101
|
Ogawa A, Obinata H, Hattori T, Kishi M, Tatei K, Ishikawa O, Izumi T. Identification and analysis of two splice variants of human G2A generated by alternative splicing. J Pharmacol Exp Ther 2009; 332:469-78. [PMID: 19855098 DOI: 10.1124/jpet.109.158758] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
G2A is a G protein-coupled receptor that can be induced by various stressors. G2A is reported to have proton-sensing activity that mediates intracellular inositol phosphate (IP) accumulation with decreasing pH. We previously showed that G2A is also activated by some oxidized free fatty acids such as 9-hydroxyoctadecadienoic acid (9-HODE). In this study, we identified a novel alternative splice variant of G2A (G2A-b) that has a partially different N terminus compared with the G2A originally reported (G2A-a). The two splice variants of G2A show similar tissue distributions, but G2A-b is expressed more abundantly. There was no difference between the two variants in 9-HODE-induced cellular responses, such as intracellular calcium mobilization and GDP/GTP exchange of Galpha protein, and in proton-sensitive IP accumulation. However, G2A-b showed a higher basal activity in terms of IP accumulation. Mutagenesis study revealed that the difference in the basal activity is attributable to the K7 residue that exists only in G2A-a. We further demonstrated that an R42A mutation largely impaired both the basal and proton-sensing activities, but did not affect the 9-HODE-induced intracellular calcium increase. Taken together, we found an additional novel G2A variant (G2A-b) that is the major transcript with functional response to ligand stimulation as well as G2A-a, and succeeded in discriminating proton-sensing and oxidized fatty acid-sensing activities of G2A.
Collapse
Affiliation(s)
- Ai Ogawa
- Department of Biochemistry, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | | | | | | | | | | | | |
Collapse
|
102
|
Activation of TRPV1 in the spinal cord by oxidized linoleic acid metabolites contributes to inflammatory hyperalgesia. Proc Natl Acad Sci U S A 2009; 106:18820-4. [PMID: 19843694 DOI: 10.1073/pnas.0905415106] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1) plays a major role in hyperalgesia and allodynia and is expressed both in the peripheral and central nervous systems (CNS). However, few studies have evaluated mechanisms by which CNS TRPV1 mediates hyperalgesia and allodynia after injury. We hypothesized that activation of spinal cord systems releases endogenous TRPV1 agonists that evoke the development of mechanical allodynia by this receptor. Using in vitro superfusion, the depolarization of spinal cord triggered the release of oxidized linoleic acid metabolites, such as 9-hydroxyoctadecadienoic acid (9-HODE) that potently activated spinal TRPV1, leading to the development of mechanical allodynia. Subsequent calcium imaging and electrophysiology studies demonstrated that synthetic oxidized linoleic acid metabolites, including 9-HODE, 13-HODE, and 9 and 13-oxoODE, comprise a family of endogenous TRPV1 agonists. In vivo studies demonstrated that intrathecal application of these oxidized linoleic acid metabolites rapidly evokes mechanical allodynia. Finally, intrathecal neutralization of 9- and 13-HODE by antibodies blocks CFA-evoked mechanical allodynia. These data collectively reveal a mechanism by which an endogenous family of lipids activates TRPV1 in the spinal cord, leading to the development of inflammatory hyperalgesia. These findings may integrate many pain disorders and provide an approach for developing analgesic drugs.
Collapse
|
103
|
Im DS. New intercellular lipid mediators and their GPCRs: An update. Prostaglandins Other Lipid Mediat 2009; 89:53-6. [DOI: 10.1016/j.prostaglandins.2009.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 01/24/2009] [Accepted: 01/25/2009] [Indexed: 01/08/2023]
|
104
|
G2A as a receptor for oxidized free fatty acids. Prostaglandins Other Lipid Mediat 2009; 89:66-72. [DOI: 10.1016/j.prostaglandins.2008.11.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 10/29/2008] [Accepted: 11/12/2008] [Indexed: 01/04/2023]
|
105
|
Nagelin MH, Srinivasan S, Nadler JL, Hedrick CC. Murine 12/15-lipoxygenase regulates ATP-binding cassette transporter G1 protein degradation through p38- and JNK2-dependent pathways. J Biol Chem 2009; 284:31303-14. [PMID: 19713213 DOI: 10.1074/jbc.m109.028910] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
12/15-Lipoxygenase (12/15LO) plays a role in the pathogenesis of atherosclerosis and diabetes and has been implicated in low density lipoprotein oxidation. Murine macrophages express high levels of 12/15LO and are key cells involved in the accumulation and efflux of oxidized low density lipoprotein in the arterial wall. During this process, macrophages up-regulate scavenger receptors that regulate lipid uptake, and ATP-binding cassette (ABC) transporters, that regulate lipid efflux. We have previously demonstrated that 12/15LO enhances the turnover and serine phosphorylation of ABCG1. In the current study, we further elucidate the mechanisms by which 12/15LO regulates ABCG1. Proteasomal inhibitors blocked the down-regulation of ABCG1 expression and resulted in accumulation of phosphorylated ABCG1. Macrophages that lack 12/15LO have enhanced transporter expression, reduced ABCG1 phosphorylation, and increased cholesterol efflux. Conversely, macrophages that overexpress 12/15LO have reduced ABCG1 expression, increased transporter phosphorylation, and reduced cholesterol efflux. 12/15LO plays a key role in activating the MAPK pathway. Inhibition of the p38 or JNK pathways with pharmacological inhibitors or dominant negative constructs blocked 12S-hydroxyeicosatetranoic acid-mediated degradation of ABCG1. Moreover, we isolated macrophages from JNK1-, JNK2-, and MKK3-deficient mice to analyze the involvement of specific MAPK pathways. JNK2- and MKK3-, but not JNK1-deficient macrophages were resistant to the down-regulation of ABCG1 protein, reduction in efflux, and increase in serine phosphorylation by 12S-hydroxyeicosatetranoic acid. These findings provide evidence that 12/15LO regulates ABCG1 expression and function through p38- and JNK2-dependent mechanisms, and that targeting these pathways may provide novel approaches for regulating cholesterol homeostasis.
