101
|
Faller P, Hureau C. Bioinorganic chemistry of copper and zinc ions coordinated to amyloid-β peptide. Dalton Trans 2009:1080-94. [DOI: 10.1039/b813398k] [Citation(s) in RCA: 423] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
102
|
Biran Y, Masters CL, Barnham KJ, Bush AI, Adlard PA. Pharmacotherapeutic targets in Alzheimer's disease. J Cell Mol Med 2008; 13:61-86. [PMID: 19040415 PMCID: PMC3823037 DOI: 10.1111/j.1582-4934.2008.00595.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder which is characterized by an increasing impairment in normal memory and cognitive processes that significantly diminishes a person's daily functioning. Despite decades of research and advances in our understanding of disease aetiology and pathogenesis, there are still no effective disease-modifying drugs available for the treatment of AD. However, numerous compounds are currently undergoing pre-clinical and clinical evaluations. These candidate pharma-cotherapeutics are aimed at various aspects of the disease, such as the microtubule-associated τ-protein, the amyloid-β (Aβ) peptide and metal ion dyshomeostasis – all of which are involved in the development and progression of AD. We will review the way these pharmacological strategies target the biochemical and clinical features of the disease and the investigational drugs for each category.
Collapse
Affiliation(s)
- Yif'at Biran
- The Oxidation Biology Laboratory, The Mental Health Research Institute, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
103
|
Byström R, Aisenbrey C, Borowik T, Bokvist M, Lindström F, Sani MA, Olofsson A, Gröbner G. Disordered proteins: biological membranes as two-dimensional aggregation matrices. Cell Biochem Biophys 2008; 52:175-89. [PMID: 18975139 DOI: 10.1007/s12013-008-9033-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2008] [Indexed: 01/05/2023]
Abstract
Aberrant folded proteins and peptides are hallmarks of amyloidogenic diseases. However, the molecular processes that cause these proteins to adopt non-native structures in vivo and become cytotoxic are still largely unknown, despite intense efforts to establish a general molecular description of their behavior. Clearly, the fate of these proteins is ultimately linked to their immediate biochemical environment in vivo. In this review, we focus on the role of biological membranes, reactive interfaces that not only affect the conformational stability of amyloidogenic proteins, but also their aggregation rates and, probably, their toxicity. We first provide an overview of recent work, starting with findings regarding the amphiphatic amyloid-beta protein (Abeta), which give evidence that membranes can directly promote aggregation, and that the effectiveness in this process can be related to the presence of specific neuronal ganglioside lipids. In addition, we discuss the implications of recent research (medin as an detailed example) regarding putative roles of membranes in the misfolding behavior of soluble, non-amphiphatic proteins, which are attracting increasing interest. The potential role of membranes in exerting the toxic action of misfolded proteins will also be highlighted in a molecular context. In this review, we discuss novel NMR-based approaches for exploring membrane-protein interactions, and findings obtained using them, which we use to develop a molecular concept to describe membrane-mediated protein misfolding as a quasi-two-dimensional process rather than a three-dimensional event in a biochemical environment. The aim of the review is to provide researchers with a general understanding of the involvement of membranes in folding/misfolding processes in vivo, which might be quite universal and important for future research concerning amyloidogenic and misfolding proteins, and possible ways to prevent their toxic actions.
Collapse
Affiliation(s)
- Roberth Byström
- Department of Chemistry, Umeå University, 90187, Umeå, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
104
|
The structure of the amyloid-beta peptide high-affinity copper II binding site in Alzheimer disease. Biophys J 2008; 95:3447-56. [PMID: 18599641 DOI: 10.1529/biophysj.108.134429] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurodegeneration observed in Alzheimer disease (AD) is believed to be related to the toxicity from reactive oxygen species (ROS) produced in the brain by the amyloid-beta (Abeta) protein bound primarily to copper ions. The evidence for an oxidative stress role of Abeta-Cu redox chemistry is still incomplete. Details of the copper binding site in Abeta may be critical to the etiology of AD. Here we present the structure determined by combining x-ray absorption spectroscopy (XAS) and density functional theory analysis of Abeta peptides complexed with Cu(2+) in solution under a range of buffer conditions. Phosphate-buffered saline buffer salt (NaCl) concentration does not affect the high-affinity copper binding mode but alters the second coordination sphere. The XAS spectra for truncated and full-length Abeta-Cu(2+) peptides are similar. The novel distorted six-coordinated (3N3O) geometry around copper in the Abeta-Cu(2+) complexes include three histidines: glutamic, or/and aspartic acid, and axial water. The structure of the high-affinity Cu(2+) binding site is consistent with the hypothesis that the redox activity of the metal ion bound to Abeta can lead to the formation of dityrosine-linked dimers found in AD.
Collapse
|
105
|
Abstract
Alzheimer's disease is the most common form of dementia in the elderly, and it is characterized by elevated brain iron levels and accumulation of copper and zinc in cerebral beta-amyloid deposits (e.g., senile plaques). Both ionic zinc and copper are able to accelerate the aggregation of Abeta, the principle component of beta-amyloid deposits. Copper (and iron) can also promote the neurotoxic redox activity of Abeta and induce oxidative cross-linking of the peptide into stable oligomers. Recent reports have documented the release of Abeta together with ionic zinc and copper in cortical glutamatergic synapses after excitation. This, in turn, leads to the formation of Abeta oligomers, which, in turn, modulates long-term potentiation by controlling synaptic levels of the NMDA receptor. The excessive accumulation of Abeta oligomers in the synaptic cleft would then be predicted to adversely affect synaptic neurotransmission. Based on these findings, we have proposed the "Metal Hypothesis of Alzheimer's Disease," which stipulates that the neuropathogenic effects of Abeta in Alzheimer's disease are promoted by (and possibly even dependent on) Abeta-metal interactions. Increasingly sophisticated pharmaceutical approaches are now being implemented to attenuate abnormal Abeta-metal interactions without causing systemic disturbance of essential metals. Small molecules targeting Abeta-metal interactions (e.g., PBT2) are currently advancing through clinical trials and show increasing promise as disease-modifying agents for Alzheimer's disease based on the "metal hypothesis."
Collapse
Affiliation(s)
- Ashley I. Bush
- grid.415325.40000000115123749The Mental Health Research Institute, 155 Oak Street, 3052 Parkville, Victoria Australia
- grid.1008.9000000012179088XDepartment of Pathology, University of Melbourne, Grattan Street, 3010 Parkville, Victoria Australia
| | - Rudolph E. Tanzi
- grid.32224.350000000403869924Genetics and Aging Research Unit, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, 02129 Charlestown, Massachusetts
| |
Collapse
|
106
|
Effects of amyloid beta-peptides on the lysis tension of lipid bilayer vesicles containing oxysterols. Biophys J 2008; 95:620-8. [PMID: 18390616 DOI: 10.1529/biophysj.107.114983] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Amyloid beta-peptides (Abeta) applied directly from solution to model lipid membranes produced dramatic changes in the material properties of the bilayer when certain oxysterols were present in the bilayer. These effects were dependent on both lipid and peptide composition, and occurred at peptide concentrations as low as 100 nM. Using micropipette manipulation of giant unilamellar vesicles, we directly measured the lysis tension of lipid bilayers of various compositions. The glycerophospholipid 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC) constituted the main lipid component at 70 mol %. The remaining 30 mol % was composed of the following pure or mixed sterols: cholesterol (CHOL), 7-ketocholesterol (KETO), or 7beta-hydroxycholesterol (OHCHOL). SOPC/CHOL bilayers did not exhibit significant changes in mechanical properties after exposure to either Abeta(1-42) or Abeta(1-40). Partial substitution of CHOL with KETO (5 mol %), however, caused a drastic reduction of the lysis tension after exposure to Abeta(1-42) but not to Abeta(1-40). Partial substitution of CHOL with OHCHOL (5 mol %) caused a drastic reduction of the lysis tension after exposure to Abeta(1-40) and to Abeta(1-42). We attribute these effects to the reduction in intermolecular cohesive interactions caused by the presence of the second dipole of oxysterols, which reduces the energetic barrier for Abeta insertion into the bilayer.
Collapse
|
107
|
Applications of electron paramagnetic resonance to studies of neurological disease. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 37:281-94. [PMID: 18256819 DOI: 10.1007/s00249-008-0261-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 12/18/2007] [Accepted: 12/21/2007] [Indexed: 12/16/2022]
Abstract
Electron paramagnetic resonance spectroscopy (EPR) has the potential to give much detail on the structure of the paramagnetic transition ion coordination sites, principally of Cu2+, in a number of proteins associated with central nervous system diseases. Since these sites have been implicated in misfolding/mis-oligomerisation events associated with neurotoxic molecular species and/or the catalysis of damaging redox reactions in neurodegeneration, an understanding of their structure is important to the development of therapeutic agents. Nevertheless EPR, by its nature an in vitro technique, has its limitations in the study of such complex biochemical systems involving self-associating proteins that are sensitive to their chemical environment. These limitations are at the instrumental and theoretical level, which must be understood and the EPR data interpreted in the light of other biophysical and biochemical studies if useful conclusions are to be drawn.
