101
|
Antoniani F, Cimino M, Mediani L, Vinet J, Verde EM, Secco V, Yamoah A, Tripathi P, Aronica E, Cicardi ME, Trotti D, Sterneckert J, Goswami A, Carra S. Loss of PML nuclear bodies in familial amyotrophic lateral sclerosis-frontotemporal dementia. Cell Death Discov 2023; 9:248. [PMID: 37454169 DOI: 10.1038/s41420-023-01547-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/20/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD) are two neurodegenerative disorders that share genetic causes and pathogenic mechanisms. The critical genetic players of ALS and FTD are the TARDBP, FUS and C9orf72 genes, whose protein products, TDP-43, FUS and the C9orf72-dipeptide repeat proteins, accumulate in form of cytoplasmic inclusions. The majority of the studies focus on the understanding of how cells control TDP-43 and FUS aggregation in the cytoplasm, overlooking how dysfunctions occurring at the nuclear level may influence the maintenance of protein solubility outside of the nucleus. However, protein quality control (PQC) systems that maintain protein homeostasis comprise a cytoplasmic and a nuclear arm that are interconnected and share key players. It is thus conceivable that impairment of the nuclear arm of the PQC may have a negative impact on the cytoplasmic arm of the PQC, contributing to the formation of the cytoplasmic pathological inclusions. Here we focused on two stress-inducible condensates that act as transient deposition sites for misfolding-prone proteins: Promyelocytic leukemia protein (PML) nuclear bodies (PML-NBs) and cytoplasmic stress granules (SGs). Upon stress, PML-NBs compartmentalize misfolded proteins, including defective ribosomal products (DRiPs), and recruit chaperones and proteasomes to promote their nuclear clearance. SGs transiently sequester aggregation-prone RNA-binding proteins linked to ALS-FTD and mRNAs to attenuate their translation. We report that PML assembly is impaired in the human brain and spinal cord of familial C9orf72 and FUS ALS-FTD cases. We also show that defective PML-NB assembly impairs the compartmentalization of DRiPs in the nucleus, leading to their accumulation inside cytoplasmic SGs, negatively influencing SG dynamics. Although it is currently unclear what causes the decrease of PML-NBs in ALS-FTD, our data highlight the existence of a cross-talk between the cytoplasmic and nuclear PQC systems, whose alteration can contribute to SG accumulation and cytoplasmic protein aggregation in ALS-FTD.
Collapse
Affiliation(s)
- Francesco Antoniani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marco Cimino
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura Mediani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Jonathan Vinet
- Centro Interdipartimentale Grandi Strumenti (CIGS), University of Modena and Reggio Emilia, Modena, Italy
| | - Enza M Verde
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Valentina Secco
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alfred Yamoah
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Priyanka Tripathi
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Eleonora Aronica
- Amsterdam UMC location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Maria E Cicardi
- Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Davide Trotti
- Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jared Sterneckert
- Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Dresden, Germany
- Medical Faculty Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Anand Goswami
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany.
- Department of Neurology, Center for Motor Neuron Biology and Disease, Columbia University, 10032, New York, NY, USA.
- Department of Neurology, Eleanor and Lou Gehrig ALS Center, Columbia University, 10032, New York, NY, USA.
| | - Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.
- Medical Faculty Carl Gustav Carus of TU Dresden, Dresden, Germany.
| |
Collapse
|
102
|
Wang Y, Snell A, Dyka FM, Colvin ER, Ildefonso C, Ash JD, Lobanova ES. Overexpression of Nfe2l1 increases proteasome activity and delays vision loss in a preclinical model of human blindness. SCIENCE ADVANCES 2023; 9:eadd5479. [PMID: 37450596 PMCID: PMC10348684 DOI: 10.1126/sciadv.add5479] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
Proteasomes are the central proteolytic machines that are critical for breaking down most of the damaged and abnormal proteins in human cells. Although universally applicable drugs are not yet available, the stimulation of proteasomal activity is being analyzed as a proof-of-principle strategy to increase cellular resistance to a broad range of proteotoxic stressors. These approaches have included the stimulation of proteasomes through the overexpression of individual proteasome subunits, phosphorylation, or conformational changes induced by small molecules or peptides. In contrast to these approaches, we evaluated a transcription-driven increase in the total proteasome pool to enhance the proteolytic capacity of degenerating retinal neurons. We show that overexpression of nuclear factor erythroid-2-like 1 (Nfe2l1) transcription factor stimulated proteasome biogenesis and activity, improved the clearance of the ubiquitin-proteasomal reporter, and delayed photoreceptor neuron loss in a preclinical mouse model of human blindness caused by misfolded proteins. The findings highlight Nfe2l1 as an emerging therapeutic target to treat neurodegenerative diseases linked to protein misfolding.
Collapse
Affiliation(s)
- Yixiao Wang
- Department of Ophthalmology, University of Florida, Gainesville, FL 32610, USA
| | - Aaron Snell
- Department of Ophthalmology, University of Florida, Gainesville, FL 32610, USA
| | - Frank M. Dyka
- Department of Ophthalmology, University of Florida, Gainesville, FL 32610, USA
| | - Elizabeth R. Colvin
- Department of Ophthalmology, University of Florida, Gainesville, FL 32610, USA
| | - Cristhian Ildefonso
- Department of Ophthalmology, University of Florida, Gainesville, FL 32610, USA
| | - John D. Ash
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Ekaterina S. Lobanova
- Department of Ophthalmology, University of Florida, Gainesville, FL 32610, USA
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
103
|
Choudhary D, Mediani L, Avellaneda MJ, Bjarnason S, Alberti S, Boczek EE, Heidarsson PO, Mossa A, Carra S, Tans SJ, Cecconi C. Human Small Heat Shock Protein B8 Inhibits Protein Aggregation without Affecting the Native Folding Process. J Am Chem Soc 2023. [PMID: 37411010 PMCID: PMC10360156 DOI: 10.1021/jacs.3c02022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Small Heat Shock Proteins (sHSPs) are key components of our Protein Quality Control system and are thought to act as reservoirs that neutralize irreversible protein aggregation. Yet, sHSPs can also act as sequestrases, promoting protein sequestration into aggregates, thus challenging our understanding of their exact mechanisms of action. Here, we employ optical tweezers to explore the mechanisms of action of the human small heat shock protein HSPB8 and its pathogenic mutant K141E, which is associated with neuromuscular disease. Through single-molecule manipulation experiments, we studied how HSPB8 and its K141E mutant affect the refolding and aggregation processes of the maltose binding protein. Our data show that HSPB8 selectively suppresses protein aggregation without affecting the native folding process. This anti-aggregation mechanism is distinct from previous models that rely on the stabilization of unfolded polypeptide chains or partially folded structures, as has been reported for other chaperones. Rather, it appears that HSPB8 selectively recognizes and binds to aggregated species formed at the early stages of aggregation, preventing them from growing into larger aggregated structures. Consistently, the K141E mutation specifically targets the affinity for aggregated structures without impacting native folding, and hence impairs its anti-aggregation activity.
Collapse
Affiliation(s)
- Dhawal Choudhary
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Center S3, CNR Institute Nanoscience, Via Campi 213/A, 41125 Modena, Italy
- FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Laura Mediani
- Department of Biomedical, Metabolic and Neural Sciences, and Centre for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Mario J Avellaneda
- FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Sveinn Bjarnason
- Department of Biochemistry, Science Institute, University of Iceland, Sturlugata 7, 102 Reykjavík, Iceland
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, D-01307 Dresden, Germany
| | - Edgar E Boczek
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, D-01307 Dresden, Germany
| | - Pétur O Heidarsson
- Department of Biochemistry, Science Institute, University of Iceland, Sturlugata 7, 102 Reykjavík, Iceland
| | - Alessandro Mossa
- Center S3, CNR Institute Nanoscience, Via Campi 213/A, 41125 Modena, Italy
- INFN Firenze, Via Sansone 1, 50019 Sesto Fiorentino, Italy
| | - Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, and Centre for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Sander J Tans
- FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Ciro Cecconi
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Center S3, CNR Institute Nanoscience, Via Campi 213/A, 41125 Modena, Italy
| |
Collapse
|
104
|
Duran-Aniotz C, Poblete N, Rivera-Krstulovic C, Ardiles ÁO, Díaz-Hung ML, Tamburini G, Sabusap CMP, Gerakis Y, Cabral-Miranda F, Diaz J, Fuentealba M, Arriagada D, Muñoz E, Espinoza S, Martinez G, Quiroz G, Sardi P, Medinas DB, Contreras D, Piña R, Lourenco MV, Ribeiro FC, Ferreira ST, Rozas C, Morales B, Plate L, Gonzalez-Billault C, Palacios AG, Hetz C. The unfolded protein response transcription factor XBP1s ameliorates Alzheimer's disease by improving synaptic function and proteostasis. Mol Ther 2023; 31:2240-2256. [PMID: 37016577 PMCID: PMC10362463 DOI: 10.1016/j.ymthe.2023.03.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 02/03/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Alteration in the buffering capacity of the proteostasis network is an emerging feature of Alzheimer's disease (AD), highlighting the occurrence of endoplasmic reticulum (ER) stress. The unfolded protein response (UPR) is the main adaptive pathway to cope with protein folding stress at the ER. Inositol-requiring enzyme-1 (IRE1) operates as a central ER stress sensor, enabling the establishment of adaptive and repair programs through the control of the expression of the transcription factor X-box binding protein 1 (XBP1). To artificially enforce the adaptive capacity of the UPR in the AD brain, we developed strategies to express the active form of XBP1 in the brain. Overexpression of XBP1 in the nervous system using transgenic mice reduced the load of amyloid deposits and preserved synaptic and cognitive function. Moreover, local delivery of XBP1 into the hippocampus of an 5xFAD mice using adeno-associated vectors improved different AD features. XBP1 expression corrected a large proportion of the proteomic alterations observed in the AD model, restoring the levels of several synaptic proteins and factors involved in actin cytoskeleton regulation and axonal growth. Our results illustrate the therapeutic potential of targeting UPR-dependent gene expression programs as a strategy to ameliorate AD features and sustain synaptic function.
Collapse
Affiliation(s)
- Claudia Duran-Aniotz
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile.
| | - Natalia Poblete
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Catalina Rivera-Krstulovic
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Álvaro O Ardiles
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Mei Li Díaz-Hung
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Giovanni Tamburini
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Carleen Mae P Sabusap
- Department of Chemistry and Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Yannis Gerakis
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Felipe Cabral-Miranda
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Javier Diaz
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Matias Fuentealba
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Diego Arriagada
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Ernesto Muñoz
- FONDAP Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Department of Biology, Faculty of Sciences and Department of Neurosciences, Faculty of Medicina, Universidad de Chile, Santiago, Chile
| | - Sandra Espinoza
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Gabriela Martinez
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Gabriel Quiroz
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Pablo Sardi
- Rare and Neurological Diseases Therapeutic Area, Sanofi, Framingham, MA, USA
| | - Danilo B Medinas
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Darwin Contreras
- Laboratory of Neuroscience, Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| | - Ricardo Piña
- Laboratory of Neuroscience, Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe C Ribeiro
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; D'Or Institute for Research and Education, Rio de Janeiro, Brazil
| | - Carlos Rozas
- Laboratory of Neuroscience, Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| | - Bernardo Morales
- Laboratory of Neuroscience, Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| | - Lars Plate
- Department of Chemistry and Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Christian Gonzalez-Billault
- FONDAP Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Department of Biology, Faculty of Sciences and Department of Neurosciences, Faculty of Medicina, Universidad de Chile, Santiago, Chile
| | - Adrian G Palacios
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA 94945, USA.
| |
Collapse
|
105
|
Nita M, Grzybowski A. Antioxidative Role of Heterophagy, Autophagy, and Mitophagy in the Retina and Their Association with the Age-Related Macular Degeneration (AMD) Etiopathogenesis. Antioxidants (Basel) 2023; 12:1368. [PMID: 37507908 PMCID: PMC10376332 DOI: 10.3390/antiox12071368] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/09/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Age-related macular degeneration (AMD), an oxidative stress-linked neurodegenerative disease, leads to irreversible damage of the central retina and severe visual impairment. Advanced age and the long-standing influence of oxidative stress and oxidative cellular damage play crucial roles in AMD etiopathogenesis. Many authors emphasize the role of heterophagy, autophagy, and mitophagy in maintaining homeostasis in the retina. Relevantly modifying the activity of both macroautophagy and mitophagy pathways represents one of the new therapeutic strategies in AMD. Our review provides an overview of the antioxidative roles of heterophagy, autophagy, and mitophagy and presents associations between dysregulations of these molecular mechanisms and AMD etiopathogenesis. The authors performed an extensive analysis of the literature, employing PubMed and Google Scholar, complying with the 2013-2023 period, and using the following keywords: age-related macular degeneration, RPE cells, reactive oxygen species, oxidative stress, heterophagy, autophagy, and mitophagy. Heterophagy, autophagy, and mitophagy play antioxidative roles in the retina; however, they become sluggish and dysregulated with age and contribute to AMD development and progression. In the retina, antioxidative roles also play in RPE cells, NFE2L2 and PGC-1α proteins, NFE2L2/PGC-1α/ARE signaling cascade, Nrf2 factor, p62/SQSTM1/Keap1-Nrf2/ARE pathway, circulating miRNAs, and Yttrium oxide nanoparticles performed experimentally in animal studies.
