101
|
McAuley DF, Matthay MA. Is there a role for beta-adrenoceptor agonists in the management of acute lung injury and the acute respiratory distress syndrome? ACTA ACUST UNITED AC 2005; 4:297-307. [PMID: 16137187 DOI: 10.2165/00151829-200504050-00001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Despite improvements in general supportive care and ventilatory strategies designed to limit lung injury, no specific pharmacological therapy has yet proven to be efficacious in the management of acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS). Based on experimental studies, as well as studies of the ex-vivo human lung, pulmonary edema fluid clearance from the alveolar space can be augmented by both inhaled and systemic beta2-adrenoceptor agonists (beta2-agonists). Additionally, in the presence of lung injury, beta2-agonists may reduce lung vascular permeability. Treatment with beta2-agonists may also increase the secretion of surfactant and have anti-inflammatory effects. In view of these potentially beneficial effects, beta2-agonist therapy should be evaluated for the treatment of lung injury in humans, particularly because they are already in wide clinical use and do not seem to have serious adverse effects in critically ill patients.
Collapse
Affiliation(s)
- Danny F McAuley
- Department of Medicine, Cardiovascular Research Institute, University of California at San Francisco, San Francisco, California 94143-0624, USA
| | | |
Collapse
|
102
|
Hallows KR. Emerging role of AMP-activated protein kinase in coupling membrane transport to cellular metabolism. Curr Opin Nephrol Hypertens 2005; 14:464-71. [PMID: 16046906 DOI: 10.1097/01.mnh.0000174145.14798.64] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW It has long been recognized that the coupling of membrane transport to underlying cellular metabolic status is critical because transport processes consume a large portion of total cellular energy. Recently, the finely tuned metabolic sensor AMP-activated protein kinase (AMPK) has emerged as a membrane transport regulator, which may permit sensitive transport-metabolism crosstalk. This review will discuss how AMPK may play an important role in the regulation of ion and solute transport across the plasma membrane under both physiological and pathological conditions in epithelia and other tissues. RECENT FINDINGS Recent studies have found that AMPK, which becomes activated during cellular metabolic stress, promotes the cellular uptake of fuel sources such as glucose and fatty acids to promote ATP generation and inhibits ion-transport proteins such as the cystic fibrosis transmembrane conductance regulator Cl channel and the epithelial Na channel, thereby limiting the dissipation of transmembrane ion gradients. An understanding of the underlying cellular and molecular mechanisms for AMPK-dependent regulation of transport proteins is beginning to emerge. SUMMARY As earlier studies have focused on the role of nucleotides such as ATP in regulating transport-protein activities, the regulation of membrane transport by AMPK represents a novel and more-sensitive mechanism for the coupling of membrane transport to cellular metabolic status. Identifying new membrane-transport targets of AMPK and elucidating the mechanisms involved in their AMPK-dependent regulation are fruitful areas for new investigation that should yield valuable insights into the pathophysiology of hypoxic and ischemic tissue injury.
Collapse
Affiliation(s)
- Kenneth R Hallows
- Renal-Electrolyte Division, Department of Medicine and Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, S976 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA 15261, USA.
| |
Collapse
|
103
|
Li T, Folkesson HG. RNA interference for alpha-ENaC inhibits rat lung fluid absorption in vivo. Am J Physiol Lung Cell Mol Physiol 2005; 290:L649-L660. [PMID: 16258001 DOI: 10.1152/ajplung.00205.2005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We used siRNA against the alpha-ENaC (epithelial Na channel) subunit to investigate ENaC involvement in lung fluid absorption in rats by the impermeable tracer technique during baseline and after beta-adrenoceptor stimulation by terbutaline. Terbutaline stimulation of lung fluid absorption increased fluid absorption by 165% in pSi-0-pretreated rat lungs (irrelevant siRNA-generating plasmid). Terbutaline failed to increase lung fluid absorption in rats given the specific alpha-ENaC siRNA-generating plasmid (pSi-4). pSi-4 pretreatment reduced baseline lung fluid absorption by approximately 30%. alpha-ENaC was undetectable in pSi-4-pretreated lungs, regardless of condition but was normal in pSi-0-pretreated lungs. We carried out a dose-response analysis where rats were given 0-200 microg/kg body wt pSi-4, and alpha-ENaC mRNA and protein expressions were analyzed. To reach IC(50) for alpha-ENaC mRNA expression, 32 microg/kg body wt pSi-4 was needed, and to reach IC(50) for alpha-ENaC protein expression, 59 microg/kg body wt pSi-4 was needed. We tested for lung tissue specificity and found no changes in beta-ENaC expression, at either mRNA or protein level, as well as no changes in alpha(1)-Na-K-ATPase protein expression. We isolated alveolar epithelial type II cells 24 h after in vivo pSi-4 pretreatment. In these cells, alpha-ENaC mRNA was undetectable, demonstrating that alveolar epithelial ENaC expression was attenuated after intratracheal alpha-ENaC siRNA-generating plasmid DNA instillation. We tested for organ specificity and found no changes in kidney alpha- and beta-ENaC mRNA and protein expression. Thus we provide conclusive evidence that beta-adrenoceptor stimulation of lung fluid absorption is critically ENaC dependent, whereas baseline lung fluid absorption seemed less ENaC dependent.
