101
|
Li X, Zeng X, Xu Y, Wang B, Zhao Y, Lai X, Qian P, Huang H. Mechanisms and rejuvenation strategies for aged hematopoietic stem cells. J Hematol Oncol 2020; 13:31. [PMID: 32252797 PMCID: PMC7137344 DOI: 10.1186/s13045-020-00864-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/27/2020] [Indexed: 12/18/2022] Open
Abstract
Hematopoietic stem cell (HSC) aging, which is accompanied by reduced self-renewal ability, impaired homing, myeloid-biased differentiation, and other defects in hematopoietic reconstitution function, is a hot topic in stem cell research. Although the number of HSCs increases with age in both mice and humans, the increase cannot compensate for the defects of aged HSCs. Many studies have been performed from various perspectives to illustrate the potential mechanisms of HSC aging; however, the detailed molecular mechanisms remain unclear, blocking further exploration of aged HSC rejuvenation. To determine how aged HSC defects occur, we provide an overview of differences in the hallmarks, signaling pathways, and epigenetics of young and aged HSCs as well as of the bone marrow niche wherein HSCs reside. Notably, we summarize the very recent studies which dissect HSC aging at the single-cell level. Furthermore, we review the promising strategies for rejuvenating aged HSC functions. Considering that the incidence of many hematological malignancies is strongly associated with age, our HSC aging review delineates the association between functional changes and molecular mechanisms and may have significant clinical relevance.
Collapse
Affiliation(s)
- Xia Li
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China
| | - Xiangjun Zeng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China
| | - Yulin Xu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China
| | - Binsheng Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China
| | - Yanmin Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaoyu Lai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China
| | - Pengxu Qian
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China. .,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China. .,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
102
|
Ganuza M, Hall T, Obeng EA, McKinney-Freeman S. Clones assemble! The clonal complexity of blood during ontogeny and disease. Exp Hematol 2020; 83:35-47. [PMID: 32006606 PMCID: PMC8343955 DOI: 10.1016/j.exphem.2020.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/13/2020] [Accepted: 01/21/2020] [Indexed: 01/30/2023]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) govern the daily expansion and turnover of billions of specialized blood cells. Given their clinical utility, much effort has been made toward understanding the dynamics of hematopoietic production from this pool of stem cells. An understanding of hematopoietic stem cell clonal dynamics during blood ontogeny could yield important insights into hematopoietic regulation, especially during aging and repeated exposure to hematopoietic stress-insults that may predispose individuals to the development of hematopoietic disease. Here, we review the current state of research regarding the clonal complexity of the hematopoietic system during embryogenesis, adulthood, and hematologic disease.
Collapse
Affiliation(s)
- Miguel Ganuza
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Trent Hall
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Esther A Obeng
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN
| | | |
Collapse
|
103
|
Peptide Nucleic Acids and Gene Editing: Perspectives on Structure and Repair. Molecules 2020; 25:molecules25030735. [PMID: 32046275 PMCID: PMC7037966 DOI: 10.3390/molecules25030735] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 12/14/2022] Open
Abstract
Unusual nucleic acid structures are salient triggers of endogenous repair and can occur in sequence-specific contexts. Peptide nucleic acids (PNAs) rely on these principles to achieve non-enzymatic gene editing. By forming high-affinity heterotriplex structures within the genome, PNAs have been used to correct multiple human disease-relevant mutations with low off-target effects. Advances in molecular design, chemical modification, and delivery have enabled systemic in vivo application of PNAs resulting in detectable editing in preclinical mouse models. In a model of β-thalassemia, treated animals demonstrated clinically relevant protein restoration and disease phenotype amelioration, suggesting a potential for curative therapeutic application of PNAs to monogenic disorders. This review discusses the rationale and advances of PNA technologies and their application to gene editing with an emphasis on structural biochemistry and repair.
Collapse
|
104
|
Vodyanoy V, Pustovyy O, Globa L, Kulesza RJ, Sorokulova I. Hemmule: A Novel Structure with the Properties of the Stem Cell Niche. Int J Mol Sci 2020; 21:ijms21020539. [PMID: 31947705 PMCID: PMC7013657 DOI: 10.3390/ijms21020539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/16/2022] Open
Abstract
Stem cells are nurtured and regulated by a specialized microenvironment known as stem cell niche. While the functions of the niches are well defined, their structure and location remain unclear. We have identified, in rat bone marrow, the seat of hematopoietic stem cells—extensively vascularized node-like compartments that fit the requirements for stem cell niche and that we called hemmules. Hemmules are round or oval structures of about one millimeter in diameter that are surrounded by a fine capsule, have afferent and efferent vessels, are filled with the extracellular matrix and mesenchymal, hematopoietic, endothelial stem cells, and contain cells of the megakaryocyte family, which are known for homeostatic quiescence and contribution to the bone marrow environment. We propose that hemmules are the long sought hematopoietic stem cell niches and that they are prototypical of stem cell niches in other organs.
Collapse
Affiliation(s)
- Vitaly Vodyanoy
- Department Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn, AL 36849, USA; (O.P.); (L.G.); (I.S.)
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA
- Correspondence: ; Tel.: +1-334-826-9894
| | - Oleg Pustovyy
- Department Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn, AL 36849, USA; (O.P.); (L.G.); (I.S.)
| | - Ludmila Globa
- Department Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn, AL 36849, USA; (O.P.); (L.G.); (I.S.)
| | - Randy J. Kulesza
- Department of Anatomy, Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA;
| | - Iryna Sorokulova
- Department Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn, AL 36849, USA; (O.P.); (L.G.); (I.S.)
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
105
|
Mitchell K, Steidl U. Targeting Immunophenotypic Markers on Leukemic Stem Cells: How Lessons from Current Approaches and Advances in the Leukemia Stem Cell (LSC) Model Can Inform Better Strategies for Treating Acute Myeloid Leukemia (AML). Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036251. [PMID: 31451539 DOI: 10.1101/cshperspect.a036251] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Therapies targeting cell-surface antigens in acute myeloid leukemia (AML) have been tested over the past 20 years with limited improvement in overall survival. Recent advances in the understanding of AML pathogenesis support therapeutic targeting of leukemia stem cells as the most promising avenue toward a cure. In this review, we provide an overview of the evolving leukemia stem cell (LSC) model, including evidence of the cell of origin, cellular and molecular disease architecture, and source of relapse in AML. In addition, we explore limitations of current targeted strategies utilized in AML and describe the various immunophenotypic antigens that have been proposed as LSC-directed therapeutic targets. We draw lessons from current approaches as well as from the (pre)-LSC model to suggest criteria that immunophenotypic targets should meet for more specific and effective elimination of disease-initiating clones, highlighting in detail a few targets that we suggest fit these criteria most completely.
Collapse
Affiliation(s)
- Kelly Mitchell
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Ulrich Steidl
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Department of Medicine (Oncology), Division of Hemato-Oncology, Albert Einstein College of Medicine-Montefiore Medical Center, Bronx, New York 10461, USA.,Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|
106
|
Dewi R, Hamid ZA, Rajab NF, Shuib S, Razak SA. Genetic, epigenetic, and lineage-directed mechanisms in benzene-induced malignancies and hematotoxicity targeting hematopoietic stem cells niche. Hum Exp Toxicol 2019; 39:577-595. [PMID: 31884827 DOI: 10.1177/0960327119895570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Benzene is a known hematotoxic and leukemogenic agent with hematopoietic stem cells (HSCs) niche being the potential target. Occupational and environmental exposure to benzene has been linked to the incidences of hematological disorders and malignancies. Previous studies have shown that benzene may act via multiple modes of action targeting HSCs niche, which include induction of chromosomal and micro RNA aberrations, leading to genetic and epigenetic modification of stem cells and probable carcinogenesis. However, understanding the mechanism linking benzene to the HSCs niche dysregulation is challenging due to complexity of its microenvironment. The niche is known to comprise of cell populations accounted for HSCs and their committed progenitors of lymphoid, erythroid, and myeloid lineages. Thus, it is fundamental to address novel approaches via lineage-directed strategy to elucidate precise mechanism involved in benzene-induced toxicity targeting HSCs and progenitors of different lineages. Here, we review the key genetic and epigenetic factors that mediate hematotoxicological effects by benzene and its metabolites in targeting HSCs niche. Overall, the use of combined genetic, epigenetic, and lineage-directed strategies targeting the HSCs niche is fundamental to uncover the key mechanisms in benzene-induced hematological disorders and malignancies.
Collapse
Affiliation(s)
- R Dewi
- Biomedical Science Programme and Centre of Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Z Abdul Hamid
- Biomedical Science Programme and Centre of Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - N F Rajab
- Biomedical Science Programme and Centre of Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - S Shuib
- Department of Pathology, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur, Malaysia
| | - Sr Abdul Razak
- Oncological and Radiological Sciences Cluster, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| |
Collapse
|
107
|
Nakagawa MM, Rathinam CV. Constitutive Activation of the Canonical NF-κB Pathway Leads to Bone Marrow Failure and Induction of Erythroid Signature in Hematopoietic Stem Cells. Cell Rep 2019; 25:2094-2109.e4. [PMID: 30463008 PMCID: PMC6945759 DOI: 10.1016/j.celrep.2018.10.071] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/29/2018] [Accepted: 10/19/2018] [Indexed: 11/24/2022] Open
Abstract
Constitutive activation of the canonical NF-κB pathway has been associated with a variety of human pathologies. However, molecular mechanisms through which canonical NF-κB affects hematopoiesis remain elusive. Here, we demonstrate that deregulated canonical NF-κB signals in hematopoietic stem cells (HSCs) cause a complete depletion of HSC pool, pancytopenia, bone marrow failure, and premature death. Constitutive activation of IKK2 in HSCs leads to impaired quiescence and loss of function. Gene set enrichment analysis (GSEA) identified an induction of “erythroid signature” in HSCs with augmented NF-κB activity. Mechanistic studies indicated a reduction of thrombopoietin (TPO)-mediated signals and its downstream target p57 in HSCs, due to reduced c-MpI expression in a cell-intrinsic manner. Molecular studies established Klf1 as a key suppressor of c-MpI in HSPCs with increased NF-κB. In essence, these studies identified a previously unknown mechanism through which exaggerated canonical NF-κB signals affect HSCs and cause pathophysiology. Nakagawa and Rathinam demonstrate that constitutive activation of IKK2 in HSCs causes a complete depletion of the HSC pool and impairs HSC functions due to a loss of “sternness” signature and an induction of erythroid signature.
Collapse
Affiliation(s)
- Masahiro Marshall Nakagawa
- Department of Genetics and Development, Columbia University Medical Center, 701 W. 168(th) Street, New York, NY 10032, USA
| | - Chozha Vendan Rathinam
- Department of Genetics and Development, Columbia University Medical Center, 701 W. 168(th) Street, New York, NY 10032, USA; Institute of Human Virology, University of Maryland, Baltimore, MD, USA; Center for Stem Cell & Regenerative Medicine, University of Maryland, Baltimore, MD, USA; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 725 W. Lombard Street, Baltimore, MD 21201, USA.
| |
Collapse
|
108
|
Gulati GS, Zukowska M, Noh JJ, Zhang A, Wesche DJ, Sinha R, George BM, Weissman IL, Szade K. Neogenin-1 distinguishes between myeloid-biased and balanced Hoxb5+ mouse long-term hematopoietic stem cells. Proc Natl Acad Sci U S A 2019; 116:25115-25125. [PMID: 31754028 PMCID: PMC6911217 DOI: 10.1073/pnas.1911024116] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hematopoietic stem cells (HSCs) self-renew and generate all blood cells. Recent studies with single cell transplants and lineage tracing suggest that adult HSCs are diverse in their reconstitution and lineage potentials. However, prospective isolation of these subpopulations has remained challenging. Here, we identify Neogenin-1 (NEO1) as a unique surface marker on a fraction of mouse HSCs labeled with Hoxb5, a specific reporter of long-term HSCs (LT-HSCs). We show that NEO1+Hoxb5+ LT-HSCs expand with age and respond to myeloablative stress in young mice while NEO1-Hoxb5+ LT-HSCs exhibit no significant change in number. Furthermore, NEO1+Hoxb5+ LT-HSCs are more often in the G2/S cell cycle phase compared to NEO1-Hoxb5+ LT-HSCs in both young and old bone marrow. Upon serial transplantation, NEO1+Hoxb5+ LT-HSCs exhibit myeloid-biased differentiation and reduced reconstitution while NEO1-Hoxb5+ LT-HSCs are lineage-balanced and stably reconstitute recipients. Gene expression analysis reveals erythroid and myeloid priming in the NEO1+ fraction and association of quiescence and self-renewal-related transcription factors with NEO1- LT-HSCs. Finally, transplanted NEO1+Hoxb5+ LT-HSCs rarely generate NEO1-Hoxb5+ LT-HSCs while NEO1-Hoxb5+ LT-HSCs repopulate both LT-HSC fractions. This supports a model in which dormant, balanced NEO1-Hoxb5+ LT-HSCs can hierarchically precede active, myeloid-biased NEO1+Hoxb5+ LT-HSCs.
