101
|
Idevall-Hagren O, Barg S, Gylfe E, Tengholm A. cAMP mediators of pulsatile insulin secretion from glucose-stimulated single beta-cells. J Biol Chem 2010; 285:23007-18. [PMID: 20498366 DOI: 10.1074/jbc.m109.095992] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pulsatile insulin release from glucose-stimulated beta-cells is driven by oscillations of the Ca(2+) and cAMP concentrations in the subplasma membrane space ([Ca(2+)](pm) and [cAMP](pm)). To clarify mechanisms by which cAMP regulates insulin secretion, we performed parallel evanescent wave fluorescence imaging of [cAMP](pm), [Ca(2+)](pm), and phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) in the plasma membrane. This lipid is formed by autocrine insulin receptor activation and was used to monitor insulin release kinetics from single MIN6 beta-cells. Elevation of the glucose concentration from 3 to 11 mm induced, after a 2.7-min delay, coordinated oscillations of [Ca(2+)](pm), [cAMP](pm), and PIP(3). Inhibitors of protein kinase A (PKA) markedly diminished the PIP(3) response when applied before glucose stimulation, but did not affect already manifested PIP(3) oscillations. The reduced PIP(3) response could be attributed to accelerated depolarization causing early rise of [Ca(2+)](pm) that preceded the elevation of [cAMP](pm). However, the amplitude of the PIP(3) response after PKA inhibition was restored by a specific agonist to the cAMP-dependent guanine nucleotide exchange factor Epac. Suppression of cAMP formation with adenylyl cyclase inhibitors reduced already established PIP(3) oscillations in glucose-stimulated cells, and this effect was almost completely counteracted by the Epac agonist. In cells treated with small interfering RNA targeting Epac2, the amplitudes of the glucose-induced PIP(3) oscillations were reduced, and the Epac agonist was without effect. The data indicate that temporal coordination of the triggering [Ca(2+)](pm) and amplifying [cAMP](pm) signals is important for glucose-induced pulsatile insulin release. Although both PKA and Epac2 partake in initiating insulin secretion, the cAMP dependence of established pulsatility is mediated by Epac2.
Collapse
Affiliation(s)
- Olof Idevall-Hagren
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Box 571, SE-75123 Uppsala, Sweden
| | | | | | | |
Collapse
|
102
|
Kelly P, Bailey CL, Fueger PT, Newgard CB, Casey PJ, Kimple ME. Rap1 promotes multiple pancreatic islet cell functions and signals through mammalian target of rapamycin complex 1 to enhance proliferation. J Biol Chem 2010; 285:15777-85. [PMID: 20339002 DOI: 10.1074/jbc.m109.069112] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Recent studies have implicated Epac2, a guanine-nucleotide exchange factor for the Rap subfamily of monomeric G proteins, as an important regulator of insulin secretion from pancreatic beta-cells. Although the Epac proteins were originally identified as cAMP-responsive activators of Rap1 GTPases, the role of Rap1 in beta-cell biology has not yet been defined. In this study, we examined the direct effects of Rap1 signaling on beta-cell biology. Using the Ins-1 rat insulinoma line, we demonstrate that activated Rap1A, but not related monomeric G proteins, promotes ribosomal protein S6 phosphorylation. Using isolated rat islets, we show that this signaling event is rapamycin-sensitive, indicating that it is mediated by the mammalian target of rapamycin complex 1-p70 S6 kinase pathway, a known growth regulatory pathway. This newly defined beta-cell signaling pathway acts downstream of cAMP, in parallel with the stimulation of cAMP-dependent protein kinase, to drive ribosomal protein S6 phosphorylation. Activated Rap1A promotes glucose-stimulated insulin secretion, islet cell hypertrophy, and islet cell proliferation, the latter exclusively through mammalian target of rapamycin complex 1, suggesting that Rap1 is an important regulator of beta-cell function. This newly defined signaling pathway may yield unique targets for the treatment of beta-cell dysfunction in diabetes.
Collapse
Affiliation(s)
- Patrick Kelly
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
103
|
Piccolo and bassoon maintain synaptic vesicle clustering without directly participating in vesicle exocytosis. Proc Natl Acad Sci U S A 2010; 107:6504-9. [PMID: 20332206 DOI: 10.1073/pnas.1002307107] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Piccolo and bassoon are highly homologous multidomain proteins of the presynaptic cytomatrix whose function is unclear. Here, we generated piccolo knockin/knockout mice that either contain wild-type levels of mutant piccolo unable to bind Ca(2+) (knockin), approximately 60% decreased levels of piccolo that is C-terminally truncated (partial knockout), or <5% levels of piccolo (knockout). All piccolo mutant mice were viable and fertile, but piccolo knockout mice exhibited increased postnatal mortality. Unexpectedly, electrophysiology and electron microscopy of piccolo-deficient synapses failed to uncover a major phenotype either in acute hippocampal slices or in cultured cortical neurons. To unmask potentially redundant functions of piccolo and bassoon, we thus acutely knocked down expression of bassoon in wild-type and piccolo knockout neurons. Despite a nearly complete loss of piccolo and bassoon, however, we still did not detect an electrophysiological phenotype in cultured piccolo- and bassoon-deficient neurons in either GABAergic or glutamatergic synaptic transmission. In contrast, electron microscopy revealed a significant reduction in synaptic vesicle clustering in double bassoon/piccolo-deficient synapses. Thus, we propose that piccolo and bassoon play a redundant role in synaptic vesicle clustering in nerve terminals without directly participating in neurotransmitter release.
Collapse
|
104
|
Cornu M, Modi H, Kawamori D, Kulkarni RN, Joffraud M, Thorens B. Glucagon-like peptide-1 increases beta-cell glucose competence and proliferation by translational induction of insulin-like growth factor-1 receptor expression. J Biol Chem 2010; 285:10538-45. [PMID: 20145256 DOI: 10.1074/jbc.m109.091116] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) protects beta-cells against apoptosis, increases their glucose competence, and induces their proliferation. We previously demonstrated that the anti-apoptotic effect was mediated by an increase in insulin-like growth factor-1 receptor (IGF-1R) expression and signaling, which was dependent on autocrine secretion of insulin-like growth factor 2 (IGF-2). Here, we further investigated how GLP-1 induces IGF-1R expression and whether the IGF-2/IGF-1R autocrine loop is also involved in mediating GLP-1-increase in glucose competence and proliferation. We show that GLP-1 up-regulated IGF-1R expression by a protein kinase A-dependent translational control mechanism, whereas isobutylmethylxanthine, which led to higher intracellular accumulation of cAMP than GLP-1, increased both IGF-1R transcription and translation. We then demonstrated, using MIN6 cells and primary islets, that the glucose competence of these cells was dependent on the level of IGF-1R expression and on IGF-2 secretion. We showed that GLP-1-induced primary beta-cell proliferation was suppressed by Igf-1r gene inactivation and by IGF-2 immunoneutralization or knockdown. Together our data show that regulation of beta-cell number and function by GLP-1 depends on the cAMP/protein kinase A mediated-induction of IGF-1R expression and the increased activity of an IGF-2/IGF-1R autocrine loop.
Collapse
Affiliation(s)
- Marion Cornu
- Department of Physiology and Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
105
|
Abstract
cAMP is a second messenger that is essential for relaying hormonal responses in many biological processes. The discovery of the cAMP target Epac explained various effects of cAMP that could not be attributed to the established targets PKA and cyclic nucleotide-gated ion channels. Epac1 and Epac2 function as guanine nucleotide exchange factors for the small G protein Rap. cAMP analogs that selectively activate Epac have helped to reveal a role for Epac in processes ranging from insulin secretion to cardiac contraction and vascular permeability. Advances in the understanding of the activation mechanism of Epac and its regulation by diverse anchoring mechanisms have helped to elucidate the means by which cAMP fulfills these functions via Epac.
Collapse
Affiliation(s)
- Martijn Gloerich
- Department of Physiological Chemistry, University Medical Center, Utrecht, The Netherlands
| | | |
Collapse
|
106
|
A protein interaction node at the neurotransmitter release site: domains of Aczonin/Piccolo, Bassoon, CAST, and rim converge on the N-terminal domain of Munc13-1. J Neurosci 2009; 29:12584-96. [PMID: 19812333 DOI: 10.1523/jneurosci.1255-09.2009] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Multidomain scaffolding proteins organize the molecular machinery of neurotransmitter vesicle dynamics during synaptogenesis and synaptic activity. We find that domains of five active zone proteins converge on an interaction node that centers on the N-terminal region of Munc13-1 and includes the zinc-finger domain of Rim1, the C-terminal region of Bassoon, a segment of CAST1/ELKS2, and the third coiled-coil domain (CC3) of either Aczonin/Piccolo or Bassoon. This multidomain complex may constitute a center for the physical and functional integration of the protein machinery at the active zone. An additional connection between Aczonin and Bassoon is mediated by the second coiled-coil domain of Aczonin. Recombinant Aczonin-CC3, expressed in cultured neurons as a green fluorescent protein fusion protein, is targeted to synapses and suppresses vesicle turnover, suggesting involvements in synaptic assembly as well as activity. Our findings show that Aczonin, Bassoon, CAST1, Munc13, and Rim are closely and multiply interconnected, they indicate that Aczonin-CC3 can actively participate in neurotransmitter vesicle dynamics, and they highlight the N-terminal region of Munc13-1 as a hub of protein interactions by adding three new binding partners to its mechanistic potential in the control of synaptic vesicle priming.
Collapse
|
107
|
Kelley GG, Chepurny OG, Schwede F, Genieser HG, Leech CA, Roe MW, Li X, Dzhura I, Dzhura E, Afshari P, Holz GG. Glucose-dependent potentiation of mouse islet insulin secretion by Epac activator 8-pCPT-2'-O-Me-cAMP-AM. Islets 2009; 1:260-5. [PMID: 21099281 PMCID: PMC2859731 DOI: 10.4161/isl.1.3.9645] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Epac2 is a cAMP-regulated guanine nucleotide exchange factor (cAMP-GEF) that is proposed to mediate stimulatory actions of the second messenger cAMP on mouse islet insulin secretion. Here we have used methods of islet perifusion to demonstrate that the acetoxymethyl ester (AM-ester) of an Epac-selective cAMP analog (ESCA) penetrates into mouse islets and is capable of potentiating both first and second phases of glucose-stimulated insulin secretion (GSIS). When used at low concentrations (1-10 μM), 8-pCPT-2'-O-Me-cAMP-AM activates Rap1 GTPase but exhibits little or no ability to activate protein kinase A (PKA), as validated in assays of in vitro PKA activity (phosphorylation of Kemptide), Ser (133) CREB phosphorylation status, RIP1-CRE-Luc reporter gene activity, and PKA-dependent AKAR3 biosensor activation. Since quantitative PCR demonstrates Epac2 mRNA to be expressed at levels ca. 5.3-fold greater than that of Epac1, available evidence indicates that Epac2 does in fact mediate stimulatory actions of cAMP on mouse islet GSIS.
