101
|
Teng D, Mao K, Ali W, Xu G, Huang G, Niazi NK, Feng X, Zhang H. Describing the toxicity and sources and the remediation technologies for mercury-contaminated soil. RSC Adv 2020; 10:23221-23232. [PMID: 35520308 PMCID: PMC9054844 DOI: 10.1039/d0ra01507e] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/31/2020] [Indexed: 11/26/2022] Open
Abstract
Mercury (Hg) is a natural element and its compounds are found as inorganic and organic forms in the environment. The different Hg forms (e.g., methylmercury (MeHg)), are responsible for many adverse health effects, such as neurological and cardiovascular effects. The main source of Hg is from natural release. Nevertheless, with the development of industrialization and urbanization, Hg-contaminated soil mainly influenced by human activities (especially near mercury mining areas) has become a problem. Therefore, much more attention has been paid to the development and selection of various treatment methods to remediate Hg-contaminated soils. This paper presented a systematical review of the recent developments for the remediation of Hg-contaminated soils. Firstly, we briefly introduced the Hg chemistry, toxicity and the main human activity-related sources of mercury in soil. Then the advances in remediation technologies for removing Hg pollution from the soil were summarized. Usually, the remediation technology includes physical, chemical and biological remediation technology. Depending on this, we further classified these remediation technologies into six techniques, including thermal desorption, electrokinetic extraction, soil washing, chemical stabilization, phytoremediation and microbial technology. Finally, we also discussed the challenges and future perspectives of remediating Hg-contaminated soils.
Collapse
Affiliation(s)
- Dongye Teng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences Guiyang 550081 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences Guiyang 550081 China
| | - Waqar Ali
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences Guiyang 550081 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Guomin Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences Guiyang 550081 China
- National Engineering Research Center for Compounding and Modification of Polymer Materials Guiyang 550014 China
| | - Guopei Huang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences Guiyang 550081 China
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad Faisalabad-38040 Pakistan
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences Guiyang 550081 China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences Guiyang 550081 China
| |
Collapse
|
102
|
Bello A, Han Y, Zhu H, Deng L, Yang W, Meng Q, Sun Y, Egbeagu UU, Sheng S, Wu X, Jiang X, Xu X. Microbial community composition, co-occurrence network pattern and nitrogen transformation genera response to biochar addition in cattle manure-maize straw composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137759. [PMID: 32172117 DOI: 10.1016/j.scitotenv.2020.137759] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
A better understanding of the microbial group influencing nitrogen (N) dynamics and cycling in composting matrix is critical in achieving good management to alleviate N loss and improve final compost quality. This study investigated the bacterial composition, structure, co-occurrence network patterns and topological roles of N transformation in cattle manure-maize straw composting using high-throughput sequencing. The two treatments used in this experiment were cattle manure and maize straw mixture (CM) and CM with 10% biochar addition (CMB). In both treatments, the bacterial community composition varied during composting and the major phyla included Actinobacteria, Firmicutes, Proteobacteria, Bacteroidetes and Chloroflexi. The phyla Actinobacteria and Proteobacteria were more abundant in CMB treatment while Firmicutes was abundant in CM piles. The metabolic functional profiles of bacteria was predicted using the "phylogenetic investigation of communities by reconstruction of unobserved states" (PICRUSt) which revealed that except for cellular processes pathway, CMB had slight higher abundance in metabolism, genetic information processing and environmental information processing than the CM. Pearson correlation revealed more significant relationship between the important bacteria communities and N transformation in CMB piles compared with CM. Furthermore, network pattern analysis revealed that the bacterial networks in biochar amended piles are more complex and harbored more positive links than that of no biochar piles. Corresponding agreement of multivariate analyses (correlation heatmap, stepwise regression, Path and network analyses) revealed that Psychrobacter, Thermopolyspora and Thermobifida in CM while Corynebacterium_1, Thermomonospora and Streptomyces in CMB were key bacterial genera affecting NH4+-N, NO3--N and total nitrogen (TN) transformation respectively during composting process. These results provide insight into nitrogen transformation and co-occurrence patterns mediating microbes and bacterial metabolism which could be useful in enhancing compost quality and mitigating N loss during composting.
Collapse
Affiliation(s)
- Ayodeji Bello
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yue Han
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Haifeng Zhu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Liting Deng
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Wei Yang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Qingxin Meng
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yu Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ugochi Uzoamaka Egbeagu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Siyuan Sheng
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiaotong Wu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xin Jiang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiuhong Xu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
103
|
Lü W, Yao X, Ren H, Deng H, Yao M, Zhang B. Characterizing the interactions between sediment dissolved organic matter and zinc using multispectroscopic techniques. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:113644. [PMID: 32078874 DOI: 10.1016/j.envpol.2019.113644] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/31/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
Sediment dissolved organic matter (DOM) was collected in November 2018 from Lake Dongping, China. The lake was divided into the entrance of the Dawen River, the open region of the lake, the tourism district and the macrophyte-dominated region based on principal component analysis (PCA) of 9 DOM-related parameters. Multispectroscopic tools were used to investigate the binding of zinc (Zn) with four kinds of DOM collected from the entrance of the Dawen River (EDOM), the open area of the lake (ODOM), the macrophyte-dominated area (mainly dominated by Potamogeton crispus L.) (PDOM) and the tourism district (TDOM). Three fluorescent components, the humic-like (components 1 and 3) and protein-like (component 2) components, were found by excitation-emission matrix spectra with parallel factor analysis. The EDOM, ODOM and TDOM were controlled by protein-like components, and the PDOM was controlled by humic-like components. Different components respond differently to Zn addition. The binding order of the tyrosine-like fraction > the tryptophan fraction > the humic-like fraction was identified by Synchronous fluorescence (SF) spectra and two-dimensional correlation spectroscopy (2D-COS). The fluorescence intensity of the protein-like component was suppressed, and the humic-like component was enhanced with the addition of Zn. The effective quenching constants (log K) of the protein-like component in PDOM were clearly higher than those in the EDOM, ODOM and TDOM, indicating higher metal binding potential in PDOM than in other kinds of DOM in Lake Dongping. The %Fmax (the amounts of each component measured as % of the total fluorescence maxima for the three components) of the humic-like components exhibited a gradual increase in all kinds of DOM with the addition of Zn, suggesting that the addition of Zn increased the humification of DOM.
Collapse
Affiliation(s)
- Weiwei Lü
- School of Environment and Planning, University of Liaocheng, Liaocheng 252000, China; College of Water Science, Beijing Normal University, Beijing 100875, China
| | - Xin Yao
- School of Environment and Planning, University of Liaocheng, Liaocheng 252000, China; Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Haoyu Ren
- School of Environment and Planning, University of Liaocheng, Liaocheng 252000, China
| | - Huanguang Deng
- School of Environment and Planning, University of Liaocheng, Liaocheng 252000, China
| | - Min Yao
- School of Environment and Planning, University of Liaocheng, Liaocheng 252000, China
| | - Baohua Zhang
- School of Environment and Planning, University of Liaocheng, Liaocheng 252000, China
| |
Collapse
|
104
|
3D graphene aerogel based photocatalysts: Synthesized, properties, and applications. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124666] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
105
|
Li H, Qiu Y, Yao T, Ma Y, Zhang H, Yang X, Li C. Evaluation of seven chemical pesticides by mixed microbial culture (PCS-1): Degradation ability, microbial community, and Medicago sativa phytotoxicity. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121834. [PMID: 31843407 DOI: 10.1016/j.jhazmat.2019.121834] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/01/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Environmental problems caused by the large-scale use of chemical pesticides are becoming more and more serious, and the removal of chemical pesticides from the ecological environment by microbial degradation has attracted wide attention. In this study, using enrichment screening with seven chemical pesticides as the sole carbon source, a mixed microbial culture (PCS-1) was obtained from the continuous cropping of strawberry fields. The microbial community composition, degradation ability, and detoxification effect of PCS-1 was determined for the seven pesticides. Inoculation with PCS-1 showed significant degradation of and tolerance to the seven pesticides. Microbial community composition analysis indicated that Pseudomonas, Enterobacter, Aspergillus, and Rhodotorula were the dominant genera for the degradation of the seven pesticides by PCS-1. The concentration of the seven pesticides was 10 mg L-1 in hydroponic and soil culture experiments. The fresh weight, plant height, and root length of PCS-1-inoculated alfalfa (Medicago sativa) significantly increased compared with those of non-PCS-1-inoculated M. sativa. PCS-1 not only effectively degraded the residual content of the seven pesticides in water and soil but also reduced the pesticide residues in the roots, stems, and leaves of M. sativa. This study shows that PCS-1 may be important in environmental remediation involving the seven pesticides.
Collapse
Affiliation(s)
- Haiyun Li
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China; Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Ministry of Education, Lanzhou, China
| | - Yizhi Qiu
- School of Life Science, Lanzhou University, Lanzhou, China
| | - Tuo Yao
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China; Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Ministry of Education, Lanzhou, China.
| | - Yachun Ma
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China; Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Ministry of Education, Lanzhou, China
| | - Huirong Zhang
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China; Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Ministry of Education, Lanzhou, China
| | - Xiaolei Yang
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China; Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Ministry of Education, Lanzhou, China
| | - Changning Li
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China; Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Ministry of Education, Lanzhou, China
| |
Collapse
|
106
|
Dahiru M, Abu Bakar NK, Yus Off I, Low KH, Mohd MN. Assessment of denitrification potential for coastal and inland sites using groundwater and soil analysis: the multivariate approach. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:294. [PMID: 32307605 DOI: 10.1007/s10661-020-08276-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
In an effort to determine the reason behind excellent nitrate remediation capacity at Kelantan region, a multivariate approach is employed to evaluate extent to which the influence of sea on soil geochemical composition affect variation pattern of groundwater quality. The results obtained from geochemical analysis of paleo-beach soil in coastal site at Bachok revealed multiple redox activity at different soil strata, involving both heterotrophic and autotrophic denitrification. In soil and water analysis, eight of the fourteen hydro-geochemical parameters (conductivity, temperature, soil texture, oxidation reduction potential, pH, total organic carbon, Fe, Cu, Mn, Cl-, SO42-, NO2-, NO3- and PO43-) measured using standard procedures were subjected to multivariate analysis. Evaluation of general variation pattern across the area reveals that the principal component analysis (PCA), hierarchical cluster analysis (HCA) and linear discriminant analysis (LDA) are in consonance with one another on apportioning three parameters (SO42-, Cl- and conductivity) to the coastal sites and two parameters (Fe and NH4+ or NO3-) to inland sites. The step forward analysis of LDA reveals four parameters in order of decreasing significance as Cl-, Fe and SO42-, while the two-way HCA identifies three clusters on location basis, respectively. In addition to the significant data reduction obtained, the results indicate that proximity to sea and location/geological-based influence are more significant than temporal-based influence in denitrification. By extension, the research reveals that influence of labile portion of natural resources is explorable for broader application in other remediation strategies.
