101
|
Lee N, Ryu HG, Kwon JH, Kim DK, Kim SR, Wang HJ, Kim KT, Choi KY. SIRT6 Depletion Suppresses Tumor Growth by Promoting Cellular Senescence Induced by DNA Damage in HCC. PLoS One 2016; 11:e0165835. [PMID: 27824900 PMCID: PMC5100879 DOI: 10.1371/journal.pone.0165835] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/18/2016] [Indexed: 12/12/2022] Open
Abstract
The role of Sirtuin 6 (SIRT6) as a tumor suppressor or oncogene in liver cancer remains controversial. Thus, we identified the specific role of SIRT6 in the progression of hepatocellular carcinoma (HCC). SIRT6 expression was significantly higher in HCC cell lines and HCC tissues from 138 patients than in an immortalized hepatocyte cell line, THLE-2 and non-tumor tissues, respectively. SIRT6 knockdown by shRNA suppressed the growth of HCC cells and inhibited HCC tumor growth in vivo. In addition, SIRT6 silencing significantly prevented the growth of HCC cell lines by inducing cellular senescence in the p16/Rb- and p53/p21-pathway independent manners. Microarray analysis revealed that the expression of genes involved in nucleosome assembly was apparently altered in SIRT6-depleted Hep3B cells. SIRT6 knockdown promoted G2/M phase arrest and downregulation of genes encoding histone variants associated with nucleosome assembly, which could be attributed to DNA damage. Taken together, our findings suggest that SIRT6 acts as a tumor promoter by preventing DNA damage and cellular senescence, indicating that SIRT6 represents a potential therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Namgyu Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Hye Guk Ryu
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | | | - Dae-Kyum Kim
- Donnelly Centre, Departments of Molecular Genetics and Computer Science, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Sae Rom Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Hee Jung Wang
- Department of Surgery, Ajou University School of Medicine, Suwon, Korea
| | - Kyong-Tai Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
- Division of Integrative Biosciences & Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Kwan Yong Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
- Division of Integrative Biosciences & Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
- * E-mail:
| |
Collapse
|
102
|
Drazic A, Myklebust LM, Ree R, Arnesen T. The world of protein acetylation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1372-401. [PMID: 27296530 DOI: 10.1016/j.bbapap.2016.06.007] [Citation(s) in RCA: 570] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/04/2016] [Accepted: 06/08/2016] [Indexed: 12/30/2022]
Abstract
Acetylation is one of the major post-translational protein modifications in the cell, with manifold effects on the protein level as well as on the metabolome level. The acetyl group, donated by the metabolite acetyl-coenzyme A, can be co- or post-translationally attached to either the α-amino group of the N-terminus of proteins or to the ε-amino group of lysine residues. These reactions are catalyzed by various N-terminal and lysine acetyltransferases. In case of lysine acetylation, the reaction is enzymatically reversible via tightly regulated and metabolism-dependent mechanisms. The interplay between acetylation and deacetylation is crucial for many important cellular processes. In recent years, our understanding of protein acetylation has increased significantly by global proteomics analyses and in depth functional studies. This review gives a general overview of protein acetylation and the respective acetyltransferases, and focuses on the regulation of metabolic processes and physiological consequences that come along with protein acetylation.
Collapse
Affiliation(s)
- Adrian Drazic
- Department of Molecular Biology, University of Bergen, N-5020 Bergen, Norway
| | - Line M Myklebust
- Department of Molecular Biology, University of Bergen, N-5020 Bergen, Norway
| | - Rasmus Ree
- Department of Molecular Biology, University of Bergen, N-5020 Bergen, Norway; Department of Surgery, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Thomas Arnesen
- Department of Molecular Biology, University of Bergen, N-5020 Bergen, Norway; Department of Surgery, Haukeland University Hospital, N-5021 Bergen, Norway.
| |
Collapse
|
103
|
Zhai XY, Yan P, Zhang J, Song HF, Yin WJ, Gong H, Li H, Wu J, Xie J, Li RK. Knockdown of SIRT6 Enables Human Bone Marrow Mesenchymal Stem Cell Senescence. Rejuvenation Res 2016; 19:373-384. [PMID: 26654351 DOI: 10.1089/rej.2015.1770] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Autologous bone marrow mesenchymal stem cell (BM-MSC) transplantation is a novel strategy for treating ischemic heart disease. However, limited benefits have been reported in aging patients. Rejuvenation of aged human BM-MSCs (hBM-MSCs) could be a means to improve the efficacy of stem cell transplantation in older patients. While it has been shown that sirtuin 6 (SIRT6) is an important antiaging factor in various cells, the role of SIRT6 in hBM-MSCs remains unknown. The hBM-MSCs from different ages were cultured for quantifying SIRT6 expression by mRNA and Western blotting. The cell proliferative and migration abilities were evaluated by BrdU staining, cell growth curves, and scratch assay. Senescence-associated β-galactosidase (SA-β-Gal) activity and aging-associated p16 (cyclin-dependent kinase inhibitor 2A) expression were also quantified. The knockdown of SIRT6 in hBM-MSCs was used to investigate its impact on aging. SIRT6 expression increased with age, while the proliferative and migration abilities of aged hBM-MSCs were decreased compared with young cells. Knockdown of SIRT6 impaired the proliferative, migration, and oxidative stress resistance potentials of BM-MSCs. SA-β-Gal activity and p16 expression were increased in aged cells compared with young ones and in siRNA SIRT6 knockdown cells compared with their controls. Aging results in compensatory overexpression of SIRT6 in hBM-MSCs. Downregulation of SIRT6 in these cells resulted in less cell proliferation and migration but increased SA-β-Gal activity and p16 expression. These results suggest that SIRT6 regulates the aging process in hBM-MSCs and could serve as a target for their rejuvenation.
Collapse
Affiliation(s)
- Xiao-Yan Zhai
- 1 Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University , Taiyuan, China .,2 Department of Anatomy, Shanxi Chinese Traditional Medical University , Taiyuan, China
| | - Ping Yan
- 1 Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University , Taiyuan, China
| | - Jie Zhang
- 1 Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University , Taiyuan, China
| | - Hui-Fang Song
- 1 Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University , Taiyuan, China
| | - Wen-Juan Yin
- 1 Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University , Taiyuan, China
| | - Hui Gong
- 1 Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University , Taiyuan, China
| | - Hao Li
- 3 Department of Critical Care Medicine, The Second Hospital, Shanxi Medical University , Taiyuan, China
| | - Jun Wu
- 4 Division of Cardiovascular Surgery, Toronto General Research Institute, University Health Network , Toronto, Canada
| | - Jun Xie
- 1 Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University , Taiyuan, China
| | - Ren-Ke Li
- 4 Division of Cardiovascular Surgery, Toronto General Research Institute, University Health Network , Toronto, Canada
| |
Collapse
|
104
|
Ran LK, Chen Y, Zhang ZZ, Tao NN, Ren JH, Zhou L, Tang H, Chen X, Chen K, Li WY, Huang AL, Chen J. SIRT6 Overexpression Potentiates Apoptosis Evasion in Hepatocellular Carcinoma via BCL2-Associated X Protein–Dependent Apoptotic Pathway. Clin Cancer Res 2016; 22:3372-82. [PMID: 26861461 DOI: 10.1158/1078-0432.ccr-15-1638] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 01/17/2016] [Indexed: 11/16/2022]
MESH Headings
- Animals
- Antibiotics, Antineoplastic/pharmacology
- Apoptosis/genetics
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cell Proliferation/genetics
- Cell Survival/genetics
- Doxorubicin/pharmacology
- E2F1 Transcription Factor/metabolism
- Enzyme Activation/physiology
- Gene Expression Regulation, Neoplastic
- Hep G2 Cells
- Histones/metabolism
- Humans
- Liver Neoplasms/drug therapy
- Liver Neoplasms/pathology
- Male
- Mice
- Mice, Inbred BALB C
- Promoter Regions, Genetic
- Protein Binding/physiology
- RNA Interference
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- Signal Transduction
- Sirtuins/biosynthesis
- Sirtuins/genetics
- Transcriptional Activation
- Tumor Suppressor Protein p53/metabolism
- bcl-2-Associated X Protein/genetics
- bcl-2-Associated X Protein/metabolism
Collapse
Affiliation(s)
- Long-Kuan Ran
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China. Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Zhejiang, China
| | - Yong Chen
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhen-Zhen Zhang
- Department of Infectious Diseases, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Na-Na Tao
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ji-Hua Ren
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Li Zhou
- Department of Epidemiology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Hua Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiang Chen
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ke Chen
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Wan-Yu Li
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ai-Long Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China. Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Zhejiang, China.