Collapse
Affiliation(s)
- Grant G. Kelley
- Department of Medicine, State University of New York Upstate Medical University; Syracuse, NY USA
| | - Oleg G. Chepurny
- Department of Medicine, State University of New York Upstate Medical University; Syracuse, NY USA
| | | | | | - Colin A. Leech
- Department of Medicine, State University of New York Upstate Medical University; Syracuse, NY USA
| | - Michael W. Roe
- Department of Medicine, State University of New York Upstate Medical University; Syracuse, NY USA
- Department of Cell and Developmental Biology; State University of New York Upstate Medical University; Syracuse, NY USA
| | - Xiangquan Li
- Department of Medicine, State University of New York Upstate Medical University; Syracuse, NY USA
| | - Igor Dzhura
- Department of Medicine, State University of New York Upstate Medical University; Syracuse, NY USA
| | - Elvira Dzhura
- Department of Medicine, State University of New York Upstate Medical University; Syracuse, NY USA
| | - Parisa Afshari
- Department of Medicine, State University of New York Upstate Medical University; Syracuse, NY USA
- Department of Pharmacology, State University of New York Upstate Medical University; Syracuse, NY USA
| | - George G. Holz
- Department of Medicine, State University of New York Upstate Medical University; Syracuse, NY USA
- Department of Pharmacology, State University of New York Upstate Medical University; Syracuse, NY USA
- Correspondence to: George G. Holz;
| |
Collapse
|
108
|
Jacobo SMP, Guerra ML, Hockerman GH. Cav1.2 and Cav1.3 are differentially coupled to glucagon-like peptide-1 potentiation of glucose-stimulated insulin secretion in the pancreatic beta-cell line INS-1. J Pharmacol Exp Ther 2009; 331:724-32. [PMID: 19710366 PMCID: PMC2775263 DOI: 10.1124/jpet.109.158519] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 08/25/2009] [Indexed: 02/06/2023] Open
Abstract
The incretin peptides, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), potentiate glucose-stimulated insulin secretion (GSIS) and beta-cell proliferation and differentiation. Ca(2+) influx via voltage-gated L-type Ca(2+) channels is required for GLP-1 and GIP potentiation of GSIS. We investigated the role of the L-type Ca(2+) channels Ca(v)1.2 and Ca(v)1.3 in mediating GLP-1- and GIP-stimulated events in INS-1 cells and INS-1 cell lines expressing dihydropyridine-insensitive (DHPi) mutants of either Ca(v)1.2 or Ca(v)1.3. Ca(v)1.3/DHPi channels supported full potentiation of GSIS by GLP-1 (50 nM) compared with untransfected INS-1 cells. However, GLP-1-potentiated GSIS mediated by Ca(v)1.2/DHPi channels was markedly reduced compared with untransfected INS-1 cells. In contrast, GIP (10 nM) potentiation of GSIS mediated by both Ca(v)1.2/DHPi and Ca(v)1.3/DHPi channels was similar to that observed in untransfected INS-1 cells. Disruption of intracellular Ca(2+) release with thapsigargin, ryanodine, or 2-aminoethyldiphenylborate and inhibition of protein kinase A (PKA) or protein kinase C (PKC) significantly reduced GLP-1 potentiation of GSIS by Ca(v)1.3/DHPi channels and by endogenous L-type channels in INS-1 cells, but not by Ca(v)1.2/DHPi channels. Inhibition of glucose-stimulated phospholipase C activity with 1-(6-((17b-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122) did not inhibit potentiation of GSIS by GLP-1 in INS-1 cells. In contrast, wortmannin, an inhibitor of phosphatidylinositol 3-kinase, and 2'-amino-3'-methoxyflavone (PD98059), an inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase, both markedly inhibited GLP-1 potentiation of GSIS by endogenous channels in INS-1 cells and Ca(v)1.3/DHPi channels, but not by Ca(v)1.2/DHPi channels. Thus, Ca(v)1.3 is preferentially coupled to GLP-1 potentiation of GSIS in INS-1 cells via a mechanism that requires intact intracellular Ca(2+) stores, PKA and PKC activity, and activation of ERK1/2.
Collapse
Affiliation(s)
- Sarah Melissa P Jacobo
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | | | | |
Collapse
|
109
|
Whitaker CM, Cooper NGF. Differential distribution of exchange proteins directly activated by cyclic AMP within the adult rat retina. Neuroscience 2009; 165:955-67. [PMID: 19883736 DOI: 10.1016/j.neuroscience.2009.10.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 10/09/2009] [Accepted: 10/27/2009] [Indexed: 12/15/2022]
Abstract
The recently discovered exchange protein directly activated by cAMP (Epac), a guanine exchange factor for the G-protein RAP-1, is directly activated by cAMP independently of protein kinase A (PKA). While cAMP is known to be an important second messenger in the retina, the presence of Epac has not been investigated in this tissue. The goal of the present study was to determine if the Epac1 and Epac2 genes are present and to characterize their location within the retina. Western blot analysis revealed that Epac1 and Epac2 proteins are expressed within the retina, and the presence of mRNA was demonstrated with the aid of reverse transcriptase polymerase chain reaction (RT-PCR). Additionally, we used immunofluorescence and confocal microscopy to demonstrate that Epac1 and Epac2 have overlapping as well as unique distributions within the retina. Both are present within horizontal cells, rod and cone bipolar cells, cholinergic amacrine cells, retrograde labeled retinal ganglion cells, and Müller cells. Uniquely, Epac2 was expressed by cone photoreceptor inner and outer segments, cell bodies, and synaptic terminals. In contrast, Epac1 was expressed in vesicular glutamate transporter 1 (VGlut1) and C-terminal binding protein 2 (CtBP2) positive photoreceptor synaptic terminals. Together, these results provide evidence that Epac1 and Epac2 are differentially expressed within the retina and provide the framework for further functional studies of cAMP pathways within the retina.
Collapse
Affiliation(s)
- C M Whitaker
- Departments of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | | |
Collapse
|
110
|
Marcucci F, Zou DJ, Firestein S. Sequential onset of presynaptic molecules during olfactory sensory neuron maturation. J Comp Neurol 2009; 516:187-98. [PMID: 19598283 DOI: 10.1002/cne.22094] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Differentiated olfactory sensory neurons express specific presynaptic proteins, including enzymes involved in neurotransmitter transport and proteins involved in the trafficking and release of synaptic vesicles. Studying the regulation of these presynaptic proteins will help to elucidate the presynaptic differentiation process that ultimately leads to synapse formation. It has been postulated that the formation of a synapse between the axons of the sensory neurons and the dendrites of second order neurons in the olfactory bulb is a critical step in the processes of sensory neuron maturation. One approach to study the relationship between synaptogenesis and sensory neuron maturation is to examine the expression patterns of synaptic molecules through the olfactory neuron lineage. To this end we designed specific in situ hybridization probes to target messengers for proteins involved in presynaptic vesicle release. Our findings show that, as they mature, mouse olfactory neurons sequentially express specific presynaptic genes. Furthermore, the different patterns of expression of these presynaptic genes suggest the existence of discrete steps in presynaptic development: genes encoding proteins involved in scaffolding show an early onset of expression, whereas expression of genes encoding proteins involved in the regulation of vesicle release starts later. In particular, the signature molecule for glutamatergic neurons vesicle glutamate transporter 2 shows the latest onset of expression. In addition, contact with the targets in the olfactory bulb is not controlling presynaptic protein gene expression, suggesting that olfactory sensory neurons follow an intrinsic program of development.
Collapse
Affiliation(s)
- Florencia Marcucci
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | |
Collapse
|
111
|
Roscioni SS, Kistemaker LEM, Menzen MH, Elzinga CRS, Gosens R, Halayko AJ, Meurs H, Schmidt M. PKA and Epac cooperate to augment bradykinin-induced interleukin-8 release from human airway smooth muscle cells. Respir Res 2009; 10:88. [PMID: 19788733 PMCID: PMC2764632 DOI: 10.1186/1465-9921-10-88] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2009] [Accepted: 09/29/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Airway smooth muscle contributes to the pathogenesis of pulmonary diseases by secreting inflammatory mediators such as interleukin-8 (IL-8). IL-8 production is in part regulated via activation of Gq-and Gs-coupled receptors. Here we study the role of the cyclic AMP (cAMP) effectors protein kinase A (PKA) and exchange proteins directly activated by cAMP (Epac1 and Epac2) in the bradykinin-induced IL-8 release from a human airway smooth muscle cell line and the underlying molecular mechanisms of this response. METHODS IL-8 release was assessed via ELISA under basal condition and after stimulation with bradykinin alone or in combination with fenoterol, the Epac activators 8-pCPT-2'-O-Me-cAMP and Sp-8-pCPT-2'-O-Me-cAMPS, the PKA activator 6-Bnz-cAMP and the cGMP analog 8-pCPT-2'-O-Me-cGMP. Where indicated, cells were pre-incubated with the pharmacological inhibitors Clostridium difficile toxin B-1470 (GTPases), U0126 (extracellular signal-regulated kinases ERK1/2) and Rp-8-CPT-cAMPS (PKA). The specificity of the cyclic nucleotide analogs was confirmed by measuring phosphorylation of the PKA substrate vasodilator-stimulated phosphoprotein. GTP-loading of Rap1 and Rap2 was evaluated via pull-down technique. Expression of Rap1, Rap2, Epac1 and Epac2 was assessed via western blot. Downregulation of Epac protein expression was achieved by siRNA. Unpaired or paired two-tailed Student's t test was used. RESULTS The beta2-agonist fenoterol augmented release of IL-8 by bradykinin. The PKA activator 6-Bnz-cAMP and the Epac activator 8-pCPT-2'-O-Me-cAMP significantly increased bradykinin-induced IL-8 release. The hydrolysis-resistant Epac activator Sp-8-pCPT-2'-O-Me-cAMPS mimicked the effects of 8-pCPT-2'-O-Me-cAMP, whereas the negative control 8-pCPT-2'-O-Me-cGMP did not. Fenoterol, forskolin and 6-Bnz-cAMP induced VASP phosphorylation, which was diminished by the PKA inhibitor Rp-8-CPT-cAMPS. 6-Bnz-cAMP and 8-pCPT-2'-O-Me-cAMP induced GTP-loading of Rap1, but not of Rap2. Treatment of the cells with toxin B-1470 and U0126 significantly reduced bradykinin-induced IL-8 release alone or in combination with the activators of PKA and Epac. Interestingly, inhibition of PKA by Rp-8-CPT-cAMPS and silencing of Epac1 and Epac2 expression by specific siRNAs largely decreased activation of Rap1 and the augmentation of bradykinin-induced IL-8 release by both PKA and Epac. CONCLUSION Collectively, our data suggest that PKA, Epac1 and Epac2 act in concert to modulate inflammatory properties of airway smooth muscle via signaling to the Ras-like GTPase Rap1 and to ERK1/2.
