101
|
Sinang SC, Poh KB, Shamsudin S, Sinden A. Preliminary Assessment of Cyanobacteria Diversity and Toxic Potential in Ten Freshwater Lakes in Selangor, Malaysia. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2015; 95:542-547. [PMID: 26248788 DOI: 10.1007/s00128-015-1620-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 07/23/2015] [Indexed: 06/04/2023]
Abstract
Toxic cyanobacteria blooms are increasing in magnitude and frequency worldwide. However, this issue has not been adequately addressed in Malaysia. Therefore, this study aims to better understand eutrophication levels, cyanobacteria diversity, and microcystin concentrations in ten Malaysian freshwater lakes. The results revealed that most lakes were eutrophic, with total phosphorus and total chlorophyll-a concentrations ranging from 15 to 4270 µg L(-1) and 1.1 to 903.1 µg L(-1), respectively. Cyanobacteria were detected in all lakes, and identified as Microcystis spp., Planktothrix spp., Phormidium spp., Oscillatoria spp., and Lyngbya spp. Microcystis spp. was the most commonly observed and most abundant cyanobacteria recorded. Semi-quantitative microcystin analysis indicated the presence of microcystin in all lakes. These findings illustrate the potential health risk of cyanobacteria in Malaysia freshwater lakes, thus magnifying the importance of cyanobacteria monitoring and management in Malaysian waterways.
Collapse
Affiliation(s)
- Som Cit Sinang
- Biology Department, Faculty of Science and Mathematics, Sultan Idris Education University, 35900, Tanjung Malim, Perak, Malaysia.
| | - Keong Bun Poh
- Biology Department, Faculty of Science and Mathematics, Sultan Idris Education University, 35900, Tanjung Malim, Perak, Malaysia
| | - Syakirah Shamsudin
- Biology Department, Faculty of Science and Mathematics, Sultan Idris Education University, 35900, Tanjung Malim, Perak, Malaysia
| | - Ann Sinden
- Biology Department, Faculty of Science and Mathematics, Sultan Idris Education University, 35900, Tanjung Malim, Perak, Malaysia
| |
Collapse
|
102
|
Spatiotemporal Dynamics of Microcystin Variants and Relationships with Environmental Parameters in Lake Taihu, China. Toxins (Basel) 2015; 7:3224-44. [PMID: 26295260 PMCID: PMC4549747 DOI: 10.3390/toxins7083224] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/05/2015] [Accepted: 08/11/2015] [Indexed: 01/07/2023] Open
Abstract
Excessive anthropogenically-caused nutrient loading from both external and internal sources has promoted the growth of cyanobacteria in Lake Taihu from 2005 to 2014, suggesting increased production and release of cyanotoxins. In order to explain the spatial distribution and temporal variation of microcystins (MCs), the intracellular concentrations of MCs (MC-LR, -RR and -YR, L, R and Y are abbreviations of leucine, arginine and tyrosine) were monitored monthly from July 2013 to June 2014. Three MC variants are present simultaneously in Lake Taihu; the MC-LR and -RR variants were dominant (accounting for 40% and 39% of the total), followed by MC-YR (21%). However, MC-YR accounted for a higher proportion in colder months, especially in March. The highest concentrations of intracellular MCs were found in July and October when cyanobacteria cell density also reached the maximum. The average concentrations of MC-LR, -RR and -YR in July were 4.69, 4.23 and 2.01 μg/L, respectively. In terms of the entire lake, toxin concentrations in northern parts were significantly higher than the eastern part in summer, when MC concentrations were several times higher than the guideline value by WHO throughout much of Lake Taihu. Results from correlation and redundancy analysis (RDA) showed that total MCs, including all variants, were strongly and positively correlated with cyanobacteria cell density, water temperature, total phosphorus (TP) and pH, whereas each variant had different correlation coefficients with each of the considered environmental variables. MC-RR showed a stronger relationship with temperature, in contrast to MC-YR and -LR. Dissolved inorganic carbon (DIC) showed a negative relationship with each variant, suggesting that rising DIC concentrations may inhibit cyanobacterial growth and thereby reduce MC production in the future.
Collapse
|
103
|
Abstract
Lipopolysaccharide (LPS) is a component of the outer membrane of mainly Gram-negative bacteria and cyanobacteria. The LPS molecules from marine and terrestrial bacteria show structural variations, even among strains within the same species living in the same environment. Cyanobacterial LPS has a unique structure, since it lacks heptose and 3-deoxy-d-manno-octulosonic acid (also known as keto-deoxyoctulosonate (KDO)), which are present in the core region of common Gram-negative LPS. In addition, the cyanobacterial lipid A region lacks phosphates and contains odd-chain hydroxylated fatty acids. While the role of Gram-negative lipid A in the regulation of the innate immune response through Toll-like Receptor (TLR) 4 signaling is well characterized, the role of the structurally different cyanobacterial lipid A in TLR4 signaling is not well understood. The uncontrolled inflammatory response of TLR4 leads to autoimmune diseases such as sepsis, and thus the less virulent marine cyanobacterial LPS molecules can be effective to inhibit TLR4 signaling. This review highlights the structural comparison of LPS molecules from marine cyanobacteria and Gram-negative bacteria. We discuss the potential use of marine cyanobacterial LPS as a TLR4 antagonist, and the effects of cyanobacterial LPS on humans and marine organisms.
Collapse
|
104
|
Qin W, Zhang X, Yang L, Xu L, Zhang Z, Wu J, Wang Y. Microcystin-LR altered mRNA and protein expression of endoplasmic reticulum stress signaling molecules related to hepatic lipid metabolism abnormalities in mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:114-121. [PMID: 26093960 DOI: 10.1016/j.etap.2015.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 04/27/2015] [Accepted: 05/01/2015] [Indexed: 06/04/2023]
Abstract
To explore the effects of microcystin-LR (MC-LR), a hepatotoxin, on the incidence of liver lipid metabolism abnormality, and the potential molecular mechanisms of action, healthy male Balb/c mice were intraperitoneally injected with MC-LR at doses of 0, 5, 10, and 20 μg/kg/d for 14 days. Hepatic histopathology and serum lipid parameters of mice were determined, and the changes of mRNA and protein expression of endoplasmic reticulum (ER) stress signaling molecules related to the lipid metabolism abnormalities in the livers of mice were investigated by quantitative real-time polymerase chain reaction (qPCR) and Western blotting, respectively. The results indicated that 5-20 μg/kg/d MC-LR altered serum lipid parameters and caused hepatic steatosis. MC-LR treatment at 10 or 20 μg/kg/d changed mRNA and protein expression of ER stress signaling molecules, including upregulation of mRNA and protein expression of activating transcription factor 6 (ATF6), pancreatic ER eukaryotic translation initiation factor 2α (eIF-2α) kinase (PERK), and eIF-2α. MC-LR exposure at 10 or 20 μg/kg/d also altered mRNA and protein expression of downstream factors and genes of ER stress signaling pathways, including the downregulation of sterol regulatory element binding protein 1c (SREBP-1c) and fatty acid synthase (FASn), and upregulation of acetyl-coenzyme A carboxylase α (ACACA) and glycogen synthase kinase 3β (Gsk-3β). Our results reveal that ER stress plays a significant role in hepatic lipid metabolism abnormalities in mice exposed to MC-LR.
Collapse
Affiliation(s)
- Wendi Qin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Guangxi Zhuang Autonomous Region Forestry Science Research Institute, Nanning 530002, China
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Lizhi Xu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Zongyao Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jun Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yaping Wang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| |
Collapse
|
105
|
Glutathione Transferases Responses Induced by Microcystin-LR in the Gills and Hepatopancreas of the Clam Venerupis philippinarum. Toxins (Basel) 2015; 7:2096-120. [PMID: 26067368 PMCID: PMC4488691 DOI: 10.3390/toxins7062096] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 05/30/2015] [Indexed: 01/01/2023] Open
Abstract
A multi-method approach was employed to compare the responses of Glutatione Transferases (GSTs) in the gills and hepatopancreas of Venerupis philippinarum to microcystins (MCs) toxicity. In this way, using the cytosolic fraction, the enzymatic activity of GSTs, superoxide dismutase (SOD), serine/threonine protein phosphatases (PPP2) along with the gene expression levels of four GST isoforms (pi, mu, sigma1, sigma2) were investigated in both organs of the clams exposed for 24 h to 10, 50 and 100 μg L−1 of MC-LR. Cytosolic GSTs (cGSTs) from both organs of the high dose exposed clams were purified by glutathione-agarose affinity chromatography, characterized kinetically and the changes in the expression of cGSTs of the gills identified using a proteomic approach. MC-LR caused an increase in GST enzyme activity, involved in conjugation reactions, in both gills and hepatopancreas (100 μg L−1 exposure). SOD activity, an indicator of oxidative stress, showed significantly elevated levels in the hepatopancreas only (50 and 100 μg L−1 exposure). No significant changes were found in PPP2 activity, the main target of MCs, for both organs. Transcription responses revealed an up-regulation of sigma2 in the hepatopancreas at the high dose, but no significant changes were detected in the gills. Kinetic analysis evidenced differences between gills of exposed and non-exposed extracts. Using proteomics, qualitative and quantitative differences were found between the basal and inducible cGSTs. Overall, results suggest a distinct role of GST system in counteracting MCs toxicity between the gills and the hepatopancreas of V. philippinarum, revealing different roles between GST isoforms within and among both organs.