Collapse
Affiliation(s)
- Tianbo Li
- Dept. of Physiology and Pharmacology, Northeastern Ohio Universities College of Medicine, Rootstown, OH 44272-0095, USA
| | | |
Collapse
|
104
|
Hickman-Davis JM, McNicholas-Bevensee C, Davis IC, Ma HP, Davis GC, Bosworth CA, Matalon S. Reactive species mediate inhibition of alveolar type II sodium transport during mycoplasma infection. Am J Respir Crit Care Med 2005; 173:334-44. [PMID: 16254273 PMCID: PMC2662934 DOI: 10.1164/rccm.200501-155oc] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
RATIONALE Mycoplasma pneumoniae is a significant cause of pneumonia in humans. OBJECTIVES To determine the impact of mycoplasma infection and the host inflammatory response on alveolar type II (ATII) cell ion transport in vivo and in vitro. METHODS Mice were infected with M. pulmonis for measurements of alveolar fluid clearance (AFC) in vivo and isolation of ATII cells. ATII cells were infected in vivo for determination of epithelial Na+ channel (ENaC) total and cell surface protein levels by biotinylation and Western blot and in vitro for whole cell patch clamp recording and measurement of nitric oxide (NO) production by chemiluminescence. RESULTS Mycoplasma infection significantly inhibited AFC at 24 h and total and amiloride-sensitive AFC by 48 h postinfection (pi). In contrast, infected myeloperoxidase-deficient mice had similar basal and amiloride-sensitive AFC values to uninfected control mice at 48 h pi. Addition of forskolin restored total and amiloride-sensitive AFC to control values at 48 h pi. ATII cells isolated from infected mice demonstrated normal alpha, beta, and gamma ENaC total protein levels; however, infected whole-lung cell-surface levels of gamma ENaC were significantly decreased. Patch-clamp recordings demonstrated a significant decrease in total and amiloride-sensitive Na+ currents at 24 h pi. ATII cells demonstrated a significant increase in the production of NO at 24 h pi and inhibition of NO by ATII cells before infection reversed the decrease in total Na+ currents. CONCLUSIONS These data indicate that mycoplasma infection results in decreased AFC and functional ENaC via the production of reactive oxygen nitrogen intermediates.
Collapse
Affiliation(s)
- Judy M Hickman-Davis
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL 35205-3703, USA
| | | | | | | | | | | | | |
Collapse
|
105
|
Otulakowski G, Rafii B, Harris M, O'Brodovich H. Oxygen and glucocorticoids modulate alphaENaC mRNA translation in fetal distal lung epithelium. Am J Respir Cell Mol Biol 2005; 34:204-12. [PMID: 16210692 DOI: 10.1165/rcmb.2005-0273oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Glucocorticoid hormones play an important role in fetal lung maturation. It is unknown how they interact with changes in O2 tension, which play an important role in converting the lung from a fluid-secreting to a fluid-absorbing organ at birth. Airspace fluid absorption arises from active transepithelial Na+ transport with the amiloride-sensitive epithelial Na channel (ENaC), consisting of alpha, beta, and gamma subunits, representing the rate-limiting step under nonpathologic conditions. We investigated the individual and combined effects of dexamethasone (DEX) and PO2 on alphaENaC mRNA levels, rate of alphaENaC protein synthesis, and amiloride-sensitive short-circuit current in primary cultures of rat fetal distal lung epithelial cells. DEX significantly induced alphaENaC mRNA in fetal (3%) and postnatal (21%) O2, but increases in alphaENaC protein synthesis and function occurred only when epithelia were grown under a postnatal PO2. Sucrose density gradient analyses showed that DEX treatment of cells cultured at 3% O2 decreased the association of alphaENaC mRNA with large polysomes and enhanced the association with small polysomes. Conversely, incubation of DEX-treated cells in 21% O2 restored alphaENaC mRNA association with large polysomes. No significant changes were seen in the overall polyribosome profiles or in the distribution of mRNAs encoding beta and gamma subunits of ENaC or cytokeratin 18, indicating specific modulation of alphaENaC mRNA translation. These data suggest that postnatal O2 exposure may be important for efficient translation of the alphaENaC mRNA.
Collapse
Affiliation(s)
- Gail Otulakowski
- Programme in Lung Biology Research, Hospital for Sick Children Research Institute, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8.
| | | | | | | |
Collapse
|
106
|
Michlig S, Harris M, Loffing J, Rossier BC, Firsov D. Progesterone down-regulates the open probability of the amiloride-sensitive epithelial sodium channel via a Nedd4-2-dependent mechanism. J Biol Chem 2005; 280:38264-70. [PMID: 16172119 DOI: 10.1074/jbc.m506308200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of the mitogen-activated protein (MAP) kinase cascade by progesterone in Xenopus oocytes leads to a marked down-regulation of activity of the amiloride-sensitive epithelial sodium channel (ENaC). Here we have studied the signaling pathways involved in progesterone effect on ENaC activity. We demonstrate that: (i) the truncation of the C termini of the alphabetagammaENaC subunits results in the loss of the progesterone effect on ENaC; (ii) the effect of progesterone was also suppressed by mutating conserved tyrosine residues in the Pro-X-X-Tyr (PY) motif of the C termini of the beta and gamma ENaC subunits (beta(Y618A) and gamma(Y628A)); (iii) the down-regulation of ENaC activity by progesterone was also suppressed by co-expression ENaC subunits with a catalytically inactive mutant of Nedd4-2, a ubiquitin ligase that has been previously demonstrated to decrease ENaC cell-surface expression via a ubiquitin-dependent internalization/degradation mechanism; (iv) the effect of progesterone was significantly reduced by suppression of consensus sites (beta(T613A) and gamma(T623A)) for ENaC phosphorylation by the extracellular-regulated kinase (ERK), a MAP kinase previously shown to facilitate the binding of Nedd4 ubiquitin ligases to ENaC; (v) the quantification of cell-surface-expressed ENaC subunits revealed that progesterone decreases ENaC open probability (whole cell P(o), wcP(o)) and not its cell-surface expression. Collectively, these results demonstrate that the binding of active Nedd4-2 to ENaC is a crucial step in the mechanism of ENaC inhibition by progesterone. Upon activation of ERK, the effect of Nedd4-2 on ENaC open probability can become more important than its effect on ENaC cell-surface expression.
Collapse
Affiliation(s)
- Stéphanie Michlig
- Département de Pharmacologie et de Toxicologie, Université de Lausanne, 27, rue du Bugnon, CH-1005 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
107
|
von Wichert P, Seifart C. The Lung, an Organ for Absorption? Respiration 2005; 72:552-8. [PMID: 16210898 DOI: 10.1159/000087685] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Accepted: 02/02/2005] [Indexed: 11/19/2022] Open
Abstract
This review summarizes information concerning the mechanisms of absorption of substances across the pulmonary epithelium. Inhalation is now increasingly used as a route of administration, although the scientific understanding of these mechanisms is rather limited. The aim of this study is to draw attention to these questions.