Collapse
Affiliation(s)
- Sara S Roscioni
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Ibi D, Nitta A, Ishige K, Cen X, Ohtakara T, Nabeshima T, Ito Y. Piccolo knockdown-induced impairments of spatial learning and long-term potentiation in the hippocampal CA1 region. Neurochem Int 2009; 56:77-83. [PMID: 19766155 DOI: 10.1016/j.neuint.2009.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 09/10/2009] [Accepted: 09/10/2009] [Indexed: 10/20/2022]
Abstract
Neurotransmitter release is regulated at a specific site in nerve terminals called the "active zone", which is composed of various cytomatrix proteins such as Piccolo (also known as Aczonin) and Bassoon. These proteins share regions of high sequence similarity and have very high molecular weights (>400 kDa). Since Piccolo knockout mice have not yet been established, the role of Piccolo in the neuronal system remains unclear. In this study, we investigated the effects of Piccolo antisense oligonucleotide injected into the ventricle on hippocampal long-term potentiation (LTP) and learning and memory assessed with the novel object recognition test and the Morris water maze test. There was no significant difference in cognitive memory between Piccolo antisense-treated and vehicle- or sense-treated mice; however, spatial learning in Piccolo antisense-treated mice was impaired but not in sense- or vehicle-treated mice. Next, we investigated LTP formation in these groups in area CA1 and dentate gyrus of the same hippocampal slices. The magnitude of LTP in Piccolo antisense-treated mice was significantly lower than in sense- or vehicle-treated mice, with no change in basal level. Moreover, the level of high K(+)-induced glutamate release in the antisense-treated mice was significantly lower than in sense-treated mice. Taken together, these results indicate that Piccolo plays a pivotal role in synaptic plasticity in area CA1 and in hippocampus-dependent learning in mice, and that the extracellular levels of glutamate in the hippocampus under stimulated conditions are controlled by Piccolo.
Collapse
Affiliation(s)
- Daisuke Ibi
- Research Unit of Pharmacology, College of Pharmacy, Nihon University, Funabashi-shi, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
113
|
Branham MT, Bustos MA, De Blas GA, Rehmann H, Zarelli VEP, Treviño CL, Darszon A, Mayorga LS, Tomes CN. Epac activates the small G proteins Rap1 and Rab3A to achieve exocytosis. J Biol Chem 2009; 284:24825-39. [PMID: 19546222 DOI: 10.1074/jbc.m109.015362] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Exocytosis of the acrosome (the acrosome reaction) relies on cAMP production, assembly of a proteinaceous fusion machinery, calcium influx from the extracellular medium, and mobilization from inositol 1,4,5-trisphosphate-sensitive intracellular stores. Addition of cAMP to human sperm suspensions bypasses some of these requirements and elicits exocytosis in a protein kinase A- and extracellular calcium-independent manner. The relevant cAMP target is Epac, a guanine nucleotide exchange factor for the small GTPase Rap. We show here that a soluble adenylyl cyclase synthesizes the cAMP required for the acrosome reaction. Epac stimulates the exchange of GDP for GTP on Rap1, upstream of a phospholipase C. The Epac-selective cAMP analogue 8-pCPT-2'-O-Me-cAMP induces a phospholipase C-dependent calcium mobilization in human sperm suspensions. In addition, our studies identify a novel connection between cAMP and Rab3A, a secretory granule-associated protein, revealing that the latter functions downstream of soluble adenylyl cyclase/cAMP/Epac but not of Rap1. Challenging sperm with calcium or 8-pCPT-2'-O-Me-cAMP boosts the exchange of GDP for GTP on Rab3A. Recombinant Epac does not release GDP from Rab3A in vitro, suggesting that the Rab3A-GEF activation by cAMP/Epac in vivo is indirect. We propose that Epac sits at a critical point during the exocytotic cascade after which the pathway splits into two limbs, one that assembles the fusion machinery into place and another that elicits intracellular calcium release.
Collapse
Affiliation(s)
- María T Branham
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología-Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, CC 56, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Miyazaki M, Emoto M, Fukuda N, Hatanaka M, Taguchi A, Miyamoto S, Tanizawa Y. DOC2b is a SNARE regulator of glucose-stimulated delayed insulin secretion. Biochem Biophys Res Commun 2009; 384:461-5. [PMID: 19410553 DOI: 10.1016/j.bbrc.2009.04.133] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 04/26/2009] [Indexed: 11/24/2022]
Abstract
Insulin secretion is precisely regulated by blood glucose with unique biphasic pattern. The regulatory mechanism of the second-phase insulin release is unclear. In this study, we report that DOC2b (double C2 domain protein isoform b), a SNARE related protein, was associated with insulin vesicles and translocated to plasma membrane within several minutes upon high-glucose stimulation followed by an interaction with syntaxin4, but not syntaxin1. This binding specificity and the time course of DOC2b translocation were suitable for the regulation of second-phase insulin release. Increased DOC2b expression enhanced glucose-stimulated insulin secretion. In contrast, silencing DOC2b inhibited delayed release of insulin, without affecting rapid (approximately 7min) phase secretion. Interestingly, DOC2b had no effects on KCl-triggered insulin release. These data suggest that DOC2b may be a regulator for delayed (second-phase) insulin secretion in MIN6 cells.
Collapse
Affiliation(s)
- Mutsuko Miyazaki
- Division of Endocrinology, Metabolism, Hematological Sciences and Therapeutics, Department of Bio-Signal Analysis, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan
| | | | | | | | | | | | | |
Collapse
|
115
|
Jacobo SMP, Guerra ML, Jarrard RE, Przybyla JA, Liu G, Watts VJ, Hockerman GH. The intracellular II-III loops of Cav1.2 and Cav1.3 uncouple L-type voltage-gated Ca2+ channels from glucagon-like peptide-1 potentiation of insulin secretion in INS-1 cells via displacement from lipid rafts. J Pharmacol Exp Ther 2009; 330:283-93. [PMID: 19351867 DOI: 10.1124/jpet.109.150672] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
L-type Ca(2+) channels play a key role in the integration of physiological signals regulating insulin secretion that probably requires their localization to specific subdomains of the plasma membrane. We investigated the role of the intracellular II-III loop domains of the L-type channels Ca(v)1.2 and 1.3 in coupling of Ca(2+) influx with glucose-stimulated insulin secretion (GSIS) potentiated by the incretin hormone glucagon-like peptide (GLP)-1. In INS-1 cell lines expressing the Ca(v)1.2/II-III or Ca(v)1.3/II-III peptides, GLP-1 potentiation of GSIS was inhibited markedly, coincident with a decrease in GLP-1-stimulated cAMP accumulation and the redistribution of Ca(v)1.2 and Ca(v)1.3 out of lipid rafts. Neither the Ca(v)1.2/II-III nor the Ca(v)1.3/II-III peptide decreased L-type current density compared with untransfected INS-1 cells. GLP-1 potentiation of GSIS was restored by the L-type channel agonist 2,5-dimethyl-4-[2-(phenylmethyl)benzoyl]-1H-pyrrole-3-carboxylic acid methyl ester (FPL-64176). In contrast, potentiation of GSIS by 8-bromo-cAMP (8-Br-cAMP) was inhibited in Ca(v)1.2/II-III but not Ca(v)1.3/II-III cells. These differences may involve unique protein-protein interactions because the Ca(v)1.2/II-III peptide, but not the Ca(v)1.3/II-III peptide, immunoprecipitates Rab3-interacting molecule (RIM) 2 from INS-1 cell lysates. RIM2, and its binding partner Piccolo, localize to lipid rafts, and they may serve as anchors for Ca(v)1.2 localization to lipid rafts in INS-1 cells. These findings suggest that the II-III interdomain loops of Ca(v)1.2, and possibly Ca(v)1.3, direct these channels to membrane microdomains in which the proteins that mediate potentiation of GSIS by GLP-1 and 8-Br-cAMP assemble.
Collapse
Affiliation(s)
- Sarah Melissa P Jacobo
- Program in Biochemistry and Molecular Biology, Purdue University, West Lafayette, Indiana, USA
| | | | | | | | | | | | | |
Collapse
|
116
|
Chepurny OG, Leech CA, Kelley GG, Dzhura I, Dzhura E, Li X, Rindler MJ, Schwede F, Genieser HG, Holz GG. Enhanced Rap1 activation and insulin secretagogue properties of an acetoxymethyl ester of an Epac-selective cyclic AMP analog in rat INS-1 cells: studies with 8-pCPT-2'-O-Me-cAMP-AM. J Biol Chem 2009; 284:10728-36. [PMID: 19244230 DOI: 10.1074/jbc.m900166200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
To ascertain the identities of cyclic nucleotide-binding proteins that mediate the insulin secretagogue action of cAMP, the possible contributions of the exchange protein directly activated by cAMP (Epac) and protein kinase A (PKA) were evaluated in a pancreatic beta cell line (rat INS-1 cells). Assays of Rap1 activation, CREB phosphorylation, and PKA-dependent gene expression were performed in combination with live cell imaging and high throughput screening of a fluorescence resonance energy transfer-based cAMP sensor (Epac1-camps) to validate the selectivity with which acetoxymethyl esters (AM-esters) of cAMP analogs preferentially activate Epac or PKA. Selective activation of Epac or PKA was achieved following exposure of INS-1 cells to 8-pCPT-2'-O-Me-cAMP-AM or Bt(2)cAMP-AM, respectively. Both cAMP analogs exerted dose-dependent and glucose metabolism-dependent actions to stimulate insulin secretion, and when each was co-administered with the other, a supra-additive effect was observed. Because 2.4-fold more insulin was secreted in response to a saturating concentration (10 microm) of Bt(2)cAMP-AM as compared with 8-pCPT-2'-O-Me-cAMP-AM, and because the action of Bt(2)cAMP-AM but not 8-pCPT-2'-O-Me-cAMP-AM was nearly abrogated by treatment with 3 microm of the PKA inhibitor H-89, it is concluded that for INS-1 cells, it is PKA that acts as the dominant cAMP-binding protein in support of insulin secretion. Unexpectedly, 10-100 microm of the non-AM-ester of 8-pCPT-2'-O-Me-cAMP failed to stimulate insulin secretion and was a weak activator of Rap1 in INS-1 cells. Moreover, 10 microm of the AM-ester of 8-pCPT-2'-O-Me-cAMP stimulated insulin secretion from mouse islets, whereas the non-AM-ester did not. Thus, the membrane permeability of 8-pCPT-2'-O-Me-cAMP in insulin-secreting cells is so low as to limit its biological activity. It is concluded that prior reports documenting the failure of 8-pCPT-2'-O-Me-cAMP to act in beta cells, or other cell types, need to be re-evaluated through the use of the AM-ester of this cAMP analog.
Collapse
Affiliation(s)
- Oleg G Chepurny
- Departments of Medicine and Pharmacology, State University of New York, Upstate Medical University, Syracuse, New York 13210, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Borland G, Smith BO, Yarwood SJ. EPAC proteins transduce diverse cellular actions of cAMP. Br J Pharmacol 2009; 158:70-86. [PMID: 19210747 DOI: 10.1111/j.1476-5381.2008.00087.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
It has now been over 10 years since efforts to completely understand the signalling actions of cAMP (3'-5'-cyclic adenosine monophosphate) led to the discovery of exchange protein directly activated by cAMP (EPAC) proteins. In the current review we will highlight important advances in the understanding of EPAC structure and function and demonstrate that EPAC proteins mediate multiple actions of cAMP in cells, revealing future targets for pharmaceutical intervention. It has been known for some time that drugs that elevate intracellular cAMP levels have proven therapeutic benefit for diseases ranging from depression to inflammation. The challenge now is to determine which of these positive actions of cAMP involve activation of EPAC-regulated signal transduction pathways. EPACs are specific guanine nucleotide exchange factors for the Ras GTPase homologues, Rap1 and Rap2, which they activate independently of the classical routes for cAMP signalling, cyclic nucleotide-gated ion channels and protein kinase A. Rather, EPAC activation is triggered by internal conformational changes induced by direct interaction with cAMP. Leading from this has been the development of EPAC-specific agonists, which has helped to delineate numerous cellular actions of cAMP that rely on subsequent activation of EPAC. These include regulation of exocytosis and the control of cell adhesion, growth, division and differentiation. Recent work also implicates EPAC in the regulation of anti-inflammatory signalling in the vascular endothelium, namely negative regulation of pro-inflammatory cytokine signalling and positive support of barrier function. Further elucidation of these important signalling mechanisms will no doubt support the development of the next generation of anti-inflammatory drugs.
