101
|
Detection of viruses by probe-gated silica nanoparticles directly from swab samples. Talanta 2022; 246:123429. [DOI: 10.1016/j.talanta.2022.123429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 12/12/2022]
|
102
|
Fang E, Liu X, Li M, Zhang Z, Song L, Zhu B, Wu X, Liu J, Zhao D, Li Y. Advances in COVID-19 mRNA vaccine development. Signal Transduct Target Ther 2022; 7:94. [PMID: 35322018 PMCID: PMC8940982 DOI: 10.1038/s41392-022-00950-y] [Citation(s) in RCA: 289] [Impact Index Per Article: 96.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/10/2022] [Accepted: 03/03/2022] [Indexed: 12/15/2022] Open
Abstract
To date, the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has determined 399,600,607 cases and 5,757,562 deaths worldwide. COVID-19 is a serious threat to human health globally. The World Health Organization (WHO) has declared COVID-19 pandemic a major public health emergency. Vaccination is the most effective and economical intervention for controlling the spread of epidemics, and consequently saving lives and protecting the health of the population. Various techniques have been employed in the development of COVID-19 vaccines. Among these, the COVID-19 messenger RNA (mRNA) vaccine has been drawing increasing attention owing to its great application prospects and advantages, which include short development cycle, easy industrialization, simple production process, flexibility to respond to new variants, and the capacity to induce better immune response. This review summarizes current knowledge on the structural characteristics, antigen design strategies, delivery systems, industrialization potential, quality control, latest clinical trials and real-world data of COVID-19 mRNA vaccines as well as mRNA technology. Current challenges and future directions in the development of preventive mRNA vaccines for major infectious diseases are also discussed.
Collapse
Affiliation(s)
- Enyue Fang
- National Institute for Food and Drug Control, Beijing, 102629, China
- Wuhan Institute of Biological Products, Co., Ltd., Wuhan, 430207, China
| | - Xiaohui Liu
- National Institute for Food and Drug Control, Beijing, 102629, China
| | - Miao Li
- National Institute for Food and Drug Control, Beijing, 102629, China
| | - Zelun Zhang
- National Institute for Food and Drug Control, Beijing, 102629, China
| | - Lifang Song
- National Institute for Food and Drug Control, Beijing, 102629, China
| | - Baiyu Zhu
- Texas A&M University, College Station, TX, 77843, USA
| | - Xiaohong Wu
- National Institute for Food and Drug Control, Beijing, 102629, China
| | - Jingjing Liu
- National Institute for Food and Drug Control, Beijing, 102629, China
| | - Danhua Zhao
- National Institute for Food and Drug Control, Beijing, 102629, China
| | - Yuhua Li
- National Institute for Food and Drug Control, Beijing, 102629, China.
| |
Collapse
|
103
|
Salleh MZ, Norazmi MN, Deris ZZ. Immunogenicity mechanism of mRNA vaccines and their limitations in promoting adaptive protection against SARS-CoV-2. PeerJ 2022; 10:e13083. [PMID: 35287350 PMCID: PMC8917804 DOI: 10.7717/peerj.13083] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/16/2022] [Indexed: 01/12/2023] Open
Abstract
Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19) in late 2019, hundreds of millions of people have been infected worldwide. There have been unprecedented efforts in acquiring effective vaccines to confer protection against the disease. mRNA vaccines have emerged as promising alternatives to conventional vaccines due to their high potency with the capacity for rapid development and low manufacturing costs. In this review, we summarize the currently available vaccines against SARS-CoV-2 in development, with the focus on the concepts of mRNA vaccines, their antigen selection, delivery and optimization to increase the immunostimulatory capability of mRNA as well as its stability and translatability. We also discuss the host immune responses to the SARS-CoV-2 infection and expound in detail, the adaptive immune response upon immunization with mRNA vaccines, in which high levels of spike-specific IgG and neutralizing antibodies were detected after two-dose vaccination. mRNA vaccines have been shown to induce a robust CD8+T cell response, with a balanced CD4+ TH1/TH2 response. We further discuss the challenges and limitations of COVID-19 mRNA vaccines, where newly emerging variants of SARS-CoV-2 may render currently deployed vaccines less effective. Imbalanced and inappropriate inflammatory responses, resulting from hyper-activation of pro-inflammatory cytokines, which may lead to vaccine-associated enhanced respiratory disease (VAERD) and rare cases of myocarditis and pericarditis also are discussed.
Collapse
Affiliation(s)
- Mohd Zulkifli Salleh
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bahru, Kelantan, Malaysia
| | - Mohd Nor Norazmi
- School of Health Sciences, Universiti Sains Malaysia, Kota Bahru, Kelantan, Malaysia
| | - Zakuan Zainy Deris
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bahru, Kelantan, Malaysia
| |
Collapse
|
104
|
Liu H, Zhang Y, Chen G, Sun S, Wang J, Chen F, Liu C, Zhuang Q. Diagnostic Significance of Metagenomic Next-Generation Sequencing for Community-Acquired Pneumonia in Southern China. Front Med (Lausanne) 2022; 9:807174. [PMID: 35242783 PMCID: PMC8885724 DOI: 10.3389/fmed.2022.807174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022] Open
Abstract
Background The morbidity and mortality of community-acquired pneumonia are relatively high, but many pneumonia pathogens cannot be identified accurately. As a new pathogen detection technology, metagenomic next-generation sequencing (mNGS) has been applied more and more clinically. We aimed to evaluate the diagnostic significance of mNGS for community-acquired pneumonia (CAP) in the south of China. Methods Our study selected CAP patients who visited the 3rd Xiangya Hospital from May 2019 to April 2021. Pathogens in bronchoalveolar lavage fluid (BALF) specimens were detected using mNGS and traditional microbiological culture. mNGS group: detected by both mNGS and BALF culture; control group: detected only by BALF or sputum culture. The diagnostic performance of pathogens and the antibiotic adjustments were compared within mNGS group. Results The incidence of acute respiratory distress syndrome (ARDS) was 28.3% in the mNGS group and 17.3% in the control group. Within the mNGS group, the positive rate of pathogens detected by mNGS was 64%, thus by BALF culture was only 28%. Pathogens detected by mNGS were consisted of bacteria (55%), fungi (18%), special pathogens (18%), and viruses (9%). The most detected pathogen by mNGS was Chlamydia psittaci. Among the pathogen-positive cases, 26% was not pathogen-covered by empirical antibiotics, so most of which were made an antibiotic adjustment. Conclusions mNGS can detect pathogens in a more timely and accurate manner and assist clinicians to adjust antibiotics in time. Therefore, we recommend mNGS as the complementary diagnosis of severe pneumonia or complicated infections.
Collapse
Affiliation(s)
- Hanying Liu
- Department of Respiratory Diseases, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Ying Zhang
- Transplantation Center, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Guiyang Chen
- Department of Cardiology, Hunan Aerospace Hospital, Changsha, China
| | - Shenghua Sun
- Department of Respiratory Diseases, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Jiangang Wang
- Department of Health Management, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | | | - Chun Liu
- Department of Respiratory Diseases, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Quan Zhuang
- Transplantation Center, The 3rd Xiangya Hospital, Central South University, Changsha, China.,Research Center of National Health Ministry on Transplantation Medicine, Changsha, China
| |
Collapse
|
105
|
Pan R, Kindler E, Cao L, Zhou Y, Zhang Z, Liu Q, Ebert N, Züst R, Sun Y, Gorbalenya AE, Perlman S, Thiel V, Chen Y, Guo D. N7-Methylation of the Coronavirus RNA Cap Is Required for Maximal Virulence by Preventing Innate Immune Recognition. mBio 2022; 13:e0366221. [PMID: 35073761 PMCID: PMC8787479 DOI: 10.1128/mbio.03662-21] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 12/18/2022] Open
Abstract
The ongoing coronavirus (CoV) disease 2019 (COVID-19) pandemic caused by infection with severe acute respiratory syndrome CoV 2 (SARS-CoV-2) is associated with substantial morbidity and mortality. Understanding the immunological and pathological processes of coronavirus diseases is crucial for the rational design of effective vaccines and therapies for COVID-19. Previous studies showed that 2'-O-methylation of the viral RNA cap structure is required to prevent the recognition of viral RNAs by intracellular innate sensors. Here, we demonstrate that the guanine N7-methylation of the 5' cap mediated by coronavirus nonstructural protein 14 (nsp14) contributes to viral evasion of the type I interferon (IFN-I)-mediated immune response and pathogenesis in mice. A Y414A substitution in nsp14 of the coronavirus mouse hepatitis virus (MHV) significantly decreased N7-methyltransferase activity and reduced guanine N7-methylation of the 5' cap in vitro. Infection of myeloid cells with recombinant MHV harboring the nsp14-Y414A mutation (rMHVnsp14-Y414A) resulted in upregulated expression of IFN-I and ISG15 mainly via MDA5 signaling and in reduced viral replication compared to that of wild-type rMHV. rMHVnsp14-Y414A replicated to lower titers in livers and brains and exhibited an attenuated phenotype in mice. This attenuated phenotype was IFN-I dependent because the virulence of the rMHVnsp14-Y414A mutant was restored in Ifnar-/- mice. We further found that the comparable mutation (Y420A) in SARS-CoV-2 nsp14 (rSARS-CoV-2nsp14-Y420A) also significantly decreased N7-methyltransferase activity in vitro, and the mutant virus was attenuated in K18-human ACE2 transgenic mice. Moreover, infection with rSARS-CoV-2nsp14-Y420A conferred complete protection against subsequent and otherwise lethal SARS-CoV-2 infection in mice, indicating the vaccine potential of this mutant. IMPORTANCE Coronaviruses (CoVs), including SARS-CoV-2, the cause of COVID-19, use several strategies to evade the host innate immune responses. While the cap structure of RNA, including CoV RNA, is important for translation, previous studies indicate that the cap also contributes to viral evasion from the host immune response. In this study, we demonstrate that the N7-methylated cap structure of CoV RNA is pivotal for virus immunoevasion. Using recombinant MHV and SARS-CoV-2 encoding an inactive N7-methyltransferase, we demonstrate that these mutant viruses are highly attenuated in vivo and that attenuation is apparent at very early times after infection. Virulence is restored in mice lacking interferon signaling. Further, we show that infection with virus defective in N7-methylation protects mice from lethal SARS-CoV-2, suggesting that the N7-methylase might be a useful target in drug and vaccine development.
Collapse
Affiliation(s)
- Ruangang Pan
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research and RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Eveline Kindler
- Institute for Virology and Immunology IVI, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Facility, University of Bern, Bern, Switzerland
| | - Liu Cao
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research and RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
- School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yu Zhou
- School of Mathematics and Statistics, Wuhan University, Wuhan, China
| | - Zhen Zhang
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research and RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Qianyun Liu
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research and RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Nadine Ebert
- Institute for Virology and Immunology IVI, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Facility, University of Bern, Bern, Switzerland
| | - Roland Züst
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
| | - Ying Sun
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research and RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Alexander E. Gorbalenya
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
- Faculty of Bioengineering & Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Volker Thiel
- Institute for Virology and Immunology IVI, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Facility, University of Bern, Bern, Switzerland
| | - Yu Chen
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research and RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Deyin Guo
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research and RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
- School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
106
|
Nappi F, Iervolino A, Avtaar Singh SS. Molecular Insights of SARS-CoV-2 Antivirals Administration: A Balance between Safety Profiles and Impact on Cardiovascular Phenotypes. Biomedicines 2022; 10:437. [PMID: 35203646 PMCID: PMC8962379 DOI: 10.3390/biomedicines10020437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 pandemic has resulted in a complex clinical challenge, caused by a novel coronavirus, partially similar to previously known coronaviruses but with a different pattern of contagiousness, complications, and mortality. Since its global spread, several therapeutic agents have been developed to address the heterogeneous disease treatment, in terms of severity, hospital or outpatient management, and pre-existing clinical conditions. To better understand the rationale of new or old repurposed medications, the structure and host-virus interaction molecular bases are presented. The recommended agents by EDSA guidelines comprise of corticosteroids, JAK-targeting monoclonal antibodies, IL-6 inhibitors, and antivirals, some of them showing narrow indications due to the lack of large population trials and statistical power. The aim of this review is to present FDA-approved or authorized for emergency use antivirals, namely remdesivir, molnupinavir, and the combination nirmatrelvir-ritonavir and their impact on the cardiovascular system. We reviewed the literature for metanalyses, randomized clinical trials, and case reports and found positive associations between remdesivir and ritonavir administration at therapeutic doses and changes in cardiac conduction, relatable to their previously known pro-arrhythmogenic effects and important ritonavir interactions with cardioactive medications including antiplatelets, anti-arrhythmic agents, and lipid-lowering drugs, possibly interfering with pre-existing therapeutic regimens. Nonetheless, safety profiles of antivirals are largely questioned and addressed by health agencies, in consideration of COVID-19 cardiac and pro-thrombotic complications generally experienced by predisposed subjects. Our advice is to continuously adhere to the strict indications of FDA documents, monitor the possible side effects of antivirals, and increase physicians' awareness on the co-administration of antivirals and cardiovascular-relevant medications. This review dissects the global and local tendency to structure patient-based treatment plans, for a glance towards practical application of precision medicine.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord de Saint-Denis, 93200 Saint-Denis, France
| | - Adelaide Iervolino
- Department of Internal Medicine, University Policlinic Federico II, 80131 Naples, Italy;
| | | |
Collapse
|
107
|
Clayton E, Rohaim MA, Bayoumi M, Munir M. The Molecular Virology of Coronaviruses with Special Reference to SARS-CoV-2. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1352:15-31. [PMID: 35132592 DOI: 10.1007/978-3-030-85109-5_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Coronaviruses (CoVs) are large, enveloped and positive-sense RNA viruses which are responsible for a range of upper respiratory and digestive tract infections. Interest in coronaviruses has recently escalated due to the identification of a newly emerged coronavirus named severe acute respiratory syndrome 2 (SARS-CoV-2), which is the causative agent of the COVID-19 pandemic. In this chapter, we summarise molecular virological features of coronaviruses and understand their molecular mechanisms of replication in guiding the control of the global COVID-19 pandemic. METHODS We applied a holistic and comparative approach to assess the current understanding of coronavirus molecular virology and identify research gaps among different human coronaviruses. RESULTS Coronaviruses can utilise unique strategies that aid in their pathogenicity, replication and survival in multiple hosts. Replication of coronaviruses involves novel mechanisms such as ribosomal frameshifting and the synthesis of both genomic and sub-genomic RNAs. We summarised the key components in coronavirus molecular biology and molecular determinants of pathogenesis. Focusing largely on SARS-CoV-2 due to its current importance, this review explores the virology of recently emerged coronaviruses to gain an in-depth understanding of these infectious diseases. CONCLUSIONS The presented information provides fundamental bottlenecks to devise future disease control and management strategies to curtail the impact of coronaviruses in human populations.
