101
|
Boada-Romero E, Martinez J, Heckmann BL, Green DR. The clearance of dead cells by efferocytosis. Nat Rev Mol Cell Biol 2020; 21:398-414. [PMID: 32251387 DOI: 10.1038/s41580-020-0232-1] [Citation(s) in RCA: 407] [Impact Index Per Article: 101.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2020] [Indexed: 02/06/2023]
Abstract
Multiple modes of cell death have been identified, each with a unique function and each induced in a setting-dependent manner. As billions of cells die during mammalian embryogenesis and daily in adult organisms, clearing dead cells and associated cellular debris is important in physiology. In this Review, we present an overview of the phagocytosis of dead and dying cells, a process known as efferocytosis. Efferocytosis is performed by macrophages and to a lesser extent by other 'professional' phagocytes (such as monocytes and dendritic cells) and 'non-professional' phagocytes, such as epithelial cells. Recent discoveries have shed light on this process and how it functions to maintain tissue homeostasis, tissue repair and organismal health. Here, we outline the mechanisms of efferocytosis, from the recognition of dying cells through to phagocytic engulfment and homeostatic resolution, and highlight the pathophysiological consequences that can arise when this process is abrogated.
Collapse
Affiliation(s)
- Emilio Boada-Romero
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jennifer Martinez
- Inflammation & Autoimmunity Group, National Institute for Environmental Health Sciences, Research Triangle Park, Durham, NC, USA
| | - Bradlee L Heckmann
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
102
|
Abstract
Calreticulin (CRT) is a pleiotropic and highly conserved molecule that is mainly localized in the endoplasmic reticulum. Recently, CRT has gained special interest for its functions outside the endoplasmic reticulum where it has immunomodulatory properties. CRT translocation to the cell membrane serves as an "eat me" signal and promotes efferocytosis of apoptotic cells and cancer cell removal with completely opposite outcomes. Efferocytosis results in a silenced immune response and homeostasis, while removal of dying cancer cells brought about by anthracycline treatment, ionizing-irradiation or photodynamic therapy results in immunogenic cell death with activation of the innate and adaptive immune responses. In addition, CRT impacts phagocyte activation and cytokine production. The effects of CRT on cytokine production depend on its conformation, species specificity, degree of oligomerization and/or glycosylation, as well as its cellular localization and the molecular partners involved. The controversial roles of CRT in cancer progression and the possible role of the CALR gene mutations in myeloproliferative neoplasms are also addressed. The release of CRT and its influence on the different cells involved during efferocytosis and immunogenic cell death points to additional roles of CRT besides merely acting as an "eat me" signal during apoptosis. Understanding the contribution of CRT in physiological and pathological processes could give us some insight into the potential of CRT as a therapeutic target.
Collapse
|
103
|
Yang H, Ahmad ZA, Song Y. Molecular insight for the role of key residues of calreticulin in its binding activities: A computational study. Comput Biol Chem 2020; 85:107228. [DOI: 10.1016/j.compbiolchem.2020.107228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/28/2020] [Accepted: 02/01/2020] [Indexed: 12/26/2022]
|
104
|
Murugaiah V, Tsolaki AG, Kishore U. Collectins: Innate Immune Pattern Recognition Molecules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1204:75-127. [PMID: 32152944 PMCID: PMC7120701 DOI: 10.1007/978-981-15-1580-4_4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Collectins are collagen-containing C-type (calcium-dependent) lectins which are important pathogen pattern recognising innate immune molecules. Their primary structure is characterised by an N-terminal, triple-helical collagenous region made up of Gly-X-Y repeats, an a-helical coiled-coil trimerising neck region, and a C-terminal C-type lectin or carbohydrate recognition domain (CRD). Further oligomerisation of this primary structure can give rise to more complex and multimeric structures that can be seen under electron microscope. Collectins can be found in serum as well as in a range of tissues at the mucosal surfaces. Mannanbinding lectin can activate the complement system while other members of the collectin family are extremely versatile in recognising a diverse range of pathogens via their CRDs and bring about effector functions designed at the clearance of invading pathogens. These mechanisms include opsonisation, enhancement of phagocytosis, triggering superoxidative burst and nitric oxide production. Collectins can also potentiate the adaptive immune response via antigen presenting cells such as macrophages and dendritic cells through modulation of cytokines and chemokines, thus they can act as a link between innate and adaptive immunity. This chapter describes the structure-function relationships of collectins, their diverse functions, and their interaction with viruses, bacteria, fungi and parasites.
Collapse
Affiliation(s)
- Valarmathy Murugaiah
- College of Health and Life Sciences, Brunel University London, London, UB8 3PH, UK
| | - Anthony G Tsolaki
- College of Health and Life Sciences, Brunel University London, London, UB8 3PH, UK
| | - Uday Kishore
- College of Health and Life Sciences, Brunel University London, London, UB8 3PH, UK.
| |
Collapse
|
105
|
Zhou J, Tang Z, Gao S, Li C, Feng Y, Zhou X. Tumor-Associated Macrophages: Recent Insights and Therapies. Front Oncol 2020; 10:188. [PMID: 32161718 PMCID: PMC7052362 DOI: 10.3389/fonc.2020.00188] [Citation(s) in RCA: 395] [Impact Index Per Article: 98.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 02/04/2020] [Indexed: 02/05/2023] Open
Abstract
Macrophages, which have functions of engulfing and digesting foreign substances, can clear away harmful matter, including cellular debris and tumor cells. Based on the condition of the internal environment, circulating monocytes give rise to mature macrophages, and when they are recruited into the tumor microenvironment and in suitable conditions, they are converted into tumor-associated macrophages (TAMs). Generally, macrophages grow into two main groups called classically activated macrophages (M1) and alternatively activated macrophages (M2). M2 and a small fraction of M1 cells, also known as TAMs, not only lack the function of phagocytizing tumor cells but also help these tumor cells escape from being killed and help them spread to other tissues and organs. In this review, we introduce several mechanisms by which macrophages play a role in the immune regulation of tumor cells, including both killing factors and promoting effects. Furthermore, the targeted therapy for treating tumors based on macrophages is also referred to in our review. We confirm that further studies of macrophage-focused therapeutic strategies and their use in clinical practice are needed to verify their superior efficacy and potential in cancer treatment.
Collapse
Affiliation(s)
- Jiawei Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China College of Stomatology, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Sichuan University, Chengdu, China
| | - Ziwei Tang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China College of Stomatology, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Sichuan University, Chengdu, China
| | - Siyang Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China College of Stomatology, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Sichuan University, Chengdu, China
| | - Chunyu Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China College of Stomatology, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Sichuan University, Chengdu, China
| | - Yiting Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China College of Stomatology, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Sichuan University, Chengdu, China
| | - Xikun Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
106
|
Ramírez-Toloza G, Sosoniuk-Roche E, Valck C, Aguilar-Guzmán L, Ferreira VP, Ferreira A. Trypanosoma cruzi Calreticulin: Immune Evasion, Infectivity, and Tumorigenesis. Trends Parasitol 2020; 36:368-381. [PMID: 32191851 DOI: 10.1016/j.pt.2020.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/25/2020] [Accepted: 01/26/2020] [Indexed: 02/06/2023]
Abstract
To successfully infect, Trypanosoma cruzi evades and modulates the host immune response. T. cruzi calreticulin (TcCalr) is a multifunctional, endoplasmic reticulum (ER)-resident chaperone that, translocated to the external microenvironment, mediates crucial host-parasite interactions. TcCalr binds and inactivates C1 and mannose-binding lectin (MBL)/ficolins, important pattern- recognition receptors (PRRs) of the complement system. Using an apoptotic mimicry strategy, the C1-TcCalr association facilitates the infection of target cells. T. cruzi infection also seems to confer protection against tumorigenesis. Thus, recombinant TcCalr has important antiangiogenic properties, detected in vitro, ex vivo, and in ovum, most likely contributing at least in part, to its antitumor properties. Consequently, TcCalr is useful for investigating key issues of host-parasite interactions and possible new immunological/pharmacological interventions in the areas of Chagas' disease and experimental cancer.