Collapse
|
106
|
Lee TA, Rollwagen-Bollens G, Bollens SM. The influence of water quality variables on cyanobacterial blooms and phytoplankton community composition in a shallow temperate lake. ENVIRONMENTAL MONITORING AND ASSESSMENT 2015; 187:315. [PMID: 25937495 DOI: 10.1007/s10661-015-4550-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 04/21/2015] [Indexed: 06/04/2023]
Abstract
Cyanobacterial blooms and their detrimental effects on water quality have become a worldwide problem. Vancouver Lake, a tidally influenced shallow temperate freshwater lake in Washington state, U.S.A., exhibits annual summer cyanobacterial blooms that are of concern to local resource managers. Our objectives were to describe changes in phytoplankton community composition in Vancouver Lake over seasonal, annual, and interannual time scales, and to identify strong water quality predictors of phytoplankton community structure, with an emphasis on cyanobacterial blooms, from 2007 through 2010. Cluster analysis, indicator species analysis, and non-metric multidimensional scaling were used to identify significantly different phytoplankton community groupings and to determine which environmental factors influenced community changes. From 2007 through 2009, depletion of NO3-N followed by elevated PO4-P concentration was associated with increased biomass and duration of each cyanobacterial bloom. Time-lag analysis suggested that NO3-N availability contributed to interannual changes within the summer phytoplankton community. Specifically, in summer 2010, a distinct cyanobacteria community was not present, potentially due to increased NO3-N and decreased PO4-P and NH4-N availability. Our study provides a comprehensive assessment of species-level responses to water quality variables in a shallow non-stratifying temperate lake, contributes to a better understanding of phytoplankton dynamics, and may aid in predicting and managing cyanobacterial blooms.
Collapse
Affiliation(s)
- Tammy A Lee
- School of the Environment, Washington State University, 14204 NE Salmon Creek Avenue, Vancouver, WA, 98686, USA,
| | | | | |
Collapse
|
107
|
Piyathilaka MAPC, Pathmalal MM, Tennekoon KH, De Silva BGDNK, Samarakoon SR, Chanthirika S. Microcystin-LR-induced cytotoxicity and apoptosis in human embryonic kidney and human kidney adenocarcinoma cell lines. Microbiology (Reading) 2015; 161:819-28. [DOI: 10.1099/mic.0.000046] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 01/26/2015] [Indexed: 01/08/2023] Open
|
108
|
Song H, Coggins LX, Reichwaldt ES, Ghadouani A. The importance of lake sediments as a pathway for microcystin dynamics in shallow eutrophic lakes. Toxins (Basel) 2015; 7:900-18. [PMID: 25793723 PMCID: PMC4379532 DOI: 10.3390/toxins7030900] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/03/2015] [Accepted: 03/05/2015] [Indexed: 01/05/2023] Open
Abstract
Microcystins are toxins produced by cyanobacteria. They occur in aquatic systems across the world and their occurrence is expected to increase in frequency and magnitude. As microcystins are hazardous to humans and animals, it is essential to understand their fate in aquatic systems in order to control health risks. While the occurrence of microcystins in sediments has been widely reported, the factors influencing their occurrence, variability, and spatial distribution are not yet well understood. Especially in shallow lakes, which often develop large cyanobacterial blooms, the spatial variability of toxins in the sediments is a complex interplay between the spatial distribution of toxin producing cyanobacteria, local biological, physical and chemical processes, and the re-distribution of toxins in sediments through wind mixing. In this study, microcystin occurrence in lake sediment, and their relationship with biological and physicochemical variables were investigated in a shallow, eutrophic lake over five months. We found no significant difference in cyanobacterial biomass, temperature, pH, and salinity between the surface water and the water directly overlying the sediment (hereafter ‘overlying water’), indicating that the water column was well mixed. Microcystins were detected in all sediment samples, with concentrations ranging from 0.06 to 0.78 µg equivalent microcystin-LR/g sediments (dry mass). Microcystin concentration and cyanobacterial biomass in the sediment was different between sites in three out of five months, indicating that the spatial distribution was a complex interaction between local and mixing processes. A combination of total microcystins in the water, depth integrated cyanobacterial biomass in the water, cyanobacterial biomass in the sediment, and pH explained only 21.1% of the spatial variability of microcystins in the sediments. A more in-depth analysis that included variables representative of processes on smaller vertical or local scales, such as cyanobacterial biomass in the different layers and the two fractions of microcystins, increased the explained variability to 51.7%. This highlights that even in a well-mixed lake, local processes are important drivers of toxin variability. The present study emphasises the role of the interaction between water and sediments in the distribution of microcystins in aquatic systems as an important pathway which deserves further consideration.
Collapse
Affiliation(s)
- Haihong Song
- Aquatic Ecology and Ecosystem Studies, School of Civil, Environmental and Mining Engineering, the University of Western Australia, 35 Stirling Highway, M015, Crawley, WA 6009, Australia.
| | - Liah X Coggins
- Aquatic Ecology and Ecosystem Studies, School of Civil, Environmental and Mining Engineering, the University of Western Australia, 35 Stirling Highway, M015, Crawley, WA 6009, Australia.
| | - Elke S Reichwaldt
- Aquatic Ecology and Ecosystem Studies, School of Civil, Environmental and Mining Engineering, the University of Western Australia, 35 Stirling Highway, M015, Crawley, WA 6009, Australia.
| | - Anas Ghadouani
- Aquatic Ecology and Ecosystem Studies, School of Civil, Environmental and Mining Engineering, the University of Western Australia, 35 Stirling Highway, M015, Crawley, WA 6009, Australia.
| |
Collapse
|
109
|
Ufelmann H, Schrenk D. Nodularin-triggered apoptosis and hyperphosphorylation of signaling proteins in cultured rat hepatocytes. Toxicol In Vitro 2015; 29:16-26. [DOI: 10.1016/j.tiv.2014.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 08/01/2014] [Accepted: 08/05/2014] [Indexed: 01/18/2023]
|
110
|
Ajonina C, Buzie C, Rubiandini RH, Otterpohl R. Microbial pathogens in wastewater treatment plants (WWTP) in Hamburg. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:381-387. [PMID: 25734765 DOI: 10.1080/15287394.2014.989626] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Microbial pathogens are among the major health problems associated with water and wastewater. Classical indicators of fecal contamination include total coliforms, Escherichia coli, and Clostridium perfringens. These fecal indicators were monitored in order to obtain information regarding their evolution during wastewater treatment processes. Helminth eggs survive for a long duration in the environment and have a high potential for waterborne transmission, making them reliable contaminant indicators. A large quantity of helminth eggs was detected in the wastewater samples using the Bailanger method. Eggs were found in the influent and effluent with average concentration ranging from 11 to 50 eggs/L. Both E. coli and total coliforms concentrations were significantly 1- to 3-fold higher in influent than in effluent. The average concentrations of E. coli ranged from 2.5×10(3) to 4.4×10(5) colony-forming units (CFU)/100 ml. Concentrations of total coliforms ranged from 3.6×10(3) to 7.9×10(5) CFU/100 ml. Clostridium perfringens was also detected in influent and effluent of wastewater treatment plants (WWTP) at average concentrations ranging from 5.4×10(2) to 9.1×10(2) most probable number (MPN)/100 ml. Significant Spearman rank correlations were found between helminth eggs and microbial indicators (total coliform, E. coli, and C. perfringens) in the WWTP. There is therefore need for additional microbial pathogen monitoring in the WWTP to minimize public health risk.
Collapse
Affiliation(s)
- Caroline Ajonina
- a Institute of Wastewater Management and Water Protection , Hamburg , Germany
| | | | | | | |
Collapse
|
111
|
Lu X, Long Y, Sun R, Zhou B, Lin L, Zhong S, Cui Z. Zebrafish Abcb4 is a potential efflux transporter of microcystin-LR. Comp Biochem Physiol C Toxicol Pharmacol 2015; 167:35-42. [PMID: 25193616 DOI: 10.1016/j.cbpc.2014.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 08/19/2014] [Accepted: 08/21/2014] [Indexed: 11/15/2022]
Abstract
Microcystin-LR (MC-LR) is one of the most common microcystins (MCs), which are hepatotoxic and released into a water body during a period of cyanobacterial blooms. These toxicants can be accumulated in aquatic animals and transferred along the food chain and thus pose adverse effects on aquatic environment and public health. Zebrafish Abcb4 is reported to mediate the cellular efflux of ecotoxicologically relevant compounds including galaxolide, tonalide and phenanthrene; however, it remains unclear whether Abcb4 functions in the detoxification of MC-LR. Here, we demonstrated the role of zebrafish Abcb4 in cellular efflux of MC-LR. Transcripts of zebrafish abcb4 were detected in all of adult tissues examined. MC-LR was able to induce the expression of abcb4 gene and overexpression of Abcb4 significantly decreased the cytotoxicity and accumulation of MC-LR in LLC-PK1 cells and developing embryos. In contrast, overexpression of an Abcb4-G1177D mutant abolished its transporter function but not substrate binding activity, and sensitized LLC-PK1 cells and developing embryos to this cyanobacterial toxin. Moreover, ATPase activity in developing embryos can be induced by MC-LR. Thus, zebrafish Abcb4 plays crucial roles in cellular efflux of MC-LR and is a potential molecular marker for the monitoring of cyanobacteria contamination in the aquatic environment.