Collapse
Affiliation(s)
- Emily Clayton
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, UK
| | - Mohammed A Rohaim
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, UK
| | - Mahmoud Bayoumi
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, UK
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, UK.
| |
Collapse
|
108
|
Fathi Karkan S, Maleki Baladi R, Shahgolzari M, Gholizadeh M, Shayegh F, Arashkia A. The evolving direct and indirect platforms for the detection of SARS-CoV-2. J Virol Methods 2022; 300:114381. [PMID: 34843826 PMCID: PMC8626143 DOI: 10.1016/j.jviromet.2021.114381] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/26/2021] [Accepted: 11/25/2021] [Indexed: 01/08/2023]
Abstract
Diagnosis of SARS-CoV-2 by standard screening measures can reduce the chance of COVID-19 spread before the symptoms become severe. Detecting viral RNA and antigens, anti-viral antibodies, and CT-scan are the most routine diagnostic methods. Accordingly, several diagnostic platforms including thermal and isothermal amplifications, CRISPR/Cas‑based approaches, digital PCR, ELISA, NGS, and point-of-care testing methods with variable sensitivities, have been developed that may facilitate managing and preventing the further spread of the infection. Here, we summarized the currently available direct and indirect testing platforms in research and clinical settings, including recent progress in the methods to detect viral RNA, antigens, and specific antibodies. This summary may help in selecting the effective method for a special application sucha as routine laboratory diagnosis, point-of-care tests or tracing the the virus spread and mutations.
Collapse
Affiliation(s)
- Sonia Fathi Karkan
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran,Department of Medical Nanotechnology, Tabriz Medical University, Tabriz, Iran
| | - Reza Maleki Baladi
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Mehdi Shahgolzari
- Department of Medical Nanotechnology, Tabriz Medical University, Tabriz, Iran
| | - Monireh Gholizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran,Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Fahimeh Shayegh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arash Arashkia
- Deaprtment of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
109
|
Liu Q, Xiong Q, Mei F, Ma C, Zhang Z, Hu B, Xu J, Jiang Y, Zhan F, Zhou S, Tao L, Chen X, Guo M, Wang X, Fang Y, Shen S, Liu Y, Liu F, Zhou L, Xu K, Ke C, Deng F, Cai K, Yan H, Chen Y, Lan K. Antibody neutralization to SARS-CoV-2 and variants after 1 year in Wuhan, China. Innovation (N Y) 2022; 3:100181. [PMID: 34746904 PMCID: PMC8563080 DOI: 10.1016/j.xinn.2021.100181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/27/2021] [Indexed: 11/30/2022] Open
Abstract
Most COVID-19 convalescents can build effective anti-SARS-CoV-2 humoral immunity, but it remains unclear how long it can maintain and how efficiently it can prevent the reinfection of the emerging SARS-CoV-2 variants. Here, we tested the sera from 248 COVID-19 convalescents around 1 year post-infection in Wuhan, the earliest known epicenter. SARS-CoV-2 immunoglobulin G (IgG) was well maintained in most patients and potently neutralizes the infection of the original strain and the B.1.1.7 variant. However, varying degrees of immune escape was observed on the other tested variants in a patient-specific manner, with individuals showing remarkably broad neutralization potency. The immune escape can be largely attributed to several critical spike mutations. These results suggest that SARS-CoV-2 can elicit long-lasting immunity but this is escaped by the emerging variants.
Collapse
Affiliation(s)
- Qianyun Liu
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qing Xiong
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Fanghua Mei
- Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China
| | - Chengbao Ma
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhen Zhang
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Bing Hu
- Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China
| | - Junqiang Xu
- Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China
| | - Yongzhong Jiang
- Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China
| | - Faxian Zhan
- Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China
| | - Suhua Zhou
- Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China
| | - Li Tao
- Wuhan Jiang'an District Center for Disease Control and Prevention, Wuhan 430000, China
| | - Xianying Chen
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ming Guo
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xin Wang
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yaohui Fang
- National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Shu Shen
- National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yingle Liu
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Fang Liu
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Li Zhou
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ke Xu
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Changwen Ke
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Fei Deng
- National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Kun Cai
- Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China
| | - Huan Yan
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yu Chen
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ke Lan
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
110
|
Maulding ND, Seiler S, Pearson A, Kreusser N, Stuart JM. Dual RNA-Seq analysis of SARS-CoV-2 correlates specific human transcriptional response pathways directly to viral expression. Sci Rep 2022; 12:1329. [PMID: 35079083 PMCID: PMC8789814 DOI: 10.1038/s41598-022-05342-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
The SARS-CoV-2 pandemic has challenged humankind's ability to quickly determine the cascade of health effects caused by a novel infection. Even with the unprecedented speed at which vaccines were developed and introduced into society, identifying therapeutic interventions and drug targets for patients infected with the virus remains important as new strains of the virus evolve, or future coronaviruses may emerge that are resistant to current vaccines. The application of transcriptomic RNA sequencing of infected samples may shed new light on the pathways involved in viral mechanisms and host responses. We describe the application of the previously developed "dual RNA-seq" approach to investigate, for the first time, the co-regulation between the human and SARS-CoV-2 transcriptomes. Together with differential expression analysis, we describe the tissue specificity of SARS-CoV-2 expression, an inferred lipopolysaccharide response, and co-regulation of CXCL's, SPRR's, S100's with SARS-CoV-2 expression. Lipopolysaccharide response pathways in particular offer promise for future therapeutic research and the prospect of subgrouping patients based on chemokine expression that may help explain the vastly different reactions patients have to infection. Taken together these findings highlight unappreciated SARS-CoV-2 expression signatures and emphasize new considerations and mechanisms for SARS-CoV-2 therapeutic intervention.
Collapse
Affiliation(s)
- Nathan D Maulding
- Biomolecular Engineering and Bioinformatics, University of California at Santa Cruz, Santa Cruz, CA, USA
| | - Spencer Seiler
- Biomolecular Engineering and Bioinformatics, University of California at Santa Cruz, Santa Cruz, CA, USA
| | - Alexander Pearson
- Biomolecular Engineering and Bioinformatics, University of California at Santa Cruz, Santa Cruz, CA, USA
| | - Nicholas Kreusser
- Biomolecular Engineering and Bioinformatics, University of California at Santa Cruz, Santa Cruz, CA, USA
| | - Joshua M Stuart
- Biomolecular Engineering and Bioinformatics, University of California at Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
111
|
Ma C, Chen X, Mei F, Xiong Q, Liu Q, Dong L, Liu C, Zou W, Zhan F, Hu B, Liu Y, Liu F, Zhou L, Xu J, Jiang Y, Xu K, Cai K, Chen Y, Yan H, Lan K. Drastic decline in sera neutralization against SARS-CoV-2 Omicron variant in Wuhan COVID-19 convalescents. Emerg Microbes Infect 2022; 11:567-572. [PMID: 35060426 PMCID: PMC8856021 DOI: 10.1080/22221751.2022.2031311] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Global concern has been raised by the emergence and rapid transmission of the heavily mutated SARS-CoV-2 Omicron variant (B.1.1.529). So far, the infection features and immune escape ability of the Omicron variant have not been extensively studied. Here, we produced the Omicron pseudovirus and compared its entry, membrane fusion, and immune escape efficiency with the original strain and the dominating Delta variant. We found the Omicron variant showed slightly higher infectivity than the Delta variant and a similar ability to compete with the Delta variant in using Angiotensin-converting enzyme 2 (ACE2) in a BHK21-ACE2 cell line. However, the Omicron showed a significantly reduced fusogenicity than the original strain and the Delta variant in both BHK21-ACE2 and Vero-E6 cells. The neutralization assay testing the Wuhan convalescents’ sera one-year post-infection showed a more dramatic reduction (10.15 fold) of neutralization against the Omicron variant than the Delta variant (1.79 fold) compared with the original strain with D614G. Notably, immune-boosting through three vaccine shots significantly improved the convalescents’ immunity against the Omicron variants. Our results reveal a reduced fusogenicity and a striking immune escape ability of the Omicron variant, highlighting the importance of booster shots against the challenge of the SARS-CoV-2 antigenic drift.
Collapse
Affiliation(s)
- Chengbao Ma
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Xianying Chen
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Fanghua Mei
- Hubei Center for Disease Control and Prevention, Wuhan, People's Republic of China
| | - Qing Xiong
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Qianyun Liu
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Lianghui Dong
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Chen Liu
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Wenjing Zou
- Hubei Center for Disease Control and Prevention, Wuhan, People's Republic of China
| | - Faxian Zhan
- Hubei Center for Disease Control and Prevention, Wuhan, People's Republic of China
| | - Bing Hu
- Hubei Center for Disease Control and Prevention, Wuhan, People's Republic of China
| | - Yingle Liu
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Fang Liu
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Li Zhou
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Junqiang Xu
- Hubei Center for Disease Control and Prevention, Wuhan, People's Republic of China
| | - Yongzhong Jiang
- Hubei Center for Disease Control and Prevention, Wuhan, People's Republic of China
| | - Ke Xu
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Kun Cai
- Hubei Center for Disease Control and Prevention, Wuhan, People's Republic of China
| | - Yu Chen
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Huan Yan
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Ke Lan
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
112
|
Cross-sectional genomic perspective of epidemic waves of SARS-CoV-2: A pan India study. Virus Res 2022; 308:198642. [PMID: 34822953 PMCID: PMC8606321 DOI: 10.1016/j.virusres.2021.198642] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/20/2021] [Accepted: 11/18/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND COVID-19 has posed unforeseen circumstances and throttled major economies worldwide. India has witnessed two waves affecting around 31 million people representing 16% of the cases globally. To date, the epidemic waves have not been comprehensively investigated to understand pandemic progress in India. OBJECTIVE Here, we aim for pan Indian cross-sectional evolutionary analysis since inception of SARS-CoV-2. METHODS High quality genomes, along with their collection date till 26th July 2021, were downloaded. Whole genome-based phylogeny was obtained. Further, the mutational analysis was performed using SARS-CoV-2 first reported from Wuhan (NC_045512.2) as reference. RESULTS Based on reported cases and mutation rates, we could divide the Indian epidemic into seven phases. The average mutation rate for the pre-first wave was <11, which elevated to 17 in the first wave and doubled in the second wave (∼34). In accordance with mutation rate, VOCs and VOIs started appearing in the first wave (1.5%), which dominated the second (∼96%) and post-second wave (100%). Nation-wide mutational analysis depicted >0.5 million mutation events with four major mutations in >19,300 genomes, including two mutations in coding (spike (D614G), and NSP 12b (P314L) of rdrp), one silent mutation (NSP3 F106F) and one extragenic mutation (5' UTR 241). CONCLUSION Whole genome-based phylogeny could demarcate post-first wave isolates from previous ones by point of diversification leading to incidences of VOCs and VOIs in India. Such analysis is crucial in the timely management of pandemic.