Collapse
Affiliation(s)
- Galia Ramírez-Toloza
- Faculty of Veterinary Medicine and Livestock Sciences, University of Chile, Santiago, Chile.
| | | | - Carolina Valck
- Department of Immunology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Lorena Aguilar-Guzmán
- Faculty of Veterinary Medicine and Livestock Sciences, University of Chile, Santiago, Chile
| | - Viviana P Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, OH, USA
| | - Arturo Ferreira
- Department of Immunology, Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
107
|
Jiang Z, Chen Z, Hu L, Qiu L, Zhu L. Calreticulin Blockade Attenuates Murine Acute Lung Injury by Inducing Polarization of M2 Subtype Macrophages. Front Immunol 2020; 11:11. [PMID: 32082309 PMCID: PMC7002388 DOI: 10.3389/fimmu.2020.00011] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/06/2020] [Indexed: 12/12/2022] Open
Abstract
Calreticulin (CALR) has anti-tumor effects by increasing dendritic cell maturation and tumor antigen presentation. However, whether CALR affects macrophages and modulates progression of acute respiratory distress syndrome/acute lung injury (ARDS/ALI) remains unknown. In this study, we discovered that CALR protein was highly expressed in the mice with LPS-induced ALI and CALR expression level was positively correlated to the severity of ALI. Commercial anti-CALR antibody (aCALR) can neutralize recombinant CALR (rCALR) and suppress the expression of TNF-alpha and IL-6 in the rCALR-treated macrophages. Blocking CALR activity by intraperitoneal (i.p.) administration of aCALR significantly suppressed ALI, accompanied with lower total cell counts, neutrophil and T cell infiltration in bronchoalveolar lavage (BAL) and lung tissues. The expression of CXCL15, IL-6, IL-1beta, TNF-alpha, and CALR were significantly reduced, in association with more polarization of Siglec F+CD206+M2 subtype macrophages in the aCALR-treated mice. Pre-depletion of circulating monocytes did not abolish the aCALR-mediated suppression of ALI. Further analysis in bone marrow-derived macrophages (BMDMs) showed that aCALR suppressed the expression of CD80, IL-6, IL-1beta, IL-18, NLRP3, and p-p38 MAPK; but enhanced the expression of CD206 and IL-10. In addition, we observed more expression and phosphorylation of STAT6 in the aCALR-treated BMDM. Lack of STAT6 resulted in comparable and slightly higher expression of CALR, TNF-alpha and IL-6 in the aCALR-treated STAT6-/- BMDMs than the untreated cells. Therefore, we conclude that CALR is a novel biomarker in the evaluation of ALI. Blocking CALR activity by aCALR effectively suppressed ALI independent of circulating monocytes. Siglec F+CD206+M2 subtype macrophages and p38 MAPK/STAT6 signaling pathway played important role in the immune regulation of aCALR. Blocking CALR activity is a promising therapeutic approach in the treatment of ARDS/ALI.
Collapse
Affiliation(s)
- Zhilong Jiang
- Department of Pulmonary Medicine, Fudan University Zhongshan Hospital, Shanghai, China
| | - Zhihong Chen
- Department of Pulmonary Medicine, Fudan University Zhongshan Hospital, Shanghai, China
| | - Lu Hu
- Department of Pulmonary Medicine, Fudan University Zhongshan Hospital, Shanghai, China
| | - Lin Qiu
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Lei Zhu
- Department of Pulmonary Medicine, Fudan University Zhongshan Hospital, Shanghai, China
| |
Collapse
|
108
|
Westman J, Grinstein S, Marques PE. Phagocytosis of Necrotic Debris at Sites of Injury and Inflammation. Front Immunol 2020; 10:3030. [PMID: 31998312 PMCID: PMC6962235 DOI: 10.3389/fimmu.2019.03030] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022] Open
Abstract
Clearance of cellular debris is required to maintain the homeostasis of multicellular organisms. It is intrinsic to processes such as tissue growth and remodeling, regeneration and resolution of injury and inflammation. Most of the removal of effete and damaged cells is performed by macrophages and neutrophils through phagocytosis, a complex phenomenon involving ingestion and degradation of the disposable particles. The study of the clearance of cellular debris has been strongly biased toward the removal of apoptotic bodies; as a result, the mechanisms underlying the removal of necrotic cells have remained relatively unexplored. Here, we will review the incipient but growing knowledge of the phagocytosis of necrotic debris, from their recognition and engagement to their internalization and disposal. Critical insights into these events were gained recently through the development of new in vitro and in vivo models, along with advances in live-cell and intravital microscopy. This review addresses the classes of "find-me" and "eat-me" signals presented by necrotic cells and their cognate receptors in phagocytes, which in most cases differ from the extensively characterized counterparts in apoptotic cell engulfment. The roles of damage-associated molecular patterns, chemokines, lipid mediators, and complement components in recruiting and activating phagocytes are reviewed. Lastly, the physiological importance of necrotic cell removal is emphasized, highlighting the key role of impaired debris clearance in autoimmunity.
Collapse
Affiliation(s)
- Johannes Westman
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Pedro Elias Marques
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
109
|
Auriti C, Prencipe G, Inglese R, Moriondo M, Nieddu F, Mondì V, Longo D, Bucci S, Del Pinto T, Timelli L, Di Ciommo VM. Mannose Binding Lectin, S100 B Protein, and Brain Injuries in Neonates With Perinatal Asphyxia. Front Pediatr 2020; 8:527. [PMID: 33042903 PMCID: PMC7527601 DOI: 10.3389/fped.2020.00527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/24/2020] [Indexed: 11/13/2022] Open
Abstract
Perinatal asphyxia triggers an acute inflammatory response in the injured brain. Complement activation and neuroinflammation worsen brain damage after a systemic ischemia/reperfusion insult. The increase of mannose binding lectin (MBL) during asphyxia may contribute to the brain damage, via activation of the complement lectin pathway. The possible role of MBL2 gene variants in influencing the severity of post-asphyxia brain injuries is still unexplored. This retrospective study included 53 asphyxiated neonates: 42 underwent therapeutic hypothermia (TH) and 11 did not because they were admitted to the NICU later than 6 h after the hypoxic insult. Blood samples from TH-treated and untreated patients were genotyped for MBL2 gene variants, and biomarker plasma levels (MBL and S100 B protein) were measured at different time points: during hypothermia, during rewarming, and at 7-10 days of life. The timing of blood sampling, except for the T1 sample, was the same in untreated infants. Highest (peak) levels of MBL and MBL2 genotypes were correlated to neuroimaging brain damage or death and long-term neurodevelopmental delay. MBL2 wild-type genotype was associated with the highest MBL levels and worst brain damage on MRI (p = 0.046) at 7-10 days after hypoxia. MBL increased in both groups and S100B decreased, slightly more in treated than in untreated neonates. The progressive increase of MBL (p = 0.08) and to be untreated with TH (p = 0.08) increased the risk of brain damage or death at 7-10 days of life, without affecting neurodevelopmental outcomes at 1 year. The effect of TH on MBL plasma profiles is uncertain.