Collapse
Affiliation(s)
- Peter von Wichert
- Department of Medicine, Division of Respiratory and Intensive Care Medicine, Philipps University of Marburg, Marburg, Germany.
| | | |
Collapse
|
108
|
Butterworth MB, Edinger RS, Johnson JP, Frizzell RA. Acute ENaC stimulation by cAMP in a kidney cell line is mediated by exocytic insertion from a recycling channel pool. ACTA ACUST UNITED AC 2005; 125:81-101. [PMID: 15623897 PMCID: PMC2217480 DOI: 10.1085/jgp.200409124] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Acute hormonal regulation of the epithelial sodium channel (ENaC) in tight epithelia increases transcellular Na+ transport via trafficking of intracellular channels to the apical surface. The fate of the channels removed from the apical surface following agonist washout is less clear. By repetitively stimulating polarized mouse cortical collecting duct (mCCD, MPKCCD14) epithelia, we evaluated the hypothesis that ENaC recycles through an intracellular pool to be available for reinsertion into the apical membrane. Short circuit current (ISC), membrane capacitance (CT), and conductance (GT) were recorded from mCCD epithelia mounted in modified Ussing chambers. Surface biotinylation of ENaC demonstrated an increase in channel number in the apical membrane following cAMP stimulation. This increase was accompanied by a 83 ± 6% (n = 31) increase in ISC and a 15.3 ± 1.5% (n = 15) increase in CT. Selective membrane permeabilization demonstrated that the CT increase was due to an increase in apical membrane capacitance. ISC and CT declined to basal levels on stimulus washout. Repetitive cAMP stimulation and washout (∼1 h each cycle) resulted in response fatigue; ΔISC decreased ∼10% per stimulation–recovery cycle. When channel production was blocked by cycloheximide, ΔISC decreased ∼15% per stimulation cycle, indicating that newly synthesized ENaC contributed a relatively small fraction of the channels mobilized to the apical membrane. Selective block of surface ENaC by benzamil demonstrated that channels inserted from a subapical pool made up >90% of the stimulated ISC, and that on restimulation a large proportion of channels retrieved from the apical surface were reinserted into the apical membrane. Channel recycling was disrupted by brefeldin A, which inhibited ENaC exocytosis, by chloroquine, which inhibited ENaC endocytosis and recycling, and by latrunculin A, which blocked ENaC exocytosis. A compartment model featuring channel populations in the apical membrane and intracellular recycling pool provided an adequate kinetic description of the ISC responses to repetitive stimulation. The model supports the concept of ENaC recycling in response to repetitive cAMP stimulation.
Collapse
Affiliation(s)
- Michael B Butterworth
- Department of Cell Biology and Physiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | | | | | |
Collapse
|
109
|
Carattino MD, Edinger RS, Grieser HJ, Wise R, Neumann D, Schlattner U, Johnson JP, Kleyman TR, Hallows KR. Epithelial Sodium Channel Inhibition by AMP-activated Protein Kinase in Oocytes and Polarized Renal Epithelial Cells. J Biol Chem 2005; 280:17608-16. [PMID: 15753079 DOI: 10.1074/jbc.m501770200] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The epithelial Na(+) channel (ENaC) regulates epithelial salt and water reabsorption, processes that require significant expenditure of cellular energy. To test whether the ubiquitous metabolic sensor AMP-activated kinase (AMPK) regulates ENaC, we examined the effects of AMPK activation on amiloride-sensitive currents in Xenopus oocytes and polarized mouse collecting duct mpkCCD(c14) cells. Microinjection of oocytes expressing mouse ENaC (mENaC) with either active AMPK protein or an AMPK activator inhibited mENaC currents relative to controls as measured by two-electrode voltage-clamp studies. Similarly, pharmacological AMPK activation or overexpression of an activating AMPK mutant in mpkCCD(c14) cells inhibited amiloride-sensitive short circuit currents. Expression of a degenerin mutant beta-mENaC subunit (S518K) along with wild type alpha and gamma increased the channel open probability (P(o)) to approximately 1. However, AMPK activation inhibited currents similarly with expression of either degenerin mutant or wild type mENaC. Single channel recordings under these conditions demonstrated that neither P(o) nor channel conductance was affected by AMPK activation. Moreover, expression of a Liddle's syndrome-type beta-mENaC mutant (Y618A) greatly enhanced ENaC whole cell currents relative to wild type ENaC controls and prevented AMPK-dependent inhibition. These findings indicate that AMPK-dependent ENaC inhibition is mediated through a decrease in the number of active channels at the plasma membrane (N), presumably through enhanced Nedd4-2-dependent ENaC endocytosis. The AMPK-ENaC interaction appears to be indirect; AMPK did not bind ENaC in cells, as assessed by in vivo pull-down assays, nor did it phosphorylate ENaC in vitro. In summary, these results suggest a novel mechanism for coupling ENaC activity and renal Na(+) handling to cellular metabolic status through AMPK, which may help prevent cellular Na(+) loading under hypoxic or ischemic conditions.
Collapse
Affiliation(s)
- Marcelo D Carattino
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Land SC. Hochachka's "Hypoxia Defense Strategies" and the development of the pathway for oxygen. Comp Biochem Physiol B Biochem Mol Biol 2005; 139:415-33. [PMID: 15544965 DOI: 10.1016/j.cbpc.2004.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/26/2004] [Accepted: 02/29/2004] [Indexed: 12/17/2022]
Abstract
Hochachka's "Hypoxia Defense Strategies" identify oxygen signalling, metabolic arrest, channel arrest and coordinated suppression of ATP turnover rates as key factors that determine the ability of organisms to survive exposure to chronic hypoxia. In this review, I assess the developmental role played by these phenomena in the morphogenesis of the gas exchange tissues that define the pathway for oxygen transport to cytochrome c oxidase. Key areas of regulation lie in: (I) the suppression of fetal mitochondrial oxidative function in hand with mitochondrial biogenesis (metabolic arrest), (II) the role of hypoxia-driven oxygen signalling pathways in directing the scope of non-differentiated stem cell proliferation in placenta and lung development and (III) the regulation of epithelial fluid secretion/absorption in the lung through the oxygen-dependent modulation of Na+ conductance pathways. The identification of developmental roles for Hochachka's "Hypoxia Defense Strategies" in directing the morphogenesis of gas exchange structures bears with it the implication that these strategies are fundamental to establishing the scope for aerobic metabolic performance throughout life.