Collapse
|
113
|
Malune P, Piras G, Monne M, Fiamma M, Asproni R, Fancello T, Manai A, Carta F, Pira G, Fancello P, Rosu V, Uras A, Mereu C, Mameli G, Lo Maglio I, Garau MC, Palmas AD. Molecular Characterization of Severe Acute Respiratory Syndrome Coronavirus 2 Isolates From Central Inner Sardinia. Front Microbiol 2022; 12:827799. [PMID: 35095827 PMCID: PMC8795702 DOI: 10.3389/fmicb.2021.827799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/24/2021] [Indexed: 11/18/2022] Open
Abstract
Background The SARS-CoV-2 pandemic stimulated an outstanding global sequencing effort, which allowed to monitor viral circulation and evolution. Nuoro province (Sardinia, Italy), characterized by a relatively isolated geographical location and a low population density, was severely hit and displayed a high incidence of infection. Methods Amplicon approach Next Generation Sequencing and subsequent variant calling in 92 respiratory samples from SARS-CoV-2 infected patients involved in infection clusters from March 2020 to May 2021. Results Phylogenetic analysis displayed a coherent distribution of sequences in terms of lineage and temporal evolution of pandemic. Circulating lineage/clade characterization highlighted a growing diversity over time, with an increasingly growing number of mutations and variability of spike and nucleocapsid proteins, while viral RdRp appeared to be more conserved. A total of 384 different mutations were detected, of which 196 were missense and 147 synonymous ones. Mapping mutations along the viral genome showed an irregular distribution in key genes. S gene was the most mutated gene with missense and synonymous variants frequencies of 58.8 and 23.5%, respectively. Mutation rates were similar for the S and N genes with one mutation every ∼788 nucleotides and every ∼712 nucleotides, respectively. Nsp12 gene appeared to be more conserved, with one mutation every ∼1,270 nucleotides. The frequency of variant Y144F in the spike protein deviated from global values with higher prevalence of this mutation in the island. Conclusion The analysis of the 92 viral genome highlighted evolution over time and identified which mutations are more widespread than others. The high number of sequences also permits the identification of subclusters that are characterized by subtle differences, not only in terms of lineage, which may be used to reconstruct transmission clusters. The disclosure of viral genetic diversity and timely identification of new variants is a useful tool to guide public health intervention measures.
Collapse
Affiliation(s)
- Paolo Malune
- UOC Ematologia, P.O. “San Francesco,” Azienda Tutela Salute, ASSL Nuoro, Nuoro, Italy
- UOC Laboratorio Analisi Clinico-Chimiche e Microbiologia, P.O. “San Francesco,” Azienda Tutela Salute, ASSL Nuoro, Nuoro, Italy
| | - Giovanna Piras
- UOC Ematologia, P.O. “San Francesco,” Azienda Tutela Salute, ASSL Nuoro, Nuoro, Italy
- *Correspondence: Giovanna Piras,
| | - Maria Monne
- UOC Ematologia, P.O. “San Francesco,” Azienda Tutela Salute, ASSL Nuoro, Nuoro, Italy
| | - Maura Fiamma
- UOC Laboratorio Analisi Clinico-Chimiche e Microbiologia, P.O. “San Francesco,” Azienda Tutela Salute, ASSL Nuoro, Nuoro, Italy
| | - Rosanna Asproni
- UOC Laboratorio Analisi Clinico-Chimiche e Microbiologia, P.O. “San Francesco,” Azienda Tutela Salute, ASSL Nuoro, Nuoro, Italy
| | - Tatiana Fancello
- UOC Cardiologia, P.O. “San Francesco,” Azienda Tutela Salute, ASSL Nuoro, Nuoro, Italy
| | - Antonio Manai
- UOC Ematologia, P.O. “San Francesco,” Azienda Tutela Salute, ASSL Nuoro, Nuoro, Italy
- UOC Laboratorio Analisi Clinico-Chimiche e Microbiologia, P.O. “San Francesco,” Azienda Tutela Salute, ASSL Nuoro, Nuoro, Italy
| | - Franco Carta
- UOC Laboratorio Analisi Clinico-Chimiche e Microbiologia, P.O. “San Francesco,” Azienda Tutela Salute, ASSL Nuoro, Nuoro, Italy
| | - Giovanna Pira
- UOC Laboratorio Analisi Clinico-Chimiche e Microbiologia, P.O. “San Francesco,” Azienda Tutela Salute, ASSL Nuoro, Nuoro, Italy
| | - Patrizia Fancello
- UOC Laboratorio Analisi Clinico-Chimiche e Microbiologia, P.O. “San Francesco,” Azienda Tutela Salute, ASSL Nuoro, Nuoro, Italy
| | - Valentina Rosu
- UOC Laboratorio Analisi Clinico-Chimiche e Microbiologia, P.O. “San Francesco,” Azienda Tutela Salute, ASSL Nuoro, Nuoro, Italy
| | - Antonella Uras
- UOC Ematologia, P.O. “San Francesco,” Azienda Tutela Salute, ASSL Nuoro, Nuoro, Italy
| | - Caterina Mereu
- UOC Ematologia, P.O. “San Francesco,” Azienda Tutela Salute, ASSL Nuoro, Nuoro, Italy
| | - Giuseppe Mameli
- UOC Laboratorio Analisi Clinico-Chimiche e Microbiologia, P.O. “San Francesco,” Azienda Tutela Salute, ASSL Nuoro, Nuoro, Italy
| | - Iana Lo Maglio
- UOC Laboratorio Analisi Clinico-Chimiche e Microbiologia, P.O. “San Francesco,” Azienda Tutela Salute, ASSL Nuoro, Nuoro, Italy
| | - Maria Cristina Garau
- UOC Laboratorio Analisi Clinico-Chimiche e Microbiologia, P.O. “San Francesco,” Azienda Tutela Salute, ASSL Nuoro, Nuoro, Italy
| | | |
Collapse
|
114
|
Xiong Q, Cao L, Ma C, Tortorici MA, Liu C, Si J, Liu P, Gu M, Walls AC, Wang C, Shi L, Tong F, Huang M, Li J, Zhao C, Shen C, Chen Y, Zhao H, Lan K, Corti D, Veesler D, Wang X, Yan H. Close relatives of MERS-CoV in bats use ACE2 as their functional receptors. Nature 2022; 612:748-757. [PMID: 36477529 PMCID: PMC9734910 DOI: 10.1038/s41586-022-05513-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 11/02/2022] [Indexed: 12/12/2022]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) and several bat coronaviruses use dipeptidyl peptidase-4 (DPP4) as an entry receptor1-4. However, the receptor for NeoCoV-the closest known MERS-CoV relative found in bats-remains unclear5. Here, using a pseudotype virus entry assay, we found that NeoCoV and its close relative, PDF-2180, can efficiently bind to and use specific bat angiotensin-converting enzyme 2 (ACE2) orthologues and, less favourably, human ACE2 as entry receptors through their receptor-binding domains (RBDs) on the spike (S) proteins. Cryo-electron microscopy analysis revealed an RBD-ACE2 binding interface involving protein-glycan interactions, distinct from those of other known ACE2-using coronaviruses. We identified residues 337-342 of human ACE2 as a molecular determinant restricting NeoCoV entry, whereas a NeoCoV S pseudotyped virus containing a T510F RBD mutation efficiently entered cells expressing human ACE2. Although polyclonal SARS-CoV-2 antibodies or MERS-CoV RBD-specific nanobodies did not cross-neutralize NeoCoV or PDF-2180, an ACE2-specific antibody and two broadly neutralizing betacoronavirus antibodies efficiently inhibited these two pseudotyped viruses. We describe MERS-CoV-related viruses that use ACE2 as an entry receptor, underscoring a promiscuity of receptor use and a potential zoonotic threat.
Collapse
Affiliation(s)
- Qing Xiong
- grid.49470.3e0000 0001 2331 6153State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Lei Cao
- grid.9227.e0000000119573309CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Chengbao Ma
- grid.49470.3e0000 0001 2331 6153State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - M. Alejandra Tortorici
- grid.34477.330000000122986657Department of Biochemistry, University of Washington, Seattle, WA USA
| | - Chen Liu
- grid.49470.3e0000 0001 2331 6153State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Junyu Si
- grid.49470.3e0000 0001 2331 6153State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Peng Liu
- grid.49470.3e0000 0001 2331 6153State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Mengxue Gu
- grid.49470.3e0000 0001 2331 6153State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Alexandra C. Walls
- grid.34477.330000000122986657Department of Biochemistry, University of Washington, Seattle, WA USA ,grid.413575.10000 0001 2167 1581Howard Hughes Medical Institute, Seattle, WA USA
| | - Chunli Wang
- grid.49470.3e0000 0001 2331 6153State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Lulu Shi
- grid.49470.3e0000 0001 2331 6153State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Fei Tong
- grid.49470.3e0000 0001 2331 6153State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Meiling Huang
- grid.49470.3e0000 0001 2331 6153State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Jing Li
- grid.49470.3e0000 0001 2331 6153State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Chufeng Zhao
- grid.49470.3e0000 0001 2331 6153State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Chao Shen
- grid.49470.3e0000 0001 2331 6153State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Yu Chen
- grid.49470.3e0000 0001 2331 6153State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Huabin Zhao
- grid.49470.3e0000 0001 2331 6153Department of Ecology, Tibetan Centre for Ecology and Conservation at WHU-TU, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ke Lan
- grid.49470.3e0000 0001 2331 6153State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Davide Corti
- grid.498378.9Humabs BioMed SA, subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA. .,Howard Hughes Medical Institute, Seattle, WA, USA.
| | - Xiangxi Wang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China.
| | - Huan Yan
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
115
|
Chen Y, Huang S, Zhou L, Wang X, Yang H, Li W. Coronavirus Disease 2019 (COVID-19): Emerging detection technologies and auxiliary analysis. J Clin Lab Anal 2022; 36:e24152. [PMID: 34894011 PMCID: PMC8761422 DOI: 10.1002/jcla.24152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/09/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022] Open
Abstract
The ongoing COVID-19 pandemic constitutes a new challenge for public health. Prevention and control of infection have become urgent and serious issues. To meet the clinical demand for higher accuracy of COVID-19 detection, the development of fast and efficient methods represents an important step. The most common methods of COVID-19 diagnosis, relying on real-time fluorescent quantitative PCR(RT-qPCR), computed tomography, and new-generation sequencing technologies, have a series of advantages, especially for early diagnosis and screening. In addition, joint efforts of researchers all over the world have led to the development of other rapid detection methods with high sensitivity, ease of use, cost-effectiveness, or allowing multiplex analysis based on technologies such as dPCR, ELISA, fluorescence immunochromatography assay, and the microfluidic detection chip method. The main goal of this review was to provide a critical discussion on the development and application of these different analytical methods, which based on etiology, serology, and molecular biology, as well as to compare their respective advantages and disadvantages. In addition to these methods, hematology and biochemistry, as well as auxiliary analysis based on pathological anatomy, ultrasonography, and cytokine detection, will help understand COVID-19 pathogenesis. Together, these technologies may promote and open new windows to unravel issues surrounding symptomatic and asymptomatic COVID-19 infections and improve clinical strategies toward reducing mortality.
Collapse
Affiliation(s)
- Ying Chen
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Shengxiong Huang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Liuyan Zhou
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Xin Wang
- Centralized and Point of Care Solutions & Molecular Diagnostics, Roche Diagnostics (Shanghai) Limited, Shanghai, China
| | - Huan Yang
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Wenqing Li
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
116
|
Lina B. [The different phases of molecular and antigenic evolution of SARS-CoV-2 viruses during the 20 months following its emergence]. BULLETIN DE L'ACADEMIE NATIONALE DE MEDECINE 2022; 206:87-99. [PMID: 34866635 PMCID: PMC8629187 DOI: 10.1016/j.banm.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/04/2021] [Indexed: 01/04/2023]
Abstract
From its emergence in December 2019 and until the end of the fourth pandemic wave in October 2021, SARS-CoV-2 circulation has been associated with significant molecular evolutions of the virus. These were linked to mutations that have led to new virus linages with replication advantages as a result of increased transmission, or partial immune escape in the context of progressively increasing global immunisation. The pandemic context with large scale epidemics massive outbreaks observed in highly populated areas has favoured this emergence of "variants". During the 20 months period, at least three evolutionary phases have been observed, leading to the situation observed in October 2021. For the first time, an unprecedented worldwide surveillance effort has been conducted to monitor the circulation of the emerging virus, with rapid data sharing. This molecular surveillance system has provided an accurate description of the circulating viruses, and their evolution. The implementation of these tools and skills able to provide SARS-CoV-2 molecular epidemiological data has upgraded the global capacity for surveillance worldwide, and may allow us to be better prepared for a future pandemic episode.
Collapse
Affiliation(s)
- B. Lina
- Laboratoire de virologie des HCL, institut des agents infectieux (IAI), CNR des virus à transmission respiratoire (dont la grippe), groupement hospitalier Nord, hôpital de la Croix Rousse, 103, grande rue de la Croix Rousse, 69317 Lyon cedex 04, France,Inserm U1111, laboratoire Virpath, CNRS UMR 5308, ENS de Lyon, UCBL, centre international de recherche en infectiologie (CIRI), université de Lyon, 7–11, rue Guillaume-Paradin, 69372 Lyon cedex 08, France
| |
Collapse
|
117
|
Current clinical testing approach of COVID. SENSING TOOLS AND TECHNIQUES FOR COVID-19 2022. [PMCID: PMC9334984 DOI: 10.1016/b978-0-323-90280-9.00003-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
118
|
Current Advances in Paper-Based Biosensor Technologies for Rapid COVID-19 Diagnosis. BIOCHIP JOURNAL 2022; 16:376-396. [PMID: 35968255 PMCID: PMC9363872 DOI: 10.1007/s13206-022-00078-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/06/2022] [Accepted: 07/22/2022] [Indexed: 12/29/2022]
Abstract
The global coronavirus disease 2019 (COVID-19) pandemic has had significant economic and social impacts on billions of people worldwide since severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported in Wuhan, China, in November 2019. Although polymerase chain reaction (PCR)-based technology serves as a robust test to detect SARS-CoV-2 in patients with COVID-19, there is a high demand for cost-effective, rapid, comfortable, and accurate point-of-care diagnostic tests in medical facilities. This review introduces the SARS-CoV-2 viral structure and diagnostic biomarkers derived from viral components. A comprehensive introduction of a paper-based diagnostic platform, including detection mechanisms for various target biomarkers and a COVID-19 commercial kit is presented. Intrinsic limitations related to the poor performance of currently developed paper-based devices and unresolved issues are discussed. Furthermore, we provide insight into novel paper-based diagnostic platforms integrated with advanced technologies such as nanotechnology, aptamers, surface-enhanced Raman spectroscopy (SERS), and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas. Finally, we discuss the prospects for the development of highly sensitive, accurate, cost-effective, and easy-to-use point-of-care COVID-19 diagnostic methods.