Collapse
Affiliation(s)
- Xing Lu
- Department of Genetics, School of Basic Medical Science, Wuhan University, Wuhan 430071, Hubei, China.
| | - Yong Long
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China.
| | - Rongze Sun
- Department of Genetics, School of Basic Medical Science, Wuhan University, Wuhan 430071, Hubei, China.
| | - Bolan Zhou
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China.
| | - Li Lin
- Department of Genetics, School of Basic Medical Science, Wuhan University, Wuhan 430071, Hubei, China.
| | - Shan Zhong
- Department of Genetics, School of Basic Medical Science, Wuhan University, Wuhan 430071, Hubei, China.
| | - Zongbin Cui
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China.
| |
Collapse
|
112
|
Zhang Y, Zhang SF, Lin L, Wang DZ. Comparative transcriptome analysis of a toxin-producing dinoflagellate Alexandrium catenella and its non-toxic mutant. Mar Drugs 2014; 12:5698-718. [PMID: 25421324 PMCID: PMC4245552 DOI: 10.3390/md12115698] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/11/2014] [Accepted: 10/29/2014] [Indexed: 01/11/2023] Open
Abstract
The dinoflagellates and cyanobacteria are two major kingdoms of life producing paralytic shellfish toxins (PSTs), a large group of neurotoxic alkaloids causing paralytic shellfish poisonings around the world. In contrast to the well elucidated PST biosynthetic genes in cyanobacteria, little is known about the dinoflagellates. This study compared transcriptome profiles of a toxin-producing dinoflagellate, Alexandrium catenella (ACHK-T), and its non-toxic mutant form (ACHK-NT) using RNA-seq. All clean reads were assembled de novo into a total of 113,674 unigenes, and 66,812 unigenes were annotated in the known databases. Out of them, 35 genes were found to express differentially between the two strains. The up-regulated genes in ACHK-NT were involved in photosynthesis, carbon fixation and amino acid metabolism processes, indicating that more carbon and energy were utilized for cell growth. Among the down-regulated genes, expression of a unigene assigned to the long isoform of sxtA, the initiator of toxin biosynthesis in cyanobacteria, was significantly depressed, suggesting that this long transcript of sxtA might be directly involved in toxin biosynthesis and its depression resulted in the loss of the ability to synthesize PSTs in ACHK-NT. In addition, 101 putative homologs of 12 cyanobacterial sxt genes were identified, and the sxtO and sxtZ genes were identified in dinoflagellates for the first time. The findings of this study should shed light on the biosynthesis of PSTs in the dinoflagellates.
Collapse
Affiliation(s)
- Yong Zhang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| | - Shu-Fei Zhang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| | - Lin Lin
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
113
|
Hlávková J, Adamovský O, Kopp R. Biochemical indices are modulated in fish exposed to cyanobacterial toxins (microcystins). ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2014. [DOI: 10.11118/actaun200856050255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
114
|
Samdal IA, Ballot A, Løvberg KE, Miles CO. Multihapten approach leading to a sensitive ELISA with broad cross-reactivity to microcystins and nodularin. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:8035-8043. [PMID: 24941031 DOI: 10.1021/es5012675] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Microcystins (MCs) are a group of biotoxins (>150) produced by cyanobacteria, with a worldwide distribution. MCs are hepatotoxic, and acute exposure causes severe liver damage in humans and animals. Rapid and cheap methods of analysis are therefore required to protect people and livestock, especially in developing countries. To include as many MCs as possible in a single analysis, we developed a new competitive ELISA. Ovine polyclonal antibodies were raised using an immunogen made by conjugating a mixture of microcystins to cationised bovine serum albumin, and the plate-coating antigen was prepared by conjugating [Asp3]MC-RY to ovalbumin. This strategy was used also to minimize specificity for particular microcystin congeners. Cross-reactivity studies indicate that the ELISA has broad specificity to microcystins and also detects nodularin, providing a sensitive and rapid analytical method for screening large numbers of samples. The limit of quantitation for microcystins in drinking water is 0.04 μg/L, well below the WHO's maximum recommendation of 1 μg/L. The ELISA can be used for quantifying total microcystins in various matrices, including drinking water, cyanobacterial cultures, extracts, and algal blooms, and may be useful in detecting metabolites and conjugates of MCs.
Collapse
Affiliation(s)
- Ingunn A Samdal
- Norwegian Veterinary Institute , P.O. Box 750, Sentrum, N-0106 Oslo, Norway
| | | | | | | |
Collapse
|
115
|
Guo X, Xie P, Chen J, Tuo X, Deng X, Li S, Yu D, Zeng C. Simultaneous quantitative determination of microcystin-LR and its glutathione metabolites in rat liver by liquid chromatography–tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 963:54-61. [DOI: 10.1016/j.jchromb.2014.05.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/18/2014] [Accepted: 05/23/2014] [Indexed: 01/25/2023]
|
116
|
Koreivienė J, Anne O, Kasperovičienė J, Burškytė V. Cyanotoxin management and human health risk mitigation in recreational waters. ENVIRONMENTAL MONITORING AND ASSESSMENT 2014; 186:4443-4459. [PMID: 24664523 DOI: 10.1007/s10661-014-3710-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 03/05/2014] [Indexed: 06/03/2023]
Abstract
The occurrence and severity of harmful cyanobacterial or blue-green algal blooms (HABs) have increased in recent decades, posing a serious threat of illness to humans. In some countries, water contaminated with cyanotoxins that is used for drinking or haemodialysis has posed a particularly serious risk. However, it is now recognized that recreational exposure to natural toxins by skin contact, accidental swallowing of water or inhalation can also cause a wide range of acute or chronic illnesses. In this review, we focus on the importance of cyanotoxin management in recreational waters. The symptoms related with HAB poisonings, the recommended safety concentrations limit for cyanobacteria and cyanotoxins in such waters, as well as early health hazard indicators of their presence and their monitoring are all discussed. We also present in this review an overview of the methods developed in recent decades for eliminating cyanobacteria and the toxic compounds that they produce.
Collapse
Affiliation(s)
- Judita Koreivienė
- Institute of Botany of Nature Research Centre, Žaliųjų Ežerų Str. 49, 08406, Vilnius, Lithuania,
| | | | | | | |
Collapse
|
117
|
Effect of Selected Plant Extracts and D- and L-Lysine on the Cyanobacterium Microcystis aeruginosa. WATER 2014. [DOI: 10.3390/w6061807] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
118
|
Song H, Reichwaldt ES, Ghadouani A. Contribution of sediments in the removal of microcystin-LR from water. Toxicon 2014; 83:84-90. [DOI: 10.1016/j.toxicon.2014.02.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/17/2014] [Accepted: 02/20/2014] [Indexed: 12/18/2022]
|
119
|
Genotoxicity of microcystin-LR in in vitro and in vivo experimental models. BIOMED RESEARCH INTERNATIONAL 2014; 2014:949521. [PMID: 24955368 PMCID: PMC4052155 DOI: 10.1155/2014/949521] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/30/2014] [Indexed: 01/21/2023]
Abstract
Microcystin-LR (MCLR) is a cyanobacterial toxin known for its acute hepatotoxicity. Despite being recognized as tumour promoter, its genotoxicity is far from being completely clarified, particularly in organs other than liver. In this work, we used the comet and/or the micronucleus (MN) assays to study the genotoxicity of MCLR in kidney- (Vero-E6) and liver-derived (HepG2) cell lines and in blood cells from MCLR-exposed mice. MCLR treatment (5 and 20 μM) caused a significant induction in the MN frequency in both cell lines and, interestingly, a similar positive effect was observed in mouse reticulocytes (37.5 μg MCLR/kg, i.p. route). Moreover, the FISH-based analysis of the MN content (HepG2 cells) suggested that MCLR induces both chromosome breaks and loss. On the other hand, the comet assay results were negative in Vero-E6 cells and in mouse leukocytes, with the exception of a transient increase in the level of DNA damage 30 minutes after mice exposure. Overall, the present findings contributed to increase the weight of evidence in favour of MCLR genotoxicity, based on its capacity to induce permanent genetic damage either in vitro or in vivo. Moreover, they suggest a clastogenic and aneugenic mode of action that might underlie a carcinogenic effect.