Collapse
Affiliation(s)
- Muntaka Dahiru
- Department of Chemistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Department of Science Lab Tech, Kano State Polytechnic, Kano, Nigeria
| | | | - Ismail Yus Off
- Department of Geology, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Kah Hin Low
- Department of Chemistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Muhammad N Mohd
- Faculty of Plantation and Agrotechnology, UiTM Cawangan Kampus, 77300, Melaka, Malaysia
| |
Collapse
|
107
|
Xue C, Zhu L, Lei S, Liu M, Hong C, Che L, Wang J, Qiu Y. Lead competition alters the zinc adsorption mechanism on animal-derived biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136395. [PMID: 31954249 DOI: 10.1016/j.scitotenv.2019.136395] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/26/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
In this study, the adsorption behaviors and mechanisms of Pb(II) and Zn(II) by animal-derived biochar (ADB) in single and binary metal systems were comparatively investigated. ADB contains considerable amounts of Ca/P components and is mainly composed of hydroxyapatite (HAP), which plays an important role in the adsorption of Pb(II) and Zn(II). The maximum adsorption capacities of Pb(II) and Zn(II) on ADB were in the order of Zn(II)-single (3.23 mmol g-1) > Pb(II)-single (2.74 mmol g-1) ≈ Pb(II)-binary (2.71 mmol g-1) > Zn(II)-binary (2.31 mmol g-1). In the single metal system, approximately 99.9% of the adsorbed Pb(II) existed as Pb5(PO4)3Cl, while the dominant adsorption mechanism of Zn(II) was cation exchange, followed by precipitation, accounting for 78.0%-80.6% and 19.4%-21.5% of the adsorption capacity, respectively. These findings were verified by X-ray diffraction refinement, X-ray photoelectron spectroscopy, metal speciation modeling, and Ca(II) exchange experiment. In the binary metal system, the proportion and form of Pb(II) precipitate remained unchanged. However, the binding of Zn(II) to ADB was completely dependent on the cation exchange with Ca(II), and no remarkable Zn(II) precipitation was observed. Phosphate released from HAP preferentially precipitated with Pb(II) than with Zn(II) when they coexisted. Consequently, Pb(II) competition may alter the Zn(II) adsorption mechanism on ADB. Nonetheless, ADB could serve as an efficient biochar for the simultaneous immobilization of Pb(II) and Zn(II) via different mechanisms.
Collapse
Affiliation(s)
- Cong Xue
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Ling Zhu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Sicong Lei
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Mengping Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Chengyi Hong
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Lei Che
- School of Engineering, Huzhou University, Huzhou 313000, China
| | - Junliang Wang
- College of the Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuping Qiu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
108
|
Abstract
Heavy metal contamination in soils has become one of the most critical environmental issues. The most efficient in-situ remediation technique is chemical immobilization that uses cost-effective soil amendments such as phosphate compounds to decrease Pb, Cd and Zn accessibility in the contaminated soils. The present study examined the effectiveness of KH2PO4 in immobilizing Pb, Cd and Zn in three samples of contaminated soils collected from ZGH “Bolesław” (Mining and Smelting Plant “Bolesław”). Effectiveness was evaluated using the following methods: a toxicity characteristic leaching procedure (TCLP)-based experiment, sequential extraction, X-ray diffraction analyses (XRD), and scanning electron microscopy–energy dispersive spectroscopy (SEM–EDS). The most efficient percentage reduction of total leachable metal concentration assessed by TCLP was observed for lead (50%–80%), and the least reduction was observed for zinc (1%–17%). The most effective immobilization of stable compounds assessed by sequential extraction was noted for lead, while the weakest immobilization was noted for cadmium. New insoluble mineral phases were identified by SEM-EDS analysis. Cd, Zn, and Pb formed new stable mineral substances with phosphates. The predominant crystal forms were dripstones and groups of needles, which were easily formed by dissolved carbon rock surfaces containing zinc ions. The alkaline nature of the soil and a large number of carbonates mainly influenced the formation of new structures.
Collapse
|
109
|
Lei W, Tang X, Zhou X. Biochar amendment effectively reduces the transport of 3,5,6-trichloro-2-pyridinol (a main degradation product of chlorpyrifos) in purple soil: Experimental and modeling. CHEMOSPHERE 2020; 245:125651. [PMID: 31881382 DOI: 10.1016/j.chemosphere.2019.125651] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/23/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
This study investigates biochar amendment effectively reduces the transport of polar pollutant 3,5,6-trichloro-2-pyridinol, TCP, a main degradation product of chlorpyrifos, and quantitatively explores the physical and chemical mechanisms through inversion simulation. Thus, five biochar addition rates to soil, 0.0%, 0.5%, 1.0%, 2.5% and 5.0%, are tested and compared. The adsorption isotherms experiment, breakthrough curves, BTCs, in both repacked and undisturbed soil columns are also compared. And finally the non-equilibrium convection-diffusion equation, CDE, is used to uncover the change of hydraulic properties of soil and mass non-equilibrium of TCP in the soils mixed with different contents of biochar. The results show that the addition of biochar can reduce the transportation of TCP significantly in the purple soil with macro pores, and the reduction is mainly attributed to two aspects: increase of adsorption ability and decrease of diffusion coefficient and convection velocity. The former is reflected by the linear increase of Kd value with the increase of biochar addition rate and soil organic matter content. The latter is demonstrated by the dramatic reduction of TCP concentration in outflow of BTC experiment and the delayed leaching time. The inversely simulated results also reveal that the diffusion coefficient decrease from 5.35 to 3.95 when biochar addition rate increases from 0 to 5%. Compared with the repacked soil columns, the preferential flow does not disappear in the undisturbed soil columns, accompanied by a higher maximum concentration, an earlier equilibrium time and a less residual amount.
Collapse
Affiliation(s)
- Wenjuan Lei
- College of Tea Science, Guizhou University, Guiyang, 550025, China; College of Architecture & Environment, Sichuan University, Chengdu, 610065, China
| | - Xiangyu Tang
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Xiangyang Zhou
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
110
|
Wu H, Liu Q, Ma J, Liu L, Qu Y, Gong Y, Yang S, Luo T. Heavy Metal(loids) in typical Chinese tobacco-growing soils: Concentrations, influence factors and potential health risks. CHEMOSPHERE 2020; 245:125591. [PMID: 31864066 DOI: 10.1016/j.chemosphere.2019.125591] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 12/01/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
The level of concentration of heavy metal (loids) in tobacco-growing soils is detrimental to soil quality. In this study, 256 topsoil samples were collected from Zunyi city to understand the concentration, spatial distribution characteristics, sources and health risks of heavy metal (loids) by using mathematical statistics, geostatistical analyst, and conditional inference tree (CIT). The results showed that the average contents of Hg, Pb, Zn, and Cd in tobacco-growing soils were high with 1.7, 1.2, 1.1 and 1 times the background value, respectively. While, Ni, Cr, Cu and As were temporarily within the permissible limits. Concentrations of Hg, Cd, Pb, and Zn in the soils of Wuchuan, Tongzi, Daozhen, and Yuqing were much higher than the other regions due to human activities. According to the CIT, the main nodes were 1) distance from sampling to the main road, 2) organic matter, 3) factories, and 4) soil types. The results indicated that for Pb and Zn, the sources of pollution might be transportation; for Cu, As, and Cd, the sources were utilization of phosphate, tobacco-specific fertilizers, and organic fertilizers; and the sources of Hg were coal combustion and metals smelting. In addition, high background values of heavy metal (loids) in karst landforms were responsible for the accumulation of Cd. With respect to Hazard Quotient and Lifelong Carcinogenic Risk, the exposed individual was unlikely to experience obvious adverse health effect due to the heavy metal (loids) pollution, except Cr, which should be particularly considered in further risk control.
Collapse
Affiliation(s)
- Haiwen Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Water Resources and Electric Power, Sichuan Agricultural University, Ya'an, Sichuan, 625000, China
| | - Qiyuan Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Earth Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jin Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Lingling Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yajing Qu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yiwei Gong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Shuhui Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ting Luo
- Water Resources and Electric Power, Sichuan Agricultural University, Ya'an, Sichuan, 625000, China
| |
Collapse
|
111
|
Li X, Wang C, Zhang J, Liu J, Liu B, Chen G. Preparation and application of magnetic biochar in water treatment: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134847. [PMID: 31812432 DOI: 10.1016/j.scitotenv.2019.134847] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/29/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
In recent years, magnetic biochar has been widely used in removal of pollutants from water. In this paper, the preparation technologies of magnetic biochar are analyzed, and the performance and application of magnetic biochar in removal of inorganic pollutants such as heavy metals, and organic pollutants are investigated. Moreover, the adsorption behaviors, the key influencing factors and the adsorption mechanisms of magnetic biochars are summarized in this paper. Compared with common biochar, magnetic biochar is more effective in removal of water pollutants, including Cd(II), Pb(II), Zn(II), Cu(II), methylene blue, tetracycline, pesticide and phosphate. Langmuir and Freundlich models are adopted as the mainly adsorption isotherms, while pseudo-second-order model is employed as Kinetic model of heavy metal ions and organic contaminants in water. This study also investigates degradation of organic contaminants in water using magnetic biochar as catalyst. Results showed that encapsulated γ-Fe2O3 nanoparticles enhanced the catalytic ability of persulfate activator. Further researches on preparation and application of magnetic biochar in water treatment are prospected in this review.