Collapse
Affiliation(s)
- Stephen C Land
- Division of Maternal and Child Health Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK.
| |
Collapse
|
111
|
Xie Q, Lin T, Zhang Y, Zheng J, Bonanno JA. Molecular cloning and characterization of a human AIF-like gene with ability to induce apoptosis. J Biol Chem 2005; 280:19673-81. [PMID: 15764604 DOI: 10.1074/jbc.m409517200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, we cloned and characterized a human gene homologous to the apoptosis-inducing factor (AIF), which is named AIF-like (AIFL). Human AIFL has 598 amino acids, with a characteristic Rieske domain and a pyridine nucleotide-disulfide oxidoreductase domain (Pyr_redox). AIFL shares 35% homology with AIF, mainly in the Pyr_redox domain. Reverse transcriptase-PCR analysis showed the expression of AIFL mRNA in all tissues tested, i.e. brain, colon, heart, kidney, liver, lung, muscle, ovary, pancreas, placenta, small intestine, and testis. We developed antibodies against human AIFL using fusion proteins as antigens. The antibodies specifically recognized the antigen and heterologously expressed AIFL proteins. The expression of AIFL proteins in human tissues was also ubiquitous, demonstrated by immunohistochemistry in tissue array slides. Subcellular fractionation and immunofluorescence staining studies revealed that AIFL is predominantly localized to the mitochondria. Similar to AIF, overexpression of AIFL induced apoptosis, as shown by increased cytoplasmic nucleosomes and subdiploid cell populations in AIFL-transfected cells. The segment 1-190 containing the Rieske domain induced apoptosis, whereas the segment containing the Pyr_redox domain did not contribute to the pro-apoptotic function. The mitochondrial membrane potential of cells transfected with AIFL was significantly more depolarized than that of the control. AIFL transfection-induced cytochrome c release and cleavage of caspase 3. Furthermore, the pan-caspase inhibitor Z-VAD-fmk inhibited AIFL induced apoptosis. In summary, AIFL induces apoptosis in a caspase-dependent manner when heterologously expressed.
Collapse
Affiliation(s)
- Qiang Xie
- Indiana University School of Optometry, Bloomington, 47405, USA
| | | | | | | | | |
Collapse
|
112
|
Roux J, Kawakatsu H, Gartland B, Pespeni M, Sheppard D, Matthay MA, Canessa CM, Pittet JF. Interleukin-1beta decreases expression of the epithelial sodium channel alpha-subunit in alveolar epithelial cells via a p38 MAPK-dependent signaling pathway. J Biol Chem 2005; 280:18579-89. [PMID: 15755725 DOI: 10.1074/jbc.m410561200] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Acute lung injury (ALI) is a devastating syndrome characterized by diffuse alveolar damage, elevated airspace levels of pro-inflammatory cytokines, and flooding of the alveolar spaces with protein-rich edema fluid. Interleukin-1beta (IL-1beta) is one of the most biologically active cytokines in the distal airspaces of patients with ALI. IL-1beta has been shown to increase lung epithelial and endothelial permeability. In this study, we hypothesized that IL-1beta would decrease vectorial ion and water transport across the distal lung epithelium. Therefore, we measured the effects of IL-1beta on transepithelial current, resistance, and sodium transport in primary cultures of alveolar epithelial type II (ATII) cells. IL-1beta significantly reduced the amiloride-sensitive fraction of the transepithelial current and sodium transport across rat ATII cell monolayers. Moreover, IL-1beta decreased basal and dexamethasone-induced epithelial sodium channel alpha-subunit (alpha ENaC) mRNA levels and total and cell-surface protein expression. The inhibitory effect of IL-1beta on alpha ENaC expression was mediated by the activation of p38 MAPK in both rat and human ATII cells and was independent of the activation of alpha v beta6 integrin and transforming growth factor-beta. These results indicate that IL-1beta may contribute to alveolar edema in ALI by reducing distal lung epithelial sodium absorption. This reduction in ion and water transport across the lung epithelium is in large part due to a decrease in alpha ENaC expression through p38 MAPK-dependent inhibition of alpha ENaC promoter activity and to an alteration in ENaC trafficking to the apical membrane of ATII cells.
Collapse
Affiliation(s)
- Jérémie Roux
- Laboratory of Surgical Research, Cardiovascular Research Institute, Department of Anesthesia, University of California, San Francisco 94110, USA
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Planès C, Leyvraz C, Uchida T, Angelova MA, Vuagniaux G, Hummler E, Matthay M, Clerici C, Rossier B. In vitro and in vivo regulation of transepithelial lung alveolar sodium transport by serine proteases. Am J Physiol Lung Cell Mol Physiol 2005; 288:L1099-109. [PMID: 15681398 DOI: 10.1152/ajplung.00332.2004] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The amiloride-sensitive epithelial sodium channel (ENaC) constitutes a rate-limiting step for sodium (Na+) and water absorption across lung alveolar epithelium. Recent reports suggested that ENaC is regulated by membrane-bound extracellular serine proteases, such as channel-activating proteases (CAPs). The objectives of this study were to examine the role of serine proteases in the regulation of transepithelial alveolar Na+ and water transport in vitro and in vivo and the expression of CAPs in rodent distal lung. In vitro experiments showed that inhibition of endogenous serine proteases by apical aprotinin 1) decreased ENaC-mediated currents in primary cultures of rat and mouse alveolar epithelial cells without affecting the abundance nor the electrophoretic migration pattern of biotinylated alpha- and beta-ENaC expressed at the cell surface and 2) suppressed the increase in amiloride-sensitive short-circuit current induced by the beta2-agonist terbutaline. RT-PCR experiments indicated that CAP1, CAP2, and CAP3 mRNAs were expressed in mouse alveolar epithelial cells, whereas CAP1 was also expressed in alveolar macrophages recovered by bronchoalveolar lavage. CAP1 protein was detected by Western blotting in rat and mouse alveolar epithelial cells, alveolar macrophages and bronchoalveolar lavage fluid. Finally, in vivo experiments revealed that intra-alveolar treatment with aprotinin abolished the increase in Na+-driven alveolar fluid clearance (AFC) induced by terbutaline in an in situ mouse lung model, whereas trypsin potentiated it. These results show that endogenous membrane-bound and/or secreted serine proteases such as CAPs regulate alveolar Na+ and fluid transport in vitro and in vivo in rodent lung.