Collapse
|
108
|
Potential pathogenic role of β-amyloid1–42–aluminum complex in Alzheimer's disease. Int J Biochem Cell Biol 2008; 40:731-46. [DOI: 10.1016/j.biocel.2007.10.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 10/09/2007] [Accepted: 10/09/2007] [Indexed: 11/20/2022]
|
109
|
Vestergaard M, Hamada T, Takagi M. Using model membranes for the study of amyloid beta:lipid interactions and neurotoxicity. Biotechnol Bioeng 2008; 99:753-63. [DOI: 10.1002/bit.21731] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
110
|
Gaggelli E, Grzonka Z, Kozłowski H, Migliorini C, Molteni E, Valensin D, Valensin G. Structural features of the Cu(ii) complex with the rat Aβ(1–28) fragment. Chem Commun (Camb) 2008:341-3. [DOI: 10.1039/b713453c] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
111
|
Cholesterol and Clioquinol modulation of Aβ(1–42) interaction with phospholipid bilayers and metals. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:3135-44. [DOI: 10.1016/j.bbamem.2007.08.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2007] [Revised: 08/15/2007] [Accepted: 08/29/2007] [Indexed: 11/22/2022]
|
112
|
Aisenbrey C, Borowik T, Byström R, Bokvist M, Lindström F, Misiak H, Sani MA, Gröbner G. How is protein aggregation in amyloidogenic diseases modulated by biological membranes? EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 37:247-55. [PMID: 18030461 DOI: 10.1007/s00249-007-0237-0] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 10/19/2007] [Accepted: 10/19/2007] [Indexed: 10/22/2022]
Abstract
The fate of proteins with amyloidogenic properties depends critically on their immediate biochemical environment. However, the role of biological interfaces such as membrane surfaces, as promoters of pathological aggregation of amyloidogenic proteins, is rarely studied and only established for the amyloid-beta protein (A beta) involved in Alzheimer's disease, and alpha-synuclein in Parkinsonism. The occurrence of binding and misfolding of these proteins on membrane surfaces, is poorly understood, not at least due to the two-dimensional character of this event. Clearly, the nature of the folding pathway for A beta protein adsorbed upon two-dimensional aggregation templates, must be fundamentally different from the three-dimensional situation in solution. Here, we summarize the current research and focus on the function of membrane interfaces as aggregation templates for amyloidogenic proteins (and even prionic ones). One major aspect will be the relationship between membrane properties and protein association and the consequences for amyloidogenic products. The other focus will be on a general understanding of protein folding pathways on two-dimensional templates on a molecular level. Finally, we will demonstrate the potential importance of membrane-mediated aggregation for non-amphiphatic soluble amyloidogenic proteins, by using the SOD1 protein involved in the amyotrophic lateral sclerosis syndrome.
Collapse
|
113
|
Lemkul JA, Bevan DR. A comparative molecular dynamics analysis of the amyloid beta-peptide in a lipid bilayer. Arch Biochem Biophys 2007; 470:54-63. [PMID: 18053791 DOI: 10.1016/j.abb.2007.11.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 11/06/2007] [Accepted: 11/08/2007] [Indexed: 10/22/2022]
Abstract
Because the amyloid beta-peptide (Abeta) functions as approximately half of the transmembrane domain of the amyloid precursor protein and interaction of Abeta with membranes is proposed to result in neurotoxicity, the association of Abeta with membranes likely is important in the etiology of Alzheimer's disease. Atomic details of the interaction of Abeta with membranes are not accessible with most experimental techniques, but computational methods can provide this information. Here, we present the results of ten 100-ns molecular dynamics (MD) simulations of the 40-residue amyloid beta-peptide (Abeta40) embedded in a dipalmitoylphosphatidylcholine (DPPC) bilayer. The present study examines the effects of insertion depth, protonation state of key residues, and ionic strength on Abeta40 in a DPPC bilayer. In all cases, a portion of the peptide remained embedded in the bilayer. In the case of deeper insertion depth, Abeta40 adopted a near-transmembrane orientation, drawing water molecules into the bilayer to associate with its charged amino acids. In the case of shallower insertion, the most widely-accepted construct, the peptide associated strongly with the membrane-water interface and the phosphatidylcholine headgroups of the bilayer. In most cases, significant disordering of the extracellular segment of the peptide was observed, and the brief appearance of a beta-strand was noted in one case. Our results compare well with a variety of experimental and computational findings. From this study, we conclude that Abeta associated with membranes is dynamic and capable of adopting a number of conformations, each of which may have significance in understanding the progression of Alzheimer's disease.
Collapse
Affiliation(s)
- Justin A Lemkul
- Department of Biochemistry, Virginia Polytechnic Institute and State University, West Campus Drive, 201 Fralin Biotechnology Center, Blacksburg, VA 24061, USA
| | | |
Collapse
|
114
|
X-ray absorption and diffraction studies of the metal binding sites in amyloid beta-peptide. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 37:257-63. [PMID: 18004559 DOI: 10.1007/s00249-007-0232-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 10/20/2007] [Accepted: 10/26/2007] [Indexed: 10/22/2022]
Abstract
A major source of neurodegeneration observed in Alzheimer's disease is believed to be caused by the toxicity from reactive oxygen species produced in the brain mediated by the A beta protein and mainly copper species. An atomic model of an amyloid beta-peptide (A beta) Cu2+ complex or at least the structure of the metal binding site is of great interest. Accurate information about the Cu-binding site of A beta protein can facilitate simulation of redox chemistry using high level quantum mechanics. Complementary X-ray diffraction and X-ray absorption techniques can be employed to obtain such accurate information. This review provides a blend of X-ray diffraction results on amyloid structures and selected works on A beta Cu2+ binding based on spectroscopic measurements with emphasis on the X-ray absorption technique.
Collapse
|
115
|
Jiang D, Men L, Wang J, Zhang Y, Chickenyen S, Wang Y, Zhou F. Redox reactions of copper complexes formed with different beta-amyloid peptides and their neuropathological [correction of neuropathalogical] relevance. Biochemistry 2007; 46:9270-82. [PMID: 17636872 PMCID: PMC3222686 DOI: 10.1021/bi700508n] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The binding stoichiometry between Cu(II) and the full-length beta-amyloid Abeta(1-42) and the oxidation state of copper in the resultant complex were determined by electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) and cyclic voltammetry. The same approach was extended to the copper complexes of Abeta(1-16) and Abeta(1-28). A stoichiometric ratio of 1:1 was directly observed, and the oxidation state of copper was deduced to be 2+ for all of the complexes, and residues tyrosine-10 and methionine-35 are not oxidized in the Abeta(1-42)-Cu(II) complex. The stoichiometric ratio remains the same in the presence of more than a 10-fold excess of Cu(II). Redox potentials of the sole tyrosine residue and the Cu(II) center were determined to be ca. 0.75 and 0.08 V vs Ag/AgCl [or 0.95 and 0.28 V vs normal hydrogen electrode (NHE)], respectively. More importantly, for the first time, the Abeta-Cu(I) complex has been generated electrochemically and was found to catalyze the reduction of oxygen to produce hydrogen peroxide. The voltammetric behaviors of the three Abeta segments suggest that diffusion of oxygen to the metal center can be affected by the length and hydrophobicity of the Abeta peptide. The determination and assignment of the redox potentials clarify some misconceptions in the redox reactions involving Abeta and provide new insight into the possible roles of redox metal ions in the Alzheimer's disease (AD) pathogenesis. In cellular environments, the reduction potential of the Abeta-Cu(II) complex is sufficiently high to react with antioxidants (e.g., ascorbic acid) and cellular redox buffers (e.g., glutathione), and the Abeta-Cu(I) complex produced could subsequently reduce oxygen to form hydrogen peroxide via a catalytic cycle. Using voltammetry, the Abeta-Cu(II) complex formed in solution was found to be readily reduced by ascorbic acid. Hydrogen peroxide produced, in addition to its role in damaging DNA, protein, and lipid molecules, can also be involved in the further consumption of antioxidants, causing their depletion in neurons and eventually damaging the neuronal defense system. Another possibility is that Abeta-Cu(II) could react with species involved in the cascade of electron transfer events of mitochondria and might potentially sidetrack the electron transfer processes in the respiratory chain, leading to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Dianlu Jiang
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, California 90032, USA
| | - Lijie Men
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, USA
| | - Jianxiu Wang
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, California 90032, USA
| | - Yi Zhang
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, California 90032, USA
| | - Sara Chickenyen
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, California 90032, USA
| | - Yinsheng Wang
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, USA
| | - Feimeng Zhou
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, California 90032, USA
| |
Collapse
|
116
|
Crouch PJ, White AR, Bush AI. The modulation of metal bio-availability as a therapeutic strategy for the treatment of Alzheimer's disease. FEBS J 2007; 274:3775-83. [PMID: 17617225 DOI: 10.1111/j.1742-4658.2007.05918.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The postmortem Alzheimer's disease brain is characterized histochemically by the presence of extracellular amyloid plaques and neurofibrillary tangles. Also consistent with the disease is evidence for chronic oxidative damage within the brain. Considerable research data indicates that these three critical aspects of Alzheimer's disease are interdependent, raising the possibility that they share some commonality with respect to the ever elusive initial factor(s) that triggers the development of Alzheimer's disease. Here, we discuss reports that show a loss of metal homeostasis is also an important event in Alzheimer's disease, and we identify how metal dyshomeostasis may contribute to development of the amyloid-beta, tau and oxidative stress biology of Alzheimer's disease. We propose that therapeutic agents designed to modulate metal bio-availability have the potential to ameliorate several of the dysfunctional events characteristic of Alzheimer's disease. Metal-based therapeutics have already provided promising results for the treatment of Alzheimer's disease, and new generations of pharmaceuticals are being developed. In this review, we focus on copper dyshomeostasis in Alzheimer's disease, but we also discuss zinc and iron.