Collapse
Affiliation(s)
- Małgorzata Nita
- Domestic and Specialized Medicine Centre "Dilmed", 40-231 Katowice, Poland
| | - Andrzej Grzybowski
- Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, Gorczyczewskiego 2/3, 61-553 Poznań, Poland
| |
Collapse
|
106
|
Jorge-Oliva M, van Weering JRT, Scheper W. Structurally and Morphologically Distinct Pathological Tau Assemblies Differentially Affect GVB Accumulation. Int J Mol Sci 2023; 24:10865. [PMID: 37446051 DOI: 10.3390/ijms241310865] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Tau aggregation is central to the pathogenesis of a large group of neurodegenerative diseases termed tauopathies, but it is still unclear in which way neurons respond to tau pathology and how tau accumulation leads to neurodegeneration. A striking neuron-specific response to tau pathology is presented by granulovacuolar degeneration bodies (GVBs), lysosomal structures that accumulate specific cargo in a dense core. Here we employed different tau aggregation models in primary neurons to investigate which properties of pathological tau assemblies affect GVB accumulation using a combination of confocal microscopy, transmission electron microscopy, and quantitative automated high-content microscopy. Employing GFP-tagged and untagged tau variants that spontaneously form intraneuronal aggregates, we induced pathological tau assemblies with a distinct subcellular localization, morphology, and ultrastructure depending on the presence or absence of the GFP tag. The quantification of the GVB load in the different models showed that an increased GVB accumulation is associated with the untagged tau aggregation model, characterized by shorter and more randomly distributed tau filaments in the neuronal soma. Our data indicate that tau aggregate structure and/or subcellular localization may be key determinants of GVB accumulation.
Collapse
Affiliation(s)
- Marta Jorge-Oliva
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience-Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| | - Jan R T van Weering
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience-Neurodegeneration, 1081 HV Amsterdam, The Netherlands
- Department of Human Genetics, Amsterdam UMC Location Vrije Universiteit, Amsterdam Neuroscience-Neurodegeneration, 1081 HZ Amsterdam, The Netherlands
| | - Wiep Scheper
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience-Neurodegeneration, 1081 HV Amsterdam, The Netherlands
- Department of Human Genetics, Amsterdam UMC Location Vrije Universiteit, Amsterdam Neuroscience-Neurodegeneration, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
107
|
Vottonen L, Koskela A, Felszeghy S, Wylegala A, Kryszan K, Gurubaran IS, Kaarniranta K, Wylegala E. Oxidative Stress and Cellular Protein Accumulation Are Present in Keratoconus, Macular Corneal Dystrophy, and Fuchs Endothelial Corneal Dystrophy. J Clin Med 2023; 12:4332. [PMID: 37445366 DOI: 10.3390/jcm12134332] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The aim of the study was to investigate oxidative stress as well as cellular protein accumulation in corneal diseases including keratoconus (KC), macular corneal dystrophy (MCD), and Fuchs endothelial corneal dystrophy (FECD) at their primary affecting sites. Corneal buttons from KC, MCD, and FECD patients, as well as healthy controls, were analyzed immunohistochemically to evaluate the presence of oxidative stress and the function of the proteostasis network. 4-Fydroxynonenal (4-HNE) was used as a marker of oxidative stress, whereas the levels of catalase and heat-shock protein 70 (HSP70) were analyzed to evaluate the response of the antioxidant defense system and molecular chaperones, respectively. Sequestosome 1 (SQSTM1) levels were determined to assess protein aggregation and the functionality of autophagic degradation. Basal epithelial cells of the KC samples showed increased levels of oxidative stress marker 4-HNE and antioxidant enzyme catalase together with elevated levels of HSP70 and accumulation of SQSTM1. Corneal stromal cells and endothelial cells from MCD and FECD samples, respectively, showed similarly increased levels of these markers. All corneal diseases showed the presence of oxidative stress and activation of the molecular chaperone response to sustain protein homeostasis. However, the accumulation of protein aggregates suggests insufficient function of the protective mechanisms to limit the oxidative damage and removal of protein aggregates via autophagy. These results suggest that oxidative stress has a role in KC, MCD, and FECD at the cellular level as a secondary outcome. Thus, antioxidant- and autophagy-targeted therapies could be included as supporting care when treating KC or corneal dystrophies.
Collapse
Affiliation(s)
- Linda Vottonen
- Department of Ophthalmology, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Ali Koskela
- Department of Ophthalmology, University of Eastern Finland, 70210 Kuopio, Finland
| | - Szabolcs Felszeghy
- Institute of Biomedicine, University of Eastern Finland, Yliopistonranta 1, 70210 Kuopio, Finland
| | - Adam Wylegala
- Health Promotion and Obesity Management Unit, Department of Pathophysiology, Faculty of Medical Sciences, Medical University of Silesia, 40-055 Katowice, Poland
- Ophthalmology Department, Railway Hospital, 40-760 Katowice, Poland
| | | | | | - Kai Kaarniranta
- Department of Ophthalmology, Kuopio University Hospital, 70210 Kuopio, Finland
- Department of Ophthalmology, University of Eastern Finland, 70210 Kuopio, Finland
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Edward Wylegala
- Ophthalmology Department, Railway Hospital, 40-760 Katowice, Poland
- Clinical Department of Ophthalmology, II School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, 40-760 Katowice, Poland
| |
Collapse
|
108
|
Nousis L, Kanavaros P, Barbouti A. Oxidative Stress-Induced Cellular Senescence: Is Labile Iron the Connecting Link? Antioxidants (Basel) 2023; 12:1250. [PMID: 37371980 DOI: 10.3390/antiox12061250] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Cellular senescence, a cell state characterized by a generally irreversible cell cycle arrest, is implicated in various physiological processes and a wide range of age-related pathologies. Oxidative stress, a condition caused by an imbalance between the production and the elimination of reactive oxygen species (ROS) in cells and tissues, is a common driver of cellular senescence. ROS encompass free radicals and other molecules formed as byproducts of oxygen metabolism, which exhibit varying chemical reactivity. A prerequisite for the generation of strong oxidizing ROS that can damage macromolecules and impair cellular function is the availability of labile (redox-active) iron, which catalyzes the formation of highly reactive free radicals. Targeting labile iron has been proven an effective strategy to counteract the adverse effects of ROS, but evidence concerning cellular senescence is sparse. In the present review article, we discuss aspects of oxidative stress-induced cellular senescence, with special attention to the potential implication of labile iron.
Collapse
Affiliation(s)
- Lambros Nousis
- Department of Hygiene and Epidemiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Panagiotis Kanavaros
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Alexandra Barbouti
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
109
|
Statzer C, Park JYC, Ewald CY. Extracellular Matrix Dynamics as an Emerging yet Understudied Hallmark of Aging and Longevity. Aging Dis 2023; 14:670-693. [PMID: 37191434 DOI: 10.14336/ad.2022.1116] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/16/2022] [Indexed: 05/17/2023] Open
Abstract
The biomechanical properties of extracellular matrices (ECM) and their consequences for cellular homeostasis have recently emerged as a driver of aging. Here we review the age-dependent deterioration of ECM in the context of our current understanding of the aging processes. We discuss the reciprocal interactions of longevity interventions with ECM remodeling. And the relevance of ECM dynamics captured by the matrisome and the matreotypes associated with health, disease, and longevity. Furthermore, we highlight that many established longevity compounds promote ECM homeostasis. A large body of evidence for the ECM to qualify as a hallmark of aging is emerging, and the data in invertebrates is promising. However, direct experimental proof that activating ECM homeostasis is sufficient to slow aging in mammals is lacking. We conclude that further research is required and anticipate that a conceptual framework for ECM biomechanics and homeostasis will provide new strategies to promote health during aging.
Collapse
Affiliation(s)
- Cyril Statzer
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| | - Ji Young Cecilia Park
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| | - Collin Y Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| |
Collapse
|
110
|
Rojas‐Gómez A, Dosil SG, Chichón FJ, Fernández‐Gallego N, Ferrarini A, Calvo E, Calzada‐Fraile D, Requena S, Otón J, Serrano A, Tarifa R, Arroyo M, Sorrentino A, Pereiro E, Vázquez J, Valpuesta JM, Sánchez‐Madrid F, Martín‐Cófreces NB. Chaperonin CCT controls extracellular vesicle production and cell metabolism through kinesin dynamics. J Extracell Vesicles 2023; 12:e12333. [PMID: 37328936 PMCID: PMC10276179 DOI: 10.1002/jev2.12333] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 05/02/2023] [Indexed: 06/18/2023] Open
Abstract
Cell proteostasis includes gene transcription, protein translation, folding of de novo proteins, post-translational modifications, secretion, degradation and recycling. By profiling the proteome of extracellular vesicles (EVs) from T cells, we have found the chaperonin complex CCT, involved in the correct folding of particular proteins. By limiting CCT cell-content by siRNA, cells undergo altered lipid composition and metabolic rewiring towards a lipid-dependent metabolism, with increased activity of peroxisomes and mitochondria. This is due to dysregulation of the dynamics of interorganelle contacts between lipid droplets, mitochondria, peroxisomes and the endolysosomal system. This process accelerates the biogenesis of multivesicular bodies leading to higher EV production through the dynamic regulation of microtubule-based kinesin motors. These findings connect proteostasis with lipid metabolism through an unexpected role of CCT.
Collapse
Affiliation(s)
- Amelia Rojas‐Gómez
- Immunology ServiceHospital Universitario de la Princesa, UAM, IIS‐IPMadridSpain
- Area of Vascular Pathophysiology, Laboratory of Intercellular CommunicationFundación Centro Nacional de Investigaciones Cardiovasculares‐Carlos IIIMadridSpain
| | - Sara G. Dosil
- Immunology ServiceHospital Universitario de la Princesa, UAM, IIS‐IPMadridSpain
- Area of Vascular Pathophysiology, Laboratory of Intercellular CommunicationFundación Centro Nacional de Investigaciones Cardiovasculares‐Carlos IIIMadridSpain
| | - Francisco J. Chichón
- Cryoelectron Microscopy UnitCentro Nacional de Biotecnología (CNB‐CSIC)MadridSpain
- Department of Macromolecular StructureCentro Nacional de Biotecnología (CNB‐CSIC)MadridSpain
| | - Nieves Fernández‐Gallego
- Immunology ServiceHospital Universitario de la Princesa, UAM, IIS‐IPMadridSpain
- Area of Vascular Pathophysiology, Laboratory of Intercellular CommunicationFundación Centro Nacional de Investigaciones Cardiovasculares‐Carlos IIIMadridSpain
| | - Alessia Ferrarini
- Laboratory of Cardiovascular ProteomicsFundación Centro Nacional de Investigaciones Cardiovasculares‐Carlos IIIMadridSpain
| | - Enrique Calvo
- Laboratory of Cardiovascular ProteomicsFundación Centro Nacional de Investigaciones Cardiovasculares‐Carlos IIIMadridSpain
| | - Diego Calzada‐Fraile
- Area of Vascular Pathophysiology, Laboratory of Intercellular CommunicationFundación Centro Nacional de Investigaciones Cardiovasculares‐Carlos IIIMadridSpain
| | - Silvia Requena
- Immunology ServiceHospital Universitario de la Princesa, UAM, IIS‐IPMadridSpain
- CIBER de Enfermedades Cardiovasculares (CIBERCV)MadridSpain
| | - Joaquin Otón
- Structural Studies DivisionMRC Laboratory of Molecular BiologyCambridgeUK
- ALBA Synchrotron Light SourceBarcelonaSpain
| | - Alvaro Serrano
- Area of Vascular Pathophysiology, Laboratory of Intercellular CommunicationFundación Centro Nacional de Investigaciones Cardiovasculares‐Carlos IIIMadridSpain
| | - Rocio Tarifa
- Laboratory of Cardiovascular ProteomicsFundación Centro Nacional de Investigaciones Cardiovasculares‐Carlos IIIMadridSpain
| | - Montserrat Arroyo
- Immunology ServiceHospital Universitario de la Princesa, UAM, IIS‐IPMadridSpain
| | | | | | - Jesus Vázquez
- Laboratory of Cardiovascular ProteomicsFundación Centro Nacional de Investigaciones Cardiovasculares‐Carlos IIIMadridSpain
- CIBER de Enfermedades Cardiovasculares (CIBERCV)MadridSpain
| | - José M. Valpuesta
- Department of Macromolecular StructureCentro Nacional de Biotecnología (CNB‐CSIC)MadridSpain
| | - Francisco Sánchez‐Madrid
- Immunology ServiceHospital Universitario de la Princesa, UAM, IIS‐IPMadridSpain
- Area of Vascular Pathophysiology, Laboratory of Intercellular CommunicationFundación Centro Nacional de Investigaciones Cardiovasculares‐Carlos IIIMadridSpain
- CIBER de Enfermedades Cardiovasculares (CIBERCV)MadridSpain
| | - Noa B. Martín‐Cófreces
- Immunology ServiceHospital Universitario de la Princesa, UAM, IIS‐IPMadridSpain
- Area of Vascular Pathophysiology, Laboratory of Intercellular CommunicationFundación Centro Nacional de Investigaciones Cardiovasculares‐Carlos IIIMadridSpain
- CIBER de Enfermedades Cardiovasculares (CIBERCV)MadridSpain
| |
Collapse
|
111
|
Cheng J, Zhang G, Deng T, Liu Z, Zhang M, Zhang P, Adeshakin FO, Niu X, Yan D, Wan X, Yu G. CD317 maintains proteostasis and cell survival in response to proteasome inhibitors by targeting calnexin for RACK1-mediated autophagic degradation. Cell Death Dis 2023; 14:333. [PMID: 37210387 DOI: 10.1038/s41419-023-05858-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023]
Abstract
Unbalanced protein homeostasis (proteostasis) networks are frequently linked to tumorigenesis, making cancer cells more susceptible to treatments that target proteostasis regulators. Proteasome inhibition is the first licensed proteostasis-targeting therapeutic strategy, and has been proven effective in hematological malignancy patients. However, drug resistance almost inevitably develops, pressing for a better understanding of the mechanisms that preserve proteostasis in tumor cells. Here we report that CD317, a tumor-targeting antigen with a unique topology, was upregulated in hematological malignancies and preserved proteostasis and cell viability in response to proteasome inhibitors (PIs). Knocking down CD317 lowered Ca2+ levels in the endoplasmic reticulum (ER), promoting PIs-induced proteostasis failure and cell death. Mechanistically, CD317 interacted with calnexin (CNX), an ER chaperone protein that limits calcium refilling via the Ca2+ pump SERCA, thereby subjecting CNX to RACK1-mediated autophagic degradation. As a result, CD317 decreased the level of CNX protein, coordinating Ca2+ uptake and thus favoring protein folding and quality control in the ER lumen. Our findings reveal a previously unrecognized role of CD317 in proteostasis control and imply that CD317 could be a promising target for resolving PIs resistance in the clinic.