| | - Juan Chen
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
105
|
Jeong SM, Hwang S, Seong RH. SIRT4 regulates cancer cell survival and growth after stress. Biochem Biophys Res Commun 2016; 470:251-256. [PMID: 26775843 DOI: 10.1016/j.bbrc.2016.01.078] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 01/12/2016] [Indexed: 12/13/2022]
Abstract
Cellular stresses initiate well-coordinated signaling response pathways. As the proper regulation of stress is essential for cellular homeostasis, the defects of stress response pathways result in functional deficits and cell death. Although mitochondrial SIRT4 has been shown to be involved in cellular stress response and tumor suppression, its roles in survival and drug resistance of cancer cells are not well determined. Here we show that SIRT4 is a crucial regulator of the stress resistance of cancer cells. SIRT4 is highly induced by various cellular stresses and contributes to cell survival and growth after stresses. SIRT4 loss sensitizes cells to DNA damage or ER stress. Moreover, SIRT4 induction is required for tumorigenic transformation, as SIRT4 null cells are vulnerable to oncogene activation. Thus, these results suggest that SIRT4 has essential roles in stress resistance and may be an important therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Seung Min Jeong
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea; Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea.
| | - Sunsook Hwang
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul 151-742, South Korea
| | - Rho Hyun Seong
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul 151-742, South Korea
| |
Collapse
|
106
|
Lasigliè D, Boero S, Bauer I, Morando S, Damonte P, Cea M, Monacelli F, Odetti P, Ballestrero A, Uccelli A, Mostoslavsky R, Poggi A, Nencioni A. Sirt6 regulates dendritic cell differentiation, maturation, and function. Aging (Albany NY) 2016; 8:34-49. [PMID: 26761436 PMCID: PMC4761712 DOI: 10.18632/aging.100870] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/29/2015] [Indexed: 12/29/2022]
Abstract
Dendritic cells (DCs) are antigen-presenting cells that critically influence decisions about immune activation or tolerance. Impaired DC function is at the core of common chronic disorders and contributes to reduce immunocompetence during aging. Knowledge on the mechanisms regulating DC generation and function is necessary to understand the immune system and to prevent disease and immunosenescence. Here we show that the sirtuin Sirt6, which was previously linked to healthspan promotion, stimulates the development of myeloid, conventional DCs (cDCs). Sirt6-knockout (Sirt6KO) mice exhibit low frequencies of bone marrow cDC precursors and low yields of bone marrow-derived cDCs compared to wild-type (WT) animals. Sirt6KO cDCs express lower levels of class II MHC, of costimulatory molecules, and of the chemokine receptor CCR7, and are less immunostimulatory compared to WT cDCs. Similar effects in terms of differentiation and immunostimulatory capacity were observed in human monocyte-derived DCs in response to SIRT6 inhibition. Finally, while Sirt6KO cDCs show an overall reduction in their ability to produce IL-12, TNF-α and IL-6 secretion varies dependent on the stimulus, being reduced in response to CpG, but increased in response to other Toll-like receptor ligands. In conclusion, Sirt6 plays a crucial role in cDC differentiation and function and reduced Sirt6 activity may contribute to immunosenescence.
Collapse
Affiliation(s)
- Denise Lasigliè
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
| | - Silvia Boero
- The Istituto di Ricovero e Cura a Carattere Scientifico Azienda Ospedaliera Universitaria San Martino-Istituto Scientifico Tumori, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy
| | - Inga Bauer
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
| | - Sara Morando
- Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16100 Genoa, Italy
| | - Patrizia Damonte
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
| | - Michele Cea
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
| | - Fiammetta Monacelli
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
- The Istituto di Ricovero e Cura a Carattere Scientifico Azienda Ospedaliera Universitaria San Martino-Istituto Scientifico Tumori, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy
| | - Paizio Odetti
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
- The Istituto di Ricovero e Cura a Carattere Scientifico Azienda Ospedaliera Universitaria San Martino-Istituto Scientifico Tumori, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy
| | - Alberto Ballestrero
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
- The Istituto di Ricovero e Cura a Carattere Scientifico Azienda Ospedaliera Universitaria San Martino-Istituto Scientifico Tumori, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy
| | - Antonio Uccelli
- The Istituto di Ricovero e Cura a Carattere Scientifico Azienda Ospedaliera Universitaria San Martino-Istituto Scientifico Tumori, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy
- Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16100 Genoa, Italy
| | - Raul Mostoslavsky
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114 USA
| | - Alessandro Poggi
- The Istituto di Ricovero e Cura a Carattere Scientifico Azienda Ospedaliera Universitaria San Martino-Istituto Scientifico Tumori, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy
| | - Alessio Nencioni
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
- The Istituto di Ricovero e Cura a Carattere Scientifico Azienda Ospedaliera Universitaria San Martino-Istituto Scientifico Tumori, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy
| |
Collapse
|
107
|
Xiong X, Wang G, Tao R, Wu P, Kono T, Li K, Ding WX, Tong X, Tersey SA, Harris RA, Mirmira RG, Evans-Molina C, Dong XC. Sirtuin 6 regulates glucose-stimulated insulin secretion in mouse pancreatic beta cells. Diabetologia 2016; 59:151-160. [PMID: 26471901 PMCID: PMC4792692 DOI: 10.1007/s00125-015-3778-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/22/2015] [Indexed: 12/31/2022]
Abstract
AIMS/HYPOTHESIS Sirtuin 6 (SIRT6) has been implicated in ageing, DNA repair and metabolism; however, its function in pancreatic beta cells is unclear. The aim of this study is to elucidate the role of SIRT6 in pancreatic beta cells. METHODS To investigate the function of SIRT6 in pancreatic beta cells, we performed Sirt6 gene knockdown in MIN6 cells and generated pancreatic- and beta cell-specific Sirt6 knockout mice. Islet morphology and glucose-stimulated insulin secretion (GSIS) were analysed. Glycolysis and oxygen consumption rates in SIRT6-deficient beta cells were measured. Cytosolic calcium was monitored using the Fura-2-AM fluorescent probe (Invitrogen, Grand Island, NY, USA). Mitochondria were analysed by immunoblots and electron microscopy. RESULTS Sirt6 knockdown in MIN6 beta cells led to a significant decrease in GSIS. Pancreatic beta cell Sirt6 knockout mice showed a ~50% decrease in GSIS. The knockout mouse islets had lower ATP levels compared with the wild-type controls. Mitochondrial oxygen consumption rates were significantly decreased in the SIRT6-deficient beta cells. Cytosolic calcium dynamics in response to glucose or potassium chloride were attenuated in the Sirt6 knockout islets. Numbers of damaged mitochondria were increased and mitochondrial complex levels were decreased in the SIRT6-deficient islets. CONCLUSIONS/INTERPRETATION These data suggest that SIRT6 is important for GSIS from pancreatic beta cells and activation of SIRT6 may be useful to improve insulin secretion in diabetes.
Collapse
Affiliation(s)
- Xiwen Xiong
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS1021D, Indianapolis, IN, 46202, USA
| | - Gaihong Wang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS1021D, Indianapolis, IN, 46202, USA
| | - Rongya Tao
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS1021D, Indianapolis, IN, 46202, USA
| | - Pengfei Wu
- Richard Roudebush Veterans Affairs Medical Center, Indianapolis, IN, USA
| | - Tatsuyoshi Kono
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kevin Li
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Xin Tong
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sarah A Tersey
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Robert A Harris
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS1021D, Indianapolis, IN, 46202, USA
- Richard Roudebush Veterans Affairs Medical Center, Indianapolis, IN, USA
| | - Raghavendra G Mirmira
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Carmella Evans-Molina
- Richard Roudebush Veterans Affairs Medical Center, Indianapolis, IN, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - X Charlie Dong
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS1021D, Indianapolis, IN, 46202, USA.
| |
Collapse
|
108
|
Lerrer B, Gertler AA, Cohen HY. The complex role of SIRT6 in carcinogenesis. Carcinogenesis 2015; 37:108-18. [PMID: 26717993 DOI: 10.1093/carcin/bgv167] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 11/25/2015] [Indexed: 12/28/2022] Open
Abstract
SIRT6, a member of the mammalian sirtuins family, functions as a mono-ADP-ribosyl transferase and NAD(+)-dependent deacylase of both acetyl groups and long-chain fatty acyl groups. SIRT6 regulates diverse cellular functions such as transcription, genome stability, telomere integrity, DNA repair, inflammation and metabolic related diseases such as diabetes, obesity and cancer. In this review, we will discuss the implication of SIRT6 in the biology of cancer and the relevance to organism homeostasis and lifespan.