Collapse
Affiliation(s)
- Gillian Borland
- Division of Molecular and Cellular Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | |
Collapse
|
118
|
Tengholm A, Gylfe E. Oscillatory control of insulin secretion. Mol Cell Endocrinol 2009; 297:58-72. [PMID: 18706473 DOI: 10.1016/j.mce.2008.07.009] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 05/30/2008] [Accepted: 07/10/2008] [Indexed: 11/17/2022]
Abstract
Pancreatic beta-cells possess an inherent ability to generate oscillatory signals that trigger insulin release. Coordination of the secretory activity among beta-cells results in pulsatile insulin secretion from the pancreas, which is considered important for the action of the hormone in the target tissues. This review focuses on the mechanisms underlying oscillatory control of insulin secretion at the level of the individual beta-cell. Recent studies have demonstrated that oscillations of the cytoplasmic Ca(2+) concentration are synchronized with oscillations in beta-cell metabolism, intracellular cAMP concentration, phospholipase C activity and plasma membrane phosphoinositide lipid concentrations. There are complex interdependencies between the different messengers and signalling pathways that contribute to amplitude regulation and shaping of the insulin secretory response to nutrient stimuli and neurohormonal modulators. Several of these pathways may be important pharmacological targets for improving pulsatile insulin secretion in type 2 diabetes.
Collapse
Affiliation(s)
- Anders Tengholm
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Box 571, SE-75123 Uppsala, Sweden.
| | | |
Collapse
|
119
|
Weidenhofer J, Scott RJ, Tooney PA. Investigation of the expression of genes affecting cytomatrix active zone function in the amygdala in schizophrenia: effects of antipsychotic drugs. J Psychiatr Res 2009; 43:282-90. [PMID: 18490030 DOI: 10.1016/j.jpsychires.2008.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 04/02/2008] [Accepted: 04/02/2008] [Indexed: 11/18/2022]
Abstract
The cytomatrix active zone (CAZ) is a specialized cellular structure regulating release of vesicles. We reported previously increased expression of three CAZ genes, piccolo, RIMS2 and RIMS3 in the amygdala in schizophrenia. This study determined the levels of gene and protein expression for components of the active zone including two additional CAZ genes in the amygdala from subjects with schizophrenia and non-psychiatric controls, as well as the effects of antipsychotic drugs. Whilst relative real-time PCR analysis did not identify significant change in the expression of six additional active zone genes, Western blot analysis showed increased piccolo and RIMS2 protein expression in the amygdala in schizophrenia. In vitro analysis suggests antipsychotic drug treatment was unlikely to have caused the changes in RIMS2, RIMS3 and piccolo expression observed in the amygdala in schizophrenia. Therefore, this study provides further evidence suggesting that piccolo, RIMS2, RIMS3, but not the entire components of the active zone are involved in the neurobiology of schizophrenia.
Collapse
Affiliation(s)
- Judith Weidenhofer
- School of Biomedical Sciences, Faculty of Health, University of Newcastle, NSW 2308, Australia
| | | | | |
Collapse
|
120
|
Kim W, Egan JM. The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol Rev 2008; 60:470-512. [PMID: 19074620 DOI: 10.1124/pr.108.000604] [Citation(s) in RCA: 563] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Incretins are gut hormones that are secreted from enteroendocrine cells into the blood within minutes after eating. One of their many physiological roles is to regulate the amount of insulin that is secreted after eating. In this manner, as well as others to be described in this review, their final common raison d'être is to aid in disposal of the products of digestion. There are two incretins, known as glucose-dependent insulinotropic peptide (GIP) and glucagon-like peptide-1 (GLP-1), that share many common actions in the pancreas but have distinct actions outside of the pancreas. Both incretins are rapidly deactivated by an enzyme called dipeptidyl peptidase 4 (DPP4). A lack of secretion of incretins or an increase in their clearance are not pathogenic factors in diabetes. However, in type 2 diabetes (T2DM), GIP no longer modulates glucose-dependent insulin secretion, even at supraphysiological (pharmacological) plasma levels, and therefore GIP incompetence is detrimental to beta-cell function, especially after eating. GLP-1, on the other hand, is still insulinotropic in T2DM, and this has led to the development of compounds that activate the GLP-1 receptor with a view to improving insulin secretion. Since 2005, two new classes of drugs based on incretin action have been approved for lowering blood glucose levels in T2DM: an incretin mimetic (exenatide, which is a potent long-acting agonist of the GLP-1 receptor) and an incretin enhancer (sitagliptin, which is a DPP4 inhibitor). Exenatide is injected subcutaneously twice daily and its use leads to lower blood glucose and higher insulin levels, especially in the fed state. There is glucose-dependency to its insulin secretory capacity, making it unlikely to cause low blood sugars (hypoglycemia). DPP4 inhibitors are orally active and they increase endogenous blood levels of active incretins, thus leading to prolonged incretin action. The elevated levels of GLP-1 are thought to be the mechanism underlying their blood glucose-lowering effects.
Collapse
Affiliation(s)
- Wook Kim
- National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | |
Collapse
|
121
|
Suckow AT, Comoletti D, Waldrop MA, Mosedale M, Egodage S, Taylor P, Chessler SD. Expression of neurexin, neuroligin, and their cytoplasmic binding partners in the pancreatic beta-cells and the involvement of neuroligin in insulin secretion. Endocrinology 2008; 149:6006-17. [PMID: 18755801 PMCID: PMC2613060 DOI: 10.1210/en.2008-0274] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The composition of the beta-cell exocytic machinery is very similar to that of neuronal synapses, and the developmental pathway of beta-cells and neurons substantially overlap. beta-Cells secrete gamma-aminobutyric acid and express proteins that, in the brain, are specific markers of inhibitory synapses. Recently, neuronal coculture experiments have identified three families of synaptic cell-surface molecules (neurexins, neuroligins, and SynCAM) that drive synapse formation in vitro and that control the differentiation of nascent synapses into either excitatory or inhibitory fully mature nerve terminals. The inhibitory synapse-like character of the beta-cells led us to hypothesize that members of these families of synapse-inducing adhesion molecules would be expressed in beta-cells and that the pattern of expression would resemble that associated with neuronal inhibitory synaptogenesis. Here, we describe beta-cell expression of the neuroligins, neurexins, and SynCAM, and show that neuroligin expression affects insulin secretion in INS-1 beta-cells and rat islet cells. Our findings demonstrate that neuroligins and neurexins are expressed outside the central nervous system and help confer an inhibitory synaptic-like phenotype onto the beta-cell surface. Analogous to their role in synaptic neurotransmission, neurexin-neuroligin interactions may play a role in the formation of the submembrane insulin secretory apparatus.
Collapse
Affiliation(s)
- Arthur T Suckow
- Department of Medicine, Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | |
Collapse
|
122
|
Ma L, Hanson RL, Que LN, Guo Y, Kobes S, Bogardus C, Baier LJ. PCLO variants are nominally associated with early-onset type 2 diabetes and insulin resistance in Pima Indians. Diabetes 2008; 57:3156-60. [PMID: 18647954 PMCID: PMC2570415 DOI: 10.2337/db07-1800] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE A prior genome-wide association (GWA) study in Pima Indians identified variants within PCLO that were associated with early-onset type 2 diabetes. PCLO encodes a presynaptic cytomatrix protein that functions as a Ca(2+) sensor that may be involved in insulin secretion and/or insulin action. Therefore, PCLO was analyzed as a candidate gene for type 2 diabetes. RESEARCH DESIGN AND METHODS Sequencing of PCLO identified four nonsynonymous variants and a 10-amino acid insertion. These variants, together with 100 additional variants identified by sequencing or chosen from databases, were genotyped for association analysis in the same 895 subjects analyzed in the prior GWA study (300 case subjects with diabetes onset at aged <25 years, 334 nondiabetic control subjects aged >45 years, and 261 discordant siblings of the case or control subjects for within-family analyses), as well as 415 nondiabetic Pima Indians who had been metabolically phenotyped for predictors of diabetes. Selected variants were further genotyped in a population-based sample of 3,501 Pima Indians. RESULTS Four variants were modestly associated with early-onset type 2 diabetes in both general and within-family analyses (P = 0.004-0.04, recessive model), where the diabetes risk allele was also nominally associated with a lower insulin-mediated glucose disposal rate (P = 0.009-0.14, recessive model) in nondiabetic Pima Indians. However, their association with diabetes in the population-based sample was weaker (P = 0.02-0.20, recessive model). CONCLUSIONS Variation within PCLO may have a modest effect on early-onset type 2 diabetes, possibly as a result of reduced insulin action, but has minimal, if any, impact on population-based risk for type 2 diabetes.
Collapse
Affiliation(s)
- Lijun Ma
- Department of Health and HumanServices, Diabetes Molecular Genetics Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and KidneyDiseases, National Institutes of Health, Phoenix, Arizona, USA
| | | | | | | | | | | | | |
Collapse
|
123
|
Sabbatini ME, Chen X, Ernst SA, Williams JA. Rap1 activation plays a regulatory role in pancreatic amylase secretion. J Biol Chem 2008; 283:23884-94. [PMID: 18577515 PMCID: PMC2527106 DOI: 10.1074/jbc.m800754200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 06/02/2008] [Indexed: 11/06/2022] Open
Abstract
Rap1 is a member of the Ras superfamily of small GTP-binding proteins and is localized on pancreatic zymogen granules. The current study was designed to determine whether GTP-Rap1 is involved in the regulation of amylase secretion. Rap1A/B and the two Rap1 guanine nucleotide exchange factors, Epac1 and CalDAG-GEF III, were identified in mouse pancreatic acini. A fraction of both Rap1 and Epac1 colocalized with amylase in zymogen granules, but only Rap1 was integral to the zymogen granule membranes. Stimulation with cholecystokinin (CCK), carbachol, and vasoactive intestinal peptide all induced Rap1 activation, as did calcium ionophore A23187, phorbol ester, forskolin, 8-bromo-cyclic AMP, and the Epac-specific cAMP analog 8-pCPT-2'-O-Me-cAMP. The phospholipase C inhibitor U-73122 abolished carbachol- but not forskolin-induced Rap1 activation. Co-stimulation with carbachol and 8-pCPT-2'-O-Me-cAMP led to an additive effect on Rap1 activation, whereas a synergistic effect was seen on amylase release. Although the protein kinase A inhibitor H-89 abolished forskolin-stimulated CREB phosphorylation, it did not modify forskolin-induced GTP-Rap1 levels, excluding PKA participation. Overexpression of Rap1 GTPase-activating protein, which blocked Rap1 activation, reduced the effect of 8-bromo-cyclic AMP, 8-pCPT-2'-O-Me-cAMP, and vasoactive intestinal peptide on amylase release by 60% and reduced CCK- as well as carbachol-stimulated pancreatic amylase release by 40%. These findings indicate that GTP-Rap1 is required for pancreatic amylase release. Rap1 activation not only mediates the cAMP-evoked response via Epac1 but is also involved in CCK- and carbachol-induced amylase release, with their action most likely mediated by CalDAG-GEF III.
