101
|
Carini M, Aldini G, Orioli M, Piccoli A, Tocchetti P, Facino RM. Chemiluminescence and LC–MS/MS analyses for the study of nitric oxide release and distribution following oral administration of nitroaspirin (NCX 4016) in healthy volunteers. J Pharm Biomed Anal 2004; 35:277-87. [PMID: 15063462 DOI: 10.1016/s0731-7085(03)00531-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2003] [Revised: 08/05/2003] [Accepted: 09/23/2003] [Indexed: 11/18/2022]
Abstract
The metabolic fate of nitric oxide (NO) released from nitroaspirin, benzoic acid, 2-(acetyloxy)-3-[(nitrooxy)methyl]phenyl ester (NCX 4016), the lead compound of a new class of NO-releasing non-steroidal anti-inflammatory drugs (NO-NSAIDs) has been studied in eight healthy male Caucasian subjects following p.o. administration of 1600 mg (single dose), by monitoring at different times in plasma the bioactive storage forms of NO, S-nitrosothiols (RSNO) and its oxidation products (NOx). Plasma levels of NOx and RSNO and urinary levels of NOx were determined by an ozone-based chemiluminescent assay using a sensitive Nitric Oxide Analyzer (LOQ: 10 pmol NO injected). In parallel plasma samples were analyzed by a newly developed LC-MS/MS method for analysis of NCX 4015, the metabolite bearing the nitrate ester function. Using MS/MS with multiple reaction monitoring (MRM) in negative ion mode for NCX 4015 and the internal standard (NCX 4015- 13C-D2) it was possible to detect with sufficient accuracy and precision the metabolite in plasma with a quantification limit of 78.1 ng ml(-1). Concentration versus time profile of plasma NCX 4015 gave a Cmax value of 161.94 +/- 47.4 ng ml(-1) and a tmax 4.5 +/- 1 h. The results indicate that both NOx and RSNO (these last for the first time determined in vivo in man following oral administration of a NO-donor drug) are effective plasma markers of NO release in vivo, the latter being an earlier indicator of NO distribution (tmax 2.0 +/- 0.6 h versus 5.4 +/- 1.2 h).
Collapse
Affiliation(s)
- Marina Carini
- Istituto Chimico Farmaceutico Tossicologico, University of Milan, Viale Abruzzi 42, 20131 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
102
|
Bryan NS, Rassaf T, Maloney RE, Rodriguez CM, Saijo F, Rodriguez JR, Feelisch M. Cellular targets and mechanisms of nitros(yl)ation: an insight into their nature and kinetics in vivo. Proc Natl Acad Sci U S A 2004; 101:4308-13. [PMID: 15014175 PMCID: PMC384737 DOI: 10.1073/pnas.0306706101] [Citation(s) in RCA: 314] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2003] [Accepted: 01/20/2004] [Indexed: 12/13/2022] Open
Abstract
There is mounting evidence that the established paradigm of nitric oxide (NO) biochemistry, from formation through NO synthases, over interaction with soluble guanylyl cyclase, to eventual disposal as nitrite/nitrate, represents only part of a richer chemistry through which NO elicits biological signaling. Additional pathways have been suggested that include interaction of NO-derived metabolites with thiols and metals to form S-nitrosothiols (RSNOs) and metal nitrosyls. Despite the overwhelming attention paid in this regard to RSNOs, little is known about the stability of these species, their significance outside the circulation, and whether other nitros(yl)ation products are of equal importance. We here show that N-nitrosation and heme-nitrosylation are indeed as ubiquitous as S-nitrosation in vivo and that the products of these reactions are constitutively present throughout the organ system. Our study further reveals that all NO-derived products are highly dynamic, have fairly short lifetimes, and are linked to tissue oxygenation and redox state. Experimental evidence further suggests that nitroso formation occurs substantially by means of oxidative nitrosylation rather than NO autoxidation, explaining why S-nitrosation can compete effectively with nitrosylation. Moreover, tissue nitrite can serve as a significant extravascular pool of NO during brief periods of hypoxia, and tissue nitrate/nitrite ratios can serve as indicators of the balance between local oxidative and nitrosative stress. These findings vastly expand our understanding of the fate of NO in vivo and provide a framework for further exploration of the significance of nitrosative events in redox sensing and signaling. The findings also raise the intriguing possibility that N-nitrosation is directly involved in the modulation of protein function.
Collapse
Affiliation(s)
- Nathan S Bryan
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
| | | | | | | | | | | | | |
Collapse
|
103
|
Rassaf T, Feelisch M, Kelm M. Circulating NO pool: assessment of nitrite and nitroso species in blood and tissues. Free Radic Biol Med 2004; 36:413-22. [PMID: 14975444 DOI: 10.1016/j.freeradbiomed.2003.11.011] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Revised: 11/12/2003] [Accepted: 11/14/2003] [Indexed: 11/21/2022]
Abstract
The formation of nitric oxide (NO) has been linked to many regulatory functions in mammalian cells. With the appreciation that NO-mediated nitrosation reactions are involved in cell signaling and pathology there is a need to elucidate and better characterize the different biochemical pathways of NO in vivo. Despite significant methodological advances over the years one major obstacle in assessing the significance of nitrosated species and other NO-related metabolites remains: their reliable measurement in complex biological matrices. In this review we briefly discuss the major routes of NO metabolism and transport in the mammalian circulation, considering plasma, red blood cell, and tissue compartments separately. In addition, we attempt to give a recommendation as to the most appropriate analytical technique and sample processing procedures for the reliable quantification of either species.
Collapse
Affiliation(s)
- Tienush Rassaf
- Department of Medicine, Division of Cardiology, Pulmonary Diseases and Angiology, Heinrich-Heine-University, Duesseldorf, Germany
| | | | | |
Collapse
|
104
|
Zhang Y, Hogg N. Formation and stability of S-nitrosothiols in RAW 264.7 cells. Am J Physiol Lung Cell Mol Physiol 2003; 287:L467-74. [PMID: 14672925 DOI: 10.1152/ajplung.00350.2003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
S-Nitrosothiols have been suggested to be mediators of many nitric oxide-dependent processes, including apoptosis and vascular relaxation. Thiol nitrosation is a poorly understood process in vivo, and the mechanisms by which nitric oxide can be converted into a nitrosating agent have not been established. There is a discrepancy between the suggested biological roles of nitric oxide and its known chemical and physical properties. In this study, we have examined the formation of S-nitrosothiols in lipopolysaccharide-treated RAW 264.7 cells. This treatment generated 17.4 +/- 1.0 pmol/mg of protein (means +/- SE, n =27) of intracellular S-nitrosothiol that slowly decayed over several hours. S-Nitrosothiol formation depended on the formation of nitric oxide and not on the presence of nitrite. Extracellular thiols were nitrosated by cell-generated nitric oxide. Oxygenated ferrous hemoglobin inhibited the formation of S-nitrosothiol, indicating the nitrosation occurred more slowly than diffusion. We discuss several mechanisms for S-nitrosothiol formation and conclude that the nitrosation propensity of nitric oxide is a freely diffusible element that is not constrained within an individual cell and that both nitric oxide per se and nitric oxide-derived nitrosating agents are able to diffuse across cell membranes. To achieve intracellular localization of the nitrosation reaction, mechanisms must be invoked that do not involve the formation of nitric oxide as an intermediate.