Collapse
Affiliation(s)
- Batia Lerrer
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Asaf A Gertler
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Haim Y Cohen
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
109
|
Nussinov R, Tsai CJ, Muratcioglu S, Jang H, Gursoy A, Keskin O. Principles of K-Ras effector organization and the role of oncogenic K-Ras in cancer initiation through G1 cell cycle deregulation. Expert Rev Proteomics 2015; 12:669-82. [DOI: 10.1586/14789450.2015.1100079] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
110
|
Abstract
The sirtuins (SIRTs; of which there are seven in mammals) are NAD(+)-dependent enzymes that regulate a large number of cellular pathways and forestall the progression of ageing and age-associated diseases. In recent years, the role of sirtuins in cancer biology has become increasingly apparent, and growing evidence demonstrates that sirtuins regulate many processes that go awry in cancer cells, such as cellular metabolism, the regulation of chromatin structure and the maintenance of genomic stability. In this article, we review recent advances in our understanding of how sirtuins affect cancer metabolism, DNA repair and the tumour microenvironment and how activating or inhibiting sirtuins may be important in preventing or treating cancer.
Collapse
Affiliation(s)
- Angeliki Chalkiadaki
- Department of Biology, The Paul F. Glenn Center for the Science of Aging, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Bldg 68-280 Cambridge, Massachusetts 02139, USA
| | - Leonard Guarente
- Department of Biology, The Paul F. Glenn Center for the Science of Aging, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Bldg 68-280 Cambridge, Massachusetts 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Kendall Square, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
111
|
Sociali G, Galeno L, Parenti MD, Grozio A, Bauer I, Passalacqua M, Boero S, Donadini A, Millo E, Bellotti M, Sturla L, Damonte P, Puddu A, Ferroni C, Varchi G, Franceschi C, Ballestrero A, Poggi A, Bruzzone S, Nencioni A, Del Rio A. Quinazolinedione SIRT6 inhibitors sensitize cancer cells to chemotherapeutics. Eur J Med Chem 2015; 102:530-539. [PMID: 26310895 DOI: 10.1016/j.ejmech.2015.08.024] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 08/04/2015] [Accepted: 08/10/2015] [Indexed: 01/09/2023]
Abstract
The NAD(+)-dependent sirtuin SIRT6 is highly expressed in human breast, prostate, and skin cancer where it mediates resistance to cytotoxic agents and prevents differentiation. Thus, SIRT6 is an attractive target for the development of new anticancer agents to be used alone or in combination with chemo- or radiotherapy. Here we report on the identification of novel quinazolinedione compounds with inhibitory activity on SIRT6. As predicted based on SIRT6's biological functions, the identified new SIRT6 inhibitors increase histone H3 lysine 9 acetylation, reduce TNF-α production and increase glucose uptake in cultured cells. In addition, these compounds exacerbate DNA damage and cell death in response to the PARP inhibitor olaparib in BRCA2-deficient Capan-1 cells and cooperate with gemcitabine to the killing of pancreatic cancer cells. In conclusion, new SIRT6 inhibitors with a quinazolinedione-based structure have been identified which are active in cells and could potentially find applications in cancer treatment.
Collapse
Affiliation(s)
- Giovanna Sociali
- Department of Experimental Medicine, Section of Biochemistry and CEBR, University of Genoa, V.le Benedetto XV 1, 16132 Genoa, Italy
| | - Lauretta Galeno
- Department of Internal Medicine, University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy
| | - Marco Daniele Parenti
- Department of Internal Medicine, University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy; Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Via S. Giacomo 14, 40126 Bologna, Italy
| | - Alessia Grozio
- Department of Experimental Medicine, Section of Biochemistry and CEBR, University of Genoa, V.le Benedetto XV 1, 16132 Genoa, Italy
| | - Inga Bauer
- Department of Internal Medicine, University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy
| | - Mario Passalacqua
- Department of Experimental Medicine, Section of Biochemistry and CEBR, University of Genoa, V.le Benedetto XV 1, 16132 Genoa, Italy
| | - Silvia Boero
- Department of Internal Medicine, University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy; IRCCS Azienda Ospedaliera Universitaria San Martino-IST, Istituto Nazionale per la Ricerca Sul Cancro, 16132 Genoa, Italy
| | - Alessandra Donadini
- Department of Internal Medicine, University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy
| | - Enrico Millo
- Department of Experimental Medicine, Section of Biochemistry and CEBR, University of Genoa, V.le Benedetto XV 1, 16132 Genoa, Italy
| | - Marta Bellotti
- Department of Experimental Medicine, Section of Biochemistry and CEBR, University of Genoa, V.le Benedetto XV 1, 16132 Genoa, Italy
| | - Laura Sturla
- Department of Experimental Medicine, Section of Biochemistry and CEBR, University of Genoa, V.le Benedetto XV 1, 16132 Genoa, Italy
| | - Patrizia Damonte
- Department of Internal Medicine, University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy
| | - Alessandra Puddu
- Department of Internal Medicine, University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy
| | - Claudia Ferroni
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via P. Gobetti 101, 40129 Bologna, Italy
| | - Greta Varchi
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via P. Gobetti 101, 40129 Bologna, Italy
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Via S. Giacomo 14, 40126 Bologna, Italy; Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via P. Gobetti 101, 40129 Bologna, Italy
| | - Alberto Ballestrero
- Department of Internal Medicine, University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy; IRCCS Azienda Ospedaliera Universitaria San Martino-IST, Istituto Nazionale per la Ricerca Sul Cancro, 16132 Genoa, Italy
| | - Alessandro Poggi
- IRCCS Azienda Ospedaliera Universitaria San Martino-IST, Istituto Nazionale per la Ricerca Sul Cancro, 16132 Genoa, Italy
| | - Santina Bruzzone
- Department of Experimental Medicine, Section of Biochemistry and CEBR, University of Genoa, V.le Benedetto XV 1, 16132 Genoa, Italy.
| | - Alessio Nencioni
- Department of Internal Medicine, University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy; IRCCS Azienda Ospedaliera Universitaria San Martino-IST, Istituto Nazionale per la Ricerca Sul Cancro, 16132 Genoa, Italy.
| | - Alberto Del Rio
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Via S. Giacomo 14, 40126 Bologna, Italy; Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via P. Gobetti 101, 40129 Bologna, Italy.
| |
Collapse
|
112
|
Chen HP, Zhao YT, Zhao TC. Histone deacetylases and mechanisms of regulation of gene expression. Crit Rev Oncog 2015; 20:35-47. [PMID: 25746103 DOI: 10.1615/critrevoncog.2015012997] [Citation(s) in RCA: 204] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In recent years it has become widely recognized that histone modification plays a pivotal role in controlling gene expression and is involved in a wide spectrum of disease regulation. Histone acetylation is a major modification that affects gene transcription and is controlled by histone acetyltransferases (HATs) and histone deacetylases (HDACs). HATs acetylate lysines of histone proteins, resulting in the relaxation of chromatin structure, and they also facilitate gene activation. Conversely, HDACs remove acetyl groups from hyperacetylated histones and suppress general gene transcription. In addition to histones, numerous nonhistone proteins can be acetylated and deacetylated, and they also are involved in the regulation of a wide range of diseases. To date there are 18 HDACs in mammals classified into 4 classes based on homology to yeast HDACs. Accumulating evidence has revealed that HDACs play crucial roles in a variety of biological processes including inflammation, cell proliferation, apoptosis, and carcinogenesis. In this review we summarize the current state of knowledge of HDACs in carcinogenesis and describe the involvement of HDACs in cancer-associated molecular processes. It is hoped than an understanding of the role of HDACs in cancer will lead to the design of more potent and specific drugs targeting selective HDAC proteins for the treatment of the disease.
Collapse
Affiliation(s)
- Hong Ping Chen
- Department of Surgery, Boston University Medical School, Boston University, Roger Williams Medical Center, Providence, RI; Department of Histology and Embryology, Medical College, Nanchang University, Nanchang, China
| | - Yu Tina Zhao
- Department of Surgery, Boston University Medical School, Boston University, Roger Williams Medical Center, Providence, RI
| | - Ting C Zhao
- Department of Surgery, Boston University Medical School, Boston University, Roger Williams Medical Center, Providence, RI
| |
Collapse
|
113
|
Nussinov R, Muratcioglu S, Tsai CJ, Jang H, Gursoy A, Keskin O. The Key Role of Calmodulin in KRAS-Driven Adenocarcinomas. Mol Cancer Res 2015; 13:1265-73. [PMID: 26085527 PMCID: PMC4572916 DOI: 10.1158/1541-7786.mcr-15-0165] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/09/2015] [Indexed: 12/14/2022]
Abstract
KRAS4B is a highly oncogenic splice variant of the KRAS isoform. It is the only isoform associated with initiation of adenocarcinomas. Insight into why and how KRAS4B can mediate ductal adenocarcinomas, particularly of the pancreas, is vastly important for its therapeutics. Here we point out the overlooked critical role of calmodulin (CaM). Calmodulin selectively binds to GTP-bound K-Ras4B; but not to other Ras isoforms. Cell proliferation and growth require the MAPK (Raf/MEK/ERK) and PI3K/Akt pathways. We propose that Ca(2+)/calmodulin promote PI3Kα/Akt signaling, and suggest how. The elevated calcium levels clinically observed in adenocarcinomas may explain calmodulin's involvement in recruiting and stimulating PI3Kα through interaction with its n/cSH2 domains as well as K-Ras4B; importantly, it also explains why K-Ras4B specifically is a key player in ductal carcinomas, such as pancreatic (PDAC), colorectal (CRC), and lung cancers. We hypothesize that calmodulin recruits and helps activate PI3Kα at the membrane, and that this is the likely reason for Ca(2+)/calmodulin dependence in adenocarcinomas. Calmodulin can contribute to initiation/progression of ductal cancers via both PI3Kα/Akt and Raf/MEK/ERK pathways. Blocking the K-Ras4B/MAPK pathway and calmodulin/PI3Kα binding in a K-Ras4B/calmodulin/PI3Kα trimer could be a promising adenocarcinoma-specific therapeutic strategy.