Collapse
Affiliation(s)
- Melissa H Nagelin
- Department of Pharmacology, The Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | |
Collapse
|
106
|
Bercher M, Hanson B, van Staden C, Wu K, Ng GY, Lee PH. Agonists of the orphan human G2A receptor identified from inducible G2A expression and beta-lactamase reporter screen. Assay Drug Dev Technol 2009; 7:133-42. [PMID: 19505230 DOI: 10.1089/adt.2008.179] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The G protein-coupled receptor (GPCR) G2A (for G2 accumulation) was identified as a stress-inducible antiproliferative cell cycle regulator. Targeted G2A gene deletion in mice resulted in systemic lupus erythematosus-like and atherosclerotic lesion phenotypes. These findings suggested that G2A may be a therapeutic target for cancers and autoimmune and cardiovascular diseases. The G2A receptor is cytotoxic upon ectopic expression, and its cognate ligand has not been identified, making it difficult to generate a cell line for screening using a conventional approach. The function of human G2A remains obscure. Here we show that by using an inducible T-REx (Invitrogen, Carlsbad, CA) expression system an inducible G2A functional cell-based beta-lactamase reporter assay could be developed using the constitutive activity of the receptor. Furthermore, G2A expression levels can be controlled under this inducible system to avoid the expression artifacts of conventional approaches using constitutive expression vectors. This stable cell line expressing the human G2A receptor was screened against a chemical library containing 740,000 compounds, and small molecules showing selective agonistic activity on G2A were identified. We believe the strategy employed here for G2A should be applicable to other "intractable" GPCRs where target gene expression results in cytotoxic and/or high constitutive activities.
Collapse
Affiliation(s)
- Mark Bercher
- Invitrogen Discovery Sciences, Madison, Wisconsin, USA
| | | | | | | | | | | |
Collapse
|
107
|
Gao X, Kolomiets MV. Host-derived lipids and oxylipins are crucial signals in modulating mycotoxin production by fungi. TOXIN REV 2009. [DOI: 10.1080/15569540802420584] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
108
|
Emerging lysophospholipid mediators, lysophosphatidylserine, lysophosphatidylthreonine, lysophosphatidylethanolamine and lysophosphatidylglycerol. Prostaglandins Other Lipid Mediat 2009; 89:135-9. [PMID: 19427394 DOI: 10.1016/j.prostaglandins.2009.04.009] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2009] [Accepted: 04/29/2009] [Indexed: 12/31/2022]
Abstract
It is now widely accepted that lysophospholipids (LPLs), a product of the phospholipase A reaction, function as mediators through G-protein-coupled receptors. Notably, recent studies of lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) have revealed their essential roles in vivo. On the other hand, other LPLs such as lysophosphatidylserine (LPS), lysophosphatidylthreonine (LPT), lysophosphatidylethanolamine (LPE), lysophosphatidylinositol (LPI) and lysophosphatidylglycerol (LPG) have been reported to show lipid mediator-like responses both in vivo (LPS and LPT) and in vitro (LPS, LPT, LPE and LPG), while very little is known about their receptor, synthetic enzyme and patho-physiological roles. In this review, we summarize the actions of these LPLs as lipid mediators including LPS, LPT, LPE and LPG.
Collapse
|
109
|
Kabarowski JH. G2A and LPC: regulatory functions in immunity. Prostaglandins Other Lipid Mediat 2009; 89:73-81. [PMID: 19383550 DOI: 10.1016/j.prostaglandins.2009.04.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 04/10/2009] [Accepted: 04/13/2009] [Indexed: 02/07/2023]
Abstract
The G2A receptor was originally identified by virtue of its transcriptional induction in murine B lymphoid cells in response to oncogenic transformation and treatment with various DNA-damaging agents. While preliminary characterization of cellular responses to G2A overexpression in fibroblastic cell lines suggested that this receptor may negatively regulate cell growth under conditions of proliferative and genotoxic stress, subsequent studies driven by the discovery of lysophosphatidylcholine (LPC) as a regulator of G2A signaling in immunoregulatory cells point to an important role for this receptor in innate and adaptive immunity.
Collapse
Affiliation(s)
- Janusz H Kabarowski
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA.
