101
|
Vignaud T, Copos C, Leterrier C, Toro-Nahuelpan M, Tseng Q, Mahamid J, Blanchoin L, Mogilner A, Théry M, Kurzawa L. Stress fibres are embedded in a contractile cortical network. NATURE MATERIALS 2021; 20:410-420. [PMID: 33077951 PMCID: PMC7610471 DOI: 10.1038/s41563-020-00825-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 09/14/2020] [Indexed: 05/06/2023]
Abstract
Contractile actomyosin networks are responsible for the production of intracellular forces. There is increasing evidence that bundles of actin filaments form interconnected and interconvertible structures with the rest of the network. In this study, we explored the mechanical impact of these interconnections on the production and distribution of traction forces throughout the cell. By using a combination of hydrogel micropatterning, traction force microscopy and laser photoablation, we measured the relaxation of traction forces in response to local photoablations. Our experimental results and modelling of the mechanical response of the network revealed that bundles were fully embedded along their entire length in a continuous and contractile network of cortical filaments. Moreover, the propagation of the contraction of these bundles throughout the entire cell was dependent on this embedding. In addition, these bundles appeared to originate from the alignment and coalescence of thin and unattached cortical actin filaments from the surrounding mesh.
Collapse
Affiliation(s)
- Timothée Vignaud
- CytoMorpho Lab, Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire et Végétale, Grenoble-Alpes University/CEA/CNRS/INRA, Grenoble, France
- CytoMorpho Lab, Hôpital Saint Louis, Institut Universitaire d'Hématologie, Université Paris Diderot/CEA/INSERM, Paris, France
- Clinique de Chirurgie Digestive et Endocrinienne, Hôtel Dieu, Nantes, France
| | - Calina Copos
- Courant Institute and Department of Biology, New York University, New York, NY, USA
| | - Christophe Leterrier
- NeuroCyto, Institute of NeuroPhysiopathology (INP), CNRS, Aix Marseille Université, Marseille, France
| | - Mauricio Toro-Nahuelpan
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Qingzong Tseng
- CytoMorpho Lab, Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire et Végétale, Grenoble-Alpes University/CEA/CNRS/INRA, Grenoble, France
- CytoMorpho Lab, Hôpital Saint Louis, Institut Universitaire d'Hématologie, Université Paris Diderot/CEA/INSERM, Paris, France
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Laurent Blanchoin
- CytoMorpho Lab, Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire et Végétale, Grenoble-Alpes University/CEA/CNRS/INRA, Grenoble, France
- CytoMorpho Lab, Hôpital Saint Louis, Institut Universitaire d'Hématologie, Université Paris Diderot/CEA/INSERM, Paris, France
| | - Alex Mogilner
- Courant Institute and Department of Biology, New York University, New York, NY, USA.
| | - Manuel Théry
- CytoMorpho Lab, Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire et Végétale, Grenoble-Alpes University/CEA/CNRS/INRA, Grenoble, France.
- CytoMorpho Lab, Hôpital Saint Louis, Institut Universitaire d'Hématologie, Université Paris Diderot/CEA/INSERM, Paris, France.
| | - Laetitia Kurzawa
- CytoMorpho Lab, Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire et Végétale, Grenoble-Alpes University/CEA/CNRS/INRA, Grenoble, France.
- CytoMorpho Lab, Hôpital Saint Louis, Institut Universitaire d'Hématologie, Université Paris Diderot/CEA/INSERM, Paris, France.
| |
Collapse
|
102
|
Affiliation(s)
- Guillaume Charras
- London Centre for Nanotechnology, University College London, London, UK.
- Department of Cell and Developmental Biology, University College London, London, UK.
- Institute for the Physics of Living Systems, University College London, London, UK.
| |
Collapse
|
103
|
Dexamethasone accelerates muscle regeneration by modulating kinesin-1-mediated focal adhesion signals. Cell Death Discov 2021; 7:35. [PMID: 33597503 PMCID: PMC7889929 DOI: 10.1038/s41420-021-00412-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 01/11/2023] Open
Abstract
During differentiation, skeletal muscle develops mature multinucleated muscle fibers, which could contract to exert force on a substrate. Muscle dysfunction occurs progressively in patients with muscular dystrophy, leading to a loss of the ability to walk and eventually to death. The synthetic glucocorticoid dexamethasone (Dex) has been used therapeutically to treat muscular dystrophy by an inhibition of inflammation, followed by slowing muscle degeneration and stabilizing muscle strength. Here, in mice with muscle injury, we found that Dex significantly promotes muscle regeneration via promoting kinesin-1 motor activity. Nevertheless, how Dex promotes myogenesis through kinesin-1 motors remains unclear. We found that Dex directly increases kinesin-1 motor activity, which is required for the expression of a myogenic marker (muscle myosin heavy chain 1/2), and also for the process of myoblast fusion and the formation of polarized myotubes. Upon differentiation, kinesin-1 mediates the recruitment of integrin β1 onto microtubules allowing delivery of the protein into focal adhesions. Integrin β1-mediated focal adhesion signaling then guides myoblast fusion towards a polarized morphology. By imposing geometric constrains via micropatterns, we have proved that cell adhesion is able to rescue the defects caused by kinesin-1 inhibition during the process of myogenesis. These discoveries reveal a mechanism by which Dex is able to promote myogenesis, and lead us towards approaches that are more efficient in improving skeletal muscle regeneration.
Collapse
|
104
|
Patel S, McKeon D, Sao K, Yang C, Naranjo NM, Svitkina TM, Petrie RJ. Myosin II and Arp2/3 cross-talk governs intracellular hydraulic pressure and lamellipodia formation. Mol Biol Cell 2021; 32:579-589. [PMID: 33502904 PMCID: PMC8101460 DOI: 10.1091/mbc.e20-04-0227] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Human fibroblasts can switch between lamellipodia-dependent and -independent migration mechanisms on two-dimensional surfaces and in three-dimensional (3D) matrices. RhoA GTPase activity governs the switch from low-pressure lamellipodia to high-pressure lobopodia in response to the physical structure of the 3D matrix. Inhibiting actomyosin contractility in these cells reduces intracellular pressure and reverts lobopodia to lamellipodial protrusions via an unknown mechanism. To test the hypothesis that high pressure physically prevents lamellipodia formation, we manipulated pressure by activating RhoA or changing the osmolarity of the extracellular environment and imaged cell protrusions. We find RhoA activity inhibits Rac1-mediated lamellipodia formation through two distinct pathways. First, RhoA boosts intracellular pressure by increasing actomyosin contractility and water influx but acts upstream of Rac1 to inhibit lamellipodia formation. Increasing osmotic pressure revealed a second RhoA pathway, which acts through nonmuscle myosin II (NMII) to disrupt lamellipodia downstream from Rac1 and elevate pressure. Interestingly, Arp2/3 inhibition triggered a NMII-dependent increase in intracellular pressure, along with lamellipodia disruption. Together, these results suggest that actomyosin contractility and water influx are coordinated to increase intracellular pressure, and RhoA signaling can inhibit lamellipodia formation via two distinct pathways in high-pressure cells.
Collapse
Affiliation(s)
- Shivani Patel
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | - Donna McKeon
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | - Kimheak Sao
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | - Changsong Yang
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Nicole M Naranjo
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | - Tatyana M Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Ryan J Petrie
- Department of Biology, Drexel University, Philadelphia, PA 19104
| |
Collapse
|
105
|
Schreiber C, Amiri B, Heyn JCJ, Rädler JO, Falcke M. On the adhesion-velocity relation and length adaptation of motile cells on stepped fibronectin lanes. Proc Natl Acad Sci U S A 2021; 118:e2009959118. [PMID: 33483418 PMCID: PMC7869109 DOI: 10.1073/pnas.2009959118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The biphasic adhesion-velocity relation is a universal observation in mesenchymal cell motility. It has been explained by adhesion-promoted forces pushing the front and resisting motion at the rear. Yet, there is little quantitative understanding of how these forces control cell velocity. We study motion of MDA-MB-231 cells on microlanes with fields of alternating Fibronectin densities to address this topic and derive a mathematical model from the leading-edge force balance and the force-dependent polymerization rate. It reproduces quantitatively our measured adhesion-velocity relation and results with keratocytes, PtK1 cells, and CHO cells. Our results confirm that the force pushing the leading-edge membrane drives lamellipodial retrograde flow. Forces resisting motion originate along the whole cell length. All motion-related forces are controlled by adhesion and velocity, which allows motion, even with higher Fibronectin density at the rear than at the front. We find the pathway from Fibronectin density to adhesion structures to involve strong positive feedbacks. Suppressing myosin activity reduces the positive feedback. At transitions between different Fibronectin densities, steady motion is perturbed and leads to changes of cell length and front and rear velocity. Cells exhibit an intrinsic length set by adhesion strength, which, together with the length dynamics, suggests a spring-like front-rear interaction force. We provide a quantitative mechanistic picture of the adhesion-velocity relation and cell response to adhesion changes integrating force-dependent polymerization, retrograde flow, positive feedback from integrin to adhesion structures, and spring-like front-rear interaction.
Collapse
Affiliation(s)
- Christoph Schreiber
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| | - Behnam Amiri
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Johannes C J Heyn
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| | - Joachim O Rädler
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, 80539 Munich, Germany;
| | - Martin Falcke
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany;
- Department of Physics, Humboldt University, 12489 Berlin, Germany
| |
Collapse
|
106
|
Onken MD, Blumer KJ, Cooper JA. Uveal melanoma cells use ameboid and mesenchymal mechanisms of cell motility crossing the endothelium. Mol Biol Cell 2021; 32:413-421. [PMID: 33405963 PMCID: PMC8098856 DOI: 10.1091/mbc.e20-04-0241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Uveal melanomas (UMs) are malignant cancers arising from the pigmented layers of the eye. UM cells spread through the bloodstream, and circulating UM cells are detectable in patients before metastases appear. Extravasation of UM cells is necessary for formation of metastases, and transendothelial migration (TEM) is a key step in extravasation. UM cells execute TEM via a stepwise process involving the actin-based processes of ameboid blebbing and mesenchymal lamellipodial protrusion. UM cancers are driven by oncogenic mutations that activate Gαq/11, and this activates TRIO, a guanine nucleotide exchange factor for RhoA and Rac1. We found that pharmacologic inhibition of Gαq/11 in UM cells reduced TEM. Inhibition of the RhoA pathway blocked amoeboid motility but led to enhanced TEM; in contrast, inhibition of the Rac1 pathway decreased mesenchymal motility and reduced TEM. Inhibition of Arp2/3 complex allowed cells to transmigrate without intercalation, a direct mechanism similar to the one often displayed by immune cells. BAP1-deficient (+/–) UM subclones displayed motility behavior and increased levels of TEM, similar to the effects of RhoA inhibitors. We conclude that RhoA and Rac1 signaling pathways, downstream of oncogenic Gαq/11, combine with pathways regulated by BAP1 to control the motility and transmigration of UM cells.