Collapse
Affiliation(s)
- Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, NCI at Frederick, Frederick, Maryland. Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Serena Muratcioglu
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | - Chung-Jung Tsai
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, NCI at Frederick, Frederick, Maryland
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, NCI at Frederick, Frederick, Maryland
| | - Attila Gursoy
- Department of Computer Engineering, Koc University, Istanbul, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| |
Collapse
|
114
|
Jeong SM, Haigis MC. Sirtuins in Cancer: a Balancing Act between Genome Stability and Metabolism. Mol Cells 2015; 38:750-8. [PMID: 26420294 PMCID: PMC4588717 DOI: 10.14348/molcells.2015.0167] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/29/2015] [Accepted: 08/31/2015] [Indexed: 12/18/2022] Open
Abstract
Genomic instability and altered metabolism are key features of most cancers. Recent studies suggest that metabolic reprogramming is part of a systematic response to cellular DNA damage. Thus, defining the molecules that fine-tune metabolism in response to DNA damage will enhance our understanding of molecular mechanisms of tumorigenesis and have profound implications for the development of strategies for cancer therapy. Sirtuins have been established as critical regulators in cellular homeostasis and physiology. Here, we review the emerging data revealing a pivotal function of sirtuins in genome maintenance and cell metabolism, and highlight current advances about the phenotypic consequences of defects in these critical regulators in tumorigenesis. While many questions should be addressed about the regulation and context-dependent functions of sirtuins, it appears clear that sirtuins may provide a promising, exciting new avenue for cancer therapy.
Collapse
Affiliation(s)
- Seung Min Jeong
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701,
Korea
- Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 137-701,
Korea
| | - Marcia C. Haigis
- Department of Cell Biology, Harvard Medical School, Boston, MA,
USA
| |
Collapse
|
115
|
Sebastián C, Mostoslavsky R. The role of mammalian sirtuins in cancer metabolism. Semin Cell Dev Biol 2015; 43:33-42. [DOI: 10.1016/j.semcdb.2015.07.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/29/2015] [Indexed: 12/26/2022]
|
116
|
McGlynn LM, McCluney S, Jamieson NB, Thomson J, MacDonald AI, Oien K, Dickson EJ, Carter CR, McKay CJ, Shiels PG. SIRT3 & SIRT7: Potential Novel Biomarkers for Determining Outcome in Pancreatic Cancer Patients. PLoS One 2015; 10:e0131344. [PMID: 26121130 PMCID: PMC4487247 DOI: 10.1371/journal.pone.0131344] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 06/01/2015] [Indexed: 01/05/2023] Open
Abstract
PURPOSE The sirtuin gene family has been linked with tumourigenesis, in both a tumour promoter and suppressor capacity. Information regarding the function of sirtuins in pancreatic cancer is sparse and equivocal. We undertook a novel study investigating SIRT1-7 protein expression in a cohort of pancreatic tumours. The aim of this study was to establish a protein expression profile for SIRT1-7 in pancreatic ductal adenocarcinomas (PDAC) and to determine if there were associations between SIRT1-7 expression, clinico-pathological parameters and patient outcome. MATERIAL AND METHODS Immunohistochemical analysis of SIRT1-7 protein levels was undertaken in a tissue micro-array comprising 77 resected PDACs. Statistical analyses determined if SIRT1-7 protein expression was associated with clinical parameters or outcome. RESULTS Two sirtuin family members demonstrated significant associations with clinico-pathological parameters and patient outcome. Low level SIRT3 expression in the tumour cytoplasm correlated with more aggressive tumours, and a shorter time to relapse and death, in the absence of chemotherapeutic intervention. Low levels of nuclear SIRT7 expression were also associated with an aggressive tumour phenotype and poorer outcome, as measured by disease-free and disease-specific survival time, 12 months post-diagnosis. CONCLUSIONS Our data suggests that SIRT3 and SIRT7 possess tumour suppressor properties in the context of pancreatic cancer. SIRT3 may also represent a novel predictive biomarker to determine which patients may or may not respond to chemotherapy. This study opens up an interesting avenue of investigation to potentially identify predictive biomarkers and novel therapeutic targets for pancreatic cancer, a disease that has seen no significant improvement in survival over the past 40 years.
Collapse
Affiliation(s)
- Liane M. McGlynn
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Simon McCluney
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Nigel B. Jamieson
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, United Kingdom
- Academic Department of Surgery, University of Glasgow, Glasgow, United Kingdom
| | - Jackie Thomson
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Karin Oien
- Institute of Cancer Sciences, Pathology, Wolfson Building, Beatson Labs, Glasgow, United Kingdom
| | - Euan J. Dickson
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - C. Ross Carter
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Colin J. McKay
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Paul G. Shiels
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
117
|
Alptekin M, Eroglu S, Tutar E, Sencan S, Geyik MA, Ulasli M, Demiryurek AT, Camci C. Gene expressions of TRP channels in glioblastoma multiforme and relation with survival. Tumour Biol 2015; 36:9209-13. [PMID: 26088448 DOI: 10.1007/s13277-015-3577-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/15/2015] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most lethal forms of cancer in humans, with a median survival of 10 to 12 months. Glioblastoma is highly malignant since the cells are supported by a great number of blood vessels. Although new treatments have been developed by increasing knowledge of molecular nature of the disease, surgical operation remains the standard of care. The TRP (transient receptor potential) superfamily consists of cation-selective channels that have roles in sensory physiology such as thermo- and osmosensation and in several complex diseases such as cancer, cardiovascular, and neuronal diseases. The aim of this study was to investigate the expression levels of TRP channel genes in patients with glioblastoma multiforme and to evaluate the relationship between TRP gene expressions and survival of the patients. Thirty-three patients diagnosed with glioblastoma were enrolled to the study. The expression levels of 21 TRP genes were quantified by using qRT-PCR with dynamic array 48 × 48 chip (BioMark HD System, Fluidigm, South San Francisco, CA, USA). TRPC1, TRPC6, TRPM2, TRPM3, TRPM7, TRPM8, TRPV1, and TRPV2 were found significantly higher in glioblastoma patients. Moreover, there was a significant relationship between the overexpression of TRP genes and the survival of the patients. These results demonstrate for the first time that TRP channels contribute to the progression and survival of the glioblastoma patients.
Collapse
Affiliation(s)
- M Alptekin
- Department of Neurosurgery, Faculty of Medicine, University of Gaziantep, Gaziantep, 27310, Turkey
| | - S Eroglu
- Department of Medical Biology, Faculty of Medicine, University of Gaziantep, Gaziantep, 27310, Turkey
| | - E Tutar
- Department of Pathology, Faculty of Medicine, University of Gaziantep, Gaziantep, 27310, Turkey
| | - S Sencan
- Department of Medical Biology, Faculty of Medicine, University of Gaziantep, Gaziantep, 27310, Turkey
| | - M A Geyik
- Department of Neurosurgery, Faculty of Medicine, University of Gaziantep, Gaziantep, 27310, Turkey
| | - M Ulasli
- Department of Medical Biology, Faculty of Medicine, University of Gaziantep, Gaziantep, 27310, Turkey
| | - A T Demiryurek
- Department of Pharmacology, Faculty of Medicine, University of Gaziantep, Gaziantep, 27310, Turkey
| | - C Camci
- Department of Medical Oncology, Faculty of Medicine, University of Gaziantep, Gaziantep, 27310, Turkey.
| |
Collapse
|
118
|
Ghosh S, Zhou Z. SIRTain regulators of premature senescence and accelerated aging. Protein Cell 2015; 6:322-33. [PMID: 25907989 PMCID: PMC4417679 DOI: 10.1007/s13238-015-0149-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/28/2015] [Indexed: 12/11/2022] Open
Abstract
The sirtuin proteins constitute class III histone deacetylases (HDACs). These evolutionarily conserved NAD(+)-dependent enzymes form an important component in a variety of cellular and biological processes with highly divergent as well as convergent roles in maintaining metabolic homeostasis, safeguarding genomic integrity, regulating cancer metabolism and also inflammatory responses. Amongst the seven known mammalian sirtuin proteins, SIRT1 has gained much attention due to its widely acknowledged roles in promoting longevity and ameliorating age-associated pathologies. The contributions of other sirtuins in the field of aging are also gradually emerging. Here, we summarize some of the recent discoveries in sirtuins biology which clearly implicate the functions of sirtuin proteins in the regulation of premature cellular senescence and accelerated aging. The roles of sirtuins in various cellular processes have been extrapolated to draw inter-linkage with anti-aging mechanisms. Also, the latest findings on sirtuins which might have potential effects in the process of aging have been reviewed.