Collapse
|
120
|
Waajen GWAM, Faassen EJ, Lürling M. Eutrophic urban ponds suffer from cyanobacterial blooms: Dutch examples. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:9983-9994. [PMID: 24798921 DOI: 10.1007/s11356-014-2948-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/21/2014] [Indexed: 06/03/2023]
Abstract
Ponds play an important role in urban areas. However, cyanobacterial blooms counteract the societal need for a good water quality and pose serious health risks for citizens and pets. To provide insight into the extent and possible causes of cyanobacterial problems in urban ponds, we conducted a survey on cyanobacterial blooms and studied three ponds in detail. Among 3,500 urban ponds in the urbanized Dutch province of North Brabant, 125 showed cyanobacterial blooms in the period 2009-2012. This covered 79% of all locations registered for cyanobacterial blooms, despite the fact that urban ponds comprise only 11% of the area of surface water in North Brabant. Dominant bloom-forming genera in urban ponds were Microcystis, Anabaena and Planktothrix. In the three ponds selected for further study, the microcystin concentration of the water peaked at 77 μg l(-1) and in scums at 64,000 μg l(-1), which is considered highly toxic. Microcystin-RR and microcystin-LR were the most prevalent variants in these waters and in scums. Cyanobacterial chlorophyll-a peaked in August with concentrations up to 962 μg l(-1) outside of scums. The ponds were highly eutrophic with mean total phosphorus concentrations between 0.16 and 0.44 mg l(-1), and the sediments were rich in potential releasable phosphorus. High fish stocks dominated by carp lead to bioturbation, which also favours blooms. As urban ponds in North Brabant, and likely in other regions, regularly suffer from cyanobacterial blooms and citizens may easily have contact with the water and may ingest cyanobacterial material during recreational activities, particularly swimming, control of health risk is of importance. Monitoring of cyanobacteria and cyanobacterial toxins in urban ponds is a first step to control health risks. Mitigation strategies should focus on external sources of eutrophication and consider the effect of sediment P release and bioturbation by fish.
Collapse
Affiliation(s)
- Guido W A M Waajen
- Aquatic Ecology & Water Quality Management Group, Department of Environmental Sciences, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, The Netherlands,
| | | | | |
Collapse
|
121
|
Zhang G, Nadagouda MN, O'Shea K, El-Sheikh SM, Ismail AA, Likodimos V, Falaras P, Dionysiou DD. Degradation of cylindrospermopsin by using polymorphic titanium dioxide under UV–Vis irradiation. Catal Today 2014. [DOI: 10.1016/j.cattod.2013.10.072] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
122
|
Poikane S, Portielje R, Berg M, Phillips G, Brucet S, Carvalho L, Mischke U, Ott I, Soszka H, Van Wichelen J. Defining ecologically relevant water quality targets for lakes in
E
urope. J Appl Ecol 2014. [DOI: 10.1111/1365-2664.12228] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sandra Poikane
- European Commission Joint Research Centre Institute for Environment and Sustainability via E. Fermi 2749 Ispra VA I‐21027 Italy
| | - Rob Portielje
- Centre for Water Management Zuiderwagenplein 2 Lelystad NL‐8200 AA The Netherlands
| | - Marcel Berg
- Centre for Water Management Zuiderwagenplein 2 Lelystad NL‐8200 AA The Netherlands
| | - Geoff Phillips
- Environment Agency Kings Meadow Road Reading Berkshire RG1 8DQ UK
| | - Sandra Brucet
- European Commission Joint Research Centre Institute for Environment and Sustainability via E. Fermi 2749 Ispra VA I‐21027 Italy
- University of Vic Carrer Sagrada Família 7 Vic 08500 Spain
| | - Laurence Carvalho
- Centre for Ecology & Hydrology Bush Estate Penicuik Midlothian EH26 0QB UK
| | - Ute Mischke
- Department of Ecohydrology Leibniz‐Institute of Freshwater Ecology and Inland Fisheries (IGB) Müggelseedamm 310 Berlin 12587 Germany
| | - Ingmar Ott
- Institute of Agricultural and Environmental Sciences Centre for Limnology Estonian University of Life Sciences Rannu Parish Tartu 61117 Estonia
| | - Hanna Soszka
- Institute of Environmental Protection National Research Institute Kolektorska 4 Warsaw 01‐692 Poland
| | - Jeroen Van Wichelen
- Protistology and Aquatic Ecology Ghent University Krijgslaan 281 – S8 Gent 9000 Belgium
| |
Collapse
|
123
|
de Andrade FM, de Macedo AN, Vieira EM. DETERMINATION OF MICROCYSTIN-LR IN CYANOBACTERIAL BLOOMS FROM THE MOGI GUAÇU RIVER (BRAZIL) BY HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY. J LIQ CHROMATOGR R T 2014. [DOI: 10.1080/10826076.2012.723086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | - Adriana Nori de Macedo
- a Department of Chemistry and Molecular Phisics , University of São Paulo , Sao Carlos , Brazil
| | - Eny Maria Vieira
- a Department of Chemistry and Molecular Phisics , University of São Paulo , Sao Carlos , Brazil
| |
Collapse
|
124
|
Roegner AF, Schirmer MP, Puschner B, Brena B, Gonzalez-Sapienza G. Rapid quantitative analysis of microcystins in raw surface waters with MALDI MS utilizing easily synthesized internal standards. Toxicon 2013; 78:94-102. [PMID: 24388801 DOI: 10.1016/j.toxicon.2013.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 12/13/2013] [Accepted: 12/19/2013] [Indexed: 10/25/2022]
Abstract
The freshwater cyanotoxins, microcystins (MCs), pose a global public health threat as potent hepatotoxins in cyanobacterial blooms; their persistence in drinking and recreational water has been associated with potential chronic effects in addition to acute intoxications. Rapid and accurate detection of the over 80 structural congeners is challenged by the rigorous and time consuming clean up required to overcome interference found in raw water samples. MALDI-MS has shown promise for rapid quantification of individual congeners in raw water samples, with very low operative cost, but so far limited sensitivity and lack of available and versatile internal standards (ISs) has limited its use. Two easily synthesized S-hydroxyethyl-Cys(7)-MC-LR and -RR ISs were used to generate linear standard curves in a reflectron MALDI instrument, reproducible across several orders of magnitude for MC-LR, -RR and -YR. Minimum quantification limits in direct water samples with no clean up or concentration step involved were consistently below 7 μg/L, with recoveries from spiked samples between 80 and 119%. This method improves sensitivity by 30 fold over previous reports of quantitative MALDI-TOF applications to MCs and provides a salient option for rapid throughput analysis for multiple MC congeners in untreated raw surface water blooms as a means to identify source public health threats and target intervention strategies within a watershed. As demonstrated by analysis of a set of samples from Uruguay, utilizing the reaction of different MC congeners with alternate sulfhydryl compounds, the m/z of the IS can be customized to avoid overlap with interfering compounds in local surface water samples.
Collapse
Affiliation(s)
- Amber F Roegner
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Macarena Pírez Schirmer
- Cátedra de Bioquímica, Facultad de Química, Universidad de la República, Montevideo, Uruguay; Cátedra Inmunología, Facultad de Química, Universidad de la República, Instituto de Higiene, Montevideo, Uruguay
| | - Birgit Puschner
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Beatriz Brena
- Cátedra de Bioquímica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Gualberto Gonzalez-Sapienza
- Cátedra Inmunología, Facultad de Química, Universidad de la República, Instituto de Higiene, Montevideo, Uruguay.
| |
Collapse
|
125
|
Spatial and thematic distribution of research on cyanotoxins. Toxicon 2013; 76:118-31. [PMID: 24055553 DOI: 10.1016/j.toxicon.2013.09.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 09/08/2013] [Accepted: 09/11/2013] [Indexed: 11/22/2022]
Abstract
Cyanobacteria in surface water are well known for their ability to form toxic blooms responsible for animal mortality and human poisoning. Accompanying major progress in science and technology, the state of knowledge of cyanotoxins has dramatically increased over the last two decades. The bibliometric approach applied in this study shows the evolution of research and identifies major gaps to be filled by future work. Although the publication rate has gradually increased from one hundred to three hundred articles per year since the 1990s, half of the literature available focuses on microcystins and another quarter on saxitoxins. Other cyanotoxins such as beta-N-methylamino-l-alanine or cylindrospermopsin remain vastly disregarded. Moreover, most of the publications deal with toxicity and ecology while other research areas, such as environmental and public health, require additional investigation. The analysis of the literature highlights the main journals for the communication of knowledge on cyanotoxins but also reveals that 90% of the research is originated from only ten countries. These countries are also those with the highest H-index and average number of citation per article. Nonetheless, the ranking of these countries is significantly altered when the amount of publications is normalized based on the population, the number of universities, the national gross domestic product or the government revenue. However, the lower amount of publications from Eastern Europe, Africa and South America could also reflect the lack of monitoring campaigns in these regions. This lack could potentially lead to the underestimation of the prevalence of toxic cyanobacterial blooms and the diversity of toxins worldwide.
Collapse
|
126
|
Chen Y, Zhou Y, Wang X, Qian W, Han X. Microcystin-LR induces autophagy and apoptosis in rat Sertoli cells in vitro. Toxicon 2013; 76:84-93. [PMID: 24047964 DOI: 10.1016/j.toxicon.2013.09.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 08/28/2013] [Accepted: 09/06/2013] [Indexed: 12/20/2022]
Abstract
Although microcystin-LR (MC-LR) produced by cyanobacteria has been demonstrated with strong reproductive toxicity, the mechanisms remain unclear. This study aimed to probe the effects of MC-LR on induction of autophagy in Sertoli cells, as well as the relationship between autophagy and apoptosis. After exposure to various concentrations of MC-LR for 24 or 48 h, cell viability and membrane integrity were significantly decreased under high MC-LR conditions (50-500 nM). The autophagosome marker protein LC3 was increased at mild MC-LR concentrations (0.5-5 nM). However, autophagosomes accumulated to their peak level under high MC-LR conditions in parallel with significantly up-regulated apoptosis. Treatment with an autophagy inhibitor (3-MA) abrogated autophagosome accumulation and apoptosis. This study demonstrated that MC-LR had toxic effects on Sertoli cells by inducing autophagy and apoptosis. The autophagosome accumulation may be involved in the apoptosis induced by MC-LR.