Collapse
|
119
|
Nanotechnology-based bio-tools and techniques for COVID-19 management. SENSING TOOLS AND TECHNIQUES FOR COVID-19 2022. [PMCID: PMC9335021 DOI: 10.1016/b978-0-323-90280-9.00008-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
COVID-19, a most serious issue and the threat for the human life, has affected millions of people worldwide. It was observed as unknown cases of pneumonia in Wuhan, China and claimed unknown till January 10, 2020 and led to the corona virus disease 2019 (COVID-19) therefore worldwide pandemic. The Director-General-WHO declared the outbreak of COVID-19 and constituted a Public Health Emergency of International Concern (PHEIC) on January 30, 2020 with the recommendations of the Emergency Committee. This outbreak originated from Wuhan, China in 2019 named as COVID-19 approached 115 countries, with 119,239 cases of infection spread and 4287 deaths by March 11, 2020.
Collapse
|
120
|
Urushadze L, Babuadze G, Shi M, Escobar LE, Mauldin MR, Natradeze I, Machablishvili A, Kutateladze T, Imnadze P, Nakazawa Y, Velasco-Villa A. A Cross Sectional Sampling Reveals Novel Coronaviruses in Bat Populations of Georgia. Viruses 2021; 14:v14010072. [PMID: 35062276 PMCID: PMC8778869 DOI: 10.3390/v14010072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 11/18/2022] Open
Abstract
Mammal-associated coronaviruses have a long evolutionary history across global bat populations, which makes them prone to be the most likely ancestral origins of coronavirus-associated epidemics and pandemics globally. Limited coronavirus research has occurred at the junction of Europe and Asia, thereby investigations in Georgia are critical to complete the coronavirus diversity map in the region. We conducted a cross-sectional coronavirus survey in bat populations at eight locations of Georgia, from July to October of 2014. We tested 188 anal swab samples, remains of previous pathogen discovery studies, for the presence of coronaviruses using end-point pan-coronavirus RT-PCR assays. Samples positive for a 440 bp amplicon were Sanger sequenced to infer coronavirus subgenus or species through phylogenetic reconstructions. Overall, we found a 24.5% positive rate, with 10.1% for Alphacoronavirus and 14.4% for Betacoronavirus. Albeit R. euryale, R. ferrumequinum, M. blythii and M. emarginatus were found infected with both CoV genera, we could not rule out CoV co-infection due to limitation of the sequencing method used and sample availability. Based on phylogenetic inferences and genetic distances at nucleotide and amino acid levels, we found one putative new subgenus and three new species of Alphacoronavirus, and two new species of Betacoronavirus.
Collapse
Affiliation(s)
- Lela Urushadze
- National Center for Disease Control and Public Health, Tbilisi 0198, Georgia; (L.U.); (G.B.); (A.M.); (T.K.); (P.I.)
| | - George Babuadze
- National Center for Disease Control and Public Health, Tbilisi 0198, Georgia; (L.U.); (G.B.); (A.M.); (T.K.); (P.I.)
- Biological Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Main Campus, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Mang Shi
- Centre for Infection and Immunity Studies, School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China;
| | - Luis E. Escobar
- Department of Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA 24601, USA;
| | - Matthew R. Mauldin
- Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30333, USA; (M.R.M.); (Y.N.)
| | - Ioseb Natradeze
- Institute of Zoology, Campus S, Ilia State University, Tbilisi 0162, Georgia;
| | - Ann Machablishvili
- National Center for Disease Control and Public Health, Tbilisi 0198, Georgia; (L.U.); (G.B.); (A.M.); (T.K.); (P.I.)
| | - Tamar Kutateladze
- National Center for Disease Control and Public Health, Tbilisi 0198, Georgia; (L.U.); (G.B.); (A.M.); (T.K.); (P.I.)
| | - Paata Imnadze
- National Center for Disease Control and Public Health, Tbilisi 0198, Georgia; (L.U.); (G.B.); (A.M.); (T.K.); (P.I.)
- Department of Public Health and Epidemiology, Faculty of Medicine, Main Campus, Ivane Javakhishvili Tbilisi State University, Tbilisi 0179, Georgia
| | - Yoshinori Nakazawa
- Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30333, USA; (M.R.M.); (Y.N.)
| | - Andres Velasco-Villa
- Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30333, USA; (M.R.M.); (Y.N.)
- Correspondence:
| |
Collapse
|
121
|
Ching KL, de Vries M, Gago J, Dancel-Manning K, Sall J, Rice WJ, Barnett C, Liang FX, Thorpe LE, Shopsin B, Segal LN, Dittmann M, Torres VJ, Cadwell K. ACE2-containing defensosomes serve as decoys to inhibit SARS-CoV-2 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34981050 DOI: 10.1101/2021.12.17.473223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Extracellular vesicles of endosomal origin, exosomes, mediate intercellular communication by transporting substrates with a variety of functions related to tissue homeostasis and disease. Their diagnostic and therapeutic potential has been recognized for diseases such as cancer in which signaling defects are prominent. However, it is unclear to what extent exosomes and their cargo inform the progression of infectious diseases. We recently defined a subset of exosomes termed defensosomes that are mobilized during bacterial infection in a manner dependent on autophagy proteins. Through incorporating protein receptors on their surface, defensosomes mediated host defense by binding and inhibiting pore-forming toxins secreted by bacterial pathogens. Given this capacity to serve as decoys that interfere with surface protein interactions, we investigated the role of defensosomes during infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of COVID-19. Consistent with a protective function, exosomes containing high levels of the viral receptor ACE2 in bronchioalveolar lavage fluid from critically ill COVID-19 patients was associated with reduced ICU and hospitalization times. We found ACE2+ exosomes were induced by SARS-CoV-2 infection and activation of viral sensors in cell culture, which required the autophagy protein ATG16L1, defining these as defensosomes. We further demonstrate that ACE2+ defensosomes directly bind and block viral entry. These findings suggest that defensosomes may contribute to the antiviral response against SARS-CoV-2 and expand our knowledge on the regulation and effects of extracellular vesicles during infection.
Collapse
|
122
|
Kumar B, Misra A, Singh SP, Dhar YV, Rawat P, Chattopadhyay D, Barik SK, Srivastava S. In-silico efficacy of potential phytomolecules from Ayurvedic herbs as an adjuvant therapy in management of COVID-19. J Food Drug Anal 2021; 29:559-580. [PMID: 35649148 PMCID: PMC9931022 DOI: 10.38212/2224-6614.3380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 05/17/2021] [Accepted: 08/26/2021] [Indexed: 11/18/2022] Open
Abstract
The recent COVID-19 outbreak caused by SARS-CoV-2 virus has sparked a new spectrum of investigations, research and studies in multifarious directions. Efforts are being made around the world for discovery of effective vaccines/drugs against COVID-19. In this context, Ayurveda, an alternative traditional system of medicine in India may work as an adjuvant therapy in compromised patients. We selected 40 herbal leads on the basis of their traditional applications. The phytomolecules from these leads were further screened through in-silico molecular docking against two main targets of SARS-CoV-2 i.e. the spike protein (S; structural protein) and the main protease (MPRO; non-structural protein). Out of the selected 40, 12 phytomolecules were able to block or stabilize the major functional sites of the main protease and spike protein. Among these, Ginsenoside, Glycyrrhizic acid, Hespiridin and Tribulosin exhibited high binding energy with both main protease and spike protein. Etoposide showed good binding energy only with Spike protein and Teniposide had high binding energy only with main protease. The above phytocompounds showed promising binding efficiency with target proteins indicating their possible applications against SARS-CoV-2. However, these findings need to be validated through in vitro and in vivo experiments with above mentioned potential molecules as candidate drugs for the management of COVID-19. In addition, there is an opportunity for the development of formulations through different permutations and combinations of these phytomolecules to harness their synergistic potential.
Collapse
Affiliation(s)
- Bhanu Kumar
- Pharmacognosy Division, CSIR-National Botanical Research Institute, Lucknow, U.P. 226001,
India
| | - Ankita Misra
- Pharmacognosy Division, CSIR-National Botanical Research Institute, Lucknow, U.P. 226001,
India
| | - Satyendra Pratap Singh
- Pharmacognosy Division, CSIR-National Botanical Research Institute, Lucknow, U.P. 226001,
India
| | - Yogeshwar Vikram Dhar
- Bioinformatics Division, CSIR-National Botanical Research Institute, Lucknow, U.P. 226001,
India
| | - Poonam Rawat
- Pharmacognosy Division, CSIR-National Botanical Research Institute, Lucknow, U.P. 226001,
India
| | | | - Saroj Kanta Barik
- Pharmacognosy Division, CSIR-National Botanical Research Institute, Lucknow, U.P. 226001,
India
| | - Sharad Srivastava
- Pharmacognosy Division, CSIR-National Botanical Research Institute, Lucknow, U.P. 226001,
India
| |
Collapse
|
123
|
Label-free detection of SARS-CoV-2 Spike S1 antigen triggered by electroactive gold nanoparticles on antibody coated fluorine-doped tin oxide (FTO) electrode. Anal Chim Acta 2021; 1188:339207. [PMID: 34794571 PMCID: PMC8529383 DOI: 10.1016/j.aca.2021.339207] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/04/2021] [Accepted: 10/19/2021] [Indexed: 12/30/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, also known as 2019-nCov or COVID-19) outbreak has become a huge public health issue due to its rapid transmission making it a global pandemic. Here, we report fabricated fluorine doped tin oxide (FTO) electrodes/gold nanoparticles (AuNPs) complex coupled with in-house developed SARS-CoV-2 spike S1 antibody (SARS-CoV-2 Ab) to measure the response with Cyclic Voltammetry (CV) and Differential Pulse Voltammetry (DPV). The biophysical characterisation of FTO/AuNPs/SARS-CoV-2Ab was done via UV-Visible spectroscopy, Dynamic Light Scattering (DLS), and Fourier Transform Infrared Spectroscopy (FT-IR). The fabricated FTO/AuNPs/SARS-CoV-2Ab immunosensor was optimised for response time, antibody concentration, temperature, and pH. Under optimum conditions, the FTO/AuNPs/Ab based immunosensor displayed high sensitivity with limit of detection (LOD) up to 0.63 fM in standard buffer and 120 fM in spiked saliva samples for detection of SARS-CoV-2 spike S1 antigen (Ag) with negligible cross reactivity Middle East Respiratory Syndrome (MERS) spike protein. The proposed FTO/AuNPs/SARS-CoV-2Ab based biosensor proved to be stable for up to 4 weeks and can be used as an alternative non-invasive diagnostic tool for the rapid, specific and sensitive detection of SARS-CoV-2 Spike Ag traces in clinical samples.
Collapse
|
124
|
Roberts A, Chouhan RS, Shahdeo D, Shrikrishna NS, Kesarwani V, Horvat M, Gandhi S. A Recent Update on Advanced Molecular Diagnostic Techniques for COVID-19 Pandemic: An Overview. Front Immunol 2021; 12:732756. [PMID: 34970254 PMCID: PMC8712736 DOI: 10.3389/fimmu.2021.732756] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), which started out as an outbreak of pneumonia, has now turned into a pandemic due to its rapid transmission. Besides developing a vaccine, rapid, accurate, and cost-effective diagnosis is essential for monitoring and combating the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its related variants on time with precision and accuracy. Currently, the gold standard for detection of SARS-CoV-2 is Reverse Transcription Polymerase Chain Reaction (RT-PCR), but it lacks accuracy, is time-consuming and cumbersome, and fails to detect multi-variant forms of the virus. Herein, we have summarized conventional diagnostic methods such as Chest-CT (Computed Tomography), RT-PCR, Loop Mediated Isothermal Amplification (LAMP), Reverse Transcription-LAMP (RT-LAMP), as well new modern diagnostics such as CRISPR-Cas-based assays, Surface Enhanced Raman Spectroscopy (SERS), Lateral Flow Assays (LFA), Graphene-Field Effect Transistor (GraFET), electrochemical sensors, immunosensors, antisense oligonucleotides (ASOs)-based assays, and microarrays for SARS-CoV-2 detection. This review will also provide an insight into an ongoing research and the possibility of developing more economical tools to tackle the COVID-19 pandemic.
