101
|
Wang Y, Kong L, Wu T, Tang M. Urban particulate matter disturbs the equilibrium of mitochondrial dynamics and biogenesis in human vascular endothelial cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114639. [PMID: 32388296 DOI: 10.1016/j.envpol.2020.114639] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
Since ambient particulate matter (APM) is closely related to cardiovascular damage with mitochondria being its potential targets, this study was designed to explore the impact of APM on mitochondrial homeostasis, especially on mitochondrial dynamics and biogenesis in human vascular endothelial cells, using a kind of standard material, PM SRM1648a. As a result, internalized particles lead to mitochondrial dysfunction in EA.hy926 human endothelial cells, including mitochondrial reactive oxygen species (mtROS) overproduction, mitochondrial membrane potential (MMP) reduction and adenosine triphosphate (ATP) inhibition, coupled with additional release of mitochondrial DNA (mtDNA) into the cytosol. Moreover, morphological and structural changes in mitochondria are observed in response to PM SRM1648a. In that aspect, according to the evidence of shorter fragmented mitochondria dispersed throughout the cytoplasm, along with aberrant upregulation of fission-related mRNAs/proteins, the mitochondria exhibit a fission phenotype shifting from intact reticular network to fragmentized punctate shapes. Mechanistically, PM SRM1648a facilitates phosphorylation of DRP1 at Ser616 in HUVECs, and triggers its dephosphorylation at Ser637 residue in both EA.hy926 and HUVECs, which are supportive events for mitochondrial fission during particle exposure. Additionally, suppression of a master energy modulator, PGC-1α, reveals that PM SRM1648a has the ability to impair mitochondrial biogenesis. Collectively, it could be well concluded that PM SRM1648a interferes with the equilibrium of mitochondrial dynamics and biogenesis, which is likely to play a pivotal role in mitochondrial dysfunction driven by particles, eventually contributing to endothelial cell damage. Of note, it is more reasonable to conduct risk assessment from both cellular level and subcellular structures, among which mitochondria-targeted toxicity supplements more comprehensive understanding of APM inducible vascular toxicity.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Lu Kong
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
102
|
Gasier HG, Dohl J, Suliman HB, Piantadosi CA, Yu T. Skeletal muscle mitochondrial fragmentation and impaired bioenergetics from nutrient overload are prevented by carbon monoxide. Am J Physiol Cell Physiol 2020; 319:C746-C756. [PMID: 32845721 DOI: 10.1152/ajpcell.00016.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Nutrient excess increases skeletal muscle oxidant production and mitochondrial fragmentation that may result in impaired mitochondrial function, a hallmark of skeletal muscle insulin resistance. This led us to explore whether an endogenous gas molecule, carbon monoxide (CO), which is thought to prevent weight gain and metabolic dysfunction in mice consuming high-fat diets, alters mitochondrial morphology and respiration in C2C12 myoblasts exposed to high glucose (15.6 mM) and high fat (250 µM BSA-palmitate) (HGHF). Also, skeletal muscle mitochondrial morphology, distribution, respiration, and energy expenditure were examined in obese resistant (OR) and obese prone (OP) rats that consumed a high-fat and high-sucrose diet for 10 wk with or without intermittent low-dose inhaled CO and/or exercise training. In cells exposed to HGHF, superoxide production, mitochondrial membrane potential (ΔΨm), mitochondrial fission regulatory protein dynamin-related protein 1 (Drp1) and mitochondrial fragmentation increased, while mitochondrial respiratory capacity was reduced. CO decreased HGHF-induced superoxide production, Drp1 protein levels and mitochondrial fragmentation, maintained ΔΨm, and increased mitochondrial respiratory capacity. In comparison with lean OR rats, OP rats had smaller skeletal muscle mitochondria that contained disorganized cristae, a normal mitochondrial distribution, but reduced citrate synthase protein expression, normal respiratory responses, and a lower energy expenditure. The combination of inhaled CO and exercise produced the greatest effect on mitochondrial morphology, increasing ADP-stimulated respiration in the presence of pyruvate, and preventing a decline in resting energy expenditure. These data support a therapeutic role for CO and exercise in preserving mitochondrial morphology and respiration during metabolic overload.
Collapse
Affiliation(s)
- Heath G Gasier
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina.,Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Jacob Dohl
- Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Hagir B Suliman
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina.,Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Claude A Piantadosi
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina.,Department of Medicine, Duke University Medical Center, Durham, North Carolina.,Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Tianzheng Yu
- Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
103
|
Lysosomal activity regulates Caenorhabditis elegans mitochondrial dynamics through vitamin B12 metabolism. Proc Natl Acad Sci U S A 2020; 117:19970-19981. [PMID: 32737159 DOI: 10.1073/pnas.2008021117] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mitochondrial fission and fusion are highly regulated by energy demand and physiological conditions to control the production, activity, and movement of these organelles. Mitochondria are arrayed in a periodic pattern in Caenorhabditis elegans muscle, but this pattern is disrupted by mutations in the mitochondrial fission component dynamin DRP-1. Here we show that the dramatically disorganized mitochondria caused by a mitochondrial fission-defective dynamin mutation is strongly suppressed to a more periodic pattern by a second mutation in lysosomal biogenesis or acidification. Vitamin B12 is normally imported from the bacterial diet via lysosomal degradation of B12-binding proteins and transport of vitamin B12 to the mitochondrion and cytoplasm. We show that the lysosomal dysfunction induced by gene inactivations of lysosomal biogenesis or acidification factors causes vitamin B12 deficiency. Growth of the C. elegans dynamin mutant on an Escherichia coli strain with low vitamin B12 also strongly suppressed the mitochondrial fission defect. Of the two C. elegans enzymes that require B12, gene inactivation of methionine synthase suppressed the mitochondrial fission defect of a dynamin mutation. We show that lysosomal dysfunction induced mitochondrial biogenesis, which is mediated by vitamin B12 deficiency and methionine restriction. S-adenosylmethionine, the methyl donor of many methylation reactions, including histones, is synthesized from methionine by S-adenosylmethionine synthase; inactivation of the sams-1 S-adenosylmethionine synthase also suppresses the drp-1 fission defect, suggesting that vitamin B12 regulates mitochondrial biogenesis and then affects mitochondrial fission via chromatin pathways.
Collapse
|
104
|
Agarwal S, Ganesh S. Perinuclear mitochondrial clustering, increased ROS levels, and HIF1 are required for the activation of HSF1 by heat stress. J Cell Sci 2020; 133:jcs245589. [PMID: 32503939 DOI: 10.1242/jcs.245589] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/19/2020] [Indexed: 08/31/2023] Open
Abstract
The heat shock response (HSR) is a conserved cellular defensive response against stresses such as temperature, oxidative stress and heavy metals. A significant group of players in the HSR is the set of molecular chaperones known as heat shock proteins (HSPs), which assist in the refolding of unfolded proteins and prevent the accumulation of damaged proteins. HSP genes are activated by the HSF1 transcription factor, a master regulator of the HSR pathway. A variety of stressors activate HSF1, but the key molecular players and the processes that directly contribute to HSF1 activation remain unclear. In this study, we show that heat shock induces perinuclear clustering of mitochondria in mammalian cells, and this clustering is essential for activation of the HSR. We also show that this perinuclear clustering of mitochondria results in increased levels of reactive oxygen species in the nucleus, leading to the activation of hypoxia-inducible factor-1α (HIF-1α). To conclude, we provide evidence to suggest that HIF-1α is one of the crucial regulators of HSF1 and that HIF-1α is essential for activation of the HSR during heat shock.
Collapse
Affiliation(s)
- Saloni Agarwal
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Subramaniam Ganesh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology, Kanpur 208016, India
| |
Collapse
|
105
|
Forrester SJ, Preston KJ, Cooper HA, Boyer MJ, Escoto KM, Poltronetti AJ, Elliott KJ, Kuroda R, Miyao M, Sesaki H, Akiyama T, Kimura Y, Rizzo V, Scalia R, Eguchi S. Mitochondrial Fission Mediates Endothelial Inflammation. Hypertension 2020; 76:267-276. [PMID: 32389075 PMCID: PMC7289685 DOI: 10.1161/hypertensionaha.120.14686] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/31/2020] [Indexed: 01/04/2023]
Abstract
Endothelial inflammation and mitochondrial dysfunction have been implicated in cardiovascular diseases, yet, a unifying mechanism tying them together remains limited. Mitochondrial dysfunction is frequently associated with mitochondrial fission/fragmentation mediated by the GTPase Drp1 (dynamin-related protein 1). Nuclear factor (NF)-κB, a master regulator of inflammation, is implicated in endothelial dysfunction and resultant complications. Here, we explore a causal relationship between mitochondrial fission and NF-κB activation in endothelial inflammatory responses. In cultured endothelial cells, TNF-α (tumor necrosis factor-α) or lipopolysaccharide induces mitochondrial fragmentation. Inhibition of Drp1 activity or expression suppresses mitochondrial fission, NF-κB activation, vascular cell adhesion molecule-1 induction, and leukocyte adhesion induced by these proinflammatory factors. Moreover, attenuations of inflammatory leukocyte adhesion were observed in Drp1 heterodeficient mice as well as endothelial Drp1 silenced mice. Intriguingly, inhibition of the canonical NF-κB signaling suppresses endothelial mitochondrial fission. Mechanistically, NF-κB p65/RelA seems to mediate inflammatory mitochondrial fission in endothelial cells. In addition, the classical anti-inflammatory drug, salicylate, seems to maintain mitochondrial fission/fusion balance against TNF-α via inhibition of NF-κB. In conclusion, our results suggest a previously unknown mechanism whereby the canonical NF-κB cascade and a mitochondrial fission pathway interdependently regulate endothelial inflammation.
Collapse
Affiliation(s)
- Steven J. Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, U.S.A
| | - Kyle J. Preston
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, U.S.A
| | - Hannah A. Cooper
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, U.S.A
| | - Michael J. Boyer
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, U.S.A
| | - Kathleen M. Escoto
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, U.S.A
| | - Anthony J. Poltronetti
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, U.S.A
| | - Katherine J. Elliott
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, U.S.A
| | - Ryohei Kuroda
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, U.S.A
| | - Masashi Miyao
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, U.S.A
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD, U.S.A
| | - Tomoko Akiyama
- Advanced Medical Research Center, Yokohama City University, Yokohama, Japan
| | - Yayoi Kimura
- Advanced Medical Research Center, Yokohama City University, Yokohama, Japan
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, U.S.A
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, 3500 N. Broad Street, Philadelphia, PA19140
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, U.S.A
| |
Collapse
|
106
|
Halling JF, Pilegaard H. PGC-1α-mediated regulation of mitochondrial function and physiological implications. Appl Physiol Nutr Metab 2020; 45:927-936. [PMID: 32516539 DOI: 10.1139/apnm-2020-0005] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The majority of human energy metabolism occurs in skeletal muscle mitochondria emphasizing the importance of understanding the regulation of myocellular mitochondrial function. The transcriptional co-activator peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) has been characterized as a major factor in the transcriptional control of several mitochondrial components. Thus, PGC-1α is often described as a master regulator of mitochondrial biogenesis as well as a central player in regulating the antioxidant defense. However, accumulating evidence suggests that PGC-1α is also involved in the complex regulation of mitochondrial quality beyond biogenesis, which includes mitochondrial network dynamics and autophagic removal of damaged mitochondria. In addition, mitochondrial reactive oxygen species production has been suggested to regulate skeletal muscle insulin sensitivity, which may also be influenced by PGC-1α. This review aims to highlight the current evidence for PGC-1α-mediated regulation of skeletal muscle mitochondrial function beyond the effects on mitochondrial biogenesis as well as the potential PGC-1α-related impact on insulin-stimulated glucose uptake in skeletal muscle. Novelty PGC-1α regulates mitochondrial biogenesis but also has effects on mitochondrial functions beyond biogenesis. Mitochondrial quality control mechanisms, including fission, fusion, and mitophagy, are regulated by PGC-1α. PGC-1α-mediated regulation of mitochondrial quality may affect age-related mitochondrial dysfunction and insulin sensitivity.