Collapse
Affiliation(s)
- Jian Cheng
- Department of Immunology, Jinzhou Medical University, Jinzhou, Liaoning, China
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, People's Republic of China
| | - Guizhong Zhang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, People's Republic of China.
- Guangdong immune cell therapy engineering and technology research center (No. 2580 [2018]), Shenzhen, China.
| | - Tian Deng
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, People's Republic of China
| | - Zhao Liu
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, People's Republic of China
| | - Mengqi Zhang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, People's Republic of China
| | - Pengchao Zhang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, People's Republic of China
- University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Funmilayo O Adeshakin
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, People's Republic of China
- University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Xiangyun Niu
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, People's Republic of China
- University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Dehong Yan
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, People's Republic of China
- Guangdong immune cell therapy engineering and technology research center (No. 2580 [2018]), Shenzhen, China
| | - Xiaochun Wan
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, People's Republic of China.
- Guangdong immune cell therapy engineering and technology research center (No. 2580 [2018]), Shenzhen, China.
| | - Guang Yu
- Department of Immunology, Jinzhou Medical University, Jinzhou, Liaoning, China.
| |
Collapse
|
112
|
Santarelli S, Londero C, Soldano A, Candelaresi C, Todeschini L, Vernizzi L, Bellosta P. Drosophila melanogaster as a model to study autophagy in neurodegenerative diseases induced by proteinopathies. Front Neurosci 2023; 17:1082047. [PMID: 37274187 PMCID: PMC10232775 DOI: 10.3389/fnins.2023.1082047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/14/2023] [Indexed: 06/06/2023] Open
Abstract
Proteinopathies are a large group of neurodegenerative diseases caused by both genetic and sporadic mutations in particular genes which can lead to alterations of the protein structure and to the formation of aggregates, especially toxic for neurons. Autophagy is a key mechanism for clearing those aggregates and its function has been strongly associated with the ubiquitin-proteasome system (UPS), hence mutations in both pathways have been associated with the onset of neurodegenerative diseases, particularly those induced by protein misfolding and accumulation of aggregates. Many crucial discoveries regarding the molecular and cellular events underlying the role of autophagy in these diseases have come from studies using Drosophila models. Indeed, despite the physiological and morphological differences between the fly and the human brain, most of the biochemical and molecular aspects regulating protein homeostasis, including autophagy, are conserved between the two species.In this review, we will provide an overview of the most common neurodegenerative proteinopathies, which include PolyQ diseases (Huntington's disease, Spinocerebellar ataxia 1, 2, and 3), Amyotrophic Lateral Sclerosis (C9orf72, SOD1, TDP-43, FUS), Alzheimer's disease (APP, Tau) Parkinson's disease (a-syn, parkin and PINK1, LRRK2) and prion diseases, highlighting the studies using Drosophila that have contributed to understanding the conserved mechanisms and elucidating the role of autophagy in these diseases.
Collapse
Affiliation(s)
- Stefania Santarelli
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
| | - Chiara Londero
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
| | - Alessia Soldano
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Carlotta Candelaresi
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
| | - Leonardo Todeschini
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
| | - Luisa Vernizzi
- Institute of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Paola Bellosta
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
- Department of Medicine, NYU Langone Medical Center, New York, NY, United States
| |
Collapse
|
113
|
Shui K, Wang C, Zhang X, Ma S, Li Q, Ning W, Zhang W, Chen M, Peng D, Hu H, Fang Z, Guo A, Gao G, Ye M, Zhang L, Xue Y. Small-sample learning reveals propionylation in determining global protein homeostasis. Nat Commun 2023; 14:2813. [PMID: 37198164 DOI: 10.1038/s41467-023-38414-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 04/28/2023] [Indexed: 05/19/2023] Open
Abstract
Proteostasis is fundamental for maintaining organismal health. However, the mechanisms underlying its dynamic regulation and how its disruptions lead to diseases are largely unclear. Here, we conduct in-depth propionylomic profiling in Drosophila, and develop a small-sample learning framework to prioritize the propionylation at lysine 17 of H2B (H2BK17pr) to be functionally important. Mutating H2BK17 which eliminates propionylation leads to elevated total protein level in vivo. Further analyses reveal that H2BK17pr modulates the expression of 14.7-16.3% of genes in the proteostasis network, and determines global protein level by regulating the expression of genes involved in the ubiquitin-proteasome system. In addition, H2BK17pr exhibits daily oscillation, mediating the influences of feeding/fasting cycles to drive rhythmic expression of proteasomal genes. Our study not only reveals a role of lysine propionylation in regulating proteostasis, but also implements a generally applicable method which can be extended to other issues with little prior knowledge.
Collapse
Affiliation(s)
- Ke Shui
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Chenwei Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Xuedi Zhang
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, 201210, Shanghai, China
| | - Shanshan Ma
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Qinyu Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Wanshan Ning
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Weizhi Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Miaomiao Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Di Peng
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Hui Hu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Zheng Fang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Anyuan Guo
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Guanjun Gao
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, 201210, Shanghai, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Luoying Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, Hubei, China.
| | - Yu Xue
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
- Nanjing University Institute of Artificial Intelligence Biomedicine, Nanjing, 210031, Jiangsu, China.
| |
Collapse
|
114
|
Addabbo RM, Hutchinson RB, Allaman HJ, Dalphin MD, Mecha MF, Liu Y, Staikos A, Cavagnero S. Critical Beginnings: Selective Tuning of Solubility and Structural Accuracy of Newly Synthesized Proteins by the Hsp70 Chaperone System. J Phys Chem B 2023; 127:3990-4014. [PMID: 37130318 PMCID: PMC10829761 DOI: 10.1021/acs.jpcb.2c08485] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Proteins are particularly prone to aggregation immediately after release from the ribosome, and it is therefore important to elucidate the role of chaperones during these key steps of protein life. The Hsp70 and trigger factor (TF) chaperone systems interact with nascent proteins during biogenesis and immediately post-translationally. It is unclear, however, whether these chaperones can prevent formation of soluble and insoluble aggregates. Here, we address this question by monitoring the solubility and structural accuracy of globin proteins biosynthesized in an Escherichia coli cell-free system containing different concentrations of the bacterial Hsp70 and TF chaperones. We find that Hsp70 concentrations required to grant solubility to newly synthesized proteins are extremely sensitive to client-protein sequence. Importantly, Hsp70 concentrations yielding soluble client proteins are insufficient to prevent formation of soluble aggregates. In fact, for some aggregation-prone protein variants, avoidance of soluble-aggregate formation demands Hsp70 concentrations that exceed cellular levels in E. coli. In all, our data highlight the prominent role of soluble aggregates upon nascent-protein release from the ribosome and show the limitations of the Hsp70 chaperone system in the case of highly aggregation-prone proteins. These results demonstrate the need to devise better strategies to prevent soluble-aggregate formation upon release from the ribosome.
Collapse
Affiliation(s)
- Rayna M. Addabbo
- Biophysics Graduate Degree Program, University of Wisconsin-Madison, Madison, WI, 53706, U.S.A
| | - Rachel B. Hutchinson
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, U.S.A
| | - Heather J. Allaman
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, U.S.A
| | - Matthew D. Dalphin
- Biophysics Graduate Degree Program, University of Wisconsin-Madison, Madison, WI, 53706, U.S.A
| | - Miranda F. Mecha
- Biophysics Graduate Degree Program, University of Wisconsin-Madison, Madison, WI, 53706, U.S.A
| | - Yue Liu
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, U.S.A
| | - Alexios Staikos
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, U.S.A
| | - Silvia Cavagnero
- Biophysics Graduate Degree Program, University of Wisconsin-Madison, Madison, WI, 53706, U.S.A
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, U.S.A
| |
Collapse
|
115
|
Ling B, Xu Y, Qian S, Xiang Z, Xuan S, Wu J. Regulation of hematopoietic stem cells differentiation, self-renewal, and quiescence through the mTOR signaling pathway. Front Cell Dev Biol 2023; 11:1186850. [PMID: 37228652 PMCID: PMC10203478 DOI: 10.3389/fcell.2023.1186850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
Hematopoietic stem cells (HSCs) are important for the hematopoietic system because they can self-renew to increase their number and differentiate into all the blood cells. At a steady state, most of the HSCs remain in quiescence to preserve their capacities and protect themselves from damage and exhaustive stress. However, when there are some emergencies, HSCs are activated to start their self-renewal and differentiation. The mTOR signaling pathway has been shown as an important signaling pathway that can regulate the differentiation, self-renewal, and quiescence of HSCs, and many types of molecules can regulate HSCs' these three potentials by influencing the mTOR signaling pathway. Here we review how mTOR signaling pathway regulates HSCs three potentials, and introduce some molecules that can work as the regulator of HSCs' these potentials through the mTOR signaling. Finally, we outline the clinical significance of studying the regulation of HSCs three potentials through the mTOR signaling pathway and make some predictions.
Collapse
Affiliation(s)
- Bai Ling
- Department of Pharmacy, The Yancheng Clinical College of Xuzhou Medical University, The First People’s Hospital of Yancheng, Yancheng, Jiangsu, China
| | - Yunyang Xu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Siyuan Qian
- The Second School of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shihai Xuan
- Department of Laboratory Medicine, The People’s Hospital of Dongtai City, Dongtai, China
| | - Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|
116
|
Zhao N, Li N, Wang T. PERK prevents rhodopsin degradation during retinitis pigmentosa by inhibiting IRE1-induced autophagy. J Cell Biol 2023; 222:e202208147. [PMID: 37022709 PMCID: PMC10082367 DOI: 10.1083/jcb.202208147] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/04/2023] [Accepted: 02/14/2023] [Indexed: 04/07/2023] Open
Abstract
Chronic endoplasmic reticulum (ER) stress is the underlying cause of many degenerative diseases, including autosomal dominant retinitis pigmentosa (adRP). In adRP, mutant rhodopsins accumulate and cause ER stress. This destabilizes wild-type rhodopsin and triggers photoreceptor cell degeneration. To reveal the mechanisms by which these mutant rhodopsins exert their dominant-negative effects, we established an in vivo fluorescence reporter system to monitor mutant and wild-type rhodopsin in Drosophila. By performing a genome-wide genetic screen, we found that PERK signaling plays a key role in maintaining rhodopsin homeostasis by attenuating IRE1 activities. Degradation of wild-type rhodopsin is mediated by selective autophagy of ER, which is induced by uncontrolled IRE1/XBP1 signaling and insufficient proteasome activities. Moreover, upregulation of PERK signaling prevents autophagy and suppresses retinal degeneration in the adRP model. These findings establish a pathological role for autophagy in this neurodegenerative condition and indicate that promoting PERK activity could be used to treat ER stress-related neuropathies, including adRP.
Collapse
Affiliation(s)
- Ning Zhao
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ning Li
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tao Wang
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- College of Biological Sciences, China Agricultural University, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
- National Institute of Biological Sciences, Beijing, China
| |
Collapse
|
117
|
Relton EL, Roth NJ, Yasa S, Kaleem A, Hermey G, Minnis CJ, Mole SE, Shelkovnikova T, Lefrancois S, McCormick PJ, Locker N. The Batten disease protein CLN3 is important for stress granules dynamics and translational activity. J Biol Chem 2023; 299:104649. [PMID: 36965618 PMCID: PMC10149212 DOI: 10.1016/j.jbc.2023.104649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/04/2023] [Accepted: 03/16/2023] [Indexed: 03/27/2023] Open
Abstract
The assembly of membrane-less organelles such as stress granules (SGs) is emerging as central in helping cells rapidly respond and adapt to stress. Following stress sensing, the resulting global translational shutoff leads to the condensation of stalled mRNAs and proteins into SGs. By reorganizing cytoplasmic contents, SGs can modulate RNA translation, biochemical reactions, and signaling cascades to promote survival until the stress is resolved. While mechanisms for SG disassembly are not widely understood, the resolution of SGs is important for maintaining cell viability and protein homeostasis. Mutations that lead to persistent or aberrant SGs are increasingly associated with neuropathology and a hallmark of several neurodegenerative diseases. Mutations in CLN3 are causative of juvenile neuronal ceroid lipofuscinosis, a rare neurodegenerative disease affecting children also known as Batten disease. CLN3 encodes a transmembrane lysosomal protein implicated in autophagy, endosomal trafficking, metabolism, and response to oxidative stress. Using a HeLa cell model lacking CLN3, we now show that CLN3KO is associated with an altered metabolic profile, reduced global translation, and altered stress signaling. Furthermore, loss of CLN3 function results in perturbations in SG dynamics, resulting in assembly and disassembly defects, and altered expression of the key SG nucleating factor G3BP1. With a growing interest in SG-modulating drugs for the treatment of neurodegenerative diseases, novel insights into the molecular basis of CLN3 Batten disease may reveal avenues for disease-modifying treatments for this debilitating childhood disease.