Collapse
Affiliation(s)
- Maria E Sabbatini
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109-0622, USA.
| | | | | | | |
Collapse
|
124
|
Abstract
Biphasic insulin secretion is required for proper insulin action and is observed not only in vivo, but also in isolated pancreatic islets and even single β-cells. Late events in the granule life cycle are thought to underlie this temporal pattern. In the last few years, we have therefore combined live cell imaging and electrophysiology to study insulin secretion at the level of individual granules, as they approach the plasma membrane, undergo exocytosis and finally release their insulin cargo. In the present paper, we review evidence for two emerging concepts that affect insulin secretion at the level of individual granules: (i) the existence of specialized sites where granules dock in preparation for exocytosis; and (ii) post-exocytotic regulation of cargo release by the fusion pore.
Collapse
|
125
|
Cen X, Nitta A, Ibi D, Zhao Y, Niwa M, Taguchi K, Hamada M, Ito Y, Ito Y, Wang L, Nabeshima T. Identification of Piccolo as a regulator of behavioral plasticity and dopamine transporter internalization. Mol Psychiatry 2008; 13:349, 451-63. [PMID: 18195717 DOI: 10.1038/sj.mp.4002132] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dopamine transporter (DAT) internalization is a mechanism underlying the decreased dopamine reuptake caused by addictive drugs like methamphetamine (METH). We found that Piccolo, a presynaptic scaffolding protein, was overexpressed in the nucleus accumbens (NAc) of the mice repeatedly administrated with METH. Piccolo downexpression by antisense technique augmented METH-induced behavioral sensitization, conditioned reward and synaptic dopamine accumulation in NAc. Expression of Piccolo C2A domain attenuated METH-induced inhibition of dopamine uptake in PC12 cells expressing human DAT. Consistent with this, it slowed down the accelerated DAT internalization induced by METH, thus maintaining the presentation of plasmalemmal DAT. In immunostaining and structural modeling Piccolo C2A domain displays an unusual feature of sequestering membrane phosphatidylinositol 4,5-bisphosphate, which may underlie its role in modulating DAT internalization. Together, our results indicate that Piccolo upregulation induced by METH represents a homeostatic response in the NAc to excessive dopaminergic transmission. Piccolo C2A domain may act as a cytoskeletal regulator for plasmalemmal DAT internalization, which may underlie its contributions in behavioral plasticity.
Collapse
Affiliation(s)
- X Cen
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Kang G, Leech CA, Chepurny OG, Coetzee WA, Holz GG. Role of the cAMP sensor Epac as a determinant of KATP channel ATP sensitivity in human pancreatic beta-cells and rat INS-1 cells. J Physiol 2008; 586:1307-19. [PMID: 18202100 DOI: 10.1113/jphysiol.2007.143818] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Protein kinase A (PKA)-independent actions of adenosine 3',5'-cyclic monophosphate (cAMP) are mediated by Epac, a cAMP sensor expressed in pancreatic beta-cells. Evidence that Epac might mediate the cAMP-dependent inhibition of beta-cell ATP-sensitive K(+) channels (K(ATP)) was provided by one prior study of human beta-cells and a rat insulin-secreting cell line (INS-1 cells) in which it was demonstrated that an Epac-selective cAMP analogue (ESCA) inhibited a sulphonylurea-sensitive K(+) current measured under conditions of whole-cell recording. Using excised patches of plasma membrane derived from human beta-cells and rat INS-1 cells, we now report that 2'-O-Me-cAMP, an ESCA that activates Epac but not PKA, sensitizes single K(ATP) channels to the inhibitory effect of ATP, thereby reducing channel activity. In the presence of 2'-O-Me-cAMP (50 microM), the dose-response relationship describing ATP-dependent inhibition of K(ATP) channel activity (NP(o)) is left-shifted such that the concentration of ATP producing 50% inhibition (IC(50)) is reduced from 22 microM to 1 microM for human beta-cells, and from 14 microM to 4 microM for rat INS-1 cells. Conversely, when patches are exposed to a fixed concentration of ATP (10 microM), the administration of 2'-O-Me-cAMP inhibits channel activity in a dose-dependent and reversible manner (IC(50) 12 microM for both cell types). A cyclic nucleotide phosphodiesterase-resistant ESCA (Sp-8-pCPT-2'-O-Me-cAMPS) also inhibits K(ATP) channel activity, thereby demonstrating that the inhibitory actions of ESCAs reported here are unlikely to arise as a consequence of their hydrolysis to bioactive derivatives of adenosine. On the basis of such findings it is concluded that there exists in human beta-cells and rat INS-1 cells a novel form of ion channel modulation in which the ATP sensitivity of K(ATP) channels is regulated by Epac.
Collapse
Affiliation(s)
- Guoxin Kang
- Department of Physiology, New York University School of Medicine, New York, NY, USA
| | | | | | | | | |
Collapse
|
127
|
Holz GG, Chepurny OG, Schwede F. Epac-selective cAMP analogs: new tools with which to evaluate the signal transduction properties of cAMP-regulated guanine nucleotide exchange factors. Cell Signal 2008; 20:10-20. [PMID: 17716863 PMCID: PMC2215344 DOI: 10.1016/j.cellsig.2007.07.009] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 07/03/2007] [Accepted: 07/18/2007] [Indexed: 11/22/2022]
Abstract
The identification of 2'-O-methyl substituted adenosine-3',5'-cyclic monophosphate (cAMP) analogs that activate the Epac family of cAMP-regulated guanine nucleotide exchange factors (cAMP-GEFs, also known as Epac1 and Epac2), has ushered in a new era of cyclic nucleotide research in which previously unrecognized signalling properties of the second messenger cAMP have been revealed. These Epac-Selective Cyclic AMP Analogs (ESCAs) incorporate a 2'-O-methyl substitution on the ribose ring of cAMP, a modification that impairs their ability to activate protein kinase A (PKA), while leaving intact their ability to activate Epac (the Exchange Protein directly Activated by Cyclic AMP). One such ESCA in wide-spread use is 8-pCPT-2'-O-Me-cAMP. It is a cell-permeant derivative of 2'-O-Me-cAMP, and it is a super activator of Epac. A wealth of newly published studies demonstrate that 8-pCPT-2'-O-Me-cAMP is a unique tool with which to asses atypical actions of cAMP that are PKA-independent. Particularly intriguing are recent reports demonstrating that ESCAs reproduce the PKA-independent actions of ligands known to stimulate Class I (Family A) and Class II (Family B) GTP-binding protein-coupled receptors (GPCRs). This topical review summarizes the current state of knowledge regarding the molecular pharmacology and signal transduction properties of Epac-selective cAMP analogs. Special attention is focused on the rational drug design of ESCAs in order to improve their Epac selectivity, membrane permeability, and stability. Also emphasized is the usefulness of ESCAs as new tools with which to assess the role of Epac as a determinant of intracellular Ca2+ signalling, ion channel function, neurotransmitter release, and hormone secretion.
Collapse
Affiliation(s)
- George G Holz
- Department of Physiology and Neuroscience, New York University School of Medicine, New York, NY, USA.
| | | | | |
Collapse
|
128
|
Fujimoto K, Sasaki T, Hiki Y, Nemoto M, Utsunomiya Y, Yokoo T, Nakai N, Ohashi T, Hosoya T, Eto Y, Tajima N. In vitro and pathological investigations of MODY5 with the R276X-HNF1beta (TCF2) mutation. Endocr J 2007; 54:757-64. [PMID: 17878605 DOI: 10.1507/endocrj.k07-051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Maturity-onset diabetes of the young type 5 (MODY5) is caused by mutation of hepatocyte nuclear factor 1beta (HNF1 beta) (TCF2) gene, resulting in a wide range of phenotypes including diabetes and renal abnormalities, but little is known about the pathogenesis of the clinical spectrum. We describe a 27-year-old Japanese male with the MODY phenotype including an atrophic kidney and multiple renal cysts. Genetic analysis revealed the patient to be heterozygous for a nonsense mutation in codon 276 of the HNF1beta gene (CGA or Arginine to TGA or stop codon; R276X). To clarify the pathophysiological relevance of this mutation, we conducted an in vitro study monitoring human C-peptide secretion after transfecting both the HNF1beta mutant cDNA and preproinsulin cDNA into a murine beta cell line, MIN6. Functional studies of the transformed MIN6 cells indicated that expression of the R276X caused a significant decrease in glucose-stimulated insulin secretion but no change in either KCl-stimulated or basal insulin secretion. These results suggest that the R276X functions in a negative manner in regard to metabolic responses of insulin secretion in beta cells. Analysis with light and electron microscopy on biopsied kidney specimens suggested that the origin of the cysts might be glomeruli but the primary lesion could be tubules.
Collapse
Affiliation(s)
- Kei Fujimoto
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Compartmentalized cAMP signalling in regulated exocytic processes in non-neuronal cells. Cell Signal 2007; 20:590-601. [PMID: 18061403 DOI: 10.1016/j.cellsig.2007.10.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 10/16/2007] [Indexed: 01/04/2023]
Abstract
Cyclic adenosine monophosphate (cAMP) is a central second messenger controlling a plethora of vital functions. Studies of cAMP dynamics in living cells have revealed markedly inhomogeneous concentrations of the second messenger in different compartments. Moreover, cAMP effectors such as cAMP-dependent protein kinase (PKA) and cAMP-activated GTP-exchange factors (Epacs) are tethered to specific cellular sites. Both the tailoring of cAMP concentrations, and the activities of cAMP-dependent signalling systems at specific cellular locations are prerequisites for most, if not all, cAMP-dependent processes. This review focuses on the role of compartmentalized cAMP signalling in exocytic processes in non-neuronal cells. Particularly, the insertion of aquaporin-2 into the plasma membrane of renal principal cells as an example for a cAMP-dependent exocytic process in a non-secretory cell type, renin secretion from juxtaglomerular cells as a cAMP-triggered exocytosis from an endocrine cell, insulin release from pancreatic beta-cells as a Ca2+-mediated and cAMP-potentiated exocytic processes in an endocrine cell, and cAMP- or Ca2+ -triggered H+ secretion from gastric parietal cells as an exocytic process in an exocrine cell are discussed. The selected examples of cAMP-regulated exocytic pathways are reviewed with regard to key proteins involved: adenylyl cyclases, phosphodiesterases, PKA, A kinase anchoring proteins (AKAPs) and Epacs.
