101
|
Kühn H, O'Donnell VB. Inflammation and immune regulation by 12/15-lipoxygenases. Prog Lipid Res 2006; 45:334-56. [PMID: 16678271 DOI: 10.1016/j.plipres.2006.02.003] [Citation(s) in RCA: 296] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Revised: 01/19/2006] [Accepted: 02/06/2006] [Indexed: 12/22/2022]
Abstract
12/15-Lipoxygenases (12/15-LOX) are members of the LOX family, which are expressed in mammals by monocytes and macrophages following induction by the T helper type 2 cytokines, interleukins-4 and -13. They oxygenate free polyenoic fatty acids but also ester lipids and even complex lipid-protein assemblies such as biomembranes and lipoproteins. The primary oxidation products are either reduced by glutathione peroxidases to corresponding hydroxy derivatives or metabolized into secondary oxidized lipids including leukotrienes, lipoxins and hepoxilins, which act as lipid mediators. Examination of knockout and transgenic animals revealed important roles for 12/15-LOX in inflammatory diseases, including atherosclerosis, cancer, osteoporosis, angiotension II-dependent hypertension and diabetes. In vitro studies suggested 12/15-LOX products as coactivators of peroxisomal proliferator activating-receptors (PPAR), regulators of cytokine generation, and modulators of gene expression related to inflammation resolution. Despite much work in this area, the biochemical mechanisms by which 12/15-LOX regulates physiological and pathological immune cell function are not fully understood. This review will summarize the biochemistry and tissue expression of 12/15-LOX and will describe the current knowledge regarding its immunobiology and regulation of inflammation.
Collapse
Affiliation(s)
- Hartmut Kühn
- Institute of Biochemistry, Monbijoustrasse 2, University Medicine Berlin -- Charité, Germany
| | | |
Collapse
|
102
|
Bolick DT, Srinivasan S, Whetzel A, Fuller LC, Hedrick CC. 12/15 lipoxygenase mediates monocyte adhesion to aortic endothelium in apolipoprotein E-deficient mice through activation of RhoA and NF-kappaB. Arterioscler Thromb Vasc Biol 2006; 26:1260-6. [PMID: 16543492 DOI: 10.1161/01.atv.0000217909.09198.d6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE 12/15 lipoxygenase (12/15LO) has been implicated as a mediator of inflammation and atherosclerosis. In the current study, we identified mechanisms through which 12/15LO mediates monocyte:endothelial interactions in vivo in apolipoprotein E-deficient mice (apoEKO), a well-characterized mouse model of atherosclerosis. METHODS AND RESULTS In apoEKO mice that are also deficient in 12/15LO (doubleKO), monocyte adhesion to aorta in vivo was reduced by 95% in doubleKO mice compared with apoEKO mice. Inhibition of 12/15LO in apoEKO mice in vivo using CDC (Cinnamyl-3,4-Dihydroxy-a-Cyanocinnamate) prevented monocyte adhesion to aortic endothelium in apoEKO mice. Aortic endothelium of apoEKO mice had significant activation of rhoA compared with doubleKO aortic endothelium. Further, apoEKO aorta displayed significant activation of NF-kappaB. DoubleKO aorta displayed little nuclear localization of NF-kappaB. Finally, we found significant upregulation of intercellular adhesion molecule-1 (ICAM-1) on apoEKO aortic endothelium compared with doubleKO endothelium. Inhibition of rhoA and PKCalpha significantly reduced NF-kappaB activation, ICAM-1 induction, and monocyte adhesion to aorta. CONCLUSIONS We conclude that 12/15LO products activate endothelial rhoA and PKCalpha. Activation of rhoA and PKCalpha cause activation and translocation of NF-kappaB to the nucleus, which, in turn, results in induction of ICAM-1. Induction of ICAM-1 on aortic endothelium stimulates monocyte:endothelial adhesion in vivo in apoEKO mice.