Collapse
Affiliation(s)
- Emily L Relton
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Nicolas J Roth
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary, University of London, Charterhouse Square, London, United Kingdom
| | - Seda Yasa
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, Canada
| | - Abuzar Kaleem
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Hermey
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christopher J Minnis
- Great Ormond Street, Institute of Child Health and MRC Laboratory for Molecular Cell Biology and Great Ormond Street, Institute of Child Health, University College London, London, United Kingdom
| | - Sara E Mole
- Great Ormond Street, Institute of Child Health and MRC Laboratory for Molecular Cell Biology and Great Ormond Street, Institute of Child Health, University College London, London, United Kingdom
| | - Tatyana Shelkovnikova
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Stephane Lefrancois
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal, Canada
| | - Peter J McCormick
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary, University of London, Charterhouse Square, London, United Kingdom
| | - Nicolas Locker
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom.
| |
Collapse
|
118
|
Wang X, Li Y, Yan X, Yang Q, Zhang B, Zhang Y, Yuan X, Jiang C, Chen D, Liu Q, Liu T, Mi W, Yu Y, Dong C. Recognition of an Ala-rich C-degron by the E3 ligase Pirh2. Nat Commun 2023; 14:2474. [PMID: 37120596 PMCID: PMC10148881 DOI: 10.1038/s41467-023-38173-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/18/2023] [Indexed: 05/01/2023] Open
Abstract
The ribosome-associated quality-control (RQC) pathway degrades aberrant nascent polypeptides arising from ribosome stalling during translation. In mammals, the E3 ligase Pirh2 mediates the degradation of aberrant nascent polypeptides by targeting the C-terminal polyalanine degrons (polyAla/C-degrons). Here, we present the crystal structure of Pirh2 bound to the polyAla/C-degron, which shows that the N-terminal domain and the RING domain of Pirh2 form a narrow groove encapsulating the alanine residues of the polyAla/C-degron. Affinity measurements in vitro and global protein stability assays in cells further demonstrate that Pirh2 recognizes a C-terminal A/S-X-A-A motif for substrate degradation. Taken together, our study provides the molecular basis underlying polyAla/C-degron recognition by Pirh2 and expands the substrate recognition spectrum of Pirh2.
Collapse
Affiliation(s)
- Xiaolu Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Haihe Laboratory of Cell Ecosystem, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Tianjin Medical University, 300070, Tianjin, China
| | - Yao Li
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Haihe Laboratory of Cell Ecosystem, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, 300070, Tianjin, China
| | - Xiaojie Yan
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Haihe Laboratory of Cell Ecosystem, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, 300070, Tianjin, China
| | - Qing Yang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, 300070, Tianjin, China
| | - Bing Zhang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, 300070, Tianjin, China
| | - Ying Zhang
- Department of Immunology, Tianjin Institute of Immunology, Tianjin Medical University, 300070, Tianjin, China
| | - Xinxin Yuan
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, 300070, Tianjin, China
| | - Chenhao Jiang
- Department of Immunology, Tianjin Institute of Immunology, Tianjin Medical University, 300070, Tianjin, China
| | - Dongxing Chen
- Department of Medicinal Chemistry, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China
| | - Quanyan Liu
- Department of Hepatobiliary Surgery, Tianjin Medical University General Hospital, 300052, Tianjin, China
| | - Tong Liu
- Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Wenyi Mi
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Haihe Laboratory of Cell Ecosystem, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
- Department of Immunology, Tianjin Institute of Immunology, Tianjin Medical University, 300070, Tianjin, China
| | - Ying Yu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Haihe Laboratory of Cell Ecosystem, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China.
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Tianjin Medical University, 300070, Tianjin, China.
| | - Cheng Dong
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Haihe Laboratory of Cell Ecosystem, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China.
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, 300070, Tianjin, China.
- Department of Hepatobiliary Surgery, Tianjin Medical University General Hospital, 300052, Tianjin, China.
- Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, 300211, Tianjin, China.
| |
Collapse
|
119
|
González B, Aldea M, Cullen PJ. Chaperone-Dependent Degradation of Cdc42 Promotes Cell Polarity and Shields the Protein from Aggregation. Mol Cell Biol 2023; 43:200-222. [PMID: 37114947 PMCID: PMC10184603 DOI: 10.1080/10985549.2023.2198171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 04/29/2023] Open
Abstract
Rho GTPases are global regulators of cell polarity and signaling. By exploring the turnover regulation of the yeast Rho GTPase Cdc42p, we identified new regulatory features surrounding the stability of the protein. We specifically show that Cdc42p is degraded at 37 °C by chaperones through lysine residues located in the C-terminus of the protein. Cdc42p turnover at 37 °C occurred by the 26S proteasome in an ESCRT-dependent manner in the lysosome/vacuole. By analyzing versions of Cdc42p that were defective for turnover, we show that turnover at 37 °C promoted cell polarity but was defective for sensitivity to mating pheromone, presumably mediated through a Cdc42p-dependent MAP kinase pathway. We also identified one residue (K16) in the P-loop of the protein that was critical for Cdc42p stability. Accumulation of Cdc42pK16R in some contexts led to the formation of protein aggregates, which were enriched in aging mother cells and cells undergoing proteostatic stress. Our study uncovers new aspects of protein turnover regulation of a Rho-type GTPase that may extend to other systems. Moreover, residues identified here that mediate Cdc42p turnover correlate with several human diseases, which may suggest that turnover regulation of Cdc42p is important to aspects of human health.
Collapse
Affiliation(s)
- Beatriz González
- Department of Biological Sciences, State University of New York at Buffalo, New York, USA
| | - Martí Aldea
- Molecular Biology Institute of Barcelona (IBMB), CSIC, Barcelona, Spain
| | - Paul J. Cullen
- Department of Biological Sciences, State University of New York at Buffalo, New York, USA
| |
Collapse
|
120
|
Desouky MA, George MY, Michel HE, Elsherbiny DA. Roflumilast escalates α-synuclein aggregate degradation in rotenone-induced Parkinson's disease in rats: Modulation of the ubiquitin-proteasome system and endoplasmic reticulum stress. Chem Biol Interact 2023; 379:110491. [PMID: 37105514 DOI: 10.1016/j.cbi.2023.110491] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/02/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023]
Abstract
Perturbation of the protein homeostasis circuit is one of the principal attributes associated with many neurodegenerative disorders, such as Parkinson's disease (PD). This study aimed to explore the neuroprotective effect of roflumilast (ROF), a phosphodiesterase-4 inhibitor, in a rotenone-induced rat model of PD and investigate the potential underlying mechanisms. Interestingly, ROF (1 mg/kg, p.o.) attenuated motor impairment, prevented brain lesions, and rescued the dopaminergic neurons in rotenone-treated rats. Furthermore, it reduced misfolded α-synuclein burden. ROF also promoted the midbrain cyclic adenosine monophosphate level, which subsequently enhanced the 26S proteasome activity and the expression of the 20S proteasome. ROF counteracted rotenone-induced endoplasmic reticulum stress, which was demonstrated by its impact on activating transcription factor 6, glucose-regulated protein 78, and C/EBP homologous protein levels. Moreover, ROF averted rotenone-induced oxidative stress, as evidenced by its effects on the levels of nuclear factor erythroid 2-related factor 2, heme oxygenase-1, reduced glutathione, and lipid peroxides with a significant anti-apoptotic activity. Collectively, this study implies repurposing of ROF as a novel neuroprotective drug owning to its ability to restore normal protein homeostasis.
Collapse
Affiliation(s)
- Mahmoud A Desouky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt
| | - Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt
| | - Haidy E Michel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt.
| | - Doaa A Elsherbiny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt
| |
Collapse
|
121
|
Vilaboa N, Lopez JA, de Mesa M, Escudero-Duch C, Winfield N, Bayford M, Voellmy R. Disruption of Proteostasis by Natural Products and Synthetic Compounds That Induce Pervasive Unfolding of Proteins: Therapeutic Implications. Pharmaceuticals (Basel) 2023; 16:ph16040616. [PMID: 37111374 PMCID: PMC10145903 DOI: 10.3390/ph16040616] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Exposure of many cancer cells, including multiple myeloma cells, to cytotoxic concentrations of natural products celastrol and withaferin A or synthetic compounds of the IHSF series resulted in denaturation of a luciferase reporter protein. Proteomic analysis of detergent-insoluble extract fractions from HeLa-derived cells revealed that withaferin A, IHSF058 and IHSF115 caused denaturation of 915, 722 and 991 of 5132 detected cellular proteins, respectively, of which 440 were targeted by all three compounds. Western blots showed that important fractions of these proteins, in some cases approaching half of total protein amounts, unfolded. Relatively indiscriminate covalent modification of target proteins was observed; 1178 different proteins were modified by IHSF058. Further illustrating the depth of the induced proteostasis crisis, only 13% of these proteins detectably aggregated, and 79% of the proteins that aggregated were not targets of covalent modification. Numerous proteostasis network components were modified and/or found in aggregates. Proteostasis disruption caused by the study compounds may be more profound than that mediated by proteasome inhibitors. The compounds act by a different mechanism that may be less susceptible to resistance development. Multiple myeloma cells were particularly sensitive to the compounds. Development of an additional proteostasis-disrupting therapy of multiple myeloma is suggested.
Collapse
Affiliation(s)
- Nuria Vilaboa
- Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain
- CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, 28046 Madrid, Spain
| | - Juan Antonio Lopez
- Centro Nacional de Investigaciones Cardiovasculares, CNIC, 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, CIBERCV, 28029 Madrid, Spain
| | - Marco de Mesa
- Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain
| | - Clara Escudero-Duch
- Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain
- CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, 28046 Madrid, Spain
| | - Natalie Winfield
- Domainex Ltd., Chesterford Research Park, Little Chesterford, Essex, Saffron Walden CB10 1XL, UK
| | - Melanie Bayford
- Domainex Ltd., Chesterford Research Park, Little Chesterford, Essex, Saffron Walden CB10 1XL, UK
| | | |
Collapse
|
122
|
Limke A, Scharpf I, Blesing F, von Mikecz A. Tire components, age and temperature accelerate neurodegeneration in C. elegans models of Alzheimer's and Parkinson's disease. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 328:121660. [PMID: 37080524 DOI: 10.1016/j.envpol.2023.121660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/12/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Increasingly, traffic-related air pollution is linked with Alzheimer's disease, Parkinson's disease and other neurodegenerative conditions. The molecular pathways underlying the epidemiologic observations are unknown. In this study, models of neurodegenerative disorders in the nematode Caenorhabditis elegans were used to investigate effects of the tire wear component nano silica. Life span-resolved exposition of reporter strain GRU102 that expresses the Alzheimer's peptide amyloid beta1-42 with silica nanoparticles significantly reduced locomotory fitness in middle-aged nematodes. A specific vulnerability of 10-day-old nematodes was identified in GRU102 cultivated at ambient temperatures of 15 and 20 °C. Reduction of locomotory fitness was corroborated in the Parkinson's disease model BZ555. Nano silica from different sources, including genuine tire components, accelerated the neurodegeneration of dopaminergic neurons in BZ555 nematodes. Dendritic beading was observed in single PDE neurons along the lateral side of the posterior body. In both, the Alzheimer's disease model GRU102 and the Parkinson's disease model BZ555 increased age and the non-chemical exposome factor temperature aggravated nano silica-induced neurodegeneration. Middle-aged cohorts were defined as the most vulnerable age-group. The results suggest C. elegans disease models as a platform to elucidate the relationships between neurodegeneration, age and the environmental factor ambient temperature after exposition with defined components of non-exhaust emissions or sampled urban aerosols.