Collapse
|
130
|
Kwan EP, Gao X, Leung YM, Gaisano HY. Activation of exchange protein directly activated by cyclic adenosine monophosphate and protein kinase A regulate common and distinct steps in promoting plasma membrane exocytic and granule-to-granule fusions in rat islet beta cells. Pancreas 2007; 35:e45-54. [PMID: 17895835 DOI: 10.1097/mpa.0b013e318073d1c9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Using FM1-43 epifluorescence imaging and electron microscopy, we recently reported that glucagon-like peptide (GLP-1)-mediated cyclic adenosine monophosphate (cAMP) potentiation of insulin secretion markedly promotes the number of plasma membrane (PM) exocytic sites and insulin secretory granule (SG)-to-granule fusions underlying compound and sequential exocytosis. METHODS Here, we used FM1-43 imaging to dissect the distinct contributions of putative GLP-1/cAMP activated substrates--exchange protein directly activated by cAMP (EPAC) and protein kinase A (PKA)--in mediating these exocytic events. RESULTS Like GLP-1, cAMP activation by forskolin increased the number of PM exocytic sites (2.3-fold), which were mainly of the robust-sustained (55.8%) and stepwise-multiphasic (37.7%) patterns corresponding to compound and sequential SG-SG exocytosis, respectively, with few monophasic hotspots (6.5%) corresponding to single-granule exocytosis. Direct activation of EPAC by 8-(4-chloro-phenylthio)-2'-O-methyladenosine-3',5'-cAMP also increased the number of exocytic sites, but which were mainly multiphasic (60%) and monophasic (40%) hotspots. Protein kinase A inhibition by H89 blocked forskolin-evoked robust-sustained hotspots, while retaining multiphasic (47%) and monophasic (53%) hotspots. Consistently, PKA activation (N6-benzoyladenosine-3',5'-cAMP) evoked only multiphasic (60%) and monophasic (40%) hotspots. These results suggested that PKA activation is required but alone is insufficient to promote compound SG-SG fusions. 8-(4-Chloro-phenylthio)-2'-O-methyladenosine-3',5'-cAMP plus N6-benzoyladenosine-3',5'-cAMP stimulation completely reconstituted the effects of forskolin, including increasing the number of exocytic sites, with a similar pattern of robust-sustained (42.6%) and stepwise (39.6%) hotspots and few monophasic (17.8%) hotspots. CONCLUSIONS The EPAC and PKA modulate both distinct and common exocytic steps to potentiate insulin exocytosis where (a) EPAC activation mobilizes SGs to fuse at the PM, thereby increasing number of PM exocytic sites; and (b) PKA and EPAC activation synergistically modulate SG-SG fusions underlying compound and sequential exocytoses.
Collapse
Affiliation(s)
- Edwin P Kwan
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
131
|
Leung YM, Kwan EP, Ng B, Kang Y, Gaisano HY. SNAREing voltage-gated K+ and ATP-sensitive K+ channels: tuning beta-cell excitability with syntaxin-1A and other exocytotic proteins. Endocr Rev 2007; 28:653-63. [PMID: 17878408 DOI: 10.1210/er.2007-0010] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The three SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, syntaxin, SNAP25 (synaptosome-associated protein of 25 kDa), and synaptobrevin, constitute the minimal machinery for exocytosis in secretory cells such as neurons and neuroendocrine cells by forming a series of complexes prior to and during vesicle fusion. It was subsequently found that these SNARE proteins not only participate in vesicle fusion, but also tether with voltage-dependent Ca(2+) channels to form an excitosome that precisely regulates calcium entry at the site of exocytosis. In pancreatic islet beta-cells, ATP-sensitive K(+) (K(ATP)) channel closure by high ATP concentration leads to membrane depolarization, voltage-dependent Ca(2+) channel opening, and insulin secretion, whereas subsequent opening of voltage-gated K(+) (Kv) channels repolarizes the cell to terminate exocytosis. We have obtained evidence that syntaxin-1A physically interacts with Kv2.1 (the predominant Kv in beta-cells) and the sulfonylurea receptor subunit of beta-cell K(ATP) channel to modify their gating behaviors. A model has proposed that the conformational changes of syntaxin-1A during exocytosis induce distinct functional modulations of K(ATP) and Kv2.1 channels in a manner that optimally regulates cell excitability and insulin secretion. Other proteins involved in exocytosis, such as Munc-13, tomosyn, rab3a-interacting molecule, and guanyl nucleotide exchange factor II, have also been implicated in direct or indirect regulation of beta-cell ion channel activities and excitability. This review discusses this interesting aspect that exocytotic proteins not only promote secretion per se, but also fine-tune beta-cell excitability via modulation of ion channel gating.
Collapse
Affiliation(s)
- Yuk M Leung
- Departmnet of Physiology, China Medical University, Taichung 40402, Taiwan.
| | | | | | | | | |
Collapse
|
132
|
Russell JM, Stephenson GS, Yellowley CE, Benton HP. Adenosine inhibition of lipopolysaccharide-induced interleukin-6 secretion by the osteoblastic cell line MG-63. Calcif Tissue Int 2007; 81:316-26. [PMID: 17705048 DOI: 10.1007/s00223-007-9060-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Accepted: 07/06/2007] [Indexed: 12/21/2022]
Abstract
Adenosine is known to inhibit inflammatory responses in many cell systems via a family of purine receptors termed "P1." The P1 family consists of the adenosine receptors (ADORA) of subtypes A(1), A(2a), A(2b), and A(3). In order to assess whether adenosine has anti-inflammatory actions in osteoblastic cells, we investigated its effects on lipopolysaccharide (LPS)-induced interleukin 6 (IL-6) release in an in vitro inflammatory functional response model. We showed that the osteoblastic cell line MG-63 expresses ADORA(1), A(2a), and A(2b) but not A(3). Treatment of MG-63 cells with adenosine and pharmacological ADORA agonist 5'-N-ethylcarboxamidoadenosine or 2-[4-(2-p-carboxyethyl)phenylamino]-5'-N-ethylcarboxamidoadenosine (CGS21680) inhibits LPS-induced IL-6 release. This inhibition was protein kinase A (PKA)-dependent and mimicked by treatment with the adenylate cyclase activator forskolin. Treatment of MG-63 with the ADORA(2a)-specific antagonist ZM241385 partially reversed the inhibitory effects of ADORA stimulation on LPS-induced IL-6 release. Overall, these data suggest that ADORA(2a) is involved in the regulation of LPS-induced IL-6 release, thus illustrating a regulatory role for adenosine receptors in the control of inflammation and potentially osteoclastogenesis and bone resorption.
Collapse
Affiliation(s)
- Joseph M Russell
- Department of Veterinary Medicine, Anatomy, Physiology, and Cell Biology, University of California, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
133
|
Doyle ME, Egan JM. Mechanisms of action of glucagon-like peptide 1 in the pancreas. Pharmacol Ther 2007; 113:546-93. [PMID: 17306374 PMCID: PMC1934514 DOI: 10.1016/j.pharmthera.2006.11.007] [Citation(s) in RCA: 485] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 11/27/2006] [Indexed: 12/13/2022]
Abstract
Glucagon-like peptide 1 (GLP-1) is a hormone that is encoded in the proglucagon gene. It is mainly produced in enteroendocrine L cells of the gut and is secreted into the blood stream when food containing fat, protein hydrolysate, and/or glucose enters the duodenum. Its particular effects on insulin and glucagon secretion have generated a flurry of research activity over the past 20 years culminating in a naturally occurring GLP-1 receptor (GLP-1R) agonist, exendin 4 (Ex-4), now being used to treat type 2 diabetes mellitus (T2DM). GLP-1 engages a specific guanine nucleotide-binding protein (G-protein) coupled receptor (GPCR) that is present in tissues other than the pancreas (brain, kidney, lung, heart, and major blood vessels). The most widely studied cell activated by GLP-1 is the insulin-secreting beta cell where its defining action is augmentation of glucose-induced insulin secretion. Upon GLP-1R activation, adenylyl cyclase (AC) is activated and cAMP is generated, leading, in turn, to cAMP-dependent activation of second messenger pathways, such as the protein kinase A (PKA) and Epac pathways. As well as short-term effects of enhancing glucose-induced insulin secretion, continuous GLP-1R activation also increases insulin synthesis, beta cell proliferation, and neogenesis. Although these latter effects cannot be currently monitored in humans, there are substantial improvements in glucose tolerance and increases in both first phase and plateau phase insulin secretory responses in T2DM patients treated with Ex-4. This review will focus on the effects resulting from GLP-1R activation in the pancreas.
Collapse
Affiliation(s)
- Máire E Doyle
- Department of Pathology, Immunology & Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
134
|
Abstract
The mechanisms by which insulin-containing dense core secretory vesicles approach and finally fuse with the plasma membrane are of considerable current interest: defects in these processes may be one of the contributing factors to Type 2 diabetes. In this review, we discuss the molecular mechanisms involved in vesicle trafficking within the pancreatic beta-cell and the mechanisms whereby these may be regulated. We then go on to describe recent evidence that suggests that vesicle fusion at the plasma membrane is a partly reversible process ("kiss and run" or "cavity recapture"). We propose that vesicles may participate in a exo-endocytotic cycle in which a proportion of those that have already undergone an interaction with the plasma membrane may exchange exocytotic machinery with maturing vesicles.
Collapse
Affiliation(s)
- Guy A Rutter
- Department of Biochemistry, School of Medical Sciences, University Walk University of Bristol, Bristol, United Kingdom.
| | | |
Collapse
|
135
|
Bos JL. Epac proteins: multi-purpose cAMP targets. Trends Biochem Sci 2006; 31:680-6. [PMID: 17084085 DOI: 10.1016/j.tibs.2006.10.002] [Citation(s) in RCA: 411] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 09/21/2006] [Accepted: 10/20/2006] [Indexed: 02/06/2023]
Abstract
Epac1 and Epac2 are cAMP-dependent guanine-nucleotide-exchange factors for the small GTPases Rap1 and Rap2, and are known to be important mediators of cAMP signaling. The recent determination of the crystal structure of Epac2 has indicated a mechanism for the activation of the multi-domain Epac proteins. In addition, these proteins have been implicated in various cellular processes such as integrin-mediated cell adhesion and cell-cell junction formation, the control of insulin secretion and neurotransmitter release. In most of these processes, cAMP signaling through protein kinase A (PKA) is also involved, stressing the interconnectivity between Epac- and PKA-mediated signaling.
Collapse
Affiliation(s)
- Johannes L Bos
- Department of Physiological Chemistry and Centre for Biomedical Genetics, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
136
|
Abstract
Epac is an acronym for the exchange proteins activated directly by cyclic AMP, a family of cAMP-regulated guanine nucleotide exchange factors (cAMPGEFs) that mediate protein kinase A (PKA)-independent signal transduction properties of the second messenger cAMP. Two variants of Epac exist (Epac1 and Epac2), both of which couple cAMP production to the activation of Rap, a small molecular weight GTPase of the Ras family. By activating Rap in an Epac-mediated manner, cAMP influences diverse cellular processes that include integrin-mediated cell adhesion, vascular endothelial cell barrier formation, and cardiac myocyte gap junction formation. Recently, the identification of previously unrecognized physiological processes regulated by Epac has been made possible by the development of Epac-selective cyclic AMP analogues (ESCAs). These cell-permeant analogues of cAMP activate both Epac1 and Epac2, whereas they fail to activate PKA when used at low concentrations. ESCAs such as 8-pCPT-2'-O-Me-cAMP and 8-pMeOPT-2'-O-Me-cAMP are reported to alter Na(+), K(+), Ca(2+) and Cl(-) channel function, intracellular [Ca(2+)], and Na(+)-H(+) transporter activity in multiple cell types. Moreover, new studies examining the actions of ESCAs on neurons, pancreatic beta cells, pituitary cells and sperm demonstrate a major role for Epac in the stimulation of exocytosis by cAMP. This topical review provides an update concerning novel PKA-independent features of cAMP signal transduction that are likely to be Epac-mediated. Emphasized is the emerging role of Epac in the cAMP-dependent regulation of ion channel function, intracellular Ca(2+) signalling, ion transporter activity and exocytosis.