Collapse
Affiliation(s)
- Cinzia Auriti
- Neonatal Intensive Care Unit, Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giusi Prencipe
- Laboratory of Rheumatology Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rita Inglese
- Laboratory of Chemical Chemistry, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Moriondo
- Laboratory of Immunology, Department of Pediatrics, Anna Meyer Children's University Hospital, Florence, Italy
| | - Francesco Nieddu
- Laboratory of Immunology, Department of Pediatrics, Anna Meyer Children's University Hospital, Florence, Italy
| | - Vito Mondì
- Neonatal Intensive Care Unit, Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Neonatology and Neonatal Intensive Care Unit, Policlinico Casilino Hospital, Rome, Italy
| | - Daniela Longo
- Neuroimaging Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Silvia Bucci
- Clinical Psychology Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Tamara Del Pinto
- Neonatal Intensive Care Unit, Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Laura Timelli
- Neonatal Intensive Care Unit, Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | |
Collapse
|
110
|
Cockram TOJ, Puigdellívol M, Brown GC. Calreticulin and Galectin-3 Opsonise Bacteria for Phagocytosis by Microglia. Front Immunol 2019; 10:2647. [PMID: 31781126 PMCID: PMC6861381 DOI: 10.3389/fimmu.2019.02647] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022] Open
Abstract
Opsonins are soluble, extracellular proteins, released by activated immune cells, and when bound to a target cell, can induce phagocytes to phagocytose the target cell. There are three known classes of opsonin: antibodies, complement factors and secreted pattern recognition receptors, but these have limited access to the brain. We identify here two novel opsonins of bacteria, calreticulin, and galectin-3 (both lectins that can bind lipopolysaccharide), which were released by microglia (brain-resident macrophages) when activated by bacterial lipopolysaccharide. Calreticulin and galectin-3 both bound to Escherichia coli, and when bound increased phagocytosis of these bacteria by microglia. Furthermore, lipopolysaccharide-induced microglial phagocytosis of E. coli bacteria was partially inhibited by: sugars, an anti-calreticulin antibody, a blocker of the calreticulin phagocytic receptor LRP1, a blocker of the galectin-3 phagocytic receptor MerTK, or simply removing factors released from the microglia, indicating this phagocytosis is dependent on extracellular calreticulin and galectin-3. Thus, calreticulin and galectin-3 are opsonins, released by activated microglia to promote clearance of bacteria. This innate immune response of microglia may help clear bacterial infections of the brain.
Collapse
Affiliation(s)
- Tom O J Cockram
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Mar Puigdellívol
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Guy C Brown
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
111
|
Feng M, Jiang W, Kim BYS, Zhang CC, Fu YX, Weissman IL. Phagocytosis checkpoints as new targets for cancer immunotherapy. Nat Rev Cancer 2019; 19:568-586. [PMID: 31462760 PMCID: PMC7002027 DOI: 10.1038/s41568-019-0183-z] [Citation(s) in RCA: 558] [Impact Index Per Article: 111.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/15/2019] [Indexed: 02/06/2023]
Abstract
Cancer immunotherapies targeting adaptive immune checkpoints have substantially improved patient outcomes across multiple metastatic and treatment-refractory cancer types. However, emerging studies have demonstrated that innate immune checkpoints, which interfere with the detection and clearance of malignant cells through phagocytosis and suppress innate immune sensing, also have a key role in tumour-mediated immune escape and might, therefore, be potential targets for cancer immunotherapy. Indeed, preclinical studies and early clinical data have established the promise of targeting phagocytosis checkpoints, such as the CD47-signal-regulatory protein α (SIRPα) axis, either alone or in combination with other cancer therapies. In this Review, we highlight the current understanding of how cancer cells evade the immune system by disrupting phagocytic clearance and the effect of phagocytosis checkpoint blockade on induction of antitumour immune responses. Given the role of innate immune cells in priming adaptive immune responses, an improved understanding of the tumour-intrinsic processes that inhibit essential immune surveillance processes, such as phagocytosis and innate immune sensing, could pave the way for the development of highly effective combination immunotherapy strategies that modulate both innate and adaptive antitumour immune responses.
Collapse
Affiliation(s)
- Mingye Feng
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Centre, Duarte, CA, USA.
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas Southwestern Medical Centre, Dallas, TX, USA.
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Centre, Houston, TX, USA
| | - Cheng Cheng Zhang
- Department of Physiology, The University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - Yang-Xin Fu
- Department of Pathology, The University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
112
|
Tsai T, Reinehr S, Maliha AM, Joachim SC. Immune Mediated Degeneration and Possible Protection in Glaucoma. Front Neurosci 2019; 13:931. [PMID: 31543759 PMCID: PMC6733056 DOI: 10.3389/fnins.2019.00931] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/19/2019] [Indexed: 12/13/2022] Open
Abstract
The underlying pathomechanisms for glaucoma, one of the most common causes of blindness worldwide, are still not identified. In addition to increased intraocular pressure (IOP), oxidative stress, excitotoxicity, and immunological processes seem to play a role. Several pharmacological or molecular/genetic methods are currently investigated as treatment options for this disease. Altered autoantibody levels were detected in serum, aqueous humor, and tissue sections of glaucoma patients. To further analyze the role of the immune system, an IOP-independent, experimental autoimmune glaucoma (EAG) animal model was developed. In this model, immunization with ocular antigens leads to antibody depositions, misdirected T-cells, retinal ganglion cell death and degeneration of the optic nerve, similar to glaucomatous degeneration in patients. Moreover, an activation of the complement system and microglia alterations were identified in the EAG as well as in ocular hypertension models. The inhibition of these factors can alleviate degeneration in glaucoma models with and without high IOP. Currently, several neuroprotective approaches are tested in distinct models. It is necessary to have systems that cover underlying pathomechanisms, but also allow for the screening of new drugs. In vitro models are commonly used, including single cell lines, mixed-cultures, and even organoids. In ex vivo organ cultures, pathomechanisms as well as therapeutics can be investigated in the whole retina. Furthermore, animal models reveal insights in the in vivo situation. With all these models, several possible new drugs and therapy strategies were tested in the last years. For example, hypothermia treatment, neurotrophic factors or the blockage of excitotoxity. However, further studies are required to reveal the pressure independent pathomechanisms behind glaucoma. There is still an open issue whether immune mechanisms directly or indirectly trigger cell death pathways. Hence, it might be an imbalance between protective and destructive immune mechanisms. Moreover, identified therapy options have to be evaluated in more detail, since deeper insights could lead to better treatment options for glaucoma patients.