Collapse
Affiliation(s)
- Annette Limke
- IUF - Leibniz Research Institute of Environmental Medicine GmbH, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Inge Scharpf
- IUF - Leibniz Research Institute of Environmental Medicine GmbH, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Fabienne Blesing
- IUF - Leibniz Research Institute of Environmental Medicine GmbH, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Anna von Mikecz
- IUF - Leibniz Research Institute of Environmental Medicine GmbH, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany.
| |
Collapse
|
123
|
Yalçin Z, Koot D, Bezstarosti K, Salas-Lloret D, Bleijerveld OB, Boersma V, Falcone M, González-Prieto R, Altelaar M, Demmers JAA, Jacobs JJL. Ubiquitinome profiling reveals in vivo UBE2D3 targets and implicates UBE2D3 in protein quality control. Mol Cell Proteomics 2023; 22:100548. [PMID: 37059365 DOI: 10.1016/j.mcpro.2023.100548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/16/2023] Open
Abstract
Ubiquitination has crucial roles in many cellular processes and dysregulation of ubiquitin machinery enzymes can result in various forms of pathogenesis. Cells only have a limited set of ubiquitin-conjugating (E2) enzymes to support the ubiquitination of many cellular targets. As individual E2 enzymes have many different substrates and interactions between E2 enzymes and their substrates can be transient, it is challenging to define all in vivo substrates of an individual E2 and the cellular processes it affects. Particularly challenging in this respect is UBE2D3, an E2 enzyme with promiscuous activity in vitro but less defined roles in vivo. Here, we set out to identify in vivo targets of UBE2D3 by using SILAC-based and label-free quantitative ubiquitin diGly proteomics to study global proteome and ubiquitinome changes associated with UBE2D3 depletion. UBE2D3 depletion changed the global proteome, with the levels of proteins from metabolic pathways, in particular retinol metabolism, being the most affected. However, the impact of UBE2D3 depletion on the ubiquitinome was much more prominent. Interestingly, molecular pathways related to mRNA translation were the most affected. Indeed, we find that ubiquitination of the ribosomal proteins RPS10 and RPS20, critical for ribosome-associated protein quality control (RQC), is dependent on UBE2D3. We show by TULIP2 methodology that RPS10 and RPS20 are direct targets of UBE2D3 and demonstrate that UBE2D3's catalytic activity is required to ubiquitinate RPS10 in vivo. In addition, our data suggest that UBE2D3 acts at multiple levels in autophagic protein quality control (PQC). Collectively, our findings show that depletion of an E2 enzyme in combination with quantitative diGly-based ubiquitinome profiling is a powerful tool to identify new in vivo E2 substrates, as we have done here for UBE2D3. Our work provides an important resource for further studies on the in vivo functions of UBE2D3.
Collapse
Affiliation(s)
- Zeliha Yalçin
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daniëlle Koot
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Karel Bezstarosti
- Proteomics Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Daniel Salas-Lloret
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Onno B Bleijerveld
- Proteomics Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Vera Boersma
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Mattia Falcone
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Román González-Prieto
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands; Genome Proteomics Laboratory, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Seville, Seville, Spain; Department of Cell Biology, University of Seville, Seville, Spain
| | - Maarten Altelaar
- Proteomics Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, and Netherlands Proteomics Center, Utrecht, The Netherlands
| | | | - Jacqueline J L Jacobs
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
124
|
Kelm JM, Pandey DS, Malin E, Kansou H, Arora S, Kumar R, Gavande NS. PROTAC'ing oncoproteins: targeted protein degradation for cancer therapy. Mol Cancer 2023; 22:62. [PMID: 36991452 PMCID: PMC10061819 DOI: 10.1186/s12943-022-01707-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/23/2022] [Indexed: 03/31/2023] Open
Abstract
Molecularly targeted cancer therapies substantially improve patient outcomes, although the durability of their effectiveness can be limited. Resistance to these therapies is often related to adaptive changes in the target oncoprotein which reduce binding affinity. The arsenal of targeted cancer therapies, moreover, lacks coverage of several notorious oncoproteins with challenging features for inhibitor development. Degraders are a relatively new therapeutic modality which deplete the target protein by hijacking the cellular protein destruction machinery. Degraders offer several advantages for cancer therapy including resiliency to acquired mutations in the target protein, enhanced selectivity, lower dosing requirements, and the potential to abrogate oncogenic transcription factors and scaffolding proteins. Herein, we review the development of proteolysis targeting chimeras (PROTACs) for selected cancer therapy targets and their reported biological activities. The medicinal chemistry of PROTAC design has been a challenging area of active research, but the recent advances in the field will usher in an era of rational degrader design.
Collapse
Affiliation(s)
- Jeremy M Kelm
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences (EACPHS), Wayne State University, Detroit, MI, 48201, USA
| | - Deepti S Pandey
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences (EACPHS), Wayne State University, Detroit, MI, 48201, USA
| | - Evan Malin
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences (EACPHS), Wayne State University, Detroit, MI, 48201, USA
| | - Hussein Kansou
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences (EACPHS), Wayne State University, Detroit, MI, 48201, USA
| | - Sahil Arora
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Raj Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Navnath S Gavande
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences (EACPHS), Wayne State University, Detroit, MI, 48201, USA.
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
125
|
Tomihari A, Kiyota M, Matsuura A, Itakura E. Alpha 2-macroglobulin acts as a clearance factor in the lysosomal degradation of extracellular misfolded proteins. Sci Rep 2023; 13:4680. [PMID: 36977730 PMCID: PMC10050189 DOI: 10.1038/s41598-023-31104-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Proteostasis regulates protein folding and degradation; its maintenance is essential for resistance to stress and aging. The loss of proteostasis is associated with many age-related diseases. Within the cell, molecular chaperones facilitate the refolding of misfolded proteins into their bioactive forms, thus preventing undesirable interactions and aggregation. Although the mechanisms of intracellular protein degradation pathways for intracellular misfolded proteins have been extensively studied, the protein degradation pathway for extracellular proteins remain poorly understood. In this study, we identified several misfolded proteins that are substrates for alpha 2-macroglobulin (α2M), an extracellular chaperone. We also established a lysosomal internalization assay for α2M, which revealed that α2M mediates the lysosomal degradation of extracellular misfolded proteins. Comparative analyses of α2M and clusterin, another extracellular chaperone, indicated that α2M preferentially targets aggregation-prone proteins. Thus, we present the degradation pathway of α2M, which interacts with aggregation-prone proteins for lysosomal degradation via selective internalization.
Collapse
Affiliation(s)
- Ayaka Tomihari
- Department of Biology, Graduate School of Science and Engineering, Chiba University, Inage-Ku, Chiba, 263-8522, Japan
| | - Mako Kiyota
- Department of Biology, Graduate School of Science and Engineering, Chiba University, Inage-Ku, Chiba, 263-8522, Japan
| | - Akira Matsuura
- Department of Biology, Graduate School of Science, Chiba University, Inage-Ku, Chiba, 263-8522, Japan
| | - Eisuke Itakura
- Department of Biology, Graduate School of Science, Chiba University, Inage-Ku, Chiba, 263-8522, Japan.
| |
Collapse
|
126
|
De Pablo-Moreno JA, Miguel-Batuecas A, de Sancha M, Liras A. The Magic of Proteases: From a Procoagulant and Anticoagulant Factor V to an Equitable Treatment of Its Inherited Deficiency. Int J Mol Sci 2023; 24:ijms24076243. [PMID: 37047215 PMCID: PMC10093859 DOI: 10.3390/ijms24076243] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Proteostasis, i.e., the homeostasis of proteins, responsible for ensuring protein turnover, is regulated by proteases, which also participate in the etiopathogenesis of multiple conditions. The magic of proteases is such that, in blood coagulation, one same molecule, such as coagulation factor V, for example, can perform both a procoagulant and an anticoagulant function as a result of the activity of proteases. However, this magic has an insidious side to it, as it may also prevent the completion of the clinical value chain of factor V deficiency. This value chain encompasses the discovery of knowledge, the transfer of this knowledge, and its translation to clinical practice. In the case of rare and ultra-rare diseases like factor V deficiency, this value chain has not been completed as the knowledge acquisition phase has dragged out over time, holding up the transfer of knowledge to clinical practice. The reason for this is related to the small number of patients afflicted with these conditions. As a result, new indications must be found to make the therapies cost-effective. In the case of factor V, significant research efforts have been directed at developing a recombinant factor V capable of resisting the action of the proteases capable of inactivating this factor. This is where bioethics and health equity considerations come into the equation.
Collapse
|
127
|
Ji S, Xiong M, Chen H, Liu Y, Zhou L, Hong Y, Wang M, Wang C, Fu X, Sun X. Cellular rejuvenation: molecular mechanisms and potential therapeutic interventions for diseases. Signal Transduct Target Ther 2023; 8:116. [PMID: 36918530 PMCID: PMC10015098 DOI: 10.1038/s41392-023-01343-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/16/2022] [Accepted: 01/19/2023] [Indexed: 03/16/2023] Open
Abstract
The ageing process is a systemic decline from cellular dysfunction to organ degeneration, with more predisposition to deteriorated disorders. Rejuvenation refers to giving aged cells or organisms more youthful characteristics through various techniques, such as cellular reprogramming and epigenetic regulation. The great leaps in cellular rejuvenation prove that ageing is not a one-way street, and many rejuvenative interventions have emerged to delay and even reverse the ageing process. Defining the mechanism by which roadblocks and signaling inputs influence complex ageing programs is essential for understanding and developing rejuvenative strategies. Here, we discuss the intrinsic and extrinsic factors that counteract cell rejuvenation, and the targeted cells and core mechanisms involved in this process. Then, we critically summarize the latest advances in state-of-art strategies of cellular rejuvenation. Various rejuvenation methods also provide insights for treating specific ageing-related diseases, including cellular reprogramming, the removal of senescence cells (SCs) and suppression of senescence-associated secretory phenotype (SASP), metabolic manipulation, stem cells-associated therapy, dietary restriction, immune rejuvenation and heterochronic transplantation, etc. The potential applications of rejuvenation therapy also extend to cancer treatment. Finally, we analyze in detail the therapeutic opportunities and challenges of rejuvenation technology. Deciphering rejuvenation interventions will provide further insights into anti-ageing and ageing-related disease treatment in clinical settings.
Collapse
Affiliation(s)
- Shuaifei Ji
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Mingchen Xiong
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Huating Chen
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Yiqiong Liu
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Laixian Zhou
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Yiyue Hong
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Mengyang Wang
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078, Macau SAR, China.
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China.
| | - Xiaoyan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China.
| |
Collapse
|
128
|
Pereira QC, dos Santos TW, Fortunato IM, Ribeiro ML. The Molecular Mechanism of Polyphenols in the Regulation of Ageing Hallmarks. Int J Mol Sci 2023; 24:ijms24065508. [PMID: 36982583 PMCID: PMC10049696 DOI: 10.3390/ijms24065508] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 03/16/2023] Open
Abstract
Ageing is a complex process characterized mainly by a decline in the function of cells, tissues, and organs, resulting in an increased risk of mortality. This process involves several changes, described as hallmarks of ageing, which include genomic instability, telomere attrition, epigenetic changes, loss of proteostasis, dysregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell depletion, and altered intracellular communication. The determining role that environmental factors such as diet and lifestyle play on health, life expectancy, and susceptibility to diseases, including cancer and neurodegenerative diseases, is wellestablished. In view of the growing interest in the beneficial effects of phytochemicals in the prevention of chronic diseases, several studies have been conducted, and they strongly suggest that the intake of dietary polyphenols may bring numerous benefits due to their antioxidant and anti-inflammatory properties, and their intake has been associated with impaired ageing in humans. Polyphenol intake has been shown to be effective in ameliorating several age-related phenotypes, including oxidative stress, inflammatory processes, impaired proteostasis, and cellular senescence, among other features, which contribute to an increased risk of ageing-associated diseases. This review aims to address, in a general way, the main findings described in the literature about the benefits of polyphenols in each of the hallmarks of ageing, as well as the main regulatory mechanisms responsible for the observed antiageing effects.
Collapse
Affiliation(s)
- Quélita Cristina Pereira
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University Medical School, Braganca Paulista 12916-900, SP, Brazil
| | - Tanila Wood dos Santos
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University Medical School, Braganca Paulista 12916-900, SP, Brazil
| | - Isabela Monique Fortunato
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University Medical School, Braganca Paulista 12916-900, SP, Brazil
| | - Marcelo Lima Ribeiro
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University Medical School, Braganca Paulista 12916-900, SP, Brazil
- Lymphoma Translational Group, Josep Carreras Leukemia Research Institute, 08916 Badalona, Spain
- Correspondence:
| |
Collapse
|
129
|
Göricke F, Vu V, Smith L, Scheib U, Böhm R, Akkilic N, Wohlfahrt G, Weiske J, Bömer U, Brzezinka K, Lindner N, Lienau P, Gradl S, Beck H, Brown PJ, Santhakumar V, Vedadi M, Barsyte-Lovejoy D, Arrowsmith CH, Schmees N, Petersen K. Discovery and Characterization of BAY-805, a Potent and Selective Inhibitor of Ubiquitin-Specific Protease USP21. J Med Chem 2023; 66:3431-3447. [PMID: 36802665 PMCID: PMC10009755 DOI: 10.1021/acs.jmedchem.2c01933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
USP21 belongs to the ubiquitin-specific protease (USP) subfamily of deubiquitinating enzymes (DUBs). Due to its relevance in tumor development and growth, USP21 has been reported as a promising novel therapeutic target for cancer treatment. Herein, we present the discovery of the first highly potent and selective USP21 inhibitor. Following high-throughput screening and subsequent structure-based optimization, we identified BAY-805 to be a non-covalent inhibitor with low nanomolar affinity for USP21 and high selectivity over other DUB targets as well as kinases, proteases, and other common off-targets. Furthermore, surface plasmon resonance (SPR) and cellular thermal shift assays (CETSA) demonstrated high-affinity target engagement of BAY-805, resulting in strong NF-κB activation in a cell-based reporter assay. To the best of our knowledge, BAY-805 is the first potent and selective USP21 inhibitor and represents a valuable high-quality in vitro chemical probe to further explore the complex biology of USP21.
