101
|
Shan L, Deng K, Gao H, Xing S, Capoferri AA, Durand CM, Rabi SA, Laird GM, Kim M, Hosmane NN, Yang HC, Zhang H, Margolick JB, Li L, Cai W, Ke R, Flavell RA, Siliciano JD, Siliciano RF. Transcriptional Reprogramming during Effector-to-Memory Transition Renders CD4 + T Cells Permissive for Latent HIV-1 Infection. Immunity 2017; 47:766-775.e3. [PMID: 29045905 DOI: 10.1016/j.immuni.2017.09.014] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 05/26/2017] [Accepted: 09/25/2017] [Indexed: 11/19/2022]
Abstract
The latent reservoir for HIV-1 in resting memory CD4+ T cells is the major barrier to curing HIV-1 infection. Studies of HIV-1 latency have focused on regulation of viral gene expression in cells in which latent infection is established. However, it remains unclear how infection initially becomes latent. Here we described a unique set of properties of CD4+ T cells undergoing effector-to-memory transition including temporary upregulation of CCR5 expression and rapid downregulation of cellular gene transcription. These cells allowed completion of steps in the HIV-1 life cycle through integration but suppressed HIV-1 gene transcription, thus allowing the establishment of latency. CD4+ T cells in this stage were substantially more permissive for HIV-1 latent infection than other CD4+ T cells. Establishment of latent HIV-1 infection in CD4+ T could be inhibited by viral-specific CD8+ T cells, a result with implications for elimination of latent HIV-1 infection by T cell-based vaccines.
Collapse
Affiliation(s)
- Liang Shan
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Kai Deng
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Hongbo Gao
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Sifei Xing
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Adam A Capoferri
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Christine M Durand
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - S Alireza Rabi
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gregory M Laird
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michelle Kim
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nina N Hosmane
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Hao Zhang
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Joseph B Margolick
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Linghua Li
- Department of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Weiping Cai
- Department of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Ruian Ke
- Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
102
|
Abstract
Antiretroviral therapy (ART) has rendered HIV-1 infection a treatable illness; however, ART is not curative owing to the persistence of replication-competent, latent proviruses in long-lived resting T cells. Strategies that target these latently infected cells and allow immune recognition and clearance of this reservoir will be necessary to eradicate HIV-1 in infected individuals. This review describes current pharmacologic approaches to reactivate the latent reservoir so that infected cells can be recognized and targeted, with the ultimate goal of achieving an HIV-1 cure.
Collapse
Affiliation(s)
- Adam M Spivak
- Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Vicente Planelles
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112;
| |
Collapse
|
103
|
Nothias LF, Boutet-Mercey S, Cachet X, De La Torre E, Laboureur L, Gallard JF, Retailleau P, Brunelle A, Dorrestein PC, Costa J, Bedoya LM, Roussi F, Leyssen P, Alcami J, Paolini J, Litaudon M, Touboul D. Environmentally Friendly Procedure Based on Supercritical Fluid Chromatography and Tandem Mass Spectrometry Molecular Networking for the Discovery of Potent Antiviral Compounds from Euphorbia semiperfoliata. JOURNAL OF NATURAL PRODUCTS 2017; 80:2620-2629. [PMID: 28925702 DOI: 10.1021/acs.jnatprod.7b00113] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A supercritical fluid chromatography-based targeted purification procedure using tandem mass spectrometry and molecular networking was developed to analyze, annotate, and isolate secondary metabolites from complex plant extract mixture. This approach was applied for the targeted isolation of new antiviral diterpene esters from Euphorbia semiperfoliata whole plant extract. The analysis of bioactive fractions revealed that unknown diterpene esters, including jatrophane esters and phorbol esters, were present in the samples. The purification procedure using semipreparative supercritical fluid chromatography led to the isolation and identification of two new jatrophane esters (13 and 14) and one known (15) and three new 4-deoxyphorbol esters (16-18). The structure and absolute configuration of compound 16 were confirmed by X-ray crystallography. This compound was found to display antiviral activity against Chikungunya virus (EC50 = 0.45 μM), while compound 15 proved to be a potent and selective inhibitor of HIV-1 replication in a recombinant virus assay (EC50 = 13 nM). This study showed that a supercritical fluid chromatography-based protocol and molecular networking can facilitate and accelerate the discovery of bioactive small molecules by targeting molecules of interest, while minimizing the use of toxic solvents.
Collapse
Affiliation(s)
- Louis-Félix Nothias
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, University of Paris-Saclay , 91198 Gif-sur-Yvette, France
- Laboratoire de Chimie des Produits Naturels, CNRS, UMR SPE 6134, University of Corsica , 20250 Corte, France
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , La Jolla, California 92093, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , La Jolla, California 92093, United States
| | - Stéphanie Boutet-Mercey
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, University of Paris-Saclay , 91198 Gif-sur-Yvette, France
| | - Xavier Cachet
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, University of Paris-Saclay , 91198 Gif-sur-Yvette, France
- Laboratoire de Pharmacognosie, UMR 8638 COMETE CNRS, Faculté de Pharmacie, University of Paris Descartes , Sorbonne Paris Cité, 75270 Paris, France
| | - Erick De La Torre
- Departamento de Inmunopatología del SIDA, Centro Nacional de Microbiología, Instituto de Salud Carlos III , Ctra. Pozuelo Km.2, 28220, Majadahonda, Madrid, Spain
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid . Pz. Ramon y Cajal s/n, 28040 Madrid, Spain
| | - Laurent Laboureur
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, University of Paris-Saclay , 91198 Gif-sur-Yvette, France
| | - Jean-François Gallard
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, University of Paris-Saclay , 91198 Gif-sur-Yvette, France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, University of Paris-Saclay , 91198 Gif-sur-Yvette, France
| | - Alain Brunelle
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, University of Paris-Saclay , 91198 Gif-sur-Yvette, France
| | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , La Jolla, California 92093, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , La Jolla, California 92093, United States
| | - Jean Costa
- Laboratoire de Chimie des Produits Naturels, CNRS, UMR SPE 6134, University of Corsica , 20250 Corte, France
| | - Luis M Bedoya
- Departamento de Inmunopatología del SIDA, Centro Nacional de Microbiología, Instituto de Salud Carlos III , Ctra. Pozuelo Km.2, 28220, Majadahonda, Madrid, Spain
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid . Pz. Ramon y Cajal s/n, 28040 Madrid, Spain
| | - Fanny Roussi
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, University of Paris-Saclay , 91198 Gif-sur-Yvette, France
| | - Pieter Leyssen
- Laboratory for Virology and Experimental Chemotherapy, Rega Institute for Medical Research, KU Leuven , B-3000 Leuven, Belgium
| | - José Alcami
- Departamento de Inmunopatología del SIDA, Centro Nacional de Microbiología, Instituto de Salud Carlos III , Ctra. Pozuelo Km.2, 28220, Majadahonda, Madrid, Spain
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid . Pz. Ramon y Cajal s/n, 28040 Madrid, Spain
| | - Julien Paolini
- Laboratoire de Chimie des Produits Naturels, CNRS, UMR SPE 6134, University of Corsica , 20250 Corte, France
| | - Marc Litaudon
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, University of Paris-Saclay , 91198 Gif-sur-Yvette, France
| | - David Touboul
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, University of Paris-Saclay , 91198 Gif-sur-Yvette, France
| |
Collapse
|
104
|
Pang W, Zhang GH, Jiang J, Zheng HY, Zhang LT, Zhang XL, Song JH, Zhang MX, Zhu JW, Lei AH, Tian RR, Liu XM, Zhang L, Gao G, Su L, Zheng YT. HIV-1 can infect northern pig-tailed macaques (Macaca leonina) and form viral reservoirs in vivo. Sci Bull (Beijing) 2017; 62:1315-1324. [PMID: 36659293 DOI: 10.1016/j.scib.2017.09.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/29/2017] [Accepted: 09/04/2017] [Indexed: 01/21/2023]
Abstract
Viral reservoirs of HIV-1 are a major obstacle for curing AIDS. The novel animal models that can be directly infected with HIV-1 will contribute to develop effective strategies for eradicating infections. Here, we inoculated 4 northern pig-tailed macaques (NPM) with the HIV-1 strain HIV-1NL4.3 and monitored the infection for approximately 3years (150weeks). The HIV-1-infected NPMs showed transient viremia for about 10weeks after infection. However, cell-associated proviral DNA and viral RNA persisted in the peripheral blood and lymphoid organs for about 3years. Moreover, replication-competent HIV-1 could be successfully recovered from peripheral blood mononuclear cells (PBMCs) during long-term infection. The numbers of resting CD4+ T cells in HIV-1 infected NPMs harboring proviruses fell within a range of 2- to 3-log10 per million cells, and these proviruses could be reactivated both ex vivo and in vivo in response to co-stimulation with the latency-reversing agents JQ1 and prostratin. Our results suggested that NPMs can be infected with HIV-1 and a long-term viral reservoir was formed in NPMs, which might serve asa potential model for HIV-1 reservoir research.
Collapse
Affiliation(s)
- Wei Pang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Gao-Hong Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Jin Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; University of Chinese Academy of Sciences, Beijing 100091, China
| | - Hong-Yi Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Lin-Tao Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Xiao-Liang Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Jia-Hao Song
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Institute of Health Sciences, Anhui University, Hefei 230601, China
| | - Ming-Xu Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; University of Chinese Academy of Sciences, Beijing 100091, China
| | - Jia-Wu Zhu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Ai-Hua Lei
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Ren-Rong Tian
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Xiao-Ming Liu
- South China Institute of Endangered Animal, Guandong Academy of Sciences, Guangzhou 510260, China
| | - Liguo Zhang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Guangxia Gao
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lishan Su
- Department of Microbiology and Immunology, School of Medicine, The University of North Carolina at Chapel Hill, NC 27599-7290, USA
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
105
|
Manoto SL, Thobakgale L, Malabi R, Maphanga C, Ombinda-Lemboumba S, Mthunzi-Kufa P. Therapeutic strategies to fight HIV-1 latency: progress and challenges. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
106
|
Perreau M, Banga R, Pantaleo G. Targeted Immune Interventions for an HIV-1 Cure. Trends Mol Med 2017; 23:945-961. [DOI: 10.1016/j.molmed.2017.08.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/09/2017] [Accepted: 08/14/2017] [Indexed: 01/13/2023]
|
107
|
Besnard E, Hakre S, Kampmann M, Lim HW, Hosmane NN, Martin A, Bassik MC, Verschueren E, Battivelli E, Chan J, Svensson JP, Gramatica A, Conrad RJ, Ott M, Greene WC, Krogan NJ, Siliciano RF, Weissman JS, Verdin E. The mTOR Complex Controls HIV Latency. Cell Host Microbe 2017; 20:785-797. [PMID: 27978436 DOI: 10.1016/j.chom.2016.11.001] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/30/2016] [Accepted: 11/06/2016] [Indexed: 12/22/2022]
Abstract
A population of CD4 T lymphocytes harboring latent HIV genomes can persist in patients on antiretroviral therapy, posing a barrier to HIV eradication. To examine cellular complexes controlling HIV latency, we conducted a genome-wide screen with a pooled ultracomplex shRNA library and in vitro system modeling HIV latency and identified the mTOR complex as a modulator of HIV latency. Knockdown of mTOR complex subunits or pharmacological inhibition of mTOR activity suppresses reversal of latency in various HIV-1 latency models and HIV-infected patient cells. mTOR inhibitors suppress HIV transcription both through the viral transactivator Tat and via Tat-independent mechanisms. This inhibition occurs at least in part via blocking the phosphorylation of CDK9, a p-TEFb complex member that serves as a cofactor for Tat-mediated transcription. The control of HIV latency by mTOR signaling identifies a pathway that may have significant therapeutic opportunities.
Collapse
Affiliation(s)
- Emilie Besnard
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Shweta Hakre
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Martin Kampmann
- Department of Cellular and Molecular Pharmacology, The California Institute for Quantitative Biomedical Research, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hyung W Lim
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nina N Hosmane
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Alyssa Martin
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Michael C Bassik
- Department of Cellular and Molecular Pharmacology, The California Institute for Quantitative Biomedical Research, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Erik Verschueren
- Department of Cellular and Molecular Pharmacology, The California Institute for Quantitative Biomedical Research, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Emilie Battivelli
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jonathan Chan
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - J Peter Svensson
- Karolinska Institutet, Department of Biosciences and Nutrition, Novum, 141 83 Huddinge, Sweden
| | - Andrea Gramatica
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ryan J Conrad
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Warner C Greene
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nevan J Krogan
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, The California Institute for Quantitative Biomedical Research, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, The California Institute for Quantitative Biomedical Research, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Eric Verdin
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
108
|
A chalcone derivative reactivates latent HIV-1 transcription through activating P-TEFb and promoting Tat-SEC interaction on viral promoter. Sci Rep 2017; 7:10657. [PMID: 28878233 PMCID: PMC5587564 DOI: 10.1038/s41598-017-10728-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/14/2017] [Indexed: 12/12/2022] Open
Abstract
The principal barrier to the eradication of HIV/AIDS is the existence of latent viral reservoirs. One strategy to overcome this barrier is to use latency-reversing agents (LRAs) to reactivate the latent proviruses, which can then be eliminated by effective anti-retroviral therapy. Although a number of LRAs have been found to reactivate latent HIV, they have not been used clinically due to high toxicity and poor efficacy. In this study, we report the identification of a chalcone analogue called Amt-87 that can significantly reactivate the transcription of latent HIV provirses and act synergistically with known LRAs such as prostratin and JQ1 to reverse latency. Amt-87 works by activating the human transcriptional elongation factor P-TEFb, a CDK9-cyclin T1 heterodimer that is part of the super elongation complex (SEC) used by the viral encoded Tat protein to activate HIV transcription. Amt-87 does so by promoting the phosphorylation of CDK9 at the T-loop, liberating P-TEFb from the inactive 7SK snRNP, and inducing the formation of the Tat-SEC complex at the viral promoter. Together, our data reveal chalcones as a promising category of compounds that should be further explored to identify effective LRAs for targeted reversal of HIV latency.