Collapse
Affiliation(s)
- Yu Chen
- Immunology and Reproduction Biology Laboratory, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China; State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210093, China
| | | | | | | | | |
Collapse
|
127
|
Roegner AF, Brena B, González-Sapienza G, Puschner B. Microcystins in potable surface waters: toxic effects and removal strategies. J Appl Toxicol 2013; 34:441-57. [PMID: 24038121 DOI: 10.1002/jat.2920] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/16/2013] [Accepted: 07/17/2013] [Indexed: 02/01/2023]
Abstract
In freshwater, harmful cyanobacterial blooms threaten to increase with global climate change and eutrophication of surface waters. In addition to the burden and necessity of removal of algal material during water treatment processes, bloom-forming cyanobacteria can produce a class of remarkably stable toxins, microcystins, difficult to remove from drinking water sources. A number of animal intoxications over the past 20 years have served as sentinels for widespread risk presented by microcystins. Cyanobacterial blooms have the potential to threaten severely both public health and the regional economy of affected communities, particularly those with limited infrastructure or resources. Our main objectives were to assess whether existing water treatment infrastructure provides sufficient protection against microcystin exposure, identify available options feasible to implement in resource-limited communities in bloom scenarios and to identify strategies for improved solutions. Finally, interventions at the watershed level aimed at bloom prevention and risk reduction for entry into potable water sources were outlined. We evaluated primary studies, reviews and reports for treatment options for microcystins in surface waters, potable water sources and treatment plants. Because of the difficulty of removal of microcystins, prevention is ideal; once in the public water supply, the coarse removal of cyanobacterial cells combined with secondary carbon filtration of dissolved toxins currently provides the greatest potential for protection of public health. Options for point of use filtration must be optimized to provide affordable and adequate protection for affected communities.
Collapse
Affiliation(s)
- Amber F Roegner
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | | | | | | |
Collapse
|
128
|
Vareli K, Jaeger W, Touka A, Frillingos S, Briasoulis E, Sainis I. Hepatotoxic seafood poisoning (HSP) due to microcystins: a threat from the ocean? Mar Drugs 2013; 11:2751-68. [PMID: 23921721 PMCID: PMC3766863 DOI: 10.3390/md11082751] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/15/2013] [Accepted: 07/16/2013] [Indexed: 01/11/2023] Open
Abstract
Cyanobacterial blooms are a major and growing problem for freshwater ecosystems worldwide that increasingly concerns public health, with an average of 60% of blooms known to be toxic. The most studied cyanobacterial toxins belong to a family of cyclic heptapeptide hepatotoxins, called microcystins. The microcystins are stable hydrophilic cyclic heptapeptides with a potential to cause cell damage following cellular uptake via organic anion-transporting proteins (OATP). Their intracellular biologic effects presumably involve inhibition of catalytic subunits of protein phosphatases (PP1 and PP2A) and glutathione depletion. The microcystins produced by cyanobacteria pose a serious problem to human health, if they contaminate drinking water or food. These toxins are collectively responsible for human fatalities, as well as continued and widespread poisoning of wild and domestic animals. Although intoxications of aquatic organisms by microcystins have been widely documented for freshwater ecosystems, such poisonings in marine environments have only occasionally been reported. Moreover, these poisonings have been attributed to freshwater cyanobacterial species invading seas of lower salinity (e.g., the Baltic) or to the discharge of freshwater microcystins into the ocean. However, recent data suggest that microcystins are also being produced in the oceans by a number of cosmopolitan marine species, so that Hepatotoxic Seafood Poisoning (HSP) is increasingly recognized as a major health risk that follows consumption of contaminated seafood.
Collapse
Affiliation(s)
- Katerina Vareli
- Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece; E-Mail:
- Interscience Molecular Oncology Laboratory, Human Cancer Biobank Center, University of Ioannina, 45110 Ioannina, Greece; E-Mails: (A.T.); (E.B.)
| | - Walter Jaeger
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, A-1090 Vienna, Austria; E-Mail:
| | - Anastasia Touka
- Interscience Molecular Oncology Laboratory, Human Cancer Biobank Center, University of Ioannina, 45110 Ioannina, Greece; E-Mails: (A.T.); (E.B.)
| | - Stathis Frillingos
- Laboratory of Biological Chemistry, School of Medicine, University of Ioannina, 45110 Ioannina, Greece; E-Mail:
| | - Evangelos Briasoulis
- Interscience Molecular Oncology Laboratory, Human Cancer Biobank Center, University of Ioannina, 45110 Ioannina, Greece; E-Mails: (A.T.); (E.B.)
| | - Ioannis Sainis
- Interscience Molecular Oncology Laboratory, Human Cancer Biobank Center, University of Ioannina, 45110 Ioannina, Greece; E-Mails: (A.T.); (E.B.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +30-26-510-075-57; Fax: +30-26-510-070-64
| |
Collapse
|
129
|
Brena BM, Díaz L, Sienra D, Ferrari G, Ferraz N, Hellman U, Gonzalez-Sapienza G, Last JA. ITREOH Building of Regional Capacity to Monitor Recreational Water: Development of a Non-commercial Microcystin ELISA and Its Impact on Public Health Policy. INTERNATIONAL JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HEALTH 2013; 12:377-85. [PMID: 17168226 DOI: 10.1179/oeh.2006.12.4.377] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
In 2001, a University of California, Davis-University of the Republic, Montevideo, partnership created a Fogarty ITREOH program to exploit the potential of ELISA to provide a low-cost environmental analysis attractive to economically distressed countries of temperate South America. This paper describes the development and validation of an ELISA method for the determination of Cyanobacteria microcystin toxins in algal blooms, which release hepatotoxic metabolites that can reach toxic levels in rivers, lakes, or coastal estuaries used for recreation or water supplies. The assay made possible the first systematic monitoring of water from the Rio de la Plata at Montevideo over two summers. The project has been integrated into a bi-national effort to monitor the Rio de la Plata.
Collapse
Affiliation(s)
- Beatriz M Brena
- Cátedra de Bioquímica, Facultad de Quimíca, Universidad de la Republica, Montevideo, Uruguay
| | | | | | | | | | | | | | | |
Collapse
|
130
|
Wang J, Yu S, Jiao S, Lv X, Ma M, Du Y. κ-Selenocarrageenan prevents microcystin-LR-induced hepatotoxicity in BALB/c mice. Food Chem Toxicol 2013; 59:303-10. [PMID: 23811533 DOI: 10.1016/j.fct.2013.06.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 06/06/2013] [Accepted: 06/14/2013] [Indexed: 10/26/2022]
Abstract
Microcystins (MCs) are a family of cyclic heptapeptides that are produced by blooming algae Microcystis. MCs have been implicated in the development of liver cancer, necrosis and even intrahepatic bleeding. Effective prophylactic approaches and complete removal of MCs are urgently needed. Accumulating evidence suggests that microcystin-LR (MC-LR)-induced damage is accompanied by oxidative stress. Supplementation of Se can enhance resistance to oxidative stress. Therefore, in the present study, we investigated the protective effects of κ-Selenocarrageenan (Se-Car), a kind of organic Se compound, in Balb/c mice exposed to MC-LR. Our results proved that Se-Car could significantly ameliorate the hepatic damage induced by MC-LR, including serum markers of liver dysfunction, oxidative damages and histological alterations. Furthermore, Se-Car could significantly alleviate the up-regulation of the molecular targets indicating mitochondrial dysfunction and endoplasmic reticulum stress induced by MC-LR. In conclusion, Se-Car showed clear protection against toxicity induced by MC-LR. Thus, Se-Car could be useful as a new category of anti-MC-LR toxicity reagent.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | | | | | | | | | | |
Collapse
|
131
|
Reverté L, Garibo D, Flores C, Diogène J, Caixach J, Campàs M. Magnetic particle-based enzyme assays and immunoassays for microcystins: from colorimetric to electrochemical detection. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:471-478. [PMID: 23214443 DOI: 10.1021/es304234n] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this work, magnetic particles (MPs) are used as supports for the immobilization of biorecognition molecules for the detection of microcystins (MCs). In one approach, a recombinant protein phosphatase 1 (PP1) has been conjugated to MPs via coordination chemistry, and MC-LR detection has been based on the inhibition of the enzyme activity. In the other approach, a monoclonal antibody (mAb) against MC-LR has been conjugated to protein G-coated MPs, and a direct competitive enzyme-linked immunoparticle assay (ELIPA) has been then performed. Conjugation of biomolecules to MPs has been first checked, and after optimization, MC detection has been performed. The colorimetric PPIA with PP1-MP and the best ELIPA strategy have provided limits of detection (LOD) of 7.4 and 3.9 μg/L of MC-LR, respectively. The electrochemical ELIPA has decreased the LOD to 0.4 μg/L, value below the guideline recommended by the World Health Organisation (WHO). The approaches have been applied to the analysis of a cyanobacterial culture and a natural bloom, and MC equivalent contents have been compared to those obtained by conventional assays and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Results have demonstrated the viability of the use of MPs as biomolecule immobilization supports in biotechnological tools for MCs monitoring.