Collapse
Affiliation(s)
- Xiangping Li
- China-Australia Centre for Sustainable Urban Development/ School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China; Qingdao Institute for Ocean Technology of Tianjin University, Qingdao 266235, PR China.
| | - Chuanbin Wang
- China-Australia Centre for Sustainable Urban Development/ School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Jianguang Zhang
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| | - Juping Liu
- China-Australia Centre for Sustainable Urban Development/ School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Bin Liu
- Qingdao Institute for Ocean Technology of Tianjin University, Qingdao 266235, PR China
| | - Guanyi Chen
- China-Australia Centre for Sustainable Urban Development/ School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China; Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300354, PR China.
| |
Collapse
|
112
|
Varol M, Sünbül MR, Aytop H, Yılmaz CH. Environmental, ecological and health risks of trace elements, and their sources in soils of Harran Plain, Turkey. CHEMOSPHERE 2020; 245:125592. [PMID: 31864056 DOI: 10.1016/j.chemosphere.2019.125592] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/19/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
Soil pollution with trace elements (TEs) has become an increasingly serious environmental concern, however, assessment of ecological and human health risks especially in intensive agricultural regions remains limited. In this study, the contents of ten TEs (Al, As, Pb, Cr, Cu, Zn, Ni, Co, Mn and Fe) in soil samples from 204 sampling sites in the Harran Plain (Turkey) were examined to evaluate possible sources, pollution status and environmental, ecological and health risks of these elements. Only As and Ni exceeded the upper continental crust concentrations. Among ten TEs, Ni and As had the highest mean values of enrichment factor (EF) and contamination factor (Cf), indicating that soils showed moderate enrichment and moderate contamination with these elements. Ecological risk factor and ecological risk index values of all samples were <40 and <150, respectively, indicating low ecological risk in the study area. Factor analysis and correlation analysis indicated that Al, Pb, Cr, Cu, Zn, Co, Mn and Fe mainly originated from natural sources, Ni from mixed sources of anthropogenic and lithogenic origins, while arsenic primarily originated from anthropogenic activities. The hazard quotient values for both adults and children did not exceed 1, suggesting that all TEs in soil through ingestion, dermal contact and inhalation pathways had no significant non-carcinogenic risks. Children were more susceptible to non-carcinogenic health effects of TEs in soils. The carcinogenic risk values of As, Co, Cr and Ni were within the acceptable risk range, indicating that carcinogenic risks were not expected.
Collapse
Affiliation(s)
- Memet Varol
- Malatya Turgut Özal University, Faculty of Fisheries, Malatya, Turkey.
| | - Muhammet Raşit Sünbül
- East Mediterranean Transitional Zone Agricultural Research of Institute, Kahramanmaraş, Turkey
| | - Halil Aytop
- East Mediterranean Transitional Zone Agricultural Research of Institute, Kahramanmaraş, Turkey
| | - Cafer Hakan Yılmaz
- East Mediterranean Transitional Zone Agricultural Research of Institute, Kahramanmaraş, Turkey
| |
Collapse
|
113
|
Tao Q, Li J, Liu Y, Luo J, Xu Q, Li B, Li Q, Li T, Wang C. Ochrobactrum intermedium and saponin assisted phytoremediation of Cd and B[a]P co-contaminated soil by Cd-hyperaccumulator Sedum alfredii. CHEMOSPHERE 2020; 245:125547. [PMID: 31864950 DOI: 10.1016/j.chemosphere.2019.125547] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/28/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Pot-culture experiments were conducted to investigate the potential of microorganism-saponin assisted phytoremediation of cadmium (Cd) and benzo(a)pyrene (B[a]P) co-contaminated soil using Cd-hyperaccumulator Sedum alfredii. Results showed that B[a]P-degrading bacterium (Ochrobactrum intermedium B[a]P-16) inoculation significantly increased root (by 22.1-24.1%) and shoot (by 20.5-23.4%) biomass of S. alfredii, whereas the application of saponin had no effect on the growth of S. alfredii. The saponin solution at 2 g L-1 extracted more Cd and B[a]P than water, saponin enhanced Cd and B[a]P bioavailability in soil and thus promoted their uptake and accumulation in S. alfredii. The activity of B[a]P-16, dehydrogenase and polyphenol oxidase in co-contaminated soil was promoted by growing S. alfredii, and the application of B[a]P-16 and saponins caused a significant (P < 0.05) increase in both enzyme activities. The maximum B[a]P removal rate (82.0%) and Cd phytoextraction rate (19.5%) were obtained by co-application of S. alfredii with B[a]P-16 and saponin. The B[a]P-16 and plant promoted biodegradation were the predominant contributors towards removal of B[a]P from soil. A significant (P < 0.05) synergistic effect of B[a]P-16 and saponin on B[a]P and Cd removal efficiency was observed in this study. It is suggested that planting S. alfredii with application of B[a]P-16 and saponin would be an effective method for phytoremediation of soil co-contaminated with Cd and PAHs.
Collapse
Affiliation(s)
- Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jinxing Li
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuankun Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jipeng Luo
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiang Xu
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bing Li
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiquan Li
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tingqiang Li
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Changquan Wang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
114
|
Paydary P, Larese-Casanova P. Water chemistry influences on long-term dissolution kinetics of CdSe/ZnS quantum dots. J Environ Sci (China) 2020; 90:216-233. [PMID: 32081318 DOI: 10.1016/j.jes.2019.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/07/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Widespread usage of engineered metallic quantum dots (QDs) within consumer products has evoked a need to assess their fate within environmental systems. QDs are mixed-metal nanocrystals that often include Cd2+ which poses a health risk as a nanocrystal or when leached into water. The goal of this work is to study the long-term metal cation leaching behavior and the factors affecting the dissolution processes of mercaptopropionic acid (MPA) capped CdSe/ZnS QDs in aphotic conditions. QD suspensions were prepared in different water conditions, and release of Zn2+ and Cd2+ cations were monitored over time by size exclusion chromatography-inductively coupled plasma-mass spectrometry. In most conditions with dissolved O2 present, the ZnS shell degraded fairly rapidly over ~1 week, while some of the CdSe core remained up to 80 days. Additional MPA, Zn2+, and Cd2+ temporarily delayed dissolution, indicating a moderate role for capping agent detachment and mineral solubility. The presence of H2O2 and the ligand ethylenediaminetetraacetate accelerated dissolution, while NOM had no kinetic effect. No dissolution of CdSe core was observed when O2 was absent or when QDs formed aggregates at higher concentrations with O2 present. The shrinking particle model with product layer diffusion control best describes Zn2+ and Cd2+ dissolution kinetics. The longevity of QDs in their nanocrystal form appears to be partly controlled by environmental conditions, with anoxic, aphotic environments preserving the core mineral phase, and oxidants or complexing ligands promoting shell and core mineral dissolution.
Collapse
Affiliation(s)
- Pooya Paydary
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA.
| | - Philip Larese-Casanova
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA.
| |
Collapse
|
115
|
Elessawy NA, Gouda MH, M. Ali S, Salerno M, Eldin MSM. Effective Elimination of Contaminant Antibiotics Using High-Surface-Area Magnetic-Functionalized Graphene Nanocomposites Developed from Plastic Waste. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1517. [PMID: 32224957 PMCID: PMC7177265 DOI: 10.3390/ma13071517] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/14/2020] [Accepted: 03/19/2020] [Indexed: 02/07/2023]
Abstract
The presence of pharmaceutical residues in aquatic environments represents a risk for the equilibrium of the ecosystem and may seriously affect human safety itself in the long term. To address this issue, we have synthesized functional materials based on highly-reduced graphene oxide (HRGO), sulfonated graphene (SG), and magnetic sulfonated graphene (MSG). The method of synthesis adopted is simple and inexpensive and makes use of plastic bottle waste as the raw material. We have tested the fabricated materials for their adsorption efficiency against two model antibiotics in aqueous solutions, namely Garamycin and Ampicillin. Our tests involved the optimization of different experimental parameters of the adsorption process, such as starting antibiotic concentration, amount of adsorbent, and time. Finally, we characterized the effect of the antibiotic adsorption process on common living organisms, namely Escherichia coli DH5α (E. coli DH5α) bacteria. The results obtained demonstrate the efficiency of the method in addressing the issue of the emergence of antibiotic-resistant bacteria, which will help in preventing changes in the ecosystem.
Collapse
Affiliation(s)
- Noha A. Elessawy
- Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt
| | - M. H. Gouda
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt; (M.H.G.); (M.S.M.E.)
| | - Safaa M. Ali
- Nucleic Acid Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City for Scientific Research and Technological Applications (SRTA, City), New Borg El-Arab, Alexandria 21934, Egypt;
| | - M. Salerno
- Materials Characterization Facility, Istituto Italiano di Tecnologia, 16163 Genova, Italy;
| | - M. S. Mohy Eldin
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt; (M.H.G.); (M.S.M.E.)
| |
Collapse
|
116
|
Simiele M, Lebrun M, Miard F, Trupiano D, Poupart P, Forestier O, Scippa GS, Bourgerie S, Morabito D. Assisted phytoremediation of a former mine soil using biochar and iron sulphate: Effects on As soil immobilization and accumulation in three Salicaceae species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:136203. [PMID: 31926409 DOI: 10.1016/j.scitotenv.2019.136203] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
Metal(loid) accumulation in soils, is of increasing concern because of the potential human health risks. Therefore, metal(loid) contaminated sites need rehabilitation. It is becoming increasingly popular to use phytoremediation methods for the reclamation of sites containing metal(loid)s. However, plant establishment and growth on contaminated soils can be difficult due to high metal(loid) concentrations and poor fertility conditions. Consequently, amendments, like biochar and iron sulphate, must be applied. Biochar, obtained from plant biomass or animal wastes pyrolyzed under minimal oxygen supply, showed beneficial effects on soil properties and plant growth. Iron sulphate can effectively immobilize anions, thus mitigating metal(loid) toxicity and hence promoting plant development. This study aimed to assess the effect of two different modalities of biochar amendment application (top third of the tube and all tube height) combined with iron sulphate addition on the physico-chemical properties of a mining polluted soil and the growth and metal(loid) uptake of three Salicaceae species. A 1.5 year mesocosm experiment under field condition was conducted using a former tin mine contaminated by arsenic, amended with biochar and iron sulphate and vegetated with three Salicaceae species. Results showed that the combination of biochar and iron sulphate improved soil characteristics by increasing pH and electrical conductivity and reducing soil pore water metal(loid) concentrations. Between the two biochar application methods, the addition of biochar on the all tube height showed better results. But for such contaminated soil, biochar, in combination with iron sulphate, had no positive effect on plant growth, for all species tested and especially when incorporating on the top third of the tube. Finally, S. purpurea presented high root metal(loid) concentrations associated to the better growth compared to P. euramericana and S. viminalis, making it a better candidate for phytostabilization of the studied soil.