Collapse
Affiliation(s)
- Carole Planès
- Department of Physiology, INSERM U426, Faculté de Medécine Xavier Bichat, Université Paris 7, Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Portier F, Kania R, Planès C, Hsu WC, Couette S, Tran Ba Huy P, Herman P. Enhanced sodium absorption in middle ear epithelial cells cultured at air-liquid interface. Acta Otolaryngol 2005; 125:16-22. [PMID: 15799568 DOI: 10.1080/00016480410015749] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
CONCLUSION As we demonstrated previously that transcription of alpha-ENaC was correlated with oxygen tension in the culture medium, this study suggests that the increase in alpha-ENaC expression observed under ALI conditions may result from greater oxygenation of ME cells. OBJECTIVE The physiology of the middle ear (ME) is primarily concerned with keeping the cavities fluid-free, to allow transmission of sound vibrations from the eardrum to the inner ear. ME epithelial cells are thought to play a key role in this process as they actively absorb sodium and water in order to clear any excess fluid present in the cavities. MATERIAL AND METHODS As an air-liquid interface (ALI) model has been shown to improve differentiation and enhance sodium absorption in other respiratory epithelia, we established an ALI model for ME cells. RESULTS ME cells cultured under ALI conditions exhibited a fourfold increase in sodium absorption, which was not related to either a metabolic effect or to enhanced morphological differentiation, but instead to an increase in expression of the alpha-subunit of the epithelial sodium channel (alpha-ENaC).
Collapse
Affiliation(s)
- F Portier
- Laboratoire d'Otologie Expérimentale, UMR 7060, Faculté Lariboisière-St-Louis, Assistance Publique des Hôpitaux de Paris, Université Paris VII, Paris, France
| | | | | | | | | | | | | |
Collapse
|
115
|
Michlig S, Mercier A, Doucet A, Schild L, Horisberger JD, Rossier BC, Firsov D. ERK1/2 Controls Na,K-ATPase Activity and Transepithelial Sodium Transport in the Principal Cell of the Cortical Collecting Duct of the Mouse Kidney. J Biol Chem 2004; 279:51002-12. [PMID: 15456767 DOI: 10.1074/jbc.m405674200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The collecting duct of normal kidney exhibits significant activity of the MEK1/2-ERK1/2 pathway as shown in vivo by immunostaining of phosphorylated active ERK1/2 (pERK1/2). The MEK1/2-ERK1/2 pathway controls many different ion transports both in proximal and distal nephron, raising the question of whether this pathway is involved in the basal and/or hormone-dependent transepithelial sodium reabsorption in the principal cell of the cortical collecting duct (CCD), a process mediated by the apical epithelial sodium channel and the basolateral sodium pump (Na,K-ATPase). To answer this question we used ex vivo microdissected CCDs from normal mouse kidney or in vitro cultured mpkCCDcl4 principal cells. Significant basal levels of pERK1/2 were observed ex vivo and in vitro. Aldosterone and vasopressin, known to up-regulate sodium reabsorption in CCDs, did not change ERK1/2 activity either ex vivo or in vitro. Basal and aldosterone- or vasopressin-stimulated sodium transport was down-regulated by the MEK1/2 inhibitor PD98059, in parallel with a decrease in pERK1/2 in vitro. The activity of Na,K-ATPase but not that of epithelial sodium channel was inhibited by MEK1/2 inhibitors in both unstimulated and aldosterone- or vasopressin-stimulated CCDs in vitro. Cell surface biotinylation showed that intrinsic activity rather than cell surface expression of Na,K-ATPase was controlled by pERK1/2. PD98059 also significantly inhibited the activity of Na,K-ATPase ex vivo. Our data demonstrate that the ERK1/2 pathway controls Na,K-ATPase activity and transepithelial sodium transport in the principal cell and indicate that basal constitutive activity of the ERK1/2 pathway is a critical component of this control.
Collapse
Affiliation(s)
- Stéphanie Michlig
- Département de Pharmacologie et de Toxicologie, Université de Lausanne, CH-1005 Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
116
|
Hughey RP, Bruns JB, Kinlough CL, Kleyman TR. Distinct Pools of Epithelial Sodium Channels Are Expressed at the Plasma Membrane. J Biol Chem 2004; 279:48491-4. [PMID: 15466477 DOI: 10.1074/jbc.c400460200] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The epithelial Na+ channel (ENaC) is assembled in the endoplasmic reticulum from three structurally related subunits (alpha, beta, and gamma). Channel maturation within the biosynthetic pathway involves cleavage of the alpha and gamma subunits by furin and processing of N-linked glycans on alpha, beta, and gamma to complex type. Both mature and immature subunits have been observed at the surface of stably transfected Madin-Darby canine kidney cells. We have examined whether channel maturation is an all-or-none event or whether heterogeneous processing of channel subunits occurs within an individual channel complex. Using an immobilized lectin to isolate proteins with complex type N-glycans, we found that individual channel complexes with mature subunits lack immature subunits. Furthermore, terminal processing of N-glycans on ENaC subunits was not dependent on cleavage of ENaC subunits, and proteolysis of channel subunits was not dependent on prior processing of N-glycans. Our results suggest that processing of subunits within an individual channel complex is an all-or-none event such that channels present on the cell surface contain either all mature or all immature subunits. The presence of immature channel complexes at the plasma membrane provides epithelial cells with a reserve of poorly functional channels that can be activated by proteases in post-Golgi compartments.