| |
Collapse
|
110
|
Yin H, Chu A, Li W, Wang B, Shelton F, Otero F, Nguyen DG, Caldwell JS, Chen YA. Lipid G protein-coupled receptor ligand identification using beta-arrestin PathHunter assay. J Biol Chem 2009; 284:12328-38. [PMID: 19286662 DOI: 10.1074/jbc.m806516200] [Citation(s) in RCA: 245] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A growing number of orphan G-protein-coupled receptors (GPCRs) have been reported to be activated by lipid ligands, such as lysophosphatidic acid, sphingosine 1-phosphate (S1P), and cannabinoids, for which there are already well established receptors. These new ligand claims are controversial due to either lack of independent confirmations or conflicting reports. We used the beta-arrestin PathHunter assay system, a newly developed, generic GPCR assay format that measures beta-arrestin binding to GPCRs, to evaluate lipid receptor and ligand pairing. This assay eliminates interference from endogenous receptors on the parental cells because it measures a signal that is specifically generated by the tagged receptor and is immediately downstream of receptor activation. We screened a large number of newly "deorphaned" receptors (GPR23, GPR92, GPR55, G2A, GPR18, GPR3, GPR6, GPR12, and GPR63) and control receptors against a collection of approximately 400 lipid molecules to try to identify the receptor ligand in an unbiased fashion. GPR92 was confirmed to be a lysophosphatidic acid receptor with weaker responses to farnesyl pyrophosphate and geranylgeranyl diphosphate. The putative cannabinoid receptor GPR55 responded strongly to AM251, rimonabant, and lysophosphatidylinositol but only very weakly to endocannabinoids. G2A receptor was confirmed to be an oxidized free fatty acid receptor. In addition, we discovered that 3,3'-diindolylmethane, a dietary molecule from cruciferous vegetables, which has known anti-cancer properties, to be a CB(2) receptor partial agonist, with binding affinity around 1 microm. The anti-inflammatory effect of 3,3'-diindolylmethane in RAW264.7 cells was shown to be partially mediated by CB(2).
Collapse
Affiliation(s)
- Hong Yin
- GPCR Platform, Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Ecto-lysophospholipase C controls lysophospholipid uptake and metabolism in porcine kidney epithelial cell line LLC-PK1. Prostaglandins Other Lipid Mediat 2009; 88:1-9. [DOI: 10.1016/j.prostaglandins.2008.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 08/07/2008] [Accepted: 08/11/2008] [Indexed: 10/21/2022]
|
112
|
Ikeno Y, Cheon SH, Konno N, Nakamura A, Kitamoto K, Arioka M. Lysophosphatidylcholine protects cerebellar granule neurons from apoptotic cell death. J Neurosci Res 2009; 87:190-9. [DOI: 10.1002/jnr.21821] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
113
|
Asai A, Okajima F, Nakagawa K, Ibusuki D, Tanimura K, Nakajima Y, Nagao M, Sudo M, Harada T, Miyazawa T, Oikawa S. Phosphatidylcholine hydroperoxide-induced THP-1 cell adhesion to intracellular adhesion molecule-1. J Lipid Res 2008; 50:957-65. [PMID: 19114730 DOI: 10.1194/jlr.m800582-jlr200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The accumulation of phosphatidylcholine hydroperoxide (PCOOH), a primary oxidation product of phosphatidylcholine (PC), in blood plasma and tissues has been observed in various pathological conditions, including atherosclerosis. However, the biological roles of PCOOH in these conditions remain unknown. To estimate the atherogenicity of PCOOH, we evaluated the effect of PCOOH on THP-1 monocytic cell adherence to immobilized vascular endothelial cell adhesion molecules. THP-1 cell adhesion to intracellular adhesion molecule-1 (ICAM-1) was dose-dependently increased by addition of PCOOH. Phosphatidylcholine hydroxide (a hydroxyl analog of PCOOH) also induced THP-1 cell adhesion to ICAM-1, whereas nonoxidized PC, sn-2 truncated PCs, and other hydroperoxide compounds did not affect the adhesion. In the PCOOH-treated cells, obvious protruding F-actin-rich membrane structures were formed, and lymphocyte function-associated antigen-1 (LFA-1) was localized to the protruding structures. Cytochalasin D, an actin polymerization inhibitor, suppressed the PCOOH-induced cell adhesion to ICAM-1 and the membrane protrusions. These results indicate that PCOOH evokes LFA-1-mediated cell adhesion to ICAM-1 via actin cytoskeletal organization, and the mechanism may participate in monocyte adherence to the arterial wall in the initiation of atherosclerosis.
Collapse
Affiliation(s)
- Akira Asai
- Department of Medicine, Division of Endocrinology and Metabolism, Nippon Medical School, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Bolick DT, Skaflen MD, Johnson LE, Kwon SC, Howatt D, Daugherty A, Ravichandran KS, Hedrick CC. G2A deficiency in mice promotes macrophage activation and atherosclerosis. Circ Res 2008; 104:318-27. [PMID: 19106413 DOI: 10.1161/circresaha.108.181131] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
G2A is a stress-inducible G protein-coupled receptor that is expressed on several cell types within atherosclerotic lesions. We demonstrated previously that G2A deficiency in mice increased aortic monocyte recruitment and increased monocyte:endothelial interactions. To investigate the impact of G2A deficiency in macrophages, we isolated peritoneal macrophages from G2A(+/+)ApoE(-/-) and G2A(-/-)ApoE(-/-) mice. G2A(-/-)ApoE(-/-) macrophages had significantly lower apoptosis than control macrophages. The prosurvival genes BCL-2, BCL-xL, and cFLIP were increased in G2A(-/-)ApoE(-/-) macrophages. Macrophages from G2A(-/-)ApoE(-/-) mice also had increased proinflammatory status that was indicative of a M1 macrophage phenotype. This was indicated by significantly increased nuclear translocation of nuclear factor kappaB, as well as production of interleukin-12p40, tumor necrosis factor alpha, and interleukin-6, and reduced expression of arginase-I. Moreover, G2A(-/-)ApoE(-/-) macrophages had reduced ability to engulf apoptotic cells in vitro. We examined atherosclerosis in mice fed a Western diet for 10 weeks and found that G2A deficiency increased lesion size in the aortic root by 50%. Plasma lipid levels were not changed in G2A(-/-)ApoE(-/-) mice. However, we found that absence of G2A increased the number of aortic macrophages and attenuated apoptosis in this cell type. Moreover, bone marrow transplantation studies indicated that deficiency of G2A in marrow-derived cells significantly contributed to atherosclerosis development. In the absence of G2A, increased macrophage activation and decreased apoptosis is associated with accumulation of macrophages in the aorta and increased atherosclerosis.