Collapse
Affiliation(s)
- Michael D Onken
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110
| | - Kendall J Blumer
- Department of Cell Biology & Physiology, Washington University School of Medicine, Saint Louis, MO 63110
| | - John A Cooper
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110
| |
Collapse
|
107
|
Mehta V, Rath SN. 3D printed microfluidic devices: a review focused on four fundamental manufacturing approaches and implications on the field of healthcare. Biodes Manuf 2021. [DOI: 10.1007/s42242-020-00112-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
108
|
Jin X, Rosenbohm J, Kim E, Esfahani AM, Seiffert-Sinha K, Wahl JK, Lim JY, Sinha AA, Yang R. Modulation of Mechanical Stress Mitigates Anti-Dsg3 Antibody-Induced Dissociation of Cell-Cell Adhesion. Adv Biol (Weinh) 2021; 5:e2000159. [PMID: 33724731 PMCID: PMC7993752 DOI: 10.1002/adbi.202000159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/21/2020] [Indexed: 12/13/2022]
Abstract
It is becoming increasingly clear that mechanical stress in adhesive junctions plays a significant role in dictating the fate of cell-cell attachment under physiological conditions. Targeted disruption of cell-cell junctions leads to multiple pathological conditions, among them the life-threatening autoimmune blistering disease pemphigus vulgaris (PV). The dissociation of cell-cell junctions by autoantibodies is the hallmark of PV, however, the detailed mechanisms that result in tissue destruction remain unclear. Thus far, research and therapy in PV have focused primarily on immune mechanisms upstream of autoantibody binding, while the biophysical aspects of the cell-cell dissociation process leading to acantholysis are less well studied. In work aimed at illuminating the cellular consequences of autoantibody attachment, it is reported that externally applied mechanical stress mitigates antibody-induced monolayer fragmentation and inhibits p38 MAPK phosphorylation activated by anti-Dsg3 antibody. Further, it is demonstrated that mechanical stress applied externally to cell monolayers enhances cell contractility via RhoA activation and promotes the strengthening of cortical actin, which ultimately mitigates antibody-induced cell-cell dissociation. The study elevates understanding of the mechanism of acantholysis in PV and shifts the paradigm of PV disease development from a focus solely on immune pathways to highlight the key role of physical transformations at the target cell.
Collapse
Affiliation(s)
- Xiaowei Jin
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Jordan Rosenbohm
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Eunju Kim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Amir Monemian Esfahani
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | | | - James K Wahl
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE, 68583, USA
| | - Jung Yul Lim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Animesh A Sinha
- Department of Dermatology, University at Buffalo, Buffalo, NY, 14203, USA
| | - Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
109
|
Barreto N, Caballero M, Bonfanti AP, de Mato FCP, Munhoz J, da Rocha-E-Silva TAA, Sutti R, Vitorino-Araujo JL, Verinaud L, Rapôso C. Spider venom components decrease glioblastoma cell migration and invasion through RhoA-ROCK and Na +/K +-ATPase β2: potential molecular entities to treat invasive brain cancer. Cancer Cell Int 2020; 20:576. [PMID: 33327966 PMCID: PMC7745393 DOI: 10.1186/s12935-020-01643-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Glioblastoma (GB) cells have the ability to migrate and infiltrate the normal parenchyma, leading to the formation of recurrent tumors often adjacent to the surgical extraction site. We recently showed that Phoneutria nigriventer spider venom (PnV) has anticancer effects mainly on the migration of human GB cell lines (NG97 and U-251). The present work aimed to investigate the effects of isolated components from the venom on migration, invasiveness, morphology and adhesion of GB cells, also evaluating RhoA-ROCK signaling and Na+/K+-ATPase β2 (AMOG) involvement. METHODS Human (NG97) GB cells were treated with twelve subfractions (SFs-obtained by HPLC from PnV). Migration and invasion were evaluated by scratch wound healing and transwell assays, respectively. Cell morphology and actin cytoskeleton were shown by GFAP and phalloidin labeling. The assay with fibronectin coated well plate was made to evaluate cell adhesion. Western blotting demonstrated ROCK and AMOG levels and a ROCK inhibitor was used to verify the involvement of this pathway. Values were analyzed by the GraphPad Prism software package and the level of significance was determinate using one-way analysis of variance (ANOVA) followed by Dunnett's multiple comparisons test. RESULTS Two (SF1 and SF11) of twelve SFs, decreased migration and invasion compared to untreated control cells. Both SFs also altered actin cytoskeleton, changed cell morphology and reduced adhesion. SF1 and SF11 increased ROCK expression and the inhibition of this protein abolished the effects of both subfractions on migration, morphology and adhesion (but not on invasion). SF11 also increased Na+/K+-ATPase β2. CONCLUSION All components of the venom were evaluated and two SFs were able to impair human glioblastoma cells. The RhoA effector, ROCK, was shown to be involved in the mechanisms of both PnV components. It is possible that AMOG mediates the effect of SF11 on the invasion. Further investigations to isolate and biochemically characterize the molecules are underway.
Collapse
Affiliation(s)
- Natália Barreto
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, 13083-865, Brazil.,Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, UNICAMP, São Paulo, Brazil
| | - Marcus Caballero
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, 13083-865, Brazil.,Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, UNICAMP, São Paulo, Brazil
| | - Amanda Pires Bonfanti
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, 13083-865, Brazil.,Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, UNICAMP, São Paulo, Brazil
| | - Felipe Cezar Pinheiro de Mato
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, 13083-865, Brazil.,Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, UNICAMP, São Paulo, Brazil
| | - Jaqueline Munhoz
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, 13083-865, Brazil.,Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, UNICAMP, São Paulo, Brazil
| | | | - Rafael Sutti
- Faculdade de Ciências Médicas, Santa Casa de São Paulo, São Paulo, SP, Brazil
| | - João Luiz Vitorino-Araujo
- Disciplina de Neurocirurgia, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, SP, Brazil
| | - Liana Verinaud
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, UNICAMP, São Paulo, Brazil
| | - Catarina Rapôso
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, 13083-865, Brazil.
| |
Collapse
|
110
|
Naqvi SM, McNamara LM. Stem Cell Mechanobiology and the Role of Biomaterials in Governing Mechanotransduction and Matrix Production for Tissue Regeneration. Front Bioeng Biotechnol 2020; 8:597661. [PMID: 33381498 PMCID: PMC7767888 DOI: 10.3389/fbioe.2020.597661] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Mechanobiology has underpinned many scientific advances in understanding how biophysical and biomechanical cues regulate cell behavior by identifying mechanosensitive proteins and specific signaling pathways within the cell that govern the production of proteins necessary for cell-based tissue regeneration. It is now evident that biophysical and biomechanical stimuli are as crucial for regulating stem cell behavior as biochemical stimuli. Despite this, the influence of the biophysical and biomechanical environment presented by biomaterials is less widely accounted for in stem cell-based tissue regeneration studies. This Review focuses on key studies in the field of stem cell mechanobiology, which have uncovered how matrix properties of biomaterial substrates and 3D scaffolds regulate stem cell migration, self-renewal, proliferation and differentiation, and activation of specific biological responses. First, we provide a primer of stem cell biology and mechanobiology in isolation. This is followed by a critical review of key experimental and computational studies, which have unveiled critical information regarding the importance of the biophysical and biomechanical cues for stem cell biology. This review aims to provide an informed understanding of the intrinsic role that physical and mechanical stimulation play in regulating stem cell behavior so that researchers may design strategies that recapitulate the critical cues and develop effective regenerative medicine approaches.
Collapse
Affiliation(s)
- S M Naqvi
- Mechanobiology and Medical Device Research Group, Department of Biomedical Engineering, College of Engineering and Informatics, National University of Ireland Galway, Galway, Ireland
| | - L M McNamara
- Mechanobiology and Medical Device Research Group, Department of Biomedical Engineering, College of Engineering and Informatics, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
111
|
Choi S, Ferrari G, Tedesco FS. Cellular dynamics of myogenic cell migration: molecular mechanisms and implications for skeletal muscle cell therapies. EMBO Mol Med 2020; 12:e12357. [PMID: 33210465 PMCID: PMC7721365 DOI: 10.15252/emmm.202012357] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/02/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022] Open
Abstract
Directional cell migration is a critical process underlying morphogenesis and post-natal tissue regeneration. During embryonic myogenesis, migration of skeletal myogenic progenitors is essential to generate the anlagen of limbs, diaphragm and tongue, whereas in post-natal skeletal muscles, migration of muscle satellite (stem) cells towards regions of injury is necessary for repair and regeneration of muscle fibres. Additionally, safe and efficient migration of transplanted cells is critical in cell therapies, both allogeneic and autologous. Although various myogenic cell types have been administered intramuscularly or intravascularly, functional restoration has not been achieved yet in patients with degenerative diseases affecting multiple large muscles. One of the key reasons for this negative outcome is the limited migration of donor cells, which hinders the overall cell engraftment potential. Here, we review mechanisms of myogenic stem/progenitor cell migration during skeletal muscle development and post-natal regeneration. Furthermore, strategies utilised to improve migratory capacity of myogenic cells are examined in order to identify potential treatments that may be applied to future transplantation protocols.
Collapse
Affiliation(s)
- SungWoo Choi
- Department of Cell and Developmental Biology, University College London, London, UK.,The Francis Crick Institute, London, UK
| | - Giulia Ferrari
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Francesco Saverio Tedesco
- Department of Cell and Developmental Biology, University College London, London, UK.,The Francis Crick Institute, London, UK.,Dubowitz Neuromuscular Centre, Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
112
|
Boujemaa-Paterski R, Martins B, Eibauer M, Beales CT, Geiger B, Medalia O. Talin-activated vinculin interacts with branched actin networks to initiate bundles. eLife 2020; 9:e53990. [PMID: 33185186 PMCID: PMC7682986 DOI: 10.7554/elife.53990] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 11/12/2020] [Indexed: 12/18/2022] Open
Abstract
Vinculin plays a fundamental role in integrin-mediated cell adhesion. Activated by talin, it interacts with diverse adhesome components, enabling mechanical coupling between the actin cytoskeleton and the extracellular matrix. Here we studied the interactions of activated full-length vinculin with actin and the way it regulates the organization and dynamics of the Arp2/3 complex-mediated branched actin network. Through a combination of surface patterning and light microscopy experiments we show that vinculin can bundle dendritic actin networks through rapid binding and filament crosslinking. We show that vinculin promotes stable but flexible actin bundles having a mixed-polarity organization, as confirmed by cryo-electron tomography. Adhesion-like synthetic design of vinculin activation by surface-bound talin revealed that clustered vinculin can initiate and immobilize bundles from mobile Arp2/3-branched networks. Our results provide a molecular basis for coordinate actin bundle formation at nascent adhesions.