Collapse
|
105
|
Tashimo O, Ishibashi T, Yoshida J, Tsuchida H, Nishio M. Interference with Saville’s method in determination of low-molecular weight S-nitrosothiols by ultrafiltration. Nitric Oxide 2003; 9:148-52. [PMID: 14732338 DOI: 10.1016/j.niox.2003.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To detect low-molecular weight S-nitrosothiols in human plasma, we used a system combining HPLC for separation and Saville's method for colorimetric detection of S-nitrosothiols. The sensitivity and detection limit was 1-2 nM for both S-nitrosocysteine and S-nitrosoglutathione. When plasma was analyzed after ultrafiltration (with units requiring higher g force [5000 g], irrespective to the material of the membrane) to eliminate high molecular substances, a signal corresponding to S-nitrosoglutahione was recognized. This signal behaved as real S-nitrosoglutathione as it was partially Hg(2+)-sensitive and gradually decayed with time. However, the use of pre-washed units or another ultrafiltration unit that required lower g force (1800 g) or direct application of plasma to the HPLC-Saville's method system did not result in such signal. Based on these observations, it is important to be aware of the interference originating from the ultrafiltration unit and its potential effect on the precise quantification of low molecular weight S-nitrosothiols using Saville's method.
Collapse
Affiliation(s)
- Ohmi Tashimo
- Department of Anesthesiology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | | | | | | | | |
Collapse
|
106
|
Ng ESM, Kubes P. The physiology of S-nitrosothiols: carrier molecules for nitric oxide. Can J Physiol Pharmacol 2003; 81:759-64. [PMID: 12897804 DOI: 10.1139/y03-078] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent work has demonstrated that inhalation of nitric oxide (NO) can impact the peripheral vasculature, suggesting that an NO-stabilizing moiety may exist in vivo. One possibility is the formation of S-nitrosothiols, which extend the half-life of NO manyfold. In this review, we provide evidence that S-nitrosothiols exist in the vasculature, particularly during NO inhalation. The potential biochemical pathways that have been proposed for the formation of these products are also summarized. Finally, we highlight the limited evidence for the role that these potent vasodilating molecules may play as physiologically and therapeutically important regulators of the vascular system.
Collapse
Affiliation(s)
- Ella S M Ng
- Immunology Research Group, Department of Physiology and Biophysics, University of Calgary, Health Sciences Center, Calgary, AB T2N 4N1, Canada
| | | |
Collapse
|
107
|
Cornwell TL, Ceaser EK, Li J, Marrs KL, Darley-Usmar VM, Patel RP. S-nitrosothiols inhibit uterine smooth muscle cell proliferation independent of metabolism to NO and cGMP formation. Am J Physiol Cell Physiol 2003; 284:C1516-24. [PMID: 12584112 DOI: 10.1152/ajpcell.00268.2002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
S-nitrosothiols (RSNOs) are important mediators of nitric oxide (NO) biology. The two mechanisms that appear to dominate in their biological effects are metabolism leading to the formation of NO and S-nitrosation of protein thiols. In this study we demonstrate that RSNOs inhibit uterine smooth muscle cell proliferation independent of NO. The antiproliferative effects of NO on vascular smooth muscle are well defined, with the classic NO-dependent production of cGMP being demonstrated as the active pathway. However, less is known on the role of NO in mediating uterine smooth muscle cell function, a process that is important during menstruation and pregnancy. The RSNOs S-nitrosoglutathione and S-nitroso-N-acetyl pencillamine inhibited growth factor-dependent proliferation of human and rat uterine smooth muscle cells (ELT-3). Interestingly, these cells reduced RSNOs to generate NO. However, use of NO donors and other activators of the cGMP pathway failed to inhibit proliferation. These findings demonstrate the tissue-specific nature of responses to NO and demonstrate the presence of a RSNO-dependent but NO-independent pathway of inhibiting DNA synthesis in uterine smooth muscle cells.
Collapse
Affiliation(s)
- Trudy L Cornwell
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | |
Collapse
|
108
|
Kaneko R, Wada Y. Decomposition of protein nitrosothiolsin matrix-assisted laser desorption/ionization and electrospray ionization mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2003; 38:526-530. [PMID: 12794874 DOI: 10.1002/jms.466] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The S-nitrosylation of proteins is involved in the trafficking of nitric oxide (NO) in intra- and extracellular milieus. To establish a mass spectrometric method for identifying this post-translational modification of proteins, a synthetic peptide and transthyretin were S-nitrosylated in vitro and analyzed by electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The intact molecular ion species of nitrosylated compounds was identified in the ESI mass spectrum without elimination of the NO group. However, the labile nature of the S-NO bond was evident when the in-source fragmentation efficiently generated [M + H - 30](+) ions. The decomposition was prominent for multiply charged transthyretin ions with high charge states under ordinary ESI conditions, indicating that the application of minimum nozzle potentials was essential for delineating the stoichiometry of nitrosylation in proteins. With MALDI, the S-NO bond cleavage occurred during the ionization process, and the subsequent reduction generated [M + H - 29](+) ions.
Collapse
Affiliation(s)
- Rina Kaneko
- Department of Molecular Medicine, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka 594-1101, Japan
| | | |
Collapse
|
109
|
Gladwin MT, Lancaster JR, Freeman BA, Schechter AN. Nitric oxide's reactions with hemoglobin: a view through the SNO-storm. Nat Med 2003; 9:496-500. [PMID: 12724752 DOI: 10.1038/nm0503-496] [Citation(s) in RCA: 209] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mark T Gladwin
- Critical Care Medicine Department of the Warren G. Magnuson Clinical Center, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | |
Collapse
|
110
|
Giustarini D, Milzani A, Colombo R, Dalle-Donne I, Rossi R. Nitric oxide and S-nitrosothiols in human blood. Clin Chim Acta 2003; 330:85-98. [PMID: 12636927 DOI: 10.1016/s0009-8981(03)00046-9] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The hypothesis that endothelial-derived relaxing factor (EDRF) is nitric oxide has stimulated a wealth of research into the significance of this novel intriguing molecule. Given its short life, many storage forms of NO as well as targets have been postulated. Among these, a pool of derivatives of NO (S-nitrosothiols, RSNOs) covalently bound to SH groups of proteins and low molecular weight thiols (e.g., glutathione) have been identified in various biological systems. The importance of RSNOs results from the very similar biological actions exhibited by both NO and RSNOs in vivo as well as in vitro. In particular, it has been observed that in the bloodstream, these molecules are able to provoke vasodilatation with a consequent fall in blood pressure and an antithrombotic effect by inhibition of platelet aggregation. Many hypotheses have been postulated about the biochemical species and the mechanisms involved in these processes, but many aspects have not yet been clarified. In addition, some RSNOs have been recently proposed to be clinical parameters, whose levels may vary under some pathological conditions. The therapeutic utility of RSNOs as an alternative to classic NO donors has also been suggested.Here, we provide a critical analysis of the main reports about the biochemical, physiological, pathological and therapeutic properties of RSNOs in the cardiovascular system. Particular attention is addressed to conflicting results and to discrepancies in the methodologies and models utilized. The numerous unanswered questions concerning the role of RSNOs in the control of vascular tone are discussed.