Collapse
Affiliation(s)
- David T Bolick
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
103
|
Middleton MK, Rubinstein T, Puré E. Cellular and molecular mechanisms of the selective regulation of IL-12 production by 12/15-lipoxygenase. THE JOURNAL OF IMMUNOLOGY 2006; 176:265-74. [PMID: 16365418 DOI: 10.4049/jimmunol.176.1.265] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
IL-12 drives type I immune responses and can mediate chronic inflammation that leads to host defense as well as disease. Recently, we discovered a novel role for 12/15-lipoxygenase (12/15-LO) in mediating IL-12p40 expression in atherosclerotic plaque and in isolated macrophages. We now demonstrate that 12/15-LO regulates IL-12 family cytokine production in a cell-type and stimulus-restricted fashion. LPS-stimulated elicited peritoneal macrophages derived from 12/15-LO-deficient (Alox15) mice produced reduced IL-12 and IL-23 levels, but comparable amounts of several other inflammatory mediators tested. Furthermore, LPS stimulation triggered an increase in wild-type macrophage 12/15-LO activity, whereas pharmacological inhibition of 12/15-LO activity suppressed LPS-induced IL-12 production in wild-type macrophages. 12/15-LO-deficient macrophages also produced reduced levels of IL-12 in response to TLR2 stimulation, but not in response to CpG (TLR9) or CD40/CD40L-mediated activation. In contrast to our previous finding of reduced IL-12 production in the setting of atherosclerosis, we found that comparable IL-12 levels were produced in Alox15 and wild-type mice during an acute response to LPS in vivo. This paradox may be explained by normal production of IL-12 by 12/15-LO-deficient neutrophils and dendritic cells, which are major sources of IL-12 during acute inflammation. Finally, we detected selectively decreased association of the transcription factors IFN consensus sequence binding protein and NF-kappaB with the IL-12p40 promoter in 12/15-LO-deficient macrophages. Taken together, these findings reveal a highly selective pathway to IL-12 production that may prove a useful target in chronic inflammation while sparing the acute response to infection.
Collapse
|
104
|
Huber J, Fürnkranz A, Bochkov VN, Patricia MK, Lee H, Hedrick CC, Berliner JA, Binder BR, Leitinger N. Specific monocyte adhesion to endothelial cells induced by oxidized phospholipids involves activation of cPLA2 and lipoxygenase. J Lipid Res 2006; 47:1054-62. [PMID: 16461778 DOI: 10.1194/jlr.m500555-jlr200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oxidized phospholipids stimulate endothelial cells to bind monocytes, but not neutrophils, an initiating event in atherogenesis. Here, we investigate intracellular signaling events induced by oxidized phospholipids in human umbilical vein endothelial cells (HUVECs) that lead to specific monocyte adhesion. In a static adhesion assay, oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine and one of its components, 1-palmitoyl-2-oxovaleroyl-sn-glycero-3-phosphorylcholine, stimulated HUVECs to bind U937 cells and human peripheral blood monocytes but not HL-60 cells or blood neutrophils. Monocyte adhesion was dependent on protein kinases A and C, extracellular signal-regulated kinase 1/2, p38 mitogen activated protein kinases (MAPKs), and cytosolic phospholipase A(2) (cPLA(2)). Inhibition of 12-lipoxygenase (12-LOX), but not cyclooxygenases, blocked monocyte adhesion, and addition of 12-hydroxyeicosatetraenoic acid (12-HETE) mimicked the effects of oxidized phospholipids. Peroxisome proliferator-activated receptor alpha (PPARalpha) was excluded as a possible target for 12-HETE, because monocyte adhesion was still induced in endothelial cells from PPARalpha null mice. Together, our results suggest that oxidized phospholipids stimulate HUVECs to specifically bind monocytes involving MAPK pathways, which lead to the activation of cPLA(2) and 12-LOX. Further analysis of signaling pathways induced by oxidized phospholipids that lead to specific monocyte adhesion should ultimately lead to the development of novel therapeutic approaches against chronic inflammatory diseases.