Collapse
Affiliation(s)
- Fabian Göricke
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Victoria Vu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Leanna Smith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Ulrike Scheib
- Nuvisan Innovation Campus Berlin, 13353 Berlin, Germany
| | - Raphael Böhm
- Nuvisan Innovation Campus Berlin, 13353 Berlin, Germany
| | - Namik Akkilic
- Nuvisan Innovation Campus Berlin, 13353 Berlin, Germany
| | - Gerd Wohlfahrt
- Research & Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| | - Jörg Weiske
- Nuvisan Innovation Campus Berlin, 13353 Berlin, Germany
| | - Ulf Bömer
- Nuvisan Innovation Campus Berlin, 13353 Berlin, Germany
| | | | - Niels Lindner
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Philip Lienau
- Research & Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| | - Stefan Gradl
- Research & Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| | - Hartmut Beck
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Peter J Brown
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | | | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | | | - Kirstin Petersen
- Research & Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| |
Collapse
|
130
|
Aging Hallmarks and the Role of Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12030651. [PMID: 36978899 PMCID: PMC10044767 DOI: 10.3390/antiox12030651] [Citation(s) in RCA: 75] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Aging is a complex biological process accompanied by a progressive decline in the physical function of the organism and an increased risk of age-related chronic diseases such as cardiovascular diseases, cancer, and neurodegenerative diseases. Studies have established that there exist nine hallmarks of the aging process, including (i) telomere shortening, (ii) genomic instability, (iii) epigenetic modifications, (iv) mitochondrial dysfunction, (v) loss of proteostasis, (vi) dysregulated nutrient sensing, (vii) stem cell exhaustion, (viii) cellular senescence, and (ix) altered cellular communication. All these alterations have been linked to sustained systemic inflammation, and these mechanisms contribute to the aging process in timing not clearly determined yet. Nevertheless, mitochondrial dysfunction is one of the most important mechanisms contributing to the aging process. Mitochondria is the primary endogenous source of reactive oxygen species (ROS). During the aging process, there is a decline in ATP production and elevated ROS production together with a decline in the antioxidant defense. Elevated ROS levels can cause oxidative stress and severe damage to the cell, organelle membranes, DNA, lipids, and proteins. This damage contributes to the aging phenotype. In this review, we summarize recent advances in the mechanisms of aging with an emphasis on mitochondrial dysfunction and ROS production.
Collapse
|
131
|
Caulfield ME, Vander Werp MJ, Stancati JA, Collier TJ, Sortwell CE, Sandoval IM, Manfredsson FP, Steece-Collier K. Downregulation of striatal CaV1.3 inhibits the escalation of levodopa-induced dyskinesia in male and female parkinsonian rats of advanced age. Neurobiol Dis 2023; 181:106111. [PMID: 37001610 DOI: 10.1016/j.nbd.2023.106111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
In the past 25 years, the prevalence of Parkinson's disease (PD) has nearly doubled. Age remains the primary risk factor for PD and as the global aging population increases this trend is predicted to continue. Even when treated with levodopa, the gold standard dopamine (DA) replacement therapy, individuals with PD frequently develop therapeutic side effects. Levodopa-induced dyskinesia (LID), a common side effect of long-term levodopa use, represents a significant unmet clinical need in the treatment of PD. Previously, in young adult (3-month-old) male parkinsonian rats, we demonstrated that the silencing of CaV1.3 (Cacan1d) L-type voltage-gated calcium channels via striatal delivery of rAAV-CaV1.3-shRNA provides uniform protection against the induction of LID, and significant reduction of established severe LID. With the goal of more closely replicating a clinical demographic, the current study examined the effects of CaV1.3-targeted gene therapy on LID escalation in male and female parkinsonian rats of advanced age (18-month-old at study completion). We tested the hypothesis that silencing aberrant CaV1.3 channel activity in the parkinsonian striatum would prevent moderate to severe dyskinesia with levodopa dose escalation. To test this hypothesis, 15-month-old male and female F344 rats were rendered unilaterally parkinsonian and primed with low-dose (3-4 mg/kg) levodopa. Following the establishment of stable, mild dyskinesias, rats received an intrastriatal injection of either the Cacna1d-specific rAAV-CaV1.3-shRNA vector (CAV-shRNA), or the scramble control rAAV-SCR-shRNA vector (SCR-shRNA). Daily (M-Fr) low-dose levodopa was maintained for 4 weeks during the vector transduction and gene silencing window followed by escalation to 6 mg/kg, then to 12 mg/kg levodopa. SCR-shRNA-shRNA rats showed stable LID expression with low-dose levodopa and the predicted escalation of LID severity with increased levodopa doses. Conversely, complex behavioral responses were observed in aged rats receiving CAV-shRNA, with approximately half of the male and female subjects-therapeutic 'Responders'-demonstrating protection against LID escalation, while the remaining half-therapeutic 'Non-Responders'-showed LID escalation similar to SCR-shRNA rats. Post-mortem histological analyses revealed individual variability in the detection of Cacna1d regulation in the DA-depleted striatum of aged rats. However, taken together, male and female therapeutic 'Responder' rats receiving CAV-shRNA had significantly less striatal Cacna1d in their vector-injected striatum relative to contralateral striatum than those with SCR-shRNA. The current data suggest that mRNA-level silencing of striatal CaV1.3 channels maintains potency in a clinically relevant in vivo scenario by preventing dose-dependent dyskinesia escalation in rats of advanced age. As compared to the uniform response previously reported in young male rats, there was notable variability between individual aged rats, particularly females, in the current study. Future investigations are needed to derive the sex-specific and age-related mechanisms which underlie variable responses to gene therapy and to elucidate factors which determine the therapeutic efficacy of treatment for PD.
Collapse
|
132
|
Feitosa WB, Morris PL. Post-ovulatory aging is associated with altered patterns for small ubiquitin-like modifier (SUMO) proteins and SUMO-specific proteases. FASEB J 2023; 37:e22816. [PMID: 36826436 DOI: 10.1096/fj.202200622r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/25/2023]
Abstract
Mammalian oocytes are ovulated arrested at metaphase of the second meiotic division. If they are not fertilized within a short period, the oocyte undergoes several progressive morphological, structural, and molecular changes during a process called oocyte aging. Herein, we focused on those functional events associated with proper cytoskeleton organization and those that correlate with spindle displacement and chromosome misalignment or scatter. Post-translational modifications by Small Ubiquitin-like Modifier (SUMO) proteins are involved in spindle organization and here we demonstrate that the SUMO pathway is involved in spindle morphology changes and chromosome movements during oocyte aging. SUMO-2/3 as well as the SUMO-specific proteases SENP-2 localization are affected by postovulatory aging in vitro. Consistent with these findings, UBC9 decreases during oocyte aging while differential ubiquitination patterns also correlate with in vitro oocyte aging. These results are consistent with postovulatory aging-related alterations in the posttranslational modifications of the spindle apparatus by SUMO and its SENP proteases. These findings are suggestive that such age-related changes in SUMOylation and the deSUMOylation of key target proteins in the spindle apparatus and kinetochore may be involved with spindle and chromosome alignment defects during mammalian oocyte postovulatory aging. Such findings may have implications for ART-related human oocyte aging in vitro regarding the activities of the SUMO pathway and fertilization success.
Collapse
Affiliation(s)
| | - Patricia L Morris
- Center for Biomedical Research, Population Council, New York, New York, USA.,The Rockefeller University, New York, New York, USA
| |
Collapse
|
133
|
Cozachenco D, Ribeiro FC, Ferreira ST. Defective proteostasis in Alzheimer's disease. Ageing Res Rev 2023; 85:101862. [PMID: 36693451 DOI: 10.1016/j.arr.2023.101862] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
The homeostasis of cellular proteins, or proteostasis, is critical for neuronal function and for brain processes, including learning and memory. Increasing evidence indicates that defective proteostasis contributes to the progression of neurodegenerative disorders, including Alzheimer's disease (AD), the most prevalent form of dementia in the elderly. Proteostasis comprises a set of cellular mechanisms that control protein synthesis, folding, post-translational modification and degradation, all of which are deregulated in AD. Importantly, deregulation of proteostasis plays a key role in synapse dysfunction and in memory impairment, the major clinical manifestation of AD. Here, we discuss molecular pathways involved in protein synthesis and degradation that are altered in AD, and possible pharmacological approaches to correct these defects.
Collapse
Affiliation(s)
- Danielle Cozachenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Felipe C Ribeiro
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
134
|
Szewczyk B, Günther R, Japtok J, Frech MJ, Naumann M, Lee HO, Hermann A. FUS ALS neurons activate major stress pathways and reduce translation as an early protective mechanism against neurodegeneration. Cell Rep 2023; 42:112025. [PMID: 36696267 DOI: 10.1016/j.celrep.2023.112025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/02/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder causing progressive loss of motor neurons. Mutations in Fused in sarcoma (FUS) leading to its cytoplasmic mislocalization cause a subset of ALS. Under stress, mutant FUS localizes to stress granules (SGs)-cytoplasmic condensates composed of RNA and various proteins. Aberrant dynamics of SGs is linked to the pathology of ALS. Here, using motor neurons (MNs) derived from human induced pluripotent stem cells, we show that, in mutant FUS, MN dynamics of SGs is disturbed. Additionally, heat-shock response (HSR) and integrated stress response (ISR) involved in the regulation of SGs are upregulated in mutant MNs. HSR activation correlates with the amount of cytoplasmic FUS mislocalization. While inhibition of SG formation, translation, or ISR does not influence survival of FUS ALS neurons, proteotoxicity that cannot be compensated with the activation of stress pathways is the main driver of neurodegeneration in early FUS ALS.
Collapse
Affiliation(s)
- Barbara Szewczyk
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - René Günther
- Department of Neurology, Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Dresden, Dresden, Germany
| | - Julia Japtok
- Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Moritz J Frech
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - Marcel Naumann
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - Hyun O Lee
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Andreas Hermann
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, Rostock, Germany; Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, Rostock, Germany.
| |
Collapse
|
135
|
Merjane J, Chung R, Patani R, Lisowski L. Molecular mechanisms of amyotrophic lateral sclerosis as broad therapeutic targets for gene therapy applications utilizing adeno-associated viral vectors. Med Res Rev 2023. [PMID: 36786126 DOI: 10.1002/med.21937] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 08/19/2022] [Accepted: 02/02/2023] [Indexed: 02/15/2023]
Abstract
Despite the devastating clinical outcome of the neurodegenerative disease, amyotrophic lateral sclerosis (ALS), its etiology remains mysterious. Approximately 90% of ALS is characterized as sporadic, signifying that the patient has no family history of the disease. The development of an impactful disease modifying therapy across the ALS spectrum has remained out of grasp, largely due to the poorly understood mechanisms of disease onset and progression. Currently, ALS is invariably fatal and rapidly progressive. It is hypothesized that multiple factors can lead to the development of ALS, however, treatments are often focused on targeting specific familial forms of the disease (10% of total cases). There is a strong need to develop disease modifying treatments for ALS that can be effective across the full ALS spectrum of familial and sporadic cases. Although the onset of disease varies significantly between patients, there are general disease mechanisms and progressions that can be seen broadly across ALS patients. Therefore, this review explores the targeting of these widespread disease mechanisms as possible areas for therapeutic intervention to treat ALS broadly. In particular, this review will focus on targeting mechanisms of defective protein homeostasis and RNA processing, which are both increasingly recognized as design principles of ALS pathogenesis. Additionally, this review will explore the benefits of gene therapy as an approach to treating ALS, specifically focusing on the use of adeno-associated virus (AAV) as a vector for gene delivery to the CNS and recent advances in the field.
Collapse
Affiliation(s)
- Jessica Merjane
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
| | - Roger Chung
- Department of Biomedical Sciences, Centre for Motor Neuron Disease Research, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Rickie Patani
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK.,The Francis Crick Institute, London, UK
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia.,Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| |
Collapse
|
136
|
Cassano T, Giamogante F, Calcagnini S, Romano A, Lavecchia AM, Inglese F, Paglia G, Bukke VN, Romano AD, Friuli M, Altieri F, Gaetani S. PDIA3 Expression Is Altered in the Limbic Brain Regions of Triple-Transgenic Mouse Model of Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24033005. [PMID: 36769334 PMCID: PMC9918299 DOI: 10.3390/ijms24033005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
In the present study, we used a mouse model of Alzheimer's disease (AD) (3×Tg-AD mice) to longitudinally analyse the expression level of PDIA3, a protein disulfide isomerase and endoplasmic reticulum (ER) chaperone, in selected brain limbic areas strongly affected by AD-pathology (amygdala, entorhinal cortex, dorsal and ventral hippocampus). Our results suggest that, while in Non-Tg mice PDIA3 levels gradually reduce with aging in all brain regions analyzed, 3×Tg-AD mice showed an age-dependent increase in PDIA3 levels in the amygdala, entorhinal cortex, and ventral hippocampus. A significant reduction of PDIA3 was observed in 3×Tg-AD mice already at 6 months of age, as compared to age-matched Non-Tg mice. A comparative immunohistochemistry analysis performed on 3×Tg-AD mice at 6 (mild AD-like pathology) and 18 (severe AD-like pathology) months of age showed a direct correlation between the cellular level of Aβ and PDIA3 proteins in all the brain regions analysed, even if with different magnitudes. Additionally, an immunohistochemistry analysis showed the presence of PDIA3 in all post-mitotic neurons and astrocytes. Overall, altered PDIA3 levels appear to be age- and/or pathology-dependent, corroborating the ER chaperone's involvement in AD pathology, and supporting the PDIA3 protein as a potential novel therapeutic target for the treatment of AD.