Collapse
Affiliation(s)
- David T Bolick
- Cardiovascular Research Center, University of Charlottesville, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Shearer GC, Newman JW. Lipoprotein lipase releases esterified oxylipins from very low-density lipoproteins. Prostaglandins Leukot Essent Fatty Acids 2008; 79:215-22. [PMID: 19042114 PMCID: PMC2629508 DOI: 10.1016/j.plefa.2008.09.023] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 08/06/2008] [Accepted: 09/22/2008] [Indexed: 11/20/2022]
Abstract
We previously demonstrated that defects in lipoprotein metabolism alter the distribution of oxygenated polyunsaturated fatty acids (PUFAs) in lipoprotein particles. If these oxidation products are released by lipoprotein lipase (LpL), then their delivery to peripheral tissues with bulk lipids could influence cellular function. Using 26-week-old normolipidemic and hyperlipidemic Zucker rats, we measured PUFA alcohols, epoxides, diols, ketones, and triols (i.e. oxylipins) in esterified and non-esterified fractions of whole plasma, VLDL, and LpL-generated VLDL-lipolysates. Whole plasma, VLDL, and lipolysate oxylipin profiles were distinct and altered by hyperlipidemia. While >90% of the whole plasma oxylipins were esterified, the fraction of each oxylipin class in the VLDL varied: 46% of alcohols, 30% of epoxides, 19% of diols, <10% of ketones, and <1% triols. Whole plasma was dominated by arachidonate alcohols, while the linoleate alcohols, epoxides, and ketones showed an increased prevalence in VLDL. LpL-mediated VLDL lipolysis of PUFA alcohols, diols and ketones was detected and the relative abundance of oxygenated linoleates was enhanced in the lipolysates, relative to their corresponding VLDL. In summary esterified oxylipins were seen to be LpL substrates with heterogeneous distributions among lipoprotein classes. Moreover, oxylipin distributions are changes within the context of obesity-associated dyslipidemia. These results support the notion that the VLDL-LpL axis may facilitate the delivery of plasma oxylipins to the periphery. The physiological implications of these findings are yet to be elucidated; however, these molecules are plausible indicators of systemic oxidative stress, and could report this status to the peripheral tissues.
Collapse
Affiliation(s)
- Gregory C Shearer
- Department of Veterans Affairs Northern California Health Care System, Mather, CA, USA.
| | | |
Collapse
|
116
|
Johnson LE, Elias MS, Bolick DT, Skaflen MD, Green RM, Hedrick CC. The G protein-coupled receptor G2A: involvement in hepatic lipid metabolism and gallstone formation in mice. Hepatology 2008; 48:1138-48. [PMID: 18821587 PMCID: PMC2892979 DOI: 10.1002/hep.22433] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
UNLABELLED The G2A receptor is a member of the ovarian cancer G protein-coupled receptor 1 family of stress-inducible G protein-coupled receptors. In this study, we examined the hepatobiliary effects of loss of function of G2A in mice fed either a chow or lithogenic diet. G2A-deficient (G2A(-/-)) mice fed chow had a 25% reduction in biliary phosphatidylcholine content, reduced hepatic gene expression of the phosphatidylcholine transporter adenosine triphosphate-binding cassette B4, and an 8-fold increase in expression of the nuclear receptor liver X receptor (LXR). Despite the increased expression of LXR, transcription of several LXR target genes was reduced. G2A(-/-) mice fed a lithogenic diet had rapid gallstone formation, an increased cholesterol saturation index, a 2.5-fold increase in farnesoid X receptor expression, a 5-fold increase in LXR expression, and a 90% reduction in cholesterol 7alpha-hydroxylase expression in comparison with wild-type mice. There were no changes in gallbladder volume. CONCLUSION These data demonstrate that the G2A receptor is important for hepatobiliary bile salt, cholesterol, and phospholipid homeostasis and for the pathogenesis of cholesterol gallstone formation.
Collapse
Affiliation(s)
- Laura E. Johnson
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA
| | - Marc S. Elias
- Department of Internal Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - David T. Bolick
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA
| | - Marcus D. Skaflen
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA
| | - Richard M. Green
- Department of Internal Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | |
Collapse
|
117
|
Davis B, Koster G, Douet LJ, Scigelova M, Woffendin G, Ward JM, Smith A, Humphries J, Burnand KG, Macphee CH, Postle AD. Electrospray Ionization Mass Spectrometry Identifies Substrates and Products of Lipoprotein-associated Phospholipase A2 in Oxidized Human Low Density Lipoprotein. J Biol Chem 2008; 283:6428-37. [DOI: 10.1074/jbc.m709970200] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
118
|
Peter C, Waibel M, Radu CG, Yang LV, Witte ON, Schulze-Osthoff K, Wesselborg S, Lauber K. Migration to apoptotic "find-me" signals is mediated via the phagocyte receptor G2A. J Biol Chem 2007; 283:5296-305. [PMID: 18089568 DOI: 10.1074/jbc.m706586200] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Phagocytosis of apoptotic cells is fundamentally important throughout life, because non-cleared cells become secondarily necrotic and release intracellular contents, thus instigating inflammatory and autoimmune responses. Secreted "find-me" and exposed "eat-me" signals displayed by the dying cell in concert with the phagocyte receptors comprise the phagocytic synapse of apoptotic cell clearance. In this scenario, lysophospholipids (lysoPLs) are assumed to act as find-me signals for the attraction of phagocytes. However, both the identity of the lyso-PLs released from apoptotic cells and the nature of the phagocyte receptor are largely unknown. By a detailed analysis of the structural requirements we show here that lysophosphatidylcholine (lysoPC), but none of the lysoPC metabolites or other lysoPLs, represents the essential apoptotic attraction signal able to trigger a phagocyte chemotactic response. Furthermore, using RNA interference and expression studies, we demonstrate that the G-protein-coupled receptor G2A, unlike its relative GPR4, is involved in the chemotaxis of monocytic cells. Thus, our study identifies lysoPC and G2A as the crucial receptor/ligand system for the attraction of phagocytes to apoptotic cells and the prevention of autoimmunity.