Collapse
Affiliation(s)
- Joakim Huber
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Rodríguez Esparragón F, Hernández Trujillo Y, Macías Reyes A, Hernández Ortega E, Medina A, Rodríguez Pérez JC. Sobre los genes paraoxonasa-1 y SR-B1, y su importancia en la aterosclerosis. Rev Esp Cardiol 2006. [DOI: 10.1157/13084643] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
106
|
Pei H, Gu J, Thimmalapura PR, Mison A, Nadler JL. Activation of the 12-lipoxygenase and signal transducer and activator of transcription pathway during neointima formation in a model of the metabolic syndrome. Am J Physiol Endocrinol Metab 2006; 290:E92-E102. [PMID: 16118253 DOI: 10.1152/ajpendo.00133.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin resistance (IR) is associated with an increased risk of cardiovascular diseases. The obese Zucker rat (ZR) is a model of IR that shows markedly increased insulin and triglyceride concentrations without major changes in glucose. In this study, we evaluated the response of obese and lean ZR to carotid balloon injury and determined potential mechanisms and treatments. The neointima-to-media ratio of obese ZR was greater than that of lean ZR, starting at 14 days after injury, and persisted until at least day 30. An enhanced inflammatory response to balloon injury in the obese ZR was reflected by significantly higher ED1-positive macrophage cells in the injured vessel wall compared with that in lean ZR at 3, 7, and 14 days after balloon injury. Inflammatory mediators 12-lipoxygenase (12-LO) and STAT4 were studied in neointimal lesions. Expression of 12-LO RNA was increased beginning at day 7 and showed increases of 4.3-fold on day 14 and 7-fold on day 30 in obese ZR compared with lean animals. Staining of phosphorylated STAT4 (PSTAT4), the activated form of STAT4, in lesions from obese ZR was also increased compared with that in leans. We tested the effects of a novel anti-inflammatory agent, lisofylline (LSF), in the obese ZR. LSF markedly reduced neointimal formation in the obese ZR. LSF also reduced monocyte/macrophage infiltration into the vessel wall and the activation of PSTAT4. These studies suggest both the presence of an exaggerated injury response in the insulin-resistant obese ZR model and that inflammation plays a major role in mediating neointimal growth.
Collapse
Affiliation(s)
- Hong Pei
- Division of Endocrinology, Department of Internal Medicine, University of Virginia, PO Box 801405, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
107
|
Bolick DT, Orr AW, Whetzel A, Srinivasan S, Hatley ME, Schwartz MA, Hedrick CC. 12/15-lipoxygenase regulates intercellular adhesion molecule-1 expression and monocyte adhesion to endothelium through activation of RhoA and nuclear factor-kappaB. Arterioscler Thromb Vasc Biol 2005; 25:2301-7. [PMID: 16166569 DOI: 10.1161/01.atv.0000186181.19909.a6] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND 12/15-lipoxygenase (12/15-LO) activity leads to the production of the proinflammatory eicosanoids 12-S-hydroxyeicosatetraenoic acid (12SHETE) and 13-S-hydroxyoctadecadienoic acid. We have previously shown a 3.5-fold increase in endothelial intercellular adhesion molecule (ICAM)-1 expression in mice overexpressing the 12/15-LO gene. We examined whether 12/15-LO activity regulated endothelial ICAM-1 expression. METHODS AND RESULTS Freshly isolated aortic endothelial cells (EC) from 12/15-LO transgenic mice had significantly greater nuclear factor-kappaB (NF-kappaB) activation and ICAM mRNA expression compared with C57BL/6J control. 12/15-LO transgenic EC showed elevated RhoA activity, and inhibition of RhoA using either C3 toxin or the Rho-kinase inhibitor Y-27632 blocked NF-kappaB activation, ICAM-1 induction, and monocyte adhesion. Furthermore, we show that 12SHETE activates protein kinase Calpha, which forms a complex with active RhoA and is required for NF-kappaB-dependent ICAM expression in response to 12SHETE. CONCLUSIONS The 12/15-LO pathway stimulates ICAM-1 expression through the RhoA/protein kinase Calpha-dependent activation of NF-kappaB. These findings identify a major signaling pathway in EC through which 12/15-LO contributes to vascular inflammation and atherosclerosis.