Collapse
|
109
|
Wang P, Lu P, Qu X, Shen Y, Zeng H, Zhu X, Zhu Y, Li X, Wu H, Xu J, Lu H, Ma Z, Zhu H. Reactivation of HIV-1 from Latency by an Ingenol Derivative from Euphorbia Kansui. Sci Rep 2017; 7:9451. [PMID: 28842560 PMCID: PMC5573388 DOI: 10.1038/s41598-017-07157-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/23/2017] [Indexed: 02/07/2023] Open
Abstract
Cells harboring latent HIV-1 pose a major obstacle to eradication of the virus. The ‘shock and kill’ strategy has been broadly explored to purge the latent reservoir; however, none of the current latency-reversing agents (LRAs) can safely and effectively activate the latent virus in patients. In this study, we report an ingenol derivative called EK-16A, isolated from the traditional Chinese medicinal herb Euphorbia kansui, which displays great potential in reactivating latent HIV-1. A comparison of the doses used to measure the potency indicated EK-16A to be 200-fold more potent than prostratin in reactivating HIV-1 from latently infected cell lines. EK-16A also outperformed prostratin in ex vivo studies on cells from HIV-1-infected individuals, while maintaining minimal cytotoxicity effects on cell viability and T cell activation. Furthermore, EK-16A exhibited synergy with other LRAs in reactivating latent HIV-1. Mechanistic studies indicated EK-16A to be a PKCγ activator, which promoted both HIV-1 transcription initiation by NF-κB and elongation by P-TEFb signal pathways. Further investigations aimed to add this compound to the therapeutic arsenal for HIV-1 eradication are in the pipeline.
Collapse
Affiliation(s)
- Pengfei Wang
- State Key Laboratory of Genetic Engineering and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Panpan Lu
- State Key Laboratory of Genetic Engineering and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xiying Qu
- State Key Laboratory of Genetic Engineering and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yinzhong Shen
- Department of Infectious Diseases, and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200433, China
| | - Hanxian Zeng
- State Key Laboratory of Genetic Engineering and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xiaoli Zhu
- State Key Laboratory of Genetic Engineering and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yuqi Zhu
- State Key Laboratory of Genetic Engineering and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xian Li
- State Key Laboratory of Genetic Engineering and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Hao Wu
- Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing, 100069, China
| | - Jianqing Xu
- Department of Infectious Diseases, and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200433, China
| | - Hongzhou Lu
- Department of Infectious Diseases, and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200433, China
| | - Zhongjun Ma
- Institute of Marine Biology, Ocean College, Zhejiang University, Hangzhou, 310058, China.
| | - Huanzhang Zhu
- State Key Laboratory of Genetic Engineering and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
110
|
Abstract
PURPOSE OF REVIEW The 'shock and kill' strategy consists of activating HIV-1 expression to allow latently infected cells to die from viral cytopathic effects or host cytolytic immune effectors. This strategy relies on small molecules, called latency reversing agents, which activate HIV transcription. RECENT FINDINGS Several mechanisms operating at the transcriptional level are involved in the establishment and maintenance of HIV-1 latency, including the absence of crucial inducible host transcription factors, epigenetic silencing, and the sequestration of the positive transcription elongation factor B. Progresses made toward the understanding of the molecular mechanisms of HIV-1 transcriptional repression have led to the identification of latency reversing agents that activate HIV transcription, such as histone deacetylase inhibitors or protein kinase C agonists. Multiple studies have recently pointed interesting ways to optimize the shock strategy by using combinations of latency reversing agents with an appropriate time schedule. SUMMARY Combining latency reversing agents appears as one potential strategy for therapy against HIV-1 latency.
Collapse
|
111
|
Beliakova-Bethell N, Hezareh M, Wong JK, Strain MC, Lewinski MK, Richman DD, Spina CA. Relative efficacy of T cell stimuli as inducers of productive HIV-1 replication in latently infected CD4 lymphocytes from patients on suppressive cART. Virology 2017; 508:127-133. [PMID: 28527342 DOI: 10.1016/j.virol.2017.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 10/19/2022]
Abstract
Quantification of cell-associated replication-competent HIV, in blood samples from patients with undetectable plasma viremia, requires specialized culture conditions that include exogenous pan T cell stimulation. Different research groups have used several stimuli for this purpose; however, the relative efficacies of these T cell stimuli to induce productive HIV replication from latently infected cells ex vivo have not been systematically evaluated. To this end, we compared four commonly used T cell stimuli: 1) irradiated allogeneic cells plus phytohaemagglutinin (PHA); 2) PHA alone; 3) phorbol myristate acetate plus Ionomycin; and 4) immobilized αCD3 plus αCD28 antibodies. End-point dilutions of patient CD4 T cells were performed, using virion RNA production to quantify HIV induction. Our results demonstrated that these activation approaches were not equivalent and that antibody cross-linking of CD3 and CD28 membrane receptors was the most effective means to activate HIV replication from a resting cell state, closely followed by stimulation with irradiated allogeneic cells plus PHA.
Collapse
Affiliation(s)
- Nadejda Beliakova-Bethell
- VA San Diego Healthcare System, 3350 La Jolla Village Dr., San Diego, CA 92161, USA; University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Marjan Hezareh
- University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Joseph K Wong
- VA San Diego Healthcare System, 3350 La Jolla Village Dr., San Diego, CA 92161, USA; University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Matthew C Strain
- University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Mary K Lewinski
- VA San Diego Healthcare System, 3350 La Jolla Village Dr., San Diego, CA 92161, USA; University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Douglas D Richman
- VA San Diego Healthcare System, 3350 La Jolla Village Dr., San Diego, CA 92161, USA; University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Celsa A Spina
- VA San Diego Healthcare System, 3350 La Jolla Village Dr., San Diego, CA 92161, USA; University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA.
| |
Collapse
|
112
|
Datta PK, Kaminski R, Hu W, Pirrone V, Sullivan NT, Nonnemacher MR, Dampier W, Wigdahl B, Khalili K. HIV-1 Latency and Eradication: Past, Present and Future. Curr HIV Res 2017; 14:431-441. [PMID: 27009094 DOI: 10.2174/1570162x14666160324125536] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/04/2015] [Accepted: 01/16/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND It is well established that antiretroviral therapy (ART), while highly effective in controlling HIV replication, cannot eliminate virus from the body. Therefore, the majority of HIV-1-infected individuals remain at risk for developing AIDS due to persistence of infected reservoir cells serving as a source of virus re-emergence. Several reservoirs containing replication competent HIV-1 have been identified, most notably CD4+ T cells. Cells of the myeloid lineage, which are the first line of defense against pathogens and participate in HIV dissemination into sanctuary organs, also serve as cellular reservoirs of HIV-1. In latently infected resting CD4+ T cells, the integrated copies of proviral DNA remain in a dormant state, yet possess the ability to produce replication competent virus after cellular activation. Studies have demonstrated that modification of chromatin structure plays a role in establishing persistence, in part suggesting that latency is, controlled epigenetically. CONCLUSION Current efforts to eradicate HIV-1 from this cell population focus primarily on a "shock and kill" approach through cellular reactivation to trigger elimination of virus producing cells by cytolysis or host immune responses. However, studies revealed several limitations to this approach that require more investigation to assess its clinical application. Recent advances in gene editing technology prompted use of this approach for inactivating integrated proviral DNA in the genome of latently infected cells. This technology, which requires a detailed understanding of the viral genetics and robust delivery, may serve as a powerful strategy to eliminate the latent reservoir in the host leading to a sterile cure of AIDS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology and Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, 7th Floor, Philadelphia, PA 19140, USA.
| |
Collapse
|
113
|
Boehm D, Ott M. Flow Cytometric Analysis of Drug-induced HIV-1 Transcriptional Activity in A2 and A72 J-Lat Cell Lines. Bio Protoc 2017; 7:e2290. [PMID: 28835903 DOI: 10.21769/bioprotoc.2290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The main obstacle to eradicating HIV-1 from patients is post-integration latency (Finzi et al., 1999). Antiretroviral treatments target only actively replicating virus, while latent infections that have low or no transcriptional activity remain untreated (Sedaghat et al., 2007). A combination of antiretroviral treatments with latency-purging strategies may accelerate the depletion of latent reservoirs and lead to a cure (Geeraert et al., 2008). Current strategies to reactivate HIV-1 from latency include use of prostratin, a non-tumor-promoting phorbol ester (Williams et al., 2004), BET inhibitors (Filippakopoulos et al., 2010; Delmore et al., 2011), and histone deacetylase (HDAC) inhibitors, such as suberoylanilidehydroxamic acid (i.e., SAHA or Vorinostat) (Kelly et al., 2003; Archin et al., 2009; Contreras et al., 2009; Edelstein et al., 2009). As the mechanisms of HIV-1 latency are diverse, effective reactivation may require combinatorial strategies (Quivy et al., 2002). The following protocol describes a flow cytometry-based method to quantify transcriptional activation of the HIV-1 long terminal repeat (LTR) upon drug treatment. This protocol is optimized for studying latently HIV-1-infected Jurkat (J-Lat) cell lines that contain a GFP cassette. J-Lats that contain a different reporter, for example Luciferase, can be treated with drugs as described but have to be analyzed differently.
Collapse
Affiliation(s)
- Daniela Boehm
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA.,Department of Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
114
|
Heusinger E, Kirchhoff F. Primate Lentiviruses Modulate NF-κB Activity by Multiple Mechanisms to Fine-Tune Viral and Cellular Gene Expression. Front Microbiol 2017; 8:198. [PMID: 28261165 PMCID: PMC5306280 DOI: 10.3389/fmicb.2017.00198] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 01/27/2017] [Indexed: 12/15/2022] Open
Abstract
The transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) plays a complex role during the replication of primate lentiviruses. On the one hand, NF-κB is essential for induction of efficient proviral gene expression. On the other hand, this transcription factor contributes to the innate immune response and induces expression of numerous cellular antiviral genes. Recent data suggest that primate lentiviruses cope with this challenge by boosting NF-κB activity early during the replication cycle to initiate Tat-driven viral transcription and suppressing it at later stages to minimize antiviral gene expression. Human and simian immunodeficiency viruses (HIV and SIV, respectively) initially exploit their accessory Nef protein to increase the responsiveness of infected CD4+ T cells to stimulation. Increased NF-κB activity initiates Tat expression and productive replication. These events happen quickly after infection since Nef is rapidly expressed at high levels. Later during infection, Nef proteins of HIV-2 and most SIVs exert a very different effect: by down-modulating the CD3 receptor, an essential factor for T cell receptor (TCR) signaling, they prevent stimulation of CD4+ T cells via antigen-presenting cells and hence suppress further induction of NF-κB and an effective antiviral immune response. Efficient LTR-driven viral transcription is maintained because it is largely independent of NF-κB in the presence of Tat. In contrast, human immunodeficiency virus type 1 (HIV-1) and its simian precursors have lost the CD3 down-modulation function of Nef and use the late viral protein U (Vpu) to inhibit NF-κB activity by suppressing its nuclear translocation. In this review, we discuss how HIV-1 and other primate lentiviruses might balance viral and antiviral gene expression through a tight temporal regulation of NF-κB activity throughout their replication cycle.