Collapse
Affiliation(s)
| | | | | | - Stephanie C. Joachim
- Experimental Eye Research, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
113
|
Tajbakhsh A, Bianconi V, Pirro M, Gheibi Hayat SM, Johnston TP, Sahebkar A. Efferocytosis and Atherosclerosis: Regulation of Phagocyte Function by MicroRNAs. Trends Endocrinol Metab 2019; 30:672-683. [PMID: 31383556 DOI: 10.1016/j.tem.2019.07.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 12/31/2022]
Abstract
There is evidence of the critical role of efferocytosis, the clearance of apoptotic cells (ACs) by phagocytes, in vascular cell homeostasis and protection against atherosclerosis. Specific microRNAs (miRs) can regulate atherogenesis by controlling the accumulation of professional phagocytes (e.g., macrophages) and nonprofessional phagocytes (i.e., neighboring tissue cells with the ability to acquire a macrophage-like phenotype) within the arterial wall, the differentiation of phagocytes into foam cells, the efferocytosis of apoptotic foam cells by phagocytes, and the phagocyte-mediated inflammatory response. A better understanding of the mechanisms involved in miR-regulated phagocyte function might lead to novel therapeutic antiatherosclerotic strategies. In this review, we try to shed light on the relationship between miRs and cellular players in the process of efferocytosis in the context of atherosclerotic plaque and their potential as molecular targets for novel antiatherosclerotic therapies.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Halal Research Center of IRI, FDA, Tehran, Iran; Department of Modern Sciences and Technologies, Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vanessa Bianconi
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Seyed Mohammad Gheibi Hayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
114
|
Maciel E, Neves BM, Martins J, Colombo S, Cruz MT, Domingues P, Domingues MRM. Oxidized phosphatidylserine mitigates LPS-triggered macrophage inflammatory status through modulation of JNK and NF-kB signaling cascades. Cell Signal 2019; 61:30-38. [DOI: 10.1016/j.cellsig.2019.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/14/2019] [Accepted: 04/29/2019] [Indexed: 01/17/2023]
|
115
|
Casals C, García-Fojeda B, Minutti CM. Soluble defense collagens: Sweeping up immune threats. Mol Immunol 2019; 112:291-304. [DOI: 10.1016/j.molimm.2019.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/14/2022]
|
116
|
Faber C, Juel HB, Jensen BAH, Christensen JP, Prause JU, Thomsen AR, Nissen MH. Chemokine Expression in Murine RPE/Choroid in Response to Systemic Viral Infection and Elevated Levels of Circulating Interferon-γ. Invest Ophthalmol Vis Sci 2019; 60:192-201. [PMID: 30654385 DOI: 10.1167/iovs.18-25721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To examine how circulating immune mediators in vivo may affect gene and protein expression at the RPE/choroid interface. Methods Young mice were systemically infected with lymphocytic choriomeningitis virus (LCMV) or continuously infused with IFN-γ. RPE/choroid was isolated and analyzed with whole-transcriptome gene expression microarrays. Selected gene expression findings were validated at the protein level. Results Both the systemic immune activation from virus infection and the sterile systemically increased level of IFN-γ resulted in increased expression of chemokine ligands, chemokine receptors, and early complement components in isolates of RPE/choroid. These findings were largely absent from LCMV-infected mice deficient in either the interferon α/β receptor or IFN-γ. Conclusions Together, these findings demonstrate that acute systemic immune activation results in a local response at the RPE/choroid interface that may include chemokine-dependent recruitment of inflammatory cells and engagement of the complement system. This may represent a link between the systemic low-grade inflammation and the retinal pathology observed in several multifactorial entities such as aging, AMD, and diabetes.
Collapse
Affiliation(s)
- Carsten Faber
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Immunology and Microbiology, Copenhagen, Denmark.,Department of Ophthalmology, Rigshospitalet-Glostrup, Glostrup, Denmark
| | - Helene Bæk Juel
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Immunology and Microbiology, Copenhagen, Denmark
| | | | - Jan Pravsgaard Christensen
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Immunology and Microbiology, Copenhagen, Denmark
| | - Jan Ulrik Prause
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Neuroscience and Pharmacology, Eye Pathology Section, Copenhagen, Denmark
| | - Allan Randrup Thomsen
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Immunology and Microbiology, Copenhagen, Denmark
| | - Mogens Holst Nissen
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Immunology and Microbiology, Copenhagen, Denmark
| |
Collapse
|
117
|
Sheng YR, Hu WT, Wei CY, Tang LL, Liu YK, Liu YY, Qiu JP, Li DJ, Zhu XY. Insights of efferocytosis in normal and pathological pregnancy. Am J Reprod Immunol 2019; 82:e13088. [PMID: 30614132 DOI: 10.1111/aji.13088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/21/2018] [Accepted: 12/31/2018] [Indexed: 12/18/2022] Open
Abstract
Efferocytosis, which is known as the phagocytic clearance of dying cells by professional as well as non-professional phagocytes, including a great number of intracellular/extracellular factors and signals, is interrelated with the immune system, contributing to local and systemic homeostasis, especially in tissues with high constitutive rates of apoptosis. Accumulating studies have indicated that immune dysregulation is associated with the pathogenesis of the female reproductive system, which causes preeclampsia (PE), recurrent spontaneous abortion (RSA), ruptured ectopic pregnancy, and so on. And some studies have revealed the pleiotropic and essential role of efferocytosis in these obstetrical disorders. More specifically, the occurrence and development of these diseases were in connection with some efferocytosis-related factors and signals, such as C1q, MBL, and IL-33/ST2. In this review, we systematically review the diverse impacts of efferocytosis in immune system and discuss its relevance to normal and pathological pregnancy. These findings may instruct future basic researches as well as clinical applications of efferocytosis-related factors and signals as latent predictors or therapeutic targets on the obstetrical disorders.
Collapse
Affiliation(s)
- Yan-Ran Sheng
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Wen-Ting Hu
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Chun-Yan Wei
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Ling-Li Tang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Yu-Kai Liu
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Yu-Yin Liu
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Jian-Ping Qiu
- Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Da-Jin Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Xiao-Yong Zhu
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| |
Collapse
|
118
|
Kotian V, Sarmah D, Kaur H, Kesharwani R, Verma G, Mounica L, Veeresh P, Kalia K, Borah A, Wang X, Dave KR, Yavagal DR, Bhattacharya P. Evolving Evidence of Calreticulin as a Pharmacological Target in Neurological Disorders. ACS Chem Neurosci 2019; 10:2629-2646. [PMID: 31017385 DOI: 10.1021/acschemneuro.9b00158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Calreticulin (CALR), a lectin-like ER chaperone, was initially known only for its housekeeping function, but today it is recognized for many versatile roles in different compartments of a cell. Apart from canonical roles in protein folding and calcium homeostasis, it performs a variety of noncanonical roles, mostly in CNS development. In the past, studies have linked Calreticulin with various other biological components which are detrimental in deciding the fate of neurons. Many neurological disorders that differ in their etiology are commonly associated with aberrant levels of Calreticulin, that lead to modulation of apoptosis and phagocytosis, and impact on transcriptional pathways, impairment in proteostatis, and calcium imbalances. Such multifaceted properties of Calreticulin are the reason why it has been implicated in vital roles of the nervous system in recent years. Hence, understanding its role in the physiology of neurons would help to unearth its involvement in the spectrum of neurological disorders. This Review aims toward exploring the interplay of Calreticulin in neurological disorders which would aid in targeting Calreticulin for developing novel neurotherapeutics.
Collapse
Affiliation(s)
- Vignesh Kotian
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Harpreet Kaur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Radhika Kesharwani
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Geetesh Verma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Leela Mounica
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Pabbala Veeresh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam 788011, India
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Kunjan R. Dave
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Dileep R. Yavagal
- Department of Neurology and Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
119
|
Yuan X, Chang CY, You R, Shan M, Gu BH, Madison MC, Diehl G, Perusich S, Song LZ, Cornwell L, Rossen RD, Wetsel R, Kimal R, Coarfa C, Eltzschig HK, Corry DB, Kheradmand F. Cigarette smoke-induced reduction of C1q promotes emphysema. JCI Insight 2019; 5:124317. [PMID: 31112138 DOI: 10.1172/jci.insight.124317] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Alteration of innate immune cells in the lungs can promote loss of peripheral tolerance that leads to autoimmune responses in cigarette smokers. Development of autoimmunity in smokers with emphysema is also strongly linked to the expansion of autoreactive T helper (Th) cells expressing interferon gamma (Th1), and interleukin 17A (Th17). However, the mechanisms responsible for enhanced self-recognition and reduced immune tolerance in smoker with emphysema remain less clear. Here we show that C1q, a component of the complement protein 1 complex (C1), is downregulated in lung CD1a+ antigen presenting cells (APCs) isolated from emphysematous human, and mouse lung APCs after chronic cigarette smoke exposure. C1q potentiated the function of APCs to differentiate CD4+ T cells to Tregs, while it inhibited Th17 cell development and proliferation. Mice deficient in C1q that were exposed to chronic smoke exhibited exaggerated lung inflammation marked by increased Th17 cells, while reconstitution of C1q in the lungs enhanced Tregs abundance, dampened smoke-induced lung inflammation, and reversed established emphysema. Our findings demonstrate that cigarette smoke-mediated loss of C1q could play a key role in reduced peripheral tolerance, which could be explored to treat emphysema.