Collapse
Affiliation(s)
- David T Bolick
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | |
Collapse
|
108
|
Zhao L, Praticò D, Rader DJ, Funk CD. 12/15-Lipoxygenase gene disruption and vitamin E administration diminish atherosclerosis and oxidative stress in apolipoprotein E deficient mice through a final common pathway. Prostaglandins Other Lipid Mediat 2005; 78:185-93. [PMID: 16303615 DOI: 10.1016/j.prostaglandins.2005.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Revised: 07/26/2005] [Accepted: 07/26/2005] [Indexed: 11/28/2022]
Abstract
Studies in mouse models of atherosclerosis using 12/15-lipoxygenase (12/15-LO) gene disruption and transgenic overexpression demonstrate a pro-oxidative, pro-atherogenic role for this pathway. Vitamin E has been shown to suppress lipid peroxidation and reduce early atherogenesis in several mouse models, although conflicting results from several clinical trials have been reported. ApoE(-/-) and apoE(-/-)/12/15-LO(-/-) mice were maintained on normal chow diet with or without Vitamin E supplement (2000 IU/kg). Plasma Vitamin E, urinary 8,12-iso-iPF(2alpha)-VI and aortic lesion quantitation were assessed. Plasma Vitamin E levels significantly increased upon Vitamin E diet supplementation. 12/15-LO gene disruption resulted in significantly reduced aortic lesions and decreased urinary 8,12-iso-iPF(2alpha)-VI levels in apoE(-/-) mice, similar to Vitamin E administration in the absence of 12/15-LO gene disruption. However, Vitamin E dietary supplementation did not afford additive or synergistic protection in apoE(-/-)/12/15-LO(-/-) mice. These results suggest that early 12/15-LO-mediated lipid peroxidation triggers ensuing non-enzymatic peroxidation that is susceptible to Vitamin E antioxidant action in a common pathway of atherogenesis.
Collapse
Affiliation(s)
- Lei Zhao
- Institute of Translational Medicine and Therapeutics, Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, USA.
| | | | | | | |
Collapse
|
109
|
Taylor AM, Hanchett R, Natarajan R, Hedrick CC, Forrest S, Nadler JL, McNamara CA. The effects of leukocyte-type 12/15-lipoxygenase on Id3-mediated vascular smooth muscle cell growth. Arterioscler Thromb Vasc Biol 2005; 25:2069-74. [PMID: 16037566 PMCID: PMC2929383 DOI: 10.1161/01.atv.0000178992.40088.f2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE 12/15-lipoxygenase (12/15-LO) has been implicated in the pathogenesis of vascular disease. Vascular smooth muscle cell (VSMC) proliferation is a key component of the response to injury in vascular disease. The role of 12/15-LO in regulating VSMC proliferation is poorly understood. Id3 has been shown to regulate growth in various cell types and is expressed in VSMCs within atherosclerotic and restenotic lesions. This study examines the role of Id3 in 12/15-LO-mediated VSMC proliferation. METHODS AND RESULTS Primary aortic VSMCs from leukocyte-type 12/15-LO transgenic, leukocyte-type 12/15-LO knockout (KO), and control mice were plated in equal densities and assayed for growth, Id3 protein expression, and Id3 transcription. Results demonstrated that 12/15-LO transgenic VSMCs grew faster, whereas 12/15-LO KO VSMCs grew slower relative to control VSMCs. Further, pharmacological and molecular inhibition of 12/15-LO resulted in decreased VSMC growth. Western blots demonstrated increased Id3 protein in 12/15-LO transgenic VSMCs, whereas luciferase promoter reporter assays revealed increased Id3 transcription. In addition, overexpression of 12/15-LO increased growth in control cells but not in Id3 KO cells. 12/15-LO transgenic VSMCs demonstrated increased protein kinase C (PKC) activity. Consistent with these data, PKC inhibition decreased Id3 promoter activation. CONCLUSIONS 12/15-LO is an important mediator of VSMC growth. The growth-promoting effects of 12/15-LO are at least partially mediated through induction of Id3 transcription.