Collapse
Affiliation(s)
- Tommaso Cassano
- Department of Medical and Surgical Sciences, University of Foggia, Via L. Pinto 1, 71122 Foggia, Italy
| | - Flavia Giamogante
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Silvio Calcagnini
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Adele Romano
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Angelo Michele Lavecchia
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Francesca Inglese
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Giuliano Paglia
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Vidyasagar Naik Bukke
- Department of Medical and Surgical Sciences, University of Foggia, Via L. Pinto 1, 71122 Foggia, Italy
| | - Antonino Davide Romano
- Department of Medical and Surgical Sciences, University of Foggia, Via L. Pinto 1, 71122 Foggia, Italy
| | - Marzia Friuli
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Fabio Altieri
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
- Correspondence:
| | - Silvana Gaetani
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
137
|
Distinctive chaperonopathy in skeletal muscle associated with the dominant variant in DNAJB4. Acta Neuropathol 2023; 145:235-255. [PMID: 36512060 DOI: 10.1007/s00401-022-02530-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/15/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
DnaJ homolog, subfamily B, member 4, a member of the heat shock protein 40 chaperones encoded by DNAJB4, is highly expressed in myofibers. We identified a heterozygous c.270 T > A (p.F90L) variant in DNAJB4 in a family with a dominantly inherited distal myopathy, in which affected members have specific features on muscle pathology represented by the presence of cytoplasmic inclusions and the accumulation of desmin, p62, HSP70, and DNAJB4 predominantly in type 1 fibers. Both Dnajb4F90L knockin and knockout mice developed muscle weakness and recapitulated the patient muscle pathology in the soleus muscle, where DNAJB4 has the highest expression. These data indicate that the identified variant is causative, resulting in defective chaperone function and selective muscle degeneration in specific muscle fibers. This study demonstrates the importance of DNAJB4 in skeletal muscle proteostasis by identifying the associated chaperonopathy.
Collapse
|
138
|
Jiao J, Curley M, Graca FA, Robles-Murguia M, Shirinifard A, Finkelstein D, Xu B, Fan Y, Demontis F. Modulation of protease expression by the transcription factor Ptx1/PITX regulates protein quality control during aging. Cell Rep 2023; 42:111970. [PMID: 36640359 PMCID: PMC9933915 DOI: 10.1016/j.celrep.2022.111970] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/31/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Protein quality control is important for healthy aging and is dysregulated in age-related diseases. The autophagy-lysosome and ubiquitin-proteasome are key for proteostasis, but it remains largely unknown whether other proteolytic systems also contribute to maintain proteostasis during aging. Here, we find that expression of proteolytic enzymes (proteases/peptidases) distinct from the autophagy-lysosome and ubiquitin-proteasome systems declines during skeletal muscle aging in Drosophila. Age-dependent protease downregulation undermines proteostasis, as demonstrated by the increase in detergent-insoluble poly-ubiquitinated proteins and pathogenic huntingtin-polyQ levels in response to protease knockdown. Computational analyses identify the transcription factor Ptx1 (homologous to human PITX1/2/3) as a regulator of protease expression. Consistent with this model, Ptx1 protein levels increase with aging, and Ptx1 RNAi counteracts the age-associated downregulation of protease expression. Moreover, Ptx1 RNAi improves muscle protein quality control in a protease-dependent manner and extends lifespan. These findings indicate that proteases and their transcriptional modulator Ptx1 ensure proteostasis during aging.
Collapse
Affiliation(s)
- Jianqin Jiao
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Michelle Curley
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Flavia A. Graca
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Maricela Robles-Murguia
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Abbas Shirinifard
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Beisi Xu
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yiping Fan
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Fabio Demontis
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
139
|
Sun S, Wang C, Zhao P, Kline GM, Grandjean JMD, Jiang X, Labaudiniere R, Wiseman RL, Kelly JW, Balch WE. Capturing the conversion of the pathogenic alpha-1-antitrypsin fold by ATF6 enhanced proteostasis. Cell Chem Biol 2023; 30:22-42.e5. [PMID: 36630963 PMCID: PMC9930901 DOI: 10.1016/j.chembiol.2022.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/07/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023]
Abstract
Genetic variation in alpha-1 antitrypsin (AAT) causes AAT deficiency (AATD) through liver aggregation-associated gain-of-toxic pathology and/or insufficient AAT activity in the lung manifesting as chronic obstructive pulmonary disease (COPD). Here, we utilize 71 AATD-associated variants as input through Gaussian process (GP)-based machine learning to study the correction of AAT folding and function at a residue-by-residue level by pharmacological activation of the ATF6 arm of the unfolded protein response (UPR). We show that ATF6 activators increase AAT neutrophil elastase (NE) inhibitory activity, while reducing polymer accumulation for the majority of AATD variants, including the prominent Z variant. GP-based profiling of the residue-by-residue response to ATF6 activators captures an unexpected role of the "gate" area in managing AAT-specific activity. Our work establishes a new spatial covariant (SCV) understanding of the convertible state of the protein fold in response to genetic perturbation and active environmental management by proteostasis enhancement for precision medicine.
Collapse
Affiliation(s)
- Shuhong Sun
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Chao Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Pei Zhao
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Gabe M Kline
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Xin Jiang
- Protego Biopharma, 10945 Vista Sorrento Parkway, San Diego, CA, USA
| | | | - R Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Jeffery W Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - William E Balch
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
140
|
Benoit I, Burty-Valin E, Radman M. A Proteome-Centric View of Ageing, including that of the Skin and Age-Related Diseases: Considerations of a Common Cause and Common Preventative and Curative Interventions. CLINICAL, COSMETIC AND INVESTIGATIONAL DERMATOLOGY 2023; 16:79-85. [PMID: 36660191 PMCID: PMC9842513 DOI: 10.2147/ccid.s397751] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
The proteome comprises all proteins of a cell or organism. To carry their catalytic and structure-related functions, proteins must be correctly folded into their unique native three-dimensional structures. Common oxidative protein damage affects their functionality by impairing their catalytic and interactive specificities. Oxidative damage occurs preferentially to misfolded proteins and fixes the misfolded state. This review provides an overview of the mechanism and consequences of oxidative proteome damage - specifically irreversible protein carbonylation - in relation to ageing, including that of the skin as well as to age-related degeneration and diseases (ARDD) and their mitigation. A literature review of published manuscripts, available from PubMed, focusing on proteome, proteostasis, proteotoxicity, protein carbonylation, related inflammatory diseases, ARDD and the impact of the damaged proteome on ageing. During ageing, proteome damage, especially protein carbonylation, correlates with biological age. Carbonylated proteins form aggregates which can be considered as markers and accelerators of ageing and are common markers of most ARDD. Protein carbonylation leads to general ageing of the organism and organs including the skin and potentially to diseases including Alzheimer and Parkinson disease, diabetes, psoriasis, and skin cancer. Current research is promising and may open new therapeutic approaches and perspectives by targeting proteome protection as an age and ARDD management strategy.
Collapse
Affiliation(s)
- Isabelle Benoit
- Medical Relations, NAOS-ILS, Aix-en-Provence, France,Correspondence: Isabelle Benoit, NAOS-ILS, Aix-en-Provence, 13593, France, Tel +33442163060, Email
| | | | - Miroslav Radman
- Faculté de Médecine, INSERM U1001, Université R.-Descartes Paris-5, Paris, France,Scientific Affairs, Mediterranean Institute for Life Science, Split, Croatia
| |
Collapse
|
141
|
Bellanger T, Weidmann S. Is the lipochaperone activity of sHSP a key to the stress response encoded in its primary sequence? Cell Stress Chaperones 2023; 28:21-33. [PMID: 36367671 PMCID: PMC9877275 DOI: 10.1007/s12192-022-01308-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
Several strategies have been put in place by organisms to adapt to their environment. One of these strategies is the production of stress proteins such as sHSPs, which have been widely described over the last 30 years for their role as molecular chaperones. Some sHSPs have, in addition, the particularity to exert a lipochaperone role by interacting with membrane lipids to maintain an optimal membrane fluidity. However, the mechanisms involved in this sHSP-lipid interaction remain poorly understood and described rather sporadically in the literature. This review gathers the information concerning the structure and function of these proteins available in the literature in order to highlight the mechanism involved in this interaction. In addition, analysis of primary sequence data of sHSPs available in database shows that sHSPs can interact with lipids via certain amino acid residues present on some β sheets of these proteins. These residues could have a key role in the structure and/or oligomerization dynamics of sHPSs, which is certainly essential for interaction with membrane lipids and consequently for maintaining optimal cell membrane fluidity.
Collapse
Affiliation(s)
- Tiffany Bellanger
- Univ. Bourgogne Franche-comté, AgroSup Dijon, PAM UMR A 02.102, Dijon, France
| | - Stéphanie Weidmann
- Univ. Bourgogne Franche-comté, AgroSup Dijon, PAM UMR A 02.102, Dijon, France
| |
Collapse
|
142
|
Targeting immunoproteasome in neurodegeneration: A glance to the future. Pharmacol Ther 2023; 241:108329. [PMID: 36526014 DOI: 10.1016/j.pharmthera.2022.108329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
The immunoproteasome is a specialized form of proteasome equipped with modified catalytic subunits that was initially discovered to play a pivotal role in MHC class I antigen processing and immune system modulation. However, over the last years, this proteolytic complex has been uncovered to serve additional functions unrelated to antigen presentation. Accordingly, it has been proposed that immunoproteasome synergizes with canonical proteasome in different cell types of the nervous system, regulating neurotransmission, metabolic pathways and adaptation of the cells to redox or inflammatory insults. Hence, studying the alterations of immunoproteasome expression and activity is gaining research interest to define the dynamics of neuroinflammation as well as the early and late molecular events that are likely involved in the pathogenesis of a variety of neurological disorders. Furthermore, these novel functions foster the perspective of immunoproteasome as a potential therapeutic target for neurodegeneration. In this review, we provide a brain and retina-wide overview, trying to correlate present knowledge on structure-function relationships of immunoproteasome with the variety of observed neuro-modulatory functions.
Collapse
|
143
|
Prodromou C, Aran-Guiu X, Oberoi J, Perna L, Chapple JP, van der Spuy J. HSP70-HSP90 Chaperone Networking in Protein-Misfolding Disease. Subcell Biochem 2023; 101:389-425. [PMID: 36520314 DOI: 10.1007/978-3-031-14740-1_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Molecular chaperones and their associated co-chaperones are essential in health and disease as they are key facilitators of protein-folding, quality control and function. In particular, the heat-shock protein (HSP) 70 and HSP90 molecular chaperone networks have been associated with neurodegenerative diseases caused by aberrant protein-folding. The pathogenesis of these disorders usually includes the formation of deposits of misfolded, aggregated protein. HSP70 and HSP90, plus their co-chaperones, have been recognised as potent modulators of misfolded protein toxicity, inclusion formation and cell survival in cellular and animal models of neurodegenerative disease. Moreover, these chaperone machines function not only in folding but also in proteasome-mediated degradation of neurodegenerative disease proteins. This chapter gives an overview of the HSP70 and HSP90 chaperones, and their respective regulatory co-chaperones, and explores how the HSP70 and HSP90 chaperone systems form a larger functional network and its relevance to counteracting neurodegenerative disease associated with misfolded proteins and disruption of proteostasis.
Collapse
Affiliation(s)
| | - Xavi Aran-Guiu
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Jasmeen Oberoi
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Laura Perna
- Centre for Endocrinology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - J Paul Chapple
- Centre for Endocrinology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | | |
Collapse
|
144
|
Angeloni C, Malaguti M, Prata C, Freschi M, Barbalace MC, Hrelia S. Mechanisms Underlying Neurodegenerative Disorders and Potential Neuroprotective Activity of Agrifood By-Products. Antioxidants (Basel) 2022; 12:94. [PMID: 36670956 PMCID: PMC9854890 DOI: 10.3390/antiox12010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 01/03/2023] Open
Abstract
Neurodegenerative diseases, characterized by progressive loss in selected areas of the nervous system, are becoming increasingly prevalent worldwide due to an aging population. Despite their diverse clinical manifestations, neurodegenerative diseases are multifactorial disorders with standard features and mechanisms such as abnormal protein aggregation, mitochondrial dysfunction, oxidative stress and inflammation. As there are no effective treatments to counteract neurodegenerative diseases, increasing interest has been directed to the potential neuroprotective activities of plant-derived compounds found abundantly in food and in agrifood by-products. Food waste has an extremely negative impact on the environment, and recycling is needed to promote their disposal and overcome this problem. Many studies have been carried out to develop green and effective strategies to extract bioactive compounds from food by-products, such as peel, leaves, seeds, bran, kernel, pomace, and oil cake, and to investigate their biological activity. In this review, we focused on the potential neuroprotective activity of agrifood wastes obtained by common products widely produced and consumed in Italy, such as grapes, coffee, tomatoes, olives, chestnuts, onions, apples, and pomegranates.