Collapse
Affiliation(s)
- Shrestha Ghosh
- Department of Biochemistry, The University of Hong Kong, Hong Kong, China
| | - Zhongjun Zhou
- Department of Biochemistry, The University of Hong Kong, Hong Kong, China
- Shenzhen Institute of Innovation and Technology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
119
|
Kleszcz R, Paluszczak J, Baer-Dubowska W. Targeting aberrant cancer metabolism - The role of sirtuins. Pharmacol Rep 2015; 67:1068-80. [PMID: 26481524 DOI: 10.1016/j.pharep.2015.03.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 03/27/2015] [Accepted: 03/31/2015] [Indexed: 12/23/2022]
Abstract
Cancer cells, as opposed to normal cells, generate energy by increasing aerobic glycolysis, which is a phenomenon called "the Warburg effect". An altered energy metabolism supporting continuous cell growth and proliferation was pointed to as the new "hallmark" of cancer cells. Several hypotheses have been proposed to explain the maintenance of this seemingly wasteful catabolic state. The epigenetic mechanisms which depend on the covalent modifications of both DNA and histones have recently emerged as important players in the regulation of glucose metabolism. The sirtuin family of histone deacetylases has emerged as important regulators of diverse physiological and pathological events, including cancer metabolism. Sirtuins 1-7 (SIRT1-7) belong to class III of histone deacetylase enzymes which are dependent on NAD(+) for activity. It was recently demonstrated that SIRT6 is a tumor suppressor that modulates aerobic glycolysis by repressing HIF1 transcription. Members of this family of enzymes are considered promising pharmaceutical targets for cancer treatment. This review highlights the major functions of sirtuins in relation to cancer metabolism and the possibilities of their activation and inhibition by small molecule drugs.
Collapse
Affiliation(s)
- Robert Kleszcz
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznań, Poland
| | - Jarosław Paluszczak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznań, Poland
| | - Wanda Baer-Dubowska
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznań, Poland.
| |
Collapse
|
120
|
Abstract
Hyaluronan (HA) is a critical component of cancer microenvironment that is known to increase tumor progression and aggressiveness. The synthesis of HA starts from the cytosolic precursors UDP-N-acetylglucosamine and UDP-glucuronic acid. These two sugar nucleotides have several functions in addition to glycoconjugate synthesis and glucuronidation reactions, each of which can have a critical role in cancer. HA is synthesized by a family of three HA synthase (HAS) enzymes and, in this review, we described the main posttranslational modifications that are known to regulate HA metabolism. In particular, as the main HAS in adult tissues is HAS2, we focused on the role of AMPK-mediated phosphorylation and glycosylation by O-linked N-acetylglucosamine (O-GlcNAcylation) of HAS2 which mediate HAS2 inactivation and activation, respectively. HA catabolism, furnishing glucuronic acid and N-acetylglucosamine, can represent for a cancer cell a valid source of substrates to sustain complex tumor metabolism, and we highlight a presumable metabolic fate of such sugars in tumor cells.
Collapse
Affiliation(s)
- Davide Vigetti
- Dipartimento di Scienze Chirurgiche e Morfologiche, Università degli Studi dell'Insubria, Varese, Italy
| | - Alberto Passi
- Dipartimento di Scienze Chirurgiche e Morfologiche, Università degli Studi dell'Insubria, Varese, Italy.
| |
Collapse
|
121
|
Yokoyama NN, Denmon A, Uchio EM, Jordan M, Mercola D, Zi X. When Anti-Aging Studies Meet Cancer Chemoprevention: Can Anti-Aging Agent Kill Two Birds with One Blow? ACTA ACUST UNITED AC 2015; 1:420-433. [PMID: 26756023 DOI: 10.1007/s40495-015-0039-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recent evidence has strongly supported that the rate of aging is controlled, at least to some extent, by evolutionarily conserved nutrient sensing pathways (e.g. the insulin/IGF-1-signaling, mTOR, AMPK, and sirtuins) from worms to humans. These pathways are also commonly involved in carcinogenesis and cancer metabolism. Agents (e.g. metformin, resveratrol, and Rhodiola) that target these nutrient sensing pathways often have both anti-aging and anti-cancer efficacy. These agents not only reprogram energy metabolism of malignant cells, but also target normal postmitotic cells by suppressing their conversion into senescent cells, which confers systematic metabolism benefits. These agents are fundamentally different from chemotherapy (e.g. paclitaxel and doxorubicin) or radiation therapy that causes molecular damage (e.g. DNA and protein damages) and thereby no selection resistance may be expected. By reviewing molecular mechanisms of action, epidemiological evidence, experimental data in tumor models, and early clinical study results, this review provides information supporting the promising use of agents with both anti-aging and anti-cancer efficacy for cancer chemoprevention.
Collapse
Affiliation(s)
- Noriko N Yokoyama
- Department of Urology, University of California, Irvine, Orange, CA 92868, USA
| | - Andria Denmon
- Department of Urology, University of California, Irvine, Orange, CA 92868, USA
| | - Edward M Uchio
- Department of Urology, University of California, Irvine, Orange, CA 92868, USA
| | - Mark Jordan
- Department of Urology, University of California, Irvine, Orange, CA 92868, USA
| | - Dan Mercola
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Orange, CA 92868, USA
| | - Xiaolin Zi
- Department of Urology, University of California, Irvine, Orange, CA 92868, USA; Department of Pharmacology, University of California, Irvine, Orange, CA 92868, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, CA 92868, USA
| |
Collapse
|
122
|
Guéguinou M, Gambade A, Félix R, Chantôme A, Fourbon Y, Bougnoux P, Weber G, Potier-Cartereau M, Vandier C. Lipid rafts, KCa/ClCa/Ca2+ channel complexes and EGFR signaling: Novel targets to reduce tumor development by lipids? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:2603-20. [PMID: 25450343 DOI: 10.1016/j.bbamem.2014.10.036] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/15/2014] [Accepted: 10/22/2014] [Indexed: 12/29/2022]
Abstract
Membrane lipid rafts are distinct plasma membrane nanodomains that are enriched with cholesterol, sphingolipids and gangliosides, with occasional presence of saturated fatty acids and phospholipids containing saturated acyl chains. It is well known that they organize receptors (such as Epithelial Growth Factor Receptor), ion channels and their downstream acting molecules to regulate intracellular signaling pathways. Among them are Ca2+ signaling pathways, which are modified in tumor cells and inhibited upon membrane raft disruption. In addition to protein components, lipids from rafts also contribute to the organization and function of Ca2+ signaling microdomains. This article aims to focus on the lipid raft KCa/ClCa/Ca2+ channel complexes that regulate Ca2+ and EGFR signaling in cancer cells, and discusses the potential modification of these complexes by lipids as a novel therapeutic approach in tumor development. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
Affiliation(s)
- Maxime Guéguinou
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Audrey Gambade
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Romain Félix
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Aurélie Chantôme
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Yann Fourbon
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Philippe Bougnoux
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France; Centre HS Kaplan, CHRU Tours, Tours F-37032, France
| | - Günther Weber
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Marie Potier-Cartereau
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Christophe Vandier
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France.
| |
Collapse
|
123
|
Wang Y, Kuramitsu Y, Tokuda K, Baron B, Kitagawa T, Akada J, Maehara SI, Maehara Y, Nakamura K. Gemcitabine induces poly (ADP-ribose) polymerase-1 (PARP-1) degradation through autophagy in pancreatic cancer. PLoS One 2014; 9:e109076. [PMID: 25271986 PMCID: PMC4182782 DOI: 10.1371/journal.pone.0109076] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 09/08/2014] [Indexed: 01/02/2023] Open
Abstract
Poly (ADP-ribose) polymerase-1 (PARP-1) and autophagy play increasingly important roles in DNA damage repair and cell death. Gemcitabine (GEM) remains the first-line chemotherapeutic drug for pancreatic cancer (PC). However, little is known about the relationship between PARP-1 expression and autophagy in response to GEM. Here we demonstrate that GEM induces DNA-damage response and degradation of mono-ADP ribosylated PARP-1 through the autophagy pathway in PC cells, which is rescued by inhibiting autophagy. Hypoxia and serum starvation inhibit autophagic activity due to abrogated GEM-induced mono-ADP-ribosylated PARP-1 degradation. Activation of extracellular regulated protein kinases (ERK) induced by serum starvation shows differences in intracellular localization as well as modulation of autophagy and PARP-1 degradation in GEM-sensitive KLM1 and -resistant KLM1-R cells. Our study has revealed a novel role of autophagy in PARP-1 degradation in response to GEM, and the different impacts of MEK/ERK signaling pathway on autophagy between GEM-sensitive and -resistant PC cells.