Collapse
Affiliation(s)
- Jens Frey Halling
- Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark.,Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Henriette Pilegaard
- Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark.,Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
107
|
Ravanidis S, Doxakis E. RNA-Binding Proteins Implicated in Mitochondrial Damage and Mitophagy. Front Cell Dev Biol 2020; 8:372. [PMID: 32582692 PMCID: PMC7287033 DOI: 10.3389/fcell.2020.00372] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/27/2020] [Indexed: 01/19/2023] Open
Abstract
The mitochondrial lifecycle comprises biogenesis, fusion and cristae remodeling, fission, and breakdown by the autophagosome. This cycle is essential for maintaining proper cellular function, and inhibition of any of these processes results in deterioration of bioenergetics and swift induction of apoptosis, particularly in energy-craving cells such as myocytes and neurons. Regulation of gene expression is a fundamental step in maintaining mitochondrial plasticity, mediated by (1) transcription factors that control the expression of mitochondrial mRNAs and (2) RNA-binding proteins (RBPs) that regulate mRNA splicing, stability, targeting to mitochondria, and translation. More recently, RBPs have been also shown to interact with proteins modulating the mitochondrial lifecycle. Importantly, misexpression or mutations in RBPs give rise to mitochondrial dysfunctions, and there is strong evidence to support that these mitochondrial impairments occur early in disease development, constituting leading causes of pathogenesis. This review presents key aspects of the molecular network of the disease-relevant RBPs, including transactive response DNA-binding protein 43 (TDP43), fused in sarcoma (FUS), T-cell intracellular antigen 1 (TIA1), TIA-related protein (TIAR), and pumilio (PUM) that drive mitochondrial dysfunction in the nervous system.
Collapse
Affiliation(s)
- Stylianos Ravanidis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Epaminondas Doxakis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| |
Collapse
|
108
|
Rosdah AA, Smiles WJ, Oakhill JS, Scott JW, Langendorf CG, Delbridge LMD, Holien JK, Lim SY. New perspectives on the role of Drp1 isoforms in regulating mitochondrial pathophysiology. Pharmacol Ther 2020; 213:107594. [PMID: 32473962 DOI: 10.1016/j.pharmthera.2020.107594] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022]
Abstract
Mitochondria are dynamic organelles constantly undergoing fusion and fission. A concerted balance between the process of mitochondrial fusion and fission is required to maintain cellular health under different physiological conditions. Mutation and dysregulation of Drp1, the major driver of mitochondrial fission, has been associated with various neurological, oncological and cardiovascular disorders. Moreover, when subjected to pathological insults, mitochondria often undergo excessive fission, generating fragmented and dysfunctional mitochondria leading to cell death. Therefore, manipulating mitochondrial fission by targeting Drp1 has been an appealing therapeutic approach for cytoprotection. However, studies have been inconsistent. Studies employing Drp1 constructs representing alternate Drp1 isoforms, have demonstrated differing impacts of these isoforms on mitochondrial fission and cell death. Furthermore, there are distinct expression patterns of Drp1 isoforms in different tissues, suggesting idiosyncratic engagement in specific cellular functions. In this review, we will discuss these inherent variations among human Drp1 isoforms and how they could affect Drp1-mediated mitochondrial fission and cell death.
Collapse
Affiliation(s)
- Ayeshah A Rosdah
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Victoria, Australia; Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia; Department of Surgery, University of Melbourne, Victoria, Australia
| | - William J Smiles
- Metabolic Signalling Laboratory, St Vincent's Institute of Medical Research, Victoria, Australia
| | - Jonathan S Oakhill
- Metabolic Signalling Laboratory, St Vincent's Institute of Medical Research, Victoria, Australia; Mary MacKillop Institute for Health Research, Australian Catholic University, Victoria, Australia
| | - John W Scott
- Mary MacKillop Institute for Health Research, Australian Catholic University, Victoria, Australia; Protein Chemistry and Metabolism Unit, St Vincent's Institute of Medical Research, Victoria, Australia; The Florey Institute of Neuroscience and Mental Health, Victoria, Australia
| | - Christopher G Langendorf
- Protein Chemistry and Metabolism Unit, St Vincent's Institute of Medical Research, Victoria, Australia
| | - Lea M D Delbridge
- Department of Physiology, University of Melbourne, Victoria, Australia
| | - Jessica K Holien
- Department of Surgery, University of Melbourne, Victoria, Australia; Structural Bioinformatics and Drug Discovery, St Vincent's Institute of Medical Research, Victoria, Australia
| | - Shiang Y Lim
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Victoria, Australia; Department of Surgery, University of Melbourne, Victoria, Australia.
| |
Collapse
|
109
|
Biallelic PDE2A variants: a new cause of syndromic paroxysmal dyskinesia. Eur J Hum Genet 2020; 28:1403-1413. [PMID: 32467598 PMCID: PMC7608189 DOI: 10.1038/s41431-020-0641-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 04/01/2020] [Accepted: 04/28/2020] [Indexed: 11/08/2022] Open
Abstract
Cause of complex dyskinesia remains elusive in some patients. A homozygous missense variant leading to drastic decrease of PDE2A enzymatic activity was reported in one patient with childhood-onset choreodystonia preceded by paroxysmal dyskinesia and associated with cognitive impairment and interictal EEG abnormalities. Here, we report three new cases with biallelic PDE2A variants identified by trio whole-exome sequencing. Mitochondria network was analyzed after Mitotracker™ Red staining in control and mutated primary fibroblasts. Analysis of retrospective video of patients' movement disorder and refinement of phenotype was carried out. We identified a homozygous gain of stop codon variant c.1180C>T; p.(Gln394*) in PDE2A in siblings and compound heterozygous variants in young adult: a missense c.446C>T; p.(Pro149Leu) and splice-site variant c.1922+5G>A predicted and shown to produce an out of frame transcript lacking exon 22. All three patients had cognitive impairment or developmental delay. The phenotype of the two oldest patients, aged 9 and 26, was characterized by childhood-onset refractory paroxysmal dyskinesia initially misdiagnosed as epilepsy due to interictal EEG abnormalities. The youngest patient showed a proven epilepsy at the age of 4 months and no paroxysmal dyskinesia at 15 months. Interestingly, analysis of the fibroblasts with the biallelic variants in PDE2A variants revealed mitochondria network morphology changes. Together with previously reported case, our three patients confirm that biallelic PDE2A variants are a cause of childhood-onset refractory paroxysmal dyskinesia with cognitive impairment, sometimes associated with choreodystonia and interictal baseline EEG abnormalities or epilepsy.
Collapse
|
110
|
Lovy A, Ahumada-Castro U, Bustos G, Farias P, Gonzalez-Billault C, Molgó J, Cardenas C. Concerted Action of AMPK and Sirtuin-1 Induces Mitochondrial Fragmentation Upon Inhibition of Ca 2+ Transfer to Mitochondria. Front Cell Dev Biol 2020; 8:378. [PMID: 32523953 PMCID: PMC7261923 DOI: 10.3389/fcell.2020.00378] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/27/2020] [Indexed: 12/16/2022] Open
Abstract
Mitochondria are highly dynamic organelles constantly undergoing fusion and fission. Ca2+ regulates many aspects of mitochondrial physiology by modulating the activity of several mitochondrial proteins. We previously showed that inhibition of constitutive IP3R-mediated Ca2+ transfer to the mitochondria leads to a metabolic cellular stress and eventually cell death. Here, we show that the decline of mitochondrial function generated by a lack of Ca2+ transfer induces a DRP-1 independent mitochondrial fragmentation that at an early time is mediated by an increase in the NAD+/NADH ratio and activation of SIRT1. Subsequently, AMPK predominates and drives the fragmentation. SIRT1 activation leads to the deacetylation of cortactin, favoring actin polymerization, and mitochondrial fragmentation. Knockdown of cortactin or inhibition of actin polymerization prevents fragmentation. These data reveal SIRT1 as a new player in the regulation of mitochondrial fragmentation induced by metabolic/bioenergetic stress through regulating the actin cytoskeleton.
Collapse
Affiliation(s)
- Alenka Lovy
- Department of Neuroscience, Center for Neuroscience Research, Tufts School of Medicine, Boston, MA, United States.,Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Ulises Ahumada-Castro
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Galdo Bustos
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Paula Farias
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Christian Gonzalez-Billault
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile.,Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile
| | - Jordi Molgó
- Université Paris-Saclay, CEA, Institut des Sciences du Vivant Frédéric Joliot, ERL CNRS n° 9004, Département Médicaments et Technologies pour la Santé, Service d'Ingénierie Moléculaire pour la Santé (SIMoS), Gif-sur-Yvette, France
| | - Cesar Cardenas
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago, Chile.,The Buck Institute for Research on Aging, Novato, CA, United States.,Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
111
|
Wentling M, Lopez-Gomez C, Park HJ, Amatruda M, Ntranos A, Aramini J, Petracca M, Rusielewicz T, Chen E, Tolstikov V, Kiebish M, Fossati V, Inglese M, Quinzii CM, Katz Sand I, Casaccia P. A metabolic perspective on CSF-mediated neurodegeneration in multiple sclerosis. Brain 2020; 142:2756-2774. [PMID: 31305892 DOI: 10.1093/brain/awz201] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 12/26/2022] Open
Abstract
Multiple sclerosis is an autoimmune demyelinating disorder of the CNS, characterized by inflammatory lesions and an underlying neurodegenerative process, which is more prominent in patients with progressive disease course. It has been proposed that mitochondrial dysfunction underlies neuronal damage, the precise mechanism by which this occurs remains uncertain. To investigate potential mechanisms of neurodegeneration, we conducted a functional screening of mitochondria in neurons exposed to the CSF of multiple sclerosis patients with a relapsing remitting (n = 15) or a progressive (secondary, n = 15 or primary, n = 14) disease course. Live-imaging of CSF-treated neurons, using a fluorescent mitochondrial tracer, identified mitochondrial elongation as a unique effect induced by the CSF from progressive patients. These morphological changes were associated with decreased activity of mitochondrial complexes I, III and IV and correlated with axonal damage. The effect of CSF treatment on the morphology of mitochondria was characterized by phosphorylation of serine 637 on the dynamin-related protein DRP1, a post-translational modification responsible for unopposed mitochondrial fusion in response to low glucose conditions. The effect of neuronal treatment with CSF from progressive patients was heat stable, thereby prompting us to conduct an unbiased exploratory lipidomic study that identified specific ceramide species as differentially abundant in the CSF of progressive patients compared to relapsing remitting multiple sclerosis. Treatment of neurons with medium supplemented with ceramides, induced a time-dependent increase of the transcripts levels of specific glucose and lactate transporters, which functionally resulted in progressively increased glucose uptake from the medium. Thus ceramide levels in the CSF of patients with progressive multiple sclerosis not only impaired mitochondrial respiration but also decreased the bioavailability of glucose by increasing its uptake. Importantly the neurotoxic effect of CSF treatment could be rescued by exogenous supplementation with glucose or lactate, presumably to compensate the inefficient fuel utilization. Together these data suggest a condition of 'virtual hypoglycosis' induced by the CSF of progressive patients in cultured neurons and suggest a critical temporal window of intervention for the rescue of the metabolic impairment of neuronal bioenergetics underlying neurodegeneration in multiple sclerosis patients.