Collapse
Affiliation(s)
- Peter J Crouch
- Department of Pathology and Centre for Neuroscience, The University of Melbourne, Australia
| | | | | |
Collapse
|
117
|
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease in the growing population of elderly people. A hallmark of AD is the accumulation of plaques in the brain of AD patients. The plaques predominantly consist of aggregates of amyloid-beta (Abeta), a peptide of 39-42 amino acids generated in vivo by specific, proteolytic cleavage of the amyloid precursor protein. There is a growing body of evidence that Abeta aggregates are ordered oligomers and the cause rather than a product of AD. The analysis of the assembly pathway of Abeta in vitro and biochemical characterization of Abeta deposits isolated from AD brains indicate that Abeta oligomerization occurs via distinct intermediates, including oligomers of 3-50 Abeta monomers, annular oligomers, protofibrils, fibrils and plaques. Of these, the most toxic species appear to be small Abeta oligomers. This article reviews the current knowledge of the mechanism of Abeta assembly in vivo and in vitro, as well as the influence of inherited amino acid replacements in Abeta and experimental conditions on Abeta aggregation. Challenges regarding the reproducible handling of the Abeta peptide for in vitro assembly studies are discussed.
Collapse
Affiliation(s)
- Verena H Finder
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
118
|
Lal R, Lin H, Quist AP. Amyloid beta ion channel: 3D structure and relevance to amyloid channel paradigm. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1966-75. [PMID: 17553456 PMCID: PMC2692960 DOI: 10.1016/j.bbamem.2007.04.021] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 04/24/2007] [Accepted: 04/25/2007] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease (AD) is a protein misfolding disease. Early hypothesis of AD pathology posits that 39-43 AA long misfolded amyloid beta (Abeta) peptide forms a fibrillar structure and induces pathophysiological response by destabilizing cellular ionic homeostasis. Loss of cell ionic homeostasis is believed to be either indirectly due to amyloid beta-induced oxidative stress or directly by its interaction with the cell membrane and/or activating pathways for ion exchange. Significantly though, no Abeta specific cell membrane receptors are known and oxidative stress mediated pathology is only partial and indirect. Most importantly, recent studies strongly indicate that amyloid fibrils may not by themselves cause AD pathology. Subsequently, a competing hypothesis has been proposed wherein amyloid derived diffusible ligands (ADDLs) that are large Abeta oligomers (approximately >60 kDa), mediate AD pathology. No structural details, however, of these large globular units exist nor is there any known suitable mechanism by which they would induce AD pathology. Experimental data indicate that they alter cell viability by non-specifically changing the plasma membrane stability and increasing the overall ionic leakiness. The relevance of this non-specific mechanism for AD-specific pathology seems limited. Here, we provide a viable new paradigm: AD pathology mediated by amyloid ion channels made of small Abeta oligomers (trimers to octamers). This review is focused to 3D structural analysis of the Abeta channel. The presence of amyloid channels is consistent with electrophysiological and cell biology studies summarized in companion reviews in this special issue. They show ion channel-like activity and channel-mediated cell toxicity. Amyloid ion channels with defined gating and pharmacological agents would provide a tangible target for designing therapeutics for AD pathology.
Collapse
Affiliation(s)
- Ratnesh Lal
- Center for Nanomedicine, University of Chicago, 5841 S. Maryland Ave., MC 6076, Chicago, IL 60637, USA.
| | | | | |
Collapse
|
119
|
Matsuzaki K. Physicochemical interactions of amyloid beta-peptide with lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1935-42. [PMID: 17382287 DOI: 10.1016/j.bbamem.2007.02.009] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 02/05/2007] [Accepted: 02/08/2007] [Indexed: 11/15/2022]
Abstract
The aggregation and deposition onto neuronal cells of amyloid beta-peptide (Abeta) is central to the pathogenesis of Alzheimer's disease. Accumulating evidence suggests that membranes play a catalytic role in the aggregation of Abeta. This article summarizes the structures and properties of Abeta in solution and the physicochemical interaction of Abeta with lipid bilayers of various compositions. Reasons for discrepancies between results by different research groups are discussed. The importance of ganglioside clusters in the aggregation of Abeta is emphasized. Finally, a hypothetical physicochemical cascade in the pathogenesis of the disease is proposed.
Collapse
Affiliation(s)
- Katsumi Matsuzaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
120
|
Canevari L, Clark JB. Alzheimer’s Disease and Cholesterol: The Fat Connection. Neurochem Res 2006; 32:739-50. [PMID: 17191138 DOI: 10.1007/s11064-006-9200-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Accepted: 10/11/2006] [Indexed: 11/29/2022]
Abstract
Since the discovery of the significance of the cholesterol-carrying apolipoprotein E and cholesterolaemia as major risk factors for Alzheimer's Disease (AD) there has been a mounting interest in the role of this lipid as a possible pathogenic agent. In this review we analyse the current evidence linking cholesterol metabolism and regulation in the CNS with the known mechanisms underlying the development of Alzheimer's Disease. Cholesterol is known to affect amyloid-beta generation and toxicity, although it must be considered that the results studies using the statin class of drugs to lower plasma cholesterol may be affected by other effects associated with these drugs. Finally, we report some of our results pointing at the interplay between neurons and astrocytes and NADPH oxidase activation as a new candidate mechanism linking cholesterol and AD pathology.
Collapse
Affiliation(s)
- Laura Canevari
- Miriam Marks Division of Neurochemistry, Department of Molecular Neuroscience, Institute of Neurology, University College London, Queen Square, London, UK.
| | | |
Collapse
|
121
|
Barnham KJ, Cappai R, Beyreuther K, Masters CL, Hill AF. Delineating common molecular mechanisms in Alzheimer's and prion diseases. Trends Biochem Sci 2006; 31:465-72. [PMID: 16820299 DOI: 10.1016/j.tibs.2006.06.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 05/08/2006] [Accepted: 06/21/2006] [Indexed: 01/12/2023]
Abstract
The structure of the infectious agent responsible for prion diseases has not been fully characterized, but evidence points to a beta-rich conformer of the host-encoded prion protein. Amyloid-beta peptide (Abeta), a proteolytic fragment generated from the amyloid precursor protein, has been implicated as the toxic molecule involved in the pathogenesis of Alzheimer's disease. The mechanism of Abeta toxicity might be mediated through the coordination of redox-active transition-metal ions such as copper leading to the generation of reactive oxygen species, coupled with the propensity to interact with lipid bilayers. Key sequence and chemical similarities between prion protein (PrP) and Abeta indicate that similar therapeutic strategies might be applicable for the treatment of Alzheimer's and prion diseases.
Collapse
Affiliation(s)
- Kevin J Barnham
- Department of Pathology, and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia
| | | | | | | | | |
Collapse
|
122
|
Devanathan S, Salamon Z, Lindblom G, Gröbner G, Tollin G. Effects of sphingomyelin, cholesterol and zinc ions on the binding, insertion and aggregation of the amyloid Abeta(1-40) peptide in solid-supported lipid bilayers. FEBS J 2006; 273:1389-402. [PMID: 16689927 DOI: 10.1111/j.1742-4658.2006.05162.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We utilized plasmon-waveguide resonance (PWR) spectroscopy to follow the effects of sphingomyelin, cholesterol and zinc ions on the binding and aggregation of the amyloid beta peptide(1-40) in lipid bilayers. With a dioleoylphosphatidylcholine (DOPC) bilayer, peptide binding was observed, but no aggregation occurred over a period of 15 h. In contrast, similar binding was found with a brain sphingomyelin (SM) bilayer, but in this case an exponential aggregation process was observed during the same time interval. When the SM bilayer included 35% cholesterol, an increase of approximately 2.5-fold occurred in the amount of peptide bound, with a similar increase in the extent of aggregation, the latter resulting in decreases in the bilayer packing density and displacement of lipid. Peptide association with a bilayer formed from equimolar amounts of DOPC, SM and cholesterol was followed using a high-resolution PWR sensor that allowed microdomains to be observed. Biphasic binding to both domains occurred, but predominantly to the SM-rich domain, initially to the surface and at higher peptide concentrations within the interior of the bilayer. Again, aggregation was observed and occurred within both microdomains, resulting in lipid displacement. We attribute the aggregation in the DOPC-enriched domain to be a consequence of lipid mixing within these microdomains, resulting in the presence of small amounts of SM and cholesterol in the DOPC microdomain. When 1 mM zinc was present, an increase of approximately threefold in the amount of peptide association was observed, as well as large changes in mass and bilayer structure as a consequence of peptide aggregation, occurring without loss of bilayer integrity. A structural interpretation of peptide interaction with the bilayer is presented based on the results of simulation analysis of the PWR spectra.