Collapse
Affiliation(s)
- Daniela Giustarini
- Pharmacology Section, Department of Neuroscience, University of Siena, Via A. Moro 4, Italy
| | | | | | | | | |
Collapse
|
111
|
Herold S, Rock G. Reactions of deoxy-, oxy-, and methemoglobin with nitrogen monoxide. Mechanistic studies of the S-nitrosothiol formation under different mixing conditions. J Biol Chem 2003; 278:6623-34. [PMID: 12468537 DOI: 10.1074/jbc.m210275200] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The reaction between hemoglobin (Hb) and NO* has been investigated thoroughly in recent years, but its mechanism is still a matter of substantial controversy. We have carried out a systematic study of the influence of the following factors on the yield of S-nitrosohemoglobin (SNO-Hb) generated from the reaction of NO* with oxy-, deoxy-, and metHb: 1) the volumetric ratio of the protein and the NO* solutions; 2) the rate of addition of the NO* solution to the protein solution; 3) the amount of NO* added; and 4) the concentration of the phosphate buffer. Our results suggest that the highest SNO-Hb yields are mostly obtained by very slow addition of substoichiometric amounts of NO* from a diluted solution. Possible pathways of SNO-Hb formation from the reaction of NO* with oxy-, deoxy-, and metHb are described. Our data strongly suggest that, because of mixing artifacts, care should be taken to use results from in vitro experiments to draw conclusion on the mechanism of the reaction in vivo.
Collapse
Affiliation(s)
- Susanna Herold
- Laboratorium für Anorganische Chemie, Eidgenössische Technische Hochschule, ETH Hönggerberg, CH-8093 Zürich, Switzerland.
| | | |
Collapse
|
112
|
Moore KP, Mani AR. Measurement of protein nitration and S-nitrosothiol formation in biology and medicine. Methods Enzymol 2003; 359:256-68. [PMID: 12481578 DOI: 10.1016/s0076-6879(02)59190-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Kevin P Moore
- Center for Hepatology, Department of Medicine, Royal Free and University College Medical School, University College London, London NW3 2PF, United Kingdom
| | | |
Collapse
|
113
|
Increased S-Nitrosothiols and S-Nitrosoalbumin in Cerebrospinal Fluid After Severe Traumatic Brain Injury in Infants and Children: Indirect Association With Intracranial Pressure. J Cereb Blood Flow Metab 2003. [DOI: 10.1097/00004647-200301000-00006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
114
|
Bayir H, Kochanek PM, Liu SX, Arroyo A, Osipov A, Jiang J, Wisniewski S, Adelson PD, Graham SH, Kagan VE. Increased S-nitrosothiols and S-nitrosoalbumin in cerebrospinal fluid after severe traumatic brain injury in infants and children: indirect association with intracranial pressure. J Cereb Blood Flow Metab 2003; 23:51-61. [PMID: 12500091 DOI: 10.1097/01.wcb.0000040399.30600.e3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Nitric oxide (NO) is implicated in both secondary damage and recovery after traumatic brain injury (TBI). Transfer of NO groups to cysteine sulfhydryls on proteins produces S-nitrosothiols (RSNO). S-nitrosothiols may be neuroprotective after TBI by nitrosylation of N-methyl-D-aspartate receptor and caspases. S-nitrosothiols release NO on decomposition for which endogenous reductants (i.e., ascorbate) are essential, and ascorbate is depleted in cerebrospinal fluid (CSF) after pediatric TBI. This study examined the presence and decomposition of RSNO in CSF and the association between CSF RSNO level and physiologic parameters after severe TBI. Cerebrospinal fluid samples (n = 72) were obtained from 18 infants and children on days 1 to 3 after severe TBI (Glasgow Coma Scale score < 8) and 18 controls. Cerebrospinal fluid RSNO levels assessed by fluorometric assay peaked on day 3 versus control (1.42 +/- 0.11 micromol/L vs. 0.86 +/- 0.04, P< 0.05). S-nitrosoalbumin levels were also higher after TBI (n = 8, 0.99 +/- 0.09 micromol/L on day 3 vs. n = 6, 0.42 +/- 0.02 in controls, P< 0.05). S-nitrosoalbumin decomposition was decreased after TBI. Multivariate analysis showed an inverse relation between CSF RSNO and intracranial pressure and a direct relation with barbiturate treatment. Using a novel assay, the presence of RSNO and S-nitrosoalbumin in human CSF, an approximately 1.7-fold increase after TBI, and an association with low intracranial pressure are reported, supporting a possible neuroprotective role for RSNO. The increase in RSNO may result from increased NO production and/or decreased RSNO decomposition.
Collapse
Affiliation(s)
- Hülya Bayir
- Safar Center for Resuscitation Research, University of Pittsburgh Medical Center, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pennsylvania 15213, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Reiter CD, Wang X, Tanus-Santos JE, Hogg N, Cannon RO, Schechter AN, Gladwin MT. Cell-free hemoglobin limits nitric oxide bioavailability in sickle-cell disease. Nat Med 2002; 8:1383-9. [PMID: 12426562 DOI: 10.1038/nm1202-799] [Citation(s) in RCA: 900] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2002] [Accepted: 10/21/2002] [Indexed: 12/25/2022]
Abstract
Although the deleterious vasoconstrictive effects of cell-free, hemoglobin-based blood substitutes have been appreciated, the systemic effects of chronic hemolysis on nitric oxide bioavailability have not been considered or quantified. Central to this investigation is the understanding that nitric oxide reacts at least 1,000 times more rapidly with free hemoglobin solutions than with erythrocytes. We hypothesized that decompartmentalization of hemoglobin into plasma would divert nitric oxide from homeostatic vascular function. We demonstrate here that plasma from patients with sickle-cell disease contains cell-free ferrous hemoglobin, which stoichiometrically consumes micromolar quantities of nitric oxide and abrogates forearm blood flow responses to nitric oxide donor infusions. Therapies that inactivate plasma hemoglobin by oxidation or nitric oxide ligation restore nitric oxide bioavailability. Decompartmentalization of hemoglobin and subsequent dioxygenation of nitric oxide may explain the vascular complications shared by acute and chronic hemolytic disorders.