Collapse
Affiliation(s)
- Maureen Wentling
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Neuroscience Initiative, Advanced Science Research Center, The Graduate Center at The City University of New York, New York, NY, USA
| | | | - Hye-Jin Park
- Neuroscience Initiative, Advanced Science Research Center, The Graduate Center at The City University of New York, New York, NY, USA
| | - Mario Amatruda
- Neuroscience Initiative, Advanced Science Research Center, The Graduate Center at The City University of New York, New York, NY, USA
| | - Achilles Ntranos
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Corinne Goldsmith Dickinson Center for multiple sclerosis, Mount Sinai Medical Center, New York, NY, USA
| | - James Aramini
- Structural Biology Initiative, Advanced Science Research Center, The Graduate Center at The City University of New York, New York, NY, USA
| | - Maria Petracca
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tom Rusielewicz
- New York Stem Cell Foundation Research Institute, New York, New York, USA
| | | | | | | | - Valentina Fossati
- New York Stem Cell Foundation Research Institute, New York, New York, USA
| | - Matilde Inglese
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Ilana Katz Sand
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Corinne Goldsmith Dickinson Center for multiple sclerosis, Mount Sinai Medical Center, New York, NY, USA
| | - Patrizia Casaccia
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Neuroscience Initiative, Advanced Science Research Center, The Graduate Center at The City University of New York, New York, NY, USA
| |
Collapse
|
112
|
Cho HM, Sun W. Molecular cross talk among the components of the regulatory machinery of mitochondrial structure and quality control. Exp Mol Med 2020; 52:730-737. [PMID: 32398745 PMCID: PMC7272630 DOI: 10.1038/s12276-020-0434-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial dysfunction critically impairs cellular health and often causes or affects the progression of several diseases, including neurodegenerative diseases and cancer. Thus, cells must have several ways to monitor the condition of mitochondrial quality and maintain mitochondrial health. Accumulating evidence suggests that the molecular machinery responding to spontaneous changes in mitochondrial morphology is associated with the routine mitochondrial quality control system. In this short review, we discuss recent progress made in linking mitochondrial structural dynamics and the quality control system. The health of mitochondria is important for cellular health, and is maintained by the same mechanisms that control their shape. Mitochondria continuously divide, fuse, elongate, and shrink, forming ever-changing networks inside cells. Damaged mitochondria produce toxic byproducts and have been implicated in neurodegenerative diseases and cancer. Although changes in mitochondrial structure are known to be related to cellular health, the detailed mechanisms are not well understood. In a review, Woong Sun and Hyo Min Cho at the Korea University College of Medicine, Seoul, detail how mitochondrial fusion, division, and recycling are controlled, what signals are used to dispose of damaged mitochondria, and how the shape-control mechanisms also regulate mitochondrial quality. This review will help us to more clearly understand the structure-function relationship of mitochondria.
Collapse
Affiliation(s)
- Hyo Min Cho
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21 plus, Seoul, 02841, Republic of Korea
| | - Woong Sun
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21 plus, Seoul, 02841, Republic of Korea.
| |
Collapse
|
113
|
Shally A, McDonagh B. The redox environment and mitochondrial dysfunction in age-related skeletal muscle atrophy. Biogerontology 2020; 21:461-473. [PMID: 32323076 DOI: 10.1007/s10522-020-09879-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022]
Abstract
Medical advancements have extended human life expectancy, which is not always accompanied by an improved quality of life or healthspan. A decline in muscle mass and function is a consequence of ageing and can result in a loss of independence in elderly individuals while increasing their risk of falls. Multiple cellular pathways have been implicated in age-related muscle atrophy, including the contribution of reactive oxygen species (ROS) and disrupted redox signalling. Aberrant levels of ROS disrupts the redox environment in older muscle, potentially disrupting cellular signalling and in some cases blunting the adaptive response to exercise. Age-related muscle atrophy is associated with disrupted mitochondrial content and function, one of the hallmarks of age-related diseases. There is a critical link between abnormal ROS generation and dysfunctional mitochondrial dynamics including mitochondrial biogenesis, fusion and fission. In order to develop effective treatments or preventative strategies, it is important to gain a comprehensive understanding of the mechanistic pathways implicated in age associated loss of muscle.
Collapse
Affiliation(s)
- Alice Shally
- Discipline of Physiology, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Brian McDonagh
- Discipline of Physiology, School of Medicine, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
114
|
Li X, Yang L, Mao Z, Pan X, Zhao Y, Gu X, Eckel-Mahan K, Zuo Z, Tong Q, Hartig SM, Cheng X, Du G, Moore DD, Bellen HJ, Sesaki H, Sun K. Novel role of dynamin-related-protein 1 in dynamics of ER-lipid droplets in adipose tissue. FASEB J 2020; 34:8265-8282. [PMID: 32294302 DOI: 10.1096/fj.201903100rr] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 12/17/2022]
Abstract
Dynamin-Related-Protein 1 (DRP1) critically regulates mitochondrial and peroxisomal fission in multicellular organisms. However, the impact of DRP1 on other organelles, especially its direct influence on ER functions remains largely unclear. Here, we report that DRP1 translocates to endoplasmic reticulum (ER) in response to β-adrenergic stimulation. To further investigate the function of DRP1 on ER-lipid droplet (LD) dynamics and the metabolic subsequences, we generated an adipose tissue-specific DRP1 knockout model (Adipo-Drp1flx/flx ). We found that the LDs in adipose tissues of Adipo-Drp1flx/flx mice exhibited more unilocular morphology with larger sizes, and formed less multilocular structures upon cold exposure. Mechanistically, we discovered that abnormal LD morphology occurs because newly generated micro-LDs fail to dissociate from the ER due to DRP1 ablation. Conversely, the ER retention of LDs can be rescued by the overexpressed DRP1 in the adipocytes. The alteration of LD dynamics, combined with abnormal mitochondrial and autophagy functions in adipose tissue, ultimately lead to abnormalities in lipid metabolism in Adipo-Drp1flx/flx mice.
Collapse
Affiliation(s)
- Xin Li
- Center for Metabolic and Degenerative Diseases, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Li Yang
- Center for Metabolic and Degenerative Diseases, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhengmei Mao
- Microscopy Core, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xueyang Pan
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Yueshui Zhao
- Center for Metabolic and Degenerative Diseases, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xue Gu
- Center for Metabolic and Degenerative Diseases, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kristin Eckel-Mahan
- Center for Metabolic and Degenerative Diseases, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Integrative Biology and Pharmacology, Graduate Program in Cell and Regulatory Biology, Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhongyuan Zuo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA.,Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Qiang Tong
- Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Sean M Hartig
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Graduate Program in Cell and Regulatory Biology, Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA.,Texas Therapeutics Institute, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Guangwei Du
- Department of Integrative Biology and Pharmacology, Graduate Program in Cell and Regulatory Biology, Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - David D Moore
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA.,Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kai Sun
- Center for Metabolic and Degenerative Diseases, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Integrative Biology and Pharmacology, Graduate Program in Cell and Regulatory Biology, Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
115
|
Navarro-Espíndola R, Takano-Rojas H, Suaste-Olmos F, Peraza-Reyes L. Distinct Contributions of the Peroxisome-Mitochondria Fission Machinery During Sexual Development of the Fungus Podospora anserina. Front Microbiol 2020; 11:640. [PMID: 32351478 PMCID: PMC7175800 DOI: 10.3389/fmicb.2020.00640] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022] Open
Abstract
Mitochondria and peroxisomes are organelles whose activity is intimately associated and that play fundamental roles in development. In the model fungus Podospora anserina, peroxisomes and mitochondria are required for different stages of sexual development, and evidence indicates that their activity in this process is interrelated. Additionally, sexual development involves precise regulation of peroxisome assembly and dynamics. Peroxisomes and mitochondria share the proteins mediating their division. The dynamin-related protein Dnm1 (Drp1) along with its membrane receptors, like Fis1, drives this process. Here we demonstrate that peroxisome and mitochondrial fission in P. anserina depends on FIS1 and DNM1. We show that FIS1 and DNM1 elimination affects the dynamics of both organelles throughout sexual development in a developmental stage-dependent manner. Moreover, we discovered that the segregation of peroxisomes, but not mitochondria, is affected upon elimination of FIS1 or DNM1 during the division of somatic hyphae and at two central stages of sexual development—the differentiation of meiocytes (asci) and of meiotic-derived spores (ascospores). Furthermore, we found that FIS1 and DNM1 elimination results in delayed karyogamy and defective ascospore differentiation. Our findings reveal that sexual development relies on complex remodeling of peroxisomes and mitochondria, which is driven by their common fission machinery.
Collapse
Affiliation(s)
- Raful Navarro-Espíndola
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Harumi Takano-Rojas
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Fernando Suaste-Olmos
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Leonardo Peraza-Reyes
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
116
|
The role of Drp1 in mitophagy and cell death in the heart. J Mol Cell Cardiol 2020; 142:138-145. [PMID: 32302592 DOI: 10.1016/j.yjmcc.2020.04.015] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/25/2020] [Accepted: 04/11/2020] [Indexed: 12/20/2022]
Abstract
Maintenance of mitochondrial function and integrity is critical for normal cell survival, particularly in non-dividing cells with a high-energy demand such as cardiomyocytes. Well-coordinated quality control mechanisms in cardiomyocytes, involving mitochondrial biogenesis, mitochondrial dynamics-fission and fusion, and mitophagy, act to protect against mitochondrial dysfunction. Mitochondrial fission, which requires dynamin-related protein 1 (Drp1), is essential for segregation of damaged mitochondria for degradation. Alterations in this process have been linked to cardiomyocyte apoptosis and cardiomyopathy. In this review, we discuss the role of Drp1 in mitophagy and apoptosis in the context of cardiac pathology, including myocardial ischemia and heart failure.
Collapse
|
117
|
Zhou Z, Torres M, Sha H, Halbrook CJ, Van den Bergh F, Reinert RB, Yamada T, Wang S, Luo Y, Hunter AH, Wang C, Sanderson TH, Liu M, Taylor A, Sesaki H, Lyssiotis CA, Wu J, Kersten S, Beard DA, Qi L. Endoplasmic reticulum-associated degradation regulates mitochondrial dynamics in brown adipocytes. Science 2020; 368:54-60. [PMID: 32193362 PMCID: PMC7409365 DOI: 10.1126/science.aay2494] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 01/19/2020] [Accepted: 03/04/2020] [Indexed: 12/13/2022]
Abstract
The endoplasmic reticulum (ER) engages mitochondria at specialized ER domains known as mitochondria-associated membranes (MAMs). Here, we used three-dimensional high-resolution imaging to investigate the formation of pleomorphic "megamitochondria" with altered MAMs in brown adipocytes lacking the Sel1L-Hrd1 protein complex of ER-associated protein degradation (ERAD). Mice with ERAD deficiency in brown adipocytes were cold sensitive and exhibited mitochondrial dysfunction. ERAD deficiency affected ER-mitochondria contacts and mitochondrial dynamics, at least in part, by regulating the turnover of the MAM protein, sigma receptor 1 (SigmaR1). Thus, our study provides molecular insights into ER-mitochondrial cross-talk and expands our understanding of the physiological importance of Sel1L-Hrd1 ERAD.