Collapse
Affiliation(s)
- Cristina Angeloni
- Department for Life Quality Studies, Alma Mater Studiorum–University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy
| | - Marco Malaguti
- Department for Life Quality Studies, Alma Mater Studiorum–University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy
| | - Cecilia Prata
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Michela Freschi
- Department for Life Quality Studies, Alma Mater Studiorum–University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy
| | - Maria Cristina Barbalace
- Department for Life Quality Studies, Alma Mater Studiorum–University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum–University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy
| |
Collapse
|
145
|
Zhu W, Tong Y, Feng Q, Xu F, Pang J. Discovery of Novel Polycyclic Phloroglucinols via an Improved One-Pot Method. ACS OMEGA 2022; 7:47174-47182. [PMID: 36570230 PMCID: PMC9774369 DOI: 10.1021/acsomega.2c06338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
In nature, polycyclic phloroglucinols are a class of compounds with considerable structural diversity and promising biological activities. Herein, we present an improved one-pot method that replaces the solution reaction conditions by mixing the reactants with column chromatography silica gel. Through this convenient, mild, slow, and diversity-oriented strategy, eight structurally unique polycyclic phloroglucinols were discovered, of which compound 1 possesses a rare cage-like skeleton. All compounds determined their structures by X-ray diffraction. Compared with traditional methods, this synthetic strategy produced better diversity and unique structures under milder conditions, suggesting that this method has great potential in lead compound discovery. The optimal reaction conditions were determined by high-performance liquid chromatography (HPLC) monitoring over time. In addition, density functional theory (DFT) calculations were performed to investigate the possible generative pathway of compound 1. We also examined the neuroprotective actions of selected compounds on SH-SY5Y cells and the MPP+-induced Caenorhabditis elegans PD model.
Collapse
Affiliation(s)
- Wentao Zhu
- School
of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Yichen Tong
- School
of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Qianyi Feng
- International
Cooperative Laboratory of Traditional Chinese Medicine Modernization
and Innovative Drug Development of Chinese Ministry of Education (MOE),
Guangzhou City Key Laboratory of Precision Chemical Drug Development,
School of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Fang Xu
- International
Cooperative Laboratory of Traditional Chinese Medicine Modernization
and Innovative Drug Development of Chinese Ministry of Education (MOE),
Guangzhou City Key Laboratory of Precision Chemical Drug Development,
School of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Jiyan Pang
- School
of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
146
|
Knier AS, Davis EE, Buchholz HE, Dorweiler JE, Flannagan LE, Manogaran AL. The yeast molecular chaperone, Hsp104, influences transthyretin aggregate formation. Front Mol Neurosci 2022; 15:1050472. [PMID: 36590917 PMCID: PMC9802906 DOI: 10.3389/fnmol.2022.1050472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/19/2022] [Indexed: 12/23/2022] Open
Abstract
Patients with the fatal disorder Transthyretin Amyloidosis (ATTR) experience polyneuropathy through the progressive destruction of peripheral nervous tissue. In these patients, the transthyretin (TTR) protein dissociates from its functional tetrameric structure, misfolds, and aggregates into extracellular amyloid deposits that are associated with disease progression. These aggregates form large fibrillar structures as well as shorter oligomeric aggregates that are suspected to be cytotoxic. Several studies have shown that these extracellular TTR aggregates enter the cell and accumulate intracellularly, which is associated with increased proteostasis response. However, there are limited experimental models to study how proteostasis influences internalized TTR aggregates. Here, we use a humanized yeast system to recapitulate intracellular TTR aggregating protein in vivo. The yeast molecular chaperone Hsp104 is a disaggregase that has been shown to fragment amyloidogenic aggregates associated with certain yeast prions and reduce protein aggregation associated with human neurogenerative diseases. In yeast, we found that TTR forms both SDS-resistant oligomers and SDS-sensitive large molecular weight complexes. In actively dividing cultures, Hsp104 has no impact on oligomeric or large aggregate populations, yet overexpression of Hsp104 is loosely associated with an increase in overall aggregate size. Interestingly, a potentiating mutation in the middle domain of Hsp104 consistently results in an increase in overall TTR aggregate size. These data suggest a novel approach to aggregate management, where the Hsp104 variant shifts aggregate populations away from toxic oligomeric species to more inert larger aggregates. In aged cultures Hsp104 overexpression has no impact on TTR aggregation profiles suggesting that these chaperone approaches to shift aggregate populations are not effective with age, possibly due to proteostasis decline.
Collapse
|
147
|
Hurvitz N, Elkhateeb N, Sigawi T, Rinsky-Halivni L, Ilan Y. Improving the effectiveness of anti-aging modalities by using the constrained disorder principle-based management algorithms. FRONTIERS IN AGING 2022; 3:1044038. [PMID: 36589143 PMCID: PMC9795077 DOI: 10.3389/fragi.2022.1044038] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022]
Abstract
Aging is a complex biological process with multifactorial nature underlined by genetic, environmental, and social factors. In the present paper, we review several mechanisms of aging and the pre-clinically and clinically studied anti-aging therapies. Variability characterizes biological processes from the genome to cellular organelles, biochemical processes, and whole organs' function. Aging is associated with alterations in the degrees of variability and complexity of systems. The constrained disorder principle defines living organisms based on their inherent disorder within arbitrary boundaries and defines aging as having a lower variability or moving outside the boundaries of variability. We focus on associations between variability and hallmarks of aging and discuss the roles of disorder and variability of systems in the pathogenesis of aging. The paper presents the concept of implementing the constrained disease principle-based second-generation artificial intelligence systems for improving anti-aging modalities. The platform uses constrained noise to enhance systems' efficiency and slow the aging process. Described is the potential use of second-generation artificial intelligence systems in patients with chronic disease and its implications for the aged population.
Collapse
Affiliation(s)
- Noa Hurvitz
- Faculty of Medicine, Hebrew University and Department of Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Narmine Elkhateeb
- Faculty of Medicine, Hebrew University and Department of Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Tal Sigawi
- Faculty of Medicine, Hebrew University and Department of Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Lilah Rinsky-Halivni
- Braun School of Public Health, Hebrew University of Jerusalem, Jerusalem, Israel,Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Yaron Ilan
- Faculty of Medicine, Hebrew University and Department of Medicine, Hadassah Medical Center, Jerusalem, Israel,*Correspondence: Yaron Ilan,
| |
Collapse
|
148
|
Al-Azab M, Safi M, Idiiatullina E, Al-Shaebi F, Zaky MY. Aging of mesenchymal stem cell: machinery, markers, and strategies of fighting. Cell Mol Biol Lett 2022; 27:69. [PMID: 35986247 PMCID: PMC9388978 DOI: 10.1186/s11658-022-00366-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/18/2022] [Indexed: 02/08/2023] Open
Abstract
Human mesenchymal stem cells (MSCs) are primary multipotent cells capable of differentiating into osteocytes, chondrocytes, and adipocytes when stimulated under appropriate conditions. The role of MSCs in tissue homeostasis, aging-related diseases, and cellular therapy is clinically suggested. As aging is a universal problem that has large socioeconomic effects, an improved understanding of the concepts of aging can direct public policies that reduce its adverse impacts on the healthcare system and humanity. Several studies of aging have been carried out over several years to understand the phenomenon and different factors affecting human aging. A reduced ability of adult stem cell populations to reproduce and regenerate is one of the main contributors to the human aging process. In this context, MSCs senescence is a major challenge in front of cellular therapy advancement. Many factors, ranging from genetic and metabolic pathways to extrinsic factors through various cellular signaling pathways, are involved in regulating the mechanism of MSC senescence. To better understand and reverse cellular senescence, this review highlights the underlying mechanisms and signs of MSC cellular senescence, and discusses the strategies to combat aging and cellular senescence.
Collapse
|
149
|
Stoeger T, Grant RA, McQuattie-Pimentel AC, Anekalla KR, Liu SS, Tejedor-Navarro H, Singer BD, Abdala-Valencia H, Schwake M, Tetreault MP, Perlman H, Balch WE, Chandel NS, Ridge KM, Sznajder JI, Morimoto RI, Misharin AV, Budinger GRS, Nunes Amaral LA. Aging is associated with a systemic length-associated transcriptome imbalance. NATURE AGING 2022; 2:1191-1206. [PMID: 37118543 PMCID: PMC10154227 DOI: 10.1038/s43587-022-00317-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 10/21/2022] [Indexed: 12/14/2022]
Abstract
Aging is among the most important risk factors for morbidity and mortality. To contribute toward a molecular understanding of aging, we analyzed age-resolved transcriptomic data from multiple studies. Here, we show that transcript length alone explains most transcriptional changes observed with aging in mice and humans. We present three lines of evidence supporting the biological importance of the uncovered transcriptome imbalance. First, in vertebrates the length association primarily displays a lower relative abundance of long transcripts in aging. Second, eight antiaging interventions of the Interventions Testing Program of the National Institute on Aging can counter this length association. Third, we find that in humans and mice the genes with the longest transcripts enrich for genes reported to extend lifespan, whereas those with the shortest transcripts enrich for genes reported to shorten lifespan. Our study opens fundamental questions on aging and the organization of transcriptomes.
Collapse
Affiliation(s)
- Thomas Stoeger
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.
- Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL, USA.
- Center for Genetic Medicine, Northwestern University, Evanston, IL, USA.
| | - Rogan A Grant
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Evanston, IL, USA
| | | | - Kishore R Anekalla
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Evanston, IL, USA
| | - Sophia S Liu
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | | | - Benjamin D Singer
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Evanston, IL, USA
- Simpson Querrey Lung Institute for Translational Science at Northwestern University (SQLIFTSNU), Evanston, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University, Evanston, IL, USA
| | - Hiam Abdala-Valencia
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Evanston, IL, USA
| | - Michael Schwake
- Department of Neurology, Northwestern University, Evanston, IL, USA
- Faculty of Chemistry, University of Bielefeld, Bielefeld, Germany
| | - Marie-Pier Tetreault
- Division of Gastroenterology and Hepatology, Northwestern University, Evanston, IL, USA
| | - Harris Perlman
- Division of Rheumatology, Northwestern University, Evanston, IL, USA
| | | | - Navdeep S Chandel
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Evanston, IL, USA
- Simpson Querrey Lung Institute for Translational Science at Northwestern University (SQLIFTSNU), Evanston, IL, USA
| | - Karen M Ridge
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Evanston, IL, USA
- Simpson Querrey Lung Institute for Translational Science at Northwestern University (SQLIFTSNU), Evanston, IL, USA
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Evanston, IL, USA
- Simpson Querrey Lung Institute for Translational Science at Northwestern University (SQLIFTSNU), Evanston, IL, USA
| | - Richard I Morimoto
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA.
- Rice Institute for Biomedical Research, Northwestern University, Evanston, IL, USA.
| | - Alexander V Misharin
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Evanston, IL, USA.
- Simpson Querrey Lung Institute for Translational Science at Northwestern University (SQLIFTSNU), Evanston, IL, USA.
| | - G R Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Evanston, IL, USA.
- Simpson Querrey Lung Institute for Translational Science at Northwestern University (SQLIFTSNU), Evanston, IL, USA.
| | - Luis A Nunes Amaral
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.
- Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL, USA.
- Department of Physics and Astronomy, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
150
|
Fedulova L, Vasilevskaya E, Tikhonova O, Kazieva L, Tolmacheva G, Makarenko A. Proteomic Markers in the Muscles and Brain of Pigs Recovered from Hemorrhagic Stroke. Genes (Basel) 2022; 13:genes13122204. [PMID: 36553471 PMCID: PMC9777686 DOI: 10.3390/genes13122204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
(1) Background: Stroke is the leading cause of serious long-term disability. Walking dysfunction and paresis of the upper extremities occurs in more than 80% of people who have had a stroke. (2) Methods: We studied post-genomic markers in biosamples of muscle and brain tissue from animals that underwent intracerebral hematoma and recovered after 42 days. Our purpose was to understand the biological mechanisms associated with recovery from hemorrhagic stroke. We analyzed the peptides formed after trypsinolysis of samples by HPLC-MS, and the results were processed by bioinformatics methods, including the establishment of biochemical relationships (gene to gene) using topological omics databases such as Reactome and KEGG. (3) Results: In the pig brain, unique compounds were identified which are expressed during the recovery period after traumatic injury. These are molecular factors of activated microglia, and they contribute to the functional recovery of neurons and reduce instances of hematoma, edema, and oxidative stress. Complexes of the main binding factors of the neurotrophins involved in the differentiation and survival of nerve cells were found in muscles. (4) Conclusions: A network of gene interactions has been constructed for proteins involved in the regulation of synaptic transmission, in particular presynaptic vesicular and endocytic processes. The presence of transmitters and transporters associated with stimulation of NMDA receptors at neuromuscular junctions shows the relationship between upper motor neurons and neuromuscular junctions.
Collapse
Affiliation(s)
- Liliya Fedulova
- V.M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences, 109316 Moscow, Russia
| | - Ekaterina Vasilevskaya
- V.M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences, 109316 Moscow, Russia
| | | | - Laura Kazieva
- Institute of Biomedical Chemistry, 119121 Mosow, Russia
| | - Galina Tolmacheva
- V.M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences, 109316 Moscow, Russia
- Correspondence: ; Tel.: +7-495-676-9511-(128)
| | - Alexandr Makarenko
- V.M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences, 109316 Moscow, Russia
| |
Collapse
|