunau WH, Schliebs W. Functional similarity between the peroxisomal PTS2 receptor binding protein Pex18p and the N-terminal half of the PTS1 receptor Pex5p. Mol Cell Biol 2004; 24:8895-906. [PMID: 15456864 PMCID: PMC517879 DOI: 10.1128/mcb.24.20.8895-8906.2004] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Within the extended receptor cycle of peroxisomal matrix import, the function of the import receptor Pex5p comprises cargo recognition and transport. While the C-terminal half (Pex5p-C) is responsible for PTS1 binding, the contribution of the N-terminal half of Pex5p (Pex5p-N) to the receptor cycle has been less clear. Here we demonstrate, using different techniques, that in Saccharomyces cerevisiae Pex5p-N alone facilitates the import of the major matrix protein Fox1p. This finding suggests that Pex5p-N is sufficient for receptor docking and cargo transport into peroxisomes. Moreover, we found that Pex5p-N can be functionally replaced by Pex18p, one of two auxiliary proteins of the PTS2 import pathway. A chimeric protein consisting of Pex18p (without its Pex7p binding site) fused to Pex5p-C is able to partially restore PTS1 protein import in a PEX5 deletion strain. On the basis of these results, we propose that the auxiliary proteins of the PTS2 import pathway fulfill roles similar to those of the N-terminal half of Pex5p in the PTS1 import pathway.
Collapse
Affiliation(s)
- Antje Schäfer
- Institut für Physiologische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | | | | | | | | |
Collapse
|
119
|
Nair DM, Purdue PE, Lazarow PB. Pex7p translocates in and out of peroxisomes in Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2004; 167:599-604. [PMID: 15545321 PMCID: PMC2172567 DOI: 10.1083/jcb.200407119] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Pex7p is the soluble receptor responsible for importing into peroxisomes newly synthesized proteins bearing a type 2 peroxisomal targeting sequence. We observe that appending GFP to Pex7p's COOH terminus shifts Pex7p's intracellular distribution from predominantly cytosolic to predominantly peroxisomal in Saccharomyces cerevisiae. Cleavage of the link between Pex7p and GFP within peroxisomes liberates GFP, which remains inside the organelle, and Pex7p, which exits to the cytosol. The reexported Pex7p is functional, resulting in import of thiolase into peroxisomes and improved growth of the yeast on oleic acid. These results support the “extended shuttle” model of peroxisome import receptor function and open the way to future studies of receptor export.
Collapse
Affiliation(s)
- Devi M Nair
- Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
120
|
Madrid KP, De Crescenzo G, Wang S, Jardim A. Modulation of the Leishmania donovani peroxin 5 quaternary structure by peroxisomal targeting signal 1 ligands. Mol Cell Biol 2004; 24:7331-44. [PMID: 15314146 PMCID: PMC506994 DOI: 10.1128/mcb.24.17.7331-7344.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Revised: 04/28/2004] [Accepted: 06/03/2004] [Indexed: 11/20/2022] Open
Abstract
The import of proteins containing the peroxisomal targeting signal 1 (PTS1) into the Leishmania glycosome is dependent on the docking of the PTS1-loaded LdPEX5 cytosolic receptor with LdPEX14 on the glycosome surface. Here we show that, in the absence of PTS1, LdPEX5 is a tetramer that is stabilized by two distinct interaction domains; the first is a coiled-coil motif encompassing residues 277 to 310, whereas the second domain is localized to residues 1 to 202. By using microcalorimetry, surface plasmon resonance, and size exclusion chromatography techniques, we show that PTS1 peptide binding to LdPEX5 tetramers promotes their dissociation into dimeric structures, which are stabilized by a coiled-coil interaction. Moreover, we demonstrated that the resulting LdPEX5-PTS1 complex is remarkably stable and exhibits extremely slow dissociation kinetics. However, binding of LdPEX14 to LdPEX5 modulates the LdPEX5-PTS1 affinity as it decreases the thermodynamic dissociation constant for this latter complex by 10-fold. These changes in the oligomeric state of LdPEX5 and in its affinity for PTS1 ligand upon LdPEX14 binding may explain how, under physiological conditions, LdPEX5 can function to deliver and unload its cargo to the protein translocation machinery on the glycosomal membrane.
Collapse
Affiliation(s)
- Kleber P Madrid
- Institute of Parasitology, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
121
|
Costa-Rodrigues J, Carvalho AF, Gouveia AM, Fransen M, Sá-Miranda C, Azevedo JE. The N terminus of the peroxisomal cycling receptor, Pex5p, is required for redirecting the peroxisome-associated peroxin back to the cytosol. J Biol Chem 2004; 279:46573-9. [PMID: 15328363 DOI: 10.1074/jbc.m406399200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most newly synthesized peroxisomal matrix proteins are transported to the organelle by Pex5p, a remarkable multidomain protein involved in an intricate network of transient protein-protein interactions. Presently, our knowledge regarding the structure/function of amino acid residues 118 to the very last residue of mammalian Pex5p is quite vast. Indeed, the cargo-protein receptor domain as well as the binding sites for several peroxins have all been mapped to this region of Pex5p. In contrast, structural/functional data regarding the first 117 amino acid residues of Pex5p are still scarce. Here we show that a truncated Pex5p lacking the first 110 amino acid residues (DeltaN110-Pex5p) displays exactly the peroxisomal import properties of the full-length peroxin implying that this N-terminal domain is involved neither in cargo-protein binding nor in the docking/translocation step of the Pex5p-cargo protein complex at the peroxisomal membrane. However, the ATP-dependent export step of DeltaN110-Pex5p from the peroxisomal membrane is completely blocked, a phenomenon that was also observed for a Pex5p version lacking just the first 17 amino acid residues but not for a truncated protein comprising amino acid residues 1-324 of Pex5p. By exploring the unique properties of DeltaN110-Pex5p, the effect of temperature on the import/export kinetics of Pex5p was characterized. Our data indicate that the export step of Pex5p from the peroxisomal compartment (in contrast with its insertion into the organelle membrane) is highly dependent on the temperature.
Collapse
Affiliation(s)
- João Costa-Rodrigues
- Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, 4150-180 Porto, Instituto de Ciências Biomédicas de Abel Salazar, Largo do Professor Abel Salazar, 2, 4099-003 Porto, Portugal
| | | | | | | | | | | |
Collapse
|
122
|
Abstract
Peroxisomes are metabolic organelles with enzymatic content that are found in virtually all cells and are involved in beta-oxidation of fatty acids, hydrogen peroxide-based respiration and defence against oxidative stress. The steps of their biogenesis involves "peroxins", proteins encoded by PEX genes. Peroxins are involved in three key stages of peroxisome development: (1). import of peroxisomal membrane proteins; (2). import of peroxisomal matrix proteins and (3). peroxisome proliferation. Of these three areas, peroxisomal matrix-protein import is by far the best understood and accounts for most of the available published data on peroxisome biogenesis. Defects in peroxisome biogenesis result in peroxisome biogenesis disorders (PBDs), which although rare, have no known cure to-date. This review explores current understanding of each key area in peroxisome biogenesis, paying particular attention to the role of protein import.