Collapse
Affiliation(s)
- Rajaa Boujemaa-Paterski
- Department of Biochemistry, University of ZurichZurichSwitzerland
- Université Grenoble AlpesGrenobleFrance
| | - Bruno Martins
- Department of Biochemistry, University of ZurichZurichSwitzerland
| | - Matthias Eibauer
- Department of Biochemistry, University of ZurichZurichSwitzerland
| | - Charlie T Beales
- Department of Biochemistry, University of ZurichZurichSwitzerland
| | - Benjamin Geiger
- Department of Immunology, Weizmann Institute of ScienceRehovotIsrael
| | - Ohad Medalia
- Department of Biochemistry, University of ZurichZurichSwitzerland
| |
Collapse
|
113
|
Integrin-mediated adhesion and mechanosensing in the mammary gland. Semin Cell Dev Biol 2020; 114:113-125. [PMID: 33187835 DOI: 10.1016/j.semcdb.2020.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/17/2020] [Accepted: 10/23/2020] [Indexed: 12/22/2022]
Abstract
The mammary gland is dynamically remodelled during its postnatal development and the reproductive cycles. This inherent plasticity has been suggested to increase the susceptibility of the organ to carcinogenesis. Morphological changes in the mammary epithelium involve cell proliferation, differentiation, apoptosis, and migration which, in turn, are affected by cell adhesion to the extracellular matrix (ECM). Integrin adhesion receptors function in the sensing of the biochemical composition, patterning and mechanical properties of the ECM surrounding the cells, and strongly influence cell fate. This review aims to summarize the existing literature on how different aspects of integrin-mediated adhesion and mechanosensing, including ECM composition; stiffness and topography; integrin expression patterns; focal adhesion assembly; dynamic regulation of the actin cytoskeleton; and nuclear mechanotransduction affect mammary gland development, function and homeostasis. As the mechanical properties of a complex tissue environment are challenging to replicate in vitro, emphasis has been placed on studies conducted in vivo or using organoid models. Outright, these studies indicate that mechanosensing also contributes to the regulation of mammary gland morphogenesis in multiple ways.
Collapse
|
114
|
Wegwitz F, Prokakis E, Pejkovska A, Kosinsky RL, Glatzel M, Pantel K, Wikman H, Johnsen SA. The histone H2B ubiquitin ligase RNF40 is required for HER2-driven mammary tumorigenesis. Cell Death Dis 2020; 11:873. [PMID: 33070155 PMCID: PMC7568723 DOI: 10.1038/s41419-020-03081-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/31/2022]
Abstract
The HER2-positive breast cancer subtype (HER2+-BC) displays a particularly aggressive behavior. Anti-HER2 therapies have significantly improved the survival of patients with HER2+-BC. However, a large number of patients become refractory to current targeted therapies, necessitating the development of new treatment strategies. Epigenetic regulators are commonly misregulated in cancer and represent attractive molecular therapeutic targets. Monoubiquitination of histone 2B (H2Bub1) by the heterodimeric ubiquitin ligase complex RNF20/RNF40 has been described to have tumor suppressor functions and loss of H2Bub1 has been associated with cancer progression. In this study, we utilized human tumor samples, cell culture models, and a mammary carcinoma mouse model with tissue-specific Rnf40 deletion and identified an unexpected tumor-supportive role of RNF40 in HER2+-BC. We demonstrate that RNF40-driven H2B monoubiquitination is essential for transcriptional activation of RHO/ROCK/LIMK pathway components and proper actin-cytoskeleton dynamics through a trans-histone crosstalk with histone 3 lysine 4 trimethylation (H3K4me3). Collectively, this work demonstrates a previously unknown essential role of RNF40 in HER2+-BC, revealing the H2B monoubiquitination axis as a possible tumor context-dependent therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Florian Wegwitz
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany.,Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Evangelos Prokakis
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Anastasija Pejkovska
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Robyn Laura Kosinsky
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Markus Glatzel
- Institute for Neuropathology, University of Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Harriet Wikman
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Steven A Johnsen
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany. .,Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. .,Gene Regulatory Mechanisms and Molecular Epigenetics Lab, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
115
|
Platenkamp A, Detmar E, Sepulveda L, Ritz A, Rogers SL, Applewhite DA. The Drosophila melanogaster Rab GAP RN-tre cross-talks with the Rho1 signaling pathway to regulate nonmuscle myosin II localization and function. Mol Biol Cell 2020; 31:2379-2397. [PMID: 32816624 PMCID: PMC7851959 DOI: 10.1091/mbc.e20-03-0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
To identify novel regulators of nonmuscle myosin II (NMII) we performed an image-based RNA interference screen using stable Drosophila melanogaster S2 cells expressing the enhanced green fluorescent protein (EGFP)-tagged regulatory light chain (RLC) of NMII and mCherry-Actin. We identified the Rab-specific GTPase-activating protein (GAP) RN-tre as necessary for the assembly of NMII RLC into contractile actin networks. Depletion of RN-tre led to a punctate NMII phenotype, similar to what is observed following depletion of proteins in the Rho1 pathway. Depletion of RN-tre also led to a decrease in active Rho1 and a decrease in phosphomyosin-positive cells by immunostaining, while expression of constitutively active Rho or Rho-kinase (Rok) rescues the punctate phenotype. Functionally, RN-tre depletion led to an increase in actin retrograde flow rate and cellular contractility in S2 and S2R+ cells, respectively. Regulation of NMII by RN-tre is only partially dependent on its GAP activity as overexpression of constitutively active Rabs inactivated by RN-tre failed to alter NMII RLC localization, while a GAP-dead version of RN-tre partially restored phosphomyosin staining. Collectively, our results suggest that RN-tre plays an important regulatory role in NMII RLC distribution, phosphorylation, and function, likely through Rho1 signaling and putatively serving as a link between the secretion machinery and actomyosin contractility.
Collapse
Affiliation(s)
| | - Elizabeth Detmar
- Department of Biology & Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Liz Sepulveda
- Department of Biology, Reed College, Portland, OR 97202
| | - Anna Ritz
- Department of Biology, Reed College, Portland, OR 97202
| | - Stephen L Rogers
- Department of Biology & Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | | |
Collapse
|
116
|
Taha M, Aldirawi M, März S, Seebach J, Odenthal-Schnittler M, Bondareva O, Bojovic V, Schmandra T, Wirth B, Mietkowska M, Rottner K, Schnittler H. EPLIN-α and -β Isoforms Modulate Endothelial Cell Dynamics through a Spatiotemporally Differentiated Interaction with Actin. Cell Rep 2020; 29:1010-1026.e6. [PMID: 31644899 DOI: 10.1016/j.celrep.2019.09.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/08/2019] [Accepted: 09/13/2019] [Indexed: 12/14/2022] Open
Abstract
Actin-binding proteins are essential for linear and branched actin filament dynamics that control shape change, cell migration, and cell junction remodeling in vascular endothelium (endothelial cells [ECs]). The epithelial protein lost in neoplasm (EPLIN) is an actin-binding protein, expressed as EPLIN-α and EPLIN-β by alternative promoters; however, the isoform-specific functions are not yet understood. Aortic compared to cava vein ECs and shear stress-exposed cultured ECs express increased EPLIN-β levels that stabilize stress fibers. In contrast, EPLIN-α expression is increased in growing and migrating ECs, is targeted to membrane protrusions, and terminates their growth via interaction with the Arp2/3 complex. The data indicate that EPLIN-α controls protrusion dynamics while EPLIN-β has an actin filament stabilizing role, which is consistent with FRAP analyses demonstrating a lower EPLIN-β turnover rate compared to EPLIN-α. Together, EPLIN isoforms differentially control actin dynamics in ECs, essential in shear stress responses, cell migration, and barrier function.
Collapse
Affiliation(s)
- Muna Taha
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms University of Münster, 48149 Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 CiM), Westfälische Wilhelms University of Münster, 48149 Münster, Germany
| | - Mohammed Aldirawi
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms University of Münster, 48149 Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 CiM), Westfälische Wilhelms University of Münster, 48149 Münster, Germany
| | - Sigrid März
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms University of Münster, 48149 Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 CiM), Westfälische Wilhelms University of Münster, 48149 Münster, Germany
| | - Jochen Seebach
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms University of Münster, 48149 Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 CiM), Westfälische Wilhelms University of Münster, 48149 Münster, Germany
| | - Maria Odenthal-Schnittler
- Cells-in-Motion Cluster of Excellence (EXC 1003 CiM), Westfälische Wilhelms University of Münster, 48149 Münster, Germany; Department of Ophthalmology, Westfälische Wilhelms University of Münster, Medical Center, 48149 Münster, Germany
| | - Olga Bondareva
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms University of Münster, 48149 Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 CiM), Westfälische Wilhelms University of Münster, 48149 Münster, Germany
| | - Vesna Bojovic
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms University of Münster, 48149 Münster, Germany
| | - Thomas Schmandra
- Heart and Vascular Clinic Bad Neustadt, Bad Neustadt a.d. Saale, Germany
| | - Benedikt Wirth
- Cells-in-Motion Cluster of Excellence (EXC 1003 CiM), Westfälische Wilhelms University of Münster, 48149 Münster, Germany; Institute for Analysis and Numerics, Westfälische Wilhelms University of Münster, 48149 Münster Germany
| | - Magdalena Mietkowska
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany; Molecular Cell Biology Group, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany; Molecular Cell Biology Group, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Hans Schnittler
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms University of Münster, 48149 Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 CiM), Westfälische Wilhelms University of Münster, 48149 Münster, Germany.
| |
Collapse
|
117
|
Rheinlaender J, Dimitracopoulos A, Wallmeyer B, Kronenberg NM, Chalut KJ, Gather MC, Betz T, Charras G, Franze K. Cortical cell stiffness is independent of substrate mechanics. NATURE MATERIALS 2020; 19:1019-1025. [PMID: 32451510 PMCID: PMC7610513 DOI: 10.1038/s41563-020-0684-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/15/2020] [Indexed: 05/18/2023]
Abstract
Cortical stiffness is an important cellular property that changes during migration, adhesion and growth. Previous atomic force microscopy (AFM) indentation measurements of cells cultured on deformable substrates have suggested that cells adapt their stiffness to that of their surroundings. Here we show that the force applied by AFM to a cell results in a significant deformation of the underlying substrate if this substrate is softer than the cell. This 'soft substrate effect' leads to an underestimation of a cell's elastic modulus when analysing data using a standard Hertz model, as confirmed by finite element modelling and AFM measurements of calibrated polyacrylamide beads, microglial cells and fibroblasts. To account for this substrate deformation, we developed a 'composite cell-substrate model'. Correcting for the substrate indentation revealed that cortical cell stiffness is largely independent of substrate mechanics, which has major implications for our interpretation of many physiological and pathological processes.