Collapse
Affiliation(s)
- Christoph Peter
- Department of Internal Medicine I, University of Tuebingen, 72076 Tuebingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
119
|
Kaput J, Perlina A, Hatipoglu B, Bartholomew A, Nikolsky Y. Nutrigenomics: concepts and applications to pharmacogenomics and clinical medicine. Pharmacogenomics 2007; 8:369-90. [PMID: 17391074 DOI: 10.2217/14622416.8.4.369] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The maintenance of health and the prevention and treatment of chronic diseases are influenced by naturally occurring chemicals in foods. In addition to supplying the substrates for producing energy, a large number of dietary chemicals are bioactive--that is, they alter the regulation of biological processes and, either directly or indirectly, the expression of genetic information. Nutrients and bioactives may produce different physiological phenotypes among individuals because of genetic variability and not only alter health, but also disease initiation, progression and severity. The study and application of gene-nutrient interactions is called nutritional genomics or nutrigenomics. Nutrigenomic concepts, research strategies and clinical implementation are similar to and overlap those of pharmacogenomics, and both are fundamental to the treatment of disease and maintenance of optimal health.
Collapse
Affiliation(s)
- Jim Kaput
- Department of Surgery, University of Illinois Chicago, 909 South Wolcott Street MC 958, Chicago, IL 60612, USA.
| | | | | | | | | |
Collapse
|
120
|
Hattori T, Obinata H, Ogawa A, Kishi M, Tatei K, Ishikawa O, Izumi T. G2A plays proinflammatory roles in human keratinocytes under oxidative stress as a receptor for 9-hydroxyoctadecadienoic acid. J Invest Dermatol 2007; 128:1123-33. [PMID: 18034171 DOI: 10.1038/sj.jid.5701172] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
G2A is a stress-inducible G protein-coupled receptor for oxidized free fatty acids, such as 9-hydroxyoctadecadienoic acid (HODE). As skin is routinely and pathologically exposed to many oxidative stresses such as UV radiation, chemical agents, and inflammation that might induce both G2A expression and production of G2A ligands, we examined G2A function in human keratinocytes. G2A was expressed in human epidermis, normal human epidermal keratinocytes (NHEK), and an immortalized human keratinocyte cell line (HaCaT). 9(S)-HODE evoked intracellular calcium mobilization and secretion of cytokines, including IL-6, IL-8, and GM-CSF in NHEK cells. These responses became prominent in HaCaT cells by overexpression of G2A. 9(S)-HODE inhibited proliferation of NHEK cells by suppressing DNA synthesis and arresting the cell cycle in the G0/1-phase. On the other hand, 13(S)-HODE, another major oxidative product from linoleate, showed little or no effect on either cytokine secretion or on proliferation in NHEK cells. A small interfering RNA designed to downregulate G2A caused suppression of 9(S)-HODE-induced inhibitory effects on proliferation of NHEK cells. UVB and H(2)O(2) induced G2A expression and caused oxidation of linoleate to produce 9-HODE in HaCaT cells. These results suggest that 9-HODE-G2A signaling plays proinflammatory roles in skin under oxidative conditions.
Collapse
Affiliation(s)
- Tomoyasu Hattori
- Department of Molecular Biochemistry, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | | | | | | | | | | | | |
Collapse
|
121
|
Abstract
Cannabinoids have numerous physiological effects. In the years since the molecular identification of the G protein-coupled receptors CB1 and CB2, the ion channel TRPV1, and their corresponding endogenous ligand systems, many cannabinoid-evoked actions have been shown conclusively to be mediated by one of these specific receptor targets. However, there remain several examples where these classical cannabinoid receptors do not explain observed pharmacology. Studies using mice genetically deleted for the known receptors have confirmed the existence of additional targets, which have come to be known collectively as non-CB1/CB2 receptors. Despite intense research efforts, the molecular identity of these non-CB1/CB2 receptors remains for the most part unclear. Two orphan G protein-coupled receptors have recently been implicated as novel cannabinoid receptors; these are GPR119, which has been proposed as a receptor for oleoylethanolamide, and GPR55 which has been proposed as a receptor activated by multiple different cannabinoid ligands. In this review I will present an introduction to non-CB1/CB2 pharmacology, summarize information on GPR55 and GPR119 currently available, and consider their phylogenetic origin and what aspects of non-CB1/CB2 pharmacology, if any, they help explain.