Collapse
Affiliation(s)
- Laura-Anne Brown
- Centre for Plant Sciences, University of Leeds, Leeds, United Kingdom
| | | |
Collapse
|
123
|
Shimozawa N, Tsukamoto T, Nagase T, Takemoto Y, Koyama N, Suzuki Y, Komori M, Osumi T, Jeannette G, Wanders RJA, Kondo N. Identification of a new complementation group of the peroxisome biogenesis disorders andPEX14 as the mutated gene. Hum Mutat 2004; 23:552-8. [PMID: 15146459 DOI: 10.1002/humu.20032] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Peroxisome biogenesis disorders (PBD) are lethal hereditary diseases caused by abnormalities in the biogenesis of peroxisomes. At present, 12 different complementation groups have been identified and to date, all genes responsible for each of these complementation groups have been identified. The peroxisomal membrane protein PEX14 is a key component of the peroxisomal import machinery and may be the initial docking site for the two import receptors PEX5 and PEX7. Although PEX14 mutants have been identified in yeasts and CHO-cells, human PEX14 deficiency has apparently not been documented. We now report the identification of a new complementation group of the peroxisome biogenesis disorders with PEX14 as the defective gene. Indeed, human PEX14 rescues the import of a PTS1-dependent as well as a PTS2-dependent protein into the peroxisomes in fibroblasts from a patient with Zellweger syndrome belonging to the new complementation group. This patient was homozygous for a nonsense mutation in a putative coiled-coil region of PEX14, c.553C>T (p.Q185X). Furthermore, we showed that the patient's fibroblasts lacked PEX14 as determined by immunocytochemical analysis. These findings indicate that there are 13 genotypes in PBD and that the role of PEX14 is also essential in humans.
Collapse
Affiliation(s)
- Nobuyuki Shimozawa
- Department of Pediatrics, Gifu University School of Medicine, Gifu, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Abstract
Peroxisome biogenesis conceptually consists of the (a) formation of the peroxisomal membrane, (b) import of proteins into the peroxisomal matrix and (c) proliferation of the organelles. Combined genetic and biochemical approaches led to the identification of 25 PEX genes-encoding proteins required for the biogenesis of peroxisomes, so-called peroxins. Peroxisomal matrix and membrane proteins are synthesized on free ribosomes in the cytosol and posttranslationally imported into the organelle in an unknown fashion. The protein import into the peroxisomal matrix and the targeting and insertion of peroxisomal membrane proteins is performed by distinct machineries. At least three peroxins have been shown to be involved in the topogenesis of peroxisomal membrane proteins. Elaborate peroxin complexes form the machinery which in a concerted action of the components transports folded, even oligomeric matrix proteins across the peroxisomal membrane. The past decade has significantly improved our knowledge of the involvement of certain peroxins in the distinct steps of the import process, like cargo recognition, docking of cargo-receptor complexes to the peroxisomal membrane, translocation, and receptor recycling. This review summarizes our knowledge of the functional role the known peroxins play in the biogenesis and maintenance of peroxisomes. Ideas on the involvement of preperoxisomal structures in the biogenesis of the peroxisomal membrane are highlighted and special attention is paid to the concept of cargo protein aggregation as a presupposition for peroxisomal matrix protein import.
Collapse
Affiliation(s)
- J H Eckert
- Institut für Physiologische Chemie, Medizinische Fakultät, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | | |
Collapse
|
125
|
Abstract
The peroxisome biogenesis disorders (PBDs) comprise 12 autosomal recessive complementation groups (CGs). The multisystem clinical phenotype varies widely in severity and results from disturbances in both development and metabolic homeostasis. Progress over the last several years has lead to identification of the genes responsible for all of these disorders and to a much improved understanding of the biogenesis and function of the peroxisome. Increasing availability of mouse models for these disorders offers hope for a better understanding of their pathophysiology and for development of therapies that might especially benefit patients at the milder end of the clinical phenotype.
Collapse
Affiliation(s)
- Sabine Weller
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
126
|
Abstract
Investigations of peroxisome biogenesis in diverse organisms reveal new details of this unique process and its evolutionary conservation. Interactions among soluble receptors and the membrane peroxins that catalyze protein translocation are being mapped. Ubiquitination is observed. A receptor enters the organelle carrying folded cargo and recycles back to the cytosol. Tiny peroxisome remnants - vesicles and tubules - are discovered in pex3 mutants that lack the organelle. When the mutant is transfected with a good PEX3 gene, these protoperoxisomes acquire additional membrane peroxins and then import the matrix enzymes to reform peroxisomes. Thus, de novo formation need not be postulated. Dynamic imaging of yeast reveals dynamin-dependent peroxisome division and regulated actin-dependent segregation of the organelle before cell division. These results are consistent with biogenesis by growth and division of pre-existing peroxisomes.
Collapse
Affiliation(s)
- Paul B Lazarow
- Mount Sinai School of Medicine, 1190 Fifth Avenue, Box 1007, New York, NY 10029-6574, USA.
| |
Collapse
|
127
|
Maxwell M, Bjorkman J, Nguyen T, Sharp P, Finnie J, Paterson C, Tonks I, Paton BC, Kay GF, Crane DI. Pex13 inactivation in the mouse disrupts peroxisome biogenesis and leads to a Zellweger syndrome phenotype. Mol Cell Biol 2003; 23:5947-57. [PMID: 12897163 PMCID: PMC166343 DOI: 10.1128/mcb.23.16.5947-5957.2003] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Zellweger syndrome is the archetypical peroxisome biogenesis disorder and is characterized by defective import of proteins into the peroxisome, leading to peroxisomal metabolic dysfunction and widespread tissue pathology. In humans, mutations in the PEX13 gene, which encodes a peroxisomal membrane protein necessary for peroxisomal protein import, can lead to a Zellweger phenotype. To develop mouse models for this disorder, we have generated a targeted mouse with a loxP-modified Pex13 gene to enable conditional Cre recombinase-mediated inactivation of Pex13. In the studies reported here, we crossed these mice with transgenic mice that express Cre recombinase in all cells to generate progeny with ubiquitous disruption of Pex13. The mutant pups exhibited many of the clinical features of Zellweger syndrome patients, including intrauterine growth retardation, severe hypotonia, failure to feed, and neonatal death. These animals lacked morphologically intact peroxisomes and showed deficient import of matrix proteins containing either type 1 or type 2 targeting signals. Biochemical analyses of tissue and cultured skin fibroblasts from these animals indicated severe impairment of peroxisomal fatty acid oxidation and plasmalogen synthesis. The brains of these animals showed disordered lamination in the cerebral cortex, consistent with a neuronal migration defect. Thus, Pex13(-/-) mice reproduce many of the features of Zellweger syndrome and PEX13 deficiency in humans.