Collapse
Affiliation(s)
- Melissa Simiele
- Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, 86090 Pesche, Italy
| | - Manhattan Lebrun
- Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, 86090 Pesche, Italy; INRA USC1328, LBLGC EA1207, rue de Chartres, University of Orleans, BP 6759, 45067 Orléans Cedex 2, France
| | - Florie Miard
- INRA USC1328, LBLGC EA1207, rue de Chartres, University of Orleans, BP 6759, 45067 Orléans Cedex 2, France
| | - Dalila Trupiano
- Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, 86090 Pesche, Italy
| | - Philippe Poupart
- Office Nationale des Forêts, Pôle national des ressources génétiques forestières, 44290 Guéméné-Penfao, France
| | - Olivier Forestier
- Office Nationale des Forêts, Pôle national des ressources génétiques forestières, 44290 Guéméné-Penfao, France
| | - Gabriella S Scippa
- Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, 86090 Pesche, Italy
| | - Sylvain Bourgerie
- INRA USC1328, LBLGC EA1207, rue de Chartres, University of Orleans, BP 6759, 45067 Orléans Cedex 2, France
| | - Domenico Morabito
- INRA USC1328, LBLGC EA1207, rue de Chartres, University of Orleans, BP 6759, 45067 Orléans Cedex 2, France.
| |
Collapse
|
117
|
Wang B, Yang Y, Lu Y, Wang W, Wang Q, Dong X, Zhao J. Rapid and efficient removal of acetochlor from environmental water using Cr-MIL-101 sorbent modified with 3, 5-Bis(trifluoromethyl)phenyl isocyanate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:135512. [PMID: 31785897 DOI: 10.1016/j.scitotenv.2019.135512] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/01/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
The excessive use of acetochlor (ACT), a commonly used herbicide with latent endocrine disrupting functions, causes surface water pollution. The efficient removal of ACT from contaminated water supplies is of paramount importance. In the current work, 3,5-Bis(trifluoromethyl)phenyl isocyanate (BTP) was successfully anchored onto Cr-MIL-101 walls via covalent incorporation to afford Cr-MIL-101-BTP as a novel adsorbent for the high-efficiency removal of ACT in aqueous solutions. The kinetic adsorption process, adsorption isotherms, adsorbent regeneration, and key parameters, such as adsorbent dosage, pH value, and ionic strength, for the adsorption of ACT were studied. Results showed that a pseudo-second-order rate equation effectively describes the adsorption kinetics. The Langmuir model exhibited a better fit to adsorption isotherm than the Freundlich model. Given the π-π stacking and hydrogen bond interaction, the adsorption capacity in Cr-MIL-101-BTP approached a maximum of 312.5 mg/g for ACT, which was considerably higher than the adsorption capacities of many other reported adsorbents. The excellent adsorption characteristics of Cr-MIL-101-BTP toward ACT were preserved in a wide pH range and high concentration of background electrolytes. In addition, the result showed that partition coefficient (PC) of Cr-MIL-101-BTP was 356.14 mg/g/μM at 5 mg/L of ACT concentration, which was found as the outperformer in all tested subjects. The ACT adsorption capacity of Cr-MIL-101-BTP at the breakthrough point was greatly influenced by initial concentration, and could be described by the Thomas model. Regeneration experiments indicated that the Cr-MIL-101-BTP was recycled at least six times without significant loss of adsorption capacity. Moreover, Cr-MIL-101-BTP did not show cytotoxic activity against the tested HepG2 cell lines and did not pose serious risks to Daphnia carinata survival (48 h LC50 = 446.6 μg/mL). These results prefigured the promising potential of Cr-MIL-101-BTP as a novel adsorbent for the efficient removal of ACT from aqueous solutions.
Collapse
Affiliation(s)
- Biao Wang
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, PR China
| | - Yong Yang
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, PR China
| | - Yu Lu
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, PR China
| | - Wei Wang
- Institute of Nuclear Agricultural Sciences, Key laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of PRC, Zhejiang University, Hangzhou 310058, PR China
| | - Qiangwei Wang
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, PR China
| | - Xiaowu Dong
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Jinhao Zhao
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
118
|
Choi YK, Choi TR, Gurav R, Bhatia SK, Park YL, Kim HJ, Kan E, Yang YH. Adsorption behavior of tetracycline onto Spirulina sp. (microalgae)-derived biochars produced at different temperatures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:136282. [PMID: 31923664 DOI: 10.1016/j.scitotenv.2019.136282] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/10/2019] [Accepted: 12/20/2019] [Indexed: 05/22/2023]
Abstract
We evaluated the production of Spirulina sp. (microalgae)-derived biochars (SPAL-BCs) at different pyrolysis temperatures for the removal of an emerging water contaminant, tetracycline (TC). Physicochemical properties of SPAL-BCs were characterized and related with their capacity to adsorb TC. Increasing pyrolysis temperatures led to higher aromaticity, higher hydrophobicity, and higher specific surface area. In particular, SPAL-BC750 possessed the highest hydrophobicity, various strong crystallizations (i.e., calcite, hydroxyapatite, and rhenanite) and functional groups (i.e., CH2, CN, CO, and CO32-), which may be associated with high TC adsorption. SPAL-BC750 also presented the highest TC adsorption capacity (132.8 mg TC/g biochar) via batch experimentation because of hydrophobic, π-π interactions, functional groups, and metal complexation. The best fitting isotherm and kinetic models of TC adsorption by SPAL-BC750 were the Langmuir and pseudo-first order models, respectively. SPAL-BCs obtained as a by-product of pyrolysis may be an economical and potentially valuable adsorbent for aqueous antibiotic removal.
Collapse
Affiliation(s)
- Yong-Keun Choi
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea; The Academy of Applied Science and Technology, Konkuk University, Seoul 05029, Republic of Korea; Department of Biological and Agricultural Engineering & Texas A&M AgriLife Research Center, Texas A&M University, 1229 North US Highway 281, Stephenville, TX 76401, USA
| | - Tae-Rim Choi
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Ranjit Gurav
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Ye-Lim Park
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyung Joo Kim
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Eunsung Kan
- Department of Biological and Agricultural Engineering & Texas A&M AgriLife Research Center, Texas A&M University, 1229 North US Highway 281, Stephenville, TX 76401, USA
| | - Yung-Hun Yang
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
119
|
Zhu M, Lv X, Franks AE, Brookes PC, Xu J, He Y. Maize straw biochar addition inhibited pentachlorophenol dechlorination by strengthening the predominant soil reduction processes in flooded soil. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:122002. [PMID: 31901711 DOI: 10.1016/j.jhazmat.2019.122002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 12/04/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
Biochar has received increasing attention for its multifunctional applications as a soil amendment. The dual effect of biochar on reductive organic pollutants and soil biogeochemical processes under anaerobic environments in parallel has yet to be fully explored. In this study, anaerobic batch experiments were conducted to examine the effect of biochar on both reductive transformation of pentachlorophenol (PCP) and soil redox processes in flooded soil. Compared to biochar-free controls, the reductive dechlorination of PCP was significantly inhibited following biochar addition, with the inhibition degree increased with increasing amount of biochar. Dissimilatory iron and sulfate reduction, as well as the production of methane, were significantly enhanced following biochar addition. The bacterial and archaeal communities showed a functional selection responded to the addition of biochar and PCP, with the core functional groups at the genus level including Dethiobacter, Clostridium, Geosporobacter, Desulfuromonas, Desulfatitalea, and Methanosarcina. These findings indicated that biochar could affect soil microbial redox processes and may act as an electron mediator altering electron distribution from PCP dechlorination to the predominant soil reduction processes, and increase understanding regarding biochar's comprehensive effects on the remediation of natural flooded soil polluted by chlorinated organic pollutants that can be degraded reductively.
Collapse
Affiliation(s)
- Min Zhu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Xiaofei Lv
- Department of Environmental Engineering, China Jiliang University, Hangzhou 310018, China
| | - Ashley E Franks
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Victoria 3086, Australia; Centre for Future Landscape, La Trobe University, Melbourne, Victoria, Australia
| | - Philip C Brookes
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Yan He
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China.
| |
Collapse
|
120
|
Abdelbassit MS, Popoola SA, Saleh TA, Abdallah HH, Al-Saadi AA, Alhooshani KR. DFT and Kinetic Evaluation of Chloromethane Removal Using Cost-Effective Activated Carbon. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-04458-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
121
|
Panchal P, Paul DR, Sharma A, Choudhary P, Meena P, Nehra S. Biogenic mediated Ag/ZnO nanocomposites for photocatalytic and antibacterial activities towards disinfection of water. J Colloid Interface Sci 2020; 563:370-380. [DOI: 10.1016/j.jcis.2019.12.079] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 01/09/2023]
|
122
|
Chung KW, Yoon HS, Kim CJ, Lee JY, Jyothi RK. Solvent extraction, separation and recovery of thorium from Korean monazite leach liquors for nuclear industry applications. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.11.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
123
|
Chen F, Yu C, Wei L, Fan Q, Ma F, Zeng J, Yi J, Yang K, Ji H. Fabrication and characterization of ZnTiO 3/Zn 2Ti 3O 8/ZnO ternary photocatalyst for synergetic removal of aqueous organic pollutants and Cr( VI) ions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:136026. [PMID: 31841856 DOI: 10.1016/j.scitotenv.2019.136026] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/23/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
Highly efficient photocatalysts have great development prospects in wastewater treatment, especially in the degradation of organic pollutants and reduction of inorganic heavy metal ions. Herein, a Z-scheme ZnTiO3/Zn2Ti3O8/ZnO ternary photocatalyst was prepared by the solvothermal-calcination method and the influence of the content of tetrabutyl titanate precursor and different reaction temperature on the crystal phase structures, photoelectrochemical properties and photocatalytic activities of the samples were investigated. Due to its unique Z-scheme structure and suitable band gap position, which is favorable for the efficient migration and separation of photo-generated electrons and holes and the improvement of photocatalytic redox reaction capability, the samples show excellent performance for the degradation of organic pollutants and reduction of heavy metal Cr(VI) ions. Based on a series of characterization analyses, a possible Z-scheme photocatalytic mechanism is proposed. This work provides a simple preparation method for fabrication of multivariate heterojunction photocatalyst for degradation of organic pollutants and removal of heavy metal ions.