Collapse
Affiliation(s)
- Elena Heusinger
- Institute of Molecular Virology, Ulm University Medical Center Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center Ulm, Germany
| |
Collapse
|
115
|
Promising Role of Toll-Like Receptor 8 Agonist in Concert with Prostratin for Activation of Silent HIV. J Virol 2017; 91:JVI.02084-16. [PMID: 27928016 DOI: 10.1128/jvi.02084-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 11/29/2016] [Indexed: 01/03/2023] Open
Abstract
The persistence of latently HIV-infected cells in patients under combined antiretroviral treatment (cART) remains the major hurdle for HIV eradication. Thus far, individual compounds have not been sufficiently potent to reactivate latent virus and guarantee its elimination in vivo. Thus, we hypothesized that transcriptional enhancers, in concert with compounds triggering the innate immune system, are more efficient in reversing latency by creating a Th1 supportive milieu that acts against latently HIV-infected cells at various levels. To test our hypothesis, we screened six compounds on a coculture of latently infected cells (J-lat) and monocyte-derived dendritic cells (MDDCs). The protein kinase C (PKC) agonist prostratin, with a Toll-like receptor 8 (TLR8) agonist, resulted in greater reversion of HIV latency than any single compound. This combinatorial approach led to a drastic phenotypic and functional maturation of the MDDCs. Tumor necrosis factor (TNF) and cell-cell interactions were crucial for the greater reversion observed. Similarly, we found a greater potency of the combination of prostratin and TLR8 agonist in reversing HIV latency when applying it to primary cells of HIV-infected patients. Thus, we demonstrate here the synergistic interplay between TLR8-matured MDDCs and compounds acting directly on latently HIV-infected cells, targeting different mechanisms of latency, by triggering various signaling pathways. Moreover, TLR8 triggering may reverse exhaustion of HIV-specific cytotoxic T lymphocytes that might be essential for killing or constraining the latently infected cells. IMPORTANCE Curing HIV is the Holy Grail. The so-called "shock and kill" strategy relies on drug-mediated reversion of HIV latency and the subsequent death of those cells under combined antiretroviral treatment. So far, no compound achieves efficient reversal of latency or eliminates this latent reservoir. The compounds may not target all of the latency mechanisms in all latently infected cells. Moreover, HIV-associated exhaustion of the immune system hinders the efficient elimination of the reactivated cells. In this study, we demonstrated synergistic latency reversion by combining agonists for protein kinase C and Toll-like receptor 8 in a coculture of latently infected cells with myeloid dendritic cells. The drug prostratin stimulates directly the transcriptional machinery of latently infected cells, and the TLR8 agonist acts indirectly by maturing dendritic cells. These findings highlight the importance of the immune system and its activation, in combination with direct-acting compounds, to reverse latency.
Collapse
|
116
|
Spivak AM, Larragoite ET, Coletti ML, Macedo AB, Martins LJ, Bosque A, Planelles V. Janus kinase inhibition suppresses PKC-induced cytokine release without affecting HIV-1 latency reversal ex vivo. Retrovirology 2016; 13:88. [PMID: 27998278 PMCID: PMC5175306 DOI: 10.1186/s12977-016-0319-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/25/2016] [Indexed: 11/10/2022] Open
Abstract
Background Despite the durable viral suppression afforded by antiretroviral therapy, HIV-1 eradication will require strategies to target latently infected cells that persist in infected individuals. Protein kinase C (PKC) activation is a promising strategy to reactivate latent proviruses and allow for subsequent recognition and clearance of infected cells by the immune system. Ingenol derivatives are PKC agonists that induce latency reversal but also lead to T cell activation and the release of pro-inflammatory cytokines, which would be undesirable in vivo. In this work, we sought to identify compounds that would suppress pro-inflammatory cytokine production in the context of PKC activation. Design and methods We performed an in vitro screen to identify compounds that could dampen pro-inflammatory cytokine release associated with T cell activation, using IL-6 as a model cytokine. We then tested the ability of the most promising screening hit, the FDA-approved Janus Kinase (JAK) inhibitor ruxolitinib, to diminish release of multiple cytokines and its effect on latency reversal using cells from HIV-1-positive, aviremic participants. Results We demonstrate that co-administration of ruxolitinib with ingenol-3,20-dibenzoate significantly reduces pro-inflammatory cytokine release without impairing latency reversal ex vivo. Conclusion The combination of ingenol compounds and JAK inhibition represents a novel strategy for HIV-1 eradication. Electronic supplementary material The online version of this article (doi:10.1186/s12977-016-0319-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adam M Spivak
- Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Erin T Larragoite
- Department of Pathology, University of Utah School of Medicine, Emma Eccles Jones Medical Research Building Room 2520, 15 North Medical Drive East, Salt Lake City, UT, 84112, USA
| | - McKenna L Coletti
- Department of Pathology, University of Utah School of Medicine, Emma Eccles Jones Medical Research Building Room 2520, 15 North Medical Drive East, Salt Lake City, UT, 84112, USA
| | - Amanda B Macedo
- Department of Pathology, University of Utah School of Medicine, Emma Eccles Jones Medical Research Building Room 2520, 15 North Medical Drive East, Salt Lake City, UT, 84112, USA
| | - Laura J Martins
- Department of Pathology, University of Utah School of Medicine, Emma Eccles Jones Medical Research Building Room 2520, 15 North Medical Drive East, Salt Lake City, UT, 84112, USA
| | - Alberto Bosque
- Department of Pathology, University of Utah School of Medicine, Emma Eccles Jones Medical Research Building Room 2520, 15 North Medical Drive East, Salt Lake City, UT, 84112, USA
| | - Vicente Planelles
- Department of Pathology, University of Utah School of Medicine, Emma Eccles Jones Medical Research Building Room 2520, 15 North Medical Drive East, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
117
|
Dental C, Proust A, Ouellet M, Barat C, Tremblay MJ. HIV-1 Latency-Reversing Agents Prostratin and Bryostatin-1 Induce Blood-Brain Barrier Disruption/Inflammation and Modulate Leukocyte Adhesion/Transmigration. THE JOURNAL OF IMMUNOLOGY 2016; 198:1229-1241. [PMID: 27994072 DOI: 10.4049/jimmunol.1600742] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 11/17/2016] [Indexed: 12/17/2022]
Abstract
A shock-and-kill approach involving the simultaneous treatment of HIV-1-infected patients with latency-reversing agents (LRAs) and combination antiretroviral therapy was proposed as a means to eradicate viral reservoirs. Currently available LRAs cannot discriminate between HIV-1-infected and uninfected cells. Therefore, the risks and benefits of using broad-spectrum LRAs need to be carefully evaluated, particularly in the CNS, where inflammation and leukocyte transmigration must be tightly regulated. We used a real-time impedance-sensing system to dynamically record the impact of different classes of LRAs on the integrity of tight monolayers of the immortalized human cerebral microvascular endothelial cell line hCMEC/D3. Results show that prostratin and bryostatin-1 can significantly damage the integrity of an endothelial monolayer. Moreover, prostratin and bryostatin-1 induce secretion of some proinflammatory cytokines and an increase of ICAM-1 expression. Additional studies demonstrated that prostratin and bryostatin-1 also affect adhesion and transmigration of CD4+ and CD8+ T cells as well as monocytes in an in vitro human blood-brain barrier (BBB) model. Prostratin and bryostatin-1 could thus be considered as potent regulators of BBB permeability and inflammation that influence leukocyte transport across the BBB. Altogether, these findings contribute to a better understanding of the potential risks and benefits of using a shock-and-kill approach with LRAs on the normal physiological functions of the BBB.
Collapse
Affiliation(s)
- Clélia Dental
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec G1V 4G2, Canada; and
| | - Alizé Proust
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec G1V 4G2, Canada; and
| | - Michel Ouellet
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec G1V 4G2, Canada; and
| | - Corinne Barat
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec G1V 4G2, Canada; and
| | - Michel J Tremblay
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec G1V 4G2, Canada; and .,Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Quebec City, Quebec G1V 0A6, Canada
| |
Collapse
|
118
|
Brogdon J, Ziani W, Wang X, Veazey RS, Xu H. In vitro effects of the small-molecule protein kinase C agonists on HIV latency reactivation. Sci Rep 2016; 6:39032. [PMID: 27941949 PMCID: PMC5150635 DOI: 10.1038/srep39032] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/16/2016] [Indexed: 12/25/2022] Open
Abstract
The persistence of latently HIV-infected cellular reservoirs represents the major obstacle to virus eradication in patients under antiretroviral therapy (ART). Cure strategies to eliminate these reservoirs are thus needed to reactivate proviral gene expression in latently infected cells. In this study, we tested optimal concentrations of PKC agonist candidates (PEP005/Ingenol-3-angelate, prostratin, bryostatin-1, and JQ1) to reactivate HIV latency in vitro, and examined their effects on cell survival, activation and epigenetic histone methylation after treatment alone or in combination in cell line and isolated CD4 T cells from SIV-infected macaques. The results showed that PKC agonists increased cell activation with different degrees of latency reactivation, concomitant with reduced levels of histone methylation. With increasing concentrations, prostratin and byrostain-1 treatment rapidly reduced cell survival and cell activation. The PKC agonist combinations, or in combination with JQ1, led to modest levels of synergistic reactivation of HIV. Remarkably, PEP005 treatment alone caused marked reactivation of HIV latency, similar to PMA stimulation. These findings suggested that PEP005 alone, as indicated its lower cytotoxicity and lower effective dose inducing maximal reactivation, might be a candidate for effectively reactivating HIV latency as part of a therapeutic strategy for HIV infection.
Collapse
Affiliation(s)
- Jessica Brogdon
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433, USA
| | - Widade Ziani
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433, USA
| | - Xiaolei Wang
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433, USA
| | - Ronald S Veazey
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433, USA
| | - Huanbin Xu
- Tulane National Primate Research Center, Pathology and Laboratory Medicine, Tulane University School of Medicine, Covington, LA 70433, USA
| |
Collapse
|
119
|
Vemula SV, Maxwell JW, Nefedov A, Wan BL, Steve J, Newhard W, Sanchez RI, Tellers D, Barnard RJ, Blair W, Hazuda D, Webber AL, Howell BJ. Identification of proximal biomarkers of PKC agonism and evaluation of their role in HIV reactivation. Antiviral Res 2016; 139:161-170. [PMID: 27889530 DOI: 10.1016/j.antiviral.2016.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 11/18/2022]
Abstract
DESIGN The HIV latent CD4+ T cell reservoir is broadly recognized as a barrier to HIV cure. Induction of HIV expression using protein kinase C (PKC) agonists is one approach under investigation for reactivation of latently infected CD4+ T cells (Beans et al., 2013; Abreu et al., 2014; Jiang et al., 2014; Jiang and Dandekar, 2015). We proposed that an increased understanding of the molecular mechanisms of action of PKC agonists was necessary to inform on biological signaling and pharmacodynamic biomarkers. RNA sequencing (RNA Seq) was applied to identify genes and pathways modulated by PKC agonists. METHODS Human CD4+ T cells were treated ex vivo with Phorbol 12-myristate 13-acetate, prostatin or ingenol-3-angelate. At 3 h and 24 h post-treatment, cells were harvested and RNA-Seq was performed on RNA isolated from cell lysates. The genes differentially expressed across the PKC agonists were validated by quantitative RT-PCR (qPCR). A subset of genes was evaluated for their role in HIV reactivation using siRNA and CRISPR approaches in the Jurkat latency cell model. RESULTS Treatment of primary human CD4+ T cells with PKC agonists resulted in alterations in gene expression. qPCR of RNA Seq data confirmed upregulation of 24 genes, including CD69, Egr1, Egr2, Egr3, CSF2, DUSP5, and NR4A1. Gene knockdown of Egr1 and Egr3 resulted in reduced expression and decreased HIV reactivation in response to PKC agonist treatment, indicating a potential role for Egr family members in latency reversal. CONCLUSION Overall, our results offer new insights into the mechanism of action of PKC agonists, biomarkers of pathway engagement, and the potential role of EGR family in HIV reactivation.
Collapse
Affiliation(s)
| | - Jill W Maxwell
- Infectious Diseases and Vaccines, Merck & Co., West Point, PA, USA
| | - Alexey Nefedov
- Discovery Pharmacogenomics, Merck & Co., West Point, PA, USA
| | - Bang-Lin Wan
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., West Point, PA, USA
| | - Justin Steve
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., West Point, PA, USA
| | - William Newhard
- Infectious Diseases and Vaccines, Merck & Co., West Point, PA, USA
| | - Rosa I Sanchez
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., West Point, PA, USA
| | - David Tellers
- Medicinal Chemistry, Merck & Co., West Point, PA, USA
| | | | - Wade Blair
- Infectious Diseases and Vaccines, Merck & Co., West Point, PA, USA
| | - Daria Hazuda
- Infectious Diseases and Vaccines, Merck & Co., West Point, PA, USA
| | - Andrea L Webber
- Discovery Pharmacogenomics, Merck & Co., West Point, PA, USA
| | - Bonnie J Howell
- Infectious Diseases and Vaccines, Merck & Co., West Point, PA, USA.
| |
Collapse
|
120
|
Korwek Z, Tudelska K, Nałęcz-Jawecki P, Czerkies M, Prus W, Markiewicz J, Kochańczyk M, Lipniacki T. Importins promote high-frequency NF-κB oscillations increasing information channel capacity. Biol Direct 2016; 11:61. [PMID: 27835978 PMCID: PMC5106790 DOI: 10.1186/s13062-016-0164-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/29/2016] [Indexed: 12/18/2022] Open
Abstract
Background Importins and exportins influence gene expression by enabling nucleocytoplasmic shuttling of transcription factors. A key transcription factor of innate immunity, NF-κB, is sequestered in the cytoplasm by its inhibitor, IκBα, which masks nuclear localization sequence of NF-κB. In response to TNFα or LPS, IκBα is degraded, which allows importins to bind NF-κB and shepherd it across nuclear pores. NF-κB nuclear activity is terminated when newly synthesized IκBα enters the nucleus, binds NF-κB and exportin which directs the complex to the cytoplasm. Although importins/exportins are known to regulate spatiotemporal kinetics of NF-κB and other transcription factors governing innate immunity, the mechanistic details of these interactions have not been elucidated and mathematically modelled. Results Based on our quantitative experimental data, we pursue NF-κB system modelling by explicitly including NF-κB–importin and IκBα–exportin binding to show that the competition between importins and IκBα enables NF-κB nuclear translocation despite high levels of IκBα. These interactions reduce the effective relaxation time and allow the NF-κB regulatory pathway to respond to recurrent TNFα pulses of 45-min period, which is about twice shorter than the characteristic period of NF-κB oscillations. By stochastic simulations of model dynamics we demonstrate that randomly appearing, short TNFα pulses can be converted to essentially digital pulses of NF-κB activity, provided that intervals between input pulses are not shorter than 1 h. Conclusions By including interactions involving importin-α and exportin we bring the modelling of spatiotemporal kinetics of transcription factors to a more mechanistic level. Basing on the analysis of the pursued model we estimated the information transmission rate of the NF-κB pathway as 1 bit per hour. Reviewers This article was reviewed by Marek Kimmel, James Faeder and William Hlavacek. Electronic supplementary material The online version of this article (doi:10.1186/s13062-016-0164-z) contains supplementary material.