Collapse
Affiliation(s)
- Zhangsen Zhou
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Mauricio Torres
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Haibo Sha
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Christopher J Halbrook
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Françoise Van den Bergh
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Rachel B Reinert
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Tatsuya Yamada
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Siwen Wang
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Yingying Luo
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Allen H Hunter
- College of Engineering and Michigan Center for Materials Characterization, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chunqing Wang
- Department of Biochemistry and Molecular Biology and Autophagy, Inflammation and Metabolism Center for Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Thomas H Sanderson
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Meilian Liu
- Department of Biochemistry and Molecular Biology and Autophagy, Inflammation and Metabolism Center for Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Aaron Taylor
- Biomedical Research Core Facilities, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jun Wu
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sander Kersten
- Nutrition, Metabolism and Genomics group, Wageningen University, Wageningen, Netherlands
| | - Daniel A Beard
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Ling Qi
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA.
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| |
Collapse
|
118
|
Venkatesh K, Mathew A, Koushika SP. Role of actin in organelle trafficking in neurons. Cytoskeleton (Hoboken) 2020; 77:97-109. [DOI: 10.1002/cm.21580] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/14/2019] [Accepted: 11/05/2019] [Indexed: 01/29/2023]
Affiliation(s)
- Keertana Venkatesh
- Department of Biological SciencesTata Institute of Fundamental Research Mumbai India
| | - Amal Mathew
- Department of Biological SciencesTata Institute of Fundamental Research Mumbai India
| | - Sandhya P. Koushika
- Department of Biological SciencesTata Institute of Fundamental Research Mumbai India
| |
Collapse
|
119
|
Prieto J, Ponsoda X, Izpisua Belmonte JC, Torres J. Mitochondrial dynamics and metabolism in induced pluripotency. Exp Gerontol 2020; 133:110870. [PMID: 32045634 DOI: 10.1016/j.exger.2020.110870] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/20/2019] [Accepted: 02/05/2020] [Indexed: 12/15/2022]
Abstract
Somatic cells can be reprogrammed to pluripotency by either ectopic expression of defined factors or exposure to chemical cocktails. During reprogramming, somatic cells undergo dramatic changes in a wide range of cellular processes, such as metabolism, mitochondrial morphology and function, cell signaling pathways or immortalization. Regulation of these processes during cell reprograming lead to the acquisition of a pluripotent state, which enables indefinite propagation by symmetrical self-renewal without losing the ability of reprogrammed cells to differentiate into all cell types of the adult. In this review, recent data from different laboratories showing how these processes are controlled during the phenotypic transformation of a somatic cell into a pluripotent stem cell will be discussed.
Collapse
Affiliation(s)
- Javier Prieto
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Calle Dr. Moliner 50, 46100 Burjassot, Spain; Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Xavier Ponsoda
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Calle Dr. Moliner 50, 46100 Burjassot, Spain; Instituto de Investigación Sanitaria (INCLIVA), Avenida de Menéndez y Pelayo 4, 46010, Valencia, Spain
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Josema Torres
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Calle Dr. Moliner 50, 46100 Burjassot, Spain; Instituto de Investigación Sanitaria (INCLIVA), Avenida de Menéndez y Pelayo 4, 46010, Valencia, Spain.
| |
Collapse
|
120
|
Changes in the Expression of Mitochondrial Morphology-Related Genes during the Differentiation of Murine Embryonic Stem Cells. Stem Cells Int 2020; 2020:9369268. [PMID: 32399055 PMCID: PMC7204333 DOI: 10.1155/2020/9369268] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/17/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023] Open
Abstract
During embryonic development, cells undergo changes in gene expression, signaling pathway activation/inactivation, metabolism, and intracellular organelle structures, which are mediated by mitochondria. Mitochondria continuously switch their morphology between elongated tubular and fragmented globular via mitochondrial fusion and fission. Mitochondrial fusion is mediated by proteins encoded by Mfn1, Mfn2, and Opa1, whereas mitochondrial fission is mediated by proteins encoded by Fis1 and Dnm1L. Here, we investigated the expression patterns of mitochondria-related genes during the differentiation of mouse embryonic stem cells (ESCs). Pluripotent ESCs maintain stemness in the presence of leukemia inhibitory factor (LIF) via the JAK-STAT3 pathway but lose pluripotency and differentiate in response to the withdrawal of LIF. We analyzed the expression levels of mitochondrial fusion- and fission-related genes during the differentiation of ESCs. We hypothesized that mitochondrial fusion genes would be overexpressed while the fission genes would be downregulated during the differentiation of ESCs. Though the mitochondria exhibited an elongated morphology in ESCs differentiating in response to LIF withdrawal, only the expression of Mfn2 was increased and that of Dnm1L was decreased as expected, the other exceptions being Mfn1, Opa1, and Fis1. Next, by comparing gene expression and mitochondrial morphology, we proposed an index that could precisely represent mitochondrial changes during the differentiation of pluripotent stem cells by analyzing the expression ratios of three fusion- and two fission-related genes. Surprisingly, increased Mfn2/Dnm1L ratio was correlated with elongation of mitochondria during the differentiation of ESCs. Moreover, application of this index to other specialized cell types revealed that neural stems cells (NSCs) and mouse embryonic fibroblasts (MEFs) showed increased Mfn2/Dnm1L ratio compared to ESCs. Thus, we suggest that the Mfn2/Dnm1L ratio could reflect changes in mitochondrial morphology according to the extent of differentiation.
Collapse
|
121
|
Kulek AR, Anzell A, Wider JM, Sanderson TH, Przyklenk K. Mitochondrial Quality Control: Role in Cardiac Models of Lethal Ischemia-Reperfusion Injury. Cells 2020; 9:cells9010214. [PMID: 31952189 PMCID: PMC7016592 DOI: 10.3390/cells9010214] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/10/2020] [Accepted: 01/12/2020] [Indexed: 02/07/2023] Open
Abstract
The current standard of care for acute myocardial infarction or 'heart attack' is timely restoration of blood flow to the ischemic region of the heart. While reperfusion is essential for the salvage of ischemic myocardium, re-introduction of blood flow paradoxically kills (rather than rescues) a population of previously ischemic cardiomyocytes-a phenomenon referred to as 'lethal myocardial ischemia-reperfusion (IR) injury'. There is long-standing and exhaustive evidence that mitochondria are at the nexus of lethal IR injury. However, during the past decade, the paradigm of mitochondria as mediators of IR-induced cardiomyocyte death has been expanded to include the highly orchestrated process of mitochondrial quality control. Our aims in this review are to: (1) briefly summarize the current understanding of the pathogenesis of IR injury, and (2) incorporating landmark data from a broad spectrum of models (including immortalized cells, primary cardiomyocytes and intact hearts), provide a critical discussion of the emerging concept that mitochondrial dynamics and mitophagy (the components of mitochondrial quality control) may contribute to the pathogenesis of cardiomyocyte death in the setting of ischemia-reperfusion.
Collapse
Affiliation(s)
- Andrew R. Kulek
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; (A.R.K.); (A.A.); (T.H.S.)
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Anthony Anzell
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; (A.R.K.); (A.A.); (T.H.S.)
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Departments of Emergency Medicine and Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Joseph M. Wider
- Departments of Emergency Medicine and Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Thomas H. Sanderson
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; (A.R.K.); (A.A.); (T.H.S.)
- Departments of Emergency Medicine and Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Karin Przyklenk
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; (A.R.K.); (A.A.); (T.H.S.)
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Correspondence: ; Tel.: +1-313-577-9047
| |
Collapse
|
122
|
Kennedy NW, Picton LK, Hill RB. Isolation and Analysis of Mitochondrial Fission Enzyme DNM1 from Saccharomyces cerevisiae. Methods Mol Biol 2020; 2159:3-15. [PMID: 32529359 PMCID: PMC8040746 DOI: 10.1007/978-1-0716-0676-6_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Mitochondrial fission, an essential process for mitochondrial and cellular homeostasis, is accomplished by evolutionarily conserved members of the dynamin superfamily of large GTPases. These enzymes couple the hydrolysis of guanosine triphosphate to the mechanical work of membrane remodeling that ultimately leads to membrane scission. The importance of mitochondrial dynamins is exemplified by mutations in the human family member that causes neonatal lethality. In this chapter, we describe the subcloning, purification, and preliminary characterization of the budding yeast mitochondrial dynamin, DNM1, from Saccharomyces cerevisiae, which is the first mitochondrial dynamin isolated from native sources. The yeast-purified enzyme exhibits assembly-stimulated hydrolysis of GTP similar to other fission dynamins, but differs from the enzyme isolated from non-native sources.
Collapse
Affiliation(s)
- Nolan W Kennedy
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lora K Picton
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - R Blake Hill
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
123
|
Aman Y, Frank J, Lautrup SH, Matysek A, Niu Z, Yang G, Shi L, Bergersen LH, Storm-Mathisen J, Rasmussen LJ, Bohr VA, Nilsen H, Fang EF. The NAD +-mitophagy axis in healthy longevity and in artificial intelligence-based clinical applications. Mech Ageing Dev 2020; 185:111194. [PMID: 31812486 PMCID: PMC7545219 DOI: 10.1016/j.mad.2019.111194] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/24/2019] [Accepted: 12/03/2019] [Indexed: 12/11/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an important natural molecule involved in fundamental biological processes, including the TCA cycle, OXPHOS, β-oxidation, and is a co-factor for proteins promoting healthy longevity. NAD+ depletion is associated with the hallmarks of ageing and may contribute to a wide range of age-related diseases including metabolic disorders, cancer, and neurodegenerative diseases. One of the central pathways by which NAD+ promotes healthy ageing is through regulation of mitochondrial homeostasis via mitochondrial biogenesis and the clearance of damaged mitochondria via mitophagy. Here, we highlight the contribution of the NAD+-mitophagy axis to ageing and age-related diseases, and evaluate how boosting NAD+ levels may emerge as a promising therapeutic strategy to counter ageing as well as neurodegenerative diseases including Alzheimer's disease. The potential use of artificial intelligence to understand the roles and molecular mechanisms of the NAD+-mitophagy axis in ageing is discussed, including possible applications in drug target identification and validation, compound screening and lead compound discovery, biomarker development, as well as efficacy and safety assessment. Advances in our understanding of the molecular and cellular roles of NAD+ in mitophagy will lead to novel approaches for facilitating healthy mitochondrial homoeostasis that may serve as a promising therapeutic strategy to counter ageing-associated pathologies and/or accelerated ageing.
Collapse
Affiliation(s)
- Yahyah Aman
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
| | - Johannes Frank
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
| | - Sofie Hindkjær Lautrup
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
| | - Adrian Matysek
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway; School of Pharmacy and Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, 40-055, Katowice, Poland
| | - Zhangming Niu
- Aladdin Healthcare Technologies Ltd., 24-26 Baltic Street West, London, EC1Y OUR, UK
| | - Guang Yang
- Cardiovascular Research Centre, Royal Brompton Hospital, London, SW3 6NP, UK; National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | - Liu Shi
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Linda H Bergersen
- The Brain and Muscle Energy Group, Electron Microscopy Laboratory, Department of Oral Biology, University of Oslo, NO-0316, Oslo, Norway; Amino Acid Transporters, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences (IMB) and Healthy Brain Ageing Centre (SERTA), University of Oslo, NO-0317, Oslo, Norway; Center for Healthy Aging, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark; The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway
| | - Jon Storm-Mathisen
- Amino Acid Transporters, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences (IMB) and Healthy Brain Ageing Centre (SERTA), University of Oslo, NO-0317, Oslo, Norway; The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway
| | - Lene J Rasmussen
- The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway; Center for Healthy Aging, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, United States; The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway; Center for Healthy Aging, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Hilde Nilsen
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway; The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway
| | - Evandro F Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway; The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway.
| |
Collapse
|
124
|
Prinz WA, Toulmay A, Balla T. The functional universe of membrane contact sites. Nat Rev Mol Cell Biol 2020; 21:7-24. [PMID: 31732717 PMCID: PMC10619483 DOI: 10.1038/s41580-019-0180-9] [Citation(s) in RCA: 358] [Impact Index Per Article: 89.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2019] [Indexed: 12/13/2022]
Abstract
Organelles compartmentalize eukaryotic cells, enhancing their ability to respond to environmental and developmental changes. One way in which organelles communicate and integrate their activities is by forming close contacts, often called 'membrane contact sites' (MCSs). Interest in MCSs has grown dramatically in the past decade as it is has become clear that they are ubiquitous and have a much broader range of critical roles in cells than was initially thought. Indeed, functions for MCSs in intracellular signalling (particularly calcium signalling, reactive oxygen species signalling and lipid signalling), autophagy, lipid metabolism, membrane dynamics, cellular stress responses and organelle trafficking and biogenesis have now been reported.