Collapse
Affiliation(s)
- Fanyun Chen
- School of Chemical Engineering, Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, 86 Hongqi Road, Ganzhou 341000, China
| | - Changlin Yu
- School of Chemical Engineering, Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, 86 Hongqi Road, Ganzhou 341000, China.
| | - Longfu Wei
- School of Chemical Engineering, Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Qizhe Fan
- School of Chemical Engineering, Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Fei Ma
- School of Chemical Engineering, Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Julan Zeng
- Department of Chemistry, Changsha University of Science and Technology, Changsha 410114, Hunan, China
| | - Junhui Yi
- School of Chemical Engineering, Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Kai Yang
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, 86 Hongqi Road, Ganzhou 341000, China
| | - Hongbing Ji
- School of Chemical Engineering, Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China.
| |
Collapse
|
124
|
Sashidhar P, Kochar M, Singh B, Gupta M, Cahill D, Adholeya A, Dubey M. Biochar for delivery of agri-inputs: Current status and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:134892. [PMID: 31767299 DOI: 10.1016/j.scitotenv.2019.134892] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/20/2019] [Accepted: 10/07/2019] [Indexed: 05/14/2023]
Abstract
Biochar, a carbonaceous porous material produced from the pyrolysis of agricultural residues and solid wastes has been widely used as a soil amendment. Recent publications on biochar are primarily focussed with its application in climatic aspects, contaminant immobilization, soil amendment strategies, nutrient recovery, engineered material production and waste-water treatment. Numerous studies have reported the positive attribute of biochar's nutrient value that helps in improving plant growth and fertilizer use efficiency. The renewability, low-cost, high porosity, high surface area and customizable surface chemistry of biochar offers ample prospect in several engineering applications, some of which needs significant attention. This review aims at systematically assessing the uses of biochar as a potential carrier material for delivery of agrochemicals and microbes. The key parameters of biochar that are crucial to assess the potential of any material to be used for delivery purposes are discussed. The parameters such as the physicochemical properties of biochar, the mechanistic aspects of adsorption and release of agrochemicals and microbes from biochar, comparative assessment of biochar over other carrier materials, long-term effects of biochar and the economic and environmental benefits of biochar are discussed in detail. At the end, a brief perspective has also been laid out to discuss how nano-interventions could further be helpful to tailor biochar properties useful for delivery applications.
Collapse
Affiliation(s)
- Poonam Sashidhar
- TERI Deakin Nanobiotechnology Centre, The Energy and Resources Institute, TERI Gram, Gwal Pahari, Gurugram, Haryana 122003, India; Deakin University, School of Life and Environmental Sciences, Waurn Ponds Campus, Geelong, Victoria 3216, Australia
| | - Mandira Kochar
- TERI Deakin Nanobiotechnology Centre, The Energy and Resources Institute, TERI Gram, Gwal Pahari, Gurugram, Haryana 122003, India
| | - Brajraj Singh
- TERI Deakin Nanobiotechnology Centre, The Energy and Resources Institute, TERI Gram, Gwal Pahari, Gurugram, Haryana 122003, India
| | - Manish Gupta
- TERI Deakin Nanobiotechnology Centre, The Energy and Resources Institute, TERI Gram, Gwal Pahari, Gurugram, Haryana 122003, India
| | - David Cahill
- Deakin University, School of Life and Environmental Sciences, Waurn Ponds Campus, Geelong, Victoria 3216, Australia
| | - Alok Adholeya
- TERI Deakin Nanobiotechnology Centre, The Energy and Resources Institute, TERI Gram, Gwal Pahari, Gurugram, Haryana 122003, India
| | - Mukul Dubey
- TERI Deakin Nanobiotechnology Centre, The Energy and Resources Institute, TERI Gram, Gwal Pahari, Gurugram, Haryana 122003, India.
| |
Collapse
|
125
|
A novel synthesis method of mesoporous carbon loaded with Fe3O4 composite for effective adsorption and degradation of sulfamethazine. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
126
|
Enhanced visible light photocatalytic activity of CeO2@Zn0.5Cd0.5S by facile Ce(IV)/Ce(III) cycle. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2019.06.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
127
|
Chen H, Awasthi SK, Liu T, Duan Y, Zhang Z, Awasthi MK. Compost biochar application to contaminated soil reduces the (im)mobilization and phytoavailability of lead and copper. JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY 2020; 95:408-417. [DOI: 10.1002/jctb.5986] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Affiliation(s)
- Hongyu Chen
- College of Natural Resources and EnvironmentNorthwest A&F University Yangling China
| | - Sanjeev K Awasthi
- College of Natural Resources and EnvironmentNorthwest A&F University Yangling China
| | - Tao Liu
- College of Natural Resources and EnvironmentNorthwest A&F University Yangling China
| | - Yumin Duan
- College of Natural Resources and EnvironmentNorthwest A&F University Yangling China
| | - Zengqiang Zhang
- College of Natural Resources and EnvironmentNorthwest A&F University Yangling China
| | - Mukesh K Awasthi
- College of Natural Resources and EnvironmentNorthwest A&F University Yangling China
| |
Collapse
|
128
|
Demangeat E, Pédrot M, Dia A, Bouhnik-Le-Coz M, Davranche M, Cabello-Hurtado F. Surface modifications at the oxide/water interface: Implications for Cu binding, solution chemistry and chemical stability of iron oxide nanoparticles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113626. [PMID: 31796322 DOI: 10.1016/j.envpol.2019.113626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
The oxidation of magnetite into maghemite and its coating by natural organic constituents are common changes that affect the reactivity of iron oxide nanoparticles (IONP) in aqueous environments. Certain ubiquitous compounds such as humic acids (HA) and phosphatidylcholine (PC), displaying a high affinity for both copper (Cu) and IONP, could play a critical role in the interactions involved between both compounds. The adsorption of Cu onto four different IONP was studied: magnetite nanoparticles (magnNP), maghemite NP (maghNP), HA- and PC-coated magnetite NP (HA-magnNP and PC-magnNP, respectively). According to the results, the percentage of adsorbed Cu increases with increasing pH, irrespective of the IONP. Thus, protonation/deprotonation reactions are likely involved within Cu adsorption mechanism. Contrary to the other studied IONP, HA-magnNP favor Cu adsorption at most of the pH tested including acidic pH (pH = 3), suggesting that part of the active surface sites for Cu2+ were not grabbed by protons. The Freundlich adsorption isotherm of HA-magnNP provides the highest sorption constant KF (bonding energy) and n value which supports a heterogeneous sorption process. The heterogeneous adsorption between HA-magnNP and Cu2+ can be explained by both the diversity of the binding sites HA procured and the formation of multidendate complexes between Cu2+ and some of the HA functional groups. Such favorable adsorption process was neither observed on PC-coated-magnNP nor on maghNP, whose behaviors were comparable to that of magnNP. On another hand, HA and PC coatings considerably reduced iron (Fe) dissolution from magnNP as compared with magnNP. It was suggested that HA and PC coatings either provided efficient shield against Fe leaching or fostered dissolved Fe re-adsorption onto the functional groups at the coated magnNP surfaces. Thus, this study can help to better understand the complex interfacial reactions between cations-organic matter-colloidal surfaces which are relevant in environmental and agricultural contexts. This work showed that magnetite NP properties can be affected by surface modifications, which drive NP chemical stability and Cu adsorption, thereby affecting the global water chemistry.
Collapse
Affiliation(s)
- Edwige Demangeat
- Univ Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France
| | - Mathieu Pédrot
- Univ Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France.
| | - Aline Dia
- Univ Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France
| | | | - Mélanie Davranche
- Univ Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France
| | | |
Collapse
|
129
|
Ji Y, Zhang X, Gao J, Zhao S, Dou Y, Xue Y, Chen L. Efficiency and mechanisms of cadmium removal via core-shell zeolite/Zn-layer double hydroxides. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 188:109887. [PMID: 31706237 DOI: 10.1016/j.ecoenv.2019.109887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/25/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
To investigate the removal mechanisms of cadmium (Cd) by Zn-layer double hydroxides-modified zeolites substrates in constructed rapid infiltration systems (CRIS), the ZnAl-LDHs and ZnFe-LDHs were synthesized and in-situ coated on the original zeolites through co-precipitation method. The prepared Zn-LDHs-modified and original zeolites were characterized by scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) methods, whose results provided the evidences that the Zn-LDHs were successfully coated on the original zeolites. From the results of purification experiments, the average Cd removal rates of ZnAl-LDHs-modified, ZnFe-LDHs-modified and original zeolites were 88.40, 86.00 and 32.52%, respectively; demonstrating that the removal rates of zeolites could significantly improve. Additionally, the modification of Zn-LDHS could enhance the theoretical adsorption ability. According to the results of isothermal adsorption and desorption tests, the desorption rates of Zn-LDHs-modified zeolites were higher than that of original zeolites. Cd adsorption capacity of ZnFe-LDHs-modified zeolites was 1428.57 mg kg-1 and original zeolites was 434.783 mg kg-1. In the adsorption kinetic studies, the pseudo-second-order models were used to well describe the experimental results of Zn-LDHs-modified zeolites, indicating that their adsorption types were attributed to be more stable chemisorption. Besides, the relevant microbial tests also confirmed that microbial enzymatic activity and extracellular polymeric substances (EPS) were significantly promoted on surface of Zn-LDHs-modified zeolites. The contents of EPS on the surface of zeolites were as following: ZnAl-LDHs-modified zeolites (78.58128 μg/g) > ZnFe-LDHs-modified zeolites (71.85445 μg/g) > original zeolites (68.69904 μg/g). Meanwhile, the results of high-throughput sequencing showed that modification by Zn-LDHs improved microbial diversity and relative abundance. The Proteobacteria was the dominant phylum and the Acidobacteria was conducive to Cd removal. Overall, it could be concluded that ZnAl-LDHs-modified zeolites might be applied as an efficient substrate for Cd removal in CRIS.