Collapse
Affiliation(s)
- Zbigniew Korwek
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Karolina Tudelska
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Paweł Nałęcz-Jawecki
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Warsaw, Poland
| | - Maciej Czerkies
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Wiktor Prus
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Markiewicz
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Marek Kochańczyk
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Lipniacki
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
121
|
Cole J, Morris P, Dickman MJ, Dockrell DH. The therapeutic potential of epigenetic manipulation during infectious diseases. Pharmacol Ther 2016; 167:85-99. [PMID: 27519803 PMCID: PMC5109899 DOI: 10.1016/j.pharmthera.2016.07.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 07/20/2016] [Indexed: 12/16/2022]
Abstract
Epigenetic modifications are increasingly recognized as playing an important role in the pathogenesis of infectious diseases. They represent a critical mechanism regulating transcriptional profiles in the immune system that contributes to the cell-type and stimulus specificity of the transcriptional response. Recent data highlight how epigenetic changes impact macrophage functional responses and polarization, influencing the innate immune system through macrophage tolerance and training. In this review we will explore how post-translational modifications of histone tails influence immune function to specific infectious diseases. We will describe how these may influence outcome, highlighting examples derived from responses to acute bacterial pathogens, models of sepsis, maintenance of viral latency and HIV infection. We will discuss how emerging classes of pharmacological agents, developed for use in oncology and other settings, have been applied to models of infectious diseases and their potential to modulate key aspects of the immune response to bacterial infection and HIV therapy.
Collapse
Affiliation(s)
- Joby Cole
- Department of Infection and Immunity, University of Sheffield Medical School, UK; Sheffield Teaching Hospitals, UK; Chemical and Biologic Engineering, University of Sheffield, UK
| | - Paul Morris
- Department of Infection and Immunity, University of Sheffield Medical School, UK; Sheffield Teaching Hospitals, UK
| | - Mark J Dickman
- Chemical and Biologic Engineering, University of Sheffield, UK
| | - David H Dockrell
- Department of Infection and Immunity, University of Sheffield Medical School, UK; Sheffield Teaching Hospitals, UK.
| |
Collapse
|
122
|
The Multifaceted Contributions of Chromatin to HIV-1 Integration, Transcription, and Latency. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 328:197-252. [PMID: 28069134 DOI: 10.1016/bs.ircmb.2016.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The capacity of the human immunodeficiency virus (HIV-1) to establish latent infections constitutes a major barrier to the development of a cure for HIV-1. In latent infection, replication competent HIV-1 provirus is integrated within the host genome but remains silent, masking the infected cells from the activity of the host immune response. Despite the progress in elucidating the molecular players that regulate HIV-1 gene expression, the mechanisms driving the establishment and maintenance of latency are still not fully understood. Transcription from the HIV-1 genome occurs in the context of chromatin and is subjected to the same regulatory mechanisms that drive cellular gene expression. Much like in eukaryotic genes, the nucleosomal landscape of the HIV-1 promoter and its position within genomic chromatin are determinants of its transcriptional activity. Understanding the multilayered chromatin-mediated mechanisms that underpin HIV-1 integration and expression is of utmost importance for the development of therapeutic strategies aimed at reducing the pool of latently infected cells. In this review, we discuss the impact of chromatin structure on viral integration, transcriptional regulation and latency, and the host factors that influence HIV-1 replication by regulating chromatin organization. Finally, we describe therapeutic strategies under development to target the chromatin-HIV-1 interplay.
Collapse
|
123
|
Lim H, Kim KC, Son J, Shin Y, Yoon CH, Kang C, Choi BS. Synergistic reactivation of latent HIV-1 provirus by PKA activator dibutyryl-cAMP in combination with an HDAC inhibitor. Virus Res 2016; 227:1-5. [PMID: 27677464 DOI: 10.1016/j.virusres.2016.09.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/23/2016] [Accepted: 09/23/2016] [Indexed: 12/29/2022]
Abstract
HIV-1 reservoirs remain a major barrier to HIV-1 eradication. Although combination antiretroviral therapy (cART) can successfully reduce viral replication, it cannot reactivate HIV-1 provirus in this reservoir. Therefore, HIV-1 provirus reactivation strategies by cell activation or epigenetic modification are proposed for the eradication of HIV-1 reservoirs. Although treatment with the protein kinase A (PKA) activator cyclic AMP (cAMP) or epigenetic modifying agents such as histone deacetylase inhibitors (HDACi) alone can induce HIV-1 reactivation in latently infected cells, the synergism of these agents has not been fully evaluated. In the present study, we observed that treatment with 500μM of dibutyryl-cAMP, 1μM of vorinostat, or 1μM of trichostatin A alone effectively reactivated HIV-1 in both ACH2 and NCHA1 cells latently infected with HIV-1 without cytotoxicity. In addition, treatment with the PKA inhibitor KT5720 reduced the increased HIV-1 p24 level in the supernatant of these cells. After dibutyryl-cAMP treatment, we found an increased level of the PKA substrate phosphorylated cyclic AMP response element-binding protein. When we treated cells with a combination of dibutyryl-cAMP and vorinostat or trichostatin A, the levels of HIV-1 p24 in the supernatant and levels of intracellular HIV-1 p24 were dramatically increased in both ACH2 and NCHA1 cells compared with those treated with a single agent. These results suggest that combined treatment with a PKA activator and an HDACi is effective for reactivating HIV-1 in latently infected cells, and may be an important approach to eradicate HIV-1 reservoirs.
Collapse
Affiliation(s)
- Hoyong Lim
- Division of AIDS, Center for Immunology and Pathology, Korea National Institute of Health, Chung-buk, Republic of Korea
| | - Kyung-Chang Kim
- Division of AIDS, Center for Immunology and Pathology, Korea National Institute of Health, Chung-buk, Republic of Korea
| | - Junseock Son
- Division of AIDS, Center for Immunology and Pathology, Korea National Institute of Health, Chung-buk, Republic of Korea
| | - Younghyun Shin
- Division of AIDS, Center for Immunology and Pathology, Korea National Institute of Health, Chung-buk, Republic of Korea
| | - Cheol-Hee Yoon
- Division of AIDS, Center for Immunology and Pathology, Korea National Institute of Health, Chung-buk, Republic of Korea
| | - Chun Kang
- Division of AIDS, Center for Immunology and Pathology, Korea National Institute of Health, Chung-buk, Republic of Korea
| | - Byeong-Sun Choi
- Division of AIDS, Center for Immunology and Pathology, Korea National Institute of Health, Chung-buk, Republic of Korea.
| |
Collapse
|
124
|
Clutton G, Xu Y, Baldoni PL, Mollan KR, Kirchherr J, Newhard W, Cox K, Kuruc JD, Kashuba A, Barnard R, Archin N, Gay CL, Hudgens MG, Margolis DM, Goonetilleke N. The differential short- and long-term effects of HIV-1 latency-reversing agents on T cell function. Sci Rep 2016; 6:30749. [PMID: 27480951 PMCID: PMC4969750 DOI: 10.1038/srep30749] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/07/2016] [Indexed: 01/12/2023] Open
Abstract
Despite the extraordinary success of HIV-1 antiretroviral therapy in prolonging life, infected individuals face lifelong therapy because of a reservoir of latently-infected cells that harbor replication competent virus. Recently, compounds have been identified that can reverse HIV-1 latency in vivo. These latency- reversing agents (LRAs) could make latently-infected cells vulnerable to clearance by immune cells, including cytolytic CD8+ T cells. We investigated the effects of two leading LRA classes on CD8+ T cell phenotype and function: the histone deacetylase inhibitors (HDACis) and protein kinase C modulators (PKCms). We observed that relative to HDACis, the PKCms induced much stronger T cell activation coupled with non-specific cytokine production and T cell proliferation. When examining antigen-specific CD8+ T cell function, all the LRAs except the HDACi Vorinostat reduced, but did not abolish, one or more measurements of CD8+ T cell function. Importantly, the extent and timing of these effects differed between LRAs. Panobinostat had detrimental effects within 10 hours of drug treatment, whereas the effects of the other LRAs were observed between 48 hours and 5 days. These observations suggest that scheduling of LRA and CD8+ T cell immunotherapy regimens may be critical for optimal clearance of the HIV-1 reservoir.
Collapse
Affiliation(s)
- G Clutton
- Department of Microbiology &Immunology, UNC Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Y Xu
- Department of Microbiology &Immunology, UNC Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - P L Baldoni
- Department of Biostatistics, UNC Chapel Hill, Chapel Hill, North Carolina, USA
| | - K R Mollan
- Lineberger Comprehensive Care Center, UNC Chapel Hill, Chapel Hill, North Carolina, USA
| | - J Kirchherr
- Department of Medicine and UNC HIV Cure Center, UNC Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - W Newhard
- Merck Research Laboratories, White Horse Junction, Pennsylvania, USA
| | - Kara Cox
- Merck Research Laboratories, White Horse Junction, Pennsylvania, USA
| | - J D Kuruc
- Department of Medicine and UNC HIV Cure Center, UNC Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - A Kashuba
- Eshelman School of Pharmacy, UNC Chapel Hill, North Carolina, USA
| | - R Barnard
- Merck Research Laboratories, White Horse Junction, Pennsylvania, USA
| | - N Archin
- Department of Medicine and UNC HIV Cure Center, UNC Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - C L Gay
- Department of Medicine and UNC HIV Cure Center, UNC Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - M G Hudgens
- Department of Biostatistics, UNC Chapel Hill, Chapel Hill, North Carolina, USA
| | - D M Margolis
- Department of Microbiology &Immunology, UNC Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA.,Department of Medicine and UNC HIV Cure Center, UNC Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - N Goonetilleke
- Department of Microbiology &Immunology, UNC Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA.,Department of Medicine and UNC HIV Cure Center, UNC Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
125
|
HMBA Enhances Prostratin-Induced Activation of Latent HIV-1 via Suppressing the Expression of Negative Feedback Regulator A20/TNFAIP3 in NF-κB Signaling. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5173205. [PMID: 27529070 PMCID: PMC4978819 DOI: 10.1155/2016/5173205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 06/21/2016] [Indexed: 01/05/2023]
Abstract
In the past decade, much emphasis has been put on the transcriptional activation of HIV-1, which is proposed as a promised strategy for eradicating latent HIV-1 provirus. Two drugs, prostratin and hexamethylene bisacetamide (HMBA), have shown potent effects as inducers for releasing HIV-1 latency when used alone or in combination, although their cellular target(s) are currently not well understood, especially under drug combination. Here, we have shown that HMBA and prostratin synergistically release HIV-1 latency via different mechanisms. While prostratin strongly stimulates HMBA-induced HIV-1 transcription via improved P-TEFb activation, HMBA is capable of boosting NF-κB-dependent transcription initiation by suppressing prostratin-induced expression of the deubiquitinase A20, a negative feedback regulator in the NF-κB signaling pathway. In addition, HMBA was able to increase prostratin-induced phosphorylation and degradation of NF-κB inhibitor IκBα, thereby enhancing and prolonging prostratin-induced nuclear translocation of NF-κB, a prerequisite for stimulation of transcription initiation. Thus, by blocking the negative feedback circuit, HMBA functions as a signaling enhancer of the NF-κB signaling pathway.