Collapse
Affiliation(s)
- George G Holz
- Department of Physiology and Neuroscience, New York University School of Medicine, New York, NY 10016, USA.
| | | | | | | | | |
Collapse
|
137
|
Estrada-Smith D, Collins AR, Wang X, Crockett C, Castellani L, Lusis AJ, Davis RC. Impact of chromosome 2 obesity loci on cardiovascular complications of insulin resistance in LDL receptor-deficient C57BL/6 mice. Diabetes 2006; 55:2265-71. [PMID: 16873689 DOI: 10.2337/db06-0377] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Previous characterization of mouse chromosome 2 identified genomic intervals that influence obesity, insulin resistance, and dyslipidemia. For this, resistant CAST/Ei (CAST) alleles were introgressed onto a susceptible C57BL/6J background to generate congenic strains with CAST alleles encompassing 67-162 Mb (multigenic obesity 6 [MOB6]) and 84-180 Mb (MOB5) from mouse chromosome 2. To examine the effects of each congenic locus on atherosclerosis and glucose disposal, we bred each strain onto a sensitizing LDL receptor-null (LDLR(-/-)) C57BL/6J background to predispose them to hypercholesterolemia and insulin resistance. LDLR(-/-) congenics and controls were characterized for measures of atherogenesis, insulin sensitivity, and obesity. We identified a genomic interval unique to the MOB6 congenic (72-84 Mb) that dramatically decreased atherosclerosis by approximately threefold and decreased insulin resistance. This region also reduced adiposity twofold. Conversely, the congenic region unique to MOB5 (162-180 Mb) increased insulin resistance but had little effect on atherosclerosis and adiposity. The MOB congenic intervals are concordant to human and rat quantitative trait loci influencing diabetes and atherosclerosis traits. Thus, our results define a strategy for studying the poorly understood interactions between diabetes and atherosclerosis and for identifying genes underlying the cardiovascular complications of insulin resistance.
Collapse
|
138
|
Schoch S, Gundelfinger ED. Molecular organization of the presynaptic active zone. Cell Tissue Res 2006; 326:379-91. [PMID: 16865347 DOI: 10.1007/s00441-006-0244-y] [Citation(s) in RCA: 223] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Accepted: 05/10/2006] [Indexed: 11/26/2022]
Abstract
The exocytosis of neurotransmitter-filled synaptic vesicles is under tight temporal and spatial control in presynaptic nerve terminals. The fusion of synaptic vesicles is restricted to a specialized area of the presynaptic plasma membrane: the active zone. The protein network that constitutes the cytomatrix at the active zone (CAZ) is involved in the organization of docking and priming of synaptic vesicles and in mediating use-dependent changes in release during short-term and long-term synaptic plasticity. To date, five protein families whose members are highly enriched at active zones (Munc13s, RIMs, ELKS proteins, Piccolo and Bassoon, and the liprins-alpha), have been characterized. These multidomain proteins are instrumental for the diverse functions performed by the presynaptic active zone.
Collapse
Affiliation(s)
- Susanne Schoch
- Emmy Noether Research Group, Institute of Neuropathology and Department of Epileptology, University of Bonn Medical Center, Sigmund Freud Strasse 25, 53105 Bonn, Germany.
| | | |
Collapse
|
139
|
Weidenhofer J, Bowden NA, Scott RJ, Tooney PA. Altered gene expression in the amygdala in schizophrenia: Up-regulation of genes located in the cytomatrix active zone. Mol Cell Neurosci 2006; 31:243-50. [PMID: 16236523 DOI: 10.1016/j.mcn.2005.09.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 08/26/2005] [Accepted: 09/15/2005] [Indexed: 11/25/2022] Open
Abstract
The amygdala is implicated in the pathophysiology of schizophrenia through its function in the processing of emotions. However, the genes involved in the dysfunction of the amygdala in schizophrenia are yet to be identified. This study examined gene expression in the amygdala in postmortem tissue from seven matched pairs of schizophrenia and non-psychiatric control subjects, using oligonucleotide-microarrays representing 19,000 gene transcripts and real-time PCR confirmation of gene expression changes in eleven matched pairs. Genes involved in presynaptic function, myelination and cellular signalling were identified as being consistently dysregulated in this cohort of subjects with schizophrenia. In particular, the expression of three genes involved in the cytomatrix active zone, Regulating membrane exocytosis 2, Regulating membrane exocytosis 3 and Piccolo, was up-regulated. These results implicate for the first time the dysfunction of the cytomatrix active zone of synapses in the amygdala in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Judith Weidenhofer
- Neuroscience Institute of Schizophrenia and Allied Disorders (NISAD), NSW, Australia
| | | | | | | |
Collapse
|
140
|
Branham MT, Mayorga LS, Tomes CN. Calcium-induced acrosomal exocytosis requires cAMP acting through a protein kinase A-independent, Epac-mediated pathway. J Biol Chem 2006; 281:8656-66. [PMID: 16407249 DOI: 10.1074/jbc.m508854200] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Epac, a guanine nucleotide exchange factor for the small GTPase Rap, binds to and is activated by the second messenger cAMP. In sperm, there are a number of signaling pathways required to achieve egg-fertilizing ability that depend upon an intracellular rise of cAMP. Most of these processes were thought to be mediated by cAMP-dependent protein kinases. Here we report a new dependence for the cAMP-induced acrosome reaction involving Epac. The acrosome reaction is a specialized type of regulated exocytosis leading to a massive fusion between the outer acrosomal and the plasma membranes of sperm cells. Ca2+ is the archetypical trigger of regulated exocytosis, and we show here that its effects on acrosomal release are fully mediated by cAMP. Ca2+ failed to trigger acrosomal exocytosis when intracellular cAMP was depleted by an exogenously added phosphodiesterase or when Epac was sequestered by specific blocking antibodies. The nondiscriminating dibutyryl-cAMP and the Epac-selective 8-(p-chlorophenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate analogues triggered the acrosome reaction in the effective absence of extracellular Ca2+. This indicates that cAMP, via Epac activation, has the ability to drive the whole cascade of events necessary to bring exocytosis to completion, including tethering and docking of the acrosome to the plasma membrane, priming of the fusion machinery, mobilization of intravesicular Ca2+, and ultimately, bilayer mixing and fusion. cAMP-elicited exocytosis was sensitive to anti-alpha-SNAP, anti-NSF, and anti-Rab3A antibodies, to intra-acrosomal Ca2+ chelators, and to botulinum toxins but was resistant to cAMP-dependent protein kinase blockers. These experiments thus identify Epac in human sperm and evince its indispensable role downstream of Ca2+ in exocytosis.
Collapse
Affiliation(s)
- María T Branham
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM)-Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, CC 56, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
| | | | | |
Collapse
|
141
|
Fejtova A, Gundelfinger ED. Molecular organization and assembly of the presynaptic active zone of neurotransmitter release. Results Probl Cell Differ 2006; 43:49-68. [PMID: 17068967 DOI: 10.1007/400_012] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
At chemical synapses, neurotransmitter is released at a restricted region of the presynaptic plasma membrane, called the active zone. At the active zone, a matrix of proteins is assembled, which is termed the presynaptic grid or cytomatrix at the active zone (CAZ). Components of the CAZ are thought to localize and organize the synaptic vesicle cycle, a series of membrane trafficking events underlying regulated neurotransmitter exocytosis. This review is focused on a set of specific proteins involved in the structural and functional organization of the CAZ. These include the multi-domain Rab3-effector proteins RIM1alpha and RIM2alpha; Bassoon and Piccolo, two multi-domain CAZ scaffolding proteins of enormous size; as well as members of the CAST/ERC family of CAZ-specific structural proteins. Studies on ribbon synapses of retinal photoreceptor cells have fostered understanding the molecular design of the CAZ. In addition, the analysis of the delivery pathways for Bassoon and Piccolo to presynaptic sites during development has produced new insights into assembly mechanisms of brain synapses during development. Based on these studies, the active zone transport vesicle hypothesis was formulated, which postulates that active zones, at least in part, are pre-assembled in neuronal cell bodies and transported as so-called Piccolo-Bassoon transport vesicles (PTVs) to sites of synaptogenesis. Several PTVs can fuse on demand with the presynaptic membrane to rapidly form an active zone.
Collapse
Affiliation(s)
- Anna Fejtova
- Leibniz Institute for Neurobiology, Department of Neurochemistry and Molecular Biology, Magdeburg, Germany.
| | | |
Collapse
|
142
|
Abstract
Stimulus-secretion coupling is an essential process in secretory cells in which regulated exocytosis occurs, including neuronal, neuroendocrine, endocrine, and exocrine cells. While an increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) is the principal signal, other intracellular signals also are important in regulated exocytosis. In particular, the cAMP signaling system is well known to regulate and modulate exocytosis in a variety of secretory cells. Until recently, it was generally thought that the effects of cAMP in regulated exocytosis are mediated by activation of cAMP-dependent protein kinase (PKA), a major cAMP target, followed by phosphorylation of the relevant proteins. Although the involvement of PKA-independent mechanisms has been suggested in cAMP-regulated exocytosis by pharmacological approaches, the molecular mechanisms are unknown. Newly discovered cAMP-GEF/Epac, which belongs to the cAMP-binding protein family, exhibits guanine nucleotide exchange factor activities and exerts diverse effects on cellular functions including hormone/transmitter secretion, cell adhesion, and intracellular Ca(2+) mobilization. cAMP-GEF/Epac mediates the PKA-independent effects on cAMP-regulated exocytosis. Thus cAMP regulates and modulates exocytosis by coordinating both PKA-dependent and PKA-independent mechanisms. Localization of cAMP within intracellular compartments (cAMP compartmentation or compartmentalization) may be a key mechanism underlying the distinct effects of cAMP in different domains of the cell.
Collapse
Affiliation(s)
- Susumu Seino
- Division of Cellular and Molecular Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| | | |
Collapse
|
143
|
Barclay JW, Morgan A, Burgoyne RD. Calcium-dependent regulation of exocytosis. Cell Calcium 2005; 38:343-53. [PMID: 16099500 DOI: 10.1016/j.ceca.2005.06.012] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 06/28/2005] [Indexed: 11/30/2022]
Abstract
A rapid increase in intracellular calcium directly triggers regulated exocytosis. In addition, changes in intracellular calcium concentration can adjust the extent of exocytosis (quantal content) or the magnitude of individual release events (quantal size) in both the short- and long-term. It is generally agreed that calcium achieves this regulation via an interaction with a number of different molecular targets located at or near to the site of membrane fusion. We review here the synaptic proteins with defined calcium-binding domains and protein kinases activated by calcium, summarize what is known about their function in membrane fusion and the experimental evidence in support of their involvement in synaptic plasticity.