Collapse
Affiliation(s)
- Yufeng Wang
- Department of Biochemistry and Functional Proteomics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Yasuhiro Kuramitsu
- Department of Biochemistry and Functional Proteomics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
- * E-mail:
| | - Kazuhiro Tokuda
- Department of Biochemistry and Functional Proteomics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Byron Baron
- Department of Biochemistry and Functional Proteomics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Takao Kitagawa
- Department of Biochemistry and Functional Proteomics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Junko Akada
- Department of Biochemistry and Functional Proteomics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Shin-ichiro Maehara
- Department of Surgery and Science, Graduate School of Medical Science, Kyusyu University, Fukuokashi, Fukuoka, Japan
| | - Yoshihiko Maehara
- Department of Surgery and Science, Graduate School of Medical Science, Kyusyu University, Fukuokashi, Fukuoka, Japan
| | - Kazuyuki Nakamura
- Department of Biochemistry and Functional Proteomics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
- Centre of Clinical Laboratories in Tokuyama Medical Association Hospital, Shunan, Japan
| |
Collapse
|
124
|
Zwaans BMM, Lombard DB. Interplay between sirtuins, MYC and hypoxia-inducible factor in cancer-associated metabolic reprogramming. Dis Model Mech 2014; 7:1023-32. [PMID: 25085992 PMCID: PMC4142723 DOI: 10.1242/dmm.016287] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In the early twentieth century, Otto Heinrich Warburg described an elevated rate of glycolysis occurring in cancer cells, even in the presence of atmospheric oxygen (the Warburg effect). Despite the inefficiency of ATP generation through glycolysis, the breakdown of glucose into lactate provides cancer cells with a number of advantages, including the ability to withstand fluctuations in oxygen levels, and the production of intermediates that serve as building blocks to support rapid proliferation. Recent evidence from many cancer types supports the notion that pervasive metabolic reprogramming in cancer and stromal cells is a crucial feature of neoplastic transformation. Two key transcription factors that play major roles in this metabolic reprogramming are hypoxia inducible factor-1 (HIF1) and MYC. Sirtuin-family deacetylases regulate diverse biological processes, including many aspects of tumor biology. Recently, the sirtuin SIRT6 has been shown to inhibit the transcriptional output of both HIF1 and MYC, and to function as a tumor suppressor. In this Review, we highlight the importance of HIF1 and MYC in regulating tumor metabolism and their regulation by sirtuins, with a main focus on SIRT6.
Collapse
Affiliation(s)
- Bernadette M M Zwaans
- Department of Pathology and Institute of Gerontology, University of Michigan, Ann Arbor, MI 48109, USA
| | - David B Lombard
- Department of Pathology and Institute of Gerontology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
125
|
Han Z, Liu L, Liu Y, Li S. Sirtuin SIRT6 suppresses cell proliferation through inhibition of Twist1 expression in non-small cell lung cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:4774-4781. [PMID: 25197348 PMCID: PMC4152038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 06/27/2014] [Indexed: 06/03/2023]
Abstract
SIRT6 is a member of the NAD(+)-dependent class III deacetylase sirtuin family. Current studies have revealed that SIRT6 plays important roles in the epigenetic regulation of genes expression and contribute to the proliferation, differentiation and apoptosis of cancer cells. However, the biological function of SIRT6 in lung cancer has not been elucidated. The present study showed that the mRNA and protein levels of SIRT6 were decreased in human non-small cell lung cancer (NSCLC) tissues and cell lines. MTT assay showed that overexpression of SIRT6 could inhibit the proliferation in NSCLC cells. In contrast, SIRT6 knockdown using small interfering RNA promoted NSCLC cells proliferation. On the molecular level, we found that SIRT6 inhibited the expression of Twist1 both at the mRNA and protein levels in NSCLC cells. Taken together, these results demonstrated for the first time that SIRT6 suppressed NSCLC cells proliferation via down-regulation of Twist1 expression and might provide novel therapeutic targets in the treatment of lung cancer.
Collapse
Affiliation(s)
- Zhijun Han
- Department of Thoracic Surgery, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC) Beijing, China
| | - Lei Liu
- Department of Thoracic Surgery, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC) Beijing, China
| | - Yaxin Liu
- Department of Thoracic Surgery, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC) Beijing, China
| | - Shanqing Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC) Beijing, China
| |
Collapse
|
126
|
Nielsen N, Lindemann O, Schwab A. TRP channels and STIM/ORAI proteins: sensors and effectors of cancer and stroma cell migration. Br J Pharmacol 2014; 171:5524-40. [PMID: 24724725 DOI: 10.1111/bph.12721] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 03/24/2014] [Accepted: 04/03/2014] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Cancer cells are strongly influenced by host cells within the tumour stroma and vice versa. This leads to the development of a tumour microenvironment with distinct physical and chemical properties that are permissive for tumour progression. The ability to migrate plays a central role in this mutual interaction. Migration of cancer cells is considered as a prerequisite for tumour metastasis and the migration of host stromal cells is required for reaching the tumour site. Increasing evidence suggests that transient receptor potential (TRP) channels and STIM/ORAI proteins affect key calcium-dependent mechanisms implicated in both cancer and stroma cell migration. These include, among others, cytoskeletal remodelling, growth factor/cytokine signalling and production, and adaptation to tumour microenvironmental properties such as hypoxia and oxidative stress. In this review, we will summarize the current knowledge regarding TRP channels and STIM/ORAI proteins in cancer and stroma cell migration. We focus on how TRP channel or STIM/ORAI-mediated Ca(2+) signalling directly or indirectly influences cancer and stroma cell migration by affecting the above listed mechanisms. LINKED ARTICLES This article is part of a themed section on Cytoskeleton, Extracellular Matrix, Cell Migration, Wound Healing and Related Topics. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-24.
Collapse
Affiliation(s)
- N Nielsen
- Institute of Physiology II, University of Münster, Münster, Germany
| | | | | |
Collapse
|
127
|
Engler A, Niederer F, Klein K, Gay RE, Kyburz D, Camici GG, Gay S, Ospelt C. SIRT6 regulates the cigarette smoke-induced signalling in rheumatoid arthritis synovial fibroblasts. J Mol Med (Berl) 2014; 92:757-67. [PMID: 24638860 DOI: 10.1007/s00109-014-1139-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/14/2014] [Accepted: 02/21/2014] [Indexed: 01/02/2023]
Abstract
UNLABELLED Cigarette smoking is a recognized environmental risk factor for the development and progression of rheumatoid arthritis (RA). RA synovial fibroblasts (RASF) actively contribute to inflammation and joint destruction in this chronic inflammatory autoimmune disease. In the current study, we investigated the influence of cigarette smoke on the inflammatory and matrix-destructive properties of RASF. Furthermore, the functional role of Sirtuin 6 (SIRT6) in the regulation of the signalling induced by cigarette smoke or by tumor necrosis factor alpha (TNFα) was elucidated. We demonstrated that stimulation with cigarette smoke extract (CSE) enhances the pro-inflammatory and matrix-destructive potential of RASF by inducing the production of pro-inflammatory cytokine interleukin 8 (IL8) and the matrix-destructive enzyme matrix metalloproteinase 1 (MMP1), but not of IL6 and MMP3. Moreover, we could show that the expression of MMP1 is specifically regulated by SIRT6. Treatment of RASF with CSE or TNFα increased the levels of SIRT6. The expression of SIRT6 was also enhanced in vivo in synovial tissues of RA smokers and in joints of mice exposed to cigarette smoke. Silencing of SIRT6 specifically increased basal as well as CSE- and TNFα-induced production of MMP1, demonstrating that SIRT6 plays an important role in restricting MMP1 expression. In conclusion, the upregulation of SIRT6 in RASF under CSE or TNFα stimulation functions as a counterregulatory mechanism attenuating the production of the matrix-destructive enzyme MMP1. This is the first study revealing the protective function of SIRT6 in the cigarette smoke-induced signalling. KEY MESSAGES Cigarette smoke induces pro-inflammatory and matrix-destructive responses in RASF. Cigarette smoke enhances the expression of SIRT6 in vitro and in vivo. TNFα increases the levels of SIRT6. SIRT6 diminishes MMP1 production under cigarette smoke extract and TNFα stimulation.