Collapse
Affiliation(s)
- William A Prinz
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Alexandre Toulmay
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tamas Balla
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
125
|
Sumneang N, Siri-Angkul N, Kumfu S, Chattipakorn SC, Chattipakorn N. The effects of iron overload on mitochondrial function, mitochondrial dynamics, and ferroptosis in cardiomyocytes. Arch Biochem Biophys 2019; 680:108241. [PMID: 31891670 DOI: 10.1016/j.abb.2019.108241] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/22/2019] [Accepted: 12/25/2019] [Indexed: 02/06/2023]
Abstract
Excessive iron accumulation in the heart can lead to iron overload cardiomyopathy (IOC), the leading cause of death in hemochromatosis patients. Current understanding regarding the mechanism by which iron overload causes a deterioration in cardiac performance, mitochondrial dysfunction, and impaired mitochondrial dynamics remains limited. Ferroptosis, a newly identified form of regulated cell death, has recently been revealed influencing the pathophysiological process of IOC. Nevertheless, the direct effect of cardiac iron overload on ferroptotic cell death is incompletely characterized. This review article comprehensively summarizes and discusses the effects of iron overload on cardiac mitochondrial function, cardiac mitochondrial dynamics, ferroptosis of cardiomyocytes, and left ventricular function in in vitro and in vivo reports. This review also provides relevant consistent and controversial information which can facilitate further mechanistic investigation into iron-induced cardiac dysfunction in the clinical setting in the near future.
Collapse
Affiliation(s)
- Natticha Sumneang
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Natthaphat Siri-Angkul
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sirinart Kumfu
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
126
|
Arribat Y, Grepper D, Lagarrigue S, Richard J, Gachet M, Gut P, Amati F. Mitochondria in Embryogenesis: An Organellogenesis Perspective. Front Cell Dev Biol 2019; 7:282. [PMID: 31824944 PMCID: PMC6883342 DOI: 10.3389/fcell.2019.00282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/31/2019] [Indexed: 12/30/2022] Open
Abstract
Organogenesis is well characterized in vertebrates. However, the anatomical and functional development of intracellular compartments during this phase of development remains unknown. Taking an organellogenesis point of view, we characterize the spatiotemporal adaptations of the mitochondrial network during zebrafish embryogenesis. Using state of the art microscopy approaches, we find that mitochondrial network follows three distinct distribution patterns during embryonic development. Despite of this constant morphological change of the mitochondrial network, electron transport chain supercomplexes occur at early stages of embryonic development and conserve a stable organization throughout development. The remodeling of the mitochondrial network and the conservation of its structural components go hand-in-hand with somite maturation; for example, genetic disruption of myoblast fusion impairs mitochondrial network maturation. Reciprocally, mitochondria quality represents a key factor to determine embryonic progression. Alteration of mitochondrial polarization and electron transport chain halts embryonic development in a reversible manner suggesting developmental checkpoints that depend on mitochondrial integrity. Our findings establish the subtle dialogue and co-dependence between organogenesis and mitochondria in early vertebrate development. They also suggest the importance of adopting subcellular perspectives to understand organelle-organ communications during embryogenesis.
Collapse
Affiliation(s)
- Yoan Arribat
- Aging and Muscle Metabolism Lab, Department of Physiology & Institute of Sport Sciences, School of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Dogan Grepper
- Aging and Muscle Metabolism Lab, Department of Physiology & Institute of Sport Sciences, School of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Sylviane Lagarrigue
- Aging and Muscle Metabolism Lab, Department of Physiology & Institute of Sport Sciences, School of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Joy Richard
- Nestlé Research, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Mélanie Gachet
- Aging and Muscle Metabolism Lab, Department of Physiology & Institute of Sport Sciences, School of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Philipp Gut
- Nestlé Research, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Francesca Amati
- Aging and Muscle Metabolism Lab, Department of Physiology & Institute of Sport Sciences, School of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
127
|
Hasnat M, Yuan Z, Ullah A, Naveed M, Raza F, Baig MMFA, Khan A, Xu D, Su Y, Sun L, Zhang L, Jiang Z. Mitochondria-dependent apoptosis in triptolide-induced hepatotoxicity is associated with the Drp1 activation. Toxicol Mech Methods 2019; 30:124-133. [PMID: 31557070 DOI: 10.1080/15376516.2019.1669247] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
How triptolide is associated with mitochondrial dysfunction and apoptosis in connection with its hepatotoxicity remains unclear. The objective of our study was to find out the link between mitochondrial dynamics and cell death in triptolide induced hepatotoxicity. We treated L02 cells with 25 nM concentration of triptolide. The results demonstrated that triptolide treatment caused an increase in apoptotic cell death, mitochondrial depolarization, ROS overproduction, a decrease in ATP production, and mitochondrial fragmentation which in turn is associated with the activation of Drp1 fission protein. Triptolide treatment led to the translocation of Drp1 from the cytosol into outer mitochondrial membrane where it started mitochondrial fission. This fission event is coupled with the mitochondrial release of cytochrome c into the cytosol and subsequently caspase-3 activation. TEM analysis of rat liver tissues revealed the distortion of mitochondrial morphology in triptolide-treated group. Western blot analysis explained that disruption in mitochondrial morphology was attached with the recruitment of Drp1 to mitochondria, cytochrome c release, and caspase-3 activation. However, Mdivi-1 co-treatment inhibited the activation of Drp1 and caspase-3 and blocked the release of cytochrome c into the cytosol. In short, inhibiting Drp1 protein activation may provide a new potential target for curing Drp1-associated apoptosis in triptolide-induced hepatotoxicity.
Collapse
Affiliation(s)
- Muhammad Hasnat
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China.,Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Ziqiao Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Aftab Ullah
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Muhammad Naveed
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Faisal Raza
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Mirza Muhammad Faran Ashraf Baig
- State Key Lab of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Asifullah Khan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Dengqiu Xu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Yuwen Su
- School of Pharmacy, Nanjing Medical University, Nanjing, China.,Department of Clinical Pharmacology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Linxin Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China.,Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China.,Center for Drug Screening and Pharmacodynamics Evaluation, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
128
|
De Vecchis D, Brandner A, Baaden M, Cohen MM, Taly A. A Molecular Perspective on Mitochondrial Membrane Fusion: From the Key Players to Oligomerization and Tethering of Mitofusin. J Membr Biol 2019; 252:293-306. [PMID: 31485701 DOI: 10.1007/s00232-019-00089-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 08/14/2019] [Indexed: 12/29/2022]
Abstract
Mitochondria are dynamic organelles characterized by an ultrastructural organization which is essential in maintaining their quality control and ensuring functional efficiency. The complex mitochondrial network is the result of the two ongoing forces of fusion and fission of inner and outer membranes. Understanding the functional details of mitochondrial dynamics is physiologically relevant as perturbations of this delicate equilibrium have critical consequences and involved in several neurological disorders. Molecular actors involved in this process are large GTPases from the dynamin-related protein family. They catalyze nucleotide-dependent membrane remodeling and are widely conserved from bacteria to higher eukaryotes. Although structural characterization of different family members has contributed in understanding molecular mechanisms of mitochondrial dynamics in more detail, the complete structure of some members as well as the precise assembly of functional oligomers remains largely unknown. As increasing structural data become available, the domain modularity across the dynamin superfamily emerged as a foundation for transfering the knowledge towards less characterized members. In this review, we will first provide an overview of the main actors involved in mitochondrial dynamics. We then discuss recent example of computational methodologies for the study of mitofusin oligomers, and present how the usage of integrative modeling in conjunction with biochemical data can be an asset in progressing the still challenging field of membrane dynamics.
Collapse
Affiliation(s)
- Dario De Vecchis
- School of Medicine, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, LIGHT Building, Leeds, LS2 9JT, UK.
| | - Astrid Brandner
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 Rue Pierre et Marie Curie, 75005, Paris, France.,Institut de Biologie Physico-Chimique - Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Marc Baaden
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 Rue Pierre et Marie Curie, 75005, Paris, France.,Institut de Biologie Physico-Chimique - Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Mickael M Cohen
- Institut de Biologie Physico-Chimique - Fondation Edmond de Rothschild, PSL Research University, Paris, France.,Laboratoire de Biologie Cellulaire et Moléculaire des Eucaryotes, Sorbonne Université, CNRS, UMR 8226, Paris, France
| | - Antoine Taly
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 Rue Pierre et Marie Curie, 75005, Paris, France. .,Institut de Biologie Physico-Chimique - Fondation Edmond de Rothschild, PSL Research University, Paris, France.
| |
Collapse
|
129
|
Tao JX, Zhou WC, Zhu XG. Mitochondria as Potential Targets and Initiators of the Blue Light Hazard to the Retina. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6435364. [PMID: 31531186 PMCID: PMC6721470 DOI: 10.1155/2019/6435364] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/18/2019] [Accepted: 07/25/2019] [Indexed: 12/20/2022]
Abstract
Commercially available white light-emitting diodes (LEDs) have an intense emission in the range of blue light, which has raised a range of public concerns about their potential risks as retinal hazards. Distinct from other visible light components, blue light is characterized by short wavelength, high energy, and strong penetration that can reach the retina with relatively little loss in damage potential. Mitochondria are abundant in retinal tissues, giving them relatively high access to blue light, and chromophores, which are enriched in the retina, have many mitochondria able to absorb blue light and induce photochemical effects. Therefore, excessive exposure of the retina to blue light tends to cause ROS accumulation and oxidative stress, which affect the structure and function of the retinal mitochondria and trigger mitochondria-involved death signaling pathways. In this review, we highlight the essential roles of mitochondria in blue light-induced photochemical damage and programmed cell death in the retina, indicate directions for future research and preventive targets in terms of the blue light hazard to the retina, and suggest applying LED devices in a rational way to prevent the blue light hazard.
Collapse
Affiliation(s)
- Jin-Xin Tao
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Department of Clinical Medicine, The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Wen-Chuan Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Department of Clinical Medicine, The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Xin-Gen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|
130
|
Yoshida Y, Mogi Y. How do plastids and mitochondria divide? Microscopy (Oxf) 2019; 68:45-56. [PMID: 30476140 DOI: 10.1093/jmicro/dfy132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/16/2018] [Indexed: 12/30/2022] Open
Abstract
Plastids and mitochondria are thought to have originated from free-living cyanobacterial and alpha-proteobacterial ancestors, respectively, via endosymbiosis. Their evolutionary origins dictate that these organelles do not multiply de novo but through the division of pre-existing plastids and mitochondria. Over the past three decades, studies have shown that plastid and mitochondrial division are performed by contractile ring-shaped structures, broadly termed the plastid and mitochondrial-division machineries. Interestingly, the division machineries are hybrid forms of the bacterial cell division system and eukaryotic membrane fission system. The structure and function of the plastid and mitochondrial-division machineries are similar to each other, implying that the division machineries evolved in parallel since their establishment in primitive eukaryotes. Compared with our knowledge of their structures, our understanding of the mechanical details of how these division machineries function is still quite limited. Here, we review and compare the structural frameworks of the plastid and mitochondrial-division machineries in both lower and higher eukaryotes. Then, we highlight fundamental issues that need to be resolved to reveal the underlying mechanisms of plastid and mitochondrial division. Finally, we highlight related studies that point to an exciting future for the field.