Collapse
Affiliation(s)
- Gunsagar S Gulati
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305
| | - Monika Zukowska
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Joseph J Noh
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305
| | - Allison Zhang
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305
| | - Daniel J Wesche
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305
| | - Rahul Sinha
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305
| | - Benson M George
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305;
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Krzysztof Szade
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305;
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| |
Collapse
|
109
|
Chen YC, Aui SP, Lai YS, Chang KT. Adult Stem Cells in Hibernation: Future Perspectives of Space Travel. Int J Stem Cells 2019; 12:381-387. [PMID: 31474026 PMCID: PMC6881040 DOI: 10.15283/ijsc19048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/20/2019] [Accepted: 07/05/2019] [Indexed: 11/09/2022] Open
Abstract
Space traveling is imperative for mankind in the future. Expectedly, hibernation will become an option for space traveler to overcome the endless voyage. With regard to some of the studies pointed out that during hibernation, muscle will undergo atrophy and meantime neurogenesis will reduce, these obstacles were frequently related with stem cell regeneration. Thus, investigation on whether hibernation will lead to dysfunction of stem cell becomes an important issue. By going through four main systems in this article, such as, hematopoietic system, skeletal muscle system, central nervous system and orthopedic system, we are expecting that stem cells regeneration capacity will be affected by hibernation. To date, these researches are majorly the read-out from short term or seasonal hibernating mammals. Proposing and creating a simulated long-term hibernation animal model is turning essential for the further investigation on the effect of longer period of hibernation to human stem cells.
Collapse
Affiliation(s)
- Yu-Chih Chen
- Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Neipu, Taiwan
| | - Shin-Peir Aui
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Neipu, Taiwan
| | - Yin-Siew Lai
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Neipu, Taiwan.,Flow Cytometry Center, Precision Instruments Center, National Pingtung University of Science and Technology, Neipu, Taiwan.,Research Center for Animal Biologics, National Pingtung University of Science and Technology, Neipu, Taiwan
| | - Ko-Tung Chang
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Neipu, Taiwan.,Flow Cytometry Center, Precision Instruments Center, National Pingtung University of Science and Technology, Neipu, Taiwan.,Research Center for Animal Biologics, National Pingtung University of Science and Technology, Neipu, Taiwan
| |
Collapse
|
110
|
Grigoriou M, Banos A, Filia A, Pavlidis P, Giannouli S, Karali V, Nikolopoulos D, Pieta A, Bertsias G, Verginis P, Mitroulis I, Boumpas DT. Transcriptome reprogramming and myeloid skewing in haematopoietic stem and progenitor cells in systemic lupus erythematosus. Ann Rheum Dis 2019; 79:242-253. [PMID: 31780527 PMCID: PMC7025734 DOI: 10.1136/annrheumdis-2019-215782] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 09/30/2019] [Accepted: 10/18/2019] [Indexed: 12/13/2022]
Abstract
Objectives Haematopoietic stem and progenitor cells (HSPCs) are multipotent cells giving rise to both myeloid and lymphoid cell lineages. We reasoned that the aberrancies of immune cells in systemic lupus erythematosus (SLE) could be traced back to HSPCs. Methods A global gene expression map of bone marrow (BM)-derived HSPCs was completed by RNA sequencing followed by pathway and enrichment analysis. The cell cycle status and apoptosis status of HSPCs were assessed by flow cytometry, while DNA damage was assessed via immunofluorescence. Results Transcriptomic analysis of Lin−Sca-1+c-Kit+ haematopoietic progenitors from diseased lupus mice demonstrated a strong myeloid signature with expanded frequencies of common myeloid progenitors (CMPs)—but not of common lymphoid progenitors—reminiscent of a ‘trained immunity’ signature. CMP profiling revealed an intense transcriptome reprogramming with suppression of granulocytic regulators indicative of a differentiation arrest with downregulation trend of major regulators such as Cebpe, Cebpd and Csf3r, and disturbed myelopoiesis. Despite the differentiation arrest, frequencies of BM neutrophils were markedly increased in diseased mice, suggesting an alternative granulopoiesis pathway. In patients with SLE with severe disease, haematopoietic progenitor cells (CD34+) demonstrated enhanced proliferation, cell differentiation and transcriptional activation of cytokines and chemokines that drive differentiation towards myelopoiesis, thus mirroring the murine data. Conclusions Aberrancies of immune cells in SLE can be traced back to the BM HSPCs. Priming of HSPCs and aberrant regulation of myelopoiesis may contribute to inflammation and risk of flare. Trial registration number 4948/19-07-2016.
Collapse
Affiliation(s)
- Maria Grigoriou
- 4th Department of Internal Medicine, Attikon University Hospital and Joint Rheumatology Program, National and Kapodestrian University of Athens, Athens, Greece.,Laboratory of Inflammation and Autoimmunity, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Aggelos Banos
- Laboratory of Inflammation and Autoimmunity, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Anastasia Filia
- Laboratory of Inflammation and Autoimmunity, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Pavlos Pavlidis
- Institute of Computer Science, Foundation of Research and Technology Hellas, Heraklion, Greece
| | - Stavroula Giannouli
- 2nd Department of Internal Medicine, Hippokrateion Hospital, National and Kapodestrian University of Athens, Athens, Greece
| | - Vassiliki Karali
- 4th Department of Internal Medicine, Attikon University Hospital and Joint Rheumatology Program, National and Kapodestrian University of Athens, Athens, Greece
| | - Dionysis Nikolopoulos
- 4th Department of Internal Medicine, Attikon University Hospital and Joint Rheumatology Program, National and Kapodestrian University of Athens, Athens, Greece.,Laboratory of Inflammation and Autoimmunity, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Antigone Pieta
- 4th Department of Internal Medicine, Attikon University Hospital and Joint Rheumatology Program, National and Kapodestrian University of Athens, Athens, Greece
| | - George Bertsias
- Department of Rheumatology, Clinical Immunology and Allergy, School of Medicine, University of Crete, Heraklion, Greece
| | - Panayotis Verginis
- Laboratory of Immune Regulation and Tolerance, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Ioannis Mitroulis
- Department of Hematology and Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece.,Institute for Clinical Chemistry and Laboratory Medicine, Center of Internal Medicine, University Hospital of Dresden, Dresden, Germany
| | - Dimitrios T Boumpas
- 4th Department of Internal Medicine, Attikon University Hospital and Joint Rheumatology Program, National and Kapodestrian University of Athens, Athens, Greece .,Laboratory of Inflammation and Autoimmunity, Biomedical Research Foundation, Academy of Athens, Athens, Greece.,Rheumatology-Clinical Immunology Unit, Medical School, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
111
|
Radtke S, Humbert O, Kiem HP. Mouse models in hematopoietic stem cell gene therapy and genome editing. Biochem Pharmacol 2019; 174:113692. [PMID: 31705854 DOI: 10.1016/j.bcp.2019.113692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/01/2019] [Indexed: 12/26/2022]
Abstract
Gene therapy has become an important treatment option for a variety of hematological diseases. The biggest advances have been made with CAR T cells and many of those studies are now FDA approved as a routine treatment for some hematologic malignancies. Hematopoietic stem cell (HSC) gene therapy is not far behind with treatment approvals granted for beta-hemoglobinopathies and adenosine deaminase severe combined immune deficiency (ADA-SCID), and additional approbations currently being sought. With the current pace of research, the significant investment of biotech companies, and the continuously growing toolbox of viral as well as non-viral gene delivery methods, the development of new ex vivo and in vivo gene therapy approaches is at an all-time high. Research in the field of gene therapy has been ongoing for more than 4 decades with big success stories as well as devastating drawbacks along the way. In particular, the damaging effect of uncontrolled viral vector integration observed in the initial gene therapy applications in the 90s led to a more comprehensive upfront safety assessment of treatment strategies. Since the late 90s, an important read-out to comprehensively assess the quality and safety of cell products has come forward with the mouse xenograft model. Here, we review the use of mouse models across the different stages of basic, pre-clinical and translational research towards the clinical application of HSC-mediated gene therapy and editing approaches.
Collapse
Affiliation(s)
- Stefan Radtke
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Olivier Humbert
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Hans-Peter Kiem
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
112
|
Singh P, Patel RK, Palmer N, Grenier JK, Paduch D, Kaldis P, Grimson A, Schimenti JC. CDK2 kinase activity is a regulator of male germ cell fate. Development 2019; 146:dev180273. [PMID: 31582414 PMCID: PMC6857589 DOI: 10.1242/dev.180273] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/21/2019] [Indexed: 12/27/2022]
Abstract
The ability of men to remain fertile throughout their lives depends upon establishment of a spermatogonial stem cell (SSC) pool from gonocyte progenitors, and thereafter balancing SSC renewal versus terminal differentiation. Here, we report that precise regulation of the cell cycle is crucial for this balance. Whereas cyclin-dependent kinase 2 (Cdk2) is not necessary for mouse viability or gametogenesis stages prior to meiotic prophase I, mice bearing a deregulated allele (Cdk2Y15S ) are severely deficient in spermatogonial differentiation. This allele disrupts an inhibitory phosphorylation site (Tyr15) for the kinase WEE1. Remarkably, Cdk2Y15S/Y15S mice possess abnormal clusters of mitotically active SSC-like cells, but these are eventually removed by apoptosis after failing to differentiate properly. Analyses of lineage markers, germ cell proliferation over time, and single cell RNA-seq data revealed delayed and defective differentiation of gonocytes into SSCs. Biochemical and genetic data demonstrated that Cdk2Y15S is a gain-of-function allele causing elevated kinase activity, which underlies these differentiation defects. Our results demonstrate that precise regulation of CDK2 kinase activity in male germ cell development is crucial for the gonocyte-to-spermatogonia transition and long-term spermatogenic homeostasis.
Collapse
Affiliation(s)
- Priti Singh
- Cornell University, College of Veterinary Medicine, Department of Biomedical Sciences, Ithaca, NY 14853, USA
| | - Ravi K Patel
- Cornell University, Department of Molecular Biology and Genetics, Ithaca, NY 14853, USA
| | - Nathan Palmer
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A*STAR), Singapore 138673
- Department of Biochemistry, National University of Singapore, Singapore 117599, Republic of Singapore
| | - Jennifer K Grenier
- Cornell University, College of Veterinary Medicine, Department of Biomedical Sciences, Ithaca, NY 14853, USA
| | - Darius Paduch
- Cornell University, Weill Cornell Medicine, Department of Urology, New York, NY 10065, USA
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A*STAR), Singapore 138673
- Department of Biochemistry, National University of Singapore, Singapore 117599, Republic of Singapore
| | - Andrew Grimson
- Cornell University, Department of Molecular Biology and Genetics, Ithaca, NY 14853, USA
| | - John C Schimenti
- Cornell University, College of Veterinary Medicine, Department of Biomedical Sciences, Ithaca, NY 14853, USA
| |
Collapse
|
113
|
Gilchrist AE, Lee S, Hu Y, Harley BA. Soluble Signals and Remodeling in a Synthetic Gelatin-Based Hematopoietic Stem Cell Niche. Adv Healthc Mater 2019; 8:e1900751. [PMID: 31532901 PMCID: PMC6813872 DOI: 10.1002/adhm.201900751] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/21/2019] [Indexed: 12/31/2022]
Abstract
Hematopoietic stem cells (HSCs) reside in the bone marrow within niches that provide microenvironmental signals in the form of biophysical cues, bound and diffusible biomolecules, and heterotypic cell-cell interactions that influence HSC fate decisions. This study seeks to inform the development of a synthetic culture platform that promotes ex vivo HSC expansion without exhaustion. A library of methacrylamide-functionalized gelatin (GelMA) hydrogels is used to explore remodeling and crosstalk from mesenchymal stromal cells (MSCs) on the expansion and quiescence of murine HSCs. The use of a degradable GelMA hydrogel enables MSC-mediated remodeling, yielding dynamic shifts in the matrix environment over time. An initially low-diffusivity hydrogel for co-culture of hematopoietic stem and progenitor cells to MSCs facilitates maintenance of an early progenitor cell population over 7 days. Excitingly, this platform promotes retention of a quiescent HSC population compared to HSC monocultures. These studies reveal MSC-density-dependent upregulation of MMP-9 and changes in hydrogel mechanical properties (ΔE = 2.61 ± 0.72) suggesting MSC-mediated matrix remodeling may contribute to a dynamic culture environment. Herein, a 3D hydrogel is reported for ex vivo HSC culture, in which HSC expansion and quiescence is sensitive to hydrogel properties, MSC co-culture, and MSC-mediated hydrogel remodeling.