Collapse
Affiliation(s)
- Christopher D Reiter
- Critical Care Medicine Department of the Warren G. Magnuson Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
116
|
Abstract
Nitric oxide (NO)-mediated nitrosation reactions are involved in cell signaling and pathology. Recent efforts have focused on elucidating the role of S-nitrosothiols (RSNO) in different biological systems, including human plasma, where they are believed to represent a transport and buffer system that controls intercellular NO exchange. Although RSNOs have been implicated in cardiovascular disease processes, it is yet unclear what their true physiological concentration is, whether a change in plasma concentration is causally related to the underlying pathology or purely epiphenomenological, and to what extent other nitrosyl adducts may be formed under the same conditions. Therefore, using gas phase chemiluminescence and liquid chromatography we sought to quantify the basal plasma levels of NO-related metabolites in 18 healthy volunteers. We find that in addition to the oxidative products of NO metabolism, nitrite (0.20 +/- 0.02 micromol/l nitrite) and nitrate (14.4 +/- 1.7 micromol/l), on average human plasma contains an approximately 5-fold higher concentration of N-nitroso species (32.3 +/- 5.0 nmol/l) than RSNOs (7.2 +/- 1.1 nmol/l). Both N- and S-nitroso moieties appear to be associated with the albumin fraction. This is the first report on the constitutive presence of a high-molecular-weight N-nitroso compound in the human circulation, raising the question as to its origin and potential physiological role. Our findings may not only have important implications for the transport of NO in vivo, but also for cardiovascular disease diagnostics and the risk assessment of nitrosamine-related carcinogenesis in man.
Collapse
Affiliation(s)
- Tienush Rassaf
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | | | | | | |
Collapse
|
117
|
Feelisch M, Rassaf T, Mnaimneh S, Singh N, Bryan NS, Jourd'Heuil D, Kelm M. Concomitant S-, N-, and heme-nitros(yl)ation in biological tissues and fluids: implications for the fate of NO in vivo. FASEB J 2002; 16:1775-85. [PMID: 12409320 DOI: 10.1096/fj.02-0363com] [Citation(s) in RCA: 317] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
There is growing evidence for the involvement of nitric oxide (NO) -mediated nitrosation in cell signaling and pathology. Although S-nitrosothiols (RSNOs) have been frequently implicated in these processes, it is unclear whether NO forms nitrosyl adducts with moieties other than thiols. A major obstacle in assessing the significance of formation of nitrosated species is the limited reliability of available analytical techniques for measurements in complex biological matrices. Here we report on the presence of nitrosated compounds in plasma and erythrocytes of rats, mice, guinea pigs, and monkeys under basal conditions, in immunologically challenged murine macrophages in vitro and laboratory animals in vivo. Besides RSNOs, all biological samples also contained mercury-stable nitroso species, indicating the additional involvement of amine and heme nitros(yl)ation reactions. Significant differences in the amounts and ratios of RSNOs over N- and heme-nitros(yl)ated compounds were found between species and organs. These observations were made possible by the development of a novel gas-phase chemiluminescence-based technique that allows detection of nitroso species in tissues and biological fluids without prior extraction or deproteinization. The method can quantify as little as 100 fmol bound NO and has been validated extensively for use in different biological matrices. Discrimination between nitrite, RSNOs, and N-nitroso or nitrosylheme compounds is accomplished by use of group-specific reagents. Our findings suggest that NO generation in vivo leads to concomitant formation of RSNOs, nitrosamines, and nitrosylhemes with considerable variation between rodents and primates, highlighting the difficulty in comparing data between different animal models and extrapolating results from experimental animals to human physiology.
Collapse
Affiliation(s)
- Martin Feelisch
- Department of Molecular and Cellular Physiology, LSU Health Sciences Centers, Shreveport, Louisiana 71130, USA.
| | | | | | | | | | | | | |
Collapse
|
118
|
Crane MS, Ollosson R, Moore KP, Rossi AG, Megson IL. Novel role for low molecular weight plasma thiols in nitric oxide-mediated control of platelet function. J Biol Chem 2002; 277:46858-63. [PMID: 12297511 DOI: 10.1074/jbc.m208608200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Nitric oxide (NO) is a powerful antiplatelet agent, but its notoriously short biological half-life limits its potential to prevent the activation of circulating platelets. Here we used diethylamine diazeniumdiolate (DEA/NO) as an NO generator to determine whether the antiplatelet effects of NO are prolonged by the formation of a durable, plasma-borne S-nitrosothiol reservoir. Preincubation of both platelet rich plasma (PRP) and washed platelets (WP) with DEA/NO (2 microm) for 1 min inhibited collagen-induced platelet aggregation by 82 +/- 5 and 91 +/- 2%, respectively. After 30 min preincubation with DEA/NO, NO was no longer detectable in either preparation, but aggregation remained markedly inhibited (72 +/- 7%) in PRP. In contrast, the inhibitory effect in WP was almost completely lost at this time (5 +/- 3%) but was partially restored (39 +/- 10%) in WP containing human serum albumin (1%) and fully restored by co-incubation with albumin and the low molecular weight (LMW) thiols, glutathione, (5 microm), cysteinyl-glycine (10 microm), or cysteine (10 microm). This NO-mediated effect was not seen with LMW thiols in the absence of albumin and was associated with S-nitrosothiol formation. Our results demonstrate that LMW thiols play an important role in both the formation and activation of an S-nitrosoalbumin reservoir that significantly prolongs the duration of action of NO.
Collapse
Affiliation(s)
- Michael S Crane
- Centre for Cardiovascular Science, University of Edinburgh, United Kingdom
| | | | | | | | | |
Collapse
|
119
|
Rassaf T, Kleinbongard P, Preik M, Dejam A, Gharini P, Lauer T, Erckenbrecht J, Duschin A, Schulz R, Heusch G, Feelisch M, Kelm M. Plasma Nitrosothiols Contribute to the Systemic Vasodilator Effects of Intravenously Applied NO. Circ Res 2002; 91:470-7. [PMID: 12242264 DOI: 10.1161/01.res.0000035038.41739.cb] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Higher doses of inhaled NO exert effects beyond the pulmonary circulation. How such extrapulmonary effects can be reconciled with the presumed short half-life of NO in the blood is unclear. Whereas erythrocytes have been suggested to participate in NO transport, the exact role of plasma in NO delivery in humans is not clear. Therefore, we investigated potential routes of NO decomposition and transport in human plasma. NO consumption in plasma was accompanied by a concentration-dependent increase in nitrite and
S
-nitrosothiols (RSNOs), with no apparent saturation limit up to 200 μmol/L. The presence of red blood cells reduced the formation of plasma RSNOs. Intravenous infusion of 30 μmol/min NO in healthy volunteers increased plasma levels of RSNOs and induced systemic hemodynamic effects at the level of both conduit and resistance vessels, as reflected by dilator responses in the brachial artery and forearm microvasculature. Intravenous application of
S
-nitrosoglutathione, a potential carrier of bioactive NO, mimicked the vascular effects of NO, whereas nitrite and nitrate were inactive. Changes in plasma nitrosothiols were correlated with vasodilator effects after intravenous application of
S
-nitrosoglutathione and NO. These findings demonstrate that in humans the pharmacological delivery of NO solutions results in the transport and delivery of NO as RSNOs along the vascular tree.