Collapse
Affiliation(s)
- Yunsen Ji
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiangling Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China.
| | - Jingtian Gao
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Shuangjie Zhao
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Yankai Dou
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Yu Xue
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Lihong Chen
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
130
|
Nagpal M, Kakkar R. Adsorptive Degradation of Phosmet Using Hierarchically Porous Calcium Oxide : An Experimental and Theoretical Study. ChemistrySelect 2020. [DOI: 10.1002/slct.201904740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mudita Nagpal
- Department of ChemistryUniversity of Delhi Delhi- 110 007 India
| | - Rita Kakkar
- Department of ChemistryUniversity of Delhi Delhi- 110 007 India
| |
Collapse
|
131
|
Haruna A, Abdulkadir I, Idris SO. Photocatalytic activity and doping effects of BiFeO 3 nanoparticles in model organic dyes. Heliyon 2020; 6:e03237. [PMID: 32042971 PMCID: PMC7002831 DOI: 10.1016/j.heliyon.2020.e03237] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 11/29/2022] Open
Abstract
The studies of advanced materials in environmental remediation and degradation of pollutants is rapidly advancing because of their wide varieties of applications. BiFeO3 (BFO), a perovskite nanomaterial with a rhombohedral R3c space group, is currently receiving tremendous attention in photodegradation of dyes. The photocatalytic activity of BFO nanoparticle is a promising field of research in photocatalysis. BFO nanomaterial is a photocatalyst enhanced by doping because of its reduce bandgap energy (2.0–2.77 eV), multiferroic property, strong photoabsorption and crystal structure. The material has proven to be very useful for the degradation of dyes under visible light irradiation among other photocatalysts. Its exceptional nontoxicity, suitability, low cost and long term excellent stability makes it an efficient photocatalyst for the degradation of effluents from textile and pharmaceutical industries which ended-up in the environment and now a major concern of the modern world. This mini-review attempts to provide some detailed synthetic routes of BFO and BFO related nanomaterials and the notable achievements so far on the effect of doping the material. It also discusses the effect of crystallite size of the material and other photophysical properties and how they influence the photocatalytic process of model organic dye pollutants, to date.
Collapse
Affiliation(s)
- A Haruna
- Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria
| | - I Abdulkadir
- Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria
| | - S O Idris
- Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
132
|
Tan K, Wang H, Chen L, Du Q, Du P, Pan C. Estimation of the spatial distribution of heavy metal in agricultural soils using airborne hyperspectral imaging and random forest. JOURNAL OF HAZARDOUS MATERIALS 2020; 382:120987. [PMID: 31454609 DOI: 10.1016/j.jhazmat.2019.120987] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
Hyperspectral imaging, with the hundreds of bands and high spectral resolution, offers a promising approach for estimation of heavy metal concentration in agricultural soils. Using airborne imagery over a large-scale area for fast retrieval is of great importance for environmental monitoring and further decision support. However, few studies have focused on the estimation of soil heavy metal concentration by airborne hyperspectral imaging. In this study, we utilized the airborne hyperspectral data in LiuXin Mine of China obtained from HySpex VNIR-1600 and HySpex SWIR-384 sensor to establish the spectral-analysis-based model for retrieval of heavy metals concentration. Firstly, sixty soil samples were collected in situ, and their heavy metal concentrations (Cr, Cu, Pb) were determined by inductively coupled plasma-mass spectrometry analysis. Due to mixed pixels widespread in airborne hyperspectral images, spectral unmixing was conducted to obtain purer spectra of the soil and to improve the estimation accuracy. Ten of estimated models, including four different random forest models (RF)-standard random forest (SRF), regularized random forest (RRF), guided random forest (GRF), and guided regularized random forest (GRRF)-were introduced for hyperspectral estimated model in this paper. Compared with the estimation results, the best accuracy for Cr, Cu, and Pb is obtained by RF. It shows that RF can predict the three heavy metals better than other models in this area. For Cr, Cu, Pb, the best model of RF yields Rp2 values of 0.75,0.68 and 0.74 respectively, and the values of RMSEp are 5.62, 8.24, and 2.81 (mg/kg), respectively. The experiments show the average estimated values are close to the truth condition and the high estimated values concentrated near several industries, valifating the effectiveness of the presented method.
Collapse
Affiliation(s)
- Kun Tan
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory for Land Environment and Disaster Monitoring of NASG, China University of Mining and Technology, Xuzhou 221116, China.
| | - Huimin Wang
- Key Laboratory for Land Environment and Disaster Monitoring of NASG, China University of Mining and Technology, Xuzhou 221116, China
| | - Lihan Chen
- Key Laboratory for Land Environment and Disaster Monitoring of NASG, China University of Mining and Technology, Xuzhou 221116, China
| | - Qian Du
- Department of Electrical and Computer Engineering, Mississippi State University, MS 39762, USA.
| | - Peijun Du
- Key Laboratory for Satellite Mapping Technology and Applications of NASG, Nanjing University, Nanjing 210023, China.
| | - Cencen Pan
- Key Laboratory for Land Environment and Disaster Monitoring of NASG, China University of Mining and Technology, Xuzhou 221116, China
| |
Collapse
|
133
|
Chauhan A, Sharma M, Kumar S, Thirumalai S, Kumar RV, Vaish R. TiO 2@C core@shell nanocomposites: A single precursor synthesis of photocatalyst for efficient solar water treatment. JOURNAL OF HAZARDOUS MATERIALS 2020; 381:120883. [PMID: 31369935 DOI: 10.1016/j.jhazmat.2019.120883] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
This study reports the facile synthesis of highly photoactive TiO2@C core@shell nanocomposites through a single alkoxide precursor. TiO2 and carbon-based hybrid nanomaterials are popular photocatalysts owing to their abundance, low toxicity, and high stability, making them strong candidates for practical solar water-treatment applications. However, synthesis of such nanomaterials is often a multi-step process and requires careful control of the external carbon source for producing the desired morphology. In this regard, this study reports the synthesis of well-dispersed TiO2@C nanocomposites without the need of an external carbon source. The resulting photocatalyst was employed for treatment of various water-borne pollutants including several dyes, pharmaceuticals, and pathogens. Rapid mineralization of pollutants could be achieved even with low amounts of catalyst, with the performance well exceeding that of pristine TiO2 and P25 Degussa. Results indicate that incorporation of C increases visible-light absorption and greatly improves the separation of photogenerated charge carriers. Given the facile synthesis and the wide scope of operation, the proposed catalyst could be a significant step towards practical photocatalytic solar water-treatment.
Collapse
Affiliation(s)
- Aditya Chauhan
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK.
| | - Moolchand Sharma
- School of Engineering, Indian Institute of Technology Mandi, Mandi, 175 001, India
| | - Sandeep Kumar
- School of Engineering, Indian Institute of Technology Mandi, Mandi, 175 001, India
| | - Sundararajan Thirumalai
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK
| | | | - Rahul Vaish
- School of Engineering, Indian Institute of Technology Mandi, Mandi, 175 001, India
| |
Collapse
|
134
|
Cotillas S, Lacasa E, Herraiz-Carboné M, Sáez C, Cañizares P, Rodrigo MA. Innovative photoelectrochemical cell for the removal of CHCs from soil washing wastes. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.115876] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
135
|
Shi J, Pang J, Liu Q, Luo Y, Ye J, Xu Q, Long B, Ye B, Yuan X. Simultaneous removal of multiple heavy metals from soil by washing with citric acid and ferric chloride. RSC Adv 2020; 10:7432-7442. [PMID: 35492199 PMCID: PMC9049904 DOI: 10.1039/c9ra09999a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/29/2020] [Indexed: 11/21/2022] Open
Abstract
Citric acid and ferric chloride exhibited synergistic effect on the removal of multiple heavy metals from soil.
Collapse
Affiliation(s)
- Jiyan Shi
- Department of Environmental Engineering
- College of Environmental and Resource Sciences
- Zhejiang University
- Hangzhou
- China
| | - Jingli Pang
- Department of Environmental Engineering
- College of Environmental and Resource Sciences
- Zhejiang University
- Hangzhou
- China
| | - Qinglin Liu
- Department of Environmental Engineering
- College of Environmental and Resource Sciences
- Zhejiang University
- Hangzhou
- China
| | - Yating Luo
- Department of Environmental Engineering
- College of Environmental and Resource Sciences
- Zhejiang University
- Hangzhou
- China
| | - Jien Ye
- Department of Environmental Engineering
- College of Environmental and Resource Sciences
- Zhejiang University
- Hangzhou
- China
| | - Qiao Xu
- Department of Environmental Engineering
- College of Environmental and Resource Sciences
- Zhejiang University
- Hangzhou
- China
| | - Bibo Long
- Guangzhou Sugarcane Industry Research Institute
- Guangdong Bioengineering Institute
- Guangzhou
- China
| | - Binhui Ye
- Chengbang Eco-Environment Co., Ltd
- Hangzhou
- China
| | - Xiaofeng Yuan
- College of Life Science
- Zhejiang Chinese Medical University
- Hangzhou
- China
| |
Collapse
|
136
|
Sun H, Wu L, Hao Y, Liu C, Pan L, Zhu Z. Tolerance mechanism of Trichoderma asperellum to Pb2+: response changes of related active ingredients under Pb2+ stress. RSC Adv 2020; 10:5202-5211. [PMID: 35498294 PMCID: PMC9049547 DOI: 10.1039/c9ra10517d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 01/17/2020] [Indexed: 11/21/2022] Open
Abstract
Trichoderma asperellum ZZY has good tolerance to Pb2+, but the tolerance mechanism is not clear.