Collapse
Affiliation(s)
- Angela M Taylor
- Cardiovascular Division, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | |
Collapse
|
110
|
Bogatcheva NV, Sergeeva MG, Dudek SM, Verin AD. Arachidonic acid cascade in endothelial pathobiology. Microvasc Res 2005; 69:107-27. [PMID: 15896353 DOI: 10.1016/j.mvr.2005.01.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 01/21/2005] [Accepted: 01/26/2005] [Indexed: 01/26/2023]
Abstract
Arachidonic acid (AA) and its metabolites (eicosanoids) represent powerful mediators, used by organisms to induce and suppress inflammation as a part of the innate response to disturbances. Several cell types participate in the synthesis and release of AA metabolites, while many cell types represent the targets for eicosanoid action. Endothelial cells (EC), forming a semi-permeable barrier between the interior space of blood vessels and underlying tissues, are of particular importance for the development of inflammation, since endothelium controls such diverse processes as vascular tone, homeostasis, adhesion of platelets and leukocytes to the vascular wall, and permeability of the vascular wall for cells and fluids. Proliferation and migration of endothelial cells contribute significantly to new vessel development (angiogenesis). This review discusses endothelial-specific synthesis and action of arachidonic acid derivatives with a particular focus on the mechanisms of signal transduction and associated intracellular protein targets.
Collapse
Affiliation(s)
- Natalia V Bogatcheva
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
111
|
Abstract
There are several well-documented functions of high-density lipoprotein (HDL) that may explain the ability of these lipoproteins to protect against atherosclerosis. The best recognized of these is the ability of HDL to promote the efflux of cholesterol from cells. This process may minimize the accumulation of foam cells in the artery wall. However, HDL has additional properties that may also be antiatherogenic. For example, HDL is an effective antioxidant. The major proteins of HDL, apoA-I and apoA-II, as well as other proteins such as paraoxonase that cotransport with HDL in plasma, are well-known to have antioxidant properties. As a consequence, HDL has the capacity to inhibit the oxidative modification of low-density lipoprotein (LDL) in a process that reduces the atherogenicity of these lipoproteins. HDL also possesses other antiinflammatory properties. By virtue of their ability to inhibit the expression of adhesion molecules in endothelial cells, they reduce the recruitment of blood monocytes into the artery wall. These antioxidant and antiinflammatory properties of HDL may be as important as its cholesterol efflux function in terms of protecting against the development of atherosclerosis.
Collapse
Affiliation(s)
- Philip J Barter
- The Heart Research Institute, 145 Missenden Rd, Camperdown, Sydney 2050, Australia.
| | | | | | | | | | | |
Collapse
|
112
|
Higashi Y, Peng T, Du J, Sukhanov S, Li Y, Itabe H, Parthasarathy S, Delafontaine P. A redox-sensitive pathway mediates oxidized LDL-induced downregulation of insulin-like growth factor-1 receptor. J Lipid Res 2005; 46:1266-77. [PMID: 15805544 DOI: 10.1194/jlr.m400478-jlr200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oxidized low density lipoprotein (OxLDL) has multiple proatherogenic effects, including induction of apoptosis. We have recently shown that OxLDL markedly downregulates insulin-like growth factor-1 receptor (IGF-1R) in human aortic smooth muscle cells, and that IGF-1R overexpression blocks OxLDL-induced apoptosis. We hypothesized that specific OxLDL-triggered signaling events led to IGF-1R downregulation and apoptosis. We examined OxLDL signaling pathways and found that neither IGF-1R downregulation nor the proapoptotic effect was blocked by inhibition of OxLDL-triggered extracellular signal-regulated kinase, p38 mitogen-activated protein kinase (MAPK), or peroxisome proliferator-activated receptor gamma (PPARgamma) signaling pathways, as assessed using specific inhibitors. However, antioxidants, polyethylene glycol catalase, superoxide dismutase, and Trolox completely blocked OxLDL downregulation of IGF-1R and OxLDL-induced apoptosis. Nordihydroguaiaretic acid, AA-861, and baicalein, which are lipoxygenase inhibitors and also have antioxidant activity, blocked IGF-1R downregulation and apoptosis as well as reactive oxygen species (ROS) production. These results suggest that OxLDL enhances ROS production possibly through lipoxygenase activity, leading to IGF-1R downregulation and apoptosis. Furthermore, anti-CD36 scavenger receptor antibody markedly inhibited OxLDL-induced IGF-1R downregulation and apoptosis as well as ROS production. In conclusion, our data demonstrate that OxLDL downregulates IGF-1R via redox-sensitive pathways that are distinct from OxLDL signaling through MAPK- and PPARgamma-involved pathways but may involve a CD36-dependent mechanism.