Collapse
Affiliation(s)
- Aidan E. Gilchrist
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign Urbana, IL 61801
| | - Sunho Lee
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign Urbana, IL 61801
| | - Yuhang Hu
- Department of Woodruff School of Mechanical Engineering, Georgia Institute of Technology Atlanta, GA 30332
| | - Brendan A.C. Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign Urbana, IL 61801
| |
Collapse
|
114
|
Tran NT, Sommermann T, Graf R, Trombke J, Pempe J, Petsch K, Kühn R, Rajewsky K, Chu VT. Efficient CRISPR/Cas9-Mediated Gene Knockin in Mouse Hematopoietic Stem and Progenitor Cells. Cell Rep 2019; 28:3510-3522.e5. [PMID: 31553918 PMCID: PMC6899516 DOI: 10.1016/j.celrep.2019.08.065] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/05/2019] [Accepted: 08/21/2019] [Indexed: 12/26/2022] Open
Abstract
Mutations accumulating in hematopoietic stem and progenitor cells (HSPCs) during development can cause severe hematological disorders. Modeling these mutations in mice is essential for understanding their functional consequences. Here, we describe an efficient CRISPR/Cas9-based system to knock in and repair genes in mouse HSPCs. CRISPR/Cas9 ribonucleoproteins, in combination with recombinant adeno-associated virus (rAAV)-DJ donor templates, led to gene knockin efficiencies of up to 30% in the Lmnb1 and Actb loci of mouse HSPCs in vitro. The targeted HSPCs engraft and reconstitute all immune cell lineages in the recipient mice. Using this approach, we corrected a neomycin-disrupted Rag2 gene. The Rag2-corrected HSPCs restore B and T cell development in vivo, confirming the functionality of the approach. Our method provides an efficient strategy to study gene function in the hematopoietic system and model hematological disorders in vivo, without the need for germline mutagenesis.
Collapse
Affiliation(s)
- Ngoc Tung Tran
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | | | - Robin Graf
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Janine Trombke
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | | | - Kerstin Petsch
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Ralf Kühn
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; Berlin Institute of Health, Berlin, Germany
| | - Klaus Rajewsky
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
| | - Van Trung Chu
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
115
|
Nakagawa MM, Rathinam CV. A20 deficiency in hematopoietic stem cells causes lymphopenia and myeloproliferation due to elevated Interferon-γ signals. Sci Rep 2019; 9:12658. [PMID: 31477755 PMCID: PMC6718430 DOI: 10.1038/s41598-019-49038-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/19/2019] [Indexed: 11/09/2022] Open
Abstract
Inflammation and inflammatory cytokines have been shown to exert both positive and negative effects on hematopoietic stem cells (HSCs) and hematopoiesis. While the significance of inflammation driven hematopoiesis has begun to unfold, molecular players that regulate this phenomenon remain largely unknown. In the present study, we identified A20 as a critical regulator of inflammation controlled hematopoietic cell fate decisions of HSCs. A20 deficiency in HSCs leads to increased differentiation of myeloid cells and myeloproliferation. Analysis of erythroid lineage cells of A20 deficient mice indicated a striking reduction of erythrocytes in the bone marrow (BM), but elevated numbers in the spleen. Loss of A20 in HSCs causes a severe blockade of B cell differentiation in the BM and absence of peripheral B cells in the spleen, liver and blood. T cell differentiation studies revealed a reduction of both T cell progenitors and differentiated T cells in the thymus and altered T cell numbers in the spleens of A20 mutant mice. Analysis of lineage committed progenitors of the myeloid, erythroid and lymphoid lineages specified an altered composition in the A20 deficient BM. Genetic studies identified that specific loss of A20 in the myeloid lineage cells results in myeloproliferation. Bone marrow transplantation studies and mixed bone marrow chimera studies suggested an involvement of inflammatory cytokines, particularly interferon (IFN)- γ, in the onset of myeloproliferation and lymphopenia of A20 deficient mice. Finally, ablation of IFNγ signals in A20 deficient mice rescued the hematopoietic defects. In essence, these studies highlight a previously unknown role for A20 in the restriction of inflammation driven pathologic hematopoiesis. We believe that our studies based on A20 mutant mice will be helpful in understanding the pathophysiology and in the treatment of patients with A20 (TNFAIP3) mutations.
Collapse
Affiliation(s)
- Masahiro Marshall Nakagawa
- Department of Genetics and Development, Columbia University Medical Center, 701W 168th street, New York, NY, 10032, USA
| | - Chozha Vendan Rathinam
- Department of Genetics and Development, Columbia University Medical Center, 701W 168th street, New York, NY, 10032, USA. .,Institute of Human Virology, University of Maryland, School of Medicine, Baltimore, MD, 21201, USA. .,Center for Stem Cell & Regenerative Medicine, University of Maryland, School of Medicine, Baltimore, MD, 21201, USA. .,Marlene & Stewart Greenebaum Comprehensive Cancer Center, 725W Lombard Street, University of Maryland, School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
116
|
Osteopontin is An Important Regulative Component of the Fetal Bone Marrow Hematopoietic Stem Cell Niche. Cells 2019; 8:cells8090985. [PMID: 31461896 PMCID: PMC6770910 DOI: 10.3390/cells8090985] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/01/2019] [Accepted: 08/22/2019] [Indexed: 12/18/2022] Open
Abstract
Osteopontin (OPN) is an important component in both bone and blood regulation, functioning as a bridge between the two. Previously, thrombin-cleaved osteopontin (trOPN), the dominant form of OPN in adult bone marrow (BM), was demonstrated to be a critical negative regulator of adult hematopoietic stem cells (HSC) via interactions with α4β1 and α9β1 integrins. We now demonstrate OPN is also required for fetal hematopoiesis in maintaining the HSC and progenitor pool in fetal BM. Specifically, we showed that trOPN is highly expressed in fetal BM and its receptors, α4β1 and α9β1 integrins, are both highly expressed and endogenously activated on fetal BM HSC and progenitors. Notably, the endogenous activation of integrins expressed by HSC was attributed to high concentrations of three divalent metal cations, Ca2+, Mg2+ and Mn2+, which were highly prevalent in developing fetal BM. In contrast, minimal levels of OPN were detected in fetal liver, and α4β1 and α9β1 integrins expressed by fetal liver HSC were not in the activated state, thereby permitting the massive expansion of HSC and progenitors required during early fetal hematopoiesis. Consistent with these results, no differences in the number or composition of hematopoietic cells in the liver of fetal OPN-/- mice were detected, but significant increases in the hematopoietic progenitor pool in fetal BM as well as an increase in the BM HSC pool following birth and into adulthood were observed. Together, the data demonstrates OPN is a necessary negative regulator of fetal and neonatal BM progenitors and HSC, and it exhibits preserved regulatory roles during early development, adulthood and ageing.
Collapse
|
117
|
Abstract
The systemic circulation depends upon a highly organized, hierarchal blood vascular network that requires the successful specification of arterial and venous endothelial cells during development. This process is driven by a cascade of signaling events (including Hedgehog, vascular endothelial growth factor (VEGF), Notch, connexin (Cx), transforming growth factor-beta (TGF- β), and COUP transcription factor 2 (COUP-TFII)) to influence endothelial cell cycle status and expression of arterial or venous genes and is further regulated by hemodynamic flow. Failure of endothelial cells to properly undergo arteriovenous specification may contribute to vascular malformation and dysfunction, such as in hereditary hemorrhagic telangiectasia (HHT) and capillary malformation-arteriovenous malformation (CM-AVM) where abnormal vessel structures, such as large shunts lacking clear arteriovenous identity and function, form and compromise peripheral blood flow. This review provides an overview of recent findings in the field of arteriovenous specification and highlights key regulators of this process.
Collapse
Affiliation(s)
- Jennifer Fang
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, Irvine, CA, 92697, USA
| | - Karen Hirschi
- 2Departments of Medicine, Genetics, and Biomedical Engineering, Yale Cardiovascular Research Center, Yale Stem Cell Center, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| |
Collapse
|
118
|
Aksoz M, Albayrak E, Aslan GS, Turan RD, Alyazici LY, Siyah P, Tuysuz EC, Canikyan S, Yucel D, Meric N, Gulbas Z, Sahin F, Kocabas F. c-Myc Inhibitor 10074-G5 Induces Murine and Human Hematopoietic Stem and Progenitor Cell Expansion and HDR Modulator Rad51 Expression. Curr Cancer Drug Targets 2019; 19:479-494. [DOI: 10.2174/1568009618666180905100608] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 04/24/2018] [Accepted: 08/25/2018] [Indexed: 12/29/2022]
Abstract
Background:c-Myc plays a major role in the maintenance of glycolytic metabolism and hematopoietic stem cell (HSC) quiescence.Objective:Targeting modulators of HSC quiescence and metabolism could lead to HSC cell cycle entry with concomitant expansion.Methods and Results:Here we show that c-Myc inhibitor 10074-G5 treatment leads to 2-fold increase in murine LSKCD34low HSC compartment post 7 days. In addition, c-Myc inhibition increases CD34+ and CD133+ human HSC number. c-Myc inhibition leads to downregulation of glycolytic and cyclindependent kinase inhibitor (CDKI) gene expression ex vivo and in vivo. In addition, c-Myc inhibition upregulates major HDR modulator Rad51 expression in hematopoietic cells. Besides, c-Myc inhibition does not alter proliferation kinetics of endothelial cells, fibroblasts or adipose-derived mesenchymal stem cells, however, it limits bone marrow derived mesenchymal stem cell proliferation. We further demonstrate that a cocktail of c-Myc inhibitor 10074-G5 along with tauroursodeoxycholic acid (TUDCA) and i-NOS inhibitor L-NIL provides a robust HSC maintenance and expansion ex vivo as evident by induction of all stem cell antigens analyzed. Intriguingly, the cocktail of c-Myc inhibitor 10074-G5, TUDCA and L-NIL improves HDR related gene expression.Conclusion:These findings provide tools to improve ex vivo HSC maintenance and expansion, autologous HSC transplantation and gene editing through modulation of HSC glycolytic and HDR pathways.
Collapse
Affiliation(s)
- Merve Aksoz
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Esra Albayrak
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Galip Servet Aslan
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Raife Dilek Turan
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Lamia Yazgi Alyazici
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Pınar Siyah
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Emre Can Tuysuz
- Biotechnology Program, Graduate School of Natural and Applied Sciences, Yeditepe University, 34755, Istanbul, Turkey
| | - Serli Canikyan
- Onkim Stem Cell Technologies, Istanbul Technical University - KOSGEB, Istanbul, Turkey
| | - Dogacan Yucel
- Faculty of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Neslihan Meric
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Zafer Gulbas
- Bone Marrow Transplantation Center, Anadolu Medical Center, Kocaeli, Turkey
| | - Fikrettin Sahin
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Fatih Kocabas
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
119
|
Roy IM, Biswas A, Verfaillie C, Khurana S. Energy Producing Metabolic Pathways in Functional Regulation of the Hematopoietic Stem Cells. IUBMB Life 2019; 70:612-624. [PMID: 29999238 DOI: 10.1002/iub.1870] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 04/20/2018] [Indexed: 02/06/2023]
Abstract
The hematopoietic system has a very well-studied hierarchy with the long-term (LT) hematopoietic stem cells (HSCs) taking the top position. The pool of quiescent adult LT-HSCs generated during the fetal and early postnatal life acts as a reservoir to supply all the blood cells. Therefore, the maintenance of this stem cell pool is pivotal to maintaining homeostasis in hematopoietic system. It has long been known that external cues, along with the internal genetic factors influence the status of HSCs in the bone marrow (BM). Hypoxia is one such factor that regulates the vascular as well as hematopoietic ontogeny from a very early time point in development. The metabolic outcomes of a hypoxic microenvironment play important roles in functional regulation of HSCs, especially in case of adult BM HSCs. Anaerobic metabolic pathways therefore perform prominent role in meeting energy demands. Increased oxidative pathways on the other hand result in loss of stemness. Recent studies have attributed the functional differences in HSCs across different life stages to their metabolic phenotypes regulated by respective niches. Indicating thus, that various energy production pathways could play distinct role in regulating HSC function at different developmental/physiological states. Here, we review the current status of our understanding over the role that energy production pathways play in regulating HSC stemness. © 2018 IUBMB Life, 70(7):612-624, 2018.