Collapse
Affiliation(s)
- Savitha Devanathan
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | |
Collapse
|
123
|
Smith DP, Smith DG, Curtain CC, Boas JF, Pilbrow JR, Ciccotosto GD, Lau TL, Tew DJ, Perez K, Wade JD, Bush AI, Drew SC, Separovic F, Masters CL, Cappai R, Barnham KJ. Copper-mediated Amyloid-β Toxicity Is Associated with an Intermolecular Histidine Bridge. J Biol Chem 2006; 281:15145-54. [PMID: 16595673 DOI: 10.1074/jbc.m600417200] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amyloid-beta peptide (Abeta) is pivotal to the pathogenesis of Alzheimer disease. Here we report the formation of a toxic Abeta-Cu2+ complex formed via a histidine-bridged dimer, as observed at Cu2+/peptide ratios of >0.6:1 by EPR spectroscopy. The toxicity of the Abeta-Cu2+ complex to cultured primary cortical neurons was attenuated when either the pi -or tau-nitrogen of the imidazole side chains of His were methylated, thereby inhibiting formation of the His bridge. Toxicity did not correlate with the ability to form amyloid or perturb the acyl-chain region of a lipid membrane as measured by diphenyl-1,3,5-hexatriene anisotropy, but did correlate with lipid peroxidation and dityrosine formation. 31P magic angle spinning solid-state NMR showed that Abeta and Abeta-Cu2+ complexes interacted at the surface of a lipid membrane. These findings indicate that the generation of the Abeta toxic species is modulated by the Cu2+ concentration and the ability to form an intermolecular His bridge.
Collapse
Affiliation(s)
- David P Smith
- Department of Pathology, Centre for Neuroscience, and School of Chemistry, University of Melbourne, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Gaggelli E, Kozlowski H, Valensin D, Valensin G. Copper Homeostasis and Neurodegenerative Disorders (Alzheimer's, Prion, and Parkinson's Diseases and Amyotrophic Lateral Sclerosis). Chem Rev 2006; 106:1995-2044. [PMID: 16771441 DOI: 10.1021/cr040410w] [Citation(s) in RCA: 1239] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Elena Gaggelli
- Department of Chemistry, University of Siena, Via Aldo Moro 2, Siena 53100, Italy
| | | | | | | |
Collapse
|
125
|
Dante S, Hauss T, Dencher NA. Cholesterol inhibits the insertion of the Alzheimer’s peptide Aβ(25–35) in lipid bilayers. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2006; 35:523-31. [PMID: 16670880 DOI: 10.1007/s00249-006-0062-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Accepted: 03/17/2006] [Indexed: 10/24/2022]
Abstract
The physiological relationship between brain cholesterol content and the action of amyloid beta (Abeta) peptide in Alzheimer's disease (AD) is a highly controversially discussed topic. Evidences for modulations of the Abeta/membrane interaction induced by plasma membrane cholesterol have already been observed. We have recently reported that Abeta(25-35) is capable of inserting in lipid membranes and perturbing their structure. Applying neutron diffraction and selective deuteration, we now demonstrate that cholesterol alters, at the molecular level, the capability of Abeta(25-35) to penetrate into the lipid bilayers; in particular, a molar weight content of 20% of cholesterol hinders the intercalation of monomeric Abeta(25-35) completely. At very low cholesterol content (about 1% molar weight) the location of the C-terminal part of Abeta(25-35) has been unequivocally established in the hydrocarbon region of the membrane, in agreement with our previous results on pure phospholipids membrane. These results link a structural property to a physiological and functional behavior and point to a therapeutical approach to prevent the AD by modulation of membrane properties.
Collapse
Affiliation(s)
- Silvia Dante
- Physical Biochemistry, Darmstadt University of Technology, Petersenstrasse 22, 64287, Darmstadt, Germany.
| | | | | |
Collapse
|
126
|
Chen YR, Huang HB, Chyan CL, Shiao MS, Lin TH, Chen YC. The Effect of Aβ Conformation on the Metal Affinity and Aggregation Mechanism Studied by Circular Dichroism Spectroscopy. ACTA ACUST UNITED AC 2006; 139:733-40. [PMID: 16672274 DOI: 10.1093/jb/mvj083] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The conformational change and associated aggregation of beta amyloid (Abeta) with or without metals is the main cause of Alzheimer's disease (AD). In order to further understand the effects of Abeta and its associated metals on the aggregation mechanism, the influence of Abeta conformation on the metal affinity and aggregation was investigated using circular dichroism (CD) spectroscopy. The Abeta conformation is dependent on pH and trifluoroethanol (TFE). The binding of metals to Abeta was found to be dependent on the Abeta conformation. The aggregation induced by Abeta itself or its associated metals is completely diminished for Abeta in 40% TFE. Only in 5% and 25% TFE can Abeta undergo an alpha-helix to beta-sheet aggregation, which involve a three-state mechanism for the metal-free state, and a two-state transition for the metal-bound state, respectively. The aggregation-inducing activity of metals is in the order, Cu2+ > Fe3+ > or = Al3+ > Zn2+.
Collapse
Affiliation(s)
- Y R Chen
- Institute of Medical Science, Tzu Chi University, Hualien, Taiwan
| | | | | | | | | | | |
Collapse
|
127
|
Jacobsen JS, Reinhart P, Pangalos MN. Current concepts in therapeutic strategies targeting cognitive decline and disease modification in Alzheimer's disease. NeuroRx 2006; 2:612-26. [PMID: 16489369 PMCID: PMC1201319 DOI: 10.1602/neurorx.2.4.612] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder and the leading cause of dementia in the Western world. Postmortem, it is characterized neuropathologically by the presence of amyloid plaques, neurofibrillary tangles, and a profound gray matter loss. Neurofibrillary tangles are composed of an abnormally hyperphosphorylated intracellular protein called tau, tightly wound into paired helical filaments and thought to impact microtubule assembly and protein trafficking, resulting in the eventual demise of neuronal viability. The extracellular amyloid plaque deposits are composed of a proteinacious core of insoluble aggregated amyloid-beta (Abeta) peptide and have led to the foundation of the amyloid hypothesis. This hypothesis postulates that Abeta is one of the principal causative factors of neuronal death in the brains of Alzheimer's patients. With multiple drugs now moving through clinical development for the treatment of Alzheimer's disease, we will review current and future treatment strategies aimed at improving both the cognitive deficits associated with the disease, as well as more novel approaches that may potentially slow or halt the deadly neurodegenerative progression of the disease.
Collapse
Affiliation(s)
- J Steven Jacobsen
- Wyeth Research, Neuroscience Discovery, CN8000, Princeton, New Jersey 08543, USA
| | | | | |
Collapse
|
128
|
Alarcón JM, Brito JA, Hermosilla T, Atwater I, Mears D, Rojas E. Ion channel formation by Alzheimer's disease amyloid beta-peptide (Abeta40) in unilamellar liposomes is determined by anionic phospholipids. Peptides 2006; 27:95-104. [PMID: 16139931 DOI: 10.1016/j.peptides.2005.07.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Revised: 07/14/2005] [Accepted: 07/14/2005] [Indexed: 10/25/2022]
Abstract
Incorporation of Alzheimer's disease amyloid beta-proteins (AbetaPs) across natural and artificial bilayer membranes leads to the formation of cation-selective channels. To study the peptide-membrane interactions involved in channel formation, we used cation reporter dyes to measure AbetaP-induced influx of Na+, Ca2+, and K+ into liposomes formed from phosphatidylserine (PS), phosphatidylinositol (PI) and phosphatidylcholine (PC). We found that Abeta40, but not Abeta40-1 or Abeta28, caused a dose-dependent increase in the concentration of each cation in the lumen of liposomes formed from the acidic phospholipids PS and PI. The Abeta40-induced changes in cation concentration, which we attribute to ion entry through Abeta40 channels, were not observed when using liposomes formed from the neutral phospholipid PC. Using mixtures of phospholipids, the magnitude of the AbetaP40-induced ion entry increased with the acidic phospholipid content of the liposomes, with entry being observed with as little as 5% PS or PI. Thus, while negatively charged phospholipids are required for formation of cation-permeable channels by Abeta40, a small amount is sufficient to support the process. These results have implications for the mechanisms of AbetaP cytotoxicity, suggesting that even a small amount of externalized negative charge could render cells susceptible to the deleterious effects of unregulated ion influx through AbetaP channels.
Collapse
Affiliation(s)
- Juan Marcos Alarcón
- Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Independencia 1027, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
129
|
Lau TL, Ambroggio EE, Tew DJ, Cappai R, Masters CL, Fidelio GD, Barnham KJ, Separovic F. Amyloid-beta peptide disruption of lipid membranes and the effect of metal ions. J Mol Biol 2005; 356:759-70. [PMID: 16403524 DOI: 10.1016/j.jmb.2005.11.091] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 11/24/2005] [Accepted: 11/29/2005] [Indexed: 11/20/2022]
Abstract
Beta-amyloid peptide (Abeta), which is cleaved from the larger trans-membrane amyloid precursor protein, is found deposited in the brain of patients suffering from Alzheimer's disease and is linked with neurotoxicity. We report the results of studies of Abeta1-42 and the effect of metal ions (Cu2+ and Zn2+) on model membranes using 31P and 2H solid-state NMR, fluorescence and Langmuir Blodgett monolayer methods. Both the peptide and metal ions interact with the phospholipid headgroups and the effects on the lipid bilayer and the peptide structure were different for membrane incorporated or associated peptides. Copper ions alone destabilise the lipid bilayer and induced formation of smaller vesicles but when Abeta1-42 was associated with the bilayer membrane copper did not have this effect. Circular dichroism spectroscopy indicated that Abeta1-42 adopted more beta-sheet structure when incorporated in a lipid bilayer in comparison to the associated peptide, which was largely unstructured. Incorporated peptides appear to disrupt the membrane more severely than associated peptides, which may have implications for the role of Abeta in disease states.