Collapse
Affiliation(s)
- Johannes Rheinlaender
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
- Institute of Applied Physics, University of Tübingen, Tübingen, Germany.
| | - Andrea Dimitracopoulos
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Bernhard Wallmeyer
- Centre for Molecular Biology of Inflammation, Institute of Cell Biology, Excellence Cluster Cells in Motion, University of Münster, Münster, Germany
| | - Nils M Kronenberg
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, UK
- Centre for Nanobiophotonics, Department of Chemistry, University of Cologne, Cologne, Germany
| | - Kevin J Chalut
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Malte C Gather
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, UK
- Centre for Nanobiophotonics, Department of Chemistry, University of Cologne, Cologne, Germany
| | - Timo Betz
- Centre for Molecular Biology of Inflammation, Institute of Cell Biology, Excellence Cluster Cells in Motion, University of Münster, Münster, Germany
| | - Guillaume Charras
- London Centre for Nanotechnology, University College London, London, UK
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
118
|
Charrier EE, Pogoda K, Li R, Park CY, Fredberg JJ, Janmey PA. A novel method to make viscoelastic polyacrylamide gels for cell culture and traction force microscopy. APL Bioeng 2020; 4:036104. [PMID: 32666015 PMCID: PMC7334032 DOI: 10.1063/5.0002750] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/26/2020] [Indexed: 12/23/2022] Open
Abstract
Polyacrylamide hydrogels are commonly used in cell biology, notably to cultivate cells on soft surfaces. Polyacrylamide gels are purely elastic and well adapted to cell culture as they are inert and can be conjugated with adhesion proteins. Here, we report a method to make viscoelastic polyacrylamide gels with mechanical properties more closely resembling biological tissues and suitable for cell culture in vitro. We demonstrate that these gels can be used for traction force microscopy experiments. We also show that multiple cell types respond to the viscoelasticity of their substrate and that viscous dissipation has an influence on cell spreading, contractility, and motility. This new material provides new opportunities for investigating how normal or malignant cells sense and respond to viscous dissipation within the extra-cellular matrix.
Collapse
Affiliation(s)
| | | | - Robin Li
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Chan Young Park
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Jeffrey J. Fredberg
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
119
|
Park KC, Paluncic J, Kovacevic Z, Richardson DR. Pharmacological targeting and the diverse functions of the metastasis suppressor, NDRG1, in cancer. Free Radic Biol Med 2020; 157:154-175. [PMID: 31132412 DOI: 10.1016/j.freeradbiomed.2019.05.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/24/2019] [Accepted: 05/16/2019] [Indexed: 12/18/2022]
Abstract
N-myc downstream regulated gene-1 (NDRG1) is a potent metastasis suppressor that is regulated by hypoxia, metal ions including iron, the free radical nitric oxide (NO.), and various stress stimuli. This intriguing molecule exhibits diverse functions in cancer, inhibiting epithelial-mesenchymal transition (EMT), cell migration and angiogenesis by modulation of a plethora of oncogenes via cellular signaling. Thus, pharmacological targeting of NDRG1 signaling in cancer is a promising therapeutic strategy. Of note, novel anti-tumor agents of the di-2-pyridylketone thiosemicarbazone series, which exert the "double punch" mechanism by binding metal ions to form redox-active complexes, have been demonstrated to markedly up-regulate NDRG1 expression in cancer cells. This review describes the mechanisms underlying NDRG1 modulation by the thiosemicarbazones and the diverse effects NDRG1 exerts in cancer. As a major induction mechanism, iron depletion appears critical, with NO. also inducing NDRG1 through its ability to bind iron and generate dinitrosyl-dithiol iron complexes, which are then effluxed from cells. Apart from its potent anti-metastatic role, several studies have reported a pro-oncogenic role of NDRG1 in a number of cancer-types. Hence, it has been suggested that NDRG1 plays pleiotropic roles depending on the cancer-type. The molecular mechanism(s) underlying NDRG1 pleiotropy remain elusive, but are linked to differential regulation of WNT signaling and potentially differential interaction with the tumor suppressor, PTEN. This review discusses NDRG1 induction mechanisms by metal ions and NO. and both the anti- and possible pro-oncogenic functions of NDRG1 in multiple cancer-types and compares the opposite effects this protein exerts on cancer progression.
Collapse
Affiliation(s)
- Kyung Chan Park
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Jasmina Paluncic
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales, 2006, Australia.
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales, 2006, Australia.
| |
Collapse
|
120
|
Pedrosa AT, Murphy KN, Nogueira AT, Brinkworth AJ, Thwaites TR, Aaron J, Chew TL, Carabeo RA. A post-invasion role for Chlamydia type III effector TarP in modulating the dynamics and organization of host cell focal adhesions. J Biol Chem 2020; 295:14763-14779. [PMID: 32843479 PMCID: PMC7586217 DOI: 10.1074/jbc.ra120.015219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/12/2020] [Indexed: 01/09/2023] Open
Abstract
The human pathogen Chlamydia trachomatis targets epithelial cells lining the genital mucosa. We observed that infection of various cell types, including fibroblasts and epithelial cells resulted in the formation of unusually stable and mature focal adhesions that resisted disassembly induced by the myosin II inhibitor, blebbistatin. Superresolution microscopy revealed in infected cells the vertical displacement of paxillin and focal adhesion kinase from the signaling layer of focal adhesions, whereas vinculin remained in its normal position within the force transduction layer. The candidate type III effector TarP, which localized to focal adhesions during infection and when expressed ectopically, was sufficient to mimic both the reorganization and blebbistatin-resistant phenotypes. These effects of TarP, including its localization to focal adhesions, required a post-invasion interaction with the host protein vinculin through a specific domain at the C terminus of TarP. This interaction is repurposed from an actin-recruiting and -remodeling complex to one that mediates nanoarchitectural and dynamic changes of focal adhesions. The consequence of Chlamydia-stabilized focal adhesions was restricted cell motility and enhanced attachment to the extracellular matrix. Thus, via a novel mechanism, Chlamydia inserts TarP within focal adhesions to alter their organization and stability.
Collapse
Affiliation(s)
- António T Pedrosa
- Bacteriology Section, Programme in Microbiology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Korinn N Murphy
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA; School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Ana T Nogueira
- Bacteriology Section, Programme in Microbiology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Amanda J Brinkworth
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA; School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Tristan R Thwaites
- Bacteriology Section, Programme in Microbiology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Jesse Aaron
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Teng-Leong Chew
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Rey A Carabeo
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| |
Collapse
|
121
|
Fujiwara S, Deguchi S, Magin TM. Disease-associated keratin mutations reduce traction forces and compromise adhesion and collective migration. J Cell Sci 2020; 133:jcs243956. [PMID: 32616561 DOI: 10.1242/jcs.243956] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 06/19/2020] [Indexed: 12/31/2022] Open
Abstract
Keratin intermediate filament (IF) proteins constitute the major cytoskeletal components in epithelial cells. Missense mutations in keratin 5 (K5; also known as KRT5) or keratin 14 (K14; also known as KRT14), highly expressed in the basal epidermis, cause the severe skin blistering disease epidermolysis bullosa simplex (EBS). EBS-associated mutations disrupt keratin networks and change keratinocyte mechanics; however, molecular mechanisms by which mutations shape EBS pathology remain incompletely understood. Here, we demonstrate that, in contrast to keratin-deficient keratinocytes, cells expressing K14R125C, a mutation that causes severe EBS, generate lower traction forces, accompanied by immature focal adhesions with an altered cellular distribution. Furthermore, mutant keratinocytes display reduced directionality during collective migration. Notably, RhoA activity is downregulated in human EBS keratinocytes, and Rho activation rescues stiffness-dependent cell-extracellular matrix (ECM) adhesion formation of EBS keratinocytes. Collectively, our results strongly suggest that intact keratin IF networks regulate mechanotransduction through a Rho signaling pathway upstream of cell-ECM adhesion formation and organized cell migration. Our findings provide insights into the underlying pathophysiology of EBS.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sachiko Fujiwara
- Institute of Biology, Faculty of Life Sciences, University of Leipzig, Leipzig 04103, Germany
| | - Shinji Deguchi
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
| | - Thomas M Magin
- Institute of Biology, Faculty of Life Sciences, University of Leipzig, Leipzig 04103, Germany
| |
Collapse
|
122
|
Wilson E, Rudisill T, Kirk B, Johnson C, Kemper P, Newell-Litwa K. Cytoskeletal regulation of synaptogenesis in a model of human fetal brain development. J Neurosci Res 2020; 98:2148-2165. [PMID: 32713041 DOI: 10.1002/jnr.24692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/18/2022]
Abstract
Excitatory synapse formation begins in mid-fetal gestation. However, due to our inability to image fetal synaptogenesis, the initial formation of synapses remains understudied. The recent development of human fetal brain spheroids provides access to this critical period of synapse formation. Using human neurons and brain spheroids, we address how altered actin regulation impacts the formation of excitatory synapses during fetal brain development. Prior to synapse formation, inhibition of RhoA kinase (ROCK) signaling promotes neurite elongation and branching. In addition to increasing neural complexity, ROCK inhibition increases the length of protrusions along the neurite, ultimately promoting excitatory synapse formation in human cortical brain spheroids. A corresponding increase in Rac1-driven actin polymerization drives this increase in excitatory synaptogenesis. Using STORM super-resolution microscopy, we demonstrate that actomyosin regulators, including the Rac1 regulator, α-PIX, and the RhoA regulator, p115-RhoGEF, localize to nascent excitatory synapses, where they preferentially localize to postsynaptic compartments. These results demonstrate that coordinated RhoGTPase activities underlie the initial formation of excitatory synapses and identify critical cytoskeletal regulators of early synaptogenic events.