Collapse
Affiliation(s)
- Akanksha Roberts
- Department of Biotechnology (DBT)-National Institute of Animal Biotechnology (NIAB), Hyderabad, India
| | | | - Deepshikha Shahdeo
- Department of Biotechnology (DBT)-National Institute of Animal Biotechnology (NIAB), Hyderabad, India
| | | | - Veerbhan Kesarwani
- Department of Biotechnology (DBT)-National Institute of Animal Biotechnology (NIAB), Hyderabad, India
| | - Milena Horvat
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Sonu Gandhi
- Department of Biotechnology (DBT)-National Institute of Animal Biotechnology (NIAB), Hyderabad, India
| |
Collapse
|
125
|
Song S, Ma L, Xu X, Shi H, Li X, Liu Y, Hao P. Rapid screening and identification of viral pathogens in metagenomic data. BMC Med Genomics 2021; 14:289. [PMID: 34903237 PMCID: PMC8668262 DOI: 10.1186/s12920-021-01138-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Virus screening and viral genome reconstruction are urgent and crucial for the rapid identification of viral pathogens, i.e., tracing the source and understanding the pathogenesis when a viral outbreak occurs. Next-generation sequencing (NGS) provides an efficient and unbiased way to identify viral pathogens in host-associated and environmental samples without prior knowledge. Despite the availability of software, data analysis still requires human operations. A mature pipeline is urgently needed when thousands of viral pathogen and viral genome reconstruction samples need to be rapidly identified. RESULTS In this paper, we present a rapid and accurate workflow to screen metagenomics sequencing data for viral pathogens and other compositions, as well as enable a reference-based assembler to reconstruct viral genomes. Moreover, we tested our workflow on several metagenomics datasets, including a SARS-CoV-2 patient sample with NGS data, pangolins tissues with NGS data, Middle East Respiratory Syndrome (MERS)-infected cells with NGS data, etc. Our workflow demonstrated high accuracy and efficiency when identifying target viruses from large scale NGS metagenomics data. Our workflow was flexible when working with a broad range of NGS datasets from small (kb) to large (100 Gb). This took from a few minutes to a few hours to complete each task. At the same time, our workflow automatically generates reports that incorporate visualized feedback (e.g., metagenomics data quality statistics, host and viral sequence compositions, details about each of the identified viral pathogens and their coverages, and reassembled viral pathogen sequences based on their closest references). CONCLUSIONS Overall, our system enabled the rapid screening and identification of viral pathogens from metagenomics data, providing an important piece to support viral pathogen research during a pandemic. The visualized report contains information from raw sequence quality to a reconstructed viral sequence, which allows non-professional people to screen their samples for viruses by themselves (Additional file 1).
Collapse
Affiliation(s)
- Shiyang Song
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Liangxiao Ma
- Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 20031, China
| | - Xintian Xu
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Han Shi
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xuan Li
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yuanhua Liu
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Pei Hao
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
126
|
Prognostic implication of uncontrolled hypertension in hospitalized patients with COVID-19. COR ET VASA 2021. [DOI: 10.33678/cor.2021.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
127
|
Hossain MA, Brito-Rodriguez B, Sedger LM, Canning J. A Cross-Disciplinary View of Testing and Bioinformatic Analysis of SARS-CoV-2 and Other Human Respiratory Viruses in Pandemic Settings. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2021; 9:163716-163734. [PMID: 35582017 PMCID: PMC8843158 DOI: 10.1109/access.2021.3133417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/04/2021] [Indexed: 05/26/2023]
Abstract
The SARS-Coronavirus-2 (SARS-CoV-2) infectious disease, COVID-19, has spread rapidly, resulting in a global pandemic with significant mortality. The combination of early diagnosis via rapid screening, contact tracing, social distancing and quarantine has helped to control the pandemic. The absence of real time response and diagnosis is a crucial technology shortfall and is a key reason why current contact tracing methods are inadequate to control spread. In contrast, current information technology combined with a new generation of near-real time tests offers consumer-engaged smartphone-based "lab-in-a-phone" internet-of-things (IoT) connected devices that provide increased pandemic monitoring. This review brings together key aspects required to create an entire global diagnostic ecosystem. Cross-disciplinary understanding and integration of both mechanisms and technologies for effective detection, incidence mapping and disease containment in near real-time is summarized. Available measures to monitor and/or sterilize surfaces, next-generation laboratory and smartphone-based diagnostic approaches can be brought together and networked for instant global monitoring that informs Public Health policy. Cloud-based analysis enabling real-time mapping will enable future pandemic control, drive the suppression and elimination of disease spread, saving millions of lives globally. A new paradigm is introduced - scaled and multiple diagnostics for mapping and spreading of a pandemic rather than traditional accumulation of individual measurements. This can do away with the need for ultra-precise and ultra-accurate analysis by taking mass measurements that can relax tolerances and build resilience through networked analytics and informatics, the basis for novel swarm diagnostics. These include addressing ethical standards, local, national and international collaborative engagement, multidisciplinary and analytical measurements and standards, and data handling and storage protocols.
Collapse
Affiliation(s)
- Md Arafat Hossain
- Department of Electrical and Electronic EngineeringKhulna University of Engineering & TechnologyKhulna9203Bangladesh
| | | | - Lisa M. Sedger
- Faculty of ScienceUniversity of Technology Sydney (UTS)SydneyNSW2007Australia
| | - John Canning
- interdisciplinary Photonic Laboratories (iPL), Global Big Data Technologies Centre (GBDTC), Faculty of Engineering and Information TechnologyUniversity of Technology Sydney (UTS)SydneyNSW2007Australia
| |
Collapse
|
128
|
Liu D, Zhou H, Xu T, Yang Q, Mo X, Shi D, Ai J, Zhang J, Tao Y, Wen D, Tong Y, Ren L, Zhang W, Xie S, Chen W, Xing W, Zhao J, Wu Y, Meng X, Ouyang C, Jiang Z, Liang Z, Tan H, Fang Y, Qin N, Guan Y, Gai W, Xu S, Wu W, Zhang W, Zhang C, Wang Y. Multicenter assessment of shotgun metagenomics for pathogen detection. EBioMedicine 2021; 74:103649. [PMID: 34814051 PMCID: PMC8608867 DOI: 10.1016/j.ebiom.2021.103649] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Shotgun metagenomics has been used clinically for diagnosing infectious diseases. However, most technical assessments have been limited to individual sets of reference standards, experimental workflows, and laboratories. METHODS A reference panel and performance metrics were designed and used to examine the performance of shotgun metagenomics at 17 laboratories in a coordinated collaborative study. We comprehensively assessed the reliability, key performance determinants, reproducibility, and quantitative potential. FINDINGS Assay performance varied significantly across sites and microbial classes, with a read depth of 20 millions as a generally cost-efficient assay setting. Results of mapped reads by shotgun metagenomics could indicate relative and intra-site (but not absolute or inter-site) microbial abundance. INTERPRETATION Assay performance was significantly impacted by the microbial type, the host context, and read depth, which emphasizes the importance of these factors when designing reference reagents and benchmarking studies. Across sites, workflows and platforms, false positive reporting and considerable site/library effects were common challenges to the assay's accuracy and quantifiability. Our study also suggested that laboratory-developed shotgun metagenomics tests for pathogen detection should aim to detect microbes at 500 CFU/mL (or copies/mL) in a clinically relevant host context (10^5 human cells/mL) within a 24h turn-around time, and with an efficient read depth of 20M. FUNDING This work was supported by National Science and Technology Major Project of China (2018ZX10102001).
Collapse
Affiliation(s)
- Donglai Liu
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Haiwei Zhou
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Teng Xu
- Key Laboratory of Animal Gene Editing and Animal Cloning in Yunnan Province and College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Qiwen Yang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xi Mo
- The Laboratory of Pediatric Infectious Diseases, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Dawei Shi
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Jingwen Ai
- Department of Infectious Diseases, Huashan Hospital affiliated to Fudan University, Shanghai 200040, China
| | - Jingjia Zhang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yue Tao
- The Laboratory of Pediatric Infectious Diseases, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Donghua Wen
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, PR China
| | - Yigang Tong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), College of Life Science and Technology, Beijing University of Chemical Technology. Beijing 100029
| | - Lili Ren
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, PR China; Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, PR China
| | - Wen Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing 102206, China
| | - Shumei Xie
- Vision Medicals Center for Infectious Diseases, Guangzhou, Guangdong 510000, China
| | - Weijun Chen
- BGI PathoGenesis Pharmaceutical Technology, BGI-Shenzhen, Shenzhen 518083, China
| | - Wanli Xing
- School of Medicine Tsinghua University, Beijing, China; CapitalBio Technology Co., Ltd., Yizhuang Biomedical Park Beijing, China
| | - Jinyin Zhao
- Dalian GenTalker Clinical Laboratory, Dalian 116635, China
| | - Yilan Wu
- Guangzhou Sagene Biotech Co., Ltd., Guangzhou, China
| | - Xianfa Meng
- Guangzhou Kingmed Diagnostics, Guangzhou, Guangdong 510330, China
| | - Chuan Ouyang
- Hangzhou MatriDx Biotechnology Co., Ltd, Hangzhou, China
| | - Zhi Jiang
- Genskey Medical Technology, Co., Ltd., Beijing 102206, China
| | - Zhikun Liang
- Guangzhou Darui Biotechnology, Co., Ltd., Guangzhou 510663, China
| | - Haiqin Tan
- Hangzhou IngeniGen XunMinKang Biotechnology Co., Ltd., Hangzhou 311121, China
| | - Yuan Fang
- Dinfectome Inc, Shanghai 201321, China
| | - Nan Qin
- Realbio Genomics Institute, Shanghai 201114, China
| | | | - Wei Gai
- WillingMed Technology Beijing Co., Ltd., Beijing, China
| | - Sihong Xu
- National Institutes for Food and Drug Control, Beijing 100050, China.
| | - Wenjuan Wu
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, PR China.
| | - Wenhong Zhang
- Department of Infectious Diseases, Huashan Hospital affiliated to Fudan University, Shanghai 200040, China.
| | - Chuntao Zhang
- National Institutes for Food and Drug Control, Beijing 100050, China.
| | - Youchun Wang
- National Institutes for Food and Drug Control, Beijing 100050, China.
| |
Collapse
|
129
|
Singla RK, He X, Chopra H, Tsagkaris C, Shen L, Kamal MA, Shen B. Natural Products for the Prevention and Control of the COVID-19 Pandemic: Sustainable Bioresources. Front Pharmacol 2021; 12:758159. [PMID: 34925017 PMCID: PMC8671886 DOI: 10.3389/fphar.2021.758159] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/27/2021] [Indexed: 02/05/2023] Open
Abstract
Background: The world has been unprecedentedly hit by a global pandemic which broke the record of deadly pandemics that faced humanity ever since its existence. Even kids are well-versed in the terminologies and basics of the SARS-CoV-2 virus and COVID-19 now. The vaccination program has been successfully launched in various countries, given that the huge global population of concern is still far behind to be vaccinated. Furthermore, the scarcity of any potential drug against the COVID-19-causing virus forces scientists and clinicians to search for alternative and complementary medicines on a war-footing basis. Aims and Objectives: The present review aims to cover and analyze the etiology and epidemiology of COVID-19, the role of intestinal microbiota and pro-inflammatory markers, and most importantly, the natural products to combat this deadly SARS-CoV-2 virus. Methods: A primary literature search was conducted through PubMed and Google Scholar using relevant keywords. Natural products were searched from January 2020 to November 2020. No timeline limit has been imposed on the search for the biological sources of those phytochemicals. Interactive mapping has been done to analyze the multi-modal and multi-target sources. Results and Discussion: The intestinal microbiota and the pro-inflammatory markers that can serve the prognosis, diagnosis, and treatment of COVID-19 were discussed. The literature search resulted in yielding 70 phytochemicals and ten polyherbal formulations which were scientifically analyzed against the SARS-CoV-2 virus and its targets and found significant. Retrospective analyses led to provide information about 165 biological sources that can also be screened if not done earlier. Conclusion: The interactive analysis mapping of biological sources with phytochemicals and targets as well as that of phytochemical class with phytochemicals and COVID-19 targets yielded insights into the multitarget and multimodal evidence-based complementary medicines.
Collapse
Affiliation(s)
- Rajeev K. Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Xuefei He
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, India
| | | | - Li Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Mohammad Amjad Kamal
- West China School of Nursing/Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Enzymoics; Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
130
|
The Potential of Mesenchymal Stem Cells for the Treatment of Cytokine Storm due to COVID-19. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3178796. [PMID: 34840969 PMCID: PMC8626179 DOI: 10.1155/2021/3178796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/24/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022]
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has seriously affected public health and social stability. The main route of the transmission is droplet transmission, where the oral cavity is the most important entry point to the body. Due to both the direct harmful effects of SARS-CoV-2 and disordered immune responses, some COVID-19 patients may progress to acute respiratory distress syndrome or even multiple organ failure. Genetic variants of SARS-CoV-2 have been emerging and circulating around the world. Currently, there is no internationally approved precise treatment for COVID-19. Mesenchymal stem cells (MSCs) can traffic and migrate towards the affected tissue, regulate both the innate and acquired immune systems, and participate in the process of healing. Here, we will discuss and investigate the mechanisms of immune disorder in COVID-19 and the therapeutic activity of MSCs, in particular human gingiva mesenchymal stem cells.
Collapse
|
131
|
Robust Representation and Efficient Feature Selection Allows for Effective Clustering of SARS-CoV-2 Variants. ALGORITHMS 2021. [DOI: 10.3390/a14120348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The widespread availability of large amounts of genomic data on the SARS-CoV-2 virus, as a result of the COVID-19 pandemic, has created an opportunity for researchers to analyze the disease at a level of detail, unlike any virus before it. On the one hand, this will help biologists, policymakers, and other authorities to make timely and appropriate decisions to control the spread of the coronavirus. On the other hand, such studies will help to more effectively deal with any possible future pandemic. Since the SARS-CoV-2 virus contains different variants, each of them having different mutations, performing any analysis on such data becomes a difficult task, given the size of the data. It is well known that much of the variation in the SARS-CoV-2 genome happens disproportionately in the spike region of the genome sequence—the relatively short region which codes for the spike protein(s). In this paper, we propose a robust feature-vector representation of biological sequences that, when combined with the appropriate feature selection method, allows different downstream clustering approaches to perform well on a variety of different measures. We use such proposed approach with an array of clustering techniques to cluster spike protein sequences in order to study the behavior of different known variants that are increasing at a very high rate throughout the world. We use a k-mers based approach first to generate a fixed-length feature vector representation of the spike sequences. We then show that we can efficiently and effectively cluster the spike sequences based on the different variants with the appropriate feature selection. Using a publicly available set of SARS-CoV-2 spike sequences, we perform clustering of these sequences using both hard and soft clustering methods and show that, with our feature selection methods, we can achieve higher F1 scores for the clusters and also better clustering quality metrics compared to baselines.