Collapse
Affiliation(s)
- Tienush Rassaf
- Department of Medicine, Heinrich-Heine-University, Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Hobbs AJ, Gladwin MT, Patel RP, Williams DLH, Butler AR. Haemoglobin: NO transporter, NO inactivator or NOne of the above? Trends Pharmacol Sci 2002; 23:406-11. [PMID: 12237152 DOI: 10.1016/s0165-6147(02)02067-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The structural and functional characterization of haemoglobin (Hb) exceeds that of any other mammalian protein. Recently, the biological role attributed to Hb has been extended from the classical role in the transport and exchange of the respiratory gases O(2) and CO(2) to include a third gaseous molecule, nitric oxide (NO). It is postulated that Hb might be involved in the systemic transport and delivery of NO to tissues and in the facilitation of O(2) release. However, definitive evidence for these putative activities is yet to be produced and many questions remain. Here we describe the present status of these hypotheses and their strengths and weaknesses.
Collapse
Affiliation(s)
- Adrian J Hobbs
- The Wolfson Institute for Biomedical Research, University College London, Cruciform Building, Gower Street, WC1E 6AE., London, UK.
| | | | | | | | | |
Collapse
|
121
|
Tyurin VA, Tyurina YY, Liu SX, Bayir H, Hubel CA, Kagan VE. Quantitation of S-nitrosothiols in cells and biological fluids. Methods Enzymol 2002; 352:347-60. [PMID: 12125362 DOI: 10.1016/s0076-6879(02)52032-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Vladimir A Tyurin
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | | | |
Collapse
|
122
|
Joshi MS, Ferguson TB, Han TH, Hyduke DR, Liao JC, Rassaf T, Bryan N, Feelisch M, Lancaster JR. Nitric oxide is consumed, rather than conserved, by reaction with oxyhemoglobin under physiological conditions. Proc Natl Acad Sci U S A 2002; 99:10341-6. [PMID: 12124398 PMCID: PMC124916 DOI: 10.1073/pnas.152149699] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although irreversible reaction of NO with the oxyheme of hemoglobin (producing nitrate and methemoglobin) is extremely rapid, it has been proposed that, under normoxic conditions, NO binds preferentially to the minority deoxyheme to subsequently form S-nitrosohemoglobin (SNOHb). Thus, the primary reaction would be conservation, rather than consumption, of nitrogen oxide. Data supporting this conclusion were generated by using addition of a small volume of a concentrated aqueous solution of NO to a normoxic hemoglobin solution. Under these conditions, however, extremely rapid reactions can occur before mixing. We have thus compared bolus NO addition to NO generated homogeneously throughout solution by using NO donors, a more physiologically relevant condition. With bolus addition, multiple hemoglobin species are formed (as judged by visible spectroscopy) as well as both nitrite and nitrate. With donor, only nitrate and methemoglobin are formed, stoichiometric with the amount of NO liberated from the donor. Studies with increasing hemoglobin concentrations reveal that the nitrite-forming reaction (which may be NO autoxidation under these conditions) competes with reaction with hemoglobin. SNOHb formation is detectable with either bolus or donor; however, the amounts formed are much smaller than the amount of NO added (less than 1%). We conclude that the reaction of NO with hemoglobin under normoxic conditions results in consumption, rather than conservation, of NO.
Collapse
Affiliation(s)
- Mahesh S Joshi
- Department of Surgery, Louisiana State University Health Sciences Center, New Orleans, LA 70012, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Gladwin MT, Wang X, Reiter CD, Yang BK, Vivas EX, Bonaventura C, Schechter AN. S-Nitrosohemoglobin is unstable in the reductive erythrocyte environment and lacks O2/NO-linked allosteric function. J Biol Chem 2002; 277:27818-28. [PMID: 12023289 DOI: 10.1074/jbc.m203236200] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Our previous results run counter to the hypothesis that S-nitrosohemoglobin (SNO-Hb) serves as an in vivo reservoir for NO from which NO release is allosterically linked to oxygen release. We show here that SNO-Hb undergoes reductive decomposition in erythrocytes, whereas it is stable in purified solutions and in erythrocyte lysates treated with an oxidant such as ferricyanide. Using an extensively validated methodology that eliminates background nitrite and stabilizes erythrocyte S-nitrosothiols, we find the levels of SNO-Hb in the basal human circulation, including red cell membrane fractions, were 46 +/- 17 nm in human arterial erythrocytes and 69 +/- 11 nm in venous erythrocytes, incompatible with the postulated reservoir function of SNO-Hb. Moreover, we performed experiments on human red blood cells in which we elevated the levels of SNO-Hb to 10,000 times the normal in vivo levels. The elevated levels of intra-erythrocytic SNO-Hb fell rapidly, independent of oxygen tension and hemoglobin saturation. Most of the NO released during this process was oxidized to nitrate. A fraction (25%) was exported as S-nitrosothiol, but this fraction was not increased at low oxygen tensions that favor the deoxy (T-state) conformation of Hb. Results of these studies show that, within the redox-active erythrocyte environment, the beta-globin cysteine 93 is maintained in a reduced state, necessary for normal oxygen affinity, and incapable of oxygen-linked NO storage and delivery.
Collapse
Affiliation(s)
- Mark T Gladwin
- Critical Care Medicine Department, Warren G. Magnuson Clinical Center, National Institutes of Health, Bethesda, Maryland 20892-1662, USA.
| | | | | | | | | | | | | |
Collapse
|
124
|
Richardson G, Hicks SL, O'Byrne S, Frost MT, Moore K, Benjamin N, McKnight GM. The ingestion of inorganic nitrate increases gastric S-nitrosothiol levels and inhibits platelet function in humans. Nitric Oxide 2002; 7:24-9. [PMID: 12175816 DOI: 10.1016/s1089-8603(02)00010-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Platelets play an important role in the development of vascular disease, while vegetarian diets, which are rich in inorganic nitrate, protect against it. This study was performed to assess the effect of potassium nitrate (KNO(3)) ingestion on platelet function in humans. Oral KNO(3) (2 mmol) was given to healthy volunteers and its effect on platelet function assessed by measuring the aggregant effect of collagen. Blood samples were taken for measurement of plasma S-nitrosothiols (RSNO) and platelet cyclic GMP and nitrotyrosine levels. Gastric juice samples were taken for measurement of RSNO. In a separate study, the effect of oral KNO(3) on portal RSNO levels in patients with intrahepatic porto-systemic shunts was assessed. KNO(3) caused a significant increase in gastric RSNO levels, from 0.46 +/- 0.06 to 3.62 +/- 2.82 microM (t(max) 45 min; P < 0.001), and significantly inhibited platelet function (t(max) 60 min; P < 0.001). There was no effect on systemic or portal RSNO, platelet cGMP or platelet nitrotyrosine levels. Oral KNO(3) inhibits platelet aggregation. The time course suggests that gastric RSNO production may be involved in this effect. The protection against vascular events associated with a high intake of vegetables may be due to their high nitrate content.