Collapse
Affiliation(s)
- Xiaoyi Yuan
- Department of Medicine, Pulmonary and Critical Care, Baylor College of Medicine, Houston, Texas, USA
| | - Cheng-Yen Chang
- Department of Medicine, Pulmonary and Critical Care, Baylor College of Medicine, Houston, Texas, USA
| | - Ran You
- Department of Medicine, Pulmonary and Critical Care, Baylor College of Medicine, Houston, Texas, USA
| | - Ming Shan
- Department of Medicine, Pulmonary and Critical Care, Baylor College of Medicine, Houston, Texas, USA
| | - Bon Hee Gu
- Department of Medicine, Pulmonary and Critical Care, Baylor College of Medicine, Houston, Texas, USA
| | - Matthew C Madison
- Department of Medicine, Pulmonary and Critical Care, Baylor College of Medicine, Houston, Texas, USA
| | - Gretchen Diehl
- Department of Molecular Virology and Microbiology Baylor College of Medicine, Houston, Texas, USA
| | - Sarah Perusich
- Department of Medicine, Pulmonary and Critical Care, Baylor College of Medicine, Houston, Texas, USA
| | - Li-Zhen Song
- Department of Medicine, Pulmonary and Critical Care, Baylor College of Medicine, Houston, Texas, USA
| | - Lorraine Cornwell
- Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Roger D Rossen
- Center for Translational Research in Inflammatory Diseases, Michael E. DeBakey VA, Houston, Texas, USA
| | - Rick Wetsel
- Institute of Molecular Medicine, UT Health Science Center of Houston, Houston, Texas, USA
| | - Rajapakshe Kimal
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Cristian Coarfa
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Holger K Eltzschig
- Department of Anesthesiology, UT Health Science Center at Houston, Houston, Texas, USA
| | - David B Corry
- Department of Medicine, Pulmonary and Critical Care, Baylor College of Medicine, Houston, Texas, USA.,Center for Translational Research in Inflammatory Diseases, Michael E. DeBakey VA, Houston, Texas, USA.,Departments of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA.,Biology of Inflammation Center, Baylor College of Medicine, Houston, Texas, USA
| | - Farrah Kheradmand
- Department of Medicine, Pulmonary and Critical Care, Baylor College of Medicine, Houston, Texas, USA.,Center for Translational Research in Inflammatory Diseases, Michael E. DeBakey VA, Houston, Texas, USA.,Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, Texas, USA.,Departments of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA.,Biology of Inflammation Center, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
120
|
Potere N, Del Buono MG, Mauro AG, Abbate A, Toldo S. Low Density Lipoprotein Receptor-Related Protein-1 in Cardiac Inflammation and Infarct Healing. Front Cardiovasc Med 2019; 6:51. [PMID: 31080804 PMCID: PMC6497734 DOI: 10.3389/fcvm.2019.00051] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/09/2019] [Indexed: 01/07/2023] Open
Abstract
Acute myocardial infarction (AMI) leads to myocardial cell death and ensuing sterile inflammatory response, which represents an attempt to clear cellular debris and promote cardiac repair. However, an overwhelming, unopposed or unresolved inflammatory response following AMI leads to further injury, worse remodeling and heart failure (HF). Additional therapies are therefore warranted to blunt the inflammatory response associated with ischemia and reperfusion and prevent long-term adverse events. Low-density lipoprotein receptor-related protein 1 (LRP1) is a ubiquitous endocytic cell surface receptor with the ability to recognize a wide range of structurally and functionally diverse ligands. LRP1 transduces multiple intracellular signal pathways regulating the inflammatory reaction, tissue remodeling and cell survival after organ injury. In preclinical studies, activation of LRP1-mediated signaling in the heart with non-selective and selective LRP1 agonists is linked with a powerful cardioprotective effect, reducing infarct size and cardiac dysfunction after AMI. The data from early phase clinical studies with plasma-derived α1-antitrypsin (AAT), an endogenous LRP1 agonist, and SP16 peptide, a synthetic LRP1 agonist, support the translational value of LRP1 as a novel therapeutic target in AMI. In this review, we will summarize the cellular and molecular bases of LRP1 functions in modulating the inflammatory reaction and the reparative process after injury in various peripheral tissues, and discuss recent evidences implicating LRP1 in myocardial inflammation and infarct healing.
Collapse
Affiliation(s)
- Nicola Potere
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Marco Giuseppe Del Buono
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
- Department of Cardiovascular and Thoracic Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Adolfo Gabriele Mauro
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Antonio Abbate
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Stefano Toldo
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
121
|
Voices from the dead: The complex vocabulary and intricate grammar of dead cells. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 116:1-90. [PMID: 31036289 DOI: 10.1016/bs.apcsb.2019.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Of the roughly one million cells per second dying throughout the body, the vast majority dies by apoptosis, the predominant form of regulated cell death in higher organisms. Long regarded as mere waste, apoptotic cells are now recognized as playing a prominent and active role in homeostatic maintenance, especially resolution of inflammation, and in the sculpting of tissues during development. The activities associated with apoptotic cells are continually expanding, with more recent studies demonstrating their ability to modulate such vital functions as proliferation, survival, differentiation, metabolism, migration, and angiogenesis. In each case, the role of apoptotic cells is active, exerting their effects via new activities acquired during the apoptotic program. Moreover, the capacity to recognize and respond to apoptotic cells is not limited to professional phagocytes. Most, if not all, cells receive and integrate an array of signals from cells dying in their vicinity. These signals comprise a form of biochemical communication. As reviewed in this chapter, this communication is remarkably sophisticated; each of its three critical steps-encoding, transmission, and decoding of the apoptotic cell's "message"-is endowed with exquisite robustness. Together, the abundance and intricacy of the variables at each step comprise the vocabulary and grammar of the language by which dead cells achieve their post-mortem voice. The combinatorial complexity of the resulting communication network permits dying cells, through the signals they emit and the responses those signals elicit, to partake of an expanded role in homeostasis, acting as both sentinels of environmental change and agents of adaptation.
Collapse
|
122
|
Pio R, Ajona D, Ortiz-Espinosa S, Mantovani A, Lambris JD. Complementing the Cancer-Immunity Cycle. Front Immunol 2019; 10:774. [PMID: 31031765 PMCID: PMC6473060 DOI: 10.3389/fimmu.2019.00774] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/25/2019] [Indexed: 12/12/2022] Open
Abstract
Reactivation of cytotoxic CD8+ T-cell responses has set a new direction for cancer immunotherapy. Neutralizing antibodies targeting immune checkpoint programmed cell death protein 1 (PD-1) or its ligand (PD-L1) have been particularly successful for tumor types with limited therapeutic options such as melanoma and lung cancer. However, reactivation of T cells is only one step toward tumor elimination, and a substantial fraction of patients fails to respond to these therapies. In this context, combination therapies targeting more than one of the steps of the cancer-immune cycle may provide significant benefits. To find the best combinations, it is of upmost importance to understand the interplay between cancer cells and all the components of the immune response. This review focuses on the elements of the complement system that come into play in the cancer-immunity cycle. The complement system, an essential part of innate immunity, has emerged as a major regulator of cancer immunity. Complement effectors such as C1q, anaphylatoxins C3a and C5a, and their receptors C3aR and C5aR1, have been associated with tolerogenic cell death and inhibition of antitumor T-cell responses through the recruitment and/or activation of immunosuppressive cell subpopulations such as myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), or M2 tumor-associated macrophages (TAMs). Evidence is provided to support the idea that complement blocks many of the effector routes associated with the cancer-immunity cycle, providing the rationale for new therapeutic combinations aimed to enhance the antitumor efficacy of anti-PD-1/PD-L1 checkpoint inhibitors.