Collapse
Affiliation(s)
- Yusuke Higashi
- Section of Cardiology, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Simmons CA, Grant GR, Manduchi E, Davies PF. Spatial heterogeneity of endothelial phenotypes correlates with side-specific vulnerability to calcification in normal porcine aortic valves. Circ Res 2005; 96:792-9. [PMID: 15761200 PMCID: PMC3057118 DOI: 10.1161/01.res.0000161998.92009.64] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Calcific aortic valve sclerosis involves inflammatory processes and occurs preferentially on the aortic side of endothelialized valve leaflets. Although the endothelium is recognized to play critical roles in focal vascular sclerosis, the contributions of valvular endothelial phenotypes to aortic valve sclerosis and side-specific susceptibility to calcification are poorly understood. Using RNA amplification and cDNA microarrays, we identified 584 genes as differentially expressed in situ by the endothelium on the aortic side versus ventricular side of normal adult pig aortic valves. These differential transcriptional profiles, representative of the steady state in vivo, identify globally distinct endothelial phenotypes on opposite sides of the aortic valve. Several over-represented biological classifications with putative relevance to endothelial regulation of valvular homeostasis and aortic-side vulnerability to calcification were identified among the differentially expressed genes. Of note, multiple inhibitors of cardiovascular calcification were significantly less expressed by endothelium on the disease-prone aortic side of the valve, suggesting side-specific permissiveness to calcification. However, coexisting putative protective mechanisms were also expressed. Specifically, enhanced antioxidative gene expression and the lack of differential expression of proinflammatory molecules on the aortic side may protect against inflammation and lesion initiation in the normal valve. These data implicate the endothelium in regulating valvular calcification and suggest that spatial heterogeneity of valvular endothelial phenotypes may contribute to the focal susceptibility for lesion development.
Collapse
Affiliation(s)
- Craig A Simmons
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia PA 19104, USA.
| | | | | | | |
Collapse
|
114
|
Rich SS, Bowden DW, Haffner SM, Norris JM, Saad MF, Mitchell BD, Rotter JI, Langefeld CD, Hedrick CC, Wagenknecht LE, Bergman RN. A genome scan for fasting insulin and fasting glucose identifies a quantitative trait locus on chromosome 17p: the insulin resistance atherosclerosis study (IRAS) family study. Diabetes 2005; 54:290-5. [PMID: 15616041 DOI: 10.2337/diabetes.54.1.290] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Plasma insulin and glucose concentrations are important quantitative phenotypes related to diabetes and the metabolic syndrome. Reports purporting to identify quantitative trait loci (QTLs) that contribute to the variation in fasting insulin and glucose concentrations are discrepant. As part of the Insulin Resistance Atherosclerosis Study (IRAS) Family Study, a genome scan was performed in African-American (n = 42) and Hispanic (n = 90) extended families to identify regions that may contain positional candidate genes for fasting insulin and fasting glucose (n = 1,604 subjects). There was significant evidence for linkage of fasting insulin to the short arm of chromosome 17 (logarithm of odds [LOD] = 3.30; 54 cM between D17S1294 and D17S1299, P = 1.0 x 10(-4)). The strongest evidence for linkage over all pedigrees for fasting glucose was also observed in this region (LOD = 1.44; 58 cM, P = 9.9 x 10(-3)). The results of this study provide impetus for future positional cloning of QTLs regulating insulin and glucose levels. Identifying genes in these regions should provide insight into the nature of genetic factors regulating plasma glucose and insulin concentrations.