Collapse
Affiliation(s)
- Megan Maxwell
- School of Biomolecular and Biomedical Science, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Matsumoto N, Tamura S, Fujiki Y. The pathogenic peroxin Pex26p recruits the Pex1p-Pex6p AAA ATPase complexes to peroxisomes. Nat Cell Biol 2003; 5:454-60. [PMID: 12717447 DOI: 10.1038/ncb982] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2002] [Revised: 12/31/2002] [Accepted: 03/10/2003] [Indexed: 11/09/2022]
Abstract
Peroxisomes are ubiquitous organelles with a single membrane that contain over 50 different enzymes that catalyse various metabolic pathways, including beta-oxidation and lipid synthesis. Peroxisome biogenesis disorders (PBDs), such as Zellweger syndrome and neonatal adrenoleukodystrophy, are fatal genetic diseases that are autosomal recessive. Among the PBDs of the 12 complementation groups (CGs), 11 associated PEX genes have been isolated. Accordingly, only the PBD pathogenic gene for CG8 (also called CG-A) remains unidentified. Here we have isolated human PEX26 encoding a type II peroxisomal membrane protein of relative molecular mass 34,000 (M(r) 34K) by using ZP167 cells, a Chinese hamster ovary (CHO) mutant cell line. Expression of PEX26 restores peroxisomal protein import in the fibroblasts of an individual with PBD of CG8. This individual possesses a homozygous, inactivating pathogenic point mutation, Arg98Trp, in Pex26. Pex6 and Pex1 of the AAA ATPase family co-immunoprecipitate with Pex26. Epitope-tagged Pex6 and Pex1 are discernible as puncta in normal CHO-K1 cells, but not in PEX26-defective cells. PEX26 expression in ZP167 cells re-establishes colocalization of Pex6 and Pex1 with Pex26, in a Pex6-dependent manner. Thus, Pex26 recruits Pex6-Pex1 complexes to peroxisomes.
Collapse
Affiliation(s)
- Naomi Matsumoto
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka 812-8581, Japan
| | | | | |
Collapse
|
129
|
Huang Y, Ito R, Miura S, Yokota S, Oda T, Ito M. Altered antigenic disposition of peroxisomal urate oxidase in PEX5-defective Chinese hamster ovary cells. Biochem Biophys Res Commun 2003; 302:703-9. [PMID: 12646226 DOI: 10.1016/s0006-291x(03)00260-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Since Chinese hamster ovary (CHO) cells never express urate oxidase (UO), we tried to establish cell lines stably producing UO in order to elucidate the peroxisomal import process. The enzyme is a peroxisome targeting signal 1 (PTS1) protein harboring SKL motif at the carboxy-terminus [Biochem. Biophys. Res. Commun. 158 (1989) 991] and PEX5 protein (Pex5p) is supposed to be involved in the import process [Nat. Genet. 9 (1995) 115; J. Cell Biol. 130 (1995) 51]. We transfected a cDNA encoding rat UO into both wild type and PEX5-defective CHO cells to isolate each cell line stably producing the enzyme. While we examined the import process of UO in mutant cells, we noticed an interesting observation by using polyclonal antibody U1 or U2, which separately recognizes epitopes of UO. U1 antibody mainly interacts with epitopes in the amino-terminal region of UO. On the other hand, U2 antibody reacts with many epitopes distributed in the broad region of UO molecule. When UO produced in cultured cells was stained with U2 antibody, the enzyme was detected in peroxisomes of both wild type and PEX5-mutant cells. Whereas, U1 antibody stained the peroxisomal UO in wild type cells, but not in PEX5-mutant cells. These immunocytochemical observations suggest that the epitopes at the amino-terminal region of UO will be concealed in mutant cells. When the mutant cells were transfected with wild type PEX5 cDNA, U1 antibody came to react with UO in peroxisomes of mutant cells. The restoration indicates that the exposure of N-terminal epitopes of UO will depend upon the functional Pex5p. Immunoelectron microscopic observation showed that the peroxisomal import of UO was partially retarded in PEX5 mutant cells. The observation also supported the fact that UO was mainly localized in the peroxisomal matrix of wild type cells but in the membrane of mutant cells.
Collapse
Affiliation(s)
- Yuang Huang
- Division of Molecular Cell Biology, Saga Medical School, Nabeshima, Saga 849-8501, Japan
| | | | | | | | | | | |
Collapse
|
130
|
Harper CC, Berg JM, Gould SJ. PEX5 binds the PTS1 independently of Hsp70 and the peroxin PEX12. J Biol Chem 2003; 278:7897-901. [PMID: 12456682 DOI: 10.1074/jbc.m206651200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most peroxisomal enzymes are targeted to peroxisomes by virtue of a type-1 peroxisomal targeting signal (PTS1) at their extreme C terminus. PEX5 binds the PTS1 through its C-terminal 40-kDa tetratricopeptide repeat domain and is essential for import of PTS1-contining proteins into peroxisomes. Here we examined the PTS1-binding activity of purified, recombinant, full-length PEX5 using a fluorescence anisotropy-based assay. Like its C-terminal fragment, full-length tetrameric PEX5 exhibits high intrinsic affinity for the PTS1, with a K(d) of 35 nm for the peptide lissamine-Tyr-Gln-Ser-Lys-Leu-COO(-). The specificity of this interaction was demonstrated by the fact that PEX5 had no detectable affinity for a peptide in which the Lys was replaced with Glu, a substitution that inactivates PTS1 signals in vivo. Hsp70 has been found to regulate the affinity of PEX5 for a PTS1-containing protein, but we found that the kinetics of PEX5-PTS1 binding was unaffected by Hsp70, Hsp70 plus ATP, or Hsp70 plus ADP. In addition, we found that another protein known to interact with the PTS1-binding domain of PEX5, the PEX12 zinc RING domain, also had no discernable effect on PEX5-PTS1 binding kinetics. Taken together, these results suggest that the initial step in peroxisomal protein import, the recognition of enzymes by PEX5, is a relatively simple process and that Hsp70 most probably stimulates this process by catalyzing the folding of newly synthesized peroxisomal enzymes and/or enhancing the accessibility of their PTS1.
Collapse
Affiliation(s)
- Courtney C Harper
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
131
|
Gouveia AM, Guimarães CP, Oliveira ME, Sá-Miranda C, Azevedo JE. Insertion of Pex5p into the peroxisomal membrane is cargo protein-dependent. J Biol Chem 2003; 278:4389-92. [PMID: 12502712 DOI: 10.1074/jbc.c200650200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It is now generally accepted that Pex5p, the receptor for most peroxisomal matrix proteins, cycles between the cytosol and the peroxisomal compartment. According to current models of peroxisomal biogenesis, this intracellular trafficking of Pex5p is coupled to the transport of newly synthesized peroxisomal proteins into the organelle matrix. However, direct evidence supporting this hypothesis was never provided. Here, using an in vitro peroxisomal import system, we show that insertion of Pex5p into the peroxisomal membrane requires the presence of cargo proteins. Strikingly the peroxisomal docking/translocation machinery is also able to catalyze the membrane insertion of a Pex5p truncated molecule lacking any known cargo-binding domain. These results suggest that the cytosol/peroxisomal cycle in which Pex5p is involved is directly or indirectly regulated by Pex5p itself and not by the peroxisomal docking/translocation machinery.