Collapse
Affiliation(s)
- Yamato Yoshida
- Department of Science, College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki, Japan
| | - Yuko Mogi
- Department of Science, College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki, Japan
| |
Collapse
|
131
|
Devine MJ, Kittler JT. Mitochondria at the neuronal presynapse in health and disease. Nat Rev Neurosci 2019; 19:63-80. [PMID: 29348666 DOI: 10.1038/nrn.2017.170] [Citation(s) in RCA: 350] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Synapses enable neurons to communicate with each other and are therefore a prerequisite for normal brain function. Presynaptically, this communication requires energy and generates large fluctuations in calcium concentrations. Mitochondria are optimized for supplying energy and buffering calcium, and they are actively recruited to presynapses. However, not all presynapses contain mitochondria; thus, how might synapses with and without mitochondria differ? Mitochondria are also increasingly recognized to serve additional functions at the presynapse. Here, we discuss the importance of presynaptic mitochondria in maintaining neuronal homeostasis and how dysfunctional presynaptic mitochondria might contribute to the development of disease.
Collapse
Affiliation(s)
- Michael J Devine
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Josef T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| |
Collapse
|
132
|
Zheng JH, Xie L, Li N, Fu ZY, Tan XF, Tao R, Qin T, Chen MH. PD98059 protects the brain against mitochondrial-mediated apoptosis and autophagy in a cardiac arrest rat model. Life Sci 2019; 232:116618. [PMID: 31265854 DOI: 10.1016/j.lfs.2019.116618] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/22/2019] [Accepted: 06/28/2019] [Indexed: 12/17/2022]
Abstract
AIMS Mitochondrial dysfunction has been regarded as one of the hallmarks of cerebral ischemia-reperfusion injury. In previous studies, we have provided evidence that the extracellular signaling pathway (ERK) 1/2 inhibitor PD98059 improved the neurological deficits by modulating antioxidant and anti-apoptotic activities in rats subjected to cardiac arrest/cardiopulmonary resuscitation (CA/CPR). Since oxidative stress can activate mitochondria-dependent apoptosis and autophagy, we further explored the effects of PD98059 on mitochondria involved with apoptosis and autophagy in rat CA model. MATERIALS AND METHODS We disposed PD98059 in CA/CPR rats, tested the mitochondrial-mediated apoptosis pathway in brain tissues at 24 h post-resuscitation by mitochondrial permeability transition pores (MPTP), cytochrome c (CytC), BCL-2, BAX, caspase-3, as well as autophagy by LC3, Beclin-1, and p62. Furthermore, we explored the relationship of dynamin-related protein 1 (Drp1) with apoptosis and autophagy. KEY FINDINGS Our study showed that PD98059 decreased the openings of MPTP, CytC release, caspase3 activation, apoptotic indices, LC3-II, Beclin-1and increased P62. PD98059 also inhibited mitochondria-dependent apoptosis and the activity of autophagy in a dose-dependent manner in rat cerebral cortices at 24 h post-resuscitation. The generation of phosphorylated Drp1-616 was down-regulated accompanied by a decrease of TUNEL-positive cells and LC3 in dual immunostaining after PD98059 inhibited activation of ERK signaling pathway in a dose-dependent manner in rat cerebral cortices at 24 h post-resuscitation. SIGNIFICANCE PD98059 protects the brain against mitochondrial-mediated apoptosis and autophagy at 24 h post-resuscitation in rats subjected to CA/CPR, which is linked with the downregulation of Drp1 expression.
Collapse
Affiliation(s)
- Jun-Hui Zheng
- Department of Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, China
| | - Lu Xie
- Department of Physiology, Pre-Clinical Science, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Nuo Li
- Department of Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, China
| | - Zhao-Yin Fu
- Department of Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, China
| | - Xiao-Feng Tan
- Department of Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, China
| | - Ran Tao
- Department of Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, China
| | - Tao Qin
- Department of Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, China
| | - Meng-Hua Chen
- Department of Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, China.
| |
Collapse
|
133
|
Abstract
Significance: In addition to their classical role in cellular ATP production, mitochondria are of key relevance in various (patho)physiological mechanisms including second messenger signaling, neuro-transduction, immune responses and death induction. Recent Advances: Within cells, mitochondria are motile and display temporal changes in internal and external structure ("mitochondrial dynamics"). During the last decade, substantial empirical and in silico evidence was presented demonstrating that mitochondrial dynamics impacts on mitochondrial function and vice versa. Critical Issues: However, a comprehensive and quantitative understanding of the bidirectional links between mitochondrial external shape, internal structure and function ("morphofunction") is still lacking. The latter particularly hampers our understanding of the functional properties and behavior of individual mitochondrial within single living cells. Future Directions: In this review we discuss the concept of mitochondrial morphofunction in mammalian cells, primarily using experimental evidence obtained within the last decade. The topic is introduced by briefly presenting the central role of mitochondria in cell physiology and the importance of the mitochondrial electron transport chain (ETC) therein. Next, we summarize in detail how mitochondrial (ultra)structure is controlled and discuss empirical evidence regarding the equivalence of mitochondrial (ultra)structure and function. Finally, we provide a brief summary of how mitochondrial morphofunction can be quantified at the level of single cells and mitochondria, how mitochondrial ultrastructure/volume impacts on mitochondrial bioreactions and intramitochondrial protein diffusion, and how mitochondrial morphofunction can be targeted by small molecules.
Collapse
Affiliation(s)
- Elianne P. Bulthuis
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Merel J.W. Adjobo-Hermans
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Peter H.G.M. Willems
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Werner J.H. Koopman
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
- Address correspondence to: Dr. Werner J.H. Koopman, Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, P.O. Box 9101, Nijmegen NL-6500 HB, The Netherlands
| |
Collapse
|
134
|
Wong YC, Peng W, Krainc D. Lysosomal Regulation of Inter-mitochondrial Contact Fate and Motility in Charcot-Marie-Tooth Type 2. Dev Cell 2019; 50:339-354.e4. [PMID: 31231042 DOI: 10.1016/j.devcel.2019.05.033] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 02/25/2019] [Accepted: 05/16/2019] [Indexed: 10/26/2022]
Abstract
Properly regulated mitochondrial networks are essential for cellular function and implicated in multiple diseases. Mitochondria undergo fission and fusion events, but the dynamics and regulation of a third event of inter-mitochondrial contact formation remain unclear. Using super-resolution imaging, we demonstrate that inter-mitochondrial contacts frequently form and play a fundamental role in mitochondrial networks by restricting mitochondrial motility. Inter-mitochondrial contact untethering events are marked and regulated by mitochondria-lysosome contacts, which are modulated by RAB7 GTP hydrolysis. Moreover, inter-mitochondrial contact formation and untethering are further regulated by Mfn1/2 and Drp1 GTP hydrolysis, respectively. Surprisingly, endoplasmic reticulum tubules are also present at inter-mitochondrial contact untethering events, in addition to mitochondrial fission and fusion events. Importantly, we find that multiple Charcot-Marie-Tooth type 2 disease-linked mutations in Mfn2 (CMT2A), RAB7 (CMT2B), and TRPV4 (CMT2C) converge on prolonged inter-mitochondrial contacts and defective mitochondrial motility, highlighting a role for inter-mitochondrial contacts in mitochondrial network regulation and disease.
Collapse
Affiliation(s)
- Yvette C Wong
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Wesley Peng
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
135
|
Si L, Liu W, Hayashi T, Ji Y, Fu J, Nie Y, Mizuno K, Hattori S, Onodera S, Ikejima T. Silibinin-induced apoptosis of breast cancer cells involves mitochondrial impairment. Arch Biochem Biophys 2019; 671:42-51. [PMID: 31085166 DOI: 10.1016/j.abb.2019.05.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/22/2019] [Accepted: 05/10/2019] [Indexed: 01/20/2023]
Abstract
Mitochondria are dynamically regulated by fission and fusion processes. Silibinin induces apoptosis of MCF-7 and MDA-MB-231 human breast cancer cells. However, whether or not mitochondria dysfunction is involved in the apoptosis induction with silibinin of both types of the cells remains unknown. We here report that silibinin decreases the mitochondrial mass in terms of MitoTracker Green staining in both breast cancer cells. Silibinin induces morphological changes of mitochondria from oval to truncated or fragmented shapes accordingly. Condensed crests are observed in mitochondria by transmission electron microscopy. Silibinin causes mitochondrial membrane potential reduced. The expression of mitochondrial fission-associated proteins including dynamin-related protein 1 (DRP1) is up-regulated, whereas expression of the mitochondrial fusion-associated proteins, optic atrophy 1 and mitofusin 1, is down-regulated. In addition, silibinin treatment down-regulates ATP content as well as the levels of mitochondrial biogenesis-regulators including mitochondrial transcription factor A, peroxisome proliferator-activated receptor gamma coactivator 1 and nuclear respiratory factor 2. Moreover, treatments with DRP1 inhibitor, mdivi-1, or with DRP1-targetted siRNA efficiently prevent silibinin-induced apoptosis in the breast cancer cells, whereas inhibition of DRP1 phosphorylation with staurosporine increases apoptosis furthermore. Taken together, we conclude that silibinin impairs mitochondrial dynamics and biogenesis, leading to apoptosis of MCF-7 and MDA-MB-123 cells.
Collapse
Affiliation(s)
- Lingling Si
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Weiwei Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Toshihiko Hayashi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China; Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2665-1, Nakanomachi, Hachioji, Tokyo, 192-0015, Japan
| | - Yachao Ji
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Jianing Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Yuheng Nie
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Kazunori Mizuno
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Satoshi Onodera
- Medical Research Institute of Curing Mibyo, 1-6-28 Narusedai Mechida Tokyo, 194-0042, Japan
| | - Takashi Ikejima
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China; Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China.
| |
Collapse
|
136
|
Dietz JV, Bohovych I, Viana MP, Khalimonchuk O. Proteolytic regulation of mitochondrial dynamics. Mitochondrion 2019; 49:289-304. [PMID: 31029640 DOI: 10.1016/j.mito.2019.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/19/2019] [Indexed: 12/23/2022]
Abstract
Spatiotemporal changes in the abundance, shape, and cellular localization of the mitochondrial network, also known as mitochondrial dynamics, are now widely recognized to play a key role in mitochondrial and cellular physiology as well as disease states. This process involves coordinated remodeling of the outer and inner mitochondrial membranes by conserved dynamin-like guanosine triphosphatases and their partner molecules in response to various physiological and stress stimuli. Although the core machineries that mediate fusion and partitioning of the mitochondrial network have been extensively characterized, many aspects of their function and regulation are incompletely understood and only beginning to emerge. In the present review we briefly summarize current knowledge about how the key mitochondrial dynamics-mediating factors are regulated via selective proteolysis by mitochondrial and cellular proteolytic machineries.