Collapse
Affiliation(s)
- Stephen S Rich
- Department of Public Health Sciences, Wake Forest University School of Medicine, 3rd Floor MRI Center, Winston-Salem, NC 27157, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Li SL, Dwarakanath RS, Cai Q, Lanting L, Natarajan R. Effects of silencing leukocyte-type 12/15-lipoxygenase using short interfering RNAs. J Lipid Res 2004; 46:220-9. [PMID: 15576842 DOI: 10.1194/jlr.m400328-jlr200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The leukocyte-type 12/15-lipoxygenase (12/15-LO) has been implicated in the pathogenesis of atherosclerosis, hypertension, and diabetes. 12/15-LO and its products are associated with LDL oxidation, cellular growth, migration, adhesion, and inflammatory gene expression in monocytes/macrophages, endothelial cells, and vascular smooth muscle cells (VSMCs). Our objective, therefore, was to develop novel expression vectors for short interfering RNAs (siRNAs) targeting 12/15-LO to evaluate its functional relevance in macrophages and VSMCs. We used a PCR-based approach to rapidly identify effective siRNA target sites on mouse 12/15-LO and initially tested their efficacy on a fusion construct of 12/15-LO cDNA and enhanced green fluorescent protein. We then cloned these U6 promoter+siRNA PCR products into plasmid vectors [short hairpin siRNAs (shRNAs)] to knockdown endogenous 12/15-LO expression in mouse macrophages and also rat and mouse VSMCs. Furthermore, the functional effects of shRNA-mediated 12/15-LO knockdown were noted by the reduced oxidant stress and chemokine [monocyte chemoattractant protein-1 (MCP-1)] expression in a differentiated mouse monocytic cell line as well as by the reduced cellular adhesion and fibronectin expression in VMSCs. Knocking down 12/15-LO expression also reduced the expression of inflammatory genes, MCP-1, vascular cell adhesion molecule-1, and interleukin-6 in VSMCs. Our results illustrate the functional relevance of 12/15-LO activation in macrophages and VSMCs and its relationship to oxidant stress and inflammation.
Collapse
MESH Headings
- 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/pharmacology
- Animals
- Arachidonate 12-Lipoxygenase/genetics
- Arachidonate 12-Lipoxygenase/metabolism
- Arachidonate 15-Lipoxygenase/genetics
- Arachidonate 15-Lipoxygenase/metabolism
- Base Sequence
- Blotting, Western
- Cell Adhesion
- Cell Line
- Cell Movement
- Cells, Cultured
- Chemokine CCL2/metabolism
- Chemokines/metabolism
- DNA Primers/chemistry
- DNA, Complementary/metabolism
- Down-Regulation
- Endothelium, Vascular/metabolism
- Ethidium/analogs & derivatives
- Ethidium/pharmacology
- Fibronectins/chemistry
- Fibronectins/metabolism
- Gene Silencing
- Green Fluorescent Proteins/metabolism
- Humans
- Immunoblotting
- Inflammation
- Lipoproteins, LDL/metabolism
- Macrophages/metabolism
- Mice
- Microscopy, Fluorescence
- Molecular Sequence Data
- Monocytes/metabolism
- Myocytes, Smooth Muscle/cytology
- Oxidants/metabolism
- Oxidative Stress
- Polymerase Chain Reaction
- Promoter Regions, Genetic
- Protein Binding
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Rats
- Recombinant Fusion Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Superoxides/metabolism
- Transfection
Collapse
Affiliation(s)
- Shu-Lian Li
- Gonda Diabetes Research Center, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | | | | | | | | |
Collapse
|
116
|
Navab M, Ananthramaiah GM, Reddy ST, Van Lenten BJ, Ansell BJ, Fonarow GC, Vahabzadeh K, Hama S, Hough G, Kamranpour N, Berliner JA, Lusis AJ, Fogelman AM. The oxidation hypothesis of atherogenesis: the role of oxidized phospholipids and HDL. J Lipid Res 2004; 45:993-1007. [PMID: 15060092 DOI: 10.1194/jlr.r400001-jlr200] [Citation(s) in RCA: 481] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
For more than two decades, there has been continuing evidence of lipid oxidation playing a central role in atherogenesis. The oxidation hypothesis of atherogenesis has evolved to focus on specific proinflammatory oxidized phospholipids that result from the oxidation of LDL phospholipids containing arachidonic acid and that are recognized by the innate immune system in animals and humans. These oxidized phospholipids are largely generated by potent oxidants produced by the lipoxygenase and myeloperoxidase pathways. The failure of antioxidant vitamins to influence clinical outcomes may have many explanations, including the inability of vitamin E to prevent the formation of these oxidized phospholipids and other lipid oxidation products of the myeloperoxidase pathway. Preliminary data suggest that the oxidation hypothesis of atherogenesis and the reverse cholesterol transport hypothesis of atherogenesis may have a common biological basis. The levels of specific oxidized lipids in plasma and lipoproteins, the levels of antibodies to these lipids, and the inflammatory/anti-inflammatory properties of HDL may be useful markers of susceptibility to atherogenesis. Apolipoprotein A-I (apoA-I) and apoA-I mimetic peptides may both promote a reduction in oxidized lipids and enhance reverse cholesterol transport and therefore may have therapeutic potential.