Collapse
Affiliation(s)
- Alexandra M Gouveia
- Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
| | | | | | | | | |
Collapse
|
132
|
Sichting M, Schell-Steven A, Prokisch H, Erdmann R, Rottensteiner H. Pex7p and Pex20p of Neurospora crassa function together in PTS2-dependent protein import into peroxisomes. Mol Biol Cell 2003; 14:810-21. [PMID: 12589072 PMCID: PMC150010 DOI: 10.1091/mbc.e02-08-0539] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Recruiting matrix proteins with a peroxisomal targeting signal type 2 (PTS2) to the peroxisomal membrane requires species-specific factors. In Saccharomyces cerevisiae, the PTS2 receptor Pex7p acts in concert with the redundant Pex18p/Pex21p, whereas in Yarrowia lipolytica, Pex20p might unite the function of both S. cerevisiae peroxins. Herein, the genome of the filamentous fungus Neurospora crassa was analyzed for peroxin-encoding genes. We identified a set of 18 peroxins that resembles that of Y. lipolytica rather than that of S. cerevisiae. Interestingly, proteins homologous to both S. cerevisiae Pex7p and Y. lipolytica Pex20p exist in N. crassa. We report on the isolation of these PTS2-specific peroxins and demonstrate that NcPex20p can substitute for S. cerevisiae Pex18p/Pex21p, but not for ScPex7p. Like Pex18p, NcPex20p did not bind PTS2 protein or the docking proteins in the absence of ScPex7p. Rather, NcPex20p was required before docking to form an import-competent complex of cargo-loaded PTS2 receptors. NcPex7p did not functionally replace yeast Pex7p, probably because the N. crassa PTS2 receptor failed to associate with Pex18p/Pex21p. However, once NcPex7p and NcPex20p had been coexpressed, it proved possible to replace yeast Pex7p. Pex20p and Pex18p/Pex21p are therefore true orthologues, both of which are in need of Pex7p for PTS2 protein import.
Collapse
Affiliation(s)
- Martin Sichting
- Freie Universität Berlin, Fachbereich Biologie, Chemie, Pharmazie, Thielallee 63, Germany
| | | | | | | | | |
Collapse
|
133
|
Gouveia AM, Guimaraes CP, Oliveira ME, Reguenga C, Sa-Miranda C, Azevedo JE. Characterization of the peroxisomal cycling receptor, Pex5p, using a cell-free in vitro import system. J Biol Chem 2003; 278:226-32. [PMID: 12411433 DOI: 10.1074/jbc.m209498200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
According to current models of peroxisomal biogenesis, Pex5p cycles between the cytosol and the peroxisome transporting newly synthesized proteins to the organelle matrix. However, little is known regarding the mechanism of this pathway. Here, we show that Pex5p enters and exits the peroxisomal compartment in a process that requires ATP. Insertion of Pex5p into the peroxisomal membrane is blocked by anti-Pex14p IgGs. At the peroxisomal level, two Pex14p-associated populations of Pex5p could be resolved, stage 2 and stage 3 Pex5p, both exposing the majority of their masses into the organelle lumen. Stage 3 Pex5p can be easily detected only under ATP-limiting conditions; in the presence of ATP it leaves the peroxisomal compartment rapidly. Our data suggest that translocation of PTS1-containing proteins across the peroxisomal membrane occurs concomitantly with formation of the Pex5p-Pex14p membrane complex and that this is probably the site from which Pex5p leaves the peroxisomal compartment.
Collapse
Affiliation(s)
- Alexandra M Gouveia
- Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
| | | | | | | | | | | |
Collapse
|
134
|
Oliveira MEM, Reguenga C, Gouveia AMM, Guimarães CP, Schliebs W, Kunau WH, Silva MT, Sá-Miranda C, Azevedo JE. Mammalian Pex14p: membrane topology and characterisation of the Pex14p-Pex14p interaction. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1567:13-22. [PMID: 12488033 DOI: 10.1016/s0005-2736(02)00635-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peroxisomal biogenesis is a complex process requiring the action of numerous peroxins. One central component of this machinery is Pex14p, an intrinsic peroxisomal membrane protein probably involved in the docking of Pex5p, the receptor for PTS1-containing proteins (peroxisomal targeting signal 1-containing proteins). In this work the membrane topology of mammalian Pex14p was studied. Using a combination of protease protection assays and CNBr cleavage, we show that the first 130 amino acid residues of Pex14p are highly protected from exogenously added proteases by the peroxisomal membrane itself. Data indicating that this domain is responsible for the strong interaction of Pex14p with the organelle membrane are presented. All the other Pex14p amino acid residues are exposed to the cytosol. The properties of recombinant human Pex14p were also characterised. Heterologous expressed Pex14p was found to be a homopolymer of variable stoichiometry. Finally, in vitro binding assays indicate that homopolymerisation of Pex14p involves a domain comprising amino acid residues 147-278 of this peroxin.
Collapse
Affiliation(s)
- Márcia E M Oliveira
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Honsho M, Hiroshige T, Fujiki Y. The membrane biogenesis peroxin Pex16p. Topogenesis and functional roles in peroxisomal membrane assembly. J Biol Chem 2002; 277:44513-24. [PMID: 12223482 DOI: 10.1074/jbc.m206139200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously we isolated human PEX16 encoding 336-amino acid-long peroxin Pex16p and showed that its dysfunction was responsible for Zellweger syndrome of complementation group D (group 9). Here we have determined the membrane topology of Pex16p by differential permeabilization method: both N- and C-terminal parts are exposed to the cytosol. In the search for Pex16p topogenic sequence, basic amino acids clustered sequence, RKELRKKLPVSLSQQK, at positions 66-81 and the first transmembrane segment locating far downstream, nearly by 40 amino acids, of this basic region were defined to be essential for integration into peroxisome membranes. Localization to peroxisomes of membrane proteins such as Pex14p, Pex13p, and PMP70 was interfered with in CHO-K1 cells by a higher level expression of the pex16 patient-derived dysfunctional but topogenically active Pex16pR176ter comprising resides 1-176 or of the C-terminal cytoplasmic part starting from residues at 244 to the C terminus. Furthermore, Pex16p C-terminal cytoplasmic part severely abrogated peroxisome restoration in pex mutants such as matrix protein import-defective pex12 and membrane assembly impaired pex3 by respective PEX12 and PEX3 expression, whereas the N-terminal cytosolic region did not affect restoration. These results imply that Pex16p functions in peroxisome membrane assembly, more likely upstream of Pex3p.
Collapse
Affiliation(s)
- Masanori Honsho
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka 812-8581, Japan
| | | | | |
Collapse
|
136
|
Stein K, Schell-Steven A, Erdmann R, Rottensteiner H. Interactions of Pex7p and Pex18p/Pex21p with the peroxisomal docking machinery: implications for the first steps in PTS2 protein import. Mol Cell Biol 2002; 22:6056-69. [PMID: 12167700 PMCID: PMC134009 DOI: 10.1128/mcb.22.17.6056-6069.2002] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Peroxisomal PTS2-dependent matrix protein import starts with the recognition of the PTS2 targeting signal by the import receptor Pex7p. Subsequently, the formed Pex7p/cargo complex is transported from the cytosol to the peroxisomal docking complex, consisting of Pex13p and Pex14p. In Saccharomyces cerevisiae, the latter event is thought to require the redundant Pex18p and Pex21p. Here we mapped the Pex7p interaction domain of Pex13p to its N-terminal 100 amino acids. Pex18p and Pex21p also interacted with this region, albeit only in the presence of Pex7p. Expression of an N-terminally deleted version of Pex13p in a pex13delta mutant failed to restore growth on fatty acids due to a specific defect in the import of PTS2-containing proteins. We further show by yeast two-hybrid analysis, coimmunoprecipitation, and in vitro binding assays that Pex7p can bind Pex13p and Pex14p in the absence of Pex18p/Pex21p. The PTS2 protein thiolase was shown to interact with Pex14p but not with Pex13p in a Pex7p- and Pex18p/Pex21p-dependent manner, suggesting that only Pex14p binds cargo-loaded PTS2 receptor. We also found that the cytosolic Pex7p/thiolase-containing complex includes Pex18p. This complex accumulated in docking mutants but was absent in cells lacking Pex18p/Pex21p, indicating that Pex18p/Pex21p are required already before the docking event.