Collapse
Affiliation(s)
- Huiqing Sun
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science and Technology
- Tianjin 300457
- PR China
- Key Laboratory of Food Nutrition and Safety
| | - Lingran Wu
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science and Technology
- Tianjin 300457
- PR China
- Key Laboratory of Food Nutrition and Safety
| | - Yali Hao
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science and Technology
- Tianjin 300457
- PR China
- Key Laboratory of Food Nutrition and Safety
| | - Chunyu Liu
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science and Technology
- Tianjin 300457
- PR China
- Key Laboratory of Food Nutrition and Safety
| | - Lichao Pan
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science and Technology
- Tianjin 300457
- PR China
- Key Laboratory of Food Nutrition and Safety
| | - Zhenyuan Zhu
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science and Technology
- Tianjin 300457
- PR China
- Key Laboratory of Food Nutrition and Safety
| |
Collapse
|
137
|
Elessawy NA, Elnouby M, Gouda MH, Hamad HA, Taha NA, Gouda M, Mohy Eldin MS. Ciprofloxacin removal using magnetic fullerene nanocomposite obtained from sustainable PET bottle wastes: Adsorption process optimization, kinetics, isotherm, regeneration and recycling studies. CHEMOSPHERE 2020; 239:124728. [PMID: 31499314 DOI: 10.1016/j.chemosphere.2019.124728] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/19/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
Numerous of pollutants threaten our planet, for instance plastic wastes causes a huge potential risk on the environment in addition to many of emergened pollutants as pharmaceutical residue in aquatic environments which affecting ecological balance and in-turn affecting human health. Accordingly, this research proposed an innovative facile, one-step synthesis of functionalized magnetic fullerene nanocomposite (FMFN) via catalytic thermal decomposition of sustainable poly (ethylene terephthalate) bottle wastes as feedstock and ferrocene as a catalyst and precursor of magnetite. Growth mechanism of FMFN was discussed and batch experiments were achieved to examine its adsorption efficiency in relation to Ciprofloxacin antibiotic. Different adsorption parameters including time, initial Ciprofloxacin concentration, and solution temperature were investigated and optimized using Response Surface Methodology (RSM) model. In addition, a study on the antibiotic adsorption process impact on the organisms of an ecosystem was conducted using E. coli DH5α, and results validated method's efficiency in overcoming problem of appearance of antibiotic-resistant microbes.
Collapse
Affiliation(s)
- Noha A Elessawy
- Advanced Technology & New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), 21934, Alexandria, Egypt.
| | - Mohamed Elnouby
- Nanomaterials and Composites Research Department, Advanced Technology & New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), 21934, Alexandria, Egypt
| | - M H Gouda
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt
| | - Hesham A Hamad
- Fabrication Technology Research Department, Advanced Technology & New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), 21934, Alexandria, Egypt
| | - Nahla A Taha
- Fabrication Technology Research Department, Advanced Technology & New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), 21934, Alexandria, Egypt
| | - M Gouda
- Chemistry Department, College of Science, King Faisal University, Al-Hassa, Saudi Arabia.
| | - Mohamed S Mohy Eldin
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt
| |
Collapse
|
138
|
Wang M, Chen S, Zheng H, Li S, Chen L, Wang D. The responses of cadmium phytotoxicity in rice and the microbial community in contaminated paddy soils for the application of different long-term N fertilizers. CHEMOSPHERE 2020; 238:124700. [PMID: 31524602 DOI: 10.1016/j.chemosphere.2019.124700] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/25/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
An eight-year field trial was conducted to investigate the effects of four different N fertilization treatments of urea (CO(NH2)2, the control), ammonium sulfate ((NH4)2SO4), ammonium chloride (NH4Cl), and ammonium hydrogen phosphate [(NH4)2HPO4]) on cadmium (Cd) phytotoxicity in rice and soil microbial communities in a Cd-contaminated paddy of southern China. The results demonstrate that the different N treatments exerted different effects: the application of (NH4)2HPO4 and (NH4)2SO4 significantly increased rice grain yield and decreased soil-extractable Cd content when compared with those of the control, while NH4Cl had a converse effect. Expression of genes related to Cd uptake (IRT and NRAPM genes) and transport (HMA genes) by roots may be responsible for Cd phytotoxicity in rice grown in the different N fertilization treatments. Our results further demonstrate that N fertilization had stronger effects on soil bacterial communities than fungal communities. The bacterial and fungal keystone species were identified by phylogenetic molecular ecological network (pMEN) analysis and mainly fell into the categories of Gammaproteobacteria, Acidobacteria and Actinobacteria for the bacterial species and Ascomycota for the fungal species; all of these keystone species were highly enriched in the (NH4)2HPO4 treatment. Soil pH and soil available-Cd content emerged as the major determinants of microbial network connectors. These results could provide effective fertilizing strategies for alleviating Cd phytotoxicity in rice and enhance the understanding of its underlying microbial mechanisms.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs / Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Shibao Chen
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs / Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| | - Han Zheng
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs / Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Shanshan Li
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs / Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Li Chen
- Institute of Plant Protection and Environmental Protection, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, PR China
| | - Duo Wang
- College of Energy, Xiamen University, Xiamen, Fujian, 361102, PR China
| |
Collapse
|
139
|
He S, Zhu H, Zhao H, Zhu Z. Core-shell magnetic nano-powders with an excellent decolorization effect on dye wastewater. RSC Adv 2019; 9:39945-39950. [PMID: 35541394 PMCID: PMC9076219 DOI: 10.1039/c9ra07937h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/19/2019] [Indexed: 11/28/2022] Open
Abstract
In recent years, zero-valent nano-iron (nZVI) has received extensive attention due to its excellent decolorization effect on dye wastewater. In this paper, zero-valent nano-iron-nickel (nZVIN) powders were prepared by a simple, efficient and non-polluting method. The powder has a unique core-shell structure and excellent oxidation resistance. Hence the problem that nZVI powders are easily oxidized and difficult to store is solved. Due to the addition of Ni, the magnetic properties of the nZVIN powders are enhanced, which facilitates the recycling of the powders using a magnetic field after sewage treatment. In the decolorization treatment of dye wastewater simulated with Congo red (CR) dye, nZVIN powders can maintain a removal rate of more than 90% for CR solutions with different pH values (7.0-11.5) and an initial dye concentration (50-200 mg L-1). The research results show that nZVIN powders have broad application prospects in the treatment of azo dye wastewater.
Collapse
Affiliation(s)
- Shuai He
- College of Material Science and Engineering, Nanchang University Honggutan New District University Avenue No. 999 Nanchang 330031 Jiangxi China +86-18970946897 +86-791-83969141
| | - Hanzhe Zhu
- Faculty of Science, University of Alberta Edmonton Canada T6G 2G8
| | - Hui Zhao
- College of Material Science and Engineering, Nanchang University Honggutan New District University Avenue No. 999 Nanchang 330031 Jiangxi China +86-18970946897 +86-791-83969141
- Institute of Space Science and Technology, Nanchang University Nanchang 330031 Jiangxi China
| | - Zhenghou Zhu
- College of Material Science and Engineering, Nanchang University Honggutan New District University Avenue No. 999 Nanchang 330031 Jiangxi China +86-18970946897 +86-791-83969141
| |
Collapse
|
140
|
S. R, K. V. Biosorption of Tm(III) by free and polysulfone-immobilized Turbinaria conoides biomass. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.08.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
141
|
Liu JL, Yao J, Duran R, Mihucz VG, Hudson-Edwards KA. Bacterial shifts during in-situ mineralization bio-treatment to non-ferrous metal(loid) tailings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113165. [PMID: 31546074 DOI: 10.1016/j.envpol.2019.113165] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/01/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
Nonferrous mine tailings have caused serious problems of co-contamination with metal(loid)s. It is still a global challenge to cost-effectively manage and mitigate the effect of the mining wastes. We conducted an in-situ bio-treatment of non-ferrous metal(loid) tailings using a microbial consortium of sulfate reducing bacteria (SRB). During the bio-treatment, the transformation of metal(loid)s (such as Cu, Fe, Mn, Pb, Sb, and Zn) into oxidizable and residual fractions in the subsurface tended to be higher than that observed in the surface. As well the mineral compositions changed becoming more complex, indicating that the sulfur reducing process of bio-treatment shaped the bio-transformation of metal(loid)s. The added SRB genera, especially Desulfotomaculum genus, colonized the tailings suggesting the coalescence of SRB consortia with indigenous communities of tailings. Such observation provides new insights for understanding the functional microbial community coalescence applied to bio-treatment. PICRUSt analysis revealed presence of genes involved in sulfate reduction, both assimilatory and dissimilatory. The potential for the utilization of both inorganic and organic sulfur compounds as S source, as well as the presence of sulfite oxidation genes indicated that SRB play an important role in the transformation of metal(loid)s. We advocate that the management of microorganisms involved in S-cycle is of paramount importance for the in situ bio-treatment of tailings, which provide new insights for the implementation of bio-treatments for mitigating the effect of tailings.
Collapse
Affiliation(s)
- Jian-Li Liu
- School of Water Resource and Environment Engineering, China University of Geosciences (Beijing), 100083, China
| | - Jun Yao
- School of Water Resource and Environment Engineering, China University of Geosciences (Beijing), 100083, China.
| | - Robert Duran
- School of Water Resource and Environment Engineering, China University of Geosciences (Beijing), 100083, China; Equipe Environnement et Microbiologie, MELODY group, Université de Pau et des Pays de l'Adour/E2S UPPA, IPREM UMR CNRS 5254, BP 1155, 64013, Pau Cedex, France
| | - Victor G Mihucz
- Sino-Hungarian Joint Research Laboratory for Environmental Sciences and Health, ELTE-Eötvös Loránd University, H-1117, Budapest, Pázmány Péter stny. 1/A, Hungary
| | - Karen A Hudson-Edwards
- Environment & Sustainability Institute and Camborne School of Mines, University of Exeter, Penryn, Cornwall, TR10 9DF, UK
| |
Collapse
|
142
|
Construction of heterostructure CoWO4/g-C3N4 nanocomposite as an efficient visible-light photocatalyst for norfloxacin degradation. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.08.035] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
143
|
Zhao L, Yang S, Yilihamu A, Ma Q, Shi M, Ouyang B, Zhang Q, Guan X, Yang ST. Adsorptive decontamination of Cu2+-contaminated water and soil by carboxylated graphene oxide/chitosan/cellulose composite beads. ENVIRONMENTAL RESEARCH 2019; 179:108779. [PMID: 31593834 DOI: 10.1016/j.envres.2019.108779] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
Graphene adsorbents have been applied to remove diverse pollutants from aqueous systems. However, the mechanical strength of most graphene adsorbents is low and the fragile graphene sheets are released into the environment. In this study, we prepared carboxylated graphene oxide/chitosan/cellulose (GCCSC) composite beads with good mechanical strength for the immobilization of Cu2+ from both water and soil. The proportional limit of GCCSC beads was 3.2 N, a much larger value than graphene oxide beads (0.2 N). The largest pressure for GCCSC beads recorded before brittle failure was 26 N. The Cu2+ adsorption capacity of GCCSC beads was 22.4 mg/g in aqueous systems at initial Cu2+ concentration of 40 μg/mL, which is competitive with many efficient adsorbents. The partition coefficient (PC) for the Cu2+ adsorption onto GCCSC beads was 1.12 mg/g/μM at Ce of 0.83 mg/L and qe of 14.3 mg/g. The PC decreased to 0.055 mg/g/μM at Ce of 26.0 mg/L and qe of 22.4 mg/g. The adsorption kinetics of Cu2+ on GCCSC beads were moderately fast and required approximately 3 h to reach equilibrium with a k2 of 0.0021 g/(mg·min). A lower temperature and higher pH slightly increased the adsorption capacity of GCCSC beads. The ionic strength did not influence the adsorption. The porous structure of GCCSC beads blocked the direct contact between soil and the graphene surface; thus, a high Cu2+ immobilization efficiency was achieved by GCCSC beads applied to soil. The implications for the design of high-performance graphene adsorbents for water and soil remediation are discussed.