Collapse
Affiliation(s)
- Emily Wilson
- Anatomy and Cell Biology, East Carolina University Brody School of Medicine, Greenville, NC, USA
| | - Taylor Rudisill
- Anatomy and Cell Biology, East Carolina University Brody School of Medicine, Greenville, NC, USA
| | - Brenna Kirk
- Anatomy and Cell Biology, East Carolina University Brody School of Medicine, Greenville, NC, USA
| | - Colin Johnson
- Anatomy and Cell Biology, East Carolina University Brody School of Medicine, Greenville, NC, USA
| | - Paige Kemper
- Anatomy and Cell Biology, East Carolina University Brody School of Medicine, Greenville, NC, USA
| | - Karen Newell-Litwa
- Anatomy and Cell Biology, East Carolina University Brody School of Medicine, Greenville, NC, USA
| |
Collapse
|
123
|
Jaiswal D, Yousman L, Neary M, Fernschild E, Zolnoski B, Katebifar S, Rudraiah S, Mazzocca AD, Kumbar SG. Tendon tissue engineering: biomechanical considerations. Biomed Mater 2020; 15:052001. [DOI: 10.1088/1748-605x/ab852f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
124
|
Actin polymerization downstream of integrins: signaling pathways and mechanotransduction. Biochem J 2020; 477:1-21. [PMID: 31913455 DOI: 10.1042/bcj20170719] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/17/2019] [Accepted: 12/16/2019] [Indexed: 01/04/2023]
Abstract
A cell constantly adapts to its environment. Cell decisions to survive, to proliferate or to migrate are dictated not only by soluble growth factors, but also through the direct interaction of the cell with the surrounding extracellular matrix (ECM). Integrins and their connections to the actin cytoskeleton are crucial for monitoring cell attachment and the physical properties of the substratum. Cell adhesion dynamics are modulated in complex ways by the polymerization of branched and linear actin arrays, which in turn reinforce ECM-cytoskeleton connection. This review describes the major actin regulators, Ena/VASP proteins, formins and Arp2/3 complexes, in the context of signaling pathways downstream of integrins. We focus on the specific signaling pathways that transduce the rigidity of the substrate and which control durotaxis, i.e. directed migration of cells towards increased ECM rigidity. By doing so, we highlight several recent findings on mechanotransduction and put them into a broad integrative perspective that is the result of decades of intense research on the actin cytoskeleton and its regulation.
Collapse
|
125
|
Asensio-Juárez G, Llorente-González C, Vicente-Manzanares M. Linking the Landscape of MYH9-Related Diseases to the Molecular Mechanisms that Control Non-Muscle Myosin II-A Function in Cells. Cells 2020; 9:E1458. [PMID: 32545517 PMCID: PMC7348894 DOI: 10.3390/cells9061458] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022] Open
Abstract
The MYH9 gene encodes the heavy chain (MHCII) of non-muscle myosin II A (NMII-A). This is an actin-binding molecular motor essential for development that participates in many crucial cellular processes such as adhesion, cell migration, cytokinesis and polarization, maintenance of cell shape and signal transduction. Several types of mutations in the MYH9 gene cause an array of autosomal dominant disorders, globally known as MYH9-related diseases (MYH9-RD). These include May-Hegglin anomaly (MHA), Epstein syndrome (EPS), Fechtner syndrome (FTS) and Sebastian platelet syndrome (SPS). Although caused by different MYH9 mutations, all patients present macrothrombocytopenia, but may later display other pathologies, including loss of hearing, renal failure and presenile cataracts. The correlation between the molecular and cellular effects of the different mutations and clinical presentation are beginning to be established. In this review, we correlate the defects that MYH9 mutations cause at a molecular and cellular level (for example, deficient filament formation, altered ATPase activity or actin-binding) with the clinical presentation of the syndromes in human patients. We address why these syndromes are tissue restricted, and the existence of possible compensatory mechanisms, including residual activity of mutant NMII-A and/ or the formation of heteropolymers or co-polymers with other NMII isoforms.
Collapse
Affiliation(s)
| | | | - Miguel Vicente-Manzanares
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain; (G.A.-J.); (C.L.-G.)
| |
Collapse
|
126
|
Affiliation(s)
- Christophe Guilluy
- Institute for Advanced Biosciences - Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.
| | - Monika E Dolega
- Institute for Advanced Biosciences - Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
127
|
Seo BR, Chen X, Ling L, Song YH, Shimpi AA, Choi S, Gonzalez J, Sapudom J, Wang K, Andresen Eguiluz RC, Gourdon D, Shenoy VB, Fischbach C. Collagen microarchitecture mechanically controls myofibroblast differentiation. Proc Natl Acad Sci U S A 2020; 117:11387-11398. [PMID: 32385149 PMCID: PMC7260976 DOI: 10.1073/pnas.1919394117] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Altered microarchitecture of collagen type I is a hallmark of wound healing and cancer that is commonly attributed to myofibroblasts. However, it remains unknown which effect collagen microarchitecture has on myofibroblast differentiation. Here, we combined experimental and computational approaches to investigate the hypothesis that the microarchitecture of fibrillar collagen networks mechanically regulates myofibroblast differentiation of adipose stromal cells (ASCs) independent of bulk stiffness. Collagen gels with controlled fiber thickness and pore size were microfabricated by adjusting the gelation temperature while keeping their concentration constant. Rheological characterization and simulation data indicated that networks with thicker fibers and larger pores exhibited increased strain-stiffening relative to networks with thinner fibers and smaller pores. Accordingly, ASCs cultured in scaffolds with thicker fibers were more contractile, expressed myofibroblast markers, and deposited more extended fibronectin fibers. Consistent with elevated myofibroblast differentiation, ASCs in scaffolds with thicker fibers exhibited a more proangiogenic phenotype that promoted endothelial sprouting in a contractility-dependent manner. Our findings suggest that changes of collagen microarchitecture regulate myofibroblast differentiation and fibrosis independent of collagen quantity and bulk stiffness by locally modulating cellular mechanosignaling. These findings have implications for regenerative medicine and anticancer treatments.
Collapse
Affiliation(s)
- Bo Ri Seo
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - Xingyu Chen
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Lu Ling
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Young Hye Song
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Adrian A Shimpi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Siyoung Choi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Jacqueline Gonzalez
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Jiranuwat Sapudom
- Biophysical Chemistry, Faculty of Life Sciences, Leipzig University, 04103 Leipzig, Germany
| | - Karin Wang
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853
| | | | - Delphine Gourdon
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853
- Department of Physics, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Vivek B Shenoy
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853;
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853
| |
Collapse
|
128
|
Abstract
Cell migration is an essential process, both in unicellular organisms such as amoeba and as individual or collective motility in highly developed multicellular organisms like mammals. It is controlled by a variety of activities combining protrusive and contractile forces, normally generated by actin filaments. Here, we summarize actin filament assembly and turnover processes, and how respective biochemical activities translate into different protrusion types engaged in migration. These actin-based plasma membrane protrusions include actin-related protein 2/3 complex-dependent structures such as lamellipodia and membrane ruffles, filopodia as well as plasma membrane blebs. We also address observed antagonisms between these protrusion types, and propose a model - also inspired by previous literature - in which a complex balance between specific Rho GTPase signaling pathways dictates the protrusion mechanism employed by cells. Furthermore, we revisit published work regarding the fascinating antagonism between Rac and Rho GTPases, and how this intricate signaling network can define cell behavior and modes of migration. Finally, we discuss how the assembly of actin filament networks can feed back onto their regulators, as exemplified for the lamellipodial factor WAVE regulatory complex, tightly controlling accumulation of this complex at specific subcellular locations as well as its turnover.
Collapse
|
129
|
Long-Range and Directional Allostery of Actin Filaments Plays Important Roles in Various Cellular Activities. Int J Mol Sci 2020; 21:ijms21093209. [PMID: 32370032 PMCID: PMC7246755 DOI: 10.3390/ijms21093209] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 12/18/2022] Open
Abstract
A wide variety of uniquely localized actin-binding proteins (ABPs) are involved in various cellular activities, such as cytokinesis, migration, adhesion, morphogenesis, and intracellular transport. In a micrometer-scale space such as the inside of cells, protein molecules diffuse throughout the cell interior within seconds. In this condition, how can ABPs selectively bind to particular actin filaments when there is an abundance of actin filaments in the cytoplasm? In recent years, several ABPs have been reported to induce cooperative conformational changes to actin filaments allowing structural changes to propagate along the filament cables uni- or bidirectionally, thereby regulating the subsequent binding of ABPs. Such propagation of ABP-induced cooperative conformational changes in actin filaments may be advantageous for the elaborate regulation of cellular activities driven by actin-based machineries in the intracellular space, which is dominated by diffusion. In this review, we focus on long-range allosteric regulation driven by cooperative conformational changes of actin filaments that are evoked by binding of ABPs, and discuss roles of allostery of actin filaments in narrow intracellular spaces.
Collapse
|
130
|
Kaniuk Ł, Krysiak ZJ, Metwally S, Stachewicz U. Osteoblasts and fibroblasts attachment to poly(3-hydroxybutyric acid-co-3-hydrovaleric acid) (PHBV) film and electrospun scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110668. [DOI: 10.1016/j.msec.2020.110668] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/07/2019] [Accepted: 01/13/2020] [Indexed: 01/08/2023]
|
131
|
Abstract
BACKGROUND Endothelial cells (ECs) sense the forces from blood flow through the glycocalyx, a carbohydrate rich luminal surface layer decorating most cells, and through forces transmitted through focal adhesions (FAs) on the abluminal side of the cell. OBJECTIVES This perspective paper explores a complementary hypothesis, that glycocalyx molecules on the abluminal side of the EC between the basement membrane and the EC membrane, occupying the space outside of FAs, work in concert with FAs to sense blood flow-induced shear stress applied to the luminal surface. RESULTS First, we summarize recent studies suggesting that the glycocalyx repels the plasma membrane away from the basement membrane, while integrin molecules attach to extracellular matrix (ECM) ligands. This coordinated attraction and repulsion results in the focal nature of integrin-mediated adhesion making the abluminal glycocalyx a participant in mechanotransduction. Further, the glycocalyx mechanically links the plasma membrane to the basement membrane providing a mechanism of force transduction when the cell deforms in the peri-FA space. To determine if the membrane might deform against a restoring force of an elastic abluminal glycocalyx in the peri-FA space we present some analysis from a multicomponent elastic finite element model of a sheared and focally adhered endothelial cell whose abluminal topography was assessed using quantitative total internal reflection fluorescence microscopy with an assumption that glycocalyx fills the space between the membrane and extracellular matrix. CONCLUSIONS While requiring experimental verification, this analysis supports the hypothesis that shear on the luminal surface can be transmitted to the abluminal surface and deform the cell in the vicinity of the focal adhesions, with the magnitude of deformation depending on the abluminal glycocalyx modulus.