Collapse
Affiliation(s)
- Katharina Stein
- Freie Universität Berlin, Fachbereich Biologie, Chemie, Pharmazie, D-14195 Berlin, Germany
| | | | | | | |
Collapse
|
137
|
Hazra PP, Suriapranata I, Snyder WB, Subramani S. Peroxisome remnants in pex3delta cells and the requirement of Pex3p for interactions between the peroxisomal docking and translocation subcomplexes. Traffic 2002; 3:560-74. [PMID: 12121419 DOI: 10.1034/j.1600-0854.2002.30806.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
During peroxisomal matrix protein import, the peroxisomal targeting signal receptors recognize cargo in the cytosol and interact with docking and translocation subcomplexes on the peroxisomal membrane. Using immunoprecipitations of multiple protein components, we show that in Pichia pastoris the docking subcomplex consists of the unique peroxins Pex13p, Pex14p and Pex17p, whereas the putative translocation subcomplex has all three RING-finger peroxins, Pex2p, Pex10p and Pex12p, as unique constituents. We identify Pex3p as a shared component of both subcomplexes. In pex3delta cells, the unique constituents of the docking subcomplex interact as they do in wild-type cells, but the assembly of the translocation subcomplex is impaired and its components are present at reduced levels. Furthermore, several interactions detected in wild-type cells between translocation and docking subcomplex components are undetectable in pex3delta cells. Contrary to previous reports, pex3delta cells have peroxisome remnants that pellet during high-speed centrifugation, associate with membranes on floatation gradients and can be visualized by deconvolution microscopy using antibodies to several peroxins which were not available earlier. We discuss roles for Pex3p in the assembly of specific peroxisomal membrane protein subcomplexes whose formation is necessary for matrix protein import.
Collapse
Affiliation(s)
- Partha P Hazra
- Section of Molecular Biology, Division of Biology, University of California, San Diego, La Jolla, CA 92093-0322, USA
| | | | | | | |
Collapse
|
138
|
Ghys K, Fransen M, Mannaerts GP, Van Veldhoven PP. Functional studies on human Pex7p: subcellular localization and interaction with proteins containing a peroxisome-targeting signal type 2 and other peroxins. Biochem J 2002; 365:41-50. [PMID: 11931631 PMCID: PMC1222642 DOI: 10.1042/bj20011432] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2001] [Revised: 03/25/2002] [Accepted: 04/03/2002] [Indexed: 01/13/2023]
Abstract
Pex7p is a WD40-containing protein involved in peroxisomal import of proteins containing an N-terminal peroxisome-targeting signal (PTS2). The interaction of human recombinant Pex7p expressed in different hosts/systems with its PTS2 ligand and other peroxins was analysed using various experimental approaches. Specific binding of human Pex7p to PTS2 could be demonstrated only when Pex7p was formed in vitro by a coupled transcription/translation system or synthesized in vivo in Chinese hamster ovary K1 cells transfected with a construct coding for a Pex7p-green fluorescent protein (GFP) fusion protein. Apparently, no cofactors are required and only monomeric Pex7p binds to PTS2. The interaction is reduced upon cysteine alkylation and is impaired upon truncation of the N-terminus of Pex7p. Interaction of Pex7p with other peroxins could not be demonstrated in bacterial or yeast two-hybrid screens, or in pull-down binding assays. The GFP fusion proteins, tagged at either the N- or C-terminus, were able to restore PTS2 import in rhizomelic chondrodysplasia punctata fibroblasts, and Pex7p-GFP was located both in the lumen of peroxisomes and in the cytosol.
Collapse
Affiliation(s)
- Karen Ghys
- Katholieke Universiteit Leuven, Fakulteit Geneeskunde, Campus Gasthuisberg (O/N), Afdeling Farmakologie, Herestraat 49, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|
139
|
Akiyama N, Ghaedi K, Fujiki Y. A novel pex2 mutant: catalase-deficient but temperature-sensitive PTS1 and PTS2 import. Biochem Biophys Res Commun 2002; 293:1523-9. [PMID: 12054689 DOI: 10.1016/s0006-291x(02)00419-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We searched for Chinese hamster ovary (CHO) cell mutants defective in peroxisome biogenesis by using peroxisome targeting sequence (PTS) of Pex3p (amino acid residues 1-40)-fused enhanced green fluorescent protein (EGFP). From mutagenized wild-type CHO-K1 cells stably expressing rat Pex2p and Pex3p(1-40)-EGFP, cell colonies resistant to the 9-(1(')-pyrene)nonanol/ultraviolet treatment were examined for intracellular location of peroxisomal proteins, including EGFP chimera, catalase, and matrix proteins with PTS types 1 and 2. One clone, ZPEG309, showed a distinct phenotype: import defect of catalase, but normal transport of PTS1 and PTS2 proteins at 37 degrees C. PTS1 and PTS2 import was abrogated when ZPEG309 was cultured at 39 degrees C. Genetic defect of ZPEG309 was a nonsense point mutation in a codon for Arg50 in CHO PEX2 and a mutation resulting in a C-terminal truncation of the introduced rat Pex2p. Therefore, ZPEG309 is a novel pex2, catalase-deficient mutant with temperature-sensitive PTS1 and PTS2 import.
Collapse
Affiliation(s)
- Noriko Akiyama
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | |
Collapse
|
140
|
Huang Y, Ito R, Imanaka T, Usuda N, Ito M. Different accumulations of 3-ketoacyl-CoA thiolase precursor in peroxisomes of Chinese hamster ovary cells harboring a dysfunction in the PEX2 protein. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1589:273-84. [PMID: 12031794 DOI: 10.1016/s0167-4889(02)00180-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The peroxisomal localization of 3-ketoacyl-CoA thiolase (hereafter referred to as thiolase) was characterized in five Chinese hamster ovary (CHO) mutant cell lines each harboring a dysfunction in the PEX2 protein. PT54 (Pex2pN100) cells carry a nonsense mutation that results in the PEX2 protein truncated at amino acid position 100. SK24 (Pex2pC258Y) cells carry a missense mutation resulting in the amino acid substitution of a cysteine residue by a tyrosine residue at amino acid position 258 of the PEX2 protein. The WSK24 (Pex2pC258Y/+wild) cell line is a stable transformant of SK24 (Pex2pC258Y) cells transfected with wild-type rat PEX2 cDNA. The SPT54 (Pex2pN100/+Pex2pC258Y) and WPT54 (Pex2pN100/+wild) cell lines are stable transformants of PT54 (Pex2pN100) cells transfected with the mutant PEX2 cDNA from SK24 (Pex2pC258Y) cells and wild-type rat PEX2 cDNA, respectively. In these cell lines, except PT54 (Pex2pN100), thiolase appeared to be localized in peroxisomes, as it is in the wild-type cells. When the molecular size of the enzyme was examined on SDS-polyacrylamide gel electrophoresis, the peroxisome-localized enzyme exhibited a larger precursor form in these mutant cells. The characterizations with salt wash, sodium carbonate extraction and proteinase K digestion indicated that the precursor forms of the enzyme were accumulated at different states in peroxisomes of these mutant cells. The dispositions on the peroxisomal membrane were further sustained by differential permeabilization using digitonin, followed by immunocytochemical fluorescence. These results suggest that PEX2 protein functions differently on two processes of the maturation and the disposition in the import pathway of thiolase.