Collapse
Affiliation(s)
- Tong-Lay Lau
- School of Chemistry, The University of Melbourne, Melbourne, Vic. 3010, Australia
| | | | | | | | | | | | | | | |
Collapse
|
130
|
Murray IVJ, Sindoni ME, Axelsen PH. Promotion of oxidative lipid membrane damage by amyloid beta proteins. Biochemistry 2005; 44:12606-13. [PMID: 16156673 PMCID: PMC2288524 DOI: 10.1021/bi050926p] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Senile plaques in the cerebral parenchyma are a pathognomonic feature of Alzheimer's disease (AD) and are mainly composed of aggregated fibrillar amyloid beta (Abeta) proteins. The plaques are associated with neuronal degeneration, lipid membrane abnormalities, and chemical evidence of oxidative stress. The view that Abeta proteins cause these pathological changes has been challenged by suggestions that they have a protective function or that they are merely byproducts of the pathological process. This investigation was conducted to determine whether Abeta proteins promote or inhibit oxidative damage to lipid membranes. Using a mass spectrometric assay of oxidative lipid damage, the 42-residue form of Abeta (Abeta42) was found to accelerate the oxidative lipid damage caused by physiological concentrations of ascorbate and submicromolar concentrations of copper(II) ion. Under these conditions, Abeta42 was aggregated, but nonfibrillar. Ascorbate and copper produced H(2)O(2), but Abeta42 reduced H(2)O(2) concentrations, and its ability to accelerate oxidative damage was not affected by catalase. Lipids could be oxidized by H(2)O(2) and copper(II) in the absence of ascorbate, but only at significantly higher concentrations, and Abeta42 inhibited this reaction. These results indicate that the ability of Abeta42 to promote oxidative damage is more potent and more likely to be manifest in vivo than its ability to inhibit oxidative damage. In conjunction with prior results demonstrating that oxidatively damaged membranes cause Abeta42 to misfold and form fibrils, these results suggest a specific chemical mechanism linking Abeta42-promoted oxidative lipid damage to amyloid fibril formation.
Collapse
Affiliation(s)
| | | | - Paul H. Axelsen
- * To whom correspondence should be addressed at the Department of Pharmacology, University of Pennsylvania, 105 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104-6084. Tel: 215-898-9238. Fax: 215-573-2236. E-mail: .
| |
Collapse
|
131
|
Haeffner F, Smith DG, Barnham KJ, Bush AI. Model studies of cholesterol and ascorbate oxidation by copper complexes: relevance to Alzheimer's disease beta-amyloid metallochemistry. J Inorg Biochem 2005; 99:2403-22. [PMID: 16271394 DOI: 10.1016/j.jinorgbio.2005.09.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 09/22/2005] [Accepted: 09/23/2005] [Indexed: 12/25/2022]
Abstract
The neurotoxicity of the amyloid-beta peptide (Abeta) is causally linked to Alzheimer's disease (AD) and may be related to the redox chemistry associated with its interactions with copper ions and cholesterol in brain tissue. We have used density functional theory (DFT) calculations to study the mechanism controlling the Abeta/Cu catalyzed oxidation reactions of cholesterol and ascorbate using a model system. The computed results based on a binuclear Cu complex predict that oxidation of cholesterol (yielding 4-cholesten-3-one as a specific product) proceeds at a slow rate when catalyzed by a Abeta/Cu(II)|His-|Cu(II)/Abeta) aggregate. The computed results also suggest that monomeric Abeta/Cu(II) is not able to oxidize cholesterol. DFT also predicted that Abeta will cross-link via covalent dityrosine formation during the oxidation of ascorbate but not during the oxidation of cholesterol. Experimental data were consistent with these predictions.
Collapse
Affiliation(s)
- Fredrik Haeffner
- Physics Department, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | | | | | | |
Collapse
|
132
|
D'Introno A, Solfrizzi V, Colacicco AM, Capurso C, Amodio M, Todarello O, Capurso A, Kehoe PG, Panza F. Current knowledge of chromosome 12 susceptibility genes for late-onset Alzheimer's disease. Neurobiol Aging 2005; 27:1537-53. [PMID: 16257095 DOI: 10.1016/j.neurobiolaging.2005.09.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Revised: 09/16/2005] [Accepted: 09/20/2005] [Indexed: 12/16/2022]
Abstract
In the last decade, it has become more apparent the important role genes play in the development of late-onset Alzheimer's disease (AD). Great efforts, involving human genome scans and candidate gene studies, have been given towards identifying susceptibility genes for AD. A number of regions on different chromosomes have been reported to demonstrate linkage for AD. Of these, findings on chromosome 12 are some of the most compelling. Worldwide genetic association studies pre-dating and subsequent to recent linkage studies have identified and focused upon a number of genes that map to the areas of reported linkage on chromosome 12, however, analyses of those genes studied to date, on the whole, remain inconclusive and ambiguous. This paper reviews studies that have provided evidence of linkage for AD on chromosome 12 and in turn discusses the work conducted to date on candidate genes that have been identified and map to the chromosome 12 regions of interest.
Collapse
Affiliation(s)
- Alessia D'Introno
- Department of Geriatrics, Center for Aging Brain, Memory Unit, University of Bari, Policlinico, Piazza Giulio Cesare, 11 70124 Bari, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Yoshimoto N, Tasaki M, Shimanouchi T, Umakoshi H, Kuboi R. Oxidation of cholesterol catalyzed by amyloid β-peptide (Aβ)–Cu complex on lipid membrane. J Biosci Bioeng 2005; 100:455-9. [PMID: 16310737 DOI: 10.1263/jbb.100.455] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Accepted: 06/29/2005] [Indexed: 11/17/2022]
Abstract
A catalytic reaction of H2O2 production by an amyloid beta-peptide (Abeta)-Cu complex with cholesterol incorporated in a liposome was kinetically analyzed. The Michaelis-Menten model was applied to the H2O2 production reaction using cholesterol as the substrate catalyzed by the Abeta-Cu complex. The Km value for the Abeta-Cu complex catalytic reaction with cholesterol-containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) liposomes (Km=0.436 microM for Abeta(1-40); Km=0.641 microM for Abeta(1-42)) was found to be smaller than that with cholesterol-containing 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) liposomes (Km=0.585 microM for Abeta(1-40), Km=0.890 microM for Abeta(1-42)). The results imply that membrane properties could play an important role in the interactions of the Abeta-Cu complex with cholesterol in these liposomes. Considering the physical states of the cholesterol/POPC (liquid disordered phase) and cholesterol/DPPC (liquid ordered phase) liposomes in the present reaction conditions, the data obtained suggests that the H2O2-generating activity of the Abeta-Cu complex, accompanied by oxidation of membrane-incorporated cholesterol, could be effected by the phase of the liposome membranes.
Collapse
Affiliation(s)
- Noriko Yoshimoto
- Department of Chemical Science and Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | | | | | | | | |
Collapse
|
134
|
Maltseva E, Kerth A, Blume A, Möhwald H, Brezesinski G. Adsorption of Amyloid β (1-40) Peptide at Phospholipid Monolayers. Chembiochem 2005; 6:1817-24. [PMID: 16175542 DOI: 10.1002/cbic.200500116] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The folding of amyloid beta (1-40) peptide into beta-sheet-containing fibrils is thought to play a causative role in Alzheimer's disease. Because of its amphiphilic character, the peptide can interact with phospholipid membranes. Langmuir monolayers of negatively charged DPPS, DPPG, and DMPG, and also of zwitterionic DPPC and DMPC, have been used to study the influence of the peptide on the lipid packing and, vice versa, the influence of phospholipid monolayers on the peptide secondary structure by infrared reflection absorption spectroscopy and grazing incidence X-ray diffraction. The peptide adsorbs at the air/water (buffer) interface, and also inserts into uncompressed phospholipid monolayers. When adsorbed at the interface, the peptide adopts a beta-sheet conformation, with the long axis of these beta-sheets oriented almost parallel to the surface. If the lipid exhibits a condensed monolayer phase, then compression of the complex monolayer with the inserted peptide leads to the squeezing out of the peptide at higher surface pressures (above 30 mN m(-1)). The peptide desorbs completely from zwitterionic monolayers and negatively charged DPPG and DPPS monolayers on buffer, but remains adsorbed in the beta-sheet conformation at negatively charged monolayers on water. This can be explained in terms of electrostatic interactions with the lipid head groups. It also remains adsorbed at, or penetrating into, disordered anionic monolayers on buffer. Additionally, the peptide does not influence the condensed monolayer structure at physiological pH and modest ionic strength.