Collapse
|
126
|
Long-Term Spontaneous Control of HIV-1 Is Related to Low Frequency of Infected Cells and Inefficient Viral Reactivation. J Virol 2016; 90:6148-6158. [PMID: 27122576 DOI: 10.1128/jvi.00419-16] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/18/2016] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED HIV establishes reservoirs of infected cells that persist despite effective antiretroviral therapy (ART). In most patients, the virus begins to replicate soon after treatment interruption. However, a low frequency of infected cells at the time of treatment interruption has been associated with delayed viral rebound. Likewise, individuals who control the infection spontaneously, so-called HIV-1 controllers (HICs), carry particularly low levels of infected cells. It is unclear, however, whether and how this small number of infected cells contributes to durable viral control. Here we compared 38 HICs with 12 patients on effective combined antiretroviral therapy (cART) and found that the low frequency of infected cells in the former subjects was associated both with less efficient viral reactivation in resting CD4(+) T cells and with less efficient virion production ex vivo We also found that a potent HIV-specific CD8(+) T cell response was present only in those HICs whose CD4(+) T cells produced virus ex vivo Long-term spontaneous control of HIV infection in HICs thus appears to be sustained on the basis of the inefficient reactivation of viruses from a limited number of infected cells and the capacity of HICs to activate a potent HIV-specific CD8(+) T cell response to counteract efficient viral reactivation events. IMPORTANCE There is a strong scientific interest in developing strategies to eradicate the HIV-1 reservoir. Very rare HIV-1-infected patients are able to spontaneously control viremia for long periods of time (HIV-1 controllers [HICs]) and are put forward as a model of HIV-1 remission. Here, we show that the low viral reservoirs found in HICs are a critical part of the mechanisms underlying viral control and result in a lower probability of HIV-1 reactivation events, resulting in limited HIV-1 release and spread. We found that those HICs in whom viral reactivation and spread from CD4(+) T cells in vitro were the most difficult were those with diminished CD8(+) T cell responses. These results suggest that, in some settings, low HIV-1 reservoirs decisively contribute to at least the temporary control of infection without antiretroviral therapy. We believe that this work provides information of relevance in the context of the search for HIV-1 remission.
Collapse
|
127
|
Abdel-Mohsen M, Chavez L, Tandon R, Chew GM, Deng X, Danesh A, Keating S, Lanteri M, Samuels ML, Hoh R, Sacha JB, Norris PJ, Niki T, Shikuma CM, Hirashima M, Deeks SG, Ndhlovu LC, Pillai SK. Human Galectin-9 Is a Potent Mediator of HIV Transcription and Reactivation. PLoS Pathog 2016; 12:e1005677. [PMID: 27253379 PMCID: PMC4890776 DOI: 10.1371/journal.ppat.1005677] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/12/2016] [Indexed: 02/06/2023] Open
Abstract
Identifying host immune determinants governing HIV transcription, latency and infectivity in vivo is critical to developing an HIV cure. Based on our recent finding that the host factor p21 regulates HIV transcription during antiretroviral therapy (ART), and published data demonstrating that the human carbohydrate-binding immunomodulatory protein galectin-9 regulates p21, we hypothesized that galectin-9 modulates HIV transcription. We report that the administration of a recombinant, stable form of galectin-9 (rGal-9) potently reverses HIV latency in vitro in the J-Lat HIV latency model. Furthermore, rGal-9 reverses HIV latency ex vivo in primary CD4+ T cells from HIV-infected, ART-suppressed individuals (p = 0.002), more potently than vorinostat (p = 0.02). rGal-9 co-administration with the latency reversal agent "JQ1", a bromodomain inhibitor, exhibits synergistic activity (p<0.05). rGal-9 signals through N-linked oligosaccharides and O-linked hexasaccharides on the T cell surface, modulating the gene expression levels of key transcription initiation, promoter proximal-pausing, and chromatin remodeling factors that regulate HIV latency. Beyond latent viral reactivation, rGal-9 induces robust expression of the host antiviral deaminase APOBEC3G in vitro and ex vivo (FDR<0.006) and significantly reduces infectivity of progeny virus, decreasing the probability that the HIV reservoir will be replenished when latency is reversed therapeutically. Lastly, endogenous levels of soluble galectin-9 in the plasma of 72 HIV-infected ART-suppressed individuals were associated with levels of HIV RNA in CD4+ T cells (p<0.02) and with the quantity and binding avidity of circulating anti-HIV antibodies (p<0.009), suggesting a role of galectin-9 in regulating HIV transcription and viral production in vivo during therapy. Our data suggest that galectin-9 and the host glycosylation machinery should be explored as foundations for novel HIV cure strategies.
Collapse
Affiliation(s)
- Mohamed Abdel-Mohsen
- Blood Systems Research Institute, San Francisco, California, United States of America
- University of California, San Francisco, California, United States of America
| | - Leonard Chavez
- Blood Systems Research Institute, San Francisco, California, United States of America
| | - Ravi Tandon
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Glen M. Chew
- Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Xutao Deng
- Blood Systems Research Institute, San Francisco, California, United States of America
| | - Ali Danesh
- Blood Systems Research Institute, San Francisco, California, United States of America
- University of California, San Francisco, California, United States of America
| | - Sheila Keating
- Blood Systems Research Institute, San Francisco, California, United States of America
| | - Marion Lanteri
- Blood Systems Research Institute, San Francisco, California, United States of America
| | - Michael L. Samuels
- RainDance Technologies, Inc., Billerica, Massachusetts, United States of America
| | - Rebecca Hoh
- University of California, San Francisco, California, United States of America
| | - Jonah B. Sacha
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Philip J. Norris
- Blood Systems Research Institute, San Francisco, California, United States of America
- University of California, San Francisco, California, United States of America
| | - Toshiro Niki
- GalPharma Co., Ltd., Takamatsu-shi, Kagawa, Japan
- Department of Immunology and Immunopathology, Kagawa University, Kagawa, Japan
| | - Cecilia M. Shikuma
- Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Mitsuomi Hirashima
- GalPharma Co., Ltd., Takamatsu-shi, Kagawa, Japan
- Department of Immunology and Immunopathology, Kagawa University, Kagawa, Japan
| | - Steven G. Deeks
- University of California, San Francisco, California, United States of America
| | - Lishomwa C. Ndhlovu
- Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Satish K. Pillai
- Blood Systems Research Institute, San Francisco, California, United States of America
- University of California, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
128
|
Pan XY, Zhao W, Zeng XY, Lin J, Li MM, Shen XT, Liu SW. Heat Shock Factor 1 Mediates Latent HIV Reactivation. Sci Rep 2016; 6:26294. [PMID: 27189267 PMCID: PMC4870680 DOI: 10.1038/srep26294] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 04/29/2016] [Indexed: 02/06/2023] Open
Abstract
HSF1, a conserved heat shock factor, has emerged as a key regulator of mammalian transcription in response to cellular metabolic status and stress. To our knowledge, it is not known whether HSF1 regulates viral transcription, particularly HIV-1 and its latent form. Here we reveal that HSF1 extensively participates in HIV transcription and is critical for HIV latent reactivation. Mode of action studies demonstrated that HSF1 binds to the HIV 5'-LTR to reactivate viral transcription and recruits a family of closely related multi-subunit complexes, including p300 and p-TEFb. And HSF1 recruits p300 for self-acetylation is also a committed step. The knockout of HSF1 impaired HIV transcription, whereas the conditional over-expression of HSF1 improved that. These findings demonstrate that HSF1 positively regulates the transcription of latent HIV, suggesting that it might be an important target for different therapeutic strategies aimed at a cure for HIV/AIDS.
Collapse
Affiliation(s)
- Xiao-Yan Pan
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wei Zhao
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.,State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, China
| | - Xiao-Yun Zeng
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jian Lin
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Min-Min Li
- Center for Clinical Laboratory, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Xin-Tian Shen
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shu-Wen Liu
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.,State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, China
| |
Collapse
|
129
|
Walker-Sperling VE, Pohlmeyer CW, Tarwater PM, Blankson JN. The Effect of Latency Reversal Agents on Primary CD8+ T Cells: Implications for Shock and Kill Strategies for Human Immunodeficiency Virus Eradication. EBioMedicine 2016; 8:217-229. [PMID: 27428432 PMCID: PMC4919475 DOI: 10.1016/j.ebiom.2016.04.019] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/15/2016] [Accepted: 04/15/2016] [Indexed: 11/16/2022] Open
Abstract
Shock and kill strategies involving the use of small molecules to induce viral transcription in resting CD4 + T cells (shock) followed by immune mediated clearance of the reactivated cells (kill), have been proposed as a method of eliminating latently infected CD4 + T cells. The combination of the histone deacetylase (HDAC) inhibitor romidepsin and protein kinase C (PKC) agonist bryostatin-1 is very effective at reversing latency in vitro. However, we found that primary HIV-1 specific CD8 + T cells were not able to eliminate autologous resting CD4 + T cells that had been reactivated with these drugs. We tested the hypothesis that the drugs affected primary CD8 + T cell function and found that both agents had inhibitory effects on the suppressive capacity of HIV-specific CD8 + T cells from patients who control viral replication without antiretroviral therapy (elite suppressors/controllers). The inhibitory effect was additive and multi-factorial in nature. These inhibitory effects were not seen with prostratin, another PKC agonist, either alone or in combination with JQ1, a bromodomain-containing protein 4 inhibitor. Our results suggest that because of their adverse effects on primary CD8 + T cells, some LRAs may cause immune-suppression and therefore should be used with caution in shock and kill strategies. Latency reversal agents can reactivate HIV-1 expression in latently infected cells. CD8 T cells from HIV-1 infected patients did not eliminate reactivated latently infected cells. This finding can partially be explained by our data showing that latency reversal agents affect the function of CD8 + T cells.
Latently infected CD4 + T cells are a major barrier to the cure of HIV-1 infection. One strategy of eliminating these cells involves inducing viral transcription with small molecules (latency reversal agents or LRAs) which would result in the recognition of these cells by the immune system. We show here that CD8 + T cells were not able to eliminate CD4 + T cells from HIV-1-infected patients following stimulation with LRAs. Our data suggests that this may be partially because some LRAs affect the function of CD8 + T cells. Thus it will be critical to select LRAs that do not cause immune suppression.
Collapse
Affiliation(s)
| | - Christopher W Pohlmeyer
- Center for AIDS Research, Department of Medicine, Johns Hopkins University School of Medicine, USA
| | - Patrick M Tarwater
- Division of Biostatistics and Epidemiology, Paul L. Foster School of Medicine, El Paso, TX, USA
| | - Joel N Blankson
- Center for AIDS Research, Department of Medicine, Johns Hopkins University School of Medicine, USA.
| |
Collapse
|
130
|
The BET inhibitor OTX015 reactivates latent HIV-1 through P-TEFb. Sci Rep 2016; 6:24100. [PMID: 27067814 PMCID: PMC4828723 DOI: 10.1038/srep24100] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/21/2016] [Indexed: 12/13/2022] Open
Abstract
None of the currently used anti-HIV-1 agents can effectively eliminate latent HIV-1 reservoirs, which is a major hurdle to a complete cure for AIDS. We report here that a novel oral BET inhibitor OTX015, a thienotriazolodiazepine compound that has entered phase Ib clinical development for advanced hematologic malignancies, can effectively reactivate HIV-1 in different latency models with an EC50 value 1.95-4.34 times lower than JQ1, a known BET inhibitor that can reactivate HIV-1 latency. We also found that OTX015 was more potent when used in combination with prostratin. More importantly, OTX015 treatment induced HIV-1 full-length transcripts and viral outgrowth in resting CD4(+) T cells from infected individuals receiving suppressive antiretroviral therapy (ART), while exerting minimal toxicity and effects on T cell activation. Finally, biochemical analysis showed that OTX015-mediated activation of HIV-1 involved an increase in CDK9 occupancy and RNAP II C-terminal domain (CTD) phosphorylation. Our results suggest that the BET inhibitor OTX015 may be a candidate for anti-HIV-1-latency therapies.
Collapse
|
131
|
Wen J, Yan M, Liu Y, Li J, Xie Y, Lu Y, Kamata M, Chen ISY. Specific Elimination of Latently HIV-1 Infected Cells Using HIV-1 Protease-Sensitive Toxin Nanocapsules. PLoS One 2016; 11:e0151572. [PMID: 27049645 PMCID: PMC4822841 DOI: 10.1371/journal.pone.0151572] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/01/2016] [Indexed: 12/21/2022] Open
Abstract
Anti-retroviral drugs suppress HIV-1 plasma viremia to undetectable levels; however, latent HIV-1 persists in reservoirs within HIV-1-infected patients. The silent provirus can be activated through the use of drugs, including protein kinase C activators and histone deacetylase inhibitors. This “shock” approach is then followed by “kill” of the producing cells either through direct HIV-1-induced cell death or natural immune mechanisms. However, these mechanisms are relatively slow and effectiveness is unclear. Here, we develop an approach to specifically target and kill cells that are activated early in the process of virus production. We utilize a novel nanocapsule technology whereby the ricin A chain is encapsulated in an inactive form within a polymer shell. Specificity for release of the ricin A toxin is conferred by peptide crosslinkers that are sensitive to cleavage by HIV-1 protease. By using well-established latent infection models, J-Lat and U1 cells, we demonstrate that only within an HIV-1-producing cell expressing functional HIV-1 protease will the nanocapsule release its ricin A cargo, shutting down viral and cellular protein synthesis, and ultimately leading to rapid death of the producer cell. Thus, we provide proof of principle for a novel technology to kill HIV-1-producing cells without effects on non-target cells.