Collapse
Affiliation(s)
- Anna Engler
- Center of Experimental Rheumatology, University Hospital Zurich, Gloriastrasse 25, 8091, Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Parenti MD, Grozio A, Bauer I, Galeno L, Damonte P, Millo E, Sociali G, Franceschi C, Ballestrero A, Bruzzone S, Rio AD, Nencioni A. Discovery of Novel and Selective SIRT6 Inhibitors. J Med Chem 2014; 57:4796-804. [DOI: 10.1021/jm500487d] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Marco Daniele Parenti
- Department
of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater
Studiorum, University of Bologna, Via S. Giacomo 14, 40126 Bologna, Italy
| | - Alessia Grozio
- Department
of Experimental Medicine, Section of Biochemistry, and CEBR, University of Genoa, V.le Benedetto XV 1, 16132 Genoa, Italy
| | - Inga Bauer
- Department
of Internal Medicine, University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy
| | - Lauretta Galeno
- Department
of Internal Medicine, University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy
| | - Patrizia Damonte
- Department
of Internal Medicine, University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy
| | - Enrico Millo
- Department
of Experimental Medicine, Section of Biochemistry, and CEBR, University of Genoa, V.le Benedetto XV 1, 16132 Genoa, Italy
| | - Giovanna Sociali
- Department
of Experimental Medicine, Section of Biochemistry, and CEBR, University of Genoa, V.le Benedetto XV 1, 16132 Genoa, Italy
| | - Claudio Franceschi
- Department
of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater
Studiorum, University of Bologna, Via S. Giacomo 14, 40126 Bologna, Italy
- Institute
of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via P. Gobetti 101, 40129 Bologna, Italy
| | - Alberto Ballestrero
- Department
of Internal Medicine, University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy
- IRCCS
AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy
| | - Santina Bruzzone
- Department
of Experimental Medicine, Section of Biochemistry, and CEBR, University of Genoa, V.le Benedetto XV 1, 16132 Genoa, Italy
| | - Alberto Del Rio
- Department
of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater
Studiorum, University of Bologna, Via S. Giacomo 14, 40126 Bologna, Italy
- Institute
of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via P. Gobetti 101, 40129 Bologna, Italy
| | - Alessio Nencioni
- Department
of Internal Medicine, University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy
- IRCCS
AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy
| |
Collapse
|
129
|
Abstract
Aging is the strongest risk factor for cancer development, suggesting that molecular crosstalks between aging and tumorigenesis exist in many cellular pathways. Recently, Sirtuins (Sirt1-7), the mammalian homologues of aging-related sir2α in yeast, have been shown to modulate several major cellular pathways, such as DNA repair, inflammation, metabolism, cell death, and proliferation in response to diverse stresses, and may serve as a possible molecular link between aging and tumorignenesis. In addition, growing evidence suggests that sirtuins are directly implicated in the development of cancer, and they can act as either a tumor suppressor or promoter, depending on the cellular context and tumor types. While the functions of Sirt1 in tumorigenesis have been reported and reviewed in many studies, the connection between sirtuins 2-7 and the development of cancer is less established. Thus, this review will present the recent updates on the emerging roles of Sirt2-7 members in carcinogenesis. [BMB Reports 2013; 46(9): 429-438]
Collapse
Affiliation(s)
- Yong I Cha
- Department of Life Science, Ewha Womans University, Seoul 120-750, Korea
| | | |
Collapse
|
130
|
The histone deacetylase SIRT6 suppresses the expression of the RNA-binding protein PCBP2 in glioma. Biochem Biophys Res Commun 2014; 446:364-9. [DOI: 10.1016/j.bbrc.2014.02.116] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 02/25/2014] [Indexed: 02/06/2023]
|
131
|
Abstract
TRPM2 is the second member of the transient receptor potential melastatin-related (TRPM) family of cation channels. The protein is widely expressed including in the brain, immune system, endocrine cells, and endothelia. It embodies both ion channel functionality and enzymatic ADP-ribose (ADPr) hydrolase activity. TRPM2 is a Ca(2+)-permeable nonselective cation channel embedded in the plasma membrane and/or lysosomal compartments that is primarily activated in a synergistic fashion by intracellular ADP-ribose (ADPr) and Ca(2+). It is also activated by reactive oxygen and nitrogen species (ROS/NOS) and enhanced by additional factors, such as cyclic ADPr and NAADP, while inhibited by permeating protons (acidic pH) and adenosine monophosphate (AMP). Activation of TRPM2 leads to increases in intracellular Ca(2+) levels, which can serve signaling roles in inflammatory and secretory cells through release of vesicular mediators (e.g., cytokines, neurotransmitters, insulin) and in extreme cases can induce apoptotic and necrotic cell death under oxidative stress.
Collapse
Affiliation(s)
- Malika Faouzi
- Center for Biomedical Research, The Queen's Medical Center, 1301 Punchbowl Street, Honolulu, HI, 96813, USA,
| | | |
Collapse
|
132
|
SIRT6: a promising target for cancer prevention and therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 818:181-96. [PMID: 25001537 DOI: 10.1007/978-1-4471-6458-6_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many of the pathologies associated with the aging process also contribute to tumor initiation, growth or metastasis. Insights from biogerontology may be instrumental for developing new therapies for cancer. This chapter highlights the rationale for combining biogerontology and cancer research to generate new strategies for cancer treatment. In particular, this chapter focuses on one gene, SIRT6, which has emerged as an important regulator of longevity in mammals and appears to have multiple biochemical functions, which antagonize tumor development and may be useful in cancer prevention and treatment.
Collapse
|
133
|
Zhang ZG, Qin CY. Sirt6 suppresses hepatocellular carcinoma cell growth via inhibiting the extracellular signal‑regulated kinase signaling pathway. Mol Med Rep 2013; 9:882-8. [PMID: 24366394 DOI: 10.3892/mmr.2013.1879] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 12/17/2013] [Indexed: 12/15/2022] Open
Abstract
Sirt6, a member of the mammalian sirtuin family, is a protein that is located in the nucleus and is an NAD+‑dependent deacetylase important in the control of metabolic activity and genome stability. Recently, several studies have demonstrated the potential role of Sirt6 in tumor biology; however, the role of Sirt6 in hepatocellular carcinoma (HCC) remains unclear. In the present study, Sirt6 protein expression was found to be downregulated in human HCC tissue compared with adjacent normal tissue. Knockdown of Sirt6 promoted growth of the HepG2 HCC cell line, whereas overexpression of Sirt6 inhibited the growth of HepG2 cells. Overexpression of Sirt6 induced apoptosis in HepG2 cells, which was demonstrated by a terminal deoxynucleotidyl-transferase-mediated dUTP nick end labeling assay and cleaved caspase-3 immunoblotting. Furthermore, overexpression of Sirt6 decreased intracellular reactive oxygen species and superoxide anion levels. Finally, overexpression of Sirt6 inhibited phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2), and blocking the ERK1/2 pathway with chemical-specific inhibitor U0126, attenuated the tumor suppressive effect of overexpression of Sirt6. Collectively, these data suggest that Sirt6 is a tumor suppressor in HCC cells and may be a promising therapeutic target in HCC.
Collapse
Affiliation(s)
- Zhi-Gao Zhang
- Department of Gastroenterology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Cheng-Yong Qin
- Department of Gastroenterology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
134
|
Macedo de Oliveira MV, Andrade JMO, Paraíso AF, Santos SHS. Sirtuins and Cancer: New Insights and Cell Signaling. Cancer Invest 2013; 31:645-53. [DOI: 10.3109/07357907.2013.853076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
135
|
Yuan H, Su L, Chen WY. The emerging and diverse roles of sirtuins in cancer: a clinical perspective. Onco Targets Ther 2013; 6:1399-416. [PMID: 24133372 PMCID: PMC3797239 DOI: 10.2147/ott.s37750] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Sirtuins are a highly conserved family of nicotinamide adenine dinucleotide (NAD(+))-dependent protein lysine modifying enzymes with deacetylase, adenosine diphosphateribosyltransferase and other deacylase activities. Mammals have seven sirtuins, namely SIRT1-7. They are key regulators for a wide variety of cellular and physiological processes such as cell proliferation, differentiation, DNA damage and stress response, genome stability, cell survival, metabolism, energy homeostasis, organ development, aging, and cancer. Here we present an extensive literature review of the roles of mammalian sirtuins, particularly SIRT1 as that is the most studied sirtuin, in human epithelial, neuronal, hematopoietic, and mesenchymal malignancies, covering breast, prostate, lung, thyroid, liver, colon, gastric, pancreatic, ovarian, and cervical cancers, tumors of the central nervous system, leukemia and lymphoma, and soft tissue sarcomas. Collective evidence suggests sirtuins are involved in both promoting and suppressing tumorigenesis depending on cellular and molecular contexts. We discuss the potential use of sirtuin modulators, especially sirtuin inhibitors, in cancer treatment.