Collapse
Affiliation(s)
- Irene M Roy
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala, India
| | - Atreyi Biswas
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala, India
| | | | - Satish Khurana
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala, India
| |
Collapse
|
120
|
Romero Z, Lomova A, Said S, Miggelbrink A, Kuo CY, Campo-Fernandez B, Hoban MD, Masiuk KE, Clark DN, Long J, Sanchez JM, Velez M, Miyahira E, Zhang R, Brown D, Wang X, Kurmangaliyev YZ, Hollis RP, Kohn DB. Editing the Sickle Cell Disease Mutation in Human Hematopoietic Stem Cells: Comparison of Endonucleases and Homologous Donor Templates. Mol Ther 2019; 27:1389-1406. [PMID: 31178391 DOI: 10.1016/j.ymthe.2019.05.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/11/2019] [Accepted: 05/14/2019] [Indexed: 02/04/2023] Open
Abstract
Site-specific correction of a point mutation causing a monogenic disease in autologous hematopoietic stem and progenitor cells (HSPCs) can be used as a treatment of inherited disorders of the blood cells. Sickle cell disease (SCD) is an ideal model to investigate the potential use of gene editing to transvert a single point mutation at the β-globin locus (HBB). We compared the activity of zinc-finger nucleases (ZFNs) and CRISPR/Cas9 for editing, and homologous donor templates delivered as single-stranded oligodeoxynucleotides (ssODNs), adeno-associated virus serotype 6 (AAV6), integrase-deficient lentiviral vectors (IDLVs), and adenovirus 5/35 serotype (Ad5/35) to transvert the base pair responsible for SCD in HBB in primary human CD34+ HSPCs. We found that the ZFNs and Cas9 directed similar frequencies of nuclease activity. In vitro, AAV6 led to the highest frequencies of homology-directed repair (HDR), but levels of base pair transversions were significantly reduced when analyzing cells in vivo in immunodeficient mouse xenografts, with similar frequencies achieved with either AAV6 or ssODNs. AAV6 also caused significant impairment of colony-forming progenitors and human cell engraftment. Gene correction in engrafting hematopoietic stem cells may be limited by the capacity of the cells to mediate HDR, suggesting additional manipulations may be needed for high-efficiency gene correction in HSPCs.
Collapse
Affiliation(s)
- Zulema Romero
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anastasia Lomova
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Suzanne Said
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alexandra Miggelbrink
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Caroline Y Kuo
- Division of Allergy & Immunology, Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Beatriz Campo-Fernandez
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Megan D Hoban
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Katelyn E Masiuk
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Danielle N Clark
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Joseph Long
- Division of Allergy & Immunology, Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Julie M Sanchez
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Miriam Velez
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Eric Miyahira
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ruixue Zhang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Devin Brown
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xiaoyan Wang
- Department of Medicine Statistics Core, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yerbol Z Kurmangaliyev
- Department of Biological Chemistry, HHMI, University of California, Los Angeles, Los Angeles, CA, USA
| | - Roger P Hollis
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Donald B Kohn
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA; Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
121
|
Hemmati S, Sinclair T, Tong M, Bartholdy B, Okabe RO, Ames K, Ostrodka L, Haque T, Kaur I, Mills TS, Agarwal A, Pietras EM, Zhao JJ, Roberts TM, Gritsman K. PI3 kinase alpha and delta promote hematopoietic stem cell activation. JCI Insight 2019; 5:125832. [PMID: 31120863 DOI: 10.1172/jci.insight.125832] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Many cytokines and chemokines that are important for hematopoiesis activate the PI3K signaling pathway. Because this pathway is frequently mutated and activated in cancer, PI3K inhibitors have been developed for the treatment of several malignancies, and are now being tested in the clinic in combination with chemotherapy. However, the role of PI3K in adult hematopoietic stem cells (HSCs), particularly during hematopoietic stress, is still unclear. We previously showed that the individual PI3K catalytic isoforms P110α or P110β have dispensable roles in HSC function, suggesting redundancy between PI3K isoforms in HSCs. We now demonstrate that simultaneous deletion of P110α and P110δ in double knockout (DKO) HSCs uncovers their redundant requirement in HSC cycling after 5-fluorouracil (5-FU) chemotherapy administration. In contrast, DKO HSCs are still able to exit quiescence in response to other stress stimuli, such as LPS. We found that DKO HSCs and progenitors have impaired sensing of inflammatory signals ex vivo, and that levels of IL1-β and MIG are higher in the bone marrow after LPS than after 5-FU administration. Furthermore, exogenous in vivo administration of IL1-β can induce cell cycle entry of DKO HSCs. Our findings have important clinical implications for the use of PI3K inhibitors in combination with chemotherapy.
Collapse
Affiliation(s)
- Shayda Hemmati
- Department of Medicine and.,Department of Cell Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - Taneisha Sinclair
- Department of Medicine and.,Department of Cell Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - Meng Tong
- Department of Medicine and.,Department of Cell Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - Boris Bartholdy
- Department of Cell Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - Rachel O Okabe
- Department of Medicine and.,Department of Cell Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - Kristina Ames
- Department of Medicine and.,Department of Cell Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - Leanne Ostrodka
- Department of Medicine and.,Department of Cell Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - Tamanna Haque
- Department of Cell Biology, Albert Einstein College of Medicine, New York, New York, USA.,Department of Medical Oncology, Montefiore Hospital, New York, New York, USA
| | - Imit Kaur
- Department of Medicine and.,Department of Cell Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - Taylor S Mills
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Anupriya Agarwal
- Knight Cancer Institute, Oregon Health Sciences University, Portland, Oregon, USA
| | - Eric M Pietras
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jean J Zhao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Thomas M Roberts
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Kira Gritsman
- Department of Medicine and.,Department of Cell Biology, Albert Einstein College of Medicine, New York, New York, USA.,Department of Medical Oncology, Montefiore Hospital, New York, New York, USA
| |
Collapse
|
122
|
Lu Z, Hong CC, Kong G, Assumpção ALFV, Ong IM, Bresnick EH, Zhang J, Pan X. Polycomb Group Protein YY1 Is an Essential Regulator of Hematopoietic Stem Cell Quiescence. Cell Rep 2019; 22:1545-1559. [PMID: 29425509 PMCID: PMC6140794 DOI: 10.1016/j.celrep.2018.01.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 10/25/2017] [Accepted: 01/08/2018] [Indexed: 01/04/2023] Open
Abstract
Yin yang 1 (YY1) is a ubiquitous transcription factor and mammalian polycomb group protein (PcG) with important functions to regulate embryonic development, lineage differentiation, and cell proliferation. YY1 mediates stable PcG-dependent transcriptional repression via recruitment of PcG proteins that catalyze histone modifications. Many questions remain unanswered regarding how cell- and tissue-specificity is achieved by PcG proteins. Here, we demonstrate that a conditional knockout of Yy1 in hematopoietic stem cells (HSCs) decreases long-term repopulating activity and ectopic YY1 expression expands HSCs. Although the YY1 PcG domain is required for Igk chain rearrangement in B cells, the YY1 mutant lacking the PcG domain retained the capacity to stimulate HSC self-renewal. YY1 deficiency deregulated the genetic network governing HSC cell proliferation and impaired stem cell factor/c-Kit signaling, disrupting mechanisms conferring HSC quiescence. These results reveal a mechanism for how a ubiquitously expressed transcriptional repressor mediates lineage-specific functions to control adult hematopoiesis. Lu et al. investigate the function of the polycomb group (PcG) protein YY1 in hematopoietic stem cells. Independent of its REPO domain/PcG function, YY1 promotes hematopoietic stem cell selfrenewal and quiescence, suggesting that REPO domain/PcG function is not utilized in all contexts within the hematopoietic hierarchy.
Collapse
Affiliation(s)
- Zhanping Lu
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Dr., Madison, WI 57306, USA; Carbone Cancer Center, UW-Madison Blood Research Program, Madison, WI 53706, USA
| | - Courtney C Hong
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Dr., Madison, WI 57306, USA; Carbone Cancer Center, UW-Madison Blood Research Program, Madison, WI 53706, USA
| | - Guangyao Kong
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave., Madison, WI 53705, USA; National Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PRC; Carbone Cancer Center, UW-Madison Blood Research Program, Madison, WI 53706, USA
| | - Anna L F V Assumpção
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Dr., Madison, WI 57306, USA; Carbone Cancer Center, UW-Madison Blood Research Program, Madison, WI 53706, USA
| | - Irene M Ong
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave., Madison, WI 53705, USA; Carbone Cancer Center, UW-Madison Blood Research Program, Madison, WI 53706, USA
| | - Emery H Bresnick
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave., Madison, WI 53705, USA; Carbone Cancer Center, UW-Madison Blood Research Program, Madison, WI 53706, USA
| | - Jing Zhang
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave., Madison, WI 53705, USA; Carbone Cancer Center, UW-Madison Blood Research Program, Madison, WI 53706, USA
| | - Xuan Pan
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Dr., Madison, WI 57306, USA; Carbone Cancer Center, UW-Madison Blood Research Program, Madison, WI 53706, USA.
| |
Collapse
|
123
|
Hernandez G, Mills TS, Rabe JL, Chavez JS, Kuldanek S, Kirkpatrick G, Noetzli L, Jubair WK, Zanche M, Myers JR, Stevens BM, Fleenor CJ, Adane B, Dinarello CA, Ashton J, Jordan CT, Di Paola J, Hagman JR, Holers VM, Kuhn KA, Pietras EM. Pro-inflammatory cytokine blockade attenuates myeloid expansion in a murine model of rheumatoid arthritis. Haematologica 2019; 105:585-597. [PMID: 31101752 PMCID: PMC7049366 DOI: 10.3324/haematol.2018.197210] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 04/17/2019] [Indexed: 12/16/2022] Open
Abstract
Rheumatoid arthritis (RA) is a debilitating autoimmune disease characterized by chronic inflammation and progressive destruction of joint tissue. It is also characterized by aberrant blood phenotypes including anemia and suppressed lymphopoiesis that contribute to morbidity in RA patients. However, the impact of RA on hematopoietic stem cells (HSC) has not been fully elucidated. Using a collagen-induced mouse model of human RA, we identified systemic inflammation and myeloid overproduction associated with activation of a myeloid differentiation gene program in HSC. Surprisingly, despite ongoing inflammation, HSC from arthritic mice remain in a quiescent state associated with activation of a proliferation arrest gene program. Strikingly, we found that inflammatory cytokine blockade using the interleukin-1 receptor antagonist anakinra led to an attenuation of inflammatory arthritis and myeloid expansion in the bone marrow of arthritic mice. In addition, anakinra reduced expression of inflammation-driven myeloid lineage and proliferation arrest gene programs in HSC of arthritic mice. Altogether, our findings show that inflammatory cytokine blockade can contribute to normalization of hematopoiesis in the context of chronic autoimmune arthritis.
Collapse
Affiliation(s)
- Giovanny Hernandez
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Taylor S Mills
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Jennifer L Rabe
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - James S Chavez
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Susan Kuldanek
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Gregory Kirkpatrick
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Leila Noetzli
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Widian K Jubair
- Division of Rheumatology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Michelle Zanche
- Genomics Research Center, University of Rochester, Rochester, NY
| | - Jason R Myers
- Genomics Research Center, University of Rochester, Rochester, NY
| | - Brett M Stevens
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Courtney J Fleenor
- Department of Biomedical Research, National Jewish Health, Denver, CO.,Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Biniam Adane
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Charles A Dinarello
- Division of Infectious Disease, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - John Ashton
- Genomics Research Center, University of Rochester, Rochester, NY
| | - Craig T Jordan
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Jorge Di Paola
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - James R Hagman
- Department of Biomedical Research, National Jewish Health, Denver, CO.,Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - V Michael Holers
- Division of Rheumatology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Kristine A Kuhn
- Division of Rheumatology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Eric M Pietras
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO .,Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
124
|
Mohammad K, Dakik P, Medkour Y, Mitrofanova D, Titorenko VI. Quiescence Entry, Maintenance, and Exit in Adult Stem Cells. Int J Mol Sci 2019; 20:ijms20092158. [PMID: 31052375 PMCID: PMC6539837 DOI: 10.3390/ijms20092158] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/24/2019] [Accepted: 04/28/2019] [Indexed: 12/13/2022] Open
Abstract
Cells of unicellular and multicellular eukaryotes can respond to certain environmental cues by arresting the cell cycle and entering a reversible state of quiescence. Quiescent cells do not divide, but can re-enter the cell cycle and resume proliferation if exposed to some signals from the environment. Quiescent cells in mammals and humans include adult stem cells. These cells exhibit improved stress resistance and enhanced survival ability. In response to certain extrinsic signals, adult stem cells can self-renew by dividing asymmetrically. Such asymmetric divisions not only allow the maintenance of a population of quiescent cells, but also yield daughter progenitor cells. A multistep process of the controlled proliferation of these progenitor cells leads to the formation of one or more types of fully differentiated cells. An age-related decline in the ability of adult stem cells to balance quiescence maintenance and regulated proliferation has been implicated in many aging-associated diseases. In this review, we describe many traits shared by different types of quiescent adult stem cells. We discuss how these traits contribute to the quiescence, self-renewal, and proliferation of adult stem cells. We examine the cell-intrinsic mechanisms that allow establishing and sustaining the characteristic traits of adult stem cells, thereby regulating quiescence entry, maintenance, and exit.