Collapse
Affiliation(s)
- G Richardson
- Department of Clinical Pharmacology, St. Bartholomew's Hospital, Barts and the London, Queen Mary School of Medicine and Dentistry, Charterhouse Square, London EC1M 6BQ, UK
| | | | | | | | | | | | | |
Collapse
|
125
|
Tsikas D, Sandmann J, Frölich JC. Measurement of S-nitrosoalbumin by gas chromatography--mass spectrometry. III. Quantitative determination in human plasma after specific conversion of the S-nitroso group to nitrite by cysteine and Cu(2+) via intermediate formation of S-nitrosocysteine and nitric oxide. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 772:335-46. [PMID: 12007779 DOI: 10.1016/s1570-0232(02)00121-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Highly contradictory data exist on the normal plasma basal levels in humans of S-nitrosoproteins, in particular of S-nitrosoalbumin (SNALB), the most abundant nitric oxide (.NO) transport form in the human circulation with a range of three orders of magnitude (i.e., 10 nM-10 microM). In previous work we reported on a GC-MS method for the quantitative determination of SNALB in human plasma. This method is based on selective extraction of SNALB and its 15N-labeled SNALB analog (S(15)NALB) used as internal standard on HiTrapBlue Sepharose affinity columns, HgCl(2)-catalysed conversion of the S-nitroso groups to nitrite and [15N]nitrite, respectively, their derivatization to the pentafluorobenzyl derivatives and quantification by GC-MS. By this method we had measured SNALB basal plasma levels of 181 nM in healthy humans. It is generally accepted that HgCl(2)-catalysed conversion of S-nitroso groups into nitrite is specific. In consideration of the highly divergent SNALB plasma levels in humans reported so far, we were interested in an additional method that would allow specific conversion of S-nitroso groups into nitrite. We found that treatment with cysteine plus CuSO(4) is as effective and specific as treatment with HgCl(2). The principle of the cysteine/CuSO(4) procedure is based on the transfer of the S-nitroso group from SNALB to cysteine yielding S-nitrosocysteine, and its subsequent highly Cu(2+)-sensitive conversion into nitrite via intermediate.NO formation. Similar SNALB concentrations in the plasma of 10 healthy humans were measured by GC-MS using HgCl(2) (156+/-64 nM) and cysteine/CuSO(4) (205+/-96 nM). Our results strongly suggest that SNALB is an endogenous constituent in human plasma and that its concentration is of the order of 150-200 nM under physiological conditions.
Collapse
Affiliation(s)
- Dimitrios Tsikas
- Institute of Clinical Pharmacology, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625, Hannover, Germany.
| | | | | |
Collapse
|
126
|
Rassaf T, Preik M, Kleinbongard P, Lauer T, Heiß C, Strauer BE, Feelisch M, Kelm M. Evidence for in vivo transport of bioactive nitric oxide in human plasma. J Clin Invest 2002. [DOI: 10.1172/jci0214995] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
127
|
Rassaf T, Preik M, Kleinbongard P, Lauer T, Heiss C, Strauer BE, Feelisch M, Kelm M. Evidence for in vivo transport of bioactive nitric oxide in human plasma. J Clin Invest 2002; 109:1241-8. [PMID: 11994413 PMCID: PMC150967 DOI: 10.1172/jci14995] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Although hitherto considered as a strictly locally acting vasodilator, results from recent clinical studies with inhaled nitric oxide (NO) indicate that NO can exert effects beyond the pulmonary circulation. We therefore sought to investigate potential remote vascular effects of intra-arterially applied aqueous NO solution and to identify the mechanisms involved. On bolus application of NO into the brachial artery of 32 healthy volunteers, both diameter of the downstream radial artery and forearm blood flow increased in a dose-dependent manner. Maximum dilator responses were comparable to those after stimulation of endogenous NO formation with acetylcholine and bradykinin. Response kinetics and pattern of NO decomposition suggested that despite the presence of hemoglobin-containing erythrocytes, a significant portion of NO was transported in its unbound form. Infusion of NO (36 micromol/min) into the brachial artery increased levels of plasma nitroso species, nitrite, and nitrate in the draining antecubital vein (by < 2-fold, 30-fold, and 4-fold, respectively), indicative of oxidative and nitrosative chemistry. Infused N-oxides were inactive as vasodilators whereas S-nitrosoglutathione dilated conduit and resistance arteries. Our results suggest that NO can be transported in bioactive form for significant distances along the vascular bed. Both free NO and plasma nitroso species contribute to the dilation of the downstream vasculature.
Collapse
Affiliation(s)
- Tienush Rassaf
- Department of Medicine, Division of Cardiology, Pulmonary Diseases and Angiology, Heinrich-Heine-Universität, Düsseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Abstract
S-nitrosothiols are biological metabolites of nitric oxide. It has often been suggested that they represent a more stable metabolite of nitric oxide that can either be stored, or transported, although the evidence for this is sparse. There are many unanswered questions concerning how S-nitrosothiols are formed, how they are metabolized and how they elicit biological responses. These questions are highlighted by the fact that the known chemistry of nitric oxide, thiols, and S-nitrosothiols cannot serve to explain their proposed biological activities. This review attempts to highlight the gulf between our chemical understanding of S-nitrosothiols and the proposed biological activities of these compounds with respect to guanylyl cyclase-independent nitric oxide bioactivity and also the control of vascular tone.
Collapse
Affiliation(s)
- Neil Hogg
- Biophysics Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| |
Collapse
|
129
|
Tsikas D, Frölich JC. S
-Nitrosoalbumin Plasma Levels in Health and Disease: Facts or Artifacts? Value of Analytical Chemistry in Nitric Oxide Clinical Research. Circ Res 2002. [DOI: 10.1161/res.90.3.e39] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Dimitrios Tsikas
- Hannover Medical School, Institute of Clinical Pharmacology, Hannover, Germany,
| | - Jürgen C. Frölich
- Hannover Medical School, Institute of Clinical Pharmacology, Hannover, Germany,
| |
Collapse
|
130
|
Rossi R, Giustarini D, Milzani A, Colombo R, Dalle-Donne I, Di Simplicio P. Physiological Levels of
S
-Nitrosothiols in Human Plasma. Circ Res 2001. [DOI: 10.1161/res.89.12.e47] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Ranieri Rossi
- Department of Neuroscience, Pharmacology Unit, University of Siena, Siena, Italy,
| | - Daniela Giustarini
- Department of Neuroscience, Pharmacology Unit, University of Siena, Siena, Italy,
| | - Aldo Milzani
- Department of Biology, University of Milan, Milan, Italy
| | | | | | - Paolo Di Simplicio
- Department of Neuroscience, Pharmacology Unit, University of Siena, Siena, Italy
| |
Collapse
|
131
|
Ottesen LH, Harry D, Frost M, Davies S, Khan K, Halliwell B, Moore K. Increased formation of S-nitrothiols and nitrotyrosine in cirrhotic rats during endotoxemia. Free Radic Biol Med 2001; 31:790-8. [PMID: 11557317 DOI: 10.1016/s0891-5849(01)00647-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plasma S-nitrosothiols are believed to function as a circulating form of nitric oxide that affects both vascular function and platelet aggregation. However, the formation of circulating S-nitrosothiols in relation to acute and chronic disease is largely unknown. Plasma S-nitrosothiols were measured by chemiluminescence in rats with biliary cirrhosis or controls, and the effect of lipopolysaccharide (LPS) on their formation was determined. Plasma S-nitrosothiols were increased in rats with cirrhosis (206 +/- 59 nM) compared to controls (51 +/- 6 nM, p <.001). Two hours following injection of LPS (0.5 mg/kg) plasma S-nitrosothiols increased to 108 +/- 23 nM in controls (p <.01) and to 1335 +/- 423 nM in cirrhotic rats (p <.001). The plasma clearance and half-life of S-nitrosoalbumin, the predominant circulating S-nitrosothiol, were similar in control and cirrhotic rats, confirming that the increased plasma concentrations were due to increased synthesis. Because reactive nitrogen species, such as peroxynitrite, may cause the formation of S-nitrosothiols in vivo, we determined the levels of nitrotyrosine by gas chromatography/mass spectrometry as an index for these nitrating and nitrosating radicals. Hepatic nitrotyrosine levels were increased at 7.0 +/- 1.2 ng/mg in cirrhotic rats compared to controls (2.0 +/- 0.2 ng/mg, p <.01). Hepatic nitrotyrosine levels increased by 2.3-fold and 1.5-fold in control and cirrhotic rats, respectively, at 2 h following injection of LPS (p <.01). Strong positive staining for nitrotyrosine was shown by immunohistochemistry in all the livers of the rats with cirrhosis. We conclude that there is increased formation of S-nitrosothiols and nitrotyrosine in biliary cirrhosis, and this is markedly upregulated during endotoxemia.