Collapse
Affiliation(s)
- A J Brown
- Department of Screening and Compound Profiling, Molecular Discovery Research, GlaxoSmithKline, Essex, UK.
| |
Collapse
|
122
|
Fruhwirth GO, Loidl A, Hermetter A. Oxidized phospholipids: From molecular properties to disease. Biochim Biophys Acta Mol Basis Dis 2007; 1772:718-36. [PMID: 17570293 DOI: 10.1016/j.bbadis.2007.04.009] [Citation(s) in RCA: 396] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 04/24/2007] [Accepted: 04/25/2007] [Indexed: 11/21/2022]
Abstract
Oxidized lipids are generated from (poly)unsaturated diacyl- and alk(en)ylacyl glycerophospholipids under conditions of oxidative stress. The great variety of reaction products is defined by the degree of modification, hydrophobicity, chemical reactivity, physical properties and biological activity. The biological activities of these compounds may depend on both, the recognition of the particular molecular structures by specific receptors and on the unspecific physical and chemical effects on their target systems (membranes, proteins). In this review, we aim at highlighting the molecular features that are essential for the understanding of the biological actions of pure oxidized phospholipids. Firstly, their chemical structures are described as a basis for an understanding of their physical and (bio)chemical properties in membrane- and protein-bound form. Secondly, the biological activities of oxidized phospholipids are discussed in terms of their unspecific effects on the membrane level as well as their potential interactions with specific targets (receptors) affecting a large set of (signaling) molecules. Finally, the role of oxidized phospholipids as important mediators in pathophysiology is discussed with emphasis on atherosclerosis.
Collapse
Affiliation(s)
- Gilbert O Fruhwirth
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, A-8010 Graz, Austria
| | | | | |
Collapse
|
123
|
Suga H, Haga T. Ligand screening system using fusion proteins of G protein-coupled receptors with G protein alpha subunits. Neurochem Int 2007; 51:140-64. [PMID: 17659814 DOI: 10.1016/j.neuint.2007.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2007] [Revised: 06/07/2007] [Accepted: 06/08/2007] [Indexed: 01/04/2023]
Abstract
G protein-coupled receptors (GPCRs) constitute one of the largest families of genes in the human genome, and are the largest targets for drug development. Although a large number of GPCR genes have recently been identified, ligands have not yet been identified for many of them. Various assay systems have been employed to identify ligands for orphan GPCRs, but there is still no simple and general method to screen for ligands of such GPCRs, particularly of G(i)-coupled receptors. We have examined whether fusion proteins of GPCRs with G protein alpha subunit (Galpha) could be utilized for ligand screening and showed that the fusion proteins provide an effective method for the purpose. This article focuses on the followings: (1) characterization of GPCR genes and GPCRs, (2) identification of ligands for orphan GPCRs, (3) characterization of GPCR-Galpha fusion proteins, and (4) identification of ligands for orphan GPCRs using GPCR-Galpha fusion proteins.
Collapse
Affiliation(s)
- Hinako Suga
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | | |
Collapse
|
124
|
Frasch SC, Zemski-Berry K, Murphy RC, Borregaard N, Henson PM, Bratton DL. Lysophospholipids of Different Classes Mobilize Neutrophil Secretory Vesicles and Induce Redundant Signaling through G2A. THE JOURNAL OF IMMUNOLOGY 2007; 178:6540-8. [PMID: 17475884 DOI: 10.4049/jimmunol.178.10.6540] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Lysophosphatidylcholine has been shown to enhance neutrophil functions through a mechanism involving the G protein-coupled receptor G2A. Recent data support an indirect effect of lysophosphatidylcholine on G2A rather than direct ligand binding. These observations prompted the hypothesis that other lysophospholipids (lyso-PLs) may also signal for human neutrophil activation through G2A. To this end, 1-oleoyl-2-hydroxy-sn-glycero-3-[phospho-L-choline], but also C18:1/OH lyso-PLs bearing the phosphoserine and phosphoethanolamine head groups, presented on albumin, were shown to signal for calcium flux in a self- and cross-desensitizing manner, implicating a single receptor. Blocking Abs to G2A inhibited calcium signaling by all three lyso-PLs. Furthermore, inhibition by both pertussis toxin and U-73122 established signaling via the Galphai/phospholipase C pathway for calcium mobilization. Altered plasma membrane localization of G2A has been hypothesized to facilitate signaling. Accordingly, an increase in detectable G2A was demonstrated by 1 min after lyso-PL stimulation and was followed by visible patching of the receptor. Western blotting showed that G2A resides in the plasma membrane/secretory vesicle fraction and not in neutrophil primary, secondary, or tertiary granules. Enhanced detection of G2A induced by lyso-PLs was paralleled by enhanced detection of CD45, confirming mobilization of the labile secretory vesicle pool. Together, these data show that lyso-PLs bearing various head groups redundantly mobilize G2A latent within secretory vesicles and result in G2A receptor/Galphai/phospholipase C signaling for calcium flux in neutrophils.
Collapse
Affiliation(s)
- S Courtney Frasch
- Department of Pediatrics, Division of Cell Biology, National Jewish Medical and Research Center, Denver, CO 80206, USA
| | | | | | | | | | | |
Collapse
|
125
|
Sauer LA, Blask DE, Dauchy RT. Dietary factors and growth and metabolism in experimental tumors. J Nutr Biochem 2007; 18:637-49. [PMID: 17418560 DOI: 10.1016/j.jnutbio.2006.12.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2006] [Revised: 12/06/2006] [Accepted: 12/28/2006] [Indexed: 11/17/2022]
Abstract
Development of a diet that provides adequate nutrition and effective cancer prevention is an important goal in nutrition and cancer research. A confounding aspect of dietary control of tumor growth is the fact that some nutrients may up-regulate tumor growth, whereas other nutrients and nonnutrients down-regulate growth. Both up- and down-regulators may be present in the same foodstuff. Identification of these substances, determination of their mechanisms of action and potencies, as well as the interactions among the different mechanisms are topics of ongoing research. In this review, we describe results obtained in vivo or during perfusion in situ using solid tissue-isolated rodent tumors and human cancer xenografts in nude rats. Linoleic acid (LA), an essential n-6 polyunsaturated fatty acid (PUFA), was identified as an agent in dietary fat that is responsible for an up-regulation of tumor growth in vivo. Tumor LA uptake, mediated by high intratumor cAMP, stimulated formation of the mitogen, 13-hydroxyoctadecadienoic acid (13-HODE) and also increased ERK1/2 phosphorylation, [(3)H]thymidine incorporation and growth. A mechanism for control of this growth-promoting pathway was revealed during studies of the effects of dietary nutrients and nonnutrients known to inhibit tumor growth. These included four groups of lipophilic agents: n-3 fatty acids, melatonin, conjugated LA isomers and trans fatty acids. Each of these agents activated an inhibitory G protein-coupled receptor-mediated pathway that specifically suppressed tumor uptake of saturated, monounsaturated and n-6 PUFAs, thereby inhibiting an early step in the LA-dependent growth-promoting pathway.