Collapse
Affiliation(s)
- Karamat Mohammad
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Paméla Dakik
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Younes Medkour
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Darya Mitrofanova
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Vladimir I Titorenko
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| |
Collapse
|
125
|
Clonal hematopoiesis of indeterminate potential and its impact on patient trajectories after stem cell transplantation. PLoS Comput Biol 2019; 15:e1006913. [PMID: 31026273 PMCID: PMC6505959 DOI: 10.1371/journal.pcbi.1006913] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/08/2019] [Accepted: 02/28/2019] [Indexed: 12/27/2022] Open
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is a recently identified process where older patients accumulate distinct subclones defined by recurring somatic mutations in hematopoietic stem cells. CHIP's implications for stem cell transplantation have been harder to identify due to the high degree of mutational heterogeneity that is present within the genetically distinct subclones. In order to gain a better understanding of CHIP and the impact of clonal dynamics on transplantation outcomes, we created a mathematical model of clonal competition dynamics. Our analyses highlight the importance of understanding competition intensity between healthy and mutant clones. Importantly, we highlight the risk that CHIP poses in leading to dominance of precancerous mutant clones and the risk of donor derived leukemia. Furthermore, we estimate the degree of competition intensity and bone marrow niche decline in mice during aging by using our modeling framework. Together, our work highlights the importance of better characterizing the ecological and clonal composition in hematopoietic donor populations at the time of stem cell transplantation.
Collapse
|
126
|
Yurova KA, Khaziakhmatova OG, Melashchenko ES, Malashchenko VV, Shunkin EO, Shupletsova VV, Ivanov PA, Khlusov IA, Litvinova LS. Cellular and Molecular Basis of Osteoblastic and Vascular Niches in the Processes of Hematopoiesis and Bone Remodeling (A Short Review of Modern Views). Curr Pharm Des 2019; 25:663-669. [PMID: 30931856 DOI: 10.2174/1381612825666190329153626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/25/2019] [Indexed: 01/01/2023]
Abstract
In evolutionary processes, human bone marrow has formed as an organ depot of various types of cells that arise from hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs). Vital HSC activity is controlled through molecular interactions with the niche microenvironment. The review describes current views on the formation of key molecular and cellular components of the HSC niche, which ensure maintenance of home ostasis in stem cell niches, obtained from studies of their role in regulating the proliferation and differentiation of HSCs, including the physiological, reparative and pathological remodeling of bone tissue. Due to rapid developments in biotechnology, tissue bioengineering, and regenerative medicine, information can be useful for developing biomimetic and bioinspired materials and implants that provide an effective bone/bone marrow recovery process after injuries and, to a greater extent, diseases of various etiologies.
Collapse
Affiliation(s)
- Kristina A Yurova
- Basic Laboratory of Immunology and Cell Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Olga G Khaziakhmatova
- Basic Laboratory of Immunology and Cell Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Elena S Melashchenko
- Center for Medical Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Vladimir V Malashchenko
- Center for Medical Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Egor O Shunkin
- Center for Medical Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Valeria V Shupletsova
- Basic Laboratory of Immunology and Cell Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation.,Center for Medical Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Pavel A Ivanov
- Basic Laboratory of Immunology and Cell Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Igor A Khlusov
- Morphology and General Pathology Department, Siberian State Medical University, Tomsk, Russian Federation.,Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, Tomskaya oblast, Russian Federation
| | - Larisa S Litvinova
- Basic Laboratory of Immunology and Cell Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| |
Collapse
|
127
|
Alber AB, Suter DM. Dynamics of protein synthesis and degradation through the cell cycle. Cell Cycle 2019; 18:784-794. [PMID: 30907235 PMCID: PMC6527273 DOI: 10.1080/15384101.2019.1598725] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/18/2019] [Accepted: 03/12/2019] [Indexed: 01/05/2023] Open
Abstract
Protein expression levels depend on the balance between their synthesis and degradation rates. Even quiescent (G0) cells display a continuous turnover of proteins, despite protein levels remaining largely constant over time. In cycling cells, global protein levels need to be precisely doubled at each cell division in order to maintain cellular homeostasis, but we still lack a quantitative understanding of how this is achieved. Recent studies have shed light on cell cycle-dependent changes in protein synthesis and degradation rates. Here we discuss current population-based and single cell approaches used to assess protein synthesis and degradation, and review the insights they have provided into the dynamics of protein turnover in different cell cycle phases.
Collapse
Affiliation(s)
- Andrea Brigitta Alber
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - David Michael Suter
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
128
|
Cabrera-Ortega AA, Feinberg D, Liang Y, Rossa C, Graves DT. The Role of Forkhead Box 1 (FOXO1) in the Immune System: Dendritic Cells, T Cells, B Cells, and Hematopoietic Stem Cells. Crit Rev Immunol 2019; 37:1-13. [PMID: 29431075 DOI: 10.1615/critrevimmunol.2017019636] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Forkhead box-O (FOXO) transcription factors have a fundamental role in the development and differentiation of immune cells. FOXO1 and FOXO3 are FOXO members that are structurally similar and bind to the same conserved consensus DNA sequences to induce transcription. FOXO1 has been studied in detail in the activation of dendritic cells (DCs), where it plays an important role through the regulation of target genes such as ICAM-1, CCR7, and the integrin αvβ3. FOXO1 is activated by bacteria challenge in DCs and promotes DC bacterial phagocytosis, migration, homing to lymph nodes, DC stimulation of CD4+ T cells and resting B cells, and antibody production. Deletion of FOXO1 in DCs enhances susceptibility to bacteria-induced periodontal disease. FOXO1 and FOXO3 maintain naive T cell quiescence and survival. FOXO1 and FOXO3 enhance the formation of regulatory T cells and inhibit the formation of T-helper 1 (Th1) and Th17 cells. FOXO1 promotes differentiation, proliferation, survival, immunoglobulin gene rearrangement, and class switching in B cells, but FOXO3 has little effect. Both FOXO1 and FOXO3 are important in the maintenance of hematopoietic stem cells by protecting them from oxidative stress. This review examines FOXO1/FOXO3 in the adaptive immune response, key target genes, and FOXO inhibition by the phosphoinositide 3-kinase/AKT pathway.
Collapse
Affiliation(s)
- Adriana Alicia Cabrera-Ortega
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University (UNESP), Araraquara, Sao Paulo, Brazil
| | - Daniel Feinberg
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Youde Liang
- Department of Stomatology, Nanshan Affiliated Hospital of Guangdong Medical College, Shenzhen, Guangdong, China
| | - Carlos Rossa
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University (UNESP), Araraquara, Sao Paulo, Brazil
| | - Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
129
|
Ni F, Yu WM, Wang X, Fay ME, Young KM, Qiu Y, Lam WA, Sulchek TA, Cheng T, Scadden DT, Qu CK. Ptpn21 Controls Hematopoietic Stem Cell Homeostasis and Biomechanics. Cell Stem Cell 2019; 24:608-620.e6. [PMID: 30880025 DOI: 10.1016/j.stem.2019.02.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 09/11/2018] [Accepted: 02/11/2019] [Indexed: 12/31/2022]
Abstract
Hematopoietic stem cell (HSC) quiescence is a tightly regulated process crucial for hematopoietic regeneration, which requires a healthy and supportive microenvironmental niche within the bone marrow (BM). Here, we show that deletion of Ptpn21, a protein tyrosine phosphatase highly expressed in HSCs, induces stem cell egress from the niche due to impaired retention within the BM. Ptpn21-/- HSCs exhibit enhanced mobility, decreased quiescence, increased apoptosis, and defective reconstitution capacity. Ptpn21 deletion also decreased HSC stiffness and increased physical deformability, in part by dephosphorylating Spetin1 (Tyr246), a poorly described component of the cytoskeleton. Elevated phosphorylation of Spetin1 in Ptpn21-/- cells impaired cytoskeletal remodeling, contributed to cortical instability, and decreased cell rigidity. Collectively, these findings show that Ptpn21 maintains cellular mechanics, which is correlated with its important functions in HSC niche retention and preservation of hematopoietic regeneration capacity.
Collapse
Affiliation(s)
- Fang Ni
- Division of Hematology/Oncology, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Children's Healthcare of Atlanta, Emory University, Atlanta, GA 30322, USA
| | - Wen-Mei Yu
- Division of Hematology/Oncology, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Children's Healthcare of Atlanta, Emory University, Atlanta, GA 30322, USA
| | - Xinyi Wang
- Division of Hematology/Oncology, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Children's Healthcare of Atlanta, Emory University, Atlanta, GA 30322, USA
| | - Meredith E Fay
- Division of Hematology/Oncology, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Children's Healthcare of Atlanta, Emory University, Atlanta, GA 30322, USA; The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Katherine M Young
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yongzhi Qiu
- Division of Hematology/Oncology, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Children's Healthcare of Atlanta, Emory University, Atlanta, GA 30322, USA; The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Wilbur A Lam
- Division of Hematology/Oncology, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Children's Healthcare of Atlanta, Emory University, Atlanta, GA 30322, USA; The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Todd A Sulchek
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences, Tianjin 300020, China
| | - David T Scadden
- Center for Regenerative Medicine and MGH Cancer Center, Massachusetts General Hospital, Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Boston, MA 02114, USA
| | - Cheng-Kui Qu
- Division of Hematology/Oncology, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Children's Healthcare of Atlanta, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
130
|
Sousa‐Franco A, Rebelo K, da Rocha ST, Bernardes de Jesus B. LncRNAs regulating stemness in aging. Aging Cell 2019; 18:e12870. [PMID: 30456884 PMCID: PMC6351848 DOI: 10.1111/acel.12870] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 09/18/2018] [Accepted: 09/28/2018] [Indexed: 12/21/2022] Open
Abstract
One of the most outstanding observations from next-generation sequencing approaches was that only 1.5% of our genes code for proteins. The biggest part is transcribed but give rise to different families of RNAs without coding potential. The functional relevance of these abundant transcripts remains far from elucidated. Among them are the long non-coding RNAs (lncRNAs), a relatively large and heterogeneous group of RNAs shown to be highly tissue-specific, indicating a prominent role in processes controlling cellular identity. In particular, lncRNAs have been linked to both stemness properties and detrimental pathways regulating the aging process, being novel players in the intricate network guiding tissue homeostasis. Here, we summarize the up-to-date information on the role of lncRNAs that affect stemness and hence impact upon aging, highlighting the likelihood that lncRNAs may represent an unexploited reservoir of potential therapeutic targets for reprogramming applications and aging-related diseases.
Collapse
Affiliation(s)
- António Sousa‐Franco
- Instituto de Medicina MolecularFaculdade de Medicina da Universidade de LisboaLisboaPortugal
| | - Kenny Rebelo
- Instituto de Medicina MolecularFaculdade de Medicina da Universidade de LisboaLisboaPortugal
| | - Simão Teixeira da Rocha
- Instituto de Medicina MolecularFaculdade de Medicina da Universidade de LisboaLisboaPortugal
| | - Bruno Bernardes de Jesus
- Instituto de Medicina MolecularFaculdade de Medicina da Universidade de LisboaLisboaPortugal
- Department of Medical Sciences and Institute of Biomedicine—iBiMEDUniversity of AveiroAveiroPortugal
| |
Collapse
|
131
|
Chen Z, Amro EM, Becker F, Hölzer M, Rasa SMM, Njeru SN, Han B, Di Sanzo S, Chen Y, Tang D, Tao S, Haenold R, Groth M, Romanov VS, Kirkpatrick JM, Kraus JM, Kestler HA, Marz M, Ori A, Neri F, Morita Y, Rudolph KL. Cohesin-mediated NF-κB signaling limits hematopoietic stem cell self-renewal in aging and inflammation. J Exp Med 2019; 216:152-175. [PMID: 30530755 PMCID: PMC6314529 DOI: 10.1084/jem.20181505] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/06/2018] [Accepted: 11/19/2018] [Indexed: 01/02/2023] Open
Abstract
Organism aging is characterized by increased inflammation and decreased stem cell function, yet the relationship between these factors remains incompletely understood. This study shows that aged hematopoietic stem and progenitor cells (HSPCs) exhibit increased ground-stage NF-κB activity, which enhances their responsiveness to undergo differentiation and loss of self-renewal in response to inflammation. The study identifies Rad21/cohesin as a critical mediator of NF-κB signaling, which increases chromatin accessibility in the vicinity of NF-κB target genes in response to inflammation. Rad21 is required for normal differentiation, but limits self-renewal of hematopoietic stem cells (HSCs) during aging and inflammation in an NF-κB-dependent manner. HSCs from aged mice fail to down-regulate Rad21/cohesin and inflammation/differentiation signals in the resolution phase of inflammation. Inhibition of cohesin/NF-κB reverts hypersensitivity of aged HSPCs to inflammation-induced differentiation and myeloid-biased HSCs with disrupted/reduced expression of Rad21/cohesin are increasingly selected during aging. Together, Rad21/cohesin-mediated NF-κB signaling limits HSPC function during aging and selects for cohesin-deficient HSCs with myeloid-skewed differentiation.