Collapse
Affiliation(s)
- Laia Reverté
- IRTA, Carretera de Poble Nou, km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | | | | | | | | | | |
Collapse
|
132
|
Dittmann E, Fewer DP, Neilan BA. Cyanobacterial toxins: biosynthetic routes and evolutionary roots. FEMS Microbiol Rev 2013; 37:23-43. [DOI: 10.1111/j.1574-6976.2012.12000.x] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 08/22/2012] [Accepted: 08/24/2012] [Indexed: 11/27/2022] Open
|
133
|
Bellém F, Nunes S, Morais M. Cyanobacteria toxicity: potential public health impact in South Portugal populations. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2013; 76:263-71. [PMID: 23514068 DOI: 10.1080/15287394.2013.757204] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Cyanobacteria are prokaryotic, plantlike organisms present in lakes, recreational waters, and reservoirs, and often dominate phytoplankton communities in warm, nutrient-enriched hard waters. A stable water column rich in certain nutrients, especially nitrogen and phosphorus, is associated with favorable environmental conditions that support development of cyanobacterial population maxima or "blooms." Under specific conditions, cyanobacteria produce toxins that are responsible for acute poisoning and death of animals and humans. The main aim of this study was to correlate the presence of cyanobacteria blooms with potential toxicity to humans as a public health issue. In Portugal, seven reservoirs located in the southern region were selected and studied between 2000 and 2008. Reservoirs were characterized by physical and chemical aspects, and identification of phytoplankton communities. In the case of cyanobacterial blooms, toxins that affected the liver, nervous system, and skin were detected, namely, Microcystis aeruginosa, Aphanizomenon spp., and Oscillatoria. These findings suggest the presence of a potential risk for public health, and indicate the need to implement mitigation measures in all studied reservoirs. These measures may involve (1) water eutrophication control to avoid blooms, (2) appropriate treatment of water for human consumption, and (3) public warnings or information to those individuals that use these reservoirs for several recreational activities.
Collapse
Affiliation(s)
- Fernando Bellém
- Escola Superior de Tecnologia da Saúde de Lisboa, Lisbon, Portugal.
| | | | | |
Collapse
|
134
|
Mosleh MAA, Manssor H, Malek S, Milow P, Salleh A. A preliminary study on automated freshwater algae recognition and classification system. BMC Bioinformatics 2012; 13 Suppl 17:S25. [PMID: 23282059 PMCID: PMC3521397 DOI: 10.1186/1471-2105-13-s17-s25] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background Freshwater algae can be used as indicators to monitor freshwater ecosystem condition. Algae react quickly and predictably to a broad range of pollutants. Thus they provide early signals of worsening environment. This study was carried out to develop a computer-based image processing technique to automatically detect, recognize, and identify algae genera from the divisions Bacillariophyta, Chlorophyta and Cyanobacteria in Putrajaya Lake. Literature shows that most automated analyses and identification of algae images were limited to only one type of algae. Automated identification system for tropical freshwater algae is even non-existent and this study is partly to fill this gap. Results The development of the automated freshwater algae detection system involved image preprocessing, segmentation, feature extraction and classification by using Artificial neural networks (ANN). Image preprocessing was used to improve contrast and remove noise. Image segmentation using canny edge detection algorithm was then carried out on binary image to detect the algae and its boundaries. Feature extraction process was applied to extract specific feature parameters from algae image to obtain some shape and texture features of selected algae such as shape, area, perimeter, minor and major axes, and finally Fourier spectrum with principal component analysis (PCA) was applied to extract some of algae feature texture. Artificial neural network (ANN) is used to classify algae images based on the extracted features. Feed-forward multilayer perceptron network was initialized with back propagation error algorithm, and trained with extracted database features of algae image samples. System's accuracy rate was obtained by comparing the results between the manual and automated classifying methods. The developed system was able to identify 93 images of selected freshwater algae genera from a total of 100 tested images which yielded accuracy rate of 93%. Conclusions This study demonstrated application of automated algae recognition of five genera of freshwater algae. The result indicated that MLP is sufficient, and can be used for classification of freshwater algae. However for future studies, application of support vector machine (SVM) and radial basis function (RBF) should be considered for better classifying as the number of algae species studied increases.
Collapse
Affiliation(s)
- Mogeeb A A Mosleh
- Artificial Intelligent Department, Faculty of Computer Science & Information Technology, University of Malaya, Kuala Lumpur, Malaysia.
| | | | | | | | | |
Collapse
|
135
|
He J, Chen J, Wu L, Li G, Xie P. Metabolic Response to Oral Microcystin-LR Exposure in the Rat by NMR-Based Metabonomic Study. J Proteome Res 2012; 11:5934-46. [DOI: 10.1021/pr300685g] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jun He
- Donghu Experimental Station
of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and
Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072,
People's Republic of China
| | - Jun Chen
- Donghu Experimental Station
of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and
Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072,
People's Republic of China
| | - Laiyan Wu
- Donghu Experimental Station
of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and
Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072,
People's Republic of China
- College of Chemistry and Materials
Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Guangyu Li
- Donghu Experimental Station
of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and
Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072,
People's Republic of China
- Fisheries College of Huazhong Agricultural University, Wuhan, People's
Republic of China
| | - Ping Xie
- Donghu Experimental Station
of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and
Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072,
People's Republic of China
| |
Collapse
|
136
|
Oliveira V, Carvalho G, Avila M, Soares R, Azevedo S, Ferreira T, Valença S, Faffe D, Zin WA. Time-dependence of lung injury in mice acutely exposed to cylindrospermopsin. Toxicon 2012; 60:764-72. [DOI: 10.1016/j.toxicon.2012.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 03/01/2012] [Accepted: 06/13/2012] [Indexed: 11/16/2022]
|
137
|
Menezes C, Alverca E, Dias E, Sam-Bento F, Pereira P. Involvement of endoplasmic reticulum and autophagy in microcystin-LR toxicity in Vero-E6 and HepG2 cell lines. Toxicol In Vitro 2012; 27:138-48. [PMID: 23010415 DOI: 10.1016/j.tiv.2012.09.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 09/11/2012] [Accepted: 09/12/2012] [Indexed: 12/12/2022]
Abstract
This work investigates the involvement of the endoplasmic reticulum (ER) and autophagy in microcystin-LR (MCLR) toxicity in Vero-E6 and HepG2 cell lines. Additionally, morphological alterations induced by MCLR in lysosomes and mitochondria were studied. Cytotoxicity evaluation showed that pure MCLR and MCLR from LMECYA110 extract induce concentration dependent viability decays after 24h exposure. HepG2 cells showed an increased sensitivity to MCLR than Vero cells, with lower cytotoxic thresholds and EC(50) values. Conversely, LC3B immunofluorescence showed that autophagy is triggered in both cell lines as a survival response to low MCLR concentrations. Furthermore, MCLR induced a MCLR concentration-dependent decrease of GRP94 expression in HepG2 cells while in Vero cells no alteration was observed. This suggests the involvement of the ER in HepG2 apoptosis elicited by MCLR, while in Vero cells ER destructuration could be a consequence of cytoskeleton inflicted damages. Additionally, in both cell lines, lysosomal destabilization preceded mitochondrial impairment which occurred at high toxin concentrations. Although not an early cellular target of MCLR, mitochondria appears to serve as central mediators of different signaling pathways elicited by the organelles involved in MCLR toxicity. As a result, kidney and hepatic cell lines exhibit cell type and dose-dependent mechanisms to overcome MCLR toxicity.
Collapse
Affiliation(s)
- Carina Menezes
- Department of Environmental Health, National Health Institute Dr Ricardo Jorge, Av Padre Cruz, 1649-016 Lisbon, Portugal.
| | | | | | | | | |
Collapse
|
138
|
Schaap A, Rohrlack T, Bellouard Y. Lab on a chip technologies for algae detection: a review. JOURNAL OF BIOPHOTONICS 2012; 5:661-672. [PMID: 22693123 DOI: 10.1002/jbio.201200051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 04/19/2012] [Accepted: 04/25/2012] [Indexed: 06/01/2023]
Abstract
Over the last few decades, lab on a chip technologies have emerged as powerful tools for high-accuracy diagnosis with minute quantities of liquid and as tools for exploring cell properties in general. In this paper, we present a review of the current status of this technology in the context of algae detection and monitoring. We start with an overview of the detection methods currently used for algae monitoring, followed by a review of lab on a chip devices for algae detection and classification, and then discuss a case study based on our own research activities. We conclude with a discussion on future challenges and motivations for algae-oriented lab on a chip technologies.