Collapse
Affiliation(s)
- Jing Wen
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at University of California, University of California Los Angeles, Los Angeles, California, United States of America
| | - Ming Yan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at University of California, University of California Los Angeles, Los Angeles, California, United States of America
| | - Yang Liu
- Department of Biomolecular and Chemical Engineering, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jie Li
- Department of Biomolecular and Chemical Engineering, University of California Los Angeles, Los Angeles, California, United States of America
| | - Yiming Xie
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at University of California, University of California Los Angeles, Los Angeles, California, United States of America
| | - Yunfeng Lu
- Department of Biomolecular and Chemical Engineering, University of California Los Angeles, Los Angeles, California, United States of America
- California NanoSystems Institute (CNSI), University of California Los Angeles, Los Angeles, California, United States of America
| | - Masakazu Kamata
- Division of Hematology-Oncology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (MK); (ISYC)
| | - Irvin S. Y. Chen
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at University of California, University of California Los Angeles, Los Angeles, California, United States of America
- UCLA AIDS Institute, Los Angeles, California, United States of America
- * E-mail: (MK); (ISYC)
| |
Collapse
|
132
|
Cillo AR, Mellors JW. Which therapeutic strategy will achieve a cure for HIV-1? Curr Opin Virol 2016; 18:14-9. [PMID: 26985878 DOI: 10.1016/j.coviro.2016.02.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 01/30/2016] [Accepted: 02/05/2016] [Indexed: 11/18/2022]
Abstract
Strategies to achieve a cure for HIV-1 infection can be broadly classified into three categories: eradication cure (elimination of all viral reservoirs), functional cure (immune control without reservoir eradication), or a hybrid cure (reservoir reduction with improved immune control). The many HIV-1 cure strategies being investigated include modification of host cells to resist HIV-1, engineered T cells to eliminate HIV-infected cells, broadly HIV-1 neutralizing monoclonal antibodies, and therapeutic vaccination, but the 'kick and kill' strategy to expose latent HIV-1 with latency reversing agents (LRAs) and kill the exposed cells through immune effector functions is currently the most actively pursued. It is unknown, however, whether LRAs can deplete viral reservoirs in vivo or whether current LRAs are sufficiently safe for clinical use.
Collapse
Affiliation(s)
- Anthony R Cillo
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - John W Mellors
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
133
|
Limsirichai P, Gaj T, Schaffer DV. CRISPR-mediated Activation of Latent HIV-1 Expression. Mol Ther 2016; 24:499-507. [PMID: 26607397 PMCID: PMC4786916 DOI: 10.1038/mt.2015.213] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/20/2015] [Indexed: 01/02/2023] Open
Abstract
Complete eradication of HIV-1 infection is impeded by the existence of cells that harbor chromosomally integrated but transcriptionally inactive provirus. These cells can persist for years without producing viral progeny, rendering them refractory to immune surveillance and antiretroviral therapy and providing a permanent reservoir for the stochastic reactivation and reseeding of HIV-1. Strategies for purging this latent reservoir are thus needed to eradicate infection. Here, we show that engineered transcriptional activation systems based on CRISPR/Cas9 can be harnessed to activate viral gene expression in cell line models of HIV-1 latency. We further demonstrate that complementing Cas9 activators with latency-reversing compounds can enhance latent HIV-1 transcription and that epigenome modulation using CRISPR-based acetyltransferases can also promote viral gene activation. Collectively, these results demonstrate that CRISPR systems are potentially effective tools for inducing latent HIV-1 expression and that their use, in combination with antiretroviral therapy, could lead to improved therapies for HIV-1 infection.
Collapse
Affiliation(s)
- Prajit Limsirichai
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Thomas Gaj
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California, USA
| | - David V Schaffer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA
- Department of Cell and Molecular Biology, University of California, Berkeley, Berkeley, California, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
134
|
Timilsina U, Gaur R. Modulation of apoptosis and viral latency - an axis to be well understood for successful cure of human immunodeficiency virus. J Gen Virol 2016; 97:813-824. [PMID: 26764023 DOI: 10.1099/jgv.0.000402] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human immunodeficiency virus (HIV) is the causative agent of the deadly disease AIDS, which is characterized by the progressive decline of CD4(+)T-cells. HIV-1-encoded proteins such as envelope gp120 (glycoprotein gp120), Tat (trans-activator of transcription), Nef (negative regulatory factor), Vpr (viral protein R), Vpu (viral protein unique) and protease are known to be effective in modulating host cell signalling pathways that lead to an alteration in apoptosis of both HIV-infected and uninfected bystander cells. Depending on the stage of the virus life cycle and host cell type, these viral proteins act as mediators of pro- or anti-apoptotic signals. HIV latency in viral reservoirs is a persistent phenomenon that has remained beyond the control of the human immune system. To cure HIV infections completely, it is crucial to reactivate latent HIV from cellular pools and to drive these apoptosis-resistant cells towards death. Several previous studies have reported the role of HIV-encoded proteins in apoptosis modulation, but the molecular basis for apoptosis evasion of some chronically HIV-infected cells and reactivated latently HIV-infected cells still needs to be elucidated. The current review summarizes our present understanding of apoptosis modulation in HIV-infected cells, uninfected bystander cells and latently infected cells, with a focus on highlighting strategies to activate the apoptotic pathway to kill latently infected cells.
Collapse
Affiliation(s)
- Uddhav Timilsina
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi- 110021, India
| | - Ritu Gaur
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi- 110021, India
| |
Collapse
|
135
|
Forsdyke DR. Exons and Introns. Evol Bioinform Online 2016. [DOI: 10.1007/978-3-319-28755-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
136
|
Wang C, Yang S, Lu H, You H, Ni M, Shan W, Lin T, Gao X, Chen H, Zhou Q, Xue Y. A Natural Product from Polygonum cuspidatum Sieb. Et Zucc. Promotes Tat-Dependent HIV Latency Reversal through Triggering P-TEFb's Release from 7SK snRNP. PLoS One 2015; 10:e0142739. [PMID: 26569506 PMCID: PMC4646521 DOI: 10.1371/journal.pone.0142739] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 10/25/2015] [Indexed: 01/22/2023] Open
Abstract
The latent reservoirs of HIV represent a major impediment to eradication of HIV/AIDS. To overcome this problem, agents that can activate latent HIV proviruses have been actively sought after, as they can potentially be used in combination with the highly active antiretroviral therapy (HAART) to eliminate the latent reservoirs. Although several chemical compounds have been shown to activate latency, they are of limited use due to high toxicity and poor clinical outcomes. In an attempt to identify natural products as effective latency activators from traditional Chinese medicinal herbs that have long been widely used in human population, we have isolated procyanidin C-13,3',3"-tri-O-gallate (named as REJ-C1G3) from Polygonum cuspidatum Sieb. et Zucc., that can activate HIV in latently infected Jurkat T cells. REJ-C1G3 preferentially stimulates HIV transcription in a process that depends on the viral encoded Tat protein and acts synergistically with prostratin (an activator of the NF-κB pathway) or JQ1 (an inhibitor of Brd4) to activate HIV latency. Our mechanistic analyses further show that REJ-C1G3 accomplishes these tasks by inducing the release of P-TEFb, a host cofactor essential for Tat-activation of HIV transcription, from the cellular P-TEFb reservoir 7SK snRNP.
Collapse
Affiliation(s)
- Cong Wang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Shuiyuan Yang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Huasong Lu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States of America
| | - Hongchao You
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Man Ni
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wenjun Shan
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ting Lin
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiang Gao
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Haifeng Chen
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Qiang Zhou
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States of America
| | - Yuhua Xue
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
- * E-mail:
| |
Collapse
|
137
|
White CH, Johnston HE, Moesker B, Manousopoulou A, Margolis DM, Richman DD, Spina CA, Garbis SD, Woelk CH, Beliakova-Bethell N. Mixed effects of suberoylanilide hydroxamic acid (SAHA) on the host transcriptome and proteome and their implications for HIV reactivation from latency. Antiviral Res 2015; 123:78-85. [PMID: 26343910 PMCID: PMC5606336 DOI: 10.1016/j.antiviral.2015.09.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 08/22/2015] [Accepted: 09/03/2015] [Indexed: 02/06/2023]
Abstract
Suberoylanilide hydroxamic acid (SAHA) has been assessed in clinical trials as part of a "shock and kill" strategy to cure HIV-infected patients. While it was effective at inducing expression of HIV RNA ("shock"), treatment with SAHA did not result in a reduction of reservoir size ("kill"). We therefore utilized a combined analysis of effects of SAHA on the host transcriptome and proteome to dissect its mechanisms of action that may explain its limited success in "shock and kill" strategies. CD4+ T cells from HIV seronegative donors were treated with 1μM SAHA or its solvent dimethyl sulfoxide (DMSO) for 24h. Protein expression and post-translational modifications were measured with iTRAQ proteomics using ultra high-precision two-dimensional liquid chromatography-tandem mass spectrometry. Gene expression was assessed by Illumina microarrays. Using limma package in the R computing environment, we identified 185 proteins, 18 phosphorylated forms, 4 acetylated forms and 2982 genes, whose expression was modulated by SAHA. A protein interaction network integrating these 4 data types identified the HIV transcriptional repressor HMGA1 to be upregulated by SAHA at the transcript, protein and acetylated protein levels. Further functional category assessment of proteins and genes modulated by SAHA identified gene ontology terms related to NFκB signaling, protein folding and autophagy, which are all relevant to HIV reactivation. In summary, SAHA modulated numerous host cell transcripts, proteins and post-translational modifications of proteins, which would be expected to have very mixed effects on the induction of HIV-specific transcription and protein function. Proteome profiling highlighted a number of potential counter-regulatory effects of SAHA with respect to viral induction, which transcriptome profiling alone would not have identified. These observations could lead to a more informed selection and design of other HDACi with a more refined targeting profile, and prioritization of latency reversing agents of other classes to be used in combination with SAHA to achieve more potent induction of HIV expression.
Collapse
Affiliation(s)
- Cory H White
- Graduate Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla, CA 92093, USA; San Diego VA Medical Center and Veterans Medical Research Foundation, San Diego, CA 92161, USA
| | - Harvey E Johnston
- Cancer Sciences Faculty of Medicine, University of Southampton, Southampton, Hants SO16 6YD, UK; Centre for Proteomic Research, Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, UK
| | - Bastiaan Moesker
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hants SO16 6YD, UK
| | - Antigoni Manousopoulou
- Centre for Proteomic Research, Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, UK; Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hants SO16 6YD, UK
| | - David M Margolis
- Departments of Medicine, Microbiology and Immunology, Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Douglas D Richman
- San Diego VA Medical Center and Veterans Medical Research Foundation, San Diego, CA 92161, USA; Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA; Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Celsa A Spina
- San Diego VA Medical Center and Veterans Medical Research Foundation, San Diego, CA 92161, USA; Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
| | - Spiros D Garbis
- Cancer Sciences Faculty of Medicine, University of Southampton, Southampton, Hants SO16 6YD, UK; Centre for Proteomic Research, Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, UK; Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hants SO16 6YD, UK.
| | - Christopher H Woelk
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hants SO16 6YD, UK.
| | | |
Collapse
|
138
|
Novel RNA Duplex Locks HIV-1 in a Latent State via Chromatin-mediated Transcriptional Silencing. MOLECULAR THERAPY. NUCLEIC ACIDS 2015; 4:e261. [PMID: 26506039 PMCID: PMC4881759 DOI: 10.1038/mtna.2015.31] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/17/2015] [Indexed: 11/18/2022]
Abstract
Transcriptional gene silencing (TGS) of mammalian genes can be induced by short interfering RNA (siRNA) targeting promoter regions. We previously reported potent TGS of HIV-1 by siRNA (PromA), which targets tandem NF-κB motifs within the viral 5′LTR. In this study, we screened a siRNA panel with the aim of identifying novel 5′LTR targets, to provide multiplexing potential with enhanced viral silencing and application toward developing alternate therapeutic strategies. Systematic examination identified a novel siRNA target, si143, confirmed to induce TGS as the silencing mechanism. TGS was prolonged with virus suppression >12 days, despite a limited ability to induce post- TGS. Epigenetic changes associated with silencing were suggested by partial reversal by histone deacetylase inhibitors and confirmed by chromatin immunoprecipitation analyses, which showed induction of H3K27me3 and H3K9me3, reduction in H3K9Ac, and recruitment of argonaute-1, all characteristic marks of heterochromatin and TGS. Together, these epigenetic changes mimic those associated with HIV-1 latency. Further, robust resistance to reactivation was observed in the J-Lat 9.2 cell latency model, when transduced with shPromA and/or sh143. These data support si/shRNA-mediated TGS approaches to HIV-1 and provide alternate targets to pursue a functional cure, whereby the viral reservoir is locked in latency following antiretroviral therapy cessation.