Collapse
Affiliation(s)
- Zhiyang Chen
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Elias Moris Amro
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Friedrich Becker
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Martin Hölzer
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Jena, Germany
- European Virus Bioinformatics Center (EVBC), Jena, Germany
| | | | | | - Bing Han
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Simone Di Sanzo
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Yulin Chen
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Duozhuang Tang
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Si Tao
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Ronny Haenold
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
- Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Marco Groth
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Vasily S Romanov
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | | | - Johann M Kraus
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | - Hans A Kestler
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | - Manja Marz
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Jena, Germany
- European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Alessandro Ori
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Francesco Neri
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Yohei Morita
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | - K Lenhard Rudolph
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
- Faculty of Medicine, Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
132
|
Fathi-Kazerooni M, Tavoosidana G. Menstrual Blood Stem Cell Transplantation in Mice Model of Acute Liver Failure: Does Gender of Recipient Affect the Outcome? Avicenna J Med Biotechnol 2019; 11:308-316. [PMID: 31908739 PMCID: PMC6925399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND There exists a dramatic rise in liver failure and numerous patients undergo liver transplant for life-saving reasons annually. Introducing alternatives to allo-graft transplantation is necessary due to present limitations. Recently, a noninvasive stem cell population from Menstrual blood-derived Stem Cells (MenSCs) has been identified. There is an increasing interest in the application of MenSCs in tissue engineering; however, the fact that these gender-specific stem cells are safe for use in male sex is still not well defined. METHODS In this research, a model of acute liver failure was created in male and female immunocompetent Balb-C mice through intraperitoneal injection of Carbon tetrachlo-ride (CCl4 ) and MenSCs were transplanted intravenously 48 hrs after induction of liver injury to evaluate their therapeutic potential. All mice were sacrificed on days 1, 7, and 30 post-transplantation to examine biochemical and molecular markers and pathological appearances. RESULTS Results showed the liver engraftment of MenSCs by immunofluorescence staining using anti-human mitochondrial antibody in both male and female treated groups. The restoration of serum markers of liver injury, aspartate aminotransferase and ala-nine aminotransferase, as well as expression levels of liver-specific genes, tyrosine aminotransferase and cholesterol 7 alpha-hydroxylase, were more significant in the female treated group compared with the male treated group on day 7 (p<0.05); however, after 30 days, there were no significant differences. Furthermore, hematoxylin and eosin and periodic acid-Schiff staining of liver sections demonstrated the considerable liver regeneration post cell therapy in both groups. Notably, data has shown that MenSCs could engraft into injured liver tissues and result in the same effect in the regeneration of liver function in both genders. CONCLUSION Results of this study introduce MenSCs therapy as an attractive alternative approach for liver repairing and regeneration which has no gender constraints.
Collapse
Affiliation(s)
| | - Gholamreza Tavoosidana
- Corresponding author: Gholamreza Tavoosidana, Ph.D. Department of Molecular Medicine School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, P.O. Box 1417755469, Tehran, Iran, Tel: +98 21 88991118, Fax: +98 21 88991117, E-mail:
| |
Collapse
|
133
|
Rikhtegar R, Yousefi M, Dolati S, Kasmaei HD, Charsouei S, Nouri M, Shakouri SK. Stem cell-based cell therapy for neuroprotection in stroke: A review. J Cell Biochem 2018; 120:8849-8862. [PMID: 30506720 DOI: 10.1002/jcb.28207] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/15/2018] [Indexed: 12/15/2022]
Abstract
Neurological disorders, such as stroke, are triggered by a loss of neurons and glial cells. Ischemic stroke remains a substantial problem for industrialized countries. Over the previous few decades our understanding about the pathophysiology of stroke has enhanced, nevertheless, more awareness is required to advance the field of stroke recovery. Existing therapies are incapable to adequately relief the disease outcome and are not appropriate to all patients. Meanwhile, the majority of patients continue to show neurological deficits even subsequent effective thrombolysis, recuperative therapies are immediately required that stimulate brain remodeling and repair once stroke damage has happened. Cell therapy is emergent as a hopeful new modality for increasing neurological recovery in ischemic stroke. Numerous types of stem cells from various sources have been identified and their possibility and efficiency for the treatment of stroke have been investigated. Stem cell therapy in patients with stroke using adult stem cells have been first practiced in clinical trials since 15 years ago. Even though stem cells have revealed a hopeful role in ischemic stroke in investigational studies besides early clinical pilot studies, cellular therapy in human is still at a primary stage. In this review, we summarize the types of stem cells, various delivery routes, and clinical application of stem cell-based therapy for stroke treatment.
Collapse
Affiliation(s)
- Reza Rikhtegar
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanam Dolati
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hosein Delavar Kasmaei
- Department of Neurology, Shohada-e-Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Charsouei
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Kazem Shakouri
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Physical Medicine and Rehabilitation Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
134
|
Zenati A, Chakir M, Tadjine M. Study of cohabitation and interconnection effects on normal and leukaemic stem cells dynamics in acute myeloid leukaemia. IET Syst Biol 2018; 12:279-288. [PMID: 30472692 PMCID: PMC8687407 DOI: 10.1049/iet-syb.2018.5026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/28/2018] [Accepted: 05/24/2018] [Indexed: 11/20/2022] Open
Abstract
On the basis of recent studies, understanding the intimate relationship between normal and leukaemic stem cells is very important in leukaemia treatment. The authors' aim in this work is to clarify and assess the effect of coexistence and interconnection phenomenon on the healthy and cancerous stem cell dynamics. To this end, they perform the analysis of two time-delayed stem cell models in acute myeloid leukaemia. The first model is based on decoupled healthy and cancerous stem cell populations (i.e. there is no interaction between cell dynamics) and the second model includes interconnection between both population's dynamics. By using the positivity of both systems, they build new linear functions that permit to derive global stability conditions for each model. Moreover, knowing that most common types of haematological diseases are characterised by the existence of oscillations, they give conditions for the existence of a limit cycle (oscillations) in a particularly interesting healthy situation based on Poincare-Bendixson theorem. The obtained results are simulated and interpreted to be significant in understanding the effect of interconnection and would lead to an improvement in leukaemia treatment.
Collapse
Affiliation(s)
- Abdelhafid Zenati
- Laboratory of Process Control LCP, Department of Engineering, Control Systems and Applied Mathematics, National Polytechnic School ENP of Algiers, 10, St Hacen Badi El Harrach, Algiers, Algeria.
| | - Messaoud Chakir
- Laboratory of Process Control LCP, Department of Engineering, Control Systems and Applied Mathematics, National Polytechnic School ENP of Algiers, 10, St Hacen Badi El Harrach, Algiers, Algeria
| | - Mohamed Tadjine
- Laboratory of Process Control LCP, Department of Engineering, Control Systems and Applied Mathematics, National Polytechnic School ENP of Algiers, 10, St Hacen Badi El Harrach, Algiers, Algeria
| |
Collapse
|
135
|
Lomova A, Clark DN, Campo-Fernandez B, Flores-Bjurström C, Kaufman ML, Fitz-Gibbon S, Wang X, Miyahira EY, Brown D, DeWitt MA, Corn JE, Hollis RP, Romero Z, Kohn DB. Improving Gene Editing Outcomes in Human Hematopoietic Stem and Progenitor Cells by Temporal Control of DNA Repair. Stem Cells 2018; 37:284-294. [PMID: 30372555 DOI: 10.1002/stem.2935] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/02/2018] [Indexed: 12/14/2022]
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated system (Cas9)-mediated gene editing of human hematopoietic stem cells (hHSCs) is a promising strategy for the treatment of genetic blood diseases through site-specific correction of identified causal mutations. However, clinical translation is hindered by low ratio of precise gene modification using the corrective donor template (homology-directed repair, HDR) to gene disruption (nonhomologous end joining, NHEJ) in hHSCs. By using a modified version of Cas9 with reduced nuclease activity in G1 phase of cell cycle when HDR cannot occur, and transiently increasing the proportion of cells in HDR-preferred phases (S/G2), we achieved a four-fold improvement in HDR/NHEJ ratio over the control condition in vitro, and a significant improvement after xenotransplantation of edited hHSCs into immunodeficient mice. This strategy for improving gene editing outcomes in hHSCs has important implications for the field of gene therapy, and can be applied to diseases where increased HDR/NHEJ ratio is critical for therapeutic success. Stem Cells 2019;37:284-294.
Collapse
Affiliation(s)
- Anastasia Lomova
- Department of Molecular and Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, California, USA.,Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California, USA
| | - Danielle N Clark
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California, USA
| | - Beatriz Campo-Fernandez
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California, USA
| | - Carmen Flores-Bjurström
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California, USA
| | - Michael L Kaufman
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California, USA
| | - Sorel Fitz-Gibbon
- Institute of Genomics and Proteomics, UCLA, Los Angeles, California, USA
| | - Xiaoyan Wang
- Department of General Internal Medicine and Health Services Research, UCLA, Los Angeles, California, USA
| | - Eric Y Miyahira
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California, USA
| | - Devin Brown
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California, USA
| | - Mark A DeWitt
- Innovative Genomics Institute, University of California Berkeley, Berkeley, California, USA.,Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, USA
| | - Jacob E Corn
- Innovative Genomics Institute, University of California Berkeley, Berkeley, California, USA.,Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, USA
| | - Roger P Hollis
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California, USA
| | - Zulema Romero
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California, USA
| | - Donald B Kohn
- Department of Molecular and Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, California, USA.,Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California, USA.,Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, UCLA, Los Angeles, California, USA
| |
Collapse
|
136
|
Rao TN, Gupta MK, Softic S, Wang LD, Jang YC, Thomou T, Bezy O, Kulkarni RN, Kahn CR, Wagers AJ. Attenuation of PKCδ enhances metabolic activity and promotes expansion of blood progenitors. EMBO J 2018; 37:embj.2018100409. [PMID: 30446598 PMCID: PMC6293338 DOI: 10.15252/embj.2018100409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/08/2018] [Accepted: 09/12/2018] [Indexed: 12/21/2022] Open
Abstract
A finely tuned balance of self‐renewal, differentiation, proliferation, and survival governs the pool size and regenerative capacity of blood‐forming hematopoietic stem and progenitor cells (HSPCs). Here, we report that protein kinase C delta (PKCδ) is a critical regulator of adult HSPC number and function that couples the proliferative and metabolic activities of HSPCs. PKCδ‐deficient mice showed a pronounced increase in HSPC numbers, increased competence in reconstituting lethally irradiated recipients, enhanced long‐term competitive advantage in serial transplantation studies, and an augmented HSPC recovery during stress. PKCδ‐deficient HSPCs also showed accelerated proliferation and reduced apoptosis, but did not exhaust in serial transplant assays or induce leukemia. Using inducible knockout and transplantation models, we further found that PKCδ acts in a hematopoietic cell‐intrinsic manner to restrict HSPC number and bone marrow regenerative function. Mechanistically, PKCδ regulates HSPC energy metabolism and coordinately governs multiple regulators within signaling pathways implicated in HSPC homeostasis. Together, these data identify PKCδ as a critical regulator of HSPC signaling and metabolism that acts to limit HSPC expansion in response to physiological and regenerative demands.
Collapse
Affiliation(s)
- Tata Nageswara Rao
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA .,Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA
| | - Manoj K Gupta
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA
| | - Samir Softic
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, MA, USA.,Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
| | - Leo D Wang
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.,Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA.,Division of Pediatric Hematology/Oncology/Stem Cell Transplantation, Dana-Farber/Boston Children's Center for Cancer and Blood Disorders, Boston, MA, USA
| | - Young C Jang
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.,Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA
| | - Thomas Thomou
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, MA, USA
| | - Olivier Bezy
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, MA, USA
| | - Rohit N Kulkarni
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA
| | - C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, MA, USA
| | - Amy J Wagers
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA .,Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA
| |
Collapse
|
137
|
Nakagawa MM, Chen H, Rathinam CV. Constitutive Activation of NF-κB Pathway in Hematopoietic Stem Cells Causes Loss of Quiescence and Deregulated Transcription Factor Networks. Front Cell Dev Biol 2018; 6:143. [PMID: 30425986 PMCID: PMC6218573 DOI: 10.3389/fcell.2018.00143] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/05/2018] [Indexed: 12/21/2022] Open
Abstract
Identifying physiological roles of specific signaling pathways that regulate hematopoietic stem cell (HSC) functions may lead to new treatment strategies and therapeutic interventions for hematologic disorders. Here, we provide genetic evidence that constitutive activation of NF-κB in HSCs results in reduced pool size, repopulation capacities, and quiescence of HSCs. Global transcriptional profiling and bioinformatics studies identified loss of ‘stemness’ and ‘quiescence’ signatures in HSCs with deregulated NF-κB activation. In particular, gene set enrichment analysis identified upregulation of cyclin dependent kinase- Ccnd1 and down regulation of cyclin dependent kinase inhibitor p57kip2. Interestingly, constitutive activation of NF-κB is sufficient to alter the regulatory circuits of transcription factors (TFs) that are critical to HSC self-renewal and functions. Molecular studies identified Junb, as one of the direct targets of NF-κB in hematopoietic cells. In essence, these studies demonstrate that aberrant activation of NF-κB signals impairs HSC quiescence and functions and alters the ‘TF networks’ in HSCs.