Collapse
Affiliation(s)
- Ruben Pio
- Program in Solid Tumors (CIMA) and Department of Biochemistry and Genetics (School of Medicine), University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Daniel Ajona
- Program in Solid Tumors (CIMA) and Department of Biochemistry and Genetics (School of Medicine), University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Sergio Ortiz-Espinosa
- Program in Solid Tumors (CIMA) and Department of Biochemistry and Genetics (School of Medicine), University of Navarra, Pamplona, Spain
| | - Alberto Mantovani
- Humanitas Clinical and Research Center, Humanitas University, Milan, Italy
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - John D. Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
123
|
Apoptotic cell-derived extracellular vesicles: structure–function relationships. Biochem Soc Trans 2019; 47:509-516. [DOI: 10.1042/bst20180080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/21/2022]
Abstract
Abstract
Apoptosis is an essential process for normal physiology and plays a key role in the resolution of inflammation. Clearance of apoptotic cells (ACs) involves complex signalling between phagocytic cells, ACs, and the extracellular vesicles (EVs) they produce. Here, we discuss apoptotic cell-derived extracellular vesicles (ACdEVs) and how their structure relates to their function in AC clearance and the control of inflammation, focussing on the ACdEV proteome. We review the current knowledge, ongoing work and future directions for research in this field.
Collapse
|
124
|
Investigation of the interaction between calreticulin and immunoglobulin G by capillary electrophoresis and computer modeling. Talanta 2019; 195:587-592. [DOI: 10.1016/j.talanta.2018.11.098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/20/2018] [Accepted: 11/26/2018] [Indexed: 12/22/2022]
|
125
|
Shao S, Sun X, Chen Y, Zhan B, Zhu X. Complement Evasion: An Effective Strategy That Parasites Utilize to Survive in the Host. Front Microbiol 2019; 10:532. [PMID: 30949145 PMCID: PMC6435963 DOI: 10.3389/fmicb.2019.00532] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 03/01/2019] [Indexed: 12/15/2022] Open
Abstract
Parasitic infections induce host immune responses that eliminate the invading parasites. However, parasites have evolved to develop many strategies to evade host immune attacks and survive in a hostile environment. The complement system acts as the first line of immune defense to eliminate the invading parasites by forming the membrane attack complex (MAC) and promoting an inflammatory reaction on the surface of invading parasites. To date, the complement activation pathway has been precisely delineated; however, the manner in which parasites escape complement attack, as a survival strategy in the host, is not well understood. Increasing evidence has shown that parasites develop sophisticated strategies to escape complement-mediated killing, including (i) recruitment of host complement regulatory proteins on the surface of the parasites to inhibit complement activation; (ii) expression of orthologs of host RCA to inhibit complement activation; and (iii) expression of parasite-encoded proteins, specifically targeting different complement components, to inhibit complement function and formation of the MAC. In this review, we compiled information regarding parasitic abilities to escape host complement attack as a survival strategy in the hostile environment of the host and the mechanisms underlying complement evasion. Effective escape of host complement attack is a crucial step for the survival of parasites within the host. Therefore, those proteins expressed by parasites and involved in the regulation of the complement system have become important targets for the development of drugs and vaccines against parasitic infections.
Collapse
Affiliation(s)
- Shuai Shao
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ximeng Sun
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yi Chen
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Bin Zhan
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Xinping Zhu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
126
|
Velazquez-Caldelas TE, Alcalá-Corona SA, Espinal-Enríquez J, Hernandez-Lemus E. Unveiling the Link Between Inflammation and Adaptive Immunity in Breast Cancer. Front Immunol 2019; 10:56. [PMID: 30761130 PMCID: PMC6362261 DOI: 10.3389/fimmu.2019.00056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/10/2019] [Indexed: 12/21/2022] Open
Abstract
Inflammation has been recognized as an important driver in the development and growth of malignancies. Inflammatory signaling in cancer emerges from the combinatorial interaction of several deregulated pathways. Pathway deregulation is often driven by changes in the underlying gene regulatory networks. Confronted with such complex scenario, it can be argued that a closer analysis of the structure of such regulatory networks will shed some light on how gene deregulation led to sustained inflammation in cancer. Here, we inferred an inflammation-associated gene regulatory network from 641 breast cancer and 78 healthy samples. A modular structure analysis of the regulatory network was carried out, revealing a hierarchical modular structure. Modules show significant overrepresentation score p-values for biological processes unveiling a definite association between inflammatory processes and adaptive immunity. Other modules are enriched for T-cell activation, differentiation of CD8+ lymphocytes and immune cell migration, thus reinforcing the aforementioned association. These analyses suggest that in breast cancer tumors, the balance between antitumor response and immune tolerance involving CD8+ T cells is tipped in favor of the tumor. One possible mechanism is the induction of tolerance and anergization of these cells by persistent antigen exposure.
Collapse
Affiliation(s)
| | - Sergio Antonio Alcalá-Corona
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Department of Ecology and Evolution, Erman Biology Center, The University of Chicago, Chicago, IL, United States
| | - Jesús Espinal-Enríquez
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Enrique Hernandez-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
127
|
Ohradanova-Repic A, Machacek C, Donner C, Mühlgrabner V, Petrovčíková E, Zahradníková A, Vičíková K, Hořejší V, Stockinger H, Leksa V. The mannose 6-phosphate/insulin-like growth factor 2 receptor mediates plasminogen-induced efferocytosis. J Leukoc Biol 2019; 105:519-530. [PMID: 30657605 PMCID: PMC6392118 DOI: 10.1002/jlb.1ab0417-160rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 12/17/2018] [Accepted: 12/24/2018] [Indexed: 12/14/2022] Open
Abstract
The plasminogen system is harnessed in a wide variety of physiological processes, such as fibrinolysis, cell migration, or efferocytosis; and accordingly, it is essential upon inflammation, tissue remodeling, wound healing, and for homeostatic maintenance in general. Previously, we identified a plasminogen receptor in the mannose 6-phosphate/insulin-like growth factor 2 receptor (M6P/IGF2R, CD222). Here, we demonstrate by means of genetic knockdown, knockout, and rescue approaches combined with functional studies that M6P/IGF2R is up-regulated on the surface of macrophages, recognizes plasminogen exposed on the surface of apoptotic cells, and mediates plasminogen-induced efferocytosis. The level of uptake of plasminogen-coated apoptotic cells inversely correlates with the TNF-α production by phagocytes indicating tissue clearance without inflammation by this mechanism. Our results reveal an up-to-now undetermined function of M6P/IGF2R in clearance of apoptotic cells, which is crucial for tissue homeostasis.