Collapse
|
126
|
Seuwen K, Ludwig MG, Wolf RM. Receptors for protons or lipid messengers or both? J Recept Signal Transduct Res 2007; 26:599-610. [PMID: 17118800 DOI: 10.1080/10799890600932220] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The subfamily of G protein-coupled receptors comprising GPR4, OGR1, TDAG8, and G2A was originally characterized as a group of proteins mediating biological responses to the lipid messengers sphingosylphosphorylcholine (SPC), lysophosphatidylcholine (LPC), and psychosine. We challenged this view by reporting that OGR1 and GPR4 sense acidic pH and that this process is not affected by concentrations of SPC or LPC previously reported as agonistic. The original publications describing GPR4, OGR1, and G2A as receptors for LPC or SPC have now been retracted, and the first studies exploring receptors of this family as pH sensors in physiology have appeared. Here we review the status of this field and we confirm that GPR4, OGR1, and TDAG8 should be considered as proton-sensing receptors. Negative regulation of these receptors by high micromolar concentrations of lipids appears not specific in our experiments.
Collapse
Affiliation(s)
- Klaus Seuwen
- Novartis Institutes for Biomedical Research, Basel, Switzerland.
| | | | | |
Collapse
|
127
|
Tsitsigiannis DI, Keller NP. Oxylipins as developmental and host-fungal communication signals. Trends Microbiol 2007; 15:109-18. [PMID: 17276068 DOI: 10.1016/j.tim.2007.01.005] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 01/04/2007] [Accepted: 01/23/2007] [Indexed: 12/30/2022]
Abstract
Pathogenic microbes and their hosts have acquired complex signalling mechanisms to appraise themselves of the environmental milieu in the ongoing battle for survival. Several recent studies have implicated oxylipins as a novel class of host-microbe signalling molecules. Oxylipins represent a vast and diverse family of secondary metabolites that originate from the oxidation or further conversion of polyunsaturated fatty acids. Among the microbial oxylipins, the fungal oxylipins are best characterized and function as hormone-like signals that modulate the timing and balance between asexual and sexual spore development in addition to toxin production. Coupled with other studies that implicate a role for fungal oxylipins in pathogenesis by Aspergillus and Candida spp., these results suggest that host and microbial oxylipins might interfere with the metabolism, perception or signalling processes of each other.
Collapse
Affiliation(s)
- Dimitrios I Tsitsigiannis
- The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK.
| | | |
Collapse
|
128
|
Bolick DT, Whetzel AM, Skaflen M, Deem TL, Lee J, Hedrick CC. Absence of the G protein-coupled receptor G2A in mice promotes monocyte/endothelial interactions in aorta. Circ Res 2007; 100:572-80. [PMID: 17255525 DOI: 10.1161/01.res.0000258877.57836.d2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The G protein-coupled receptor G2A is highly expressed on macrophages and lymphocytes and has been localized to atherosclerotic plaques. We examined the role of G2A in modulating monocyte/endothelial interactions in the vessel wall. We measured adhesion of WEHI 78/24 monocytes to aortas of C57BL/6 (B6) and G2A-deficient (G2A(-/-)) mice using an ex vivo adhesion assay. G2A(-/-) mice had 10-fold elevations in adhesion of monocytes to aortas. Injection of GFP-expressing wild-type macrophages into B6 and G2A(-/-) mice in vivo showed increased macrophage accumulation in the aortic wall of G2A(-/-) mice. We isolated aortic endothelial cells (ECs) from B6 and G2A(-/-) mice and found a 2-fold increase in intercellular adhesion molecule-1 and E-selectin surface expression on G2A(-/-) ECs using flow cytometry. Using ELISA, we found a 3-fold increase in interleukin-6 and monocyte chemoattractant protein-1 production by G2A(-/-) ECs compared with B6 ECs. We found a dramatic increase in nuclear localization of the p65 subunit of nuclear factor kappaB in G2A(-/-) ECs. Transfection of G2A into G2A(-/-) ECs to restore normal expression levels reduced p65 nuclear localization to 35%. Restoration of G2A expression in G2A(-/-) ECs significantly reduced intercellular adhesion molecule-1 and endothelial selectin surface expression and reduced monocyte chemoattractant protein-1 and interleukin-6 production. Restoring G2A to G2A(-/-) ECs reduced monocyte adhesion by 80% compared with G2A(-/-) ECs in a flow chamber assay. Absence of G2A in endothelium results in proinflammatory signaling and increased monocyte/endothelial interactions in the aortic wall. Thus, endothelial G2A expression may aid in prevention of vascular inflammation and atherosclerosis.