Collapse
Affiliation(s)
| | - Huanwen Chen
- Institute of Human Virology, Baltimore, MD, United States
| | - Chozha Vendan Rathinam
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, United States.,Institute of Human Virology, Baltimore, MD, United States.,Center for Stem Cell & Regenerative Medicine, Baltimore, MD, United States.,Marlene & Stewart Greenebaum Comprehensive Cancer Center, School of Medicine, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
138
|
Abstract
INTRODUCTION Sickle cell anemia (SCA) is a hereditary blood disease caused by a single-gene mutation that affects millions of individuals world-wide. In this review, we focus on techniques to treat SCA by ex vivo genetic manipulation of hematopoietic stem/progenitor cells (HSPC), emphasizing replacement gene therapy and gene editing. AREAS COVERED Viral transduction of an anti-sickling β-like globin gene has been tested in pre-clinical and early-phase clinical studies, and shows promising preliminary results. Targeted editing of endogenous genes by site-directed nucleases has been developed more recently, and several approaches also are nearing clinical translation. EXPERT OPINION The indications and timing of gene therapy for SCA in lieu of supportive care treatment and allogeneic hematopoietic cell transplantation are still undefined. In addition, ensuring access to the treatment where the disease is endemic will present important challenges that must be addressed. Nonetheless, gene therapy and gene editing techniques have transformative potential as a universal curative option in SCA.
Collapse
Affiliation(s)
- Zulema Romero
- a Department of Microbiology, Immunology and Molecular Genetics , University of California Los Angeles , Los Angeles , CA , USA
| | - Mark DeWitt
- b Innovative Genomics Initiative , University of California , Berkeley , CA , USA
| | - Mark C Walters
- c Blood and Marrow Transplantation Program , UCSF Benioff Children's Hospital , Oakland , CA , USA
| |
Collapse
|
139
|
The in vitro growth of a cord blood-derived cell population enriched for CD34 + cells is influenced by its cell cycle status and treatment with hydroxyurea. Cytotherapy 2018; 20:1345-1354. [PMID: 30322708 DOI: 10.1016/j.jcyt.2018.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/18/2018] [Accepted: 09/04/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Cell cycle plays a fundamental role in the physiology of hematopoietic stem and progenitor cells. In the present study we used a negative selection system to obtain an immature cell population-enriched for cord blood-derived CD34+ cells-and we determined its proliferation, expansion and differentiation patterns as a function of the cell cycle status. The effects of hydroxyurea (HU) were also assessed. RESULTS As compared with cells in synthesis (S)/Gap2 (G2)/mitosis (M), cells in quiescent state (G0)/Gap1 (G1) showed a higher proliferation potential in vitro. At culture onset, G0, G1 and S/G2/M cells corresponded with 63%, 33% and 4%, respectively. Treatment with HU before culture resulted in an increase in the proportion of cells in G1 with a concomitant decrease in S/G2/M cells, without affecting the proportion of cells in G0. After 3 days of culture in the presence of recombinant cytokines, the vast majority of the cells (90%) were in G1, and by day 8, G0, G1 and S/G2/M cells corresponded with 18%, 67% and 15%, respectively. HU also induced an increase in colony-forming cell (CFC) frequency, in the proliferation and expansion capacities of cultured cells under myeloid conditions, and favored the development of the erythroid lineage. CONCLUSION Our results show that the in vitro proliferation, expansion and differentiation potentials of immature hematopoietic cells are determined, at least in part, by their cell cycle status and that the cell cycle modifier HU significantly influences the growth of human hematopoietic cells. These results are of potential relevance for the development of ex vivo expansion protocols.
Collapse
|
140
|
Giambra V, Gusscott S, Gracias D, Song R, Lam SH, Panelli P, Tyshchenko K, Jenkins CE, Hoofd C, Lorzadeh A, Carles A, Hirst M, Eaves CJ, Weng AP. Epigenetic Restoration of Fetal-like IGF1 Signaling Inhibits Leukemia Stem Cell Activity. Cell Stem Cell 2018; 23:714-726.e7. [PMID: 30269902 DOI: 10.1016/j.stem.2018.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 06/15/2018] [Accepted: 08/30/2018] [Indexed: 12/13/2022]
Abstract
Acute leukemias are aggressive malignancies of developmentally arrested hematopoietic progenitors. We sought here to explore the possibility that changes in hematopoietic stem/progenitor cells during development might alter the biology of leukemias arising from this tissue compartment. Using a mouse model of acute T cell leukemia, we found that leukemias generated from fetal liver (FL) and adult bone marrow (BM) differed dramatically in their leukemia stem cell activity with FL leukemias showing markedly reduced serial transplantability as compared to BM leukemias. We present evidence that this difference is due to NOTCH1-driven autocrine IGF1 signaling, which is active in FL cells but restrained in BM cells by EZH2-dependent H3K27 trimethylation. Further, we confirmed this mechanism is operative in human disease and show that enforced IGF1 signaling effectively limits leukemia stem cell activity. These findings demonstrate that resurrecting dormant fetal programs in adult cells may represent an alternate therapeutic approach in human cancer.
Collapse
Affiliation(s)
- Vincenzo Giambra
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada; Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (FG), Italy.
| | - Samuel Gusscott
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Deanne Gracias
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Raymond Song
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Sonya H Lam
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Patrizio Panelli
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (FG), Italy
| | | | | | - Catherine Hoofd
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Alireza Lorzadeh
- Michael Smith Laboratories and Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Annaick Carles
- Michael Smith Laboratories and Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Martin Hirst
- Michael Smith Laboratories and Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Connie J Eaves
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Andrew P Weng
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada.
| |
Collapse
|
141
|
Necroinflammation emerges as a key regulator of hematopoiesis in health and disease. Cell Death Differ 2018; 26:53-67. [PMID: 30242210 DOI: 10.1038/s41418-018-0194-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/05/2018] [Accepted: 08/10/2018] [Indexed: 02/08/2023] Open
Abstract
The hematopoietic system represents an organ system with an exceptional capacity for the production of mature blood cells from a small and mostly quiescent pool of hematopoietic stem cells (HSCs). This extraordinary capacity includes self-renewal but also the propensity to rapidly respond to extrinsic needs, such as acute infections, severe inflammation, and wound healing. In recent years, it became clear that inflammatory signals such as cytokines, chemokine and danger signals from pathogens (PAMPs) or dying cells (DAMPs) impact on HSCs, shaping their proliferation status, lineage bias, and repopulating ability and subsequently increasing the output of mature effector cells. However, inflammatory danger signals negatively impact on the capacity of HSCs to self-renew and to maintain their stem cell capabilities. This is evidenced in conditions of chronic inflammation where bone marrow failure may originate from HSC exhaustion. Even in hematopoietic cancers, inflammatory signals shape the phenotype of the malignant clone as exemplified by necrosome-dependent inflammation elicited during malignant transformation in acute myeloid leukemia. Accordingly, understanding the contribution of inflammatory signals, and specifically necroinflammation, to HSC integrity, HSC long-term functionality, and malignant transformation has attracted substantial research and clinical interest. In this review, we highlight recent developments and open questions at the interplay between inflammation, regulated necrosis, and HSC biology in the context of blood cell development, acute and chronic inflammation, and hematopoietic cancer.
Collapse
|
142
|
Ito K, Bonora M, Ito K. Metabolism as master of hematopoietic stem cell fate. Int J Hematol 2018; 109:18-27. [PMID: 30219988 DOI: 10.1007/s12185-018-2534-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 09/10/2018] [Indexed: 12/13/2022]
Abstract
HSCs have a fate choice when they divide; they can self-renew, producing new HSCs, or produce daughter cells that will mature to become committed cells. Technical challenges, however, have long obscured the mechanics of these choices. Advances in flow-sorting have made possible the purification of HSC populations, but available HSC-enriched fractions still include substantial heterogeneity, and single HSCs have proven extremely difficult to track and observe. Advances in single-cell approaches, however, have led to the identification of a highly purified population of hematopoietic stem cells (HSCs) that make a critical contribution to hematopoietic homeostasis through a preference for self-renewing division. Metabolic cues are key regulators of this cell fate choice, and the importance of controlling the population and quality of mitochondria has recently been highlighted to maintain the equilibrium of HSC populations. Leukemic cells also demand tightly regulated metabolism, and shifting the division balance of leukemic cells toward commitment has been considered as a promising therapeutic strategy. A deeper understanding of precisely how specific modes of metabolism control HSC fate is, therefore, of great biological interest, and more importantly will be critical to the development of new therapeutic strategies that target HSC division balance for the treatment of hematological disease.
Collapse
Affiliation(s)
- Kyoko Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Departments of Cell Biology and Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Massimo Bonora
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Departments of Cell Biology and Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA.
- Departments of Cell Biology and Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
- Albert Einstein Cancer Center and Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
143
|
Kim H, Lee S, Lee SW. TRAF6 Distinctly Regulates Hematopoietic Stem and Progenitors at Different Periods of Development in Mice. Mol Cells 2018; 41:753-761. [PMID: 30037215 PMCID: PMC6125416 DOI: 10.14348/molcells.2018.0191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/14/2018] [Accepted: 06/19/2018] [Indexed: 12/27/2022] Open
Abstract
Tumor necrosis factor receptor-associated factor 6 (TRAF6) is identified as a signaling adaptor protein that regulates bone metabolism, immunity, and the development of several tissues. Therefore, its functions are closely associated with multiple diseases. TRAF6 is also involved in the regulation of hematopoiesis under steady-state conditions, but the role of TRAF6 in modulating hematopoietic stem and progenitor cells (HSPCs) during the developmental stages remains unknown. Here, we report that the deletion of TRAF6 in hematopoietic lineage cells resulted in the upregulation of HSPCs in the fetal liver at the prenatal period. However, in the early postnatal period, deletion of TRAF6 drastically diminished HSPCs in the bone marrow (BM), with severe defects in BM development and extramedullary hematopoiesis in the spleen being identified. In the analysis of adult HSPCs in a BM reconstitution setting, TRAF6 played no significant role in HSPC homeostasis, albeit it affected the development of T cells. Taken together, our results suggest that the role of TRAF6 in regulating HSPCs is altered in a spatial and temporal manner during the developmental course of mice.
Collapse
Affiliation(s)
- Hyekang Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673,
Korea
| | - Seungwon Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673,
Korea
| | - Seung-Woo Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673,
Korea
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673,
Korea
| |
Collapse
|
144
|
Ricciardi AS, Bahal R, Farrelly JS, Quijano E, Bianchi AH, Luks VL, Putman R, López-Giráldez F, Coşkun S, Song E, Liu Y, Hsieh WC, Ly DH, Stitelman DH, Glazer PM, Saltzman WM. In utero nanoparticle delivery for site-specific genome editing. Nat Commun 2018; 9:2481. [PMID: 29946143 PMCID: PMC6018676 DOI: 10.1038/s41467-018-04894-2] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 05/30/2018] [Indexed: 01/16/2023] Open
Abstract
Genetic diseases can be diagnosed early during pregnancy, but many monogenic disorders continue to cause considerable neonatal and pediatric morbidity and mortality. Early intervention through intrauterine gene editing, however, could correct the genetic defect, potentially allowing for normal organ development, functional disease improvement, or cure. Here we demonstrate safe intravenous and intra-amniotic administration of polymeric nanoparticles to fetal mouse tissues at selected gestational ages with no effect on survival or postnatal growth. In utero introduction of nanoparticles containing peptide nucleic acids (PNAs) and donor DNAs corrects a disease-causing mutation in the β-globin gene in a mouse model of human β-thalassemia, yielding sustained postnatal elevation of blood hemoglobin levels into the normal range, reduced reticulocyte counts, reversal of splenomegaly, and improved survival, with no detected off-target mutations in partially homologous loci. This work may provide the basis for a safe and versatile method of fetal gene editing for human monogenic disorders.