Collapse
Affiliation(s)
- Elena Maltseva
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Golm/Potsdam, Germany
| | | | | | | | | |
Collapse
|
135
|
Puglielli L, Friedlich AL, Setchell KDR, Nagano S, Opazo C, Cherny RA, Barnham KJ, Wade JD, Melov S, Kovacs DM, Bush AI. Alzheimer disease beta-amyloid activity mimics cholesterol oxidase. J Clin Invest 2005; 115:2556-63. [PMID: 16127459 PMCID: PMC1190368 DOI: 10.1172/jci23610] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Accepted: 06/14/2005] [Indexed: 11/17/2022] Open
Abstract
The abnormal accumulation of amyloid beta-peptide (Abeta) in the form of senile (or amyloid) plaques is one of the main characteristics of Alzheimer disease (AD). Both cholesterol and Cu2+ have been implicated in AD pathogenesis and plaque formation. Abeta binds Cu2+ with very high affinity, forming a redox-active complex that catalyzes H2O2 production from O2 and cholesterol. Here we show that Abeta:Cu2+ complexes oxidize cholesterol selectively at the C-3 hydroxyl group, catalytically producing 4-cholesten-3-one and therefore mimicking the activity of cholesterol oxidase, which is implicated in cardiovascular disease. Abeta toxicity in neuronal cultures correlated with this activity, which was inhibited by Cu2+ chelators including clioquinol. Cell death induced by staurosporine or H2O2 did not elevate 4-cholesten-3-one levels. Brain tissue from AD subjects had 98% more 4-cholesten-3-one than tissue from age-matched control subjects. We observed a similar increase in the brains of Tg2576 transgenic mice compared with nontransgenic littermates; the increase was inhibited by in vivo treatment with clioquinol, which suggests that brain Abeta accumulation elevates 4-cholesten-3-one levels in AD. Cu2+-mediated oxidation of cholesterol may be a pathogenic mechanism common to atherosclerosis and AD.
Collapse
Affiliation(s)
- Luigi Puglielli
- Neurobiology of Disease Laboratory, Genetics and Aging Research Unit, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Kolusheva S, Friedman J, Angel I, Jelinek R. Membrane Interactions and Metal Ion Effects on Bilayer Permeation of the Lipophilic Ion Modulator DP-109. Biochemistry 2005; 44:12077-85. [PMID: 16142905 DOI: 10.1021/bi050718x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DP-109, a lipophilic bivalent metal ion modulator currently under preclinical development for neurodegenerative disorders, was designed to have membrane-associated activity, thereby restricting its action to the vicinity of cell membranes. We describe the application of a colorimetric phospholipid/polydiacetylene (PDA) biomimetic membrane assay in elucidating DP-109 membrane interactions and penetration into lipid bilayers. In this membrane model, visible quantifiable color changes were monitored in studying membrane interactions. The colorimetric data identified a biphasic concentration-dependent interaction, with a break point around the critical micelle concentration (CMC) of DP-109. The kinetics and colorimetric dose-response profile of DP-109 indicate that the compound inserts into the lipid bilayers rather than being localized at the bilayer surface. Analysis of interactions of DP-109 with phospholipid/PDA vesicles in which ionic gradients were imposed indicates that membrane activity of DP-109 is strongly affected by electrochemical gradients imposed by K+ and Zn2+. The ionic gradient effects suggest that the insertion of DP-109 into the membrane may depend on the membrane potential.
Collapse
Affiliation(s)
- Sofiya Kolusheva
- Department of Chemistry, Ben Gurion University, Beer Sheva 84105, Israel
| | | | | | | |
Collapse
|
137
|
Quist A, Doudevski I, Lin H, Azimova R, Ng D, Frangione B, Kagan B, Ghiso J, Lal R. Amyloid ion channels: a common structural link for protein-misfolding disease. Proc Natl Acad Sci U S A 2005; 102:10427-32. [PMID: 16020533 PMCID: PMC1180768 DOI: 10.1073/pnas.0502066102] [Citation(s) in RCA: 771] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2005] [Accepted: 06/03/2005] [Indexed: 12/20/2022] Open
Abstract
Protein conformational diseases, including Alzheimer's, Huntington's, and Parkinson's diseases, result from protein misfolding, giving a distinct fibrillar feature termed amyloid. Recent studies show that only the globular (not fibrillar) conformation of amyloid proteins is sufficient to induce cellular pathophysiology. However, the 3D structural conformations of these globular structures, a key missing link in designing effective prevention and treatment, remain undefined as of yet. By using atomic force microscopy, circular dichroism, gel electrophoresis, and electrophysiological recordings, we show here that an array of amyloid molecules, including amyloid-beta(1-40), alpha-synuclein, ABri, ADan, serum amyloid A, and amylin undergo supramolecular conformational change. In reconstituted membranes, they form morphologically compatible ion-channel-like structures and elicit single ion-channel currents. These ion channels would destabilize cellular ionic homeostasis and hence induce cell pathophysiology and degeneration in amyloid diseases.
Collapse
Affiliation(s)
- Arjan Quist
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Torrecillas A, Martínez-Senac MM, Goormaghtigh E, de Godos A, Corbalán-García S, Gómez-Fernández JC. Modulation of the Membrane Orientation and Secondary Structure of the C-Terminal Domains of Bak and Bcl-2 by Lipids. Biochemistry 2005; 44:10796-809. [PMID: 16086582 DOI: 10.1021/bi0503192] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Infrared spectroscopy was used to study the secondary structure of peptides which imitate the amino acid sequences of the C-terminal domains of the pro-apoptotic protein Bak (Bak-C) and the anti-apoptotic protein Bcl-2 (Bcl-2-C) when incorporated into different lipid vesicles. Whereas beta-pleated sheet was the predominant type of secondary structure of Bak-C in the absence of membranes, the same peptide adopted different structures depending on lipid composition when incorporated into membranes, with the predominance of the alpha-helical structure in the case of DMPC and other phospholipids, such as POPC and POPG. However, beta-pleated sheet was the predominant structure in other membranes containing phospholipids with longer fatty acyl chains and cholesterol, as well as in a mixture which imitates the composition of the outer mitochondrial membrane (OMM). Similarly, Bcl-2-C adopted a structure with a predominance of intermolecularly bound pleated beta-sheet in the absence of membranes, with alpha-helix as the main component in the presence of DMPC and POPG, but intermolecular beta-sheet in the presence of EYPC and cholesterol. Using ATR-IR, it was found that the orientation of the alpha-helical components of both domains was nearly perpendicular to the plane of the membrane in the presence of DMPC membranes, but not in EYPC or OMM membranes. (2)H NMR spectroscopy of DMPC-d(54) confirmed the transmembrane disposition of the domains, revealing that they broadened the phase transition temperature, although the order parameter of the C-D bonds was not affected, as might have been expected for intrinsic peptides. When all these results are taken together, it was concluded that the domains only form transmembrane helices in membranes of reduced thickness and that hydrophobic mismatching occurs in thicker membranes, as happens in the membrane imitating the composition of the OMM, where the peptides were partially located outside the membranes.
Collapse
Affiliation(s)
- Alejandro Torrecillas
- Departamento de Bioquímica y Biología Molecular A, Facultad de Veterinaria, Universidad de Murcia, Apartado 4021, E-30080 Murcia, Spain
| | | | | | | | | | | |
Collapse
|
139
|
Abstract
Mounting evidence is demonstrating roles for the amyloid precursor protein (APP) and its proteolytic product Abeta in metal homeostasis. Furthermore, aberrant metal homeostasis is observed in patients with Alzheimer's disease (AD), and this may contribute to AD pathogenesis, by enhancing the formation of reactive oxygen species and toxic Abeta oligomers and facilitating the formation of the hallmark amyloid deposits in AD brain. Indeed, zinc released from synaptic activity has been shown to induce parenchymal and cerebrovascular amyloid in transgenic mice. On the other hand, abnormal metabolism of APP and Abeta may impair brain metal homeostasis as part of the AD pathogenic process. Abeta and APP expression have both been shown to decrease brain copper (Cu) levels, whereas increasing brain Cu availability results in decreased levels of Abeta and amyloid plaque formation in transgenic mice. Lowering Cu concentrations can downregulate the transcription of APP, strengthening the hypothesis that APP and Abeta form part of the Cu homeostatic machinery in the brain. This is a complex pathway, and it appears that when the sensitive metal balance in the brain is sufficiently disrupted, it can lead to the self-perpetuating pathogenesis of AD. Clinical trials are currently studying agents that can remedy abnormal Abeta-metal interactions.