Collapse
Affiliation(s)
- Peter J Butler
- Department of Biomedical Engineering and Intercollege Graduate Program of Bioengineering, The Pennsylvania State University, University Park, PA, USA
| | - Amit Bhatnagar
- Department of Biomedical Engineering and Intercollege Graduate Program of Bioengineering, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
132
|
Pulido Companys P, Norris A, Bischoff M. Coordination of cytoskeletal dynamics and cell behaviour during Drosophila abdominal morphogenesis. J Cell Sci 2020; 133:jcs235325. [PMID: 32229579 PMCID: PMC7132776 DOI: 10.1242/jcs.235325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 01/20/2020] [Indexed: 12/20/2022] Open
Abstract
During morphogenesis, cells exhibit various behaviours, such as migration and constriction, which need to be coordinated. How this is achieved remains elusive. During morphogenesis of the Drosophila adult abdominal epidermis, larval epithelial cells (LECs) migrate directedly before constricting apically and undergoing apoptosis. Here, we study the mechanisms underlying the transition from migration to constriction. We show that LECs possess a pulsatile apical actomyosin network, and that a change in network polarity correlates with behavioural change. Exploring the properties of the contractile network, we find that cell contractility, as determined by myosin activity, has an impact on the behaviour of the network, as well as on cytoskeletal architecture and cell behaviour. Pulsed contractions occur only in cells with intermediate levels of contractility. Furthermore, increasing levels of the small Rho GTPase Rho1 disrupts pulsing, leading to cells that cycle between two states, characterised by a junctional cortical and an apicomedial actin network. Our results highlight that behavioural change relies on tightly controlled cellular contractility. Moreover, we show that constriction can occur without pulsing, raising questions why constricting cells pulse in some contexts but not in others.
Collapse
Affiliation(s)
- Pau Pulido Companys
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK
| | - Anneliese Norris
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK
| | - Marcus Bischoff
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK
| |
Collapse
|
133
|
Kłopocka W, Korczyński J, Pomorski P. Cytoskeleton and Nucleotide Signaling in Glioma C6 Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1202:109-128. [PMID: 32034711 DOI: 10.1007/978-3-030-30651-9_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This chapter describes signaling pathways, stimulated by the P2Y2 nucleotide receptor (P2Y2R), that regulate cellular processes dependent on actin cytoskeleton dynamics in glioma C6 cells. P2Y2R coupled with G-proteins, in response to ATP or UTP, regulates the level of iphosphatidylinositol-4,5-bisphosphate (PIP2) which modulates a variety of actin binding proteins and is involved in calcium response and activates Rac1 and RhoA proteins. The RhoA/ROCK signaling pathway plays an important role in contractile force generation needed for the assembly of stress fibers, focal adhesions and for tail retraction during cell migration. Blocking of this pathway by a specific Rho-kinase inhibitor induces changes in F-actin organization and cell shape and decreases the level of phosphorylated myosin II and cofilin. In glioma C6 cells these changes are reversed after UTP stimulation of P2Y2R. Signaling pathways responsible for this compensation are calcium signaling which regulates MLC kinase activation via calmodulin, and the Rac1/PAK/LIMK cascade. Stimulation of the Rac1 mediated pathway via Go proteins needs additional interaction between αvβ5 integrins and P2Y2Rs. Calcium free medium, or growing of the cells in suspension, prevents Gαo activation by P2Y2 receptors. Rac1 activation is necessary for cofilin phosphorylation as well as integrin activation needed for focal complexes formation and stabilization of lamellipodium. Inhibition of positive Rac1 regulation prevents glioma C6 cells from recovery of control cell like morphology.
Collapse
Affiliation(s)
- Wanda Kłopocka
- Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszynski University, Warsaw, Poland.
| | - Jarosław Korczyński
- M. Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Paweł Pomorski
- M. Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
134
|
Tilve S, Iweka CA, Bao J, Hawken N, Mencio CP, Geller HM. Phospholipid phosphatase related 1 (PLPPR1) increases cell adhesion through modulation of Rac1 activity. Exp Cell Res 2020; 389:111911. [PMID: 32061832 DOI: 10.1016/j.yexcr.2020.111911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/03/2020] [Accepted: 02/11/2020] [Indexed: 12/31/2022]
Abstract
Phospholipid Phosphatase-Related Protein Type 1 (PLPPR1) is a six-transmembrane protein that belongs to the family of plasticity-related gene proteins, which is a novel brain-specific subclass of the lipid phosphate phosphatase superfamily. PLPPR1-5 have prominent roles in synapse formation and axonal pathfinding. We found that PLPPR1 overexpression in the mouse neuroblastoma cell line (Neuro2a) results in increase in cell adhesion and reduced cell migration. During migration, these cells leave behind long fibrous looking extensions of the plasma membrane causing a peculiar phenotype. Cells expressing PLPPR1 showed decreased actin turnover and decreased disassembly of focal adhesions. PLPPR1 also reduced active Rac1, and expressing dominant negative Rac1 produced a similar phenotype to overexpression of PLPPR1. The PLPPR1-induced phenotype of long fibers was reversed by introducing constitutively active Rac1. In summary, we show that PLPPR1 decreases active Rac1 levels that leads to cascade of events which increases cell adhesion.
Collapse
Affiliation(s)
- Sharada Tilve
- Laboratory of Developmental Neurobiology, National Heart Lung and Blood Institute, NIH, Bethesda, MD, 20892, USA
| | - Chinyere Agbaegbu Iweka
- Laboratory of Developmental Neurobiology, National Heart Lung and Blood Institute, NIH, Bethesda, MD, 20892, USA; Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA
| | - Jonathan Bao
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Natalie Hawken
- Laboratory of Developmental Neurobiology, National Heart Lung and Blood Institute, NIH, Bethesda, MD, 20892, USA
| | - Caitlin P Mencio
- Laboratory of Developmental Neurobiology, National Heart Lung and Blood Institute, NIH, Bethesda, MD, 20892, USA
| | - Herbert M Geller
- Laboratory of Developmental Neurobiology, National Heart Lung and Blood Institute, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
135
|
The Role of Rho GTPases in Motility and Invasion of Glioblastoma Cells. Anal Cell Pathol (Amst) 2020; 2020:9274016. [PMID: 32089990 PMCID: PMC7013281 DOI: 10.1155/2020/9274016] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 12/27/2022] Open
Abstract
Astrocytomas are primary malignant brain tumors that originate from astrocytes. Grade IV astrocytoma or glioblastoma is a highly invasive tumor that occur within the brain parenchyma. The Rho family of small GTPases, which includes Rac1, Cdc42, and RhoA, is an important family whose members are key regulators of the invasion and migration of glioblastoma cells. In this review, we describe the role played by the Rho family of GTPases in the regulation of the invasion and migration of glioblastoma cells. Specifically, we focus on the role played by RhoA, Rac1, RhoG, and Cdc42 in cell migration through rearrangement of actin cytoskeleton, cell adhesion, and invasion. Finally, we highlight the importance of potentially targeting Rho GTPases in the treatment of glioblastoma.
Collapse
|
136
|
Song Y, Soto J, Chen B, Yang L, Li S. Cell engineering: Biophysical regulation of the nucleus. Biomaterials 2020; 234:119743. [PMID: 31962231 DOI: 10.1016/j.biomaterials.2019.119743] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/02/2019] [Accepted: 12/25/2019] [Indexed: 12/12/2022]
Abstract
Cells live in a complex and dynamic microenvironment, and a variety of microenvironmental cues can regulate cell behavior. In addition to biochemical signals, biophysical cues can induce not only immediate intracellular responses, but also long-term effects on phenotypic changes such as stem cell differentiation, immune cell activation and somatic cell reprogramming. Cells respond to mechanical stimuli via an outside-in and inside-out feedback loop, and the cell nucleus plays an important role in this process. The mechanical properties of the nucleus can directly or indirectly modulate mechanotransduction, and the physical coupling of the cell nucleus with the cytoskeleton can affect chromatin structure and regulate the epigenetic state, gene expression and cell function. In this review, we will highlight the recent progress in nuclear biomechanics and mechanobiology in the context of cell engineering, tissue remodeling and disease development.
Collapse
Affiliation(s)
- Yang Song
- Department of Bioengineering, University of California, Los Angeles, CA, USA; School of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Jennifer Soto
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Binru Chen
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Li Yang
- School of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Song Li
- Department of Bioengineering, University of California, Los Angeles, CA, USA; Department of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
137
|
Multi-well plate cell contraction assay detects negatively correlated cellular responses to pharmacological inhibitors in contractility and migration. Biochem Biophys Res Commun 2020; 521:527-532. [DOI: 10.1016/j.bbrc.2019.10.160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 10/22/2019] [Indexed: 12/28/2022]
|
138
|
Wang Y, Wang H, Tran MV, Algar WR, Li H. Yellow fluorescent protein-based label-free tension sensors for monitoring integrin tension. Chem Commun (Camb) 2020; 56:5556-5559. [DOI: 10.1039/d0cc01635g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Yellow fluorescent protein serves as a label-free tension sensor to monitor integrin tension.
Collapse
Affiliation(s)
- Yongliang Wang
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | - Han Wang
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | - Michael V. Tran
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | - W. Russ Algar
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | - Hongbin Li
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| |
Collapse
|
139
|
Yigit G, Saida K, DeMarzo D, Miyake N, Fujita A, Yang Tan T, White SM, Wadley A, Toliat MR, Motameny S, Franitza M, Stutterd CA, Chong PF, Kira R, Sengoku T, Ogata K, Guillen Sacoto MJ, Fresen C, Beck BB, Nürnberg P, Dieterich C, Wollnik B, Matsumoto N, Altmüller J. The recurrent postzygotic pathogenic variant p.Glu47Lys in RHOA causes a novel recognizable neuroectodermal phenotype. Hum Mutat 2019; 41:591-599. [PMID: 31821646 DOI: 10.1002/humu.23964] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 01/24/2023]
Abstract
RHOA is a member of the Rho family of GTPases that are involved in fundamental cellular processes including cell adhesion, migration, and proliferation. RHOA can stimulate the formation of stress fibers and focal adhesions and is a key regulator of actomyosin dynamics in various tissues. In a Genematcher-facilitated collaboration, we were able to identify four unrelated individuals with a specific phenotype characterized by hypopigmented areas of the skin, dental anomalies, body asymmetry, and limb length discrepancy due to hemihypotrophy of one half of the body, as well as brain magnetic resonance imaging (MRI) anomalies. Using whole-exome and ultra-deep amplicon sequencing and comparing genomic data of affected and unaffected areas of the skin, we discovered that all four individuals carried the identical RHOA missense variant, c.139G>A; p.Glu47Lys, in a postzygotic state. Molecular modeling and in silico analysis of the affected p.Glu47Lys residue in RHOA indicated that this exchange is predicted to specifically alter the interaction of RHOA with its downstream effectors containing a PKN-type binding domain and thereby disrupts its ability to activate signaling. Our findings indicate that the recurrent postzygotic RHOA missense variant p.Glu47Lys causes a specific mosaic disorder in humans.