Collapse
Affiliation(s)
- Anna Ohradanova-Repic
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Centre for Pathophysiology, Infectiology & Immunology, Medical University of Vienna, Vienna, Austria
| | - Christian Machacek
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Centre for Pathophysiology, Infectiology & Immunology, Medical University of Vienna, Vienna, Austria
| | - Clemens Donner
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Centre for Pathophysiology, Infectiology & Immunology, Medical University of Vienna, Vienna, Austria
| | - Vanessa Mühlgrabner
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Centre for Pathophysiology, Infectiology & Immunology, Medical University of Vienna, Vienna, Austria
| | - Eva Petrovčíková
- Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovak Republic.,Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovak Republic
| | - Alexandra Zahradníková
- Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovak Republic.,Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Kristína Vičíková
- Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Václav Hořejší
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Hannes Stockinger
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Centre for Pathophysiology, Infectiology & Immunology, Medical University of Vienna, Vienna, Austria
| | - Vladimir Leksa
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Centre for Pathophysiology, Infectiology & Immunology, Medical University of Vienna, Vienna, Austria.,Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| |
Collapse
|
128
|
Merlinsky TR, Levine RL, Pronier E. Unfolding the Role of Calreticulin in Myeloproliferative Neoplasm Pathogenesis. Clin Cancer Res 2019; 25:2956-2962. [PMID: 30655313 DOI: 10.1158/1078-0432.ccr-18-3777] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/18/2018] [Accepted: 01/14/2019] [Indexed: 12/12/2022]
Abstract
In 2013, two seminal studies identified gain-of-function mutations in the Calreticulin (CALR) gene in a subset of JAK2/MPL-negative myeloproliferative neoplasm (MPN) patients. CALR is an endoplasmic reticulum (ER) chaperone protein that normally binds misfolded proteins in the ER and prevents their export to the Golgi and had never previously been reported mutated in cancer or to be associated with hematologic disorders. Further investigation determined that mutated CALR is able to achieve oncogenic transformation primarily through constitutive activation of the MPL-JAK-STAT signaling axis. Here we review our current understanding of the role of CALR mutations in MPN pathogenesis and how these insights can lead to innovative therapeutics approaches.
Collapse
Affiliation(s)
- Tiffany R Merlinsky
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York. .,Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York.,Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elodie Pronier
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
129
|
Mandal RK, Khan MA, Hussain A, Dar SA, Aloufi S, Jawed A, Wahid M, Panda AK, Lohani M, Akhter N, Khan S, Mishra BN, Haque S. Association of MBL2 gene polymorphisms with pulmonary tuberculosis susceptibility: trial sequence meta-analysis as evidence. Infect Drug Resist 2019; 12:185-210. [PMID: 30666135 PMCID: PMC6333159 DOI: 10.2147/idr.s188980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Mannose-binding lectin (MBL) or mannose-binding protein (MBP), encoded by MBL2 gene and secreted by the liver, activates complement system through lectin pathway in innate immunity against the host’s infection. Conflictingly, a number of MBL2 variants, rs1800450 (A>B), rs1800451 (A>C), rs5030737 (A>D), rs7096206 (Y>X), rs11003125 (H>L), and rs7095891 (P>Q) allele, have been found to be associated with compromised serum levels and pulmonary tuberculosis (PTB) susceptibility. The present meta-analysis study was performed to evaluate the potential association of these MBL2 gene variants with PTB susceptibility. Materials and methods A quantitative synthesis was performed on PubMed (Medline), EMBASE, and Google Scholar web database searches. A meta-analysis was performed to calculate the pooled odds ratios and 95% CIs for all the genetic models. Results A total of 14 eligible studies were included to analyze their pooled data for associations between alleles, genotypes, and minor allele carriers. The statistical analysis revealed the significant reduced PTB risk with homozygous variant genotype of rs1800451 polymorphism (CC vs AA: P=0.043; OR =0.828, 95% CI =0.689–0.994). Contrary to this, the variant allele of rs5030737 polymorphism showed association with increased PTB risk (D vs A: P=0.026; OR =1.563, 95% CI =1.054–2.317). However, the other genetic models of rs1800450 (A>B), rs7096206 (Y>X), and rs11003125 (H>L) MBL2 gene polymorphisms did not divulge any association with PTB susceptibility. Conclusion The current meta-analysis concludes that rs1800451 (A>C) and rs5030737 (A>D) polymorphisms of MBL2 gene play a significant role in PTB susceptibility. Further, well-designed epidemiological studies with larger sample size including consideration of environmental factors are warranted for the future.
Collapse
Affiliation(s)
- Raju K Mandal
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia,
| | - Munawwar Ali Khan
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, Dubai, United Arab Emirates
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| | - Sajad A Dar
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia,
| | - Sultan Aloufi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Ha'il, Ha'il, Saudi Arabia
| | - Arshad Jawed
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia,
| | - Mohd Wahid
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia,
| | - Aditya K Panda
- Centre for Life Sciences, Central University of Jharkhand, Ranchi, Jharkhand, India
| | - Mohtashim Lohani
- Department of Emergency Medical Services, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Naseem Akhter
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al Baha University, Al Baha, Saudi Arabia
| | - Saif Khan
- Department of Basic Sciences, College of Dentistry, University of Ha'il, Ha'il, Saudi Arabia
| | - Bhartendu Nath Mishra
- Department of Biotechnology, Institute of Engineering and Technology, Lucknow, Uttar Pradesh, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia,
| |
Collapse
|
130
|
Monsey L, Best LG, Zhu J, DeCroo S, Anderson MZ. The association of mannose binding lectin genotype and immune response to Chlamydia pneumoniae: The Strong Heart Study. PLoS One 2019; 14:e0210640. [PMID: 30629683 PMCID: PMC6328205 DOI: 10.1371/journal.pone.0210640] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 12/28/2018] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease (CVD) is an important contributor to morbidity and mortality in American Indian communities. The Strong Heart Study (SHS) was initiated in response to the need for population based estimates of cardiovascular disease in American Indians. Previous studies within SHS have identified correlations between heart disease and deficiencies in mannose binding lectin (MBL), a motif recognition molecule of the innate immune system. MBL mediates the immune response to invading pathogens including Chlamydia pneumoniae (Cp), which has also been associated with the development and progression of CVD. However, a link between MBL2 genotype and Cp in contributing to heart disease has not been established. To address this, SHS collected baseline Cp antibody titers (IgA and IgG) and MBL2 genotypes for common functional variants from 553 individuals among twelve participating tribes. A single nucleotide polymorphism (SNP) in the promoter, designated X/Y, correlated significantly with increased Cp IgG titer levels, whereas another promoter SNP (H/L) did not significantly influence antibody levels to Cp. Two variants within exon 1 of MBL2, the A and B alleles, also displayed significant association with Cp antibody titers. Some MBL2 genotypes were absent from the population, suggesting linkage disequilibrium may be operating within the SHS cohort. Additional factors, such as increasing age and socioeconomic status, were also associated with increased Cp IgG antibody titers. This study demonstrates that MBL2 genotype associates with immune reactivity to C. pneumoniae in the SHS cohort. Thus, MBL2 may contribute to the progression of cardiovascular disease (CVD) among American Indians indirectly through pathogen interactions in addition to its previously defined roles.
Collapse
Affiliation(s)
- Laine Monsey
- Department of Microbiology, The Ohio State University, Columbus, OH, United States of America
| | - Lyle G. Best
- Missouri Breaks Industries Research Inc., Timber Lakes, SD, United States of America
| | - Jianhui Zhu
- Medstar Research Institute, Washington, DC, United States of America
| | - Susan DeCroo
- Medstar Research Institute, Washington, DC, United States of America
| | - Matthew Z. Anderson
- Department of Microbiology, The Ohio State University, Columbus, OH, United States of America
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States of America
- * E-mail:
| |
Collapse
|
131
|
Tixeira R, Poon IKH. Disassembly of dying cells in diverse organisms. Cell Mol Life Sci 2019; 76:245-257. [PMID: 30317529 PMCID: PMC11105331 DOI: 10.1007/s00018-018-2932-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/25/2018] [Accepted: 10/01/2018] [Indexed: 01/09/2023]
Abstract
Programmed cell death (PCD) is a conserved phenomenon in multicellular organisms required to maintain homeostasis. Among the regulated cell death pathways, apoptosis is a well-described form of PCD in mammalian cells. One of the characteristic features of apoptosis is the change in cellular morphology, often leading to the fragmentation of the cell into smaller membrane-bound vesicles through a process called apoptotic cell disassembly. Interestingly, some of these morphological changes and cell disassembly are also noted in cells of other organisms including plants, fungi and protists while undergoing 'apoptosis-like PCD'. This review will describe morphologic features leading to apoptotic cell disassembly, as well as its regulation and function in mammalian cells. The occurrence of cell disassembly during cell death in other organisms namely zebrafish, fly and worm, as well as in other eukaryotic cells will also be discussed.