Collapse
Affiliation(s)
- Allison Schaap
- Mechanical Engineering Department, Eindhoven University of Technology, The Netherlands
| | | | | |
Collapse
|
139
|
Zhao Y, Xie P, Fan H. Genomic profiling of microRNAs and proteomics reveals an early molecular alteration associated with tumorigenesis induced by MC-LR in mice. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:34-41. [PMID: 21882851 DOI: 10.1021/es201514h] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Studies have demonstrated that microcystins (MCs) can act as potential carcinogens and have caused serious risk to public environmental health. The molecular mechanisms of MC-induced susceptibility to carcinogenesis are largely unknown. In this study, we performed for the first time a comprehensive analysis of changes in microRNAs (miRNAs) and proteins expression in livers of mice treated with MC-LR. Utilizing microarray and two-dimensional gel electrophoresis (2-DE) analysis, we identified 37 miRNAs and 42 proteins significantly altered. Many aberrantly expressed miRNAs were related to various cancers (e.g., miR-125b, hepatocellular carcinoma; miR-21, leukemia; miR-16, chronic lymphocytic leukemia; miR-192, pituitary adenomas; miR-199a-3p, ovarian cancer; miR-34a, pancreatic cancer). Several miRNAs (e.g., miR-34a, miR-21) and proteins (e.g., TGM2, NDRG2) that play crucial roles in liver tumorigenesis were first found to be affected by MC-LR in mouse liver. MC-LR also altered the expression of a number of miRNAs and proteins involved in several pathways related to tumorigenesis, such as glutathione metabolism, VEGF signaling, and MAPK signaling pathway. Integration of post-transcriptomics, proteomics, and transcriptomics reveals that the networks miRNAs and their potential target genes and proteins involved in had a close association with carcinogenesis. These results provide an early molecular mechanism for liver tumorigenesis induced by MCs.
Collapse
Affiliation(s)
- Yanyan Zhao
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory for Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, The Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072, People's Republic of China
| | | | | |
Collapse
|
140
|
Martins JC, Machado J, Martins A, Azevedo J, OlivaTeles L, Vasconcelos V. Dynamics of protein phosphatase gene expression in Corbicula fluminea exposed to microcystin-LR and to toxic Microcystis aeruginosa cells. Int J Mol Sci 2011; 12:9172-88. [PMID: 22272126 PMCID: PMC3257123 DOI: 10.3390/ijms12129172] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 11/21/2011] [Accepted: 11/30/2011] [Indexed: 12/31/2022] Open
Abstract
This study investigated the in vivo effects of microcystins on gene expression of several phosphoprotein phosphatases (PPP) in the freshwater clam Corbicula fluminea with two different exposure scenarios. Clams were exposed for 96 h to 5 μg L−1 of dissolved microcystin-LR and the relative changes of gene expression of three different types of PPP (PPP1, 2 and 4) were analyzed by quantitative real-time PCR. The results showed a significant induction of PPP2 gene expression in the visceral mass. In contrast, the cyanotoxin did not cause any significant changes on PPP1 and PPP4 gene expression. Based on these results, we studied alterations in transcriptional patterns in parallel with enzymatic activity of C. fluminea for PPP2, induced by a Microcystis aeruginosa toxic strain (1 × 105 cells cm−3) during 96 h. The relative changes of gene expression and enzyme activity in visceral mass were analyzed by quantitative real-time PCR and colorimetric assays respectively. The clams exhibited a significant reduction of PPP2 activity with a concomitant enhancement of gene expression. Considering all the results we can conclude that the exposure to an ecologically relevant concentration of pure or intracellular microcystins (-LR) promoted an in vivo effect on PPP2 gene expression in C. fluminea.
Collapse
Affiliation(s)
- José Carlos Martins
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; E-Mails: (J.C.M.); (J.M.); (A.M.); (J.A.) (L.O.T.)
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4069-007 Porto, Portugal
| | - João Machado
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; E-Mails: (J.C.M.); (J.M.); (A.M.); (J.A.) (L.O.T.)
| | - António Martins
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; E-Mails: (J.C.M.); (J.M.); (A.M.); (J.A.) (L.O.T.)
| | - Joana Azevedo
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; E-Mails: (J.C.M.); (J.M.); (A.M.); (J.A.) (L.O.T.)
| | - Luís OlivaTeles
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; E-Mails: (J.C.M.); (J.M.); (A.M.); (J.A.) (L.O.T.)
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4069-007 Porto, Portugal
| | - Vitor Vasconcelos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; E-Mails: (J.C.M.); (J.M.); (A.M.); (J.A.) (L.O.T.)
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4069-007 Porto, Portugal
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +351-223401814; Fax: +351-223390608
| |
Collapse
|
141
|
Cellular responses of Prochilodus lineatus hepatocytes after cylindrospermopsin exposure. Toxicol In Vitro 2011; 25:1493-500. [DOI: 10.1016/j.tiv.2011.05.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 05/05/2011] [Accepted: 05/07/2011] [Indexed: 11/24/2022]
|
142
|
Huang P, Zheng Q, Xu LH. The apoptotic effect of oral administration of microcystin-RR on mice liver. ENVIRONMENTAL TOXICOLOGY 2011; 26:443-452. [PMID: 20196164 DOI: 10.1002/tox.20570] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 01/04/2010] [Accepted: 01/11/2010] [Indexed: 05/28/2023]
Abstract
Microcystin produced by cyanobacteria in diverse water systems is a potent hepatotoxin that has been documented to induce hepatocyte apoptosis and liver injury. There are more than eighty reported microcystins. The present work aimed at investigating the apoptotic effect of MC-RR (a common member of microcystin family), and its related mechanism. MC-RR was administered orally to ICR mice for 7 days with different dosages. Apoptotic cell death in liver was detected by TUNEL assay, and the expression levels of Bcl-2, Bax and p53, GRP 78 and CHOP which have been reported to be related to apoptosis and ER stress were determined via western-blot. The activity of PP2A was measured using the serine-threonine phosphatase assay system and PP2A A subunit expression at both transcription and protein levels was measured by RT-PCR and western blot, respectively. A significant difference was observed on the number of TUNEL positive liver cells between the control and MC-RR-treated groups. The expression levels of Bcl-2, Bax, p53, and GRP 78 in MC-RR-treated groups were altered significantly compared to the control, but no obvious alteration was found in CHOP expression. The PP2A activity and A subunit expression did not manifest any obvious change at both transcription and protein levels. The results indicated that oral exposure to MC-RR can cause apoptosis as well as moderate ER stress in mice liver. The mitochondrial pathway via Bcl-2 family members may contribute to the apoptosis. However, PP2A may not be involved in the regulation of apoptotic process under the current conditions.
Collapse
Affiliation(s)
- Pu Huang
- Department of Biochemistry and Genetics, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | | | | |
Collapse
|
143
|
Ma H, Krock B, Tillmann U, Bickmeyer U, Graeve M, Cembella A. Mode of action of membrane-disruptive lytic compounds from the marine dinoflagellate Alexandrium tamarense. Toxicon 2011; 58:247-58. [PMID: 21741395 DOI: 10.1016/j.toxicon.2011.06.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 05/09/2011] [Accepted: 06/09/2011] [Indexed: 12/30/2022]
Abstract
Certain allelochemicals of the marine dinoflagellate Alexandrium tamarense cause lysis of a broad spectrum of target protist cells but the lytic mechanism is poorly defined. We first hypothesized that membrane sterols serve as molecular targets of these lytic compounds, and that differences in sterol composition among donor and target cells may cause insensitivity of Alexandrium and sensitivity of targets to lytic compounds. We investigated Ca(2+) influx after application of lytic fractions to a model cell line PC12 derived from a pheochromocytoma of the rat adrenal medulla to establish how the lytic compounds affect ion flux associated with lysis of target membranes. The lytic compounds increased permeability of the cell membrane for Ca(2+) ions even during blockade of Ca(2+) channels with cadmium. Results of a liposome assay suggested that the lytic compounds did not lyse such target membranes non-specifically by means of detergent-like activity. Analysis of sterol composition of isolates of A. tamarense and of five target protistan species showed that both lytic and non-lytic A. tamarense strains contain cholesterol and dinosterol as major sterols, whereas none of the other tested species contain dinosterol. Adding sterols and phosphatidylcholine to a lysis bioassay with the cryptophyte Rhodomonas salina for evaluation of competitive binding indicated that the lytic compounds possessed apparent high affinity for free sterols and phosphatidylcholine. Lysis of protistan target cells was dose-dependently reduced by adding various sterols or phosphatidylcholine. For three tested sterols, the lytic compounds showed highest affinity towards cholesterol followed by ergosterol and brassicasterol. Cholesterol comprised a higher percentage of total sterols in plasma membrane fractions of A. tamarense than in corresponding whole cell fractions. We conclude therefore that although the molecular targets of the lytic compounds are likely to involve sterol components of membranes, A. tamarense must have a complex self-protective mechanism that still needs to be addressed.
Collapse
Affiliation(s)
- Haiyan Ma
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | | | | | | | | | | |
Collapse
|
144
|
Dong G, Zhu X, Han D, Yang Y, Song L, Xie S. Response and recovery of hybrid sturgeon from subchronic oral administration of cyanobacteria. ENVIRONMENTAL TOXICOLOGY 2011; 26:161-170. [PMID: 19852075 DOI: 10.1002/tox.20540] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A 90-day growth trial was conducted on hybrid sturgeon (Acipenser baeri ♀ × A. gueldenstaedtii ♂) to investigate the effect of dietary inclusion of cyanobacteria on growth, feed utilization, and fish tissue microcystins (MCs) accumulation and the recovery of fish when they were free of cyanobacteria. Four diets were formualted isonitrogenous and isocaloric to contain different MCs concentrations: the control diet (free of cyanobacteria), low cyanobacteria diet (LCD, 26.60 μg MCs/g diet), medium cyanobacteria diet (MCD, 78.82 μg MCs/g diet), and high cyanobacteria diet (HCD, 201.03 μg MCs/g diet). During the first 47 days, each diet was fed to fish in five replicates and then all fish were fed the control diet during the next 43 days. The results showed that a dose-dependent decrease in feeding rate (FR) and specific growth rate (SGR) were observed in the fish fed with MCD and HCD. MCs contents in fish liver, intestine, and dorsal white muscle increased with dietary MCs and were time dependent (P < 0.05). After the 43-day recovery, there were no significant differences in FR or SGR between the fish previously fed LCD or MCD and the fish fed with the control diet (P > 0.05), while the fish previously fed HCD showed higher FR and SGR than those fed the control diet (P < 0.05). MCs clearance in fish liver and intestine showed time-dependence during the 43-day recovery.