Collapse
Affiliation(s)
- Gökhan Yigit
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Ken Saida
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Danielle DeMarzo
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Noriko Miyake
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Tiong Yang Tan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Susan M White
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Alexandrea Wadley
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Mohammad R Toliat
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Susanne Motameny
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Marek Franitza
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Chloe A Stutterd
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Pin F Chong
- Department of Pediatric Neurology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Ryutaro Kira
- Department of Pediatric Neurology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Toru Sengoku
- Department of Biochemistry, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Kazuhiro Ogata
- Department of Biochemistry, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | | | - Christine Fresen
- Department of Psychosomatics and Psychotherapy, University Hospital Cologne, Cologne, Germany
| | - Bodo B Beck
- Institute of Human Genetics, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Center for Rare Diseases Cologne (ZSEK), University of Cologne, Cologne, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Christoph Dieterich
- Department of Internal Medicine III, Partner Site Heidelberg/Mannheim, DZHK (German Centre for Cardiovascular Research), University Hospital Heidelberg, Heidelberg, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Naomichi Matsumoto
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
140
|
Actin-based regulation of ciliogenesis - The long and the short of it. Semin Cell Dev Biol 2019; 102:132-138. [PMID: 31862221 DOI: 10.1016/j.semcdb.2019.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/23/2019] [Accepted: 12/07/2019] [Indexed: 12/11/2022]
Abstract
The primary cilia is found on the mammalian cell surface where it serves as an antenna for the reception and transmission of a variety of cellular signaling pathways. At its core the cilium is a microtubule-based organelle, but it is clear that its assembly and function are dependent upon the coordinated regulation of both actin and microtubule dynamics. In particular, the discovery that the centrosome is able to act as both a microtubule and actin organizing centre implies that both cytoskeletal networks are acting directly on the process of cilia assembly. In this review, we set our recent results with the formin FHDC1 in the context of current reports that show each stage of ciliogenesis is impacted by changes in actin dynamics. These include direct effects of actin filament assembly on basal body positioning, vesicle trafficking to and entry into the cilium, cilia length, cilia membrane organization and cilia-dependent signaling.
Collapse
|
141
|
McKenzie AJ, Svec KV, Williams TF, Howe AK. Protein kinase A activity is regulated by actomyosin contractility during cell migration and is required for durotaxis. Mol Biol Cell 2019; 31:45-58. [PMID: 31721649 PMCID: PMC6938270 DOI: 10.1091/mbc.e19-03-0131] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Dynamic subcellular regulation of protein kinase A (PKA) activity is important for the motile behavior of many cell types, yet the mechanisms governing PKA activity during cell migration remain largely unknown. The motility of SKOV-3 epithelial ovarian cancer (EOC) cells has been shown to be dependent both on localized PKA activity and, more recently, on mechanical reciprocity between cellular tension and extracellular matrix rigidity. Here, we investigated the possibility that PKA is regulated by mechanical signaling during migration. We find that localized PKA activity in migrating cells rapidly decreases upon inhibition of actomyosin contractility (specifically, of myosin ATPase, Rho kinase, or myosin light-chain kinase activity). Moreover, PKA activity is spatially and temporally correlated with cellular traction forces in migrating cells. Additionally, PKA is rapidly and locally activated by mechanical stretch in an actomyosin contractility-dependent manner. Finally, inhibition of PKA activity inhibits mechanically guided migration, also known as durotaxis. These observations establish PKA as a locally regulated effector of cellular mechanotransduction and as a regulator of mechanically guided cell migration.
Collapse
Affiliation(s)
- Andrew J McKenzie
- Department of Pharmacology.,University of Vermont Cancer Center, and
| | - Kathryn V Svec
- Department of Pharmacology.,University of Vermont Cancer Center, and
| | - Tamara F Williams
- Department of Pharmacology.,University of Vermont Cancer Center, and
| | - Alan K Howe
- Department of Pharmacology.,University of Vermont Cancer Center, and.,Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| |
Collapse
|
142
|
Shin Y, Lim S, Kim J, Jeon JS, Yoo H, Gweon B. Emulating endothelial dysfunction by implementing an early atherosclerotic microenvironment within a microfluidic chip. LAB ON A CHIP 2019; 19:3664-3677. [PMID: 31565711 DOI: 10.1039/c9lc00352e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recent studies on endothelial dysfunction in relation to vascular diseases including atherosclerosis have highlighted the key contribution of the microenvironment of endothelial cells (ECs). By mimicking the microenvironment of early atherosclerotic lesions, here, we replicate the pathophysiological phenotype and function of ECs within microchannels. Considering the elevated deposition of fibronectin (FN) in early atherosclerotic plaques and the close correlation between the vascular stiffness and the progression of atherosclerosis, we utilized FN coated hydrogels with increased stiffness for endothelial substrates within the microchannels. As a result, we demonstrated that endothelial integrity on FN coated microchannels is likely to be undermined exhibiting a random orientation in response to the applied fluid flow, notable disruption of vascular endothelial cadherins (VE-cadherins), and higher endothelial permeability as opposed to that on microchannels coated with collagen (CL), the atheroresistant vascular model.
Collapse
Affiliation(s)
- Yujin Shin
- Department of Biomedical Engineering, Hanyang University, Republic of Korea
| | - Seongjin Lim
- Department of Mechanical Engineering, KAIST, Republic of Korea.
| | - Jinwon Kim
- Cardiovascular Center, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Jessie S Jeon
- Department of Mechanical Engineering, KAIST, Republic of Korea.
| | - Hongki Yoo
- Department of Biomedical Engineering, Hanyang University, Republic of Korea and Department of Mechanical Engineering, KAIST, Republic of Korea.
| | - Bomi Gweon
- Department of Biomedical Engineering, Hanyang University, Republic of Korea and Department of Mechanical Engineering, Sejong University, Republic of Korea.
| |
Collapse
|
143
|
Cooke M, Baker MJ, Kazanietz MG, Casado-Medrano V. PKCε regulates Rho GTPases and actin cytoskeleton reorganization in non-small cell lung cancer cells. Small GTPases 2019; 12:202-208. [PMID: 31648598 DOI: 10.1080/21541248.2019.1684785] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Oncogenic protein kinase C epsilon (PKCε) promotes the formation of membrane ruffles and motility in non-small cell lung cancer (NSCLC) cells. We found that PKCε is down-regulated when NSCLC cells undergo epithelial-to-mesenchymal transition (EMT) in response to TGF-β, thus becoming dispensable for migration and invasion in the mesenchymal state. PKCε silencing or inhibition leads to stress fibre formation, suggesting that this kinase negatively regulates RhoA activity. Ruffle formation induced by PKCε activation in the epithelial state is dependent on PI3K, but does not involve the PI3K-dependent Rac-GEFs Ect2, Trio, Vav2 or Tiam1, suggesting alternative Rac-GEFs as mediators of this response. In the proposed model, PKCε acts as a rheostat for Rho GTPases that differs in the epithelial and mesenchymal states.
Collapse
Affiliation(s)
- Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Martin J Baker
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Victoria Casado-Medrano
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
144
|
Stanley A, Heo SJ, Mauck RL, Mourkioti F, Shore EM. Elevated BMP and Mechanical Signaling Through YAP1/RhoA Poises FOP Mesenchymal Progenitors for Osteogenesis. J Bone Miner Res 2019; 34:1894-1909. [PMID: 31107558 PMCID: PMC7209824 DOI: 10.1002/jbmr.3760] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/03/2019] [Accepted: 05/08/2019] [Indexed: 12/12/2022]
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disease characterized by the formation of extraskeletal bone, or heterotopic ossification (HO), in soft connective tissues such as skeletal muscle. All familial and sporadic cases with a classic clinical presentation of FOP carry a gain-of-function mutation (R206H; c.617 G > A) in ACVR1, a cell surface receptor that mediates bone morphogenetic protein (BMP) signaling. The BMP signaling pathway is recognized for its chondro/osteogenic-induction potential, and HO in FOP patients forms ectopic but qualitatively normal endochondral bone tissue through misdirected cell fate decisions by tissue-resident mesenchymal stem cells. In addition to biochemical ligand-receptor signaling, mechanical cues from the physical environment are transduced to activate intracellular signaling, a process known as mechanotransduction, and can influence cell fates. Utilizing an established mesenchymal stem cell model of mouse embryonic fibroblasts (MEFs) from the Acvr1R206H/+ mouse model that mimics the human disease, we demonstrated that activation of the mechanotransductive effectors Rho/ROCK and YAP1 are increased in Acvr1R206H/+ cells. We show that on softer substrates, a condition associated with low mechanical signaling, the morphology of Acvr1R206H/+ cells is similar to the morphology of control Acvr1+/+ cells on stiffer substrates, a condition that activates mechanotransduction. We further determined that Acvr1R206H/+ cells are poised for osteogenic differentiation, expressing increased levels of chondro/osteogenic markers compared with Acvr1+/+ cells. We also identified increased YAP1 nuclear localization in Acvr1R206H/+ cells, which can be rescued by either BMP inhibition or Rho antagonism. Our results establish RhoA and YAP1 signaling as modulators of mechanotransduction in FOP and suggest that aberrant mechanical signals, combined with and as a result of the increased BMP pathway signaling through mutant ACVR1, lead to misinterpretation of the cellular microenvironment and a heightened sensitivity to mechanical stimuli that promotes commitment of Acvr1R206H/+ progenitor cells to chondro/osteogenic lineages.