Collapse
Affiliation(s)
- Jeff W Barclay
- Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | | | | |
Collapse
|
144
|
Ohara-Imaizumi M, Ohtsuka T, Matsushima S, Akimoto Y, Nishiwaki C, Nakamichi Y, Kikuta T, Nagai S, Kawakami H, Watanabe T, Nagamatsu S. ELKS, a protein structurally related to the active zone-associated protein CAST, is expressed in pancreatic beta cells and functions in insulin exocytosis: interaction of ELKS with exocytotic machinery analyzed by total internal reflection fluorescence microscopy. Mol Biol Cell 2005; 16:3289-300. [PMID: 15888548 PMCID: PMC1165411 DOI: 10.1091/mbc.e04-09-0816] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The cytomatrix at the active zone (CAZ) has been implicated in defining the site of Ca2+-dependent exocytosis of neurotransmitters. Here, we demonstrate the expression and function of ELKS, a protein structurally related to the CAZ protein CAST, in insulin exocytosis. The results of confocal and immunoelectron microscopic analysis showed that ELKS is present in pancreatic beta cells and is localized close to insulin granules docked on the plasma membrane-facing blood vessels. Total internal reflection fluorescence microscopy imaging in insulin-producing clonal cells revealed that the ELKS clusters are less dense and unevenly distributed than syntaxin 1 clusters, which are enriched in the plasma membrane. Most of the ELKS clusters were on the docking sites of insulin granules that were colocalized with syntaxin 1 clusters. Total internal reflection fluorescence images of single-granule motion showed that the fusion events of insulin granules mostly occurred on the ELKS cluster, where repeated fusion was sometimes observed. When the Bassoon-binding region of ELKS was introduced into the cells, the docking and fusion of insulin granules were markedly reduced. Moreover, attenuation of ELKS expression by small interfering RNA reduced the glucose-evoked insulin release. These data suggest that the CAZ-related protein ELKS functions in insulin exocytosis from pancreatic beta cells.
Collapse
Affiliation(s)
- Mica Ohara-Imaizumi
- Department of Biochemistry, Kyorin University School of Medicine, Mitaka, Tokyo 181-8611, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Gromada J, Brock B, Schmitz O, Rorsman P. Glucagon-like peptide-1: regulation of insulin secretion and therapeutic potential. Basic Clin Pharmacol Toxicol 2005; 95:252-62. [PMID: 15569269 DOI: 10.1111/j.1742-7843.2004.t01-1-pto950502.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) is an intestinally derived insulinotropic hormone currently under investigation for use as a novel therapeutic agent in the treatment of type 2 diabetes. One of several important effects of GLP-1 is on nutrient-induced pancreatic hormone release and is mediated by binding to a specific G-protein coupled receptor resulting in the activation of adenylate cyclase and an increase in cAMP generation. In the beta-cell, cAMP binds and modulates activities of both protein kinase A and cAMP-regulated guanine nucleotide exchange factor II, thereby enhancing glucose-dependent insulin secretion. The stimulatory action of GLP-1 on insulin secretion involves interaction with a plethora of signal transduction processes including ion channel activity, intracellular Ca(2+) handling and exocytosis of the insulin-containing granules. In this review we focus principally on recent advances in our understanding on the cellular mechanisms proposed to underlie GLP-1's insulinotropic effect and attempt to incorporate this knowledge into a working model for the control of insulin secretion. Lastly, this review discusses the applicability of GLP-1 as a therapeutic agent for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Jesper Gromada
- Department of Pharmacology, University of Aarhus, Universitetsparken, DK-8000 Aarhus C, Denmark.
| | | | | | | |
Collapse
|
146
|
Abstract
Intracellular ATP, cAMP, and Ca2+ are major signals involved in the regulation of insulin secretion in the pancreatic beta-cell. We recently found that the ATP-sensitive K+ channel (KATP channel) as an ATP sensor, cAMP-GEFII as a cAMP sensor, Piccolo as a Ca2+ sensor, and L-type voltage-dependent Ca2+ channel (VDCC) can interact with each other. In the present study, we examined the effects of cAMP and ATP on the interaction of cAMP-GEFII and sulfonylurea receptor-1 (SUR1). Interaction of cAMP-GEFII with SUR1 was inhibited by the cAMP analog 8-bromo-cAMP but not by ATP, and the inhibition by 8-bromo-cAMP persisted in the presence of ATP. In addition, SUR1, cAMP-GEFII, and Piccolo could form a complex. Piccolo also interacted with the alpha1 1.2 subunit of VDCC in a Ca2+-independent manner. These data suggest that the interactions of the KATP channel, cAMP-GEFII, Piccolo, and L-type VDCC are regulated by intracellular signals such as cAMP and Ca2+ and that the ATP, cAMP, and Ca2+ signals are integrated at a specialized region of pancreatic beta-cells.
Collapse
Affiliation(s)
- Tadao Shibasaki
- Division of Cellular and Molecular Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | | | | |
Collapse
|
147
|
Bader MF, Doussau F, Chasserot-Golaz S, Vitale N, Gasman S. Coupling actin and membrane dynamics during calcium-regulated exocytosis: a role for Rho and ARF GTPases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1742:37-49. [PMID: 15590054 DOI: 10.1016/j.bbamcr.2004.09.028] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Revised: 09/22/2004] [Accepted: 09/24/2004] [Indexed: 10/26/2022]
Abstract
Release of neurotransmitters and hormones occurs by calcium-regulated exocytosis, a process that shares many similarities in neurons and neuroendocrine cells. Exocytosis is confined to specific regions in the plasma membrane, where actin remodelling, lipid modifications and protein-protein interactions take place to mediate vesicle/granule docking, priming and fusion. The spatial and temporal coordination of the various players to form a "fast and furious" machinery for secretion remain poorly understood. ARF and Rho GTPases play a central role in coupling actin dynamics to membrane trafficking events in eukaryotic cells. Here, we review the role of Rho and ARF GTPases in supplying actin and lipid structures required for synaptic vesicle and secretory granule exocytosis. Their possible functional interplay may provide the molecular cues for efficient and localized exocytotic fusion.
Collapse
Affiliation(s)
- Marie-France Bader
- CNRS UPR-2356 Neurotransmission and Sécrétion Neuroendocrine INSERM, 5 rue Blaise Pascal, 67084 Strasbourg, France.
| | | | | | | | | |
Collapse
|
148
|
Holz GG, Holz G. New insights concerning the glucose-dependent insulin secretagogue action of glucagon-like peptide-1 in pancreatic beta-cells. Horm Metab Res 2004; 36:787-94. [PMID: 15655710 PMCID: PMC2914250 DOI: 10.1055/s-2004-826165] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The GLP-1 receptor is a Class B heptahelical G-protein-coupled receptor that stimulates cAMP production in pancreatic beta-cells. GLP-1 utilizes this receptor to activate two distinct classes of cAMP-binding proteins: protein kinase A (PKA) and the Epac family of cAMP-regulated guanine nucleotide exchange factors (cAMPGEFs). Actions of GLP-1 mediated by PKA and Epac include the recruitment and priming of secretory granules, thereby increasing the number of granules available for Ca(2+)-dependent exocytosis. Simultaneously, GLP-1 promotes Ca(2+) influx and mobilizes an intracellular source of Ca(2+). GLP-1 sensitizes intracellular Ca(2+) release channels (ryanodine and IP (3) receptors) to stimulatory effects of Ca(2+), thereby promoting Ca(2+)-induced Ca(2+) release (CICR). In the model presented here, CICR activates mitochondrial dehydrogenases, thereby upregulating glucose-dependent production of ATP. The resultant increase in cytosolic [ATP]/[ADP] concentration ratio leads to closure of ATP-sensitive K(+) channels (K-ATP), membrane depolarization, and influx of Ca(2+) through voltage-dependent Ca(2+) channels (VDCCs). Ca(2+) influx stimulates exocytosis of secretory granules by promoting their fusion with the plasma membrane. Under conditions where Ca(2+) release channels are sensitized by GLP-1, Ca(2+) influx also stimulates CICR, generating an additional round of ATP production and K-ATP channel closure. In the absence of glucose, no "fuel" is available to support ATP production, and GLP-1 fails to stimulate insulin secretion. This new "feed-forward" hypothesis of beta-cell stimulus-secretion coupling may provide a mechanistic explanation as to how GLP-1 exerts a beneficial blood glucose-lowering effect in type 2 diabetic subjects.
Collapse
Affiliation(s)
- G G Holz
- Department of Physiology and Neuroscience, New York University School of Medicine, NY 10016, USA.
| | | |
Collapse
|
149
|
Rich RL, Myszka DG. A survey of the year 2002 commercial optical biosensor literature. J Mol Recognit 2004; 16:351-82. [PMID: 14732928 DOI: 10.1002/jmr.649] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have compiled 819 articles published in the year 2002 that involved commercial optical biosensor technology. The literature demonstrates that the technology's application continues to increase as biosensors are contributing to diverse scientific fields and are used to examine interactions ranging in size from small molecules to whole cells. Also, the variety of available commercial biosensor platforms is increasing and the expertise of users is improving. In this review, we use the literature to focus on the basic types of biosensor experiments, including kinetics, equilibrium analysis, solution competition, active concentration determination and screening. In addition, using examples of particularly well-performed analyses, we illustrate the high information content available in the primary response data and emphasize the impact of including figures in publications to support the results of biosensor analyses.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
150
|
Fukuda M. Alternative splicing in the first alpha-helical region of the Rab-binding domain of Rim regulates Rab3A binding activity: is Rim a Rab3 effector protein during evolution? Genes Cells 2004; 9:831-42. [PMID: 15330860 DOI: 10.1111/j.1365-2443.2004.00767.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rim1 and Rim2 were originally described as specific Rab3A-effector proteins involved in the regulation of secretory vesicle exocytosis. The putative Rab3A-binding domain (RBD) of Rim consists of two alpha-helical regions (named RBD1 and RBD2) separated by two zinc finger motifs. Although alternative splicing in the RBD1 of Rim is known to produce long and short forms of RBD (named Rim1 and Rim1Delta56-105, and Rim2(+40A) and Rim2, respectively), with the long form of Rim1 and short form of Rim2 being dominant in mouse brain, the physiological significance of the alternative splicing in RBD1 has never been elucidated. In the present study I discovered that alternative splicing in Rim RBD1 alters Rab3A binding affinity to Rims, and found that insertion of 40 amino acids into the RBD1 of Rim2 (i.e. Rim2(+40A)) dramatically reduced its Rab3A binding activity (more than a 50-fold decrease in affinity). Similarly, Rim1Delta56-105 exhibited higher affinity binding to Rab3A than the long form of Rim1. Expression of the short forms of the Rim RBD in PC12 cells co-localized well with endogenous Rab3A, whereas expression of the long forms of the Rim RBD in PC12 cells resulted in cytoplasimc and nuclear localization. Moreover, I found that Caenorhabditis elegans Rim/UNC-10 (ce-Rim) and Drosophila Rim (dm-Rim) do not interact with ce-Rab3 and dm-Rab3, respectively, indicating that the Rab3-effector function of Rim has not been retained during evolution. Based on these findings, I propose that the Rab3A-effector function of Rim during secretory vesicle exocytosis is limited to the short form of the mammalian Rim RBD alone.
Collapse
Affiliation(s)
- Mitsunori Fukuda
- Fukuda Initiative Research Unit, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|