Collapse
Affiliation(s)
- Guifang Dong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | | | | | | | | | | |
Collapse
|
145
|
Ha JH, Hidaka T, Tsuno H. Analysis of factors affecting the ratio of microcystin to chlorophyll-a in cyanobacterial blooms using real-time polymerase chain reaction. ENVIRONMENTAL TOXICOLOGY 2011; 26:21-28. [PMID: 19645032 DOI: 10.1002/tox.20525] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Chlorophyll-a concentration has been used as an indicator to estimate microcystin levels in water bodies. This study examined the microcystin to chlorophyll-a ratio in a fishpond in Japan. The ratio varied spatially and temporally during the six-month field survey, which is consistent with reports by other researchers. We investigated the causes of the variability of the ratio by quantifying microcystin synthetase (mcy) A gene with real-time PCR, so as to observe the growth of microcystin-producing cyanobacteria and Microcystis strains in natural cyanobacterial blooms. The application of real-time PCR enabled corroboration of the relationship between the toxigenicity and the toxicity of the blooms. The microcystin to chlorophyll-a ratio was influenced by the combined effects of the durability of the toxic bloom, and the quantity of microcystin-producing cyanobacteria carrying the mcy A gene, especially toxic Microcystis strains. Cyanobacterial blooms produced more microcystin when high concentrations of microcystin-producing Microcystis aggregated in a stationary state with low growth rates. The variable toxicity of blooms needs to be reflected in accurate and efficient alert systems for toxic cyanobacteria and cyanotoxins.
Collapse
Affiliation(s)
- Joo H Ha
- Environmental Appraisal Center, Korea Environment Institute (KEI), 290 Jinheungno, Eunpyeong-gu, Seoul, 122-706, Korea.
| | | | | |
Collapse
|
146
|
Zhang HZ, Zhang FQ, Li CF, Yi D, Fu XL, Cui LX. A Cyanobacterial Toxin, Microcystin-LR, Induces Apoptosis of Sertoli Cells by Changing the Expression Levels of Apoptosis-Related Proteins. TOHOKU J EXP MED 2011; 224:235-42. [DOI: 10.1620/tjem.224.235] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Hui-Zhen Zhang
- Department of Environmental Health, College of Public Health, Zhengzhou University
| | - Feng-Quan Zhang
- Department of Environmental Health, College of Public Health, Zhengzhou University
- Shengzhou Center For Disease Control and Prevention
| | - Chao-Feng Li
- Department of Environmental Health, College of Public Health, Zhengzhou University
| | - Dan Yi
- Department of Environmental Health, College of Public Health, Zhengzhou University
| | - Xiao-Li Fu
- Department of Environmental Health, College of Public Health, Zhengzhou University
| | - Liu-Xin Cui
- Department of Environmental Health, College of Public Health, Zhengzhou University
| |
Collapse
|
147
|
Black K, Yilmaz M, Phlips EJ. Growth and Toxin Production by Microcystis Aeruginosa PCC 7806 (Kutzing) Lemmerman at Elevated Salt Concentrations. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/jep.2011.26077] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
148
|
Dörr FA, Pinto E, Soares RM, Feliciano de Oliveira e Azevedo SM. Microcystins in South American aquatic ecosystems: Occurrence, toxicity and toxicological assays. Toxicon 2010; 56:1247-56. [DOI: 10.1016/j.toxicon.2010.03.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 03/15/2010] [Accepted: 03/22/2010] [Indexed: 12/23/2022]
|
149
|
Oftedal L, Skjærven KH, Coyne RT, Edvardsen B, Rohrlack T, Skulberg OM, Døskeland SO, Herfindal L. The apoptosis-inducing activity towards leukemia and lymphoma cells in a cyanobacterial culture collection is not associated with mouse bioassay toxicity. J Ind Microbiol Biotechnol 2010; 38:489-501. [PMID: 20689978 PMCID: PMC3062024 DOI: 10.1007/s10295-010-0791-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 07/21/2010] [Indexed: 11/29/2022]
Abstract
Cyanobacteria (83 strains and seven natural populations) were screened for content of apoptosis (cell death)-inducing activity towards neoplastic cells of the immune (jurkat acute T-cell lymphoma) and hematopoetic (acute myelogenic leukemia) lineage. Apoptogenic activity was frequent, even in strains cultured for decades, and was unrelated to whether the cyanobacteria had been collected from polar, temperate, or tropic environments. The activity was more abundant in the genera Anabaena and Microcystis compared to Nostoc, Phormidium, Planktothrix, and Pseudanabaena. Whereas the T-cell lymphoma apoptogens were frequent in organic extracts, the cell death-inducing activity towards leukemia cells resided mainly in aqueous extracts. The cyanobacteria were from a culture collection established for public health purposes to detect toxic cyanobacterial blooms, and 54 of them were tested for toxicity by the mouse bioassay. We found no correlation between the apoptogenic activity in the cyanobacterial isolates with their content of microcystin, nor with their ability to elicit a positive standard mouse bioassay. Several strains produced more than one apoptogen, differing in biophysical or biological activity. In fact, two strains contained microcystin in addition to one apoptogen specific for the AML cells, and one apoptogen specific for the T-cell lymphoma. This study shows the potential of cyanobacterial culture collections as libraries for bioactive compounds, since strains kept in cultures for decades produced apoptogens unrelated to the mouse bioassay detectable bloom-associated toxins.
Collapse
Affiliation(s)
- Linn Oftedal
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, 5009 Bergen, Norway
| | | | | | | | | | | | | | | |
Collapse
|
150
|
Okello W, Portmann C, Erhard M, Gademann K, Kurmayer R. Occurrence of microcystin-producing cyanobacteria in Ugandan freshwater habitats. ENVIRONMENTAL TOXICOLOGY 2010; 25:367-80. [PMID: 19609871 PMCID: PMC3024051 DOI: 10.1002/tox.20522] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 06/07/2009] [Indexed: 05/10/2023]
Abstract
Microcystins (MCs) are cyclic heptapeptides, which are the most abundant toxins produced by cyanobacteria in freshwater. The phytoplankton of many freshwater lakes in Eastern Africa is dominated by cyanobacteria. Less is known, however, on the occurrence of MC producers and the production of MCs. Twelve Ugandan freshwater habitats ranging from mesotrophic to hypertrophic conditions were sampled in May and June of 2004 and April of 2008 and were analyzed for their physicochemical parameters, phytoplankton composition, and MC concentrations. Among the group of the potential MC-producing cyanobacteria, Anabaena (0-10(7) cells ml(-1)) and Microcystis (10(3)-10(7) cells ml(-1)) occurred most frequently and dominated in eutrophic systems. A significant linear relationship (n = 31, r(2) = 0.38, P < 0.001) between the Microcystis cell numbers and MC concentration (1.3-93 fg of MC cell(-1)) was observed. Besides [MeAsp(3), Mdha(7)]-MC-RR, two new MCs, [Asp(3)]-MC-RY and [MeAsp(3)]-MC-RY, were isolated and their constitution was assigned by LC-MS(2). To identify the MC-producing organism in the water samples, (i) the conserved aminotransferase domain part of the mcyE gene that is indicative of MC production was amplified by general primers and cloned and sequenced, and (ii) genus-specific primers were used to amplify the mcyE gene of the genera Microcystis, Anabaena, and Planktothrix. Only mcyE genotypes that are indicative of Microcystis sp. were obtained via the environmental cloning approach (337 bp, 96.1-96.7% similarity to the Microcystis aeruginosa strain PCC7806). Accordingly, only the mcyE primers, which are specific for Microcystis, revealed PCR products. We concluded that Microcystis is the major MC-producer in Ugandan freshwater.
Collapse
Affiliation(s)
- William Okello
- Austrian Academy of Sciences, Institute for Limnology, Mondseestrasse 9, 5310 Mondsee, Austria
- National Fisheries Resources Research Institute (NaFIRRI), Plot No. 39/45 Nile Crescent, P.O. Box 343, Jinja, Uganda
| | - Cyril Portmann
- Chemical Synthesis Laboratory, Swiss Federal Institute of Technology (EPFL), SB-ISIC-LSYNC, 1015 Lausanne, Switzerland
| | - Marcel Erhard
- AnagnosTec GmbH, Am Mühlenberg 11, 14476 Potsdam, Germany
| | - Karl Gademann
- Chemical Synthesis Laboratory, Swiss Federal Institute of Technology (EPFL), SB-ISIC-LSYNC, 1015 Lausanne, Switzerland
| | - Rainer Kurmayer
- Austrian Academy of Sciences, Institute for Limnology, Mondseestrasse 9, 5310 Mondsee, Austria
| |
Collapse
|