Collapse
Affiliation(s)
- Rebecca P Hughey
- Renal-Electrolyte Division, Department of Medicine and Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
117
|
Thomas CP, Campbell JR, Wright PJ, Husted RF. cAMP-stimulated Na+transport in H441 distal lung epithelial cells: role of PKA, phosphatidylinositol 3-kinase, and sgk1. Am J Physiol Lung Cell Mol Physiol 2004; 287:L843-51. [PMID: 15208094 DOI: 10.1152/ajplung.00340.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
H441 cells, a bronchiolar epithelial cell line, develop a cAMP-regulated benzamil-sensitive Na+transport pathway on permeable supports (Itani OA, Auerbach SD, Husted RF, Volk KA, Ageloff S, Knepper MA, Stokes JB, Thomas CP. Am J Physiol Lung Cell Mol Physiol 282: L631–L641, 2002). To understand the molecular basis for the stimulation of Na+transport, we delineated the role of specific intracellular pathways and examined the effect of cAMP on αβγ-epithelial Na+channel (ENaC) and sgk1 expression. Na+transport increases within 5 min of cAMP stimulation and is sustained for >24 h. The sustained effect of cAMP on Na+transport is abolished by LY-294002, an inhibitor of phosphatidylinositol 3-kinase, by H89, an inhibitor of PKA, or by SB-202190, an inhibitor of p38 MAP kinase. The sustained effect of cAMP was associated with increases in α-ENaC mRNA and protein but without a detectable increase in βγ-ENaC and sgk1. The early effect of cAMP on Na+transport is brefeldin sensitive and is mediated via PKA. These results are consistent with a model where the early effect of cAMP is to increase trafficking of Na+channels to the apical cell surface whereas the sustained effect requires the synthesis of α-ENaC.
Collapse
Affiliation(s)
- Christie P Thomas
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, Iowa 52242, USA.
| | | | | | | |
Collapse
|
118
|
Groshaus HE, Manocha S, Walley KR, Russell JA. Mechanisms of beta-receptor stimulation-induced improvement of acute lung injury and pulmonary edema. Crit Care 2004; 8:234-42. [PMID: 15312205 PMCID: PMC522843 DOI: 10.1186/cc2875] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Acute lung injury (ALI) and the acute respiratory distress syndrome are complex syndromes because both inflammatory and coagulation cascades cause lung injury. Transport of salt and water, repair and remodeling of the lung, apoptosis, and necrosis are additional important mechanisms of injury. Alveolar edema is cleared by active transport of salt and water from the alveoli into the lung interstitium by complex cellular mechanisms. Beta-2 agonists act on the cellular mechanisms of pulmonary edema clearance as well as other pathways relevant to repair in ALI. Numerous studies suggest that the beneficial effects of beta-2 agonists in ALI include at least enhanced fluid clearance from the alveolar space, anti-inflammatory actions, and bronchodilation. The purposes of the present review are to consider the effects of beta agonists on three mechanisms of improvement of lung injury: edema clearance, anti-inflammatory effects, and bronchodilation. This update reviews specifically the evidence on the effects of beta-2 agonists in human ALI and in models of ALI. The available evidence suggests that beta-2 agonists may be efficacious therapy in ALI. Further randomized controlled trials of beta agonists in pulmonary edema and in acute lung injury are necessary.
Collapse
Affiliation(s)
- Horacio E Groshaus
- Critical Care Research Laboratories, St Paul's Hospital and University of British Columbia, Vancouver, British Columbia, Canada
| | - Sanjay Manocha
- Critical Care Research Laboratories, St Paul's Hospital and University of British Columbia, Vancouver, British Columbia, Canada
| | - Keith R Walley
- Critical Care Research Laboratories, St Paul's Hospital and University of British Columbia, Vancouver, British Columbia, Canada
| | - James A Russell
- Critical Care Research Laboratories, St Paul's Hospital and University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
119
|
Mohan S, Bruns JR, Weixel KM, Edinger RS, Bruns JB, Kleyman TR, Johnson JP, Weisz OA. Differential Current Decay Profiles of Epithelial Sodium Channel Subunit Combinations in Polarized Renal Epithelial Cells. J Biol Chem 2004; 279:32071-8. [PMID: 15166222 DOI: 10.1074/jbc.m405091200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In many epithelial tissues in the body, the rate of Na(+) reabsorption is governed by the activity of the epithelial sodium channel (ENaC). The assembly, trafficking, and turnover of the three ENaC subunits (alpha, beta, and gamma) is complex and not well understood. Recent experiments suggest that ENaC must be proteolytically cleaved for maximal activity and may explain the discrepancies reported in prior biochemical approaches focused on quantitating the trafficking and half-life of full-length subunits. As an alternative approach to examining the dynamics of ENaC subunits, we have generated doxycycline-repressible replication-defective recombinant adenoviruses encoding individual epitope-tagged mouse ENaC subunits and expressed these in polarized MDCK I cells. Co-infection with these viruses encoding all three subunits generates robust amiloride-sensitive currents in polarized MDCK cells. Significant current was also observed in cells expressing alpha- and gamma-mENaC in the absence of beta-mENaC. These currents did not appear to result from association with endogenous canine beta-ENaC. Treatment of alpha beta gamma-expressing cells with cycloheximide (CHX) resulted in the rapid inhibition (within 3 h) of approximately 50-80% of the initial current; however, a sizable fraction of the initial current remained even after 6 h of CHX. By contrast, CHX addition to cells expressing only alpha- and gamma-mENaC resulted in rapid decay in current with no residual fraction. Our data suggest that ENaC channels of differing stoichiometries are differentially trafficked and degraded and provide support for the possibility that noncoordinate trafficking of ENaC subunits may function in vivo as a mechanism to modulate ENaC activity.