Collapse
Affiliation(s)
- Jonathan V Dietz
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, United States of America
| | - Iryna Bohovych
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, United States of America
| | - Martonio Ponte Viana
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, United States of America
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, United States of America; Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, United States of America; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, United States of America.
| |
Collapse
|
137
|
Yu R, Jin SB, Lendahl U, Nistér M, Zhao J. Human Fis1 regulates mitochondrial dynamics through inhibition of the fusion machinery. EMBO J 2019; 38:e99748. [PMID: 30842096 PMCID: PMC6463211 DOI: 10.15252/embj.201899748] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 12/27/2022] Open
Abstract
Mitochondrial dynamics is important for life. At center stage for mitochondrial dynamics, the balance between mitochondrial fission and fusion is a set of dynamin-related GTPases that drive mitochondrial fission and fusion. Fission is executed by the GTPases Drp1 and Dyn2, whereas the GTPases Mfn1, Mfn2, and OPA1 promote fusion. Recruitment of Drp1 to mitochondria is a critical step in fission. In yeast, Fis1p recruits the Drp1 homolog Dnm1p to mitochondria through Mdv1p and Caf4p, but whether human Fis1 (hFis1) promotes fission through a similar mechanism as in yeast is not established. Here, we show that hFis1-mediated mitochondrial fragmentation occurs in the absence of Drp1 and Dyn2, suggesting that they are dispensable for hFis1 function. hFis1 instead binds to Mfn1, Mfn2, and OPA1 and inhibits their GTPase activity, thus blocking the fusion machinery. Consistent with this, disruption of the fusion machinery in Drp1-/- cells phenocopies the fragmentation phenotype induced by hFis1 overexpression. In sum, our data suggest a novel role for hFis1 as an inhibitor of the fusion machinery, revealing an important functional evolutionary divergence between yeast and mammalian Fis1 proteins.
Collapse
Affiliation(s)
- Rong Yu
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Shao-Bo Jin
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Monica Nistér
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Jian Zhao
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
138
|
Engelhart EA, Hoppins S. A catalytic domain variant of mitofusin requiring a wildtype paralog for function uncouples mitochondrial outer-membrane tethering and fusion. J Biol Chem 2019; 294:8001-8014. [PMID: 30936207 DOI: 10.1074/jbc.ra118.006347] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 03/27/2019] [Indexed: 11/06/2022] Open
Abstract
Mitofusins (Mfns) are dynamin-related GTPases that mediate mitochondrial outer-membrane fusion, a process that is required for mitochondrial and cellular health. In Mfn1 and Mfn2 paralogs, a conserved phenylalanine (Phe-202 (Mfn1) and Phe-223 (Mfn2)) located in the GTPase domain on a conserved β strand is part of an aromatic network in the core of this domain. To gain insight into the poorly understood mechanism of Mfn-mediated membrane fusion, here we characterize a Mitofusin mutant variant etiologically linked to Charcot-Marie-Tooth syndrome. From analysis of mitochondrial structure in cells and mitochondrial fusion in vitro, we found that conversion of Phe-202 to leucine in either Mfn1 or Mfn2 diminishes the fusion activity of heterotypic complexes with both Mfn1 and Mfn2 and abolishes fusion activity of homotypic complexes. Using coimmunoprecipitation and native gel analysis, we further dissect the steps of mitochondrial fusion and demonstrate that the mutant variant has normal tethering activity but impaired higher-order nucleotide-dependent assembly. The defective coupling of tethering to membrane fusion observed here suggests that nucleotide-dependent self-assembly of Mitofusin is required after tethering to promote membrane fusion.
Collapse
Affiliation(s)
- Emily A Engelhart
- Department of Biochemistry, University of Washington School of Medicine, Seattle, Washington 98195
| | - Suzanne Hoppins
- Department of Biochemistry, University of Washington School of Medicine, Seattle, Washington 98195.
| |
Collapse
|
139
|
Melatti C, Pieperhoff M, Lemgruber L, Pohl E, Sheiner L, Meissner M. A unique dynamin-related protein is essential for mitochondrial fission in Toxoplasma gondii. PLoS Pathog 2019; 15:e1007512. [PMID: 30947298 PMCID: PMC6448817 DOI: 10.1371/journal.ppat.1007512] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 12/10/2018] [Indexed: 11/19/2022] Open
Abstract
The single mitochondrion of apicomplexan protozoa is thought to be critical for all stages of the life cycle, and is a validated drug target against these important human and veterinary parasites. In contrast to other eukaryotes, replication of the mitochondrion is tightly linked to the cell cycle. A key step in mitochondrial segregation is the fission event, which in many eukaryotes occurs by the action of dynamins constricting the outer membrane of the mitochondria from the cytosolic face. To date, none of the components of the apicomplexan fission machinery have been identified and validated. We identify here a highly divergent, dynamin-related protein (TgDrpC), conserved in apicomplexans as essential for mitochondrial biogenesis and potentially for fission in Toxoplasma gondii. We show that TgDrpC is found adjacent to the mitochondrion, and is localised both at its periphery and at its basal part, where fission is expected to occur. We demonstrate that depletion or dominant negative expression of TgDrpC results in interconnected mitochondria and ultimately in drastic changes in mitochondrial morphology, as well as in parasite death. Intriguingly, we find that the canonical adaptor TgFis1 is not required for mitochondrial fission. The identification of an Apicomplexa-specific enzyme required for mitochondrial biogenesis and essential for parasite growth highlights parasite adaptation. This work paves the way for future drug development targeting TgDrpC, and for the analysis of additional partners involved in this crucial step of apicomplexan multiplication.
Collapse
Affiliation(s)
- Carmen Melatti
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Manuela Pieperhoff
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Leandro Lemgruber
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Ehmke Pohl
- Department of Biosciences, & Biophysical Sciences Institute, Durham University, Durham, United Kingdom
| | - Lilach Sheiner
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Markus Meissner
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
140
|
Jimah JR, Hinshaw JE. Structural Insights into the Mechanism of Dynamin Superfamily Proteins. Trends Cell Biol 2019; 29:257-273. [DOI: 10.1016/j.tcb.2018.11.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/30/2018] [Accepted: 11/02/2018] [Indexed: 12/28/2022]
|
141
|
Palma E, Ma X, Riva A, Iansante V, Dhawan A, Wang S, Ni HM, Sesaki H, Williams R, Ding WX, Chokshi S. Dynamin-1-Like Protein Inhibition Drives Megamitochondria Formation as an Adaptive Response in Alcohol-Induced Hepatotoxicity. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:580-589. [PMID: 30553835 PMCID: PMC6436109 DOI: 10.1016/j.ajpath.2018.11.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 10/18/2018] [Accepted: 11/02/2018] [Indexed: 02/07/2023]
Abstract
Despite the growing global burden of alcoholic liver diseases, therapeutic options are limited, and novel targets are urgently needed. Accumulating evidence suggests that mitochondria adapt in response to ethanol and formation of megamitochondria in the livers of patients is recognized as a hallmark of alcoholic liver diseases. The processes involved in ethanol-induced hepatic mitochondrial changes, the impact on mitochondria-shaping proteins, and the significance of megamitochondria formation remain unknown. In this study, we investigated the mitochondrial and cellular response to alcohol in hepatoma cell line VL-17A. The mitochondrial architecture rapidly changed after 3 or 14 days of ethanol exposure with double-pronged presentation of hyperfragmentation and megamitochondria, and cell growth was inhibited. Dynamin-1-like protein (Drp1) was identified as the main mediator driving these mitochondrial alterations, and its genetic inactivation was determined to foster megamitochondria development, preserving the capacity of the cells to grow despite alcohol toxicity. The role of Drp1 in mediating megamitochondria formation in mice with liver-specific inactivation of Drp1 was further confirmed. Finally, when these mice were fed with ethanol, the presentation of hepatic megamitochondria was exacerbated compared with wild type fed with the same diet. Ethanol-induced toxicity was also reduced. Our study demonstrates that megamitochondria formation is mediated by Drp1, and this phenomenon is a beneficial adaptive response during alcohol-induced hepatotoxicity.
Collapse
Affiliation(s)
- Elena Palma
- The Institute of Hepatology London, Foundation for Liver Research, London, United Kingdom; Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Xiaowen Ma
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Antonio Riva
- The Institute of Hepatology London, Foundation for Liver Research, London, United Kingdom; Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Valeria Iansante
- Institute of Liver Studies, King's College London, London, United Kingdom
| | - Anil Dhawan
- Institute of Liver Studies, King's College London, London, United Kingdom
| | - Shaogui Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Roger Williams
- The Institute of Hepatology London, Foundation for Liver Research, London, United Kingdom; Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Shilpa Chokshi
- The Institute of Hepatology London, Foundation for Liver Research, London, United Kingdom; Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom.
| |
Collapse
|
142
|
Scheid AD, Beadnell TC, Welch DR. The second genome: Effects of the mitochondrial genome on cancer progression. Adv Cancer Res 2019; 142:63-105. [PMID: 30885364 DOI: 10.1016/bs.acr.2019.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The role of genetics in cancer has been recognized for centuries, but most studies elucidating genetic contributions to cancer have understandably focused on the nuclear genome. Mitochondrial contributions to cancer pathogenesis have been documented for decades, but how mitochondrial DNA (mtDNA) influences cancer progression and metastasis remains poorly understood. This lack of understanding stems from difficulty isolating the nuclear and mitochondrial genomes as experimental variables, which is critical for investigating direct mtDNA contributions to disease given extensive crosstalk exists between both genomes. Several in vitro and in vivo models have isolated mtDNA as an independent variable from the nuclear genome. This review compares and contrasts different models, their advantages and disadvantages for studying mtDNA contributions to cancer, focusing on the mitochondrial-nuclear exchange (MNX) mouse model and findings regarding tumor progression, metastasis, and other complex cancer-related phenotypes.
Collapse
Affiliation(s)
- Adam D Scheid
- Department of Cancer Biology, The University of Kansas Medical Center, and The University of Kansas Cancer Center, Kansas City, KS, United States
| | - Thomas C Beadnell
- Department of Cancer Biology, The University of Kansas Medical Center, and The University of Kansas Cancer Center, Kansas City, KS, United States
| | - Danny R Welch
- Department of Cancer Biology, The University of Kansas Medical Center, and The University of Kansas Cancer Center, Kansas City, KS, United States.
| |
Collapse
|
143
|
The Involvement of Cytochrome c Oxidase in Mitochondrial Fusion in Primary Cultures of Neonatal Rat Cardiomyocytes. Cardiovasc Toxicol 2019; 18:365-373. [PMID: 29396798 DOI: 10.1007/s12012-018-9447-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cytochrome c oxidase (CCO) is a copper-dependent enzyme of mitochondrial respiratory chain. In pressure overload-induced cardiac hypertrophy, copper level and CCO activity are both depressed, along with disturbance in mitochondrial fusion and fission dynamics. Copper repletion leads to recovery of CCO activity and normalized mitochondrial dynamics. The present study was undertaken to define the link between CCO activity and mitochondrial dynamic changes. Primary cultures of neonatal rat cardiomyocytes were treated with phenylephrine to induce cell hypertrophy. Hypertrophic cardiomyocytes were then treated with copper to reverse hypertrophy. In the hypertrophic cardiomyocytes, CCO activity was depressed and mitochondrial fusion was suppressed. Upon copper repletion, CCO activity was recovered and mitochondrial fusion was reestablished. Depression of CCO activity by siRNA targeting CCO assembly homolog 17 (COX17), a copper chaperone for CCO, led to fragmentation of mitochondria, which was not recoverable by copper supplementation. This study thus demonstrates that copper-dependent CCO is critical for mitochondrial fusion in the regression of cardiomyocyte hypertrophy.