Collapse
Affiliation(s)
- David T Bolick
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | |
Collapse
|
129
|
Hoffmeister D, Keller NP. Natural products of filamentous fungi: enzymes, genes, and their regulation. Nat Prod Rep 2007; 24:393-416. [PMID: 17390002 DOI: 10.1039/b603084j] [Citation(s) in RCA: 383] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We review the literature on the enzymes, genes, and whole gene clusters underlying natural product biosyntheses and their regulation in filamentous fungi. We have included literature references from 1958, yet the majority of citations are between 1995 and the present. A total of 295 references are cited.
Collapse
Affiliation(s)
- Dirk Hoffmeister
- Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University Freiburg, Stefan-Meier-Strasse 19, 79104 Freiburg, Germany.
| | | |
Collapse
|
130
|
Valencia A, Rajadurai A, Carle AB, Kochevar IE. 7-Dehydrocholesterol enhances ultraviolet A-induced oxidative stress in keratinocytes: roles of NADPH oxidase, mitochondria, and lipid rafts. Free Radic Biol Med 2006; 41:1704-18. [PMID: 17145559 PMCID: PMC1880892 DOI: 10.1016/j.freeradbiomed.2006.09.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Revised: 08/23/2006] [Accepted: 09/05/2006] [Indexed: 12/20/2022]
Abstract
Long wavelength solar UVA radiation stimulates formation of reactive oxygen species (ROS) and prostaglandin E(2) (PGE(2)), which are involved in skin photosensitivity and tumor promotion. High levels of 7-dehydrocholesterol (7-DHC), the precursor to cholesterol, cause exaggerated photosensitivity to UVA in patients with Smith-Lemli-Opitz syndrome (SLOS). Partially replacing cholesterol with 7-DHC in keratinocytes rapidly (<5 min) increased UVA-induced ROS, intracellular calcium, phospholipase A(2) activity, PGE(2), and NADPH oxidase activity. UVA-induced ROS and PGE(2) production were inhibited in these cells by depleting the Nox1 subunit of NADPH oxidase using siRNA or using a mitochondrial radical quencher, MitoQ. Partial replacement of cholesterol with 7-DHC also disrupted membrane lipid raft domains, although depletion of cholesterol, which also disrupts lipid rafts, did not affect UVA-induced increases in ROS and PGE(2). Phospholipid liposomes containing 7-DHC were more rapidly oxidized by a free radical mechanism than those containing cholesterol. These results indicate that 7-DHC enhances rapid UVA-induced ROS and PGE(2) formation by enhancing free radical-mediated membrane lipid oxidation and suggests that this mechanism might underlie the UVA photosensitivity in SLOS.
Collapse
Affiliation(s)
- Antonio Valencia
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Thier-224, 55 Fruit Street, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
131
|
Oestvang J, Johansen B. PhospholipaseA2: A key regulator of inflammatory signalling and a connector to fibrosis development in atherosclerosis. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:1309-16. [PMID: 16904370 DOI: 10.1016/j.bbalip.2006.06.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2006] [Revised: 06/23/2006] [Accepted: 06/24/2006] [Indexed: 11/23/2022]
Abstract
Atherosclerosis is a progressive inflammatory disease that takes place in the intima of the arterial wall. It is characterized by activation of endothelial cells, proliferation of smooth muscle cells and macrophages, accumulation of lipoproteins, deposition of extracellular matrix components and enhanced lipolytic enzyme activity. Phospholipase A(2) (PLA(2)) has been postulated to play an important role in the inflammatory process of atherosclerosis, but its molecular mechanism is uncertain. The secretory PLA(2) is expressed at increased levels in an atherosclerotic plaque and may hydrolyze low-density lipoproteins (LDL). This action promotes the production of pro-inflammatory lipids such as lysophospholipids, unsaturated fatty acids and eicosanoids. The current review highlights recent findings on how LDL-derived lipid mediators, generated by sPLA_2 modification of LDL, regulate pro-inflammatory activation and intracellular signaling in macrophages. Moreover, the review discusses how PLA_2 enzymes regulate signalling that promotes collagen accumulation and fibrotic plaque development. PLA_2 could therefore function as a connector between inflammation and fibrosis, the latter being an endpoint of chronic inflammation.
Collapse
Affiliation(s)
- Janne Oestvang
- Department of Biology, Section for Molecular Biology and Biotechnology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | | |
Collapse
|
132
|
Brodhagen M, Keller NP. Signalling pathways connecting mycotoxin production and sporulation. MOLECULAR PLANT PATHOLOGY 2006; 7:285-301. [PMID: 20507448 DOI: 10.1111/j.1364-3703.2006.00338.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
SUMMARY Mycotoxin contamination of food and feed presents a serious food safety issue on a global scale, causing tremendous yield and economic losses. These toxins, produced largely by members of the genera Aspergillus and Fusarium, represent a subset of the impressive array of secondary metabolites produced by filamentous fungi. Some secondary metabolites are associated temporally and functionally with sporulation. In Aspergillus and Fusarium, sporulation and mycotoxin production are both regulated by G protein signalling pathways. G protein signalling pathways commonly regulate fungal development, stress response and expression of virulence traits. In addition, fungal development is influenced by external factors. Among these are lipids, and in particular, oxylipin signals, which may be derived from either the fungus or infected seeds. Regardless of origin, oxylipins have the potential to elicit profound changes in both sporulation and mycotoxin production in the fungus. Signal transduction via G protein signalling pathways represents one mechanism by which oxylipin signals might elicit these changes. Therefore, in this review we integrate discussion of oxylipin signals and of G protein signalling cascades as regulators of fungal development.
Collapse
Affiliation(s)
- Marion Brodhagen
- Department of Plant Pathology, University of Wisconsin-Madison, 1630 Linden Dr, Madison, WI 53706-1598, USA
| | | |
Collapse
|