Collapse
Affiliation(s)
- Savita Mohan
- Laboratory of Epithelial Cell Biology, Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
120
|
Fang X, Song Y, Zemans R, Hirsch J, Matthay MA. Fluid transport across cultured rat alveolar epithelial cells: a novel in vitro system. Am J Physiol Lung Cell Mol Physiol 2004; 287:L104-10. [PMID: 14990396 DOI: 10.1152/ajplung.00176.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies have used fluid-instilled lungs to measure net alveolar fluid transport in intact animal and human lungs. However, intact lung studies have two limitations: the contribution of different distal lung epithelial cells cannot be studied separately, and the surface area for fluid absorption can only be approximated. Therefore, we developed a method to measure net vectorial fluid transport in cultured rat alveolar type II cells using an air-liquid interface. The cells were seeded on 0.4-microm microporous inserts in a Transwell system. At 96 h, the transmembrane electrical resistance reached a peak level (1,530 +/- 115 Omega.cm(2)) with morphological evidence of tight junctions. We measured net fluid transport by placing 150 microl of culture medium containing 0.5 microCi of (131)I-albumin on the apical side of the polarized cells. Protein permeability across the cell monolayer, as measured by labeled albumin, was 1.17 +/- 0.34% over 24 h. The change in concentration of (131)I-albumin in the apical fluid was used to determine the net fluid transported across the monolayer over 12 and 24 h. The net basal fluid transport was 0.84 microl.cm(-2).h(-1). cAMP stimulation with forskolin and IBMX increased fluid transport by 96%. Amiloride inhibited both the basal and stimulated fluid transport. Ouabain inhibited basal fluid transport by 93%. The cultured cells retained alveolar type II-like features based on morphologic studies, including ultrastructural imaging. In conclusion, this novel in vitro system can be used to measure net vectorial fluid transport across cultured, polarized alveolar epithelial cells.
Collapse
Affiliation(s)
- Xiaohui Fang
- Cardiovascular Research Institute, University of California, San Francisco, 94143-0130, USA
| | | | | | | | | |
Collapse
|
121
|
Perkins GD, McAuley DF, Richter A, Thickett DR, Gao F. Bench-to-bedside review: beta2-Agonists and the acute respiratory distress syndrome. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2003; 8:25-32. [PMID: 14975042 PMCID: PMC420065 DOI: 10.1186/cc2417] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The acute respiratory distress syndrome (ARDS) is a devastating constellation of clinical, radiological and pathological signs characterized by failure of gas exchange and refractory hypoxia. Despite nearly 30 years of research, no specific pharmacological therapy has yet proven to be efficacious in manipulating the pathophysiological processes that underlie this condition. Several in vitro and in vivo animal or human studies suggest a potential role for β2-agonists in the treatment of ARDS. These agents have been shown to reduce pulmonary neutrophil sequestration and activation, accelerate alveolar fluid clearance, enhance surfactant secretion, and modulate the inflammatory and coagulation cascades. They are also used widely in clinical practice and are well tolerated in critically ill patients. The present review examines the evidence supporting a role for β2-agonists as a specific pharmacological intervention in patients with ARDS.
Collapse
Affiliation(s)
- Gavin D Perkins
- Consultant, Intensive Care Unit, Birmingham Heartlands Hospital, Birmingham, UK.
| | | | | | | | | |
Collapse
|
122
|
Clerici C, Matthay MA. Transforming growth factor-β1 regulates lung epithelial barrier function and fluid transport. Am J Physiol Lung Cell Mol Physiol 2003; 285:L1190-1. [PMID: 14604849 DOI: 10.1152/ajplung.00230.2003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
123
|
Frank J, Roux J, Kawakatsu H, Su G, Dagenais A, Berthiaume Y, Howard M, Canessa CM, Fang X, Sheppard D, Matthay MA, Pittet JF. Transforming growth factor-beta1 decreases expression of the epithelial sodium channel alphaENaC and alveolar epithelial vectorial sodium and fluid transport via an ERK1/2-dependent mechanism. J Biol Chem 2003; 278:43939-50. [PMID: 12930837 DOI: 10.1074/jbc.m304882200] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Acute lung injury (ALI) is characterized by the flooding of the alveolar airspaces with protein-rich edema fluid and diffuse alveolar damage. We have previously reported that transforming growth factor-beta1 (TGF-beta1) is a critical mediator of ALI after intratracheal administration of bleomycin or Escherichia coli endotoxin, at least in part due to effects on lung endothelial and alveolar epithelial permeability. In the present study, we hypothesized that TGF-beta1 would also decrease vectorial ion and water transport across the distal lung epithelium. Therefore, we studied the effect of active TGF-beta1 on 22Na+ uptake across monolayers of primary rat and human alveolar type II (ATII) cells. TGF-beta1 significantly reduced the amiloride-sensitive fraction of 22Na+ uptake and fluid transport across monolayers of both rat and human ATII cells. TGF-beta1 also significantly decreased alphaENaC mRNA and protein expression and inhibited expression of a luciferase reporter downstream of the alphaENaC promoter in lung epithelial cells. The inhibitory effect of TGF-beta1 on sodium uptake and alphaENaC expression in ATII cells was mediated by activation of the MAPK, ERK1/2. Consistent with the in vitro results, TGF-beta1 inhibited the amiloride-sensitive fraction of the distal airway epithelial fluid transport in an in vivo rat model at a dose that was not associated with any change in epithelial protein permeability. These data indicate that increased TGF-beta1 activity in the distal airspaces during ALI promotes alveolar edema by reducing distal airway epithelial sodium and fluid clearance. This reduction in sodium and fluid transport is attributable in large part to a reduction in apical membrane alphaENaC expression mediated through an ERK1/2-dependent inhibition of the alphaENaC promoter activity.
Collapse
Affiliation(s)
- James Frank
- Laboratory of Surgical Research, Cardiovascular Research Institute, Lung Biology Center, Departments of Anesthesia, Surgery, and Medicine, University of California, San Francisco, California 94110, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Abstract
The epithelial sodium channel (ENaC) is composed of the three homologous subunits α, β, and γ. The basic oligomerization process inferred from all studies in heterologous systems is preferential assembly of the three subunits into a single oligomeric form. However, there is also considerable evidence that channels composed of only α-, αβ-, or αγ-subunits can form under some circumstances and that individual subunits expressed in heterologous systems can traffic to the cell membrane. In cells that express endogenous ENaC, the three subunits are often synthesized in a differential fashion, with one or two subunits expressed constitutively while the other(s) are induced by different physiological stimuli in parallel with increased ENaC activity. This phenomenon, which we term noncoordinate regulation, has been observed for both whole cell and apical membrane ENaC subunit expression. Several other heteromeric membrane proteins have also been observed to have differential rates of either turnover or trafficking of individual subunits after biosynthesis and membrane localization. Here, we examine the possibility that noncoordinate regulation of ENaC subunits may represent another mechanism in the arsenal of physiological responses to diverse stimuli.