Collapse
Affiliation(s)
- Hongfeng Yuan
- Department of Cancer Biology, Beckman Research institute, City of Hope, Duarte, CA, USA
| | | | | |
Collapse
|
136
|
Carbone F, Nencioni A, Mach F, Vuilleumier N, Montecucco F. Pathophysiological role of neutrophils in acute myocardial infarction. Thromb Haemost 2013; 110:501-514. [PMID: 23740239 DOI: 10.1160/th13-03-0211] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 05/04/2013] [Indexed: 12/13/2022]
Abstract
The pathogenesis of acute myocardial infarction is known to be mediated by systemic, intraplaque and myocardial inflammatory processes. Among different immune cell subsets, compelling evidence now indicates a pivotal role for neutrophils in acute coronary syndromes. Neutrophils infiltrate coronary plaques and the infarcted myocardium and mediate tissue damage by releasing matrix-degrading enzymes and reactive oxygen species. In addition, neutrophils are also involved in post-infarction adverse cardiac remodelling and neointima formation after angioplasty. The promising results obtained in preclinical modelswith pharmacological approaches interfering with neutrophil recruitment or function have confirmed the pathophysiological relevance of these immune cells in acute coronary syndromes and prompted further studies of these therapeutic interventions. This narrative review will provide an update on the role of neutrophils in acute myocardial infarction and on the pharmacological means that were devised to prevent neutrophil-mediated tissue damage and to reduce post-ischaemic outcomes.
Collapse
Affiliation(s)
- F Carbone
- Fabrizio Montecucco, Cardiology Division, Department of Medicine, Geneva University Hospital, Foundation for Medical Researches, 64 Avenue Roseraie, 1211 Geneva, Switzerland, Tel.: +41 223827238, Fax: +41 223827245, E-mail:
| | | | | | | | | |
Collapse
|
137
|
Liu Y, Xie QR, Wang B, Shao J, Zhang T, Liu T, Huang G, Xia W. Inhibition of SIRT6 in prostate cancer reduces cell viability and increases sensitivity to chemotherapeutics. Protein Cell 2013; 4:702-10. [PMID: 23982738 DOI: 10.1007/s13238-013-3054-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 07/22/2013] [Indexed: 12/17/2022] Open
Abstract
SIRT6 is an important histone modifying protein that regulates DNA repair, telomere maintenance, energy metabolism, and target gene expression. Recently SIRT6 has been identified as a tumor suppressor and is down-regulated in certain cancer types, but not in other cancers. From deposited gene profiling studies we found that SIRT6 was overexpressed in prostate tumors, compared with normal or paratumor prostate tissues. Tissue micro-array studies confirmed the higher levels of SIRT6 in both prostate tumor tissues and prostate cancer cells than in their normal counterparts. Knockdown of SIRT6 in human prostate cancer cells led to sub-G1 phase arrest of cell cycle, increased apoptosis, elevated DNA damage level and decrease in BCL2 gene expression. Moreover, SIRT6-deficiency reduced cell viability and enhanced chemotherapeutics sensitivity. Taken together, this study provides the first evidence of SIRT6 overexpression in human prostate cancer, and SIRT6 regulation could be exploited for prostate cancer therapy.
Collapse
Affiliation(s)
- Yewei Liu
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China.,Department of Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Qian Reuben Xie
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Boshi Wang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jiaxiang Shao
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Tingting Zhang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Tengyuan Liu
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Gang Huang
- Department of Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Weiliang Xia
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China. .,Clinical Stem Cell Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
138
|
Tao R, Xiong X, DePinho RA, Deng CX, Dong XC. Hepatic SREBP-2 and cholesterol biosynthesis are regulated by FoxO3 and Sirt6. J Lipid Res 2013; 54:2745-53. [PMID: 23881913 DOI: 10.1194/jlr.m039339] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cholesterol homeostasis is crucial for cellular function and organismal health. The key regulator for the cholesterol biosynthesis is sterol-regulatory element binding protein (SREBP)-2. The biochemical process and physiological function of SREBP-2 have been well characterized; however, it is not clear how this gene is epigenetically regulated. Here we have identified sirtuin (Sirt)6 as a critical factor for Srebp2 gene regulation. Hepatic deficiency of Sirt6 in mice leads to elevated cholesterol levels. On the mechanistic level, Sirt6 is recruited by forkhead box O (FoxO)3 to the Srebp2 gene promoter where Sirt6 deacetylates histone H3 at lysines 9 and 56, thereby promoting a repressive chromatin state. Remarkably, Sirt6 or FoxO3 overexpression improves hypercholesterolemia in diet-induced or genetically obese mice. In summary, our data suggest an important role of hepatic Sirt6 and FoxO3 in the regulation of cholesterol homeostasis.
Collapse
Affiliation(s)
- Rongya Tao
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
| | | | | | | | | |
Collapse
|
139
|
A miR-34a-SIRT6 axis in the squamous cell differentiation network. EMBO J 2013; 32:2248-63. [PMID: 23860128 DOI: 10.1038/emboj.2013.156] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 06/17/2013] [Indexed: 01/15/2023] Open
Abstract
Squamous cell carcinomas (SCCs) are highly heterogeneous tumours, resulting from deranged expression of genes involved in squamous cell differentiation. Here we report that microRNA-34a (miR-34a) functions as a novel node in the squamous cell differentiation network, with SIRT6 as a critical target. miR-34a expression increases with keratinocyte differentiation, while it is suppressed in skin and oral SCCs, SCC cell lines, and aberrantly differentiating primary human keratinocytes (HKCs). Expression of this miRNA is restored in SCC cells, in parallel with differentiation, by reversion of genomic DNA methylation or wild-type p53 expression. In normal HKCs, the pro-differentiation effects of increased p53 activity or UVB exposure are miR-34a-dependent, and increased miR-34a levels are sufficient to induce differentiation of these cells both in vitro and in vivo. SIRT6, a sirtuin family member not previously connected with miR-34a function, is a direct target of this miRNA in HKCs, and SIRT6 down-modulation is sufficient to reproduce the miR-34a pro-differentiation effects. The findings are of likely biological significance, as SIRT6 is oppositely expressed to miR-34a in normal keratinocytes and keratinocyte-derived tumours.
Collapse
|
140
|
The sirtuin inhibitor cambinol impairs MAPK signaling, inhibits inflammatory and innate immune responses and protects from septic shock. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1498-510. [DOI: 10.1016/j.bbamcr.2013.03.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 03/02/2013] [Accepted: 03/04/2013] [Indexed: 12/31/2022]
|
141
|
|
142
|
Preyat N, Leo O. Sirtuin deacylases: a molecular link between metabolism and immunity. J Leukoc Biol 2013; 93:669-80. [PMID: 23325925 DOI: 10.1189/jlb.1112557] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Lysine deacetylation by the NAD(+)-dependent family of sirtuins has been recognized as an important post-translational modification regulating a wide range of cellular processes. These lysine deacetylases have attracted much interest based on their ability to promote survival in response to stress. Sirtuins require NAD(+) for their enzymatic activity, suggesting that these enzymes may represent molecular links between cell metabolism and several human disorders, including diabetes and cancer. Inflammation represents a pathological situation with clear connections to metabolism and aging in humans, raising the possibility that sirtuins may also play an important role during a normal and/or a pathological immune response. A growing body of data has confirmed the immunomodulatory properties of sirtuins, although often with contrasting and opposing conclusions. These observations will be summarized herein and the possible strategies that may lead to the development of novel therapeutic approaches to treat inflammation briefly discussed.
Collapse
Affiliation(s)
- Nicolas Preyat
- Laboratory of Immunobiology, Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, Gosselies, Belgium
| | | |
Collapse
|
143
|
Lerrer B, Cohen HY. The guardian: metabolic and tumour-suppressive effects of SIRT6. EMBO J 2012; 32:7-8. [PMID: 23232764 DOI: 10.1038/emboj.2012.332] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Batya Lerrer
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | | |
Collapse
|