Collapse
Affiliation(s)
- Christa J Maynard
- Department of Pathology, The University of MelbourneParkville, Victoria, Australia
- The Mental Health Research Institute of VictoriaParkville, Victoria, Australia
| | - Ashley I Bush
- Department of Pathology, The University of MelbourneParkville, Victoria, Australia
- The Mental Health Research Institute of VictoriaParkville, Victoria, Australia
- Laboratory for Oxidation Biology, Genetics and Ageing Research Unit, Massachusetts General HospitalCharlestown, MA, USA
- Department of Psychiatry, Harvard Medical School, Massachusetts General HospitalCharlestown, MA, USA
| | - Colin L Masters
- Department of Pathology, The University of MelbourneParkville, Victoria, Australia
- The Mental Health Research Institute of VictoriaParkville, Victoria, Australia
| | - Roberto Cappai
- Department of Pathology, The University of MelbourneParkville, Victoria, Australia
- The Mental Health Research Institute of VictoriaParkville, Victoria, Australia
| | - Qiao-Xin Li
- Department of Pathology, The University of MelbourneParkville, Victoria, Australia
- The Mental Health Research Institute of VictoriaParkville, Victoria, Australia
| |
Collapse
|
140
|
Tickler AK, Smith DG, Ciccotosto GD, Tew DJ, Curtain CC, Carrington D, Masters CL, Bush AI, Cherny RA, Cappai R, Wade JD, Barnham KJ. Methylation of the Imidazole Side Chains of the Alzheimer Disease Amyloid-β Peptide Results in Abolition of Superoxide Dismutase-like Structures and Inhibition of Neurotoxicity. J Biol Chem 2005; 280:13355-63. [PMID: 15668252 DOI: 10.1074/jbc.m414178200] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The toxicity of the amyloid-beta peptide (Abeta) is thought to be responsible for the neurodegeneration associated with Alzheimer disease. Generation of hydrogen peroxide has been implicated as a key step in the toxic pathway. Abeta coordinates the redox active metal ion Cu2+ to catalytically generate H2O2. Structural studies on the interaction of Abeta with Cu have suggested that the coordination sphere about the Cu2+ resembles the active site of superoxide dismutase 1. To investigate the potential role for such structures in the toxicity of Abeta, two novel Abeta40 peptides, Abeta40(HistauMe) and Abeta40(HispiMe), have been prepared, in which the histidine residues 6, 13, and 14 have been substituted with modified histidines where either the pi- or tau-nitrogen of the imidazole side chain is methylated to prevent the formation of bridging histidine moieties. These modifications did not inhibit the ability of these peptides to form fibrils. However, the modified peptides were four times more effective at generating H2O2 than the native sequence. Despite the ability to generate more H2O2, these peptides were not neurotoxic. Whereas the modifications to the peptide altered the metal binding properties, they also inhibited the interaction between the peptides and cell surface membranes. This is consistent with the notion that Abeta-membrane interactions are important for neurotoxicity and that inhibiting these interactions has therapeutic potential.
Collapse
Affiliation(s)
- Anna K Tickler
- Howard Florey Institute of Medical Research, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Ambroggio EE, Kim DH, Separovic F, Barrow CJ, Barnham KJ, Bagatolli LA, Fidelio GD. Surface behavior and lipid interaction of Alzheimer beta-amyloid peptide 1-42: a membrane-disrupting peptide. Biophys J 2005; 88:2706-13. [PMID: 15681641 PMCID: PMC1305366 DOI: 10.1529/biophysj.104.055582] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Accepted: 01/26/2005] [Indexed: 11/18/2022] Open
Abstract
Amyloid aggregates, found in patients that suffer from Alzheimer's disease, are composed of fibril-forming peptides in a beta-sheet conformation. One of the most abundant components in amyloid aggregates is the beta-amyloid peptide 1-42 (Abeta 1-42). Membrane alterations may proceed to cell death by either an oxidative stress mechanism, caused by the peptide and synergized by transition metal ions, or through formation of ion channels by peptide interfacial self-aggregation. Here we demonstrate that Langmuir films of Abeta 1-42, either in pure form or mixed with lipids, develop stable monomolecular arrays with a high surface stability. By using micropipette aspiration technique and confocal microscopy we show that Abeta 1-42 induces a strong membrane destabilization in giant unilamellar vesicles composed of palmitoyloleoyl-phosphatidylcholine, sphingomyelin, and cholesterol, lowering the critical tension of vesicle rupture. Additionally, Abeta 1-42 triggers the induction of a sequential leakage of low- and high-molecular-weight markers trapped inside the giant unilamellar vesicles, but preserving the vesicle shape. Consequently, the Abeta 1-42 sequence confers particular molecular properties to the peptide that, in turn, influence supramolecular properties associated to membranes that may result in toxicity, including: 1), an ability of the peptide to strongly associate with the membrane; 2), a reduction of lateral membrane cohesive forces; and 3), a capacity to break the transbilayer gradient and puncture sealed vesicles.
Collapse
Affiliation(s)
- Ernesto E Ambroggio
- CIQUIBIC-CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Ciudad Universitaria, Córdoba CP-5000, Argentina
| | | | | | | | | | | | | |
Collapse
|
142
|
Jamieson SE, White JK, Howson JMM, Pask R, Smith AN, Brayne C, Evans JG, Xuereb J, Cairns NJ, Rubinsztein DC, Blackwell JM. Candidate gene association study of solute carrier family 11a members 1 (SLC11A1) and 2 (SLC11A2) genes in Alzheimer's disease. Neurosci Lett 2005; 374:124-8. [PMID: 15644277 DOI: 10.1016/j.neulet.2004.10.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Revised: 10/14/2004] [Accepted: 10/14/2004] [Indexed: 02/03/2023]
Abstract
Divalent cations are strongly implicated in Alzheimer's disease (AD) pathogenesis, and can regulate amyloid beta-peptide aggregation. The proton-divalent cation transporters encoded by SLC11A1 (formerly NRAMP1) on chromosome 2q35, and SLC11A2 (also known as DCT1 and DMT1) on chromosome 12q13, are expressed in the brain and regulate ion homeostasis from endosomal compartments. SLC11A1 also has pleiotropic effects on pro-inflammatory responses that may be important in AD. We analyzed seven informative polymorphisms in the SLC11A1 and SLC11A2 genes encoding these divalent cation transporters in a sample of 216 late-onset AD cases and 323 age-matched controls. We found only borderline evidence (p=0.08) for an allelic association between SNP rs407135 at SLC11A2 and AD, in which the variant allele was protective (odd ratio (OR) 0.77; 95% CI 0.56-1.04) relative to the more common allele. There was no interaction with apolipoprotein E (APOE) varepsilon4, but stratification by gender showed that all of the effect of SLC11A2 was in the male patient group. No other associations with AD were observed at SLC11A1 or SLC11A2, indicating no major effect of either gene for the occurrence of AD.
Collapse
Affiliation(s)
- Sarra E Jamieson
- Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Wellcome Trust/MRC Building, Addenbrooke's Hospital, Hills Rd., Cambridge CB2 2XY, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Karr JW, Akintoye H, Kaupp LJ, Szalai VA. N-Terminal Deletions Modify the Cu2+ Binding Site in Amyloid-β. Biochemistry 2005; 44:5478-87. [PMID: 15807541 DOI: 10.1021/bi047611e] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Copper is implicated in the in vitro formation and toxicity of Alzheimer's disease amyloid plaques containing the beta-amyloid (Abeta) peptide (Bush, A. I., et al. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 11934). By low temperature electron paramagnetic resonance (EPR) spectroscopy, the importance of the N-terminus in creating the Cu(2+) binding site in native Abeta has been examined. Peptides that contain the proposed binding site for Cu(2+)-three histidines (H6, H13, and H14) and a tyrosine (Y10)-but lack one to three N-terminal amino acids, do not bind Cu(2+) in the same coordination environment as the native peptide. EPR spectra of soluble Abeta with stoichiometric amounts of Cu(2+) show type 2 Cu(2+) EPR spectra for all peptides. The ligand donor atoms to Cu(2+) are 3N1O when Cu(2+) is bound to any of the Abetapeptides (Abeta16, Abeta28, Abeta40, and Abeta42) that contain the first 16 amino acids of full-length Abeta. When a Y10F mutant of Abeta is used, the coordination environment for Cu(2+) remains 3N1O and Cu(2+) EPR spectra of this mutant are identical to the wild-type spectra. Isotopic labeling experiments show that water is not the O-atom donor to Cu(2+) in Abeta fibrils or in the Y10F mutant. Further, we find that Cu(2+) cannot be removed from Cu(2+)-containing fibrils by washing with buffer, but that Cu(2+) binds to fibrils initially assembled without Cu(2+) in the same coordination environment as in fibrils assembled with Cu(2+). Together, these results indicate (1) that the O-atom donor ligand to Cu(2+) in Abeta is not tyrosine, (2) that the native Cu(2+) binding site in Abeta is sensitive to small changes at the N-terminus, and (3) that Cu(2+) binds to Abetafibrils in a manner that permits exchange of Cu(2+) into and out of the fibrillar architecture.