Collapse
Affiliation(s)
- Mohamad Navab
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Srinivasan S, Bolick DT, Hatley ME, Natarajan R, Reilly KB, Yeh M, Chrestensen C, Sturgill TW, Hedrick CC. Glucose regulates interleukin-8 production in aortic endothelial cells through activation of the p38 mitogen-activated protein kinase pathway in diabetes. J Biol Chem 2004; 279:31930-6. [PMID: 15145956 DOI: 10.1074/jbc.m400753200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We have shown that chronic elevated glucose (25 mm) increases monocyte adhesion to human aortic endothelial cells (EC). This increased adhesion is mediated primarily through induction of interleukin (IL)-8 via activation of the transcription factor AP-1 (Srinivasan, S., Yeh, M., Danziger, E. C., Hatley, M. E., Riggan, A. E., Leitinger, N., Berliner, J. A., and Hedrick, C. C. (2003) Circ. Res. 92, 371-377). In the current study, we identified the elements in the AP-1 transcriptional complex that are activated by glucose. These elements include c-Jun, c-Fos, and Fra-1. AP-1 is activated by cellular oxidative stress, and we have reported significant production of ROS by high glucose-cultured cells. We examined signaling pathways upstream of AP-1 in EC that lead to AP-1 activation by HG. EC cultured in 25 mm glucose had a 2-fold increase in p38 phosphorylation compared with control normal glucose-cultured EC. Inhibition of the p38 pathway using 5 microm SB203580 significantly reduced glucose-mediated IL-8 mRNA production by 60%. Furthermore, blocking p38 pathway activation using a dominant-negative p38 construct significantly reduced glucose-mediated monocyte adhesion by 50%. Thus, glucose-stimulated monocyte adhesion is primarily regulated through phosphorylation of p38 with subsequent activation of AP-1, leading to IL-8 production. To study this pathway in the setting of diabetes, we used the db/db mouse. P38 phosphorylation was increased in diabetic db/db mice compared with control mice. We found a dramatic elevation in plasma levels of KC, the mouse ortholog of IL-8 in diabetic db/db mice (1800 +/- 100 pg/ml KC in db/db versus 300 +/- 75 pg/ml in C57BL/6J control mice, p < 0.0001). Inhibition of the p38 pathway in diabetic db/db mice significantly reduced monocyte adhesion by 50%. Taken together, these data indicate that chronic elevated glucose in diabetes activates the p38 MAP kinase pathway to increase inflammatory IL-8 gene induction and monocyte/endothelial adhesion.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cell Adhesion/drug effects
- Cells, Cultured
- DNA Primers/genetics
- Diabetes Mellitus, Type 2/enzymology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/immunology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/immunology
- Glucose/pharmacology
- Humans
- In Vitro Techniques
- Interleukin-8/biosynthesis
- Interleukin-8/genetics
- MAP Kinase Signaling System/drug effects
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Mitogen-Activated Protein Kinases/metabolism
- Models, Biological
- Monocytes/drug effects
- Monocytes/physiology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- p38 Mitogen-Activated Protein Kinases
Collapse
Affiliation(s)
- Suseela Srinivasan
- Department of Diabetes, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|