Collapse
Affiliation(s)
- L H Ottesen
- Centre for Hepatology, Royal Free and University College Medical School, Royal Free Campus, University College London, London, UK
| | | | | | | | | | | | | |
Collapse
|
132
|
Marley R, Patel RP, Orie N, Ceaser E, Darley-Usmar V, Moore K. Formation of nanomolar concentrations of S-nitroso-albumin in human plasma by nitric oxide. Free Radic Biol Med 2001; 31:688-96. [PMID: 11522454 DOI: 10.1016/s0891-5849(01)00627-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
S-Nitrosothiols are potentially important mediators of biological processes including vascular function, apoptosis, and thrombosis. Recent studies indicate that the concentrations of S-nitrosothiols in the plasma from healthy individuals are lower than previously reported and in the range of 30-120 nM. The mechanisms of formation and metabolism of these low nM concentrations, capable of exerting biological effects, remain unknown. An important issue that remains unresolved is the significance of the reactions of low fluxes of nitric oxide (NO) with oxygen to form S-nitrosothiols in a complex biological medium such as plasma, and the impact of red blood cells on the formation of S-nitrosothiols in blood. These issues were addressed by exposing plasma to varying fluxes of NO and measuring the net formation of S-nitrosothiols. In the presence of oxygen and physiological fluxes of NO, the predominant S-nitrosothiol formed is S-nitroso-albumin at concentrations in the high nM range (approximately 400-1000 nM). Although the formation of S-nitrosothiols by NO was attenuated in whole blood, presumably by erythrocytic hemoglobin, significant amounts of S-nitrosothiols within the physiological range of S-nitrosothiol concentrations (approximately 80 nM) were still formed at physiological fluxes of NO. Little is known about the stability of S-nitroso-albumin in plasma, and this is central to our understanding of the biological effectiveness of S-nitrosothiols. Low molecular weight thiols decreased the half-life of S-nitroso-albumin in plasma, and the stability of S-nitroso-albumin is enhanced by the alkylation of free thiols. Our data suggests that physiologically relevant concentrations of S-nitrosothiols can be formed in blood through the reaction of NO with oxygen and proteins, despite the low rates of reaction of oxygen with NO and the presence of erythrocytes.
Collapse
Affiliation(s)
- R Marley
- Centre for Hepatology, Royal Free Campus, Royal Free and University College Hospital School of Medicine, London, UK
| | | | | | | | | | | |
Collapse
|
133
|
Tyurin VA, Liu SX, Tyurina YY, Sussman NB, Hubel CA, Roberts JM, Taylor RN, Kagan VE. Elevated levels of S-nitrosoalbumin in preeclampsia plasma. Circ Res 2001; 88:1210-5. [PMID: 11397789 DOI: 10.1161/hh1101.092179] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The availability of nitric oxide (NO), which is required for the normal regulation of vascular tone, may be decreased in preeclampsia, thus contributing to the vascular pathogenesis of this pregnancy disorder. Because ascorbate is essential for the decomposition of S-nitrothiols and the release of NO, we speculated that the ascorbate deficiency typical of preeclampsia plasma might result in decreased rates of decomposition of S-nitrosothiols. We tested the hypothesis that total S-nitrosothiol and S-nitrosoalbumin concentrations are increased in preeclampsia plasma, reflecting a decreased release of NO from these major reservoirs of NO. Gestationally matched plasma samples were obtained (before labor or intravenous MgSO(4)) from 21 women with preeclampsia and 21 women with normal pregnancy, and plasma samples were also obtained from 12 nonpregnant women of similar age and body mass index during the follicular phase of the menstrual cycle. All were nonsmokers. The assay included ultraviolet-induced decomposition of S-nitrosothiols to liberate NO captured by a florigenic reagent, 4,5-diaminofluoresceine, to produce diaminofluoresceine-Triazole. Preeclampsia plasma contained significantly higher concentrations of total S-nitrosothiols (11.1+/-2.9 nmol/mL) than normal pregnancy samples (9.4+/-1.5 nmol/mL). Even greater differences were found between preeclampsia plasma and plasma samples from normal pregnancies and nonpregnant women (294+/-110, 186+/-25, and 151+/-25 pmol/mg protein, respectively) when S-nitrosothiol content was expressed per milligram protein. The albumin fraction contained 49.4% of total plasma S-nitrosothiols in the control samples and 53.7% and 56.8% of plasma S-nitrosothiols in normal pregnancy and preeclampsia, respectively. The level of S-nitrosoalbumin was significantly higher in preeclampsia than in normal pregnancy or nonpregnancy plasma (6.3+/-1.4, 5.1+/-0.7, and 4.2+/-1.0 nmol/mL, respectively). The increased concentration of S-nitrosoalbumin in preeclampsia almost completely accounted for the increased levels of S-nitrosothiols in total plasma. Due to combined increases in nitrosothiols and decreases in protein, the preeclampsia plasma concentration of S-nitrosoalbumin was greatly increased on a per milligram of protein basis (271% and 186% compared with normal nonpregnancy and normal pregnancy plasma, respectively). We conclude that S-nitrosoalbumin and total S-nitrosothiol concentrations are significantly increased in preeclampsia plasma and may reflect insufficient release of NO groups in this condition.