Collapse
Affiliation(s)
- Adele S Ricciardi
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
- Department of Therapeutic Radiology, Yale University, New Haven, CT, 06520, USA
- Department of Surgery, Yale University, New Haven, CT, 06520, USA
| | - Raman Bahal
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
- Department of Therapeutic Radiology, Yale University, New Haven, CT, 06520, USA
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, 06269, USA
| | - James S Farrelly
- Department of Surgery, Yale University, New Haven, CT, 06520, USA
| | - Elias Quijano
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
- Department of Genetics, Yale University, New Haven, CT, 06520, USA
| | - Anthony H Bianchi
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
| | - Valerie L Luks
- Department of Surgery, Yale University, New Haven, CT, 06520, USA
| | - Rachael Putman
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
- Department of Therapeutic Radiology, Yale University, New Haven, CT, 06520, USA
| | - Francesc López-Giráldez
- Department of Genetics, Yale University, New Haven, CT, 06520, USA
- Yale Center for Genome Analysis (YCGA), Yale University, New Haven, CT, 06477, USA
| | - Süleyman Coşkun
- Department of Neurosurgery, Yale University, New Haven, CT, 06520, USA
| | - Eric Song
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
| | - Yanfeng Liu
- Department of Therapeutic Radiology, Yale University, New Haven, CT, 06520, USA
| | - Wei-Che Hsieh
- Department of Chemistry and Center for Nucleic Acids Science and Technology (CNAST), Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, USA
| | - Danith H Ly
- Department of Chemistry and Center for Nucleic Acids Science and Technology (CNAST), Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, USA
| | | | - Peter M Glazer
- Department of Therapeutic Radiology, Yale University, New Haven, CT, 06520, USA.
- Department of Genetics, Yale University, New Haven, CT, 06520, USA.
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA.
| |
Collapse
|
145
|
Jalbert E, Pietras EM. Analysis of Murine Hematopoietic Stem Cell Proliferation During Inflammation. Methods Mol Biol 2018; 1686:183-200. [PMID: 29030822 DOI: 10.1007/978-1-4939-7371-2_14] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Normally, quiescent hematopoietic stem cells (HSC) rapidly enter the cell cycle following exposure to inflammatory stimuli. The analysis of HSC cell cycle activity in murine bone marrow during inflammation is often complicated by the relative rarity of HSCs and shifts in Sca-1, a key cell surface marker used to identify HSCs. Here, we report a method to analyze HSC proliferation and cell cycle distribution under inflammatory conditions. Our approach uses EdU incorporation and Ki67 staining coupled with DNA content quantification by DAPI. We also incorporate the surface marker ESAM to help minimize the potential for contaminating events that may confound analysis in the HSC compartment.
Collapse
Affiliation(s)
- Emilie Jalbert
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Eric M Pietras
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, 12700 East 19th Ave, Research Complex 2, Mail Stop F754, Aurora, CO, 80045, USA.
| |
Collapse
|
146
|
Wang X, Dong F, Zhang S, Yang W, Yu W, Wang Z, Zhang S, Wang J, Ma S, Wu P, Gao Y, Dong J, Tang F, Cheng T, Ema H. TGF-β1 Negatively Regulates the Number and Function of Hematopoietic Stem Cells. Stem Cell Reports 2018; 11:274-287. [PMID: 29937145 PMCID: PMC6067088 DOI: 10.1016/j.stemcr.2018.05.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 05/25/2018] [Accepted: 05/25/2018] [Indexed: 12/29/2022] Open
Abstract
Transforming growth factor β1 (TGF-β1) plays a role in the maintenance of quiescent hematopoietic stem cells (HSCs) in vivo. We asked whether TGF-β1 controls the cell cycle status of HSCs in vitro to enhance the reconstitution activity. To examine the effect of TGF-β1 on the HSC function, we used an in vitro culture system in which single HSCs divide with the retention of their short- and long-term reconstitution ability. Extensive single-cell analyses showed that, regardless of its concentration, TGF-β1 slowed down the cell cycle progression of HSCs but consequently suppressed their self-renewal potential. Cycling HSCs were not able to go back to quiescence with TGF-β1. This study revealed a negative role of TGF-β1 in the regulation of the HSC number and reconstitution activity. TGF-β1 slows down the cell cycle progression of HSCs Cycling HSCs were unable to go back to the G0 state with TGF-β1 TGF-β1 suppresses the self-renewal potential in HSCs The reduced division rate with TGF-β1 is reversible
Collapse
Affiliation(s)
- Xiaofang Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China
| | - Fang Dong
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China
| | - Sen Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China
| | - Wanzhu Yang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China
| | - Wenying Yu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China
| | - Zhao Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China
| | - Shanshan Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China
| | - Jinhong Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China
| | - Shihui Ma
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China
| | - Peng Wu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China
| | - Yun Gao
- Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China
| | - Ji Dong
- Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China
| | - Fuchou Tang
- Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China
| | - Hideo Ema
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China.
| |
Collapse
|
147
|
Liu YF, Zhang SY, Chen YY, Shi K, Zou B, Liu J, Yang Q, Jiang H, Wei L, Li CZ, Zhao M, Gabrilovich DI, Zhang H, Zhou J. ICAM-1 Deficiency in the Bone Marrow Niche Impairs Quiescence and Repopulation of Hematopoietic Stem Cells. Stem Cell Reports 2018; 11:258-273. [PMID: 29937143 PMCID: PMC6117479 DOI: 10.1016/j.stemcr.2018.05.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/24/2018] [Accepted: 05/24/2018] [Indexed: 12/31/2022] Open
Abstract
The bone marrow niche plays a critical role in controlling the fate of hematopoietic stem cells (HSCs) by integrating intrinsic and extrinsic signals. However, the molecular events in the HSC niche remain to be investigated. Here, we report that intercellular adhesion molecule-1 (ICAM-1) maintains HSC quiescence and repopulation capacity in the niche. ICAM-1-deficient mice (ICAM-1−/−) displayed significant expansion of phenotypic long-term HSCs with impaired quiescence, as well as favoring myeloid cell expansion. ICAM-1-deficient HSCs presented normal reconstitution capacity during serial transplantation; however, reciprocal transplantation experiments showed that ICAM-1 deficiency in the niche impaired HSC quiescence and repopulation capacity. In addition, ICAM-1 deletion caused failure to retain HSCs in the bone marrow and changed the expression profile of stroma cell-derived factors, possibly representing the mechanism for defective HSCs in ICAM-1−/− mice. Collectively, these observations identify ICAM-1 as a regulator in the bone marrow niche. ICAM-1 deficiency expands HSC−LT with impaired quiescence and repopulation The defects characterizing HSC−LT in ICAM-1−/− mice are niche cell dependent ICAM-1−/− niche brings about impaired bone marrow retention and homing of HSC−LT ICAM-1 in human stroma cells might affect the progression of myelocytic leukemia
Collapse
Affiliation(s)
- Yu-Feng Liu
- Key Laboratory of Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Shao-Ying Zhang
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xian 710000, China; Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Ying-Ying Chen
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Kun Shi
- Guangzhou Women and Children's Medical Center, Guangzhou 510000, China
| | - Bin Zou
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jun Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Qiong Yang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Hua Jiang
- Guangzhou Women and Children's Medical Center, Guangzhou 510000, China
| | - Lai Wei
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Chang-Zheng Li
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Guangzhou 510080, China
| | - Meng Zhao
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Guangzhou 510080, China
| | - Dmitry I Gabrilovich
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control, Chinese Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China; The Wistar Institute, Philadelphia, PA 19104, USA
| | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control, Chinese Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China.
| | - Jie Zhou
- Key Laboratory of Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control, Chinese Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
148
|
Cho H, Ayers K, DePills L, Kuo YH, Park J, Radunskaya A, Rockne R. Modelling acute myeloid leukaemia in a continuum of differentiation states. LETTERS IN BIOMATHEMATICS 2018; 5:S69-S98. [PMID: 30271874 PMCID: PMC6157289 DOI: 10.1080/23737867.2018.1472532] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Here we present a mathematical model of movement in an abstract space representing states of cellular differentiation. We motivate this work with recent examples that demonstrate a continuum of cellular differentiation using single cell RNA sequencing data to characterize cellular states in a high-dimensional space, which is then mapped into ℝ 2 or ℝ 2 with dimension reduction techniques. We represent trajectories in the differentiation space as a graph, and model directed and random movement on the graph with partial differential equations. We hypothesize that flow in this space can be used to model normal and abnormal differentiation processes. We present a mathematical model of hematopoeisis parameterized with publicly available single cell RNA-Seq data and use it to simulate the pathogenesis of acute myeloid leukemia (AML). The model predicts the emergence of cells in novel intermediate states of differentiation consistent with immunophenotypic characterizations of a mouse model of AML.
Collapse
Affiliation(s)
- H Cho
- Department of Mathematics, University of Maryland
| | - K Ayers
- Department of Mathematics, Pomona College
| | - L DePills
- Department of Mathematics, Harvey Mudd College
| | - Y-H Kuo
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope
| | - J Park
- Department of Mathematics, Harvey Mudd College
| | | | - R Rockne
- Division of Mathematical Oncology, City of Hope
| |
Collapse
|
149
|
Sumide K, Matsuoka Y, Kawamura H, Nakatsuka R, Fujioka T, Asano H, Takihara Y, Sonoda Y. A revised road map for the commitment of human cord blood CD34-negative hematopoietic stem cells. Nat Commun 2018; 9:2202. [PMID: 29875383 PMCID: PMC5989201 DOI: 10.1038/s41467-018-04441-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 04/29/2018] [Indexed: 12/29/2022] Open
Abstract
We previously identified CD34-negative (CD34-) severe combined immunodeficiency (SCID)-repopulating cells as primitive hematopoietic stem cells (HSCs) in human cord blood. In this study, we develop a prospective ultra-high-resolution purification method by applying two positive markers, CD133 and GPI-80. Using this method, we succeed in purifying single long-term repopulating CD34- HSCs with self-renewing capability residing at the apex of the human HSC hierarchy from cord blood, as evidenced by a single-cell-initiated serial transplantation analysis. The gene expression profiles of individual CD34+ and CD34- HSCs and a global gene expression analysis demonstrate the unique molecular signature of CD34- HSCs. We find that the purified CD34- HSCs show a potent megakaryocyte/erythrocyte differentiation potential in vitro and in vivo. Megakaryocyte/erythrocyte progenitors may thus be generated directly via a bypass route from the CD34- HSCs. Based on these data, we propose a revised road map for the commitment of human CD34- HSCs in cord blood.
Collapse
Affiliation(s)
- Keisuke Sumide
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, 573-1010, Osaka, Japan
| | - Yoshikazu Matsuoka
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, 573-1010, Osaka, Japan
| | - Hiroshi Kawamura
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, 573-1010, Osaka, Japan
- Department of Orthopedic Surgery, Kansai Medical University, Hirakata, 573-1010, Osaka, Japan
| | - Ryusuke Nakatsuka
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, 573-1010, Osaka, Japan
| | - Tatsuya Fujioka
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, 573-1010, Osaka, Japan
| | - Hiroaki Asano
- School of Nursing, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Kyoto, Japan
| | - Yoshihiro Takihara
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 734-8553, Hiroshima, Japan
- Japanese Red Cross Osaka Blood Center, Osaka, 536-0025, Osaka, Japan
| | - Yoshiaki Sonoda
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, 573-1010, Osaka, Japan.
| |
Collapse
|
150
|
Mohrin M, Widjaja A, Liu Y, Luo H, Chen D. The mitochondrial unfolded protein response is activated upon hematopoietic stem cell exit from quiescence. Aging Cell 2018; 17:e12756. [PMID: 29575576 PMCID: PMC5946069 DOI: 10.1111/acel.12756] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2018] [Indexed: 12/31/2022] Open
Abstract
The mitochondrial unfolded protein response (UPRmt ), a cellular protective program that ensures proteostasis in the mitochondria, has recently emerged as a regulatory mechanism for adult stem cell maintenance that is conserved across tissues. Despite the emerging genetic evidence implicating the UPRmt in stem cell maintenance, the underlying molecular mechanism is unknown. While it has been speculated that the UPRmt is activated upon stem cell transition from quiescence to proliferation, the direct evidence is lacking. In this study, we devised three experimental approaches that enable us to monitor quiescent and proliferating hematopoietic stem cells (HSCs) and provided the direct evidence that the UPRmt is activated upon HSC transition from quiescence to proliferation, and more broadly, mitochondrial integrity is actively monitored at the restriction point to ensure metabolic fitness before stem cells are committed to proliferation.
Collapse
Affiliation(s)
- Mary Mohrin
- Program in Metabolic Biology, Nutritional Sciences & Toxicology University of California Berkeley CA USA
| | - Andrew Widjaja
- Program in Metabolic Biology, Nutritional Sciences & Toxicology University of California Berkeley CA USA
| | - Yufei Liu
- Program in Metabolic Biology, Nutritional Sciences & Toxicology University of California Berkeley CA USA
| | - Hanzhi Luo
- Program in Metabolic Biology, Nutritional Sciences & Toxicology University of California Berkeley CA USA
| | - Danica Chen
- Program in Metabolic Biology, Nutritional Sciences & Toxicology University of California Berkeley CA USA
| |
Collapse
|