Collapse
|
139
|
Venkatachari NJ, Zerbato JM, Jain S, Mancini AE, Chattopadhyay A, Sluis-Cremer N, Bar-Joseph Z, Ayyavoo V. Temporal transcriptional response to latency reversing agents identifies specific factors regulating HIV-1 viral transcriptional switch. Retrovirology 2015; 12:85. [PMID: 26438393 PMCID: PMC4594640 DOI: 10.1186/s12977-015-0211-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 09/25/2015] [Indexed: 12/27/2022] Open
Abstract
Background Latent HIV-1 reservoirs are identified as one of the major challenges to achieve HIV-1 cure. Currently available strategies are associated with wide variability in outcomes both in patients and CD4+ T cell models. This underlines the critical need to develop innovative strategies to predict and recognize ways that could result in better reactivation and eventual elimination of latent HIV-1 reservoirs. Results and discussion In this study, we combined genome wide transcriptome datasets post activation with Systems Biology approach (Signaling and Dynamic Regulatory Events Miner, SDREM analyses) to reconstruct a dynamic signaling and regulatory network involved in reactivation mediated by specific activators using a latent cell line. This approach identified several critical regulators for each treatment, which were confirmed in follow-up validation studies using small molecule inhibitors. Results indicate that signaling pathways involving JNK and related factors as predicted by SDREM are essential for virus reactivation by suberoylanilide hydroxamic acid. ERK1/2 and NF-κB pathways have the foremost role in reactivation with prostratin and TNF-α, respectively. JAK-STAT pathway has a central role in HIV-1 transcription. Additional evaluation, using other latent J-Lat cell clones and primary T cell model, also confirmed that many of the cellular factors associated with latency reversing agents are similar, though minor differences are identified. JAK-STAT and NF-κB related pathways are critical for reversal of HIV-1 latency in primary resting T cells. Conclusion These results validate our combinatorial approach to predict the regulatory cellular factors and pathways responsible for HIV-1 reactivation in latent HIV-1 harboring cell line models. JAK-STAT have a role in reversal of latency in all the HIV-1 latency models tested, including primary CD4+ T cells, with additional cellular pathways such as NF-κB, JNK and ERK 1/2 that may have complementary role in reversal of HIV-1 latency. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0211-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Narasimhan J Venkatachari
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh/GSPH, Room A435, Crabtree Hall, 130 DeSoto Street, Pittsburgh, PA, 15261, USA.
| | - Jennifer M Zerbato
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Siddhartha Jain
- Lane Center for Computational Biology, Carnegie Mellon University, Pittsburgh, PA, 15217, USA.
| | - Allison E Mancini
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh/GSPH, Room A435, Crabtree Hall, 130 DeSoto Street, Pittsburgh, PA, 15261, USA.
| | - Ansuman Chattopadhyay
- Molecular Biology Information Service, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Nicolas Sluis-Cremer
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Ziv Bar-Joseph
- Computer Science Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 15217, USA.
| | - Velpandi Ayyavoo
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh/GSPH, Room A435, Crabtree Hall, 130 DeSoto Street, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
140
|
Kumar A, Darcis G, Van Lint C, Herbein G. Epigenetic control of HIV-1 post integration latency: implications for therapy. Clin Epigenetics 2015; 7:103. [PMID: 26405463 PMCID: PMC4581042 DOI: 10.1186/s13148-015-0137-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/17/2015] [Indexed: 12/31/2022] Open
Abstract
With the development of effective combined anti-retroviral therapy (cART), there is significant reduction in deaths associated with human immunodeficiency virus type 1 (HIV-1) infection. However, the complete cure of HIV-1 infection is difficult to achieve without the elimination of latent reservoirs which exist in the infected individuals even under cART regimen. These latent reservoirs established during early infection have long life span, include resting CD4+ T cells, macrophages, central nervous system (CNS) resident macrophage/microglia, and gut-associated lymphoid tissue/macrophages, and can actively produce virus upon interruption of the cART. Several epigenetic and non-epigenetic mechanisms have been implicated in the regulation of viral latency. Epigenetic mechanisms such as histone post translational modifications (e.g., acetylation and methylation) and DNA methylation of the proviral DNA and microRNAs are involved in the establishment of HIV-1 latency. The better understanding of epigenetic mechanisms modulating HIV-1 latency could give clues for the complete eradication of these latent reservoirs. Several latency-reversing agents (LRA) have been found effective in reactivating HIV-1 reservoirs in vitro, ex vivo, and in vivo. Some of these agents target epigenetic modifications to elicit viral expression in order to kill latently infected cells through viral cytopathic effect or host immune response. These therapeutic approaches aimed at achieving a sterilizing cure (elimination of HIV-1 from the human body). In the present review, we will discuss our current understanding of HIV-1 epigenomics and how this information can be moved from the laboratory bench to the patient’s bedside.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Virology, Pathogens & Inflammation Laboratory, University of Franche-Comté and COMUE Bourgogne Franche-Comté University, UPRES EA4266, SFR FED 4234, CHRU Besançon, Hôpital Saint-Jacques, 2 place Saint-Jacques, F-25030 Besançon cedex, France
| | - Gilles Darcis
- Service of Molecular Virology, Institute of Molecular Biology and Medicine, Université Libre de Bruxelles (ULB), 12 Rue des Profs Jeener et Brachet, 6041 Gosselies, Belgium
| | - Carine Van Lint
- Service of Molecular Virology, Institute of Molecular Biology and Medicine, Université Libre de Bruxelles (ULB), 12 Rue des Profs Jeener et Brachet, 6041 Gosselies, Belgium
| | - Georges Herbein
- Department of Virology, Pathogens & Inflammation Laboratory, University of Franche-Comté and COMUE Bourgogne Franche-Comté University, UPRES EA4266, SFR FED 4234, CHRU Besançon, Hôpital Saint-Jacques, 2 place Saint-Jacques, F-25030 Besançon cedex, France
| |
Collapse
|
141
|
Sobottka A, Görick C, Melzig M. Analysis of diterpenoid compounds from the latex of two Euphorbiaceae by liquid chromatography‒electrospray ionisation mass spectrometry. Nat Prod Res 2015; 30:1941-4. [DOI: 10.1080/14786419.2015.1088542] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- A.M. Sobottka
- Institute of Biological Sciences, Universidade de Passo Fundo, Passo Fundo, Brazil
| | - C. Görick
- Institute of Pharmacy, Free University of Berlin, Berlin, Germany
| | - M.F. Melzig
- Institute of Pharmacy, Free University of Berlin, Berlin, Germany
| |
Collapse
|
142
|
Ahlenstiel CL, Suzuki K, Marks K, Symonds GP, Kelleher AD. Controlling HIV-1: Non-Coding RNA Gene Therapy Approaches to a Functional Cure. Front Immunol 2015; 6:474. [PMID: 26441979 PMCID: PMC4584958 DOI: 10.3389/fimmu.2015.00474] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 08/31/2015] [Indexed: 12/27/2022] Open
Abstract
The current treatment strategy for HIV-1 involves prolonged and intensive combined antiretroviral therapy (cART), which successfully suppresses plasma viremia. It has transformed HIV-1 infection into a chronic disease. However, despite the success of cART, a latent form of HIV-1 infection persists as integrated provirus in resting memory CD4(+) T cells. Virus can reactivate from this reservoir upon cessation of treatment, and hence HIV requires lifelong therapy. The reservoir represents a major barrier to eradication. Understanding molecular mechanisms regulating HIV-1 transcription and latency are crucial to develop alternate treatment strategies, which impact upon the reservoir and provide a path toward a "functional cure" in which there is no detectable viremia in the absence of cART. Numerous reports have suggested ncRNAs are involved in regulating viral transcription and latency. This review will discuss the latest developments in ncRNAs, specifically short interfering (si)RNA and short hairpin (sh)RNA, targeting molecular mechanisms of HIV-1 transcription, which may represent potential future therapeutics. It will also briefly address animal models for testing potential therapeutics and current gene therapy clinical trials.
Collapse
Affiliation(s)
| | - Kazuo Suzuki
- The Kirby Institute, UNSW Australia, Sydney, NSW, Australia
- Immunovirology Laboratory, St. Vincent’s Centre for Applied Medical Research, Darlinghurst, NSW, Australia
| | - Katherine Marks
- Immunovirology Laboratory, St. Vincent’s Centre for Applied Medical Research, Darlinghurst, NSW, Australia
| | | | - Anthony D. Kelleher
- The Kirby Institute, UNSW Australia, Sydney, NSW, Australia
- Immunovirology Laboratory, St. Vincent’s Centre for Applied Medical Research, Darlinghurst, NSW, Australia
| |
Collapse
|
143
|
Huang H, Santoso N, Power D, Simpson S, Dieringer M, Miao H, Gurova K, Giam CZ, Elledge SJ, Zhu J. FACT Proteins, SUPT16H and SSRP1, Are Transcriptional Suppressors of HIV-1 and HTLV-1 That Facilitate Viral Latency. J Biol Chem 2015; 290:27297-27310. [PMID: 26378236 DOI: 10.1074/jbc.m115.652339] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Indexed: 11/06/2022] Open
Abstract
Our functional genomic RNAi screens have identified the protein components of the FACT (facilitates chromatin transcription) complex, SUPT16H and SSRP1, as top host factors that negatively regulate HIV-1 replication. FACT interacts specifically with histones H2A/H2B to affect assembly and disassembly of nucleosomes, as well as transcription elongation. We further investigated the suppressive role of FACT proteins in HIV-1 transcription. First, depletion of SUPT16H or SSRP1 protein enhances Tat-mediated HIV-1 LTR (long terminal repeat) promoter activity. Second, HIV-1 Tat interacts with SUPT16H but not SSRP1 protein. However, both SUPT16H and SSRP1 are recruited to LTR promoter. Third, the presence of SUPT16H interferes with the association of Cyclin T1 (CCNT1), a subunit of P-TEFb, with the Tat-LTR axis. Removing inhibitory mechanisms to permit HIV-1 transcription is an initial and key regulatory step to reverse post-integrated latent HIV-1 proviruses for purging of reservoir cells. We therefore evaluated the role of FACT proteins in HIV-1 latency and reactivation. Depletion of SUPT16H or SSRP1 protein affects both HIV-1 transcriptional initiation and elongation and spontaneously reverses latent HIV-1 in U1/HIV and J-LAT cells. Similar effects were observed with a primary CD4+ T cell model of HIV-1 latency. FACT proteins also interfere with HTLV-1 Tax-LTR-mediated transcription and viral latency, indicating that they may act as general transcriptional suppressors for retroviruses. We conclude that FACT proteins SUPT16H and SSRP1 play a key role in suppressing HIV-1 transcription and promoting viral latency, which may serve as promising gene targets for developing novel HIV-1 latency-reversing agents.
Collapse
Affiliation(s)
- Huachao Huang
- Departments of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642
| | - Netty Santoso
- Departments of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642
| | - Derek Power
- Departments of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642
| | - Sydney Simpson
- the School of Arts and Sciences, University of Rochester, Rochester, New York 14627
| | - Michael Dieringer
- the School of Arts and Sciences, University of Rochester, Rochester, New York 14627
| | - Hongyu Miao
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York 14642
| | - Katerina Gurova
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York 14263
| | - Chou-Zen Giam
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Stephen J Elledge
- the Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Boston, Massachusetts 02115; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Jian Zhu
- Departments of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642; Departments of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642.
| |
Collapse
|
144
|
Phetsouphanh C, Kelleher AD. The Role of PKC-θ in CD4+ T Cells and HIV Infection: To the Nucleus and Back Again. Front Immunol 2015; 6:391. [PMID: 26284074 PMCID: PMC4519685 DOI: 10.3389/fimmu.2015.00391] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/17/2015] [Indexed: 11/13/2022] Open
Abstract
Protein kinase C (PKC)-θ is the only member of the PKC family that has the ability to translocate to the immunological synapse between T cells and antigen-presenting cells upon T cell receptor and MHC-II recognition. PKC-θ interacts functionally and physically with other downstream effector molecules to mediate T cell activation, differentiation, and migration. It plays a critical role in the generation of Th2 and Th17 responses and is less important in Th1 and CTL responses. PKC-θ has been recently shown to play a role in the nucleus, where it mediates inducible gene expression in the development of memory CD4+ T cells. This novel PKC (nPKC) can up-regulate HIV-1 transcription and PKC-θ activators such as Prostratin have been used in early HIV-1 reservoir eradication studies. The exact manner of the activation of virus by these compounds and the role of PKC-θ, particularly its nuclear form and its association with NF-κB in both the cytoplasmic and nuclear compartments, needs further precise elucidation especially given the very important role of NF-κB in regulating transcription from the integrated retrovirus. Continued studies of this nPKC isoform will give further insight into the complexity of T cell signaling kinases.