Collapse
|
132
|
Shan KJ, Wei C, Wang Y, Huan Q, Qian W. Host-specific asymmetric accumulation of mutation types reveals that the origin of SARS-CoV-2 is consistent with a natural process. Innovation (N Y) 2021; 2:100159. [PMID: 34485968 PMCID: PMC8405235 DOI: 10.1016/j.xinn.2021.100159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/26/2021] [Indexed: 12/28/2022] Open
Abstract
The capacity of RNA viruses to adapt to new hosts and rapidly escape the host immune system is largely attributable to de novo genetic diversity that emerges through mutations in RNA. Although the molecular spectrum of de novo mutations-the relative rates at which various base substitutions occur-are widely recognized as informative toward understanding the evolution of a viral genome, little attention has been paid to the possibility of using molecular spectra to infer the host origins of a virus. Here, we characterize the molecular spectrum of de novo mutations for SARS-CoV-2 from transcriptomic data obtained from virus-infected cell lines, enabled by the use of sporadic junctions formed during discontinuous transcription as molecular barcodes. We find that de novo mutations are generated in a replication-independent manner, typically on the genomic strand, and highly dependent on mutagenic mechanisms specific to the host cellular environment. De novo mutations will then strongly influence the types of base substitutions accumulated during SARS-CoV-2 evolution, in an asymmetric manner favoring specific mutation types. Consequently, similarities between the mutation spectra of SARS-CoV-2 and the bat coronavirus RaTG13, which have accumulated since their divergence strongly suggest that SARS-CoV-2 evolved in a host cellular environment highly similar to that of bats before its zoonotic transfer into humans. Collectively, our findings provide data-driven support for the natural origin of SARS-CoV-2.
Collapse
Affiliation(s)
- Ke-Jia Shan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changshuo Wei
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Huan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenfeng Qian
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
133
|
Xiao Q, Shen W, Zou Y, Dong S, Tan Y, Zhang X, Yao L, Li Q, Pei W, Wang T. Sixteen cases of severe pneumonia caused by Chlamydia psittaci in South China investigated via metagenomic next-generation sequencing. J Med Microbiol 2021; 70. [PMID: 34817316 DOI: 10.1099/jmm.0.001456] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Introduction. Chlamydia psittaci is an important cause of community-acquired pneumonia (CAP). The spectrum of CAP due to Chlamydia psittaci ranges from mild, self-limited to acute respiratory failure and the early identification of this disease can be challenging. Metagenomic next-generation sequencing (mNGS) of bronchoalveolar lavage fluid has the potential to improve the pathogen identification in severe CAP.Hypothesis/Gap Statement. Metagenomic next-generation sequencing (mNGS) of bronchoalveolar lavage fluid has the potential to rapidly identify pathogens in severe CAP. The early identification and appropriate use of antibiotics can improve the prognosis of severe CAP caused by Chlamydia psittaci.Aim. The aim of the study is to describe the clinical spectrum of severe psittacosis pneumonia to provide a better understanding of this disease and to demonstrate that mNGS is an effective method for pathogen detection.Methodology. Retrospective case analysis from November 2019 to November 2020 was performed. Sixteen cases of severe psittacosis pneumonia were diagnosed through mNGS. Clinical features, laboratory findings, imaging features, treatment and outcome were summarized.Results. Frequent symptoms included fever (16/16, 100%), dyspnoea (16/16, 100%), cough (12/16, 75%), sputum (11/16, 69%) and headache (9/16, 56%). The median leukocytosis was within the normal range, while C-reactive proteins, CK, LDH, AST, D-Dimer were significantly elevated. The feature of computed tomography included ground-glass opacity with consolidation and multiple lobar distributions. The total number of sequences of Chlamydia psittaci identified from bronchoalveolar lavage by mNGS varied from 58 to 57115. Five patients underwent noninvasive mechanical ventilation, four patients underwent high flow humidified oxygen therapy and one patient underwent invasive mechanical ventilation. Two patients had septic shock needing vasoactive medications. All of the sixteen patients experienced full recoveries.Conclusion. The symptoms of severe CAP caused by Chlamydia psittaci were not typical while laboratory results may have some clues. The mNGS technology can early detect of psittacosis, reduce unnecessary use of antibiotics and short the course of the disease.
Collapse
Affiliation(s)
- Qiang Xiao
- Department of Respiratory Medicine, The First People's Hospital of Changde City, Hunan, PR China
| | - Wei Shen
- Department of Outpatient, The First People's Hospital of Changde City, Hunan, PR China
| | - Yeqiang Zou
- Department of Respiratory Medicine, The First People's Hospital of Changde City, Hunan, PR China
| | - Susu Dong
- Department of Respiratory Medicine, The First People's Hospital of Changde City, Hunan, PR China
| | - Yafen Tan
- Department of Respiratory Medicine, The First People's Hospital of Changde City, Hunan, PR China
| | - Xuan Zhang
- Department of Respiratory Medicine, The First People's Hospital of Changde City, Hunan, PR China
| | - Lu Yao
- Department of Respiratory Medicine, The First People's Hospital of Changde City, Hunan, PR China
| | - Qiuping Li
- Department of Respiratory Medicine, The First People's Hospital of Changde City, Hunan, PR China
| | - Wenjun Pei
- Department of Respiratory Medicine, The First People's Hospital of Changde City, Hunan, PR China
| | - Tianli Wang
- Department of Respiratory Medicine, The First People's Hospital of Changde City, Hunan, PR China
| |
Collapse
|
134
|
Hassani Nejad Z, Fatemi F, Ranaei Siadat SE. An outlook on coronavirus disease 2019 detection methods. J Pharm Anal 2021; 12:205-214. [PMID: 34777894 PMCID: PMC8578030 DOI: 10.1016/j.jpha.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/22/2021] [Accepted: 11/07/2021] [Indexed: 12/15/2022] Open
Abstract
Diagnostic testing plays a fundamental role in the mitigation and containment of coronavirus disease 2019 (COVID-19), as it enables immediate quarantine of those who are infected and contagious and is essential for the epidemiological characterization of the virus and estimating the number of infected cases worldwide. Confirmation of viral infections, such as COVID-19, can be achieved through two general approaches: nucleic acid amplification tests (NAATs) or molecular tests, and serological or antibody-based tests. The genetic material of the pathogen is detected in NAAT, and in serological tests, host antibodies produced in response to the pathogen are identified. Other methods of diagnosing COVID-19 include radiological imaging of the lungs and in vitro detection of viral antigens. This review covers different approaches available to diagnosing COVID-19 by outlining their advantages and shortcomings, as well as appropriate indications for more accurate testing. Diagnostic tests to detect coronavirus disease 2019 (COVID-19). Advantages and disadvantages associated with each detection method. Implications for a more accurate and rapid testing of COVID-19 or other similar future emergent viruses.
Collapse
Affiliation(s)
- Zahra Hassani Nejad
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 1417935840, Iran
| | - Fataneh Fatemi
- Department of Protein Research, Protein Research Center, Shahid Beheshti University, Tehran, 1983969411, Iran
- Corresponding author.
| | - Seyed Ehsan Ranaei Siadat
- Sobhan Recombinant Protein Company, Research and Development Department, Tehran, 1654120871, Iran
- Corresponding author.
| |
Collapse
|
135
|
Genomic diversity and molecular dynamics interaction on mutational variances among RB domains of SARS-CoV-2 interplay drug inactivation. INFECTION GENETICS AND EVOLUTION 2021; 97:105128. [PMID: 34752930 PMCID: PMC8571106 DOI: 10.1016/j.meegid.2021.105128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/16/2021] [Accepted: 10/25/2021] [Indexed: 11/24/2022]
Abstract
The scientific community has been releasing whole genomic sequences of SARS-CoV-2 to facilitate the investigation of molecular features and evolutionary history. We retrieved 36 genomes of 18 prevalent countries of Asia, Europe and America for genomic diversity and mutational analysis. Besides, we studied mutations in the RBD regions of Spike (S) proteins to analyze the drug efficiency against these mutations. In this research, phylogenenetic analysis, evolutionary modeling, substitution pattern analysis, molecular docking, dynamics simulation, etc. were performed. The genomic sequences showed >99% similarity with the reference sequence of China.TN93 + G was predicted as a best nucleotide substitution model. It was revealed that effective transition from the co-existing SARS genome to the SARS-CoV-2 and a noticeable positive selection in the SARS-CoV-2 genomes occurred. Moreover, three mutations in RBD domain, Val/ Phe367, Val/ Leu 382 and Ala/ Val522, were discovered in the genomes from Netherland, Bangladesh and the USA, respectively. Molecular docking and dynamics study showed RBD with mutation Val/Leu382 had the lowest binding affinity with remdesivir. In conclusion, the SARS-CoV-2 genomes are similar, but multiple degrees of transitions and transversions occurred. The mutations cause a significant conformational change, which are needed to be investigated during drug and vaccine development.
Collapse
|
136
|
Dai Q, Ye M, Tang Z, Yu K, Gao Y, Yang Z, Zheng J, Zuo S, Liu Y, Xie F, Han Q, He H, Wang H. Comparison of severe and critical COVID-19 patients imported from Russia with and without influenza A infection in Heilongjiang Province: a retrospective study. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1446. [PMID: 34733998 PMCID: PMC8506785 DOI: 10.21037/atm-21-3912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/26/2021] [Indexed: 12/15/2022]
Abstract
Background The rapid spread of coronavirus disease-19 (COVID-19) poses a global health emergency, and cases entering China from Russia are quite diverse. This study explored and compared the clinical characteristics and outcomes of severe and critically ill COVID-19 patients from Russia with and without influenza A infection, treated in a northern Chinese hospital (Russia imported patients). Methods A total of 32 severe and critically ill Russia-imported COVID-19 patients treated in the Heilongjiang Imported Severe and Critical COVID-19 Treatment Center from April 6 to May 11, 2020 were included, including 8 cases (group A) with and 24 cases (group B) without influenza A infection. The clinical characteristics of each group were compared, including prolonged hospital stay, duration of oxygen therapy, time from onset to a negative SARS-CoV-2 qRT-PCR RNA (Tneg) result, and duration of bacterial infection. Results The results showed that blood group, PaO2/FiO2, prothrombin time (PT), prothrombin activity (PTA), computed tomography (CT) score, hospital stay, duration of oxygenation therapy, Tneg, and duration of bacterial infection were statistically different between the two groups (P<0.05). Multivariant regression analysis showed that the Sequential Organ Failure Assessment (SOFA) score, C-reactive protein (CRP), and influenza A infection were factors influencing hospital stay; SOFA score, CRP, and CT score were factors influencing the duration of oxygenation therapy; PaO2/FiO2, platelet count (PLT), and CRP were factors influencing Tneg; and gender, SOFA score, and influenza A infection were factors influencing the duration of bacterial infection. Conclusions Influenza A infection is common in Russia-imported COVID-19 patients, which can prolong the hospital stay and duration of bacterial infection. Routinely screening and treating influenza A should be conducted early in such patients.
Collapse
Affiliation(s)
- Qingqing Dai
- Department of Critical Care Medicine, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ming Ye
- Department of Critical Care Medicine, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhiqiang Tang
- Department of Critical Care Medicine, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kaijiang Yu
- Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Gao
- Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhenyu Yang
- Department of Critical Care Medicine, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Junbo Zheng
- Department of Critical Care Medicine, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shu Zuo
- Department of Critical Care Medicine, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yan Liu
- Department of Medical Statistics, Harbin Medical University, Harbin, China
| | - Fengjie Xie
- Department of Critical Care Medicine, Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Qiuyuan Han
- Department of Critical Care Medicine, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hua He
- Department of Infectious Disease, Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Hongliang Wang
- Department of Critical Care Medicine, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
137
|
Determination the binding ability of N-acetyl cysteine and its derivatives with SARS-COV-2 main protease using molecular docking and molecular dynamics studies. UKRAINIAN BIOCHEMICAL JOURNAL 2021. [DOI: 10.15407/ubj93.05.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
138
|
Marinho M, Amorim L, Camara R, Oliveira BR, Sobral M, Sampaio S. Happier and further by going together: The importance of software team behaviour during the COVID-19 pandemic. TECHNOLOGY IN SOCIETY 2021; 67:101799. [PMID: 34744214 PMCID: PMC8556187 DOI: 10.1016/j.techsoc.2021.101799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 05/28/2023]
Abstract
The COVID-19 pandemic, and the associated move to remote work and the resulting changes to the normal work routine, have introduced a plethora of new difficulties and challenges for software developers. Recent research has focused on the impact of the COVID-19 pandemic on the developer's wellness, productivity, team collaboration, job satisfaction, and work-life balance. However, research exploring the association between these feelings and team behaviour during such a crisis period has not been previously developed. Moreover, previous research has indicated that organisations are still struggling to understand the pandemic and its relationship with both team behaviour and developer feelings. To address this gap, we analysed how COVID-19 influences a developer's happiness and their feelings of (un)happiness associated with the team's behaviour during the COVID-19 pandemic. A state-of-the-art analysis helped to design a scale that we used in a cross-sectional study of 102 software developers. To test the proposed hypotheses, we conducted exploratory factor analysis and principal component analysis. Our results highlight that happiness positively influences a team's behaviour and that unhappiness negatively affects their work results and productivity. These findings provide software companies and organisations with a better understanding of the importance of team behaviour on individual happiness during crises. These results provide information that managers and companies can use to mitigate potentially negative effects.