Collapse
Affiliation(s)
- Alexandra Stanley
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Su-jin Heo
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA
- Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, PA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA
| | - Robert L. Mauck
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA
- Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, PA
- Penn Institute for Regenerative Medicine, Musculoskeletal Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA
| | - Foteini Mourkioti
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Departments of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Penn Institute for Regenerative Medicine, Musculoskeletal Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Eileen M. Shore
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Penn Institute for Regenerative Medicine, Musculoskeletal Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
145
|
Helical structure of actin stress fibers and its possible contribution to inducing their direction-selective disassembly upon cell shortening. Biomech Model Mechanobiol 2019; 19:543-555. [PMID: 31549258 DOI: 10.1007/s10237-019-01228-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/10/2019] [Indexed: 12/21/2022]
Abstract
Mechanisms of the assembly of actin stress fibers (SFs) have been extensively studied, while those of the disassembly-particularly cell shortening-induced ones-remain unclear. Here, we show that SFs have helical structures composed of multi-subbundles, and they tend to be delaminated upon cell shortening. Specifically, we observed with atomic force microscopy delamination of helical SFs into their subbundles. We physically caught individual SFs using a pair of glass needles to observe rotational deformations during stretching as well as ATP-driven active contraction, suggesting that they deform in a manner reflecting their intrinsic helical structure. A minimal analytical model was then developed based on the Frenet-Serret formulas with force-strain measurement data to suggest that helical SFs can be delaminated into the constituent subbundles upon axial shortening. Given that SFs are large molecular clusters that bear cellular tension but must promptly disassemble upon loss of the tension, the resulting increase in their surface area due to the shortening-induced delamination may facilitate interaction with surrounding molecules to aid subsequent disintegration. Thus, our results suggest a new mechanism of the disassembly that occurs only in the specific SFs exposed to forced shortening.
Collapse
|
146
|
Asaro RJ, Lin K, Zhu Q. Mechanosensitivity Occurs along the Adhesome's Force Train and Affects Traction Stress. Biophys J 2019; 117:1599-1614. [PMID: 31604520 DOI: 10.1016/j.bpj.2019.08.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/29/2019] [Accepted: 08/28/2019] [Indexed: 11/16/2022] Open
Abstract
Herein, we consider the process of force development along the adhesome within cell focal adhesions. Our model adhesome consists of the actin cytoskeleton-vinculin-talin-integrin-ligand-extracellular matrix-substrate force train. We specifically consider the effects of substrate stiffness on the force levels expected along the train and on the traction stresses they create at the substrate. We find that significant effects of substrate stiffness are manifest within each constitutive component of the force train and on the density and distribution of integrin/ligand anchorage points with the substrate. By following each component of the force train, we are able to delineate specific gaps in the quantitative descriptions of bond survival that must be addressed so that improved quantitative forecasts become possible. Our analysis provides, however, a rational description for the various levels of traction stresses that have been reported and of the effect of substrate stiffness. Our approach has the advantage of being quite clear as to how each constituent contributes to the net development of force and traction stress. We demonstrate that to provide truly quantitative forecasts for traction stress, a far more detailed description of integrin/ligand density and distribution is required. Although integrin density is already a well-recognized important feature of adhesion, our analysis places a finer point on it in the manner of how we evaluate the magnitude of traction stress. We provide mechanistic insight into how understanding of this vital element of the adhesion process may proceed by addressing mechanistic causes of integrin clustering that may lead to patterning.
Collapse
Affiliation(s)
- Robert J Asaro
- Structural Engineering, Department of Structural Engineering, University of California San Diego, San Diego, California.
| | - Kuanpo Lin
- Structural Engineering, Department of Structural Engineering, University of California San Diego, San Diego, California
| | - Qiang Zhu
- Structural Engineering, Department of Structural Engineering, University of California San Diego, San Diego, California
| |
Collapse
|
147
|
Wnt4 from the Niche Controls the Mechano-Properties and Quiescent State of Muscle Stem Cells. Cell Stem Cell 2019; 25:654-665.e4. [PMID: 31495781 DOI: 10.1016/j.stem.2019.08.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 04/19/2019] [Accepted: 08/12/2019] [Indexed: 12/31/2022]
Abstract
Satellite cells (SCs) reside in a dormant state during tissue homeostasis. The specific paracrine agents and niche cells that maintain SC quiescence remain unknown. We find that Wnt4 produced by the muscle fiber maintains SC quiescence through RhoA. Using cell-specific inducible genetics, we find that a Wnt4-Rho signaling axis constrains SC numbers and activation during tissue homeostasis in adult mice. Wnt4 activates Rho in quiescent SCs to maintain mechanical strain, restrict movement in the niche, and repress YAP. The induction of YAP upon disruption of RhoA is essential for SC activation under homeostasis. In the context of injury, the loss of Wnt4 from the niche accelerates SC activation and muscle repair, whereas overexpression of Wnt4 transitions SCs into a deeper state of quiescence and delays muscle repair. In conclusion, the SC pool undergoes dynamic transitions during early activation with changes in mechano-properties and cytoskeleton signaling preceding cell-cycle entry.
Collapse
|
148
|
Thuveson M, Gaengel K, Collu GM, Chin ML, Singh J, Mlodzik M. Integrins are required for synchronous ommatidial rotation in the Drosophila eye linking planar cell polarity signalling to the extracellular matrix. Open Biol 2019; 9:190148. [PMID: 31409231 PMCID: PMC6731590 DOI: 10.1098/rsob.190148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Integrins mediate the anchorage between cells and their environment, the extracellular matrix (ECM), and form transmembrane links between the ECM and the cytoskeleton, a conserved feature throughout development and morphogenesis of epithelial organs. Here, we demonstrate that integrins and components of the ECM are required during the planar cell polarity (PCP) signalling-regulated cell movement of ommatidial rotation in the Drosophila eye. The loss-of-function mutations of integrins or ECM components cause defects in rotation, with mutant clusters rotating asynchronously compared to wild-type clusters. Initially, mutant clusters tend to rotate faster, and at later stages they fail to be synchronous with their neighbours, leading to aberrant rotation angles and resulting in a disorganized ommatidial arrangement in adult eyes. We further demonstrate that integrin localization changes dynamically during the rotation process. Our data suggest that core Frizzled/PCP factors, acting through RhoA and Rho kinase, regulate the function/activity of integrins and that integrins thus contribute to the complex interaction network of PCP signalling, cell adhesion and cytoskeletal elements required for a precise and synchronous 90° rotation movement.
Collapse
Affiliation(s)
- Maria Thuveson
- Department of Cell, Developmental and Regenerative Biology and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, Annenberg Building 18-92, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Konstantin Gaengel
- Department of Cell, Developmental and Regenerative Biology and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, Annenberg Building 18-92, One Gustave L. Levy Place, New York, NY 10029, USA.,Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory C11, Dag Hammarskjölds Väg 20, 751 85 Uppsala, Sweden
| | - Giovanna M Collu
- Department of Cell, Developmental and Regenerative Biology and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, Annenberg Building 18-92, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Mei-Ling Chin
- Department of Cell, Developmental and Regenerative Biology and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, Annenberg Building 18-92, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Jaskirat Singh
- Department of Cell, Developmental and Regenerative Biology and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, Annenberg Building 18-92, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Marek Mlodzik
- Department of Cell, Developmental and Regenerative Biology and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, Annenberg Building 18-92, One Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
149
|
Fu D, Dai L, Gao H, Sun Y, Liu B, Chen H. Identification, Expression Patterns and RNA Interference of Aquaporins in Dendroctonus armandi (Coleoptera: Scolytinae) Larvae During Overwintering. Front Physiol 2019; 10:967. [PMID: 31427984 PMCID: PMC6688586 DOI: 10.3389/fphys.2019.00967] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/11/2019] [Indexed: 11/13/2022] Open
Abstract
The ability to survive annual temperature minima could be a key determinant of distribution limits for insects under global climate change. Recent studies have suggested that insect aquaporins are indispensable for cellular water management under conditions that lead to dehydration and cold stress. Aquaporins are integral membrane water channel proteins in the major intrinsic protein superfamily and promote selected solutes and the movement of water across biological membranes. We cloned and characterized nine full-length aquaporins from Dendroctonus armandi (DaAqps), the most destructive forest pest in the Qinling Mountains of Shaanxi Province, China. Eight of the DaAqps belong to three classical aquaporin grades, including the Drosophila integral protein, the Pyrocoelia rufa integral protein, the entomoglyceroporins and one that belongs to the unorthodox grade of aquaporin 12-like channels. The DaAqps were increasingly expressed during different developmental stages and in different larval tissues, and expression peaked in mid-winter. They were tested under cold conditions for different lengths of time, and the expression of almost all DaAqps was down regulated with decreasing temperatures and long-term exposure to cold conditions. However, when the lowest temperatures were reached, the levels were immediately upregulated. These genes indicate that cold tolerance can improve through mortality responses at low temperatures after RNA interference of DaAqps. In our study, we analyzed the molecular response, expression patterns, and RNA interference of DaAqps and clarified the crucial role of protective compounds (aquaporins) underlying D. armandi cold tolerance and provide a new pest control method.
Collapse
Affiliation(s)
- Danyang Fu
- College of Forestry, Northwest A&F University, Yangling, China
| | - Lulu Dai
- College of Forestry, Northwest A&F University, Yangling, China
| | - Haiming Gao
- College of Forestry, Northwest A&F University, Yangling, China
| | - Yaya Sun
- College of Forestry, Northwest A&F University, Yangling, China
| | - Bin Liu
- College of Forestry, Northwest A&F University, Yangling, China
| | - Hui Chen
- College of Forestry, Northwest A&F University, Yangling, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
150
|
Burridge K, Monaghan-Benson E, Graham DM. Mechanotransduction: from the cell surface to the nucleus via RhoA. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180229. [PMID: 31431179 PMCID: PMC6627015 DOI: 10.1098/rstb.2018.0229] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Cells respond and adapt to their physical environments and to the mechanical forces that they experience. The translation of physical forces into biochemical signalling pathways is known as mechanotransduction. In this review, we focus on two aspects of mechanotransduction. First, we consider how forces exerted on cell adhesion molecules at the cell surface regulate the RhoA signalling pathway by controlling the activities of guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). In the second part of the review, we discuss how the nucleus contributes to mechanotransduction as a physical structure connected to the cytoskeleton. We focus on recent studies that have either severed the connections between the nucleus and the cytoskeleton, or that have entirely removed the nucleus from cells. These actions reduce the levels of active RhoA, thereby altering the mechanical properties of cells and decreasing their ability to generate tension and respond to external mechanical forces. This article is part of a discussion meeting issue ‘Forces in cancer: interdisciplinary approaches in tumour mechanobiology’.
Collapse
Affiliation(s)
- Keith Burridge
- Department of Cell Biology and Physiology, and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Elizabeth Monaghan-Benson
- Department of Cell Biology and Physiology, and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - David M Graham
- Department of Cell Biology and Physiology, and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|