Collapse
Affiliation(s)
- Chansavath Phetsouphanh
- The Kirby Institute of Infectious Diseases in Society, University of New South Wales , Sydney, NSW , Australia
| | - Anthony D Kelleher
- The Kirby Institute of Infectious Diseases in Society, University of New South Wales , Sydney, NSW , Australia
| |
Collapse
|
145
|
An In-Depth Comparison of Latency-Reversing Agent Combinations in Various In Vitro and Ex Vivo HIV-1 Latency Models Identified Bryostatin-1+JQ1 and Ingenol-B+JQ1 to Potently Reactivate Viral Gene Expression. PLoS Pathog 2015. [PMID: 26225566 PMCID: PMC4520688 DOI: 10.1371/journal.ppat.1005063] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The persistence of latently infected cells in patients under combinatory antiretroviral therapy (cART) is a major hurdle to HIV-1 eradication. Strategies to purge these reservoirs are needed and activation of viral gene expression in latently infected cells is one promising strategy. Bromodomain and Extraterminal (BET) bromodomain inhibitors (BETi) are compounds able to reactivate latent proviruses in a positive transcription elongation factor b (P-TEFb)-dependent manner. In this study, we tested the reactivation potential of protein kinase C (PKC) agonists (prostratin, bryostatin-1 and ingenol-B), which are known to activate NF-κB signaling pathway as well as P-TEFb, used alone or in combination with P-TEFb-releasing agents (HMBA and BETi (JQ1, I-BET, I-BET151)). Using in vitro HIV-1 post-integration latency model cell lines of T-lymphoid and myeloid lineages, we demonstrated that PKC agonists and P-TEFb-releasing agents alone acted as potent latency-reversing agents (LRAs) and that their combinations led to synergistic activation of HIV-1 expression at the viral mRNA and protein levels. Mechanistically, combined treatments led to higher activations of P-TEFb and NF-κB than the corresponding individual drug treatments. Importantly, we observed in ex vivo cultures of CD8+-depleted PBMCs from 35 cART-treated HIV-1+ aviremic patients that the percentage of reactivated cultures following combinatory bryostatin-1+JQ1 treatment was identical to the percentage observed with anti-CD3+anti-CD28 antibodies positive control stimulation. Remarkably, in ex vivo cultures of resting CD4+ T cells isolated from 15 HIV-1+ cART-treated aviremic patients, the combinations bryostatin-1+JQ1 and ingenol-B+JQ1 released infectious viruses to levels similar to that obtained with the positive control stimulation. The potent effects of these two combination treatments were already detected 24 hours post-stimulation. These results constitute the first demonstration of LRA combinations exhibiting such a potent effect and represent a proof-of-concept for the co-administration of two different types of LRAs as a potential strategy to reduce the size of the latent HIV-1 reservoirs. Persistence of latently infected cells during cART is a major hurdle for HIV-1 eradication. A widely proposed strategy to purge these reservoirs involves the reactivation of latent proviruses. The low levels of active P-TEFb and the cytoplasmic sequestration of NF-κB in resting infected cells largely contribute to maintenance of HIV-1 latency. Therefore, utilization of chemical compounds that target both pathways may lead to more potent effects on HIV-1 reactivation than the effect mediated by the individual drug treatments. In this study, we showed that combined treatments of PKC agonists (prostratin, bryostatin-1 and ing-B) with compounds releasing P-TEFb (JQ1, I-BET, I-BET151 and HMBA) exhibited a synergistic increase in viral reactivation from latency. In-depth comparison of combined treatments in various in vitro cellular models of HIV-1 latency as well as in ex vivo primary cell cultures from cART-treated HIV+ aviremic patients identified bryostatin-1+JQ1 and ing-B+JQ1 to potently reactivate latent HIV-1. The potent effects of these two combinations were detected as early as 24 hours post-treatment. Importantly, bryostatin-1 was used at concentrations below the drug plasma levels achieved by doses used in children with refractory solid tumors. Our mechanistic data established a correlation between potentiated P-TEFb activation and potentiated or synergistic (depending on the HIV-1 latency cellular model used) induction of HIV-1 gene expression observed after the combined versus individual drug treatments. In conclusion, our results establish a proof-of-concept for PKC agonists combined with compounds releasing active P-TEFb as a strategy proposed for a cure or a durable remission of HIV infection.
Collapse
|
146
|
Iordanskiy S, Van Duyne R, Sampey GC, Woodson CM, Fry K, Saifuddin M, Guo J, Wu Y, Romerio F, Kashanchi F. Therapeutic doses of irradiation activate viral transcription and induce apoptosis in HIV-1 infected cells. Virology 2015; 485:1-15. [PMID: 26184775 DOI: 10.1016/j.virol.2015.06.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 05/13/2015] [Accepted: 06/16/2015] [Indexed: 01/17/2023]
Abstract
The highly active antiretroviral therapy reduces HIV-1 RNA in plasma to undetectable levels. However, the virus continues to persist in the long-lived resting CD4(+) T cells, macrophages and astrocytes which form a viral reservoir in infected individuals. Reactivation of viral transcription is critical since the host immune response in combination with antiretroviral therapy may eradicate the virus. Using the chronically HIV-1 infected T lymphoblastoid and monocytic cell lines, primary quiescent CD4(+) T cells and humanized mice infected with dual-tropic HIV-1 89.6, we examined the effect of various X-ray irradiation (IR) doses (used for HIV-related lymphoma treatment and lower doses) on HIV-1 transcription and viability of infected cells. Treatment of both T cells and monocytes with IR, a well-defined stress signal, led to increase of HIV-1 transcription, as evidenced by the presence of RNA polymerase II and reduction of HDAC1 and methyl transferase SUV39H1 on the HIV-1 promoter. This correlated with the increased GFP signal and elevated level of intracellular HIV-1 RNA in the IR-treated quiescent CD4(+) T cells infected with GFP-encoding HIV-1. Exposition of latently HIV-1infected monocytes treated with PKC agonist bryostatin 1 to IR enhanced transcription activation effect of this latency-reversing agent. Increased HIV-1 replication after IR correlated with higher cell death: the level of phosphorylated Ser46 in p53, responsible for apoptosis induction, was markedly higher in the HIV-1 infected cells following IR treatment. Exposure of HIV-1 infected humanized mice with undetectable viral RNA level to IR resulted in a significant increase of HIV-1 RNA in plasma, lung and brain tissues. Collectively, these data point to the use of low to moderate dose of IR alone or in combination with HIV-1 transcription activators as a potential application for the "Shock and Kill" strategy for latently HIV-1 infected cells.
Collapse
Affiliation(s)
- Sergey Iordanskiy
- School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA
| | - Rachel Van Duyne
- School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA; Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Gavin C Sampey
- School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA
| | - Caitlin M Woodson
- School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA
| | - Kelsi Fry
- School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA
| | - Mohammed Saifuddin
- School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA
| | - Jia Guo
- School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA
| | - Yuntao Wu
- School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA
| | - Fabio Romerio
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Fatah Kashanchi
- School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA.
| |
Collapse
|
147
|
Abstract
Antiretroviral therapy (ART) inhibits HIV-1 replication, but the virus persists in latently infected resting memory CD4+ T cells susceptible to viral reactivation. The virus-encoded early gene product Tat activates transcription of the viral genome and promotes exponential viral production. Here we show that the Tat inhibitor didehydro-cortistatin A (dCA), unlike other antiretrovirals, reduces residual levels of viral transcription in several models of HIV latency, breaks the Tat-mediated transcriptional feedback loop, and establishes a nearly permanent state of latency, which greatly diminishes the capacity for virus reactivation. Importantly, treatment with dCA induces inactivation of viral transcription even after its removal, suggesting that the HIV promoter is epigenetically repressed. Critically, dCA inhibits viral reactivation upon CD3/CD28 or prostratin stimulation of latently infected CD4+ T cells from HIV-infected subjects receiving suppressive ART. Our results suggest that inclusion of a Tat inhibitor in current ART regimens may contribute to a functional HIV-1 cure by reducing low-level viremia and preventing viral reactivation from latent reservoirs. Antiretroviral therapy (ART) reduces HIV-1 replication to very low levels, but the virus persists in latently infected memory CD4+ T cells, representing a long-lasting source of resurgent virus upon ART interruption. Based on the mode of action of didehydro-cortistatin A (dCA), a Tat-dependent transcription inhibitor, our work highlights an alternative approach to current HIV-1 eradication strategies to decrease the latent reservoir. In our model, dCA blocks the Tat feedback loop initiated after low-level basal reactivation, blocking transcriptional elongation and hence viral production from latently infected cells. Therefore, dCA combined with ART would be aimed at delaying or halting ongoing viral replication, reactivation, and replenishment of the latent viral reservoir. Thus, the latent pool of cells in an infected individual would be stabilized, and death of the long-lived infected memory T cells would result in a continuous decay of this pool over time, possibly culminating in the long-awaited sterilizing cure.
Collapse
|
148
|
Khan SZ, Hand N, Zeichner SL. Apoptosis-induced activation of HIV-1 in latently infected cell lines. Retrovirology 2015; 12:42. [PMID: 25980942 PMCID: PMC4469242 DOI: 10.1186/s12977-015-0169-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/29/2015] [Indexed: 01/11/2023] Open
Abstract
Background Despite much work, safe and effective approaches to attack and deplete the long-lived reservoir of cells latently infected with HIV-1 remain an elusive goal. Patients infected with HIV-1 treated with cytotoxic agents or bone marrow transplantation can experience decreases in the reservoir of HIV-1 latently infected cells. Other viruses capable of long-term latency, such as herpesviruses, can sense host cell apoptosis and respond by initiating replication. These observations suggest that other viruses capable of long-term latency, like HIV-1, might also sense when its host cell is about to undergo apoptosis and respond by initiating replication. Results Pro-monocytic (U1) and lymphoid (ACH-2) HIV-1 persistently infected cell lines were treated with cytotoxic drugs – doxorubicin, etoposide, fludarabine phosphate, or vincristine – and activation of latent HIV-1 was evaluated using assays for HIV-1 RNA and p24 production. Both cell lines showed dose-dependent increases in apoptosis and associated HIV-1 activation following exposure to the cytotoxic agents. Pretreatment of the cells with the pan-caspase inhibitor Z-VAD-FMK prior to exposure to the cytotoxic agents inhibited apoptosis and viral activation. Direct exposure of the latently infected cell lines to activated caspases also induced viral replication. HIV-1 virions produced in association with host cell apoptosis were infectious. Conclusions The results indicate that latent HIV-1 can sense when its host cell is undergoing apoptosis and responds by completing its replication cycle. The results may help explain why patients treated with cytotoxic regimens for bone marrow transplantation showed reductions in the reservoir of latently infected cells. The results also suggest that the mechanisms that HIV-1 uses to sense and respond to host cell apoptosis signals may represent helpful new targets for approaches to attack and deplete the long-lived reservoir of cells latently infected with HIV-1.
Collapse
Affiliation(s)
- Sohrab Z Khan
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, Washington, DC, USA.
| | - Nicholas Hand
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University School of Medicine, Washington, DC, USA.
| | - Steven L Zeichner
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, Washington, DC, USA. .,Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University School of Medicine, Washington, DC, USA. .,Department of Pediatrics, The George Washington University, School of Medicine, Washington, DC, USA.
| |
Collapse
|
149
|
Wang HB, Wang XY, Liu LP, Qin GW, Kang TG. Tigliane diterpenoids from the Euphorbiaceae and Thymelaeaceae families. Chem Rev 2015; 115:2975-3011. [PMID: 25906056 DOI: 10.1021/cr200397n] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Hong-Bing Wang
- †Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, People's Republic of China
| | - Xiao-Yang Wang
- †Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, People's Republic of China.,‡School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, People's Republic of China
| | - Li-Ping Liu
- †Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, People's Republic of China
| | - Guo-Wei Qin
- §Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Ting-Guo Kang
- ‡School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, People's Republic of China
| |
Collapse
|
150
|
Ruelas DS, Chan JK, Oh E, Heidersbach AJ, Hebbeler AM, Chavez L, Verdin E, Rape M, Greene WC. MicroRNA-155 Reinforces HIV Latency. J Biol Chem 2015; 290:13736-48. [PMID: 25873391 DOI: 10.1074/jbc.m115.641837] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Indexed: 11/06/2022] Open
Abstract
The presence of a small number of infected but transcriptionally dormant cells currently thwarts a cure for the more than 35 million individuals infected with HIV. Reactivation of these latently infected cells may result in three fates: 1) cell death due to a viral cytopathic effect, 2) cell death due to immune clearance, or 3) a retreat into latency. Uncovering the dynamics of HIV gene expression and silencing in the latent reservoir will be crucial for developing an HIV-1 cure. Here we identify and characterize an intracellular circuit involving TRIM32, an HIV activator, and miR-155, a microRNA that may promote a return to latency in these transiently activated reservoir cells. Notably, we demonstrate that TRIM32, an E3 ubiquitin ligase, promotes reactivation from latency by directly modifying IκBα, leading to a novel mechanism of NF-κB induction not involving IκB kinase activation.
Collapse
Affiliation(s)
- Debbie S Ruelas
- From the Gladstone Institute of Virology and Immunology, San Francisco, California 94158, the Biomedical Sciences Program and
| | - Jonathan K Chan
- From the Gladstone Institute of Virology and Immunology, San Francisco, California 94158
| | - Eugene Oh
- the Department of Molecular and Cell Biology and
| | - Amy J Heidersbach
- the Biomedical Sciences Program and the Gladstone Institute of Cardiovascular Disease, San Francisco, California 94158
| | - Andrew M Hebbeler
- From the Gladstone Institute of Virology and Immunology, San Francisco, California 94158
| | - Leonard Chavez
- From the Gladstone Institute of Virology and Immunology, San Francisco, California 94158, the Biomedical Sciences Program and
| | - Eric Verdin
- From the Gladstone Institute of Virology and Immunology, San Francisco, California 94158, the Departments of Medicine and Microbiology and Immunology, University of California, San Francisco, California 94143
| | - Michael Rape
- the Department of Molecular and Cell Biology and the Howard Hughes Medical Institute, University of California, Berkeley, California 94720, and
| | - Warner C Greene
- From the Gladstone Institute of Virology and Immunology, San Francisco, California 94158, the Departments of Medicine and Microbiology and Immunology, University of California, San Francisco, California 94143,
| |
Collapse
|