Collapse
Affiliation(s)
- Ora A Weisz
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
125
|
Mairbäurl H, Schwöbel F, Höschele S, Maggiorini M, Gibbs S, Swenson ER, Bärtsch P. Altered ion transporter expression in bronchial epithelium in mountaineers with high-altitude pulmonary edema. J Appl Physiol (1985) 2003; 95:1843-50. [PMID: 14555664 DOI: 10.1152/japplphysiol.01156.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypoxia inhibits activity and expression of transport proteins of cultured lung alveolar epithelial cells. Here we tested whether hypoxia at high altitude affected the expression of ion transport proteins in tissues obtained from controls and mountaineers with high-altitude pulmonary edema (HAPE) at the Capanna Margherita (4,559 m). Expression was determined by RT-PCR and Western blots from brush biopsies of bronchial epithelium and from leukocytes obtained before and during the stay at high altitude. At low altitude, amounts of mRNAs were not different between control and HAPE-susceptible subjects. At high altitude, the amount of mRNA of Na-K-ATPase, CFTR, and β-actin of brush biopsies did not change in controls but decreased significantly (-60%) in HAPE-susceptible subjects. There was no change in Na channel mRNAs at high altitude in controls and HAPE. No statistically significant correlation was found between the expression of Na transporters and Po2 and O2 saturation. In leukocytes, 28S-rRNA and Na-K-ATPase decreased at altitude in control and HAPE-susceptible subjects, but no significant change in Na-K-ATPase protein was found. Hypoxia-inducible factor-1α mRNA and GAPDH mRNA tended to increase in leukocytes obtained from HAPE-susceptible subjects at high altitude but did not change in controls. These results show that hypoxia induces differences in mRNA expression of ion transport-related proteins between HAPE-susceptible and control subjects but that these changes may not necessarily predict differences in protein concentration or activity. It is therefore unclear whether these differences are related to the pathophysiology of HAPE.
Collapse
Affiliation(s)
- Heimo Mairbäurl
- Division of Sports Medicine, Department of Medicine, University of Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
126
|
Berthiaume Y. Long-term stimulation of alveolar epithelial cells by beta-adrenergic agonists: increased Na+ transport and modulation of cell growth? Am J Physiol Lung Cell Mol Physiol 2003; 285:L798-801. [PMID: 12959925 DOI: 10.1152/ajplung.00166.2003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
127
|
Hughey RP, Mueller GM, Bruns JB, Kinlough CL, Poland PA, Harkleroad KL, Carattino MD, Kleyman TR. Maturation of the epithelial Na+ channel involves proteolytic processing of the alpha- and gamma-subunits. J Biol Chem 2003; 278:37073-82. [PMID: 12871941 DOI: 10.1074/jbc.m307003200] [Citation(s) in RCA: 233] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The epithelial Na+ channel (ENaC) is a tetramer of two alpha-, one beta-, and one gamma-subunit, but little is known about its assembly and processing. Because co-expression of mouse ENaC subunits with three different carboxyl-terminal epitope tags produced an amiloride-sensitive sodium current in oocytes, these tagged subunits were expressed in both Chinese hamster ovary or Madin-Darby canine kidney type 1 epithelial cells for further study. When expressed alone alpha-(95 kDa), beta-(96 kDa), and gamma-subunits (93 kDa) each produced a single band on SDS gels by immunoblotting. However, co-expression of alphabetagammaENaC subunits revealed a second band for each subunit (65 kDa for alpha, 110 kDa for beta, and 75 kDa for gamma) that exhibited N-glycans that had been processed to complex type based on sensitivity to treatment with neuraminidase, resistance to cleavage by endoglycosidase H, and GalNAc-independent labeling with [3H]Gal in glycosylation-defective Chinese hamster ovary cells (ldlD). The smaller size of the processed alpha- and gamma-subunits is also consistent with proteolytic cleavage. By using alpha- and gamma-subunits with epitope tags at both the amino and carboxyl termini, proteolytic processing of the alpha- and gamma-subunits was confirmed by isolation of an additional epitope-tagged fragment from the amino terminus (30 kDa for alpha and 18 kDa for gamma) consistent with cleavage within the extracellular loop. The fragments remain stably associated with the channel as shown by immunoblotting of co-immunoprecipitates, suggesting that proteolytic cleavage represents maturation rather than degradation of the channel.
Collapse
Affiliation(s)
- Rebecca P Hughey
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Dagenais A, Fréchette R, Yamagata Y, Yamagata T, Carmel JF, Clermont ME, Brochiero E, Massé C, Berthiaume Y. Downregulation of ENaC activity and expression by TNF-alpha in alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 2003; 286:L301-11. [PMID: 14514522 DOI: 10.1152/ajplung.00326.2002] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sodium absorption by an amiloride-sensitive channel is the main driving force of lung liquid clearance at birth and lung edema clearance in adulthood. In this study, we tested whether tumor necrosis factor-alpha (TNF-alpha), a proinflammatory cytokine involved in several lung pathologies, could modulate sodium absorption in cultured alveolar epithelial cells. We found that TNF-alpha decreased the expression of the alpha-, beta-, and gamma-subunits of epithelial sodium channel (ENaC) mRNA to 36, 43, and 16% of the controls after 24-h treatment and reduced to 50% the amount of alpha-ENaC protein in these cells. There was no impact, however, on alpha(1) and beta(1) Na(+)-K(+)-ATPase mRNA expression. Amiloride-sensitive current and ouabain-sensitive Rb(+) uptake were reduced, respectively, to 28 and 39% of the controls. A strong correlation was found at different TNF-alpha concentrations between the decrease of amiloride-sensitive current and alpha-ENaC mRNA expression. All these data show that TNF-alpha, a proinflammatory cytokine present during lung infection, has a profound influence on the capacity of alveolar epithelial cells to transport sodium.
Collapse
Affiliation(s)
- André Dagenais
- Centre de recherche, CHUM-Hôtel-Dieu, 3850 St-Urbain, Montreal, Quebec, Canada H2W 1T7.
| | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Sartori C, Scherrer U. Turning up the Heat in the Lungs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003. [DOI: 10.1007/978-1-4419-8997-0_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|