Collapse
Affiliation(s)
- Yuan Huang
- Department of Biology, Saga Medical School, Nabeshima, Japan
| | | | | | | | | |
Collapse
|
141
|
Gould SJ, Collins CS. Opinion: peroxisomal-protein import: is it really that complex? Nat Rev Mol Cell Biol 2002; 3:382-9. [PMID: 11988772 DOI: 10.1038/nrm807] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Peroxisomal enzymes are synthesized in the cytoplasm and imported post-translationally across the peroxisome membrane. Unlike other organelles with a sealed membrane, peroxisomes can import folded enzymes, and they seem to lack intraperoxisomal chaperones. Here, we propose a mechanistic model for the early steps in peroxisomal-matrix-enzyme import, which might help to explain the unusual features of this process.
Collapse
Affiliation(s)
- Stephen J Gould
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
142
|
Mukai S, Ghaedi K, Fujiki Y. Intracellular localization, function, and dysfunction of the peroxisome-targeting signal type 2 receptor, Pex7p, in mammalian cells. J Biol Chem 2002; 277:9548-61. [PMID: 11756410 DOI: 10.1074/jbc.m108635200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously isolated and characterized a Chinese hamster ovary (CHO) cell mutant, ZPG207, that is defective in import of proteins carrying a peroxisome-targeting signal type 2 (PTS2) nonapeptide. Herein we have cloned Chinese hamster (Cl) PEX7 encoding the PTS2 receptor. ClPex7p consists of 318 amino acids, shorter than human Pex7p by 5 residues, showing 91 and 30% identity with Pex7p from humans and the yeast Saccharomyces cerevisiae, respectively. Expression of ClPEX7 rescued the impaired PTS2 import in pex7 ZPG207. Mutation in ZPG207 PEX7 was determined by reverse transcription PCR; a G-to-A transition caused a 1-amino acid substitution, W221ter. We investigated the molecular dysfunction of Pex7p variants in mammals, including Pex7p-W221ter and Pex7p with one site mutation at G217R, A218V, or L292ter, which frequently occurs in the human fatal genetic peroxisomal disease rhizomelic chondrodysplasia punctata, showing a cell phenotype of PTS2 import defect. All types of the mutations affected Pex7p in binding to both PTS2 cargo protein and the longer isoform of PTS1 receptor Pex5pL that is responsible for transport of the Pex7p-PTS2 complex. Subcellular fractionation and protease protection studies demonstrated bimodal distribution of Pex7p between the cytoplasm and peroxisomes in CHO and human cells. Moreover, expression of Pex5pL, but not of the shorter isoform Pex5pS, enhanced translocation of Pex7p-PTS2 proteins into peroxisomes, thereby implying that both PTS receptors shuttle between peroxisomes and the cytosol. Furthermore, a ClPex7p mutant with a deletion of 7 amino acids from the N terminus retained peroxisome-restoring activity, whereas an 11-amino acid truncation abrogated the activity. ClPex7p with a C-terminal 9- amino acid truncation, comprising residues 1--309, maintained the activity, whereas a 14-amino acid shorter form lacking several amino acids of the sixth WD motif lost the activity. Therefore, nearly the full length of Pex7p, including all WD motifs, is required for its function.
Collapse
Affiliation(s)
- Satoru Mukai
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka 812-8581, Japan
| | | | | |
Collapse
|
143
|
Fransen M, Brees C, Ghys K, Amery L, Mannaerts GP, Ladant D, Van Veldhoven PP. Analysis of mammalian peroxin interactions using a non-transcription-based bacterial two-hybrid assay. Mol Cell Proteomics 2002; 1:243-52. [PMID: 12096124 DOI: 10.1074/mcp.m100025-mcp200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In recent years, substantial progress has been made in the identification of proteins involved in peroxisome biogenesis. However, with the exception of the peroxisome-targeting signal receptors and the receptor docking proteins, the function of most of these proteins, called peroxins, remains largely unknown. One step toward elucidating the function of a protein is to identify its interacting partners. We have used a non-transcription-based bacterial two-hybrid system to analyze the interactions among a set of 12 mammalian peroxins and a yeast protein three-hybrid system to investigate whether proteins that interact with the same peroxin and have overlapping binding sites cooperate or compete for this site. Here we report a detailed interaction map of these peroxins and demonstrate that (i) farnesylation, and not the CAAX motif, of Pex19p strongly enhances its affinity for Pex13p; (ii) the CAAXmotif, and not farnesylation, of Pex19p strongly enhances its affinity for Pex11pbeta; and (iii) the C(3)HC(4) RING (really interesting new gene) finger domain of Pex12p does not alter the binding properties of Pex5p for the C-terminal peroxisome-targeting signal PTS1. Finally, we show that the Pex5p-Pex13p interaction is bridged by Pex14p and that the latter molecule exists predominantly as a dimer in vivo. Collectively, as demonstrated in this work with peroxins, these results indicate that the bacterial two-hybrid system is an attractive complementary approach to the conventional transcription-based yeast two-hybrid system for studying protein-protein interactions.
Collapse
Affiliation(s)
- Marc Fransen
- Departement Moleculaire Celbiologie, Afdeling Farmacologie, Katholieke Universiteit Leuven, Campus Gasthuisberg, Herestraat 49 (O/N), B-3000 Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
144
|
Otera H, Setoguchi K, Hamasaki M, Kumashiro T, Shimizu N, Fujiki Y. Peroxisomal targeting signal receptor Pex5p interacts with cargoes and import machinery components in a spatiotemporally differentiated manner: conserved Pex5p WXXXF/Y motifs are critical for matrix protein import. Mol Cell Biol 2002; 22:1639-55. [PMID: 11865044 PMCID: PMC135613 DOI: 10.1128/mcb.22.6.1639-1655.2002] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two isoforms of the peroxisomal targeting signal type 1 (PTS1) receptor, termed Pex5pS and (37-amino-acid-longer) Pex5pL, are expressed in mammals. Pex5pL transports PTS1 proteins and Pex7p-PTS2 cargo complexes to the initial Pex5p-docking site, Pex14p, on peroxisome membranes, while Pex5pS translocates only PTS1 cargoes. Here we report functional Pex5p domains responsible for interaction with peroxins Pex7p, Pex13p, and Pex14p. An N-terminal half, such as Pex5pL(1-243), comprising amino acid residues 1 to 243, bound to Pex7p, Pex13p, and Pex14p and was sufficient for restoring the impaired PTS2 import of pex5 cell mutants, while the C-terminal tetratricopeptide repeat motifs were required for PTS1 binding. N-terminal Pex5p possessed multiple Pex14p-binding sites. Alanine-scanning analysis of the highly conserved seven (six in Pex5pS) pentapeptide WXXXF/Y motifs residing at the N-terminal region indicated that these motifs were essential for the interaction of Pex5p with Pex14p and Pex13p. Moreover, mutation of several WXXXF/Y motifs did not affect the PTS import-restoring activity of Pex5p, implying that the binding of Pex14p to all of the WXXXF/Y sites was not a prerequisite for the translocation of Pex5p-cargo complexes. Pex5p bound to Pex13p at the N-terminal part, not to the C-terminal SH3 region, via WXXXF/Y motifs 2 to 4. PTS1 and PTS2 import required the interaction of Pex5p with Pex14p but not with Pex13p, while Pex5p binding to Pex13p was essential for import of catalase with PTS1-like signal KANL. Pex5p recruited PTS1 proteins to Pex14p but not to Pex13p. Pex14p and Pex13p formed a complex with PTS1-loaded Pex5p but dissociated in the presence of cargo-unloaded Pex5p, implying that PTS cargoes are released from Pex5p at a step downstream of Pex14p and upstream of Pex13p. Thus, Pex14p and Pex13p very likely form mutually and temporally distinct subcomplexes involved in peroxisomal matrix protein import.