Collapse
Affiliation(s)
- Lianqin Zhao
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu, 610041, PR China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai, 200240, PR China
| | - Shengnan Yang
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu, 610041, PR China
| | - Ailimire Yilihamu
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu, 610041, PR China
| | - Qiang Ma
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu, 610041, PR China
| | - Mengyao Shi
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu, 610041, PR China
| | - Bowei Ouyang
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu, 610041, PR China
| | - Qiangqiang Zhang
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu, 610041, PR China
| | - Xin Guan
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu, 610041, PR China
| | - Sheng-Tao Yang
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu, 610041, PR China.
| |
Collapse
|
144
|
Huang J, Yi K, Zeng G, Shi Y, Gu Y, Shi L, Yu H. The role of quorum sensing in granular sludge: Impact and future application: A review. CHEMOSPHERE 2019; 236:124310. [PMID: 31344626 DOI: 10.1016/j.chemosphere.2019.07.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/20/2019] [Accepted: 07/05/2019] [Indexed: 06/10/2023]
Abstract
Quorum sensing (QS) is a process widely exist in bacteria, which refers to the cell-cell communication through secretion and sensing the specific chemical signal molecules named autoinducers. This review demonstrated recent research progresses on the specific impacts of signal molecules in the granular sludge reactors, such corresponding exogenous strategies contained the addition of QS signal molecules, QS-related enzymes and bacteria associated with QS process. Accordingly, the correlation between QS signaling molecule content and sludge granulation (including the formation and stability) was assumed, the comprehensive conclusion elucidated that some QS signals (acyl-homoserine lactone and Autoinducer 2) can accelerate the growth of particle diameter, the production of extracellular polymeric substance (EPS), microbial adhesion and change the microbiome structure. But diffusable signal factor (DSF) acted as a significant disincentive to the formation and stability of GS. As a result, it deserved serious attention on the value and role of QS signals in the GS. This review attempts to illuminate the potential method for addressing the main bottleneck: to accelerate the formation of granules and keep the high stability of GS for a long-term reactor. Therefore, review discussed the possible trends of GS: QS and intercellular/intracellular signaling which can lay a theoretical foundation for mechanism of GS formation and stability, would be of practical significance for further application in the future.
Collapse
Affiliation(s)
- Jinhui Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China.
| | - Kaixin Yi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China.
| | - Yahui Shi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Yanling Gu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Lixiu Shi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Hanbo Yu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| |
Collapse
|
145
|
Yang Q, Guo E, Liu H, Lu Q. Engineering of Z-scheme 2D/3D architectures with Bi2MoO6 on TiO2 nanosphere for enhanced photocatalytic 4-nitrophenol degradation. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.09.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
146
|
Duran H, Yavuz E, Sismanoglu T, Senkal B. Functionalization of gum arabic including glycoprotein and polysaccharides for the removal of boron. Carbohydr Polym 2019; 225:115139. [DOI: 10.1016/j.carbpol.2019.115139] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/19/2019] [Accepted: 07/27/2019] [Indexed: 12/20/2022]
|
147
|
Chou TH, Ou MH, Wu TY, Chen DY, Shih YH. Temporal and spatial surveys of polybromodiphenyl ethers (PBDEs) contamination of soil near a factory using PBDEs in northern Taiwan. CHEMOSPHERE 2019; 236:124117. [PMID: 31323549 DOI: 10.1016/j.chemosphere.2019.06.087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 06/10/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs), previously commonly used as flame retardants, should be monitored in the environment since some are listed as persistent organic pollutants. A contaminated site near a northern Taiwan factory using decabrominated diphenyl ether (deca-BDE) was identified based on a vegetable PBDEs monitoring project in 2013. The subsequent spatial and temporal survey of that contaminated site shows the contamination ingredients in soils were close to ones used by the factory, indicating that contamination was from the factory, possibly through an exhaust vent. The average concentration of deca-BDE in the main contaminated soil was 615 μg/kg d. w. (dry weight) soil in 2015, slightly decreasing to 604 μg/kg d. w. soil in 2016, increasing to 844 μg/kg d. w. soil in 2017, and then slightly decreasing to 670 μg/kg d. w. soil in 2018. The slight change of deca-BDE and the minor change in low brominated congener level indicate a low degradation rate. The contamination of peripheral sites was around 5000 μg/kg d. w. soil for one PBDEs sampling site that was higher than those around or within the main contaminated farm, indicating serious pollution. Concentrations of PBDEs in different soil depths show that depth 2-15 cm accounted for the greatest PBDEs accumulation, indicating that deca-BDE pollution had been present over time and transported into deeper soil. There can be PBDEs uptake by crops consumed by humans, as shown in our previous studies, so continuous monitoring of PBDEs in this site is important and treatments should be established urgently.
Collapse
Affiliation(s)
- Tzu-Ho Chou
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan, ROC
| | - Ming-Han Ou
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan, ROC
| | - Tien-Yu Wu
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan, ROC
| | - De-Yu Chen
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan, ROC
| | - Yang-Hsin Shih
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan, ROC.
| |
Collapse
|
148
|
Dong M, Yu J, Wang J, Zhang Q, Lin W. Construction of phenyl-grafted carbon nitride for enhancing the visible-light activity. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.136817] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
149
|
Hao J, Wei Z, Wei D, Ahmed Mohamed T, Yu H, Xie X, Zhu L, Zhao Y. Roles of adding biochar and montmorillonite alone on reducing the bioavailability of heavy metals during chicken manure composting. BIORESOURCE TECHNOLOGY 2019; 294:122199. [PMID: 31586731 DOI: 10.1016/j.biortech.2019.122199] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
The aim of this study was to explore the effects of adding biochar and montmorillonite alone on the correlations between bacteria and bioavailability of heavy metals (HM) during chicken manure composting. Three composting experiments were conducted, containing the without ameliorant, 10% biochar and 10% montmorillonite. The results showed that biochar and montmorillonite ameliorants significantly reduced the bioavailability of Cu by 90.3%, 81.2%, while that of Zn by 11.7%, 15.6%, respectively. Meanwhile, they also significantly changed bacterial community structure and enhanced the correlation between bacterial bands (i.e., 19, 24, 26 and 30) and HM fractions. This correlation was validated in network analysis. Structural equation models further confirmed that bacteria had a complete and effective pathway to influence the bioavailability of HM. In summary, this study suggested that biochar and montmorillonite additions were an effective regulation method to reduce the bioavailability of HM from composting system.
Collapse
Affiliation(s)
- Jingkun Hao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Dan Wei
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Taha Ahmed Mohamed
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; Soil, Water and Environment Research Institute, Agriculture Research Center, Giza, Egypt
| | - Huimin Yu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyu Xie
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Longji Zhu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
150
|
Zaimes GN, Tardio G, Iakovoglou V, Gimenez M, Garcia-Rodriguez JL, Sangalli P. New tools and approaches to promote soil and water bioengineering in the Mediterranean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 693:133677. [PMID: 31377348 DOI: 10.1016/j.scitotenv.2019.133677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/17/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
Soil loss and erosion is a major environmental problem in the Mediterranean. Soil and water bioengineering uses plants and/or parts of plants along with inert material to create solutions to fulfill soil conservation objectives combined with an ecological rehabilitation approach. The ECOMED project developed novel approaches and tools to specialize the soil and water bioengineering sector within the Mediterranean. The first activity was the Sector Needs Analysis were the responses to an online questionnaire of 110 stakeholders from the region were analyzed. The main conclusion was the need to specialize the soil and water bioengineering sector in the Mediterranean. In addition, 21 soil and water bioengineering case studies in the Mediterranean were reviewed. Many works of this type are implemented in the region, but have flaws because of the lack of training material, design routines, protocols, specific to the region. The second activity developed New Design Routines and Protocols. Specifically, three protocols, one template and one plant database were developed for the region. Finally, in the Training Material activity, six educational modules along with a handbook (that contained modules, protocols, template and case studies) were developed. Overall the ECOMED project generated new and novel material and tools that were lacking in the region to enhance the specialization process of the soil and water bioengineering sector. These should increase the adoption of soil and water bioengineering techniques with better trained and new professionals as well as improve the work performance of these interventions.
Collapse
Affiliation(s)
- George N Zaimes
- UNESCO Chair Con-E-Ect on the Conservation and Ecotourism of Riparian and Deltaic Ecosystems & International Hellenic University, Dept. of Forestry and Natural Environment, Drama 66100, Greece.
| | - Guillermo Tardio
- Technical University of Madrid, Spanish Association of Landscape Engineering, Getafe 28905, Spain
| | - Valasia Iakovoglou
- UNESCO Chair Con-E-Ect on the Conservation and Ecotourism of Riparian and Deltaic Ecosystems, Drama 66100, Greece
| | - Martin Gimenez
- Technical University of Madrid, School of Forestry, Avda de las Moreras, Madrid 28040, Spain.
| | | | - Paola Sangalli
- Sangalli Coronel y Asociados SLEFIB (European Federation of Soil and Water Bioengineering), San Sebastian, Gipuzkoa, Spain; EFIB (European Federation of Soil and Water Bioengineering), San Sebastian, Gipuzkoa, Spain.
| |
Collapse
|