Collapse
Affiliation(s)
- V A Tyurin
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15238, USA
| | | | | | | | | | | | | | | |
Collapse
|
134
|
Abstract
Nitric oxide (NO) exhibits multiple biological actions through formation of various oxidized intermediates derived from NO. Among them, nitrosothiol adducts (RS-NOs) with the sulfhydryl moiety of proteins and amino acids appears to be an important species in view of its unique chemical reactivity. Understanding of the biologically relevant S-nitrosation mechanism is essential because RS-NOs seem to be critically involved in modulation of intracellular and intercellular signal transduction, including gene transcription, cell apoptosis, and oxidative stress. RS-NOs have been recently found to be formed efficiently via one-electron oxidation of NO catalyzed by ceruloplasmin, a major copper-containing protein in mammalian plasma. Ceruloplasmin is synthesized mainly by hepatocytes, but it is also expressed by other cells such as macrophages and astrocytes. Once RS-NOs are formed, they function as NO transporters in biological systems, the NO being transferred to different sulfhydryls of various biomolecules. This transfer may be mediated by transnitrosation reactions occurring chemically or enzymatically by a means of specific enzymes such as protein disulfide isomerase. The molecular mechanism of biological S-nitrosation is discussed as related to the important physiological and pathophysiological functions of RS-NOs. Also, RS-NO assays that are being successfully used for detection of biological S-nitrosation are briefly reviewed.
Collapse
Affiliation(s)
- T Akaike
- Department of Microbiology, Kumamoto University School of Medicine, Japan.
| |
Collapse
|
135
|
Gladwin MT, Shelhamer JH, Schechter AN, Pease-Fye ME, Waclawiw MA, Panza JA, Ognibene FP, Cannon RO. Role of circulating nitrite and S-nitrosohemoglobin in the regulation of regional blood flow in humans. Proc Natl Acad Sci U S A 2000; 97:11482-7. [PMID: 11027349 PMCID: PMC17226 DOI: 10.1073/pnas.97.21.11482] [Citation(s) in RCA: 347] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
To determine the relative contributions of endothelial-derived nitric oxide (NO) vs. intravascular nitrogen oxide species in the regulation of human blood flow, we simultaneously measured forearm blood flow and arterial and venous levels of plasma nitrite, LMW-SNOs and HMW-SNOs, and red cell S-nitrosohemoglobin (SNO-Hb). Measurements were made at rest and during regional inhibition of NO synthesis, followed by forearm exercise. Surprisingly, we found significant circulating arterial-venous plasma nitrite gradients, providing a novel delivery source for intravascular NO. Further supporting the notion that circulating nitrite is bioactive, the consumption of nitrite increased significantly with exercise during the inhibition of regional endothelial synthesis of NO. The role of circulating S-nitrosothiols and SNO-Hb in the regulation of basal vascular tone is less certain. We found that low-molecular-weight S-nitrosothiols were undetectable and S-nitroso-albumin levels were two logs lower than previously reported. In fact, S-nitroso-albumin primarily formed in the venous circulation, even during NO synthase inhibition. Whereas SNO-Hb was measurable in the human circulation (brachial artery levels of 170 nM in whole blood), arterial-venous gradients were not significant, and delivery of NO from SNO-Hb was minimal. In conclusion, we present data that suggest (i) circulating nitrite is bioactive and provides a delivery gradient of intravascular NO, (ii) S-nitroso-albumin does not deliver NO from the lungs to the tissue but forms in the peripheral circulation, and (iii) SNO-Hb and S-nitrosothiols play a minimal role in the regulation of basal vascular tone, even during exercise stress.
Collapse
Affiliation(s)
- M T Gladwin
- Critical Care Medicine Department of the Warren G. Magnuson Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
136
|
Jourd'heuil D, Gray L, Grisham MB. S-nitrosothiol formation in blood of lipopolysaccharide-treated rats. Biochem Biophys Res Commun 2000; 273:22-6. [PMID: 10873557 DOI: 10.1006/bbrc.2000.2892] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The administration of the gram-negative bacterial cell wall component lipopolysaccharide (LPS) to experimental animals results in the dramatic up-regulation of the inducible form of nitric oxide synthase (iNOS). The resulting sustained overproduction of nitric oxide (NO) is thought to contribute to the septic shock-like state in these animals. Numerous studies have characterized the kinetics and magnitude of expression of iNOS as well as the production of NO-derived nitrite and nitrate. However, little is known regarding the ability of iNOS-derived NO to interact with physiological substrates such as thiols to yield biologically active S-nitrosothiols during endotoxemia. It has been hypothesized that these relatively stable, vaso-active compounds may serve as a storage system for NO and they may thus play an important role in the pathophysiology associated with endotoxemia. In the present study, we demonstrate that 5 h after i.p. administration of LPS in rats, circulating S-nitrosoalbumin was increased by approximately 3. 4-fold over control. S-nitrosohemoglobin was increased by approximately 25-fold over controls and by threefold over S-nitrosoalbumin. No increase in low molecular weight S-nitrosothiols (i.e., S-nitrosoglutathione and S-nitrosocysteine) could be detected under our experimental conditions. Taken together these data demonstrate that endotoxemia dramatically enhances circulating S-nitrosothiol formation.
Collapse
Affiliation(s)
- D Jourd'heuil
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208, USA
| | | | | |
Collapse
|
137
|
Patel RP, Moellering D, Murphy-Ullrich J, Jo H, Beckman JS, Darley-Usmar VM. Cell signaling by reactive nitrogen and oxygen species in atherosclerosis. Free Radic Biol Med 2000; 28:1780-94. [PMID: 10946220 DOI: 10.1016/s0891-5849(00)00235-5] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The production of reactive oxygen and nitrogen species has been implicated in atherosclerosis principally as means of damaging low-density lipoprotein that in turn initiates the accumulation of cholesterol in macrophages. The diversity of novel oxidative modifications to lipids and proteins recently identified in atherosclerotic lesions has revealed surprising complexity in the mechanisms of oxidative damage and their potential role in atherosclerosis. Oxidative or nitrosative stress does not completely consume intracellular antioxidants leading to cell death as previously thought. Rather, oxidative and nitrosative stress have a more subtle impact on the atherogenic process by modulating intracellular signaling pathways in vascular tissues to affect inflammatory cell adhesion, migration, proliferation, and differentiation. Furthermore, cellular responses can affect the production of nitric oxide, which in turn can strongly influence the nature of oxidative modifications occurring in atherosclerosis. The dynamic interactions between endogenous low concentrations of oxidants or reactive nitrogen species with intracellular signaling pathways may have a general role in processes affecting wound healing to apoptosis, which can provide novel insights into the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- R P Patel
- Center for Free Radical Biology, University of Alabama, Birmingham, AL 35294-0019, USA
| | | | | | | | | | | |
Collapse
|
138
|
Abstract
S-Nitrosothiols are endogenous metabolites of nitric oxide that have been detected in extra- and intracellular spaces. Many biological functions of S-nitrosothiols have been described that can be categorized as being due to one or more of the following: (i) nitric oxide release, (ii) transnitrosation, (iii) S-thiolation, and (iv) direct action. This emphasizes the fact that S-nitrosothiols are more than simply nitric oxide donors. Many of the biological functions that have been described for S-nitrosothiols have clinical correlates. This review describes the biological chemistry, biological actions, and clinical potential of these compounds.
Collapse
Affiliation(s)
- N Hogg
- Biophysics Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|