Collapse
Affiliation(s)
- Hidenori Otera
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | | | | | | | |
Collapse
|
145
|
Motley AM, Brites P, Gerez L, Hogenhout E, Haasjes J, Benne R, Tabak HF, Wanders RJA, Waterham HR. Mutational spectrum in the PEX7 gene and functional analysis of mutant alleles in 78 patients with rhizomelic chondrodysplasia punctata type 1. Am J Hum Genet 2002; 70:612-24. [PMID: 11781871 PMCID: PMC384941 DOI: 10.1086/338998] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2001] [Accepted: 12/03/2001] [Indexed: 12/20/2022] Open
Abstract
Rhizomelic chondrodysplasia punctata (RCDP) is a genetically heterogeneous, autosomal recessive disorder of peroxisomal metabolism that is clinically characterized by symmetrical shortening of the proximal long bones, cataracts, periarticular calcifications, multiple joint contractures, and psychomotor retardation. Most patients with RCDP have mutations in the PEX7 gene encoding peroxin 7, the cytosolic PTS2-receptor protein required for targeting a subset of enzymes to peroxisomes. These enzymes are deficient in cells of patients with RCDP, because of their mislocalization to the cytoplasm. We report the mutational spectrum in the PEX7 gene of 78 patients (including five pairs of sibs) clinically and biochemically diagnosed with RCDP type I. We found 22 different mutations, including 18 novel ones. Furthermore, we show by functional analysis that disease severity correlates with PEX7 allele activity: expression of eight different alleles from patients with severe RCDP failed to restore the targeting defect in RCDP fibroblasts, whereas two alleles found only in patients with mild disease complemented the targeting defect upon overexpression. Surprisingly, one of the mild alleles comprises a duplication of nucleotides 45-52, which is predicted to lead to a frameshift at codon 17 and an absence of functional peroxin 7. The ability of this allele to complement the targeting defect in RCDP cells suggests that frame restoration occurs, resulting in full-length functional peroxin 7, which leads to amelioration of the predicted severe phenotype. This was confirmed in vitro by expression of the eight-nucleotide duplication-containing sequence fused in different reading frames to the coding sequence of firefly luciferase in COS cells.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Animals
- COS Cells
- Chondrodysplasia Punctata, Rhizomelic/classification
- Chondrodysplasia Punctata, Rhizomelic/enzymology
- Chondrodysplasia Punctata, Rhizomelic/genetics
- Chondrodysplasia Punctata, Rhizomelic/pathology
- Codon/genetics
- DNA Mutational Analysis
- Fibroblasts
- Frameshift Mutation/genetics
- Genes, Recessive/genetics
- Genes, Reporter/genetics
- Genetic Complementation Test
- Homozygote
- Humans
- Luciferases/genetics
- Luciferases/metabolism
- Molecular Sequence Data
- Mutation/genetics
- Open Reading Frames/genetics
- Peroxisomal Targeting Signal 2 Receptor
- Phenotype
- Protein Folding
- Protein Structure, Secondary
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Repetitive Sequences, Amino Acid/genetics
- Sequence Alignment
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Alison M. Motley
- Departments of Pediatrics, Biochemistry, and Clinical Chemistry, Academic Medical Center, University of Amsterdam, Amsterdam
| | - Pedro Brites
- Departments of Pediatrics, Biochemistry, and Clinical Chemistry, Academic Medical Center, University of Amsterdam, Amsterdam
| | - Lisya Gerez
- Departments of Pediatrics, Biochemistry, and Clinical Chemistry, Academic Medical Center, University of Amsterdam, Amsterdam
| | - Eveline Hogenhout
- Departments of Pediatrics, Biochemistry, and Clinical Chemistry, Academic Medical Center, University of Amsterdam, Amsterdam
| | - Janet Haasjes
- Departments of Pediatrics, Biochemistry, and Clinical Chemistry, Academic Medical Center, University of Amsterdam, Amsterdam
| | - Rob Benne
- Departments of Pediatrics, Biochemistry, and Clinical Chemistry, Academic Medical Center, University of Amsterdam, Amsterdam
| | - Henk F. Tabak
- Departments of Pediatrics, Biochemistry, and Clinical Chemistry, Academic Medical Center, University of Amsterdam, Amsterdam
| | - Ronald J. A. Wanders
- Departments of Pediatrics, Biochemistry, and Clinical Chemistry, Academic Medical Center, University of Amsterdam, Amsterdam
| | - Hans R. Waterham
- Departments of Pediatrics, Biochemistry, and Clinical Chemistry, Academic Medical Center, University of Amsterdam, Amsterdam
| |
Collapse
|
146
|
Abstract
Fifteen years ago, we had a model of peroxisome biogenesis that involved growth and division of preexisting peroxisomes. Today, thanks to genetically tractable model organisms and Chinese hamster ovary cells, 23 PEX genes have been cloned that encode the machinery ("peroxins") required to assemble the organelle. Membrane assembly and maintenance requires three of these (peroxins 3, 16, and 19) and may occur without the import of the matrix (lumen) enzymes. Matrix protein import follows a branched pathway of soluble recycling receptors, with one branch for each class of peroxisome targeting sequence (two are well characterized), and a common trunk for all. At least one of these receptors, Pex5p, enters and exits peroxisomes as it functions. Proliferation of the organelle is regulated by Pex11p. Peroxisome biogenesis is remarkably conserved among eukaryotes. A group of fatal, inherited neuropathologies are recognized as peroxisome biogenesis diseases; the responsible genes are orthologs of yeast or Chinese hamster ovary peroxins. Future studies must address the mechanism by which folded, oligomeric enzymes enter the organelle, how the peroxisome divides, and how it segregates at cell division. Most pex mutants contain largely empty membrane "ghosts" of peroxisomes; a few mutants apparently lacking peroxisomes entirely have led some to propose the de novo formation of the organelle. However, there is evidence for residual peroxisome membrane vesicles ("protoperoxisomes") in some of these, and the preponderance of data supports the continuity of the peroxisome compartment in space and time and between generations of cells.