Collapse
Affiliation(s)
- Marcelo Marinho
- Department of Computer Science (DC), Federal Rural University of Pernambuco, Avenida Dom Manoel de Medeiros, s/n - Dois Irmãos, Recife, PE, Brazil
| | - Luís Amorim
- Department of Computer Science (DC), Federal Rural University of Pernambuco, Avenida Dom Manoel de Medeiros, s/n - Dois Irmãos, Recife, PE, Brazil
| | - Rafael Camara
- Department of Computer Science (DC), Federal Rural University of Pernambuco, Avenida Dom Manoel de Medeiros, s/n - Dois Irmãos, Recife, PE, Brazil
| | - Brigitte Renata Oliveira
- Department of Business, Federal Rural University of Pernambuco, Avenida Dom Manoel de Medeiros, s/n - Dois Irmãos, Recife, PE, Brazil
| | - Marcos Sobral
- Department of Business, Federal Rural University of Pernambuco, Avenida Dom Manoel de Medeiros, s/n - Dois Irmãos, Recife, PE, Brazil
| | - Suzana Sampaio
- Department of Computer Science (DC), Federal Rural University of Pernambuco, Avenida Dom Manoel de Medeiros, s/n - Dois Irmãos, Recife, PE, Brazil
| |
Collapse
|
139
|
Tan HW, Xu YM, Lau ATY. Human bronchial-pulmonary proteomics in coronavirus disease 2019 (COVID-19) pandemic: applications and implications. Expert Rev Proteomics 2021; 18:925-938. [PMID: 34812694 DOI: 10.1080/14789450.2021.2010549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/22/2021] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The outbreak of the newly discovered human coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has disrupted the normal life of almost every civilization worldwide. Studies have shown that the coronavirus disease 2019 (COVID-19) caused by the SARS-CoV-2 can affect multiple human organs and physiological systems, but the respiratory system remains the primary location for viral infection. AREAS COVERED We summarize how omics technologies are used in SARS-CoV-2 research and specifically review the current knowledge of COVID-19 from the aspect of human bronchial-pulmonary proteomics. Also, knowledge gaps in COVID-19 that can be fulfilled by proteomics are discussed. EXPERT OPINION Overall, human bronchial-pulmonary proteomics plays an important role in revealing the dynamics, functions, tropism, and pathogenicity of SARS-CoV-2, which is crucial for COVID-19 biomarker and therapeutic target discoveries. To more fully understand the impact of COVID-19, research from various angles using multi-omics approaches should also be conducted on the lungs as well as other organs.
Collapse
Affiliation(s)
- Heng Wee Tan
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, People's Republic of China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, People's Republic of China
| | - Andy T Y Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, People's Republic of China
| |
Collapse
|
140
|
Santos PD, Ziegler U, Szillat KP, Szentiks CA, Strobel B, Skuballa J, Merbach S, Grothmann P, Tews BA, Beer M, Höper D. In action-an early warning system for the detection of unexpected or novel pathogens. Virus Evol 2021; 7:veab085. [PMID: 34703624 PMCID: PMC8542707 DOI: 10.1093/ve/veab085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/06/2021] [Accepted: 09/23/2021] [Indexed: 12/27/2022] Open
Abstract
Proactive approaches in preventing future epidemics include pathogen discovery prior to their emergence in human and/or animal populations. Playing an important role in pathogen discovery, high-throughput sequencing (HTS) enables the characterization of microbial and viral genetic diversity within a given sample. In particular, metagenomic HTS allows the unbiased taxonomic profiling of sequences; hence, it can identify novel and highly divergent pathogens such as viruses. Newly discovered viral sequences must be further investigated using genomic characterization, molecular and serological screening, and/or invitro and invivo characterization. Several outbreak and surveillance studies apply unbiased generic HTS to characterize the whole genome sequences of suspected pathogens. In contrast, this study aimed to screen for novel and unexpected pathogens in previously generated HTS datasets and use this information as a starting point for the establishment of an early warning system (EWS). As a proof of concept, the EWS was applied to HTS datasets and archived samples from the 2018–9 West Nile virus (WNV) epidemic in Germany. A metagenomics read classifier detected sequences related to genome sequences of various members of Riboviria. We focused the further EWS investigation on viruses belonging to the families Peribunyaviridae and Reoviridae, under suspicion of causing co-infections in WNV-infected birds. Phylogenetic analyses revealed that the reovirus genome sequences clustered with sequences assigned to the species Umatilla virus (UMAV), whereas a new peribunyavirid, tentatively named ‘Hedwig virus’ (HEDV), belonged to a putative novel genus of the family Peribunyaviridae. In follow-up studies, newly developed molecular diagnostic assays detected fourteen UMAV-positive wild birds from different German cities and eight HEDV-positive captive birds from two zoological gardens. UMAV was successfully cultivated in mosquito C6/36 cells inoculated with a blackbird liver. In conclusion, this study demonstrates the power of the applied EWS for the discovery and characterization of unexpected viruses in repurposed sequence datasets, followed by virus screening and cultivation using archived sample material. The EWS enhances the strategies for pathogen recognition before causing sporadic cases and massive outbreaks and proves to be a reliable tool for modern outbreak preparedness.
Collapse
Affiliation(s)
- Pauline Dianne Santos
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Diagnostic Virology, Südufer 10, Greifswald, Insel Riems 17493, Germany
| | - Ute Ziegler
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Südufer 10, Greifswald, Insel Riems 17493, Germany
| | - Kevin P Szillat
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Diagnostic Virology, Südufer 10, Greifswald, Insel Riems 17493, Germany
| | - Claudia A Szentiks
- 4Department of Wildlife Diseases, Leibniz-Institute for Zoo- and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, Berlin 10315, Germany
| | - Birte Strobel
- Chemical and Veterinary Investigations Office Karlsruhe (CVUA Karlsruhe), Weissenburgerstrasse 3, Karlsruhe 76187, Germany
| | - Jasmin Skuballa
- Chemical and Veterinary Investigations Office Karlsruhe (CVUA Karlsruhe), Weissenburgerstrasse 3, Karlsruhe 76187, Germany
| | - Sabine Merbach
- State Institute for Chemical and Veterinary Analysis (CVUA) Westfalen, Zur Taubeneiche 10-12, Arnsberg 59821, Germany
| | - Pierre Grothmann
- Practice for Zoo, Game and Wild Animals, Lintiger Str. 74, Geestland 27624, Germany
| | - Birke Andrea Tews
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Infectology, Südufer 10, Greifswald, Insel Riems 17493, Germany
| | - Martin Beer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Diagnostic Virology, Südufer 10, Greifswald, Insel Riems 17493, Germany
| | - Dirk Höper
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Diagnostic Virology, Südufer 10, Greifswald, Insel Riems 17493, Germany
| |
Collapse
|
141
|
Zhang X, Jiang C, Zhou C. Diagnosis of Enterococcus faecalis meningitis associated with long-term cerebrospinal fluid rhinorrhoea using metagenomics next-generation sequencing: a case report. BMC Infect Dis 2021; 21:1105. [PMID: 34702199 PMCID: PMC8549229 DOI: 10.1186/s12879-021-06797-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 10/15/2021] [Indexed: 12/22/2022] Open
Abstract
Background Enterococcus faecalis (E. faecalis) meningitis is a rare disease, and most of its occurrences are of post-operative origin. Its rapid diagnosis is critical for effective clinical management. Currently, the diagnosis is focused on cerebrospinal fluid (CSF) culture, but this is quite limited. By comparison, metagenomic next-generation sequencing (mNGS) can overcome the deficiencies of conventional diagnostic approaches. To our knowledge, mNGS analysis of the CSF in the diagnosis of E. faecalis meningitis has been not reported. Case presentation We report the case of E. faecalis meningitis in a 70-year-old female patient without a preceding history of head injury or surgery, but with an occult sphenoid sinus bone defect. Enterococcus faecalis meningitis was diagnosed using mNGS of CSF, and she recovered satisfactorily following treatment with appropriate antibiotics and surgical repair of the skull bone defect. Conclusions Non-post-traumatic or post-surgical E. faecalis meningitis can occur in the presence of occult defects in the cranium, and mNGS technology could be helpful in diagnosis in the absence of a positive CSF culture.
Collapse
Affiliation(s)
- Xiaobo Zhang
- Department of Neurology, First People's Hospital of Changde City, Changde, Hunan, China
| | - Chao Jiang
- Department of Neurology, First People's Hospital of Changde City, Changde, Hunan, China
| | - Chaojun Zhou
- Department of Neurology, First People's Hospital of Changde City, Changde, Hunan, China.
| |
Collapse
|
142
|
Sarker M, Hasan A, Rafi M, Hossain M, El-Mageed H, Elsapagh R, Capasso R, Emran T. A Comprehensive Overview of the Newly Emerged COVID-19 Pandemic: Features, Origin, Genomics, Epidemiology, Treatment, and Prevention. BIOLOGICS 2021; 1:357-383. [DOI: 10.3390/biologics1030021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The coronavirus disease 2019 (COVID-19), a life-threatening pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has resulted in massive destruction and is still continuously adding to its death toll. The advent of this global outbreak has not yet been confirmed; however, investigation for suitable prophylaxis against this lethal virus is being carried out by experts all around the globe. The SARS-CoV-2 belongs to the Coronaviridae superfamily, like the other previously occurring human coronavirus variants. To better understand a new virus variant, such as the SARS-CoV-2 delta variant, it is vital to investigate previous virus strains, including their genomic composition and functionality. Our study aimed at addressing the basic overview of the virus’ profile that may provide the scientific community with evidence-based insights into COVID-19. Therefore, this study accomplished a comprehensive literature review that includes the virus’ origin, classification, structure, life cycle, genome, mutation, epidemiology, and subsequent essential factors associated with host–virus interaction. Moreover, we summarized the considerable diagnostic measures, treatment options, including multiple therapeutic approaches, and prevention, as well as future directions that may reduce the impact and misery caused by this devastating pandemic. The observations and data provided here have been screened and accumulated through extensive literature study, hence this study will help the scientific community properly understand this new virus and provide further leads for therapeutic interventions.
Collapse
Affiliation(s)
- Md. Sarker
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - A. Hasan
- Industrial Biotechnology Laboratory, Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Md. Rafi
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md. Hossain
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka 1205, Bangladesh
| | - H. El-Mageed
- Micro-Analysis and Environmental Research and Community Services Center, Faculty of Science, Beni-Suef University, Beni-Suef City 62521, Egypt
| | - Reem Elsapagh
- Faculty of Pharmacy, Cairo University, Cairo 12613, Egypt
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Talha Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| |
Collapse
|
143
|
Comparison of hydroxychloroquine plus moxifloxacin versus hydroxychloroquine alone on corrected QT interval prolongation in COVID-19 patients. COR ET VASA 2021. [DOI: 10.33678/cor.2021.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
144
|
Evaluation of Tele-rheumatology during the COVID-19 Pandemic in Asian Population: A Pilot Study. Int J Telemed Appl 2021; 2021:5558826. [PMID: 34630561 PMCID: PMC8497142 DOI: 10.1155/2021/5558826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/20/2021] [Accepted: 09/03/2021] [Indexed: 12/15/2022] Open
Abstract
Objective Rheumatoid arthritis (RA) is a chronic autoimmune condition associated with a potential for deformities. It is one of the common conditions to seek health care. Hence, the present study was conducted to assess the telemedicine services for patients suffering from rheumatoid arthritis during the COVID-19 pandemic in an Asian Indian population. Methods A prospective study was conducted (March 2020-June 2020) in the telemedicine department of a premier northern Indian tertiary care institution. Out of the total patients enrolled (N = 7577) in telemedicine services, 122 rheumatoid arthritis patients (1.6%) were followed for 1 month to assess change in functional status by modified Health Assessment Questionnaire (mHAQ). Telephonic interviews of the enrolled patients were conducted to determine the level of understanding of advice given by consultants, barriers during the consultation, and satisfaction with teleconsultations for rheumatology clinics. Results For the native people, language of the clinicians was the main barrier (20%) in telerheumatology. Saving of time and money was observed as beneficial factors for patients. More than three-quarters of all rheumatoid arthritis patients were ready to use teleconsultation in the near future. A similar proportion of patients were in support for the recommendation of these services to other persons. Conclusion We report the successful use of telemedicine services in the evaluation and management of rheumatic diseases in the current COVID-19 pandemic situation.