Collapse
Affiliation(s)
- Jesse W Karr
- Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
| | | | | | | |
Collapse
|
144
|
Nichols MR, Moss MA, Reed DK, Hoh JH, Rosenberry TL. Rapid assembly of amyloid-beta peptide at a liquid/liquid interface produces unstable beta-sheet fibers. Biochemistry 2005; 44:165-73. [PMID: 15628857 DOI: 10.1021/bi048846t] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Accumulation of aggregated amyloid-beta peptide (Abeta) in the brain is a pathological hallmark of Alzheimer's disease (AD). In vitro studies indicate that the 40- to 42-residue Abeta peptide in solution will undergo self-assembly leading to the transient appearance of soluble protofibrils and ultimately to insoluble fibrils. The Abeta peptide is amphiphilic and accumulates preferentially at a hydrophilic/hydrophobic interface. Solid surfaces and air-water interfaces have been shown previously to promote Abeta aggregation, but detailed characterization of these aggregates has not been presented. In this study Abeta(1-40) introduced to aqueous buffer in a two-phase system with chloroform aggregated 1-2 orders of magnitude more rapidly than Abeta in the buffer alone. The interface-induced aggregates were released into the aqueous phase and persisted for 24-72 h before settling as a visible precipitate at the interface. Thioflavin T fluorescence and circular dichroism analyses confirmed that the Abeta aggregates had a beta-sheet secondary structure. However, these aggregates were far less stable than Abeta(1-40) protofibrils prepared in buffer alone and disaggregated completely within 3 min on dilution. Atomic force microscopy revealed that the aggregates consisted of small globules 4-5 nm in height and long flexible fibers composed of these globules aligned roughly along a longitudinal axis, a morphology distinct from that of Abeta protofibrils prepared in buffer alone. The relative instability of the fibers was supported by fiber interruptions apparently introduced by brief washing of the AFM grids. To our knowledge, unstable aggregates of Abeta with beta-sheet structure and fibrous morphology have not been reported previously. Our results provide the clearest evidence yet that the intrinsic beta-sheet structure of an in vitro Abeta aggregate depends on the aggregation conditions and is reflected in the stability of the aggregate and the morphology observed by atomic force microscopy. Resolution of these structural differences at the molecular level may provide important clues to the further understanding of amyloid formation in vivo.
Collapse
Affiliation(s)
- Michael R Nichols
- Department of Neuroscience, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville, Florida 32224, USA.
| | | | | | | | | |
Collapse
|
145
|
Cascio M. Connexins and their environment: effects of lipids composition on ion channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1711:142-53. [PMID: 15955299 DOI: 10.1016/j.bbamem.2004.12.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Revised: 11/25/2004] [Accepted: 12/02/2004] [Indexed: 11/16/2022]
Abstract
Intercellular communication is mediated through paired connexons that form an aqueous pore between two adjacent cells. These membrane proteins reside in the plasma membrane of their respective cells and their activity is modulated by the composition of the lipid bilayer. The effects of the bilayer on connexon structure and function may be direct or indirect, and may arise from specific binding events or the physicochemical properties of the bilayer. While the effects of the bilayer and its constituent lipids on gap junction activity have been described in the literature, the underlying mechanisms of the interaction of connexin with its lipidic microenvironment are not as well characterized. Given that the information regarding connexons is limited, in this review, the specific roles of lipids and the properties of the bilayer on membrane protein structure and function are described for other ion channels as well as for connexons.
Collapse
Affiliation(s)
- Michael Cascio
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, United States.
| |
Collapse
|
146
|
Micelli S, Meleleo D, Picciarelli V, Gallucci E. Effect of sterols on beta-amyloid peptide (AbetaP 1-40) channel formation and their properties in planar lipid membranes. Biophys J 2004; 86:2231-7. [PMID: 15041662 PMCID: PMC1304073 DOI: 10.1016/s0006-3495(04)74281-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We investigate the role played by membrane composition on the interaction and self-assembly of beta-amyloid peptide (AbetaP1-40) during pore formation in planar lipid membranes (PLMs). Incorporation studies showed that AbetaP does not interact with zwitterionic membranes made up of phosphatidylcholine, whereas the addition of cholesterol or ergosterol to the membranes leads to channel formation. Among the PLMs used, a higher propensity of AbetaP to form channels at low applied potential (+/-20 mV) was observed in 7-dehydrocholesterol and in oxidized cholesterol PLMs. These channels present long lifetimes, high-occurrence frequencies, and are voltage dependent. In particular, the AbetaP channel in oxidized cholesterol showed anion selectivity. Thus cholesterol (and sterols in general) could be considered as targets for AbetaP, which prevents the fibrillation process by increasing incorporation into membranes. Furthermore, by switching the channel selectivity versus anions, cholesterol helps to reduce the imbalance of the cellular ions, calcium included, induced by membrane depolarization, which could be one of the factors responsible for cytotoxicity in Alzheimer's disease.
Collapse
Affiliation(s)
- Silvia Micelli
- Dipartimento Farmaco-Biologico, Università degli Studi di Bari, 70126 Bari, Italy.
| | | | | | | |
Collapse
|
147
|
Ciccotosto GD, Tew D, Curtain CC, Smith D, Carrington D, Masters CL, Bush AI, Cherny RA, Cappai R, Barnham KJ. Enhanced toxicity and cellular binding of a modified amyloid beta peptide with a methionine to valine substitution. J Biol Chem 2004; 279:42528-34. [PMID: 15292164 DOI: 10.1074/jbc.m406465200] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The amyloid beta peptide (Abeta) is toxic to neuronal cells, and it is probable that this toxicity is responsible for the progressive cognitive decline associated with Alzheimer's disease. However, the nature of the toxic Abeta species and its precise mechanism of action remain to be determined. It has been reported that the methionine residue at position 35 has a pivotal role to play in the toxicity of Abeta. We examined the effect of mutating the methionine to valine in Abeta42 (AbetaM35V). The neurotoxic activity of AbetaM35V on primary mouse neuronal cortical cells was enhanced, and this diminished cell viability occurred at an accelerated rate compared with Abeta42. AbetaM35V binds Cu2+ and produces similar amounts of H2O2 as Abeta42 in vitro, and the neurotoxic activity was attenuated by the H2O2 scavenger catalase. The increased toxicity of AbetaM35V was associated with increased binding of this mutated peptide to cortical cells. The M35V mutation altered the interaction between Abeta and copper in a lipid environment as shown by EPR analysis, which indicated that the valine substitution made the peptide less rigid in the bilayer region with a resulting higher affinity for the bilayer. Circular dichroism spectroscopy showed that both Abeta42 and AbetaM35V displayed a mixture of alpha-helical and beta-sheet conformations. These findings provide further evidence that the toxicity of Abeta is regulated by binding to neuronal cells.
Collapse
|
148
|
Abstract
Oxidative stress has been implicated in the progression of Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. Oxygen is vital for life but is also potentially dangerous, and a complex system of checks and balances exists for utilizing this essential element. Oxidative stress is the result of an imbalance in pro-oxidant/antioxidant homeostasis that leads to the generation of toxic reactive oxygen species. The systems in place to cope with the biochemistry of oxygen are complex, and many questions about the mechanisms of oxygen regulation remain unanswered. However, this same complexity provides a number of therapeutic targets, and different strategies, including novel metal-protein attenuating compounds, aimed at a variety of targets have shown promise in clinical studies.
Collapse
Affiliation(s)
- Kevin J Barnham
- Department of Pathology, The University of Melbourne, The Mental Health Research Institute of Victoria, Victoria 3010, Australia
| | | | | |
Collapse
|
149
|
Sponne I, Fifre A, Koziel V, Oster T, Olivier JL, Pillot T. Membrane cholesterol interferes with neuronal apoptosis induced by soluble oligomers but not fibrils of amyloid-beta peptide. FASEB J 2004; 18:836-8. [PMID: 15001562 DOI: 10.1096/fj.03-0372fje] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neuronal cell death in Alzheimer's disease (AD) is partly induced by the interaction of the amyloid-beta peptide (Abeta) with the plasma membrane of target cells. Accordingly, recent studies have suggested that cholesterol, an important component of membranes that controls their physical properties and functions, plays a critical role in neurodegenerative diseases. We report here that the enrichment of the neuronal plasma membrane with cholesterol protects cortical neurons from apoptosis induced by soluble oligomers of the Abeta(1-40) peptide. Conversely, cholesterol depletion using cyclodextrin renders cells more vulnerable to the cytotoxic effects of the Abeta-soluble oligomers. Increasing the cholesterol content of small unilamellar liposomes also decreases Abeta-dependent liposome fusion. We clearly demonstrate that cholesterol protection is specific to the soluble conformation of Abeta, because we observed no protective effects on cortical neurons treated by amyloid fibrils of the Abeta(1-40) peptide. This may provide a new opportunity for the development of an effective AD therapy as well as elucidate the impact of the cholesterol level during AD development.
Collapse
|
150
|
Antzutkin ON. Amyloidosis of Alzheimer's Abeta peptides: solid-state nuclear magnetic resonance, electron paramagnetic resonance, transmission electron microscopy, scanning transmission electron microscopy and atomic force microscopy studies. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2004; 42:231-246. [PMID: 14745804 DOI: 10.1002/mrc.1341] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Aggregation cascade for Alzheimer's amyloid-beta peptides, its relevance to neurotoxicity in the course of Alzheimer's disease and experimental methods useful for these studies are discussed. Details of the solid-phase peptide synthesis and sample preparation procedures for Alzheimer's beta-amyloid fibrils are given. Recent progress in obtaining structural constraints on Abeta-fibrils from solid-state NMR and scanning transmission electron microscopy (STEM) data is discussed. Polymorphism of amyloid fibrils and oligomers of the 'Arctic' mutant of Abeta(1-40) was studied by (1)H,(13)C solid-state NMR, transmission electron microscopy (TEM) and atomic force microscopy (AFM), and a real-time aggregation of different polymorphs of the peptide was observed with the aid of in situ AFM. Recent results on binding of Cu(II) ions and Al-citrate and Al-ATP complexes to amyloid fibrils, as studied by electron paramagnetic resonance (EPR) and solid-state (27)Al NMR techniques, are also presented.
Collapse
Affiliation(s)
- Oleg N Antzutkin
- Division of Chemistry, Luleå University of Technology, S-971 87 Luleå, Sweden.
| |
Collapse
|