Collapse
Affiliation(s)
- P E Purdue
- Department of Cell Biology and Anatomy, Mount Sinai School of Medicine, New York, NY 10029-6574, USA.
| | | |
Collapse
|
147
|
Dodt G, Warren D, Becker E, Rehling P, Gould SJ. Domain mapping of human PEX5 reveals functional and structural similarities to Saccharomyces cerevisiae Pex18p and Pex21p. J Biol Chem 2001; 276:41769-81. [PMID: 11546814 DOI: 10.1074/jbc.m106932200] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PEX5 functions as an import receptor for proteins with the type-1 peroxisomal targeting signal (PTS1). Although PEX5 is not involved in the import of PTS2-targeted proteins in yeast, it is essential for PTS2 protein import in mammalian cells. Human cells generate two isoforms of PEX5 through alternative splicing, PEX5S and PEX5L, and PEX5L contains an additional insert 37 amino acids long. Only one isoform, PEX5L, is involved in PTS2 protein import, and PEX5L physically interacts with PEX7, the import receptor for PTS2-containing proteins. In this report we map the regions of human PEX5L involved in PTS2 protein import, PEX7 interaction, and targeting to peroxisomes. These studies revealed that amino acids 1-230 of PEX5L are required for PTS2 protein import, amino acids 191-222 are sufficient for PEX7 interaction, and amino acids 1-214 are sufficient for targeting to peroxisomes. We also identified a 21-amino acid-long peptide motif of PEX5L, amino acids 209-229, that overlaps the regions sufficient for full PTS2 rescue activity and PEX7 interaction and is shared by Saccharomyces cerevisiae Pex18p and Pex21p, two yeast peroxins that act only in PTS2 protein import in yeast. A mutation in PEX5 that changes a conserved serine of this motif abrogates PTS2 protein import in mammalian cells and reduces the interaction of PEX5L and PEX7 in vitro. This peptide motif also lies within regions of Pex18p and Pex21p that interact with yeast PEX7. Based on these and other results, we propose that mammalian PEX5L may have acquired some of the functions that yeast Pex18p and/or Pex21p perform in PTS2 protein import. This hypothesis may explain the essential role of PEX5L in PTS2 protein import in mammalian cells and its lack of importance for PTS2 protein import in yeast.
Collapse
Affiliation(s)
- G Dodt
- Institut für Physiologische Chemie, Systembiochemie Ruhr-Universität, 44801 Bochum, Germany.
| | | | | | | | | |
Collapse
|
148
|
Lambkin GR, Rachubinski RA. Yarrowia lipolytica cells mutant for the peroxisomal peroxin Pex19p contain structures resembling wild-type peroxisomes. Mol Biol Cell 2001; 12:3353-64. [PMID: 11694572 PMCID: PMC60260 DOI: 10.1091/mbc.12.11.3353] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
PEX genes encode peroxins, which are proteins required for peroxisome assembly. The PEX19 gene of the yeast Yarrowia lipolytica was isolated by functional complementation of the oleic acid-nonutilizing strain pex19-1 and encodes Pex19p, a protein of 324 amino acids (34,822 Da). Subcellular fractionation and immunofluorescence microscopy showed Pex19p to be localized primarily to peroxisomes. Pex19p is detected in cells grown in glucose-containing medium, and its levels are not increased by incubation of cells in oleic acid-containing medium, the metabolism of which requires intact peroxisomes. pex19 cells preferentially mislocalize peroxisomal matrix proteins and the peripheral intraperoxisomal membrane peroxin Pex16p to the cytosol, although small amounts of these proteins could be reproducibly localized to a subcellular fraction enriched for peroxisomes. In contrast, the peroxisomal integral membrane protein Pex2p exhibits greatly reduced levels in pex19 cells compared with its levels in wild-type cells. Importantly, pex19 cells were shown by electron microscopy to contain structures that resemble wild-type peroxisomes in regards to size, shape, number, and electron density. Subcellular fractionation and isopycnic density gradient centrifugation confirmed the presence of vesicular structures in pex19 mutant strains that were similar in density to wild-type peroxisomes and that contained profiles of peroxisomal matrix and membrane proteins that are similar to, yet distinct from, those of wild-type peroxisomes. Because peroxisomal structures form in pex19 cells, Pex19p apparently does not function as a peroxisomal membrane protein receptor in Y. lipolytica. Our results are consistent with a role for Y. lipolytica Pex19p in stabilizing the peroxisomal membrane.
Collapse
Affiliation(s)
- G R Lambkin
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | |
Collapse
|
149
|
Ito R, Huang Y, Yao C, Shimozawa N, Suzuki Y, Kondo N, Imanaka T, Usuda N, Ito M. Temperature-sensitive phenotype of Chinese hamster ovary cells defective in PEX5 gene. Biochem Biophys Res Commun 2001; 288:321-7. [PMID: 11606046 DOI: 10.1006/bbrc.2001.5773] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
SK32 mutant cells, which were isolated as peroxisome-deficient Chinese hamster ovary (CHO) cells by an advantage of a visible peroxisome form of green fluorescent protein (GFP), were found to suffer from a functional loss of PEX5 gene encoding for PTS1R. The sequence analysis of cDNA indicated that PEX5 gene encoded for the two isoforms composed of 603 amino acids (PTS1RS) and 640 amino acids (PTS1RL). The mutation changed glycine to arginine at amino acid position 343 of PTS1RL (corresponding to the position 306 of PTS1RS) in SK32 cells. The mutant cells exhibited a temperature-sensitive (TS) phenotype on the peroxisomal localizations of the recombinant GFP and urate oxidase appending a genuine peroxisome targeting signal 1 (PTS1), a tripeptide of Ser-Lys-Leu (SKL) at the C-terminus, but did not on that of catalase harboring a divergent PTS1, Lys-Ala-Asn-Leu (KANL) sequence. 3-ketoacyl-CoA thiolase (hereafter referred to as thiolase), which harbors an extension sequence (PTS2) at the N-terminus, never appeared to be affected on the peroxisomal localization in the mutant cells. When thiolase was examined on the molecular size in the mutant cells, the enzyme existed as the larger precursor form in the peroxisomes at 37 degrees C and a considerable part (almost half) was converted to the mature size at 30 degrees C. These results indicate that the amino acid substitution, Gly306Arg in PTS1RS and/or Gly343Arg in PTSRL, gives rise to TS phenotype on the peroxisomal translocation of PTS1 proteins and the maturation of PTS2 protein.
Collapse
Affiliation(s)
- R Ito
- Department of Biology, Saga Medical School, Saga 849-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Abstract
Peroxisomes of higher eukaryotes, glycosomes of kinetoplastids, and glyoxysomes of plants are related microbody organelles that perform differing metabolic functions tailored to their cellular environments. The close evolutionary relationship of these organelles is most clearly evidenced by the conservation of proteins involved in matrix protein import and biogenesis. The glycosome can be viewed as an offshoot of the peroxisomal lineage with additional metabolic functions, specifically glycolysis and purine salvage. Within the parasitic protozoa, only kinetoplastids have been conclusively demonstrated to possess glycosomes or indeed any peroxisome-like organelle. The importance of glycosomal pathways and their compartmentation emphasizes the potential of the glycosome and glycosomal proteins as drug targets.
Collapse
Affiliation(s)
- M Parsons
- Seattle Biomedical Research Institute, 4 Nickerson St., 98177, Seattle, WA, USA.
| | | | | | | |
Collapse
|