Collapse
|
144
|
Global phosphoproteomic analysis reveals ARMC10 as an AMPK substrate that regulates mitochondrial dynamics. Nat Commun 2019; 10:104. [PMID: 30631047 PMCID: PMC6328551 DOI: 10.1038/s41467-018-08004-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 12/03/2018] [Indexed: 01/06/2023] Open
Abstract
AMP-activated protein kinase (AMPK) is a key regulator of cellular energy homeostasis. Although AMPK has been studied extensively in cellular processes, understanding of its substrates and downstream functional network, and their contributions to cell fate and disease development, remains incomplete. To elucidate the AMPK-dependent signaling pathways, we performed global quantitative phosphoproteomic analysis using wild-type and AMPKα1/α2-double knockout cells and discovered 160 AMPK-dependent phosphorylation sites. Further analysis using an AMPK consensus phosphorylation motif indicated that 32 of these sites are likely direct AMPK phosphorylation sites. We validated one uncharacterized protein, ARMC10, and demonstrated that the S45 site of ARMC10 can be phosphorylated by AMPK both in vitro and in vivo. Moreover, ARMC10 overexpression was sufficient to promote mitochondrial fission, whereas ARMC10 knockout prevented AMPK-mediated mitochondrial fission. These results demonstrate that ARMC10 is an effector of AMPK that participates in dynamic regulation of mitochondrial fission and fusion. AMPK is regulates cellular energy and has been extensively studied, although our knowledge of downstream substrates is incomplete. Here, Chen et al. perform global quantitative analysis for AMPK-dependent sites and validate one hit, ARMC10, as a direct AMPK effector of mitochondrial dynamics.
Collapse
|
145
|
Drp1-Zip1 Interaction Regulates Mitochondrial Quality Surveillance System. Mol Cell 2018; 73:364-376.e8. [PMID: 30581142 DOI: 10.1016/j.molcel.2018.11.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 09/11/2018] [Accepted: 11/07/2018] [Indexed: 01/09/2023]
Abstract
Mitophagy, a mitochondrial quality control process for eliminating dysfunctional mitochondria, can be induced by a response of dynamin-related protein 1 (Drp1) to a reduction in mitochondrial membrane potential (MMP) and mitochondrial division. However, the coordination between MMP and mitochondrial division for selecting the damaged portion of the mitochondrial network is less understood. Here, we found that MMP is reduced focally at a fission site by the Drp1 recruitment, which is initiated by the interaction of Drp1 with mitochondrial zinc transporter Zip1 and Zn2+ entry through the Zip1-MCU complex. After division, healthy mitochondria restore MMP levels and participate in the fusion-fission cycle again, but mitochondria that fail to restore MMP undergo mitophagy. Thus, interfering with the interaction between Drp1 and Zip1 blocks the reduction of MMP and the subsequent mitophagic selection of damaged mitochondria. These results suggest that Drp1-dependent fission provides selective pressure for eliminating "bad sectors" in the mitochondrial network, serving as a mitochondrial quality surveillance system.
Collapse
|
146
|
Kamerkar SC, Kraus F, Sharpe AJ, Pucadyil TJ, Ryan MT. Dynamin-related protein 1 has membrane constricting and severing abilities sufficient for mitochondrial and peroxisomal fission. Nat Commun 2018; 9:5239. [PMID: 30531964 PMCID: PMC6286342 DOI: 10.1038/s41467-018-07543-w] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/07/2018] [Indexed: 12/12/2022] Open
Abstract
Dynamin-related protein 1 (Drp1) is essential for mitochondrial and peroxisomal fission. Recent studies propose that Drp1 does not sever but rather constricts mitochondrial membranes allowing dynamin 2 (Dnm2) to execute final scission. Here, we report that unlike Drp1, Dnm2 is dispensable for peroxisomal and mitochondrial fission, as these events occurred in Dnm2 knockout cells. Fission events were also observed in mouse embryonic fibroblasts lacking Dnm1, 2 and 3. Using reconstitution experiments on preformed membrane tubes, we show that Drp1 alone both constricts and severs membrane tubes. Scission required the membrane binding, self-assembling and GTPase activities of Drp1 and occurred on tubes up to 250 nm in radius. In contrast, Dnm2 exhibited severely restricted fission capacity with occasional severing of tubes below 50 nm in radius. We conclude that Drp1 has both membrane constricting and severing abilities and is the dominant dynamin performing mitochondrial and peroxisomal fission. Drp1 and Dnm2 have been implicated in mitochondrial fission events, although their specific activities in constriction and scission have been unclear. Here, the authors demonstrate that Drp1 is sufficient to constrict and sever mitochondrial and peroxisomal membranes in the absence of Dnm proteins.
Collapse
Affiliation(s)
- Sukrut C Kamerkar
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Felix Kraus
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, 3800, Melbourne, Australia
| | - Alice J Sharpe
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, 3800, Melbourne, Australia
| | - Thomas J Pucadyil
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India.
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, 3800, Melbourne, Australia.
| |
Collapse
|
147
|
Mitochondrial Dynamics in Stem Cells and Differentiation. Int J Mol Sci 2018; 19:ijms19123893. [PMID: 30563106 PMCID: PMC6321186 DOI: 10.3390/ijms19123893] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 01/09/2023] Open
Abstract
Mitochondria are highly dynamic organelles that continuously change their shape. Their main function is adenosine triphosphate (ATP) production; however, they are additionally involved in a variety of cellular phenomena, such as apoptosis, cell cycle, proliferation, differentiation, reprogramming, and aging. The change in mitochondrial morphology is closely related to the functionality of mitochondria. Normal mitochondrial dynamics are critical for cellular function, embryonic development, and tissue formation. Thus, defects in proteins involved in mitochondrial dynamics that control mitochondrial fusion and fission can affect cellular differentiation, proliferation, cellular reprogramming, and aging. Here, we review the processes and proteins involved in mitochondrial dynamics and their various associated cellular phenomena.
Collapse
|
148
|
Xie B, Wang S, Jiang N, Li JJ. Cyclin B1/CDK1-regulated mitochondrial bioenergetics in cell cycle progression and tumor resistance. Cancer Lett 2018; 443:56-66. [PMID: 30481564 DOI: 10.1016/j.canlet.2018.11.019] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/27/2018] [Accepted: 11/11/2018] [Indexed: 02/08/2023]
Abstract
A mammalian cell houses two genomes located separately in the nucleus and mitochondria. During evolution, communications and adaptations between these two genomes occur extensively to achieve and sustain homeostasis for cellular functions and regeneration. Mitochondria provide the major cellular energy and contribute to gene regulation in the nucleus, whereas more than 98% of mitochondrial proteins are encoded by the nuclear genome. Such two-way signaling traffic presents an orchestrated dynamic between energy metabolism and consumption in cells. Recent reports have elucidated the way how mitochondrial bioenergetics synchronizes with the energy consumption for cell cycle progression mediated by cyclin B1/CDK1 as the communicator. This review is to recapitulate cyclin B1/CDK1 mediated mitochondrial activities in cell cycle progression and stress response as well as its potential link to reprogram energy metabolism in tumor adaptive resistance. Cyclin B1/CDK1-mediated mitochondrial bioenergetics is applied as an example to show how mitochondria could timely sense the cellular fuel demand and then coordinate ATP output. Such nucleus-mitochondria oscillation may play key roles in the flexible bioenergetics required for tumor cell survival and compromising the efficacy of anti-cancer therapy. Further deciphering the cyclin B1/CDK1-controlled mitochondrial metabolism may invent effect targets to treat resistant cancers.
Collapse
Affiliation(s)
- Bowen Xie
- Department of Radiation Oncology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Shuangyan Wang
- Department of Radiation Oncology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Nian Jiang
- Department of Radiation Oncology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Jian Jian Li
- Department of Radiation Oncology, School of Medicine, University of California at Davis, Sacramento, CA, USA.
| |
Collapse
|
149
|
Lee MW, Lee EY, Ferguson AL, Wong GCL. Machine learning antimicrobial peptide sequences: Some surprising variations on the theme of amphiphilic assembly. Curr Opin Colloid Interface Sci 2018; 38:204-213. [PMID: 31093008 DOI: 10.1016/j.cocis.2018.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Antimicrobial peptides (AMPs) collectively constitute a key component of the host innate immune system. They span a diverse space of sequences and can be α-helical, β-sheet, or unfolded in structure. Despite a wealth of knowledge about them from decades of experiments, it remains difficult to articulate general principles governing such peptides. How are they different from other molecules that are also cationic and amphiphilic? What other functions, in immunity and otherwise, are enabled by these simple sequences? In this short review, we present some recent work that engages these questions using methods not usually applied to AMP studies, such as machine learning. We find that not only do AMP-like sequences confer membrane remodeling activity to an unexpectedly broad range of protein classes, their cationic and amphiphilic signature also allows them to act as meta-antigens and self-assemble with immune ligands into nanocrystalline complexes for multivalent presentation to Toll-like receptors.
Collapse
Affiliation(s)
- Michelle W Lee
- Department of Bioengineering, Department of Chemistry, California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
| | - Ernest Y Lee
- Department of Bioengineering, Department of Chemistry, California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
| | - Andrew L Ferguson
- Institute for Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, United States
| | - Gerard C L Wong
- Department of Bioengineering, Department of Chemistry, California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
| |
Collapse
|
150
|
Dahlmans D, Houzelle A, Andreux P, Wang X, Jörgensen JA, Moullan N, Daemen S, Kersten S, Auwerx J, Hoeks J. MicroRNA-382 silencing induces a mitonuclear protein imbalance and activates the mitochondrial unfolded protein response in muscle cells. J Cell Physiol 2018; 234:6601-6610. [PMID: 30417335 PMCID: PMC6344277 DOI: 10.1002/jcp.27401] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 08/17/2018] [Indexed: 12/21/2022]
Abstract
Proper mitochondrial function plays a central role in cellular metabolism. Various diseases as well as aging are associated with diminished mitochondrial function. Previously, we identified 19 miRNAs putatively involved in the regulation of mitochondrial metabolism in skeletal muscle, a highly metabolically active tissue. In the current study, these 19 miRNAs were individually silenced in C2C12 myotubes using antisense oligonucleotides, followed by measurement of the expression of 27 genes known to play a major role in regulating mitochondrial metabolism. Based on the outcomes, we then focused on miR‐382‐5p and identified pathways affected by its silencing using microarrays, investigated protein expression, and studied cellular respiration. Silencing of miRNA‐382‐5p significantly increased the expression of several genes involved in mitochondrial dynamics and biogenesis. Conventional microarray analysis in C2C12 myotubes silenced for miRNA‐382‐5p revealed a collective downregulation of mitochondrial ribosomal proteins and respiratory chain proteins. This effect was accompanied by an imbalance between mitochondrial proteins encoded by the nuclear and mitochondrial DNA (1.35‐fold, p < 0.01) and an induction of HSP60 protein (1.31‐fold,
p < 0.05), indicating activation of the mitochondrial unfolded protein response (mtUPR). Furthermore, silencing of miR‐382‐5p reduced basal oxygen consumption rate by 14% (
p < 0.05) without affecting mitochondrial content, pointing towards a more efficient mitochondrial function as a result of improved mitochondrial quality control. Taken together, silencing of miR‐382‐5p induces a mitonuclear protein imbalance and activates the mtUPR in skeletal muscle, a phenomenon that was previously associated with improved longevity.
Collapse
Affiliation(s)
- Dennis Dahlmans
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, The Netherlands
| | - Alexandre Houzelle
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, The Netherlands
| | - Pénélope Andreux
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Xu Wang
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Johanna A Jörgensen
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, The Netherlands
| | - Norman Moullan
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sabine Daemen
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, The Netherlands
| | - Sander Kersten
- Division of Human Nutrition, Nutrition, Metabolism and Genomics Group, Wageningen University, Wageningen, The Netherlands
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Joris Hoeks
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, The Netherlands
| |
Collapse
|