Collapse
|
145
|
Wu Z, Jin Q, Wu G, Lu J, Li M, Guo D, Lan K, Feng L, Qian Z, Ren L, Tan W, Xu W, Yang W, Wang J, Wang C. SARS-CoV-2's origin should be investigated worldwide for pandemic prevention. Lancet 2021; 398:1299-1303. [PMID: 34543611 PMCID: PMC8448491 DOI: 10.1016/s0140-6736(21)02020-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/13/2021] [Accepted: 08/31/2021] [Indexed: 02/07/2023]
Affiliation(s)
- Zhiqiang Wu
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Qi Jin
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Guizhen Wu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, PR China
| | - Mingkun Li
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, PR China
| | - Deyin Guo
- School of Medicine, Sun Yat-sen University, Shenzhen, PR China
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, PR China
| | - Luzhao Feng
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Zhaohui Qian
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Lili Ren
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Wenjie Tan
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Wenbo Xu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Weizhong Yang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Jianwei Wang
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China.
| | - Chen Wang
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China; Chinese Academy of Engineering, Beijing, PR China
| |
Collapse
|
146
|
Shoshan-Barmatz V, Anand U, Nahon-Crystal E, Di Carlo M, Shteinfer-Kuzmine A. Adverse Effects of Metformin From Diabetes to COVID-19, Cancer, Neurodegenerative Diseases, and Aging: Is VDAC1 a Common Target? Front Physiol 2021; 12:730048. [PMID: 34671273 PMCID: PMC8521008 DOI: 10.3389/fphys.2021.730048] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
Metformin has been used for treating diabetes mellitus since the late 1950s. In addition to its antihyperglycemic activity, it was shown to be a potential drug candidate for treating a range of other diseases that include various cancers, cardiovascular diseases, diabetic kidney disease, neurodegenerative diseases, renal diseases, obesity, inflammation, COVID-19 in diabetic patients, and aging. In this review, we focus on the important aspects of mitochondrial dysfunction in energy metabolism and cell death with their gatekeeper VDAC1 (voltage-dependent anion channel 1) as a possible metformin target, and summarize metformin's effects in several diseases and gut microbiota. We question how the same drug can act on diseases with opposite characteristics, such as increasing apoptotic cell death in cancer, while inhibiting it in neurodegenerative diseases. Interestingly, metformin's adverse effects in many diseases all show VDAC1 involvement, suggesting that it is a common factor in metformin-affecting diseases. The findings that metformin has an opposite effect on various diseases are consistent with the fact that VDAC1 controls cell life and death, supporting the idea that it is a target for metformin.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | | | - Marta Di Carlo
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Anna Shteinfer-Kuzmine
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beersheba, Israel
| |
Collapse
|
147
|
Sulaiman I, Chung M, Angel L, Tsay JCJ, Wu BG, Yeung ST, Krolikowski K, Li Y, Duerr R, Schluger R, Thannickal SA, Koide A, Rafeq S, Barnett C, Postelnicu R, Wang C, Banakis S, Pérez-Pérez L, Shen G, Jour G, Meyn P, Carpenito J, Liu X, Ji K, Collazo D, Labarbiera A, Amoroso N, Brosnahan S, Mukherjee V, Kaufman D, Bakker J, Lubinsky A, Pradhan D, Sterman DH, Weiden M, Heguy A, Evans L, Uyeki TM, Clemente JC, de Wit E, Schmidt AM, Shopsin B, Desvignes L, Wang C, Li H, Zhang B, Forst CV, Koide S, Stapleford KA, Khanna KM, Ghedin E, Segal LN. Microbial signatures in the lower airways of mechanically ventilated COVID-19 patients associated with poor clinical outcome. Nat Microbiol 2021; 6:1245-1258. [PMID: 34465900 PMCID: PMC8484067 DOI: 10.1038/s41564-021-00961-5] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023]
Abstract
Respiratory failure is associated with increased mortality in COVID-19 patients. There are no validated lower airway biomarkers to predict clinical outcome. We investigated whether bacterial respiratory infections were associated with poor clinical outcome of COVID-19 in a prospective, observational cohort of 589 critically ill adults, all of whom required mechanical ventilation. For a subset of 142 patients who underwent bronchoscopy, we quantified SARS-CoV-2 viral load, analysed the lower respiratory tract microbiome using metagenomics and metatranscriptomics and profiled the host immune response. Acquisition of a hospital-acquired respiratory pathogen was not associated with fatal outcome. Poor clinical outcome was associated with lower airway enrichment with an oral commensal (Mycoplasma salivarium). Increased SARS-CoV-2 abundance, low anti-SARS-CoV-2 antibody response and a distinct host transcriptome profile of the lower airways were most predictive of mortality. Our data provide evidence that secondary respiratory infections do not drive mortality in COVID-19 and clinical management strategies should prioritize reducing viral replication and maximizing host responses to SARS-CoV-2.
Collapse
Affiliation(s)
- Imran Sulaiman
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Department of Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Matthew Chung
- Systems Genomics Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Luis Angel
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Department of Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Jun-Chieh J Tsay
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Department of Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Division of Pulmonary and Critical Care Medicine, VA New York Harbor Healthcare System, New York, NY, USA
| | - Benjamin G Wu
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Department of Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Division of Pulmonary and Critical Care Medicine, VA New York Harbor Healthcare System, New York, NY, USA
| | - Stephen T Yeung
- Department of Microbiology, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Kelsey Krolikowski
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Department of Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Yonghua Li
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Department of Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Ralf Duerr
- Department of Microbiology, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Rosemary Schluger
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Department of Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Sara A Thannickal
- Department of Microbiology, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Akiko Koide
- Department of Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, NY, USA
| | - Samaan Rafeq
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Department of Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Clea Barnett
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Department of Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Radu Postelnicu
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Department of Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Chang Wang
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Stephanie Banakis
- Systems Genomics Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lizzette Pérez-Pérez
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Guomiao Shen
- Department of Pathology, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - George Jour
- Department of Pathology, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Peter Meyn
- Division of Pediatrics, Longhua Hospital affiliated to Shanghai University of Chinese Medicine, Shanghai, China
| | - Joseph Carpenito
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Department of Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Xiuxiu Liu
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Division of Pediatrics, Longhua Hospital affiliated to Shanghai University of Chinese Medicine, Shanghai, China
| | - Kun Ji
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Dongfang Hospital affiliated to Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Destiny Collazo
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Department of Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Anthony Labarbiera
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Department of Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Nancy Amoroso
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Department of Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Shari Brosnahan
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Department of Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Vikramjit Mukherjee
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Department of Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - David Kaufman
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Department of Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Jan Bakker
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Department of Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Anthony Lubinsky
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Department of Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Deepak Pradhan
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Department of Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Daniel H Sterman
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Department of Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Michael Weiden
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Department of Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Adriana Heguy
- Department of Pathology, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- NYU Langone Genome Technology Center, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Laura Evans
- Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA, USA
| | - Timothy M Uyeki
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jose C Clemente
- Department of Genetics and Genomic Sciences and Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emmie de Wit
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Bo Shopsin
- Division of Infectious Diseases, Department of Medicine, New York University School of Medicine, NYU Langone Health, New York, NY, USA
| | - Ludovic Desvignes
- Department of Microbiology, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Chan Wang
- Department of Population Health, New York University School of Medicine, NYU Langone Health, New York, NY, USA
| | - Huilin Li
- Department of Population Health, New York University School of Medicine, NYU Langone Health, New York, NY, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christian V Forst
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shohei Koide
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Kenneth A Stapleford
- Department of Microbiology, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Kamal M Khanna
- Department of Microbiology, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, NY, USA
| | - Elodie Ghedin
- Systems Genomics Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY, USA.
| | - Leopoldo N Segal
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA.
- Department of Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA.
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
148
|
Tarczewska A, Kolonko-Adamska M, Zarębski M, Dobrucki J, Ożyhar A, Greb-Markiewicz B. The method utilized to purify the SARS-CoV-2 N protein can affect its molecular properties. Int J Biol Macromol 2021; 188:391-403. [PMID: 34371045 PMCID: PMC8343380 DOI: 10.1016/j.ijbiomac.2021.08.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/30/2022]
Abstract
One of the main structural proteins of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the nucleocapsid protein (N). The basic function of this protein is to bind genomic RNA and to form a protective nucleocapsid in the mature virion. The intrinsic ability of the N protein to interact with nucleic acids makes its purification very challenging. Therefore, typically employed purification methods appear to be insufficient for removing nucleic acid contamination. In this study, we present a novel purification protocol that enables the N protein to be prepared without any bound nucleic acids. We also performed comparative structural analysis of the N protein contaminated with nucleic acids and free of contamination and showed significant differences in the structural and phase separation properties of the protein. These results indicate that nucleic-acid contamination may severely affect molecular properties of the purified N protein. In addition, the notable ability of the N protein to form condensates whose morphology and behaviour suggest more ordered forms resembling gel-like or solid structures is described.
Collapse
Affiliation(s)
- Aneta Tarczewska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| | - Marta Kolonko-Adamska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| | - Mirosław Zarębski
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland
| | - Jurek Dobrucki
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland
| | - Andrzej Ożyhar
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Beata Greb-Markiewicz
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| |
Collapse
|
149
|
Stout AE, Guo Q, Millet JK, Whittaker1 GR. Viral and Host Attributes Underlying the Origins of Zoonotic Coronaviruses in Bats. Comp Med 2021; 71:442-450. [PMID: 34635199 PMCID: PMC8594259 DOI: 10.30802/aalas-cm-21-000027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/10/2021] [Accepted: 09/15/2021] [Indexed: 01/01/2023]
Abstract
With a presumed origin in bats, the COVID-19 pandemic has been a major source of morbidity and mortality in the hu- man population, and the causative agent, SARS-CoV-2, aligns most closely at the genome level with the bat coronaviruses RaBtCoV4991/RaTG13 and RmYN02. The ability of bats to provide reservoirs of numerous viruses in addition to coronaviruses remains an active area of research. Unique aspects of the physiology of the chiropteran immune system may contribute to the ability of bats to serve as viral reservoirs. The coronavirus spike protein plays important roles in viral pathogenesis and the immune response. Although much attention has focused on the spike receptor-binding domain, a unique aspect of SARS-CoV-2 as compared with its closest relatives is the presence of a furin cleavage site in the S1-S2 region of the spike protein. Proteolytic activation is likely an important feature that allows SARS-CoV-2-and other coronaviruses-to overcome the species barriers and thus cause human disease. The diversity of bat species limits the ability to draw broad conclusions about viral pathogenesis, but comparisons across species and with reference to humans and other susceptible mammals may guide future research in this regard.
Collapse
Affiliation(s)
| | - Qinghua Guo
- Master of Public Health Program, Cornell University, Ithaca, New York; and
| | - Jean K Millet
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | - Gary R Whittaker1
- Master of Public Health Program, Cornell University, Ithaca, New York; and
| |
Collapse
|
150
|
Pang SN, Lin YL, Yu KJ, Chiou YE, Leung WH, Weng WH. An Effective SARS-CoV-2 Electrochemical Biosensor with Modifiable Dual Probes Using a Modified Screen-Printed Carbon Electrode. MICROMACHINES 2021; 12:mi12101171. [PMID: 34683225 PMCID: PMC8538778 DOI: 10.3390/mi12101171] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 01/28/2023]
Abstract
Due to the severe acute respiratory syndrome coronavirus (SARS-CoV-2, also called coronavirus disease 2019 (COVID-19)) pandemic starting in early 2020, all social activities ceased in order to combat its high transmission rate. Since vaccination combats one aspect for halting the spread of the virus, the biosensor community has looked at another aspect of reducing the burden of the COVID-19 pandemic on society by developing biosensors that incorporate point-of-care (POC) testing and the rapid identification of those affected in order to deploy appropriate measures. In this study, we aim first to propose a screen-printed carbon electrode (SPCE)-based electrochemical biosensor that meets the ASSURED criteria (i.e., affordable, sensitive, specific, user-friendly, rapid, equipment-free, and deliverable) for POC testing, but more importantly, we describe the novelty of our biosensor’s modifiability that uses custom dual probes made from target nucleic acid sequences. Additionally, regarding the sensitivity of the biosensor, the lowest sample concentration was 10 pM (p = 0.0257) without amplification, which might challenge the traditional technique of reverse transcriptase-polymerase chain reaction (RT-PCR). The purpose of this study is to develop a means of diagnostics for the current pandemic as well as to provide an established POC platform for future epidemics.
Collapse
Affiliation(s)
- Sow-Neng Pang
- Department of General Medicine, Mater Misericordiae University Hospital, 351402 Dublin, Ireland;
| | - Yu-Lun Lin
- Department of Chemical Engineering and Biotechnology, Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei City 106, Taiwan; (Y.-L.L.); (K.-J.Y.)
| | - Kai-Jie Yu
- Department of Chemical Engineering and Biotechnology, Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei City 106, Taiwan; (Y.-L.L.); (K.-J.Y.)
- Division of Urology, Department of Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Yueh-Er Chiou
- Department of Nursing, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan;
| | - Wai-Hung Leung
- Division of Colorectal Surgery, Department of Surgery, Mackay Memorial Hospital, Taipei City 104, Taiwan
- Correspondence: (W.-H.L.); (W.-H.W.); Tel.: +886-2-2771-2171 (ext. 2529) (W.-H.W.); Fax: +886-2-2776-5084 (W.-H.W.)
| | - Wen-Hui Weng
- Department of Chemical Engineering and Biotechnology, Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei City 106, Taiwan; (Y.-L.L.); (K.-J.Y.)
- Correspondence: (W.-H.L.); (W.-H.W.); Tel.: +886-2-2771-2171 (ext. 2529) (W.-H.W.); Fax: +886-2-2776-5084 (W.-H.W.)
| |
Collapse
|