Collapse
Affiliation(s)
- Rochelle Tixeira
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| | - Ivan K H Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
132
|
Involvement of Surfactant Protein D in Ebola Virus Infection Enhancement via Glycoprotein Interaction. Viruses 2018; 11:v11010015. [PMID: 30587835 PMCID: PMC6356362 DOI: 10.3390/v11010015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/20/2018] [Accepted: 12/22/2018] [Indexed: 01/05/2023] Open
Abstract
Since the largest 2014⁻2016 Ebola virus disease outbreak in West Africa, understanding of Ebola virus infection has improved, notably the involvement of innate immune mediators. Amongst them, collectins are important players in the antiviral innate immune defense. A screening of Ebola glycoprotein (GP)-collectins interactions revealed the specific interaction of human surfactant protein D (hSP-D), a lectin expressed in lung and liver, two compartments where Ebola was found in vivo. Further analyses have demonstrated an involvement of hSP-D in the enhancement of virus infection in several in vitro models. Similar effects were observed for porcine SP-D (pSP-D). In addition, both hSP-D and pSP-D interacted with Reston virus (RESTV) GP and enhanced pseudoviral infection in pulmonary cells. Thus, our study reveals a novel partner of Ebola GP that may participate to enhance viral spread.
Collapse
|
133
|
Dwivedi N, Radic M. Burning controversies in NETs and autoimmunity: The mysteries of cell death and autoimmune disease. Autoimmunity 2018; 51:267-280. [PMID: 30417698 DOI: 10.1080/08916934.2018.1523395] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The causes and mechanisms of autoimmune disease pose continuing challenges to the scientific community. Recent clues implicate a peculiar feature of neutrophils, their ability to release nuclear chromatin in the form of neutrophil extracellular traps (NETs), in the induction or progression of autoimmune disease. Efforts to define the beneficial versus detrimental effects of NET release have, as yet, only partially revealed mechanisms that guide this process. Evidence suggests that the process of NET release is highly regulated, but the details of regulation remain controversial and obscure. Without a better understanding of the factors that initiate and control NET formation, the judicious modification of neutrophil behaviour for medically useful purposes appears remote. We highlight gaps and inconsistencies in published work, which make NETs and their role in health and disease a puzzle that deserves more focused attention.
Collapse
Affiliation(s)
- Nishant Dwivedi
- a TIP Immunology , EMD Serono Research and Development Institute, Inc , Billerica , MA , USA
| | - Marko Radic
- b Department of Microbiology, Immunology and Biochemistry , University of Tennessee Health Science Center , Memphis , TN , USA
| |
Collapse
|
134
|
Chaibangyang W, Geadkaew-Krenc A, Smooker PM, Tesana S, Grams R. Evaluation of Opisthorchis viverrini calreticulin for potential host modulation. Acta Trop 2018; 187:175-181. [PMID: 30098943 DOI: 10.1016/j.actatropica.2018.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 12/14/2022]
Abstract
The multifunctional calreticulin (CALR) was identified as a major calcium-binding protein of the endoplasmic reticulum before being recognized as a chaperone in the same place. Only later were activities of calreticulin outside the endoplasmic reticulum described that for example affect cell proliferation and the innate immune system. In the present work we have investigated those extracellular activities of CALR from the cancerogenic human liver fluke Opisthorchis viverrini (OvCALR), as they might be important in host/parasite interaction. We first demonstrate that OvCALR is released from the parasite and stimulates a specific humoral immune response. Recombinant OvCALR is then shown to suppress proliferation of primary endothelial cells, their motility and sprouting activities. The potential of OvCALR to interfere with the complement system is established, firstly by demonstrating its direct binding to C1q and, secondly by suppression of hemolysis of sensitized red blood cells. These findings suggest that OvCALR is an important parasite antigen that could modulate diverse host functions and support parasite survival.
Collapse
Affiliation(s)
- Wanlapa Chaibangyang
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumthani 12121, Thailand
| | - Amornrat Geadkaew-Krenc
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumthani 12121, Thailand
| | - Peter M Smooker
- School of Science, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Smarn Tesana
- Food-borne Parasite Research Group, Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Rudi Grams
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumthani 12121, Thailand.
| |
Collapse
|
135
|
Wang Y, Yin J, Wang C, Hu H, Li X, Xue M, Liu J, Cheng W, Wang Y, Li Y, Shi Y, Tan J, Li X, Liu F, Liu Q, Yan S. Microglial Mincle receptor in the PVN contributes to sympathetic hyperactivity in acute myocardial infarction rat. J Cell Mol Med 2018; 23:112-125. [PMID: 30353660 PMCID: PMC6307841 DOI: 10.1111/jcmm.13890] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/08/2018] [Indexed: 01/12/2023] Open
Abstract
Malignant ventricular arrhythmias (VAs) following myocardial infarction (MI) is a lethal complication resulting from sympathetic nerve hyperactivity. Numerous evidence have shown that inflammation within the paraventricular nucleus (PVN) participates in sympathetic hyperactivity. Our aim was to explore the role of Macrophage‐inducible C‐type lectin (Mincle) within the PVN in augmenting sympathetic activity following MI,and whether NOD‐like receptor family pyrin domain‐containing 3 (NLRP3) inflammasome/IL‐1β axis is involved in this activity. MI was induced by coronary artery ligation. Mincle expression localized in microglia within the PVN was markedly increased at 24 hours post‐MI together with sympathetic hyperactivity, as indicated by measurement of the renal sympathetic nerve activity (RSNA) and norepinephrine (NE) concentration. Mincle‐specific siRNA was administrated locally to the PVN, which consequently decreased microglial activation and sympathetic nerve activity. The MI rats exhibited a higher arrhythmia score after programmed electric stimulation than that treated with Mincle siRNA, suggesting that the inhibition of Mincle attenuated foetal ventricular arrhythmias post‐MI. The underlying mechanism of Mincle in sympathetic hyperactivity was investigated in lipopolysaccharide (LPS)‐primed naïve rats. Recombinant Sin3A‐associated protein 130kD (rSAP130), an endogenous ligand for Mincle, induced high levels of NLRP3 and mature IL‐1β protein. PVN‐targeted injection of NLRP3 siRNA or IL‐1β antagonist gevokizumab attenuated sympathetic hyperactivity. Together, the data indicated that the knockdown of Mincle in microglia within the PVN prevents VAs by attenuating sympathetic hyperactivity and ventricular susceptibility, in part by inhibiting its downstream NLRP3/IL‐1β axis following MI. Therapeutic interventions targeting Mincle signalling pathway could constitute a novel approach for preventing infarction injury.
Collapse
Affiliation(s)
- Yu Wang
- School of Medicine, Shandong University, Jinan, China
| | - Jie Yin
- Department of Cardiology, Qianfoshan Hospital of Shandong Province, Jinan, China
| | - Cailing Wang
- Department of Endocrinology, Qianfoshan Hospital of Shandong Province, Jinan, China
| | - Hesheng Hu
- Department of Cardiology, Qianfoshan Hospital of Shandong Province, Jinan, China
| | - Xiaolu Li
- Department of Cardiology, Qianfoshan Hospital of Shandong Province, Jinan, China
| | - Mei Xue
- Department of Cardiology, Qianfoshan Hospital of Shandong Province, Jinan, China
| | - Ju Liu
- Medical Research Center, Qianfoshan Hospital of Shandong Province, Jinan, China
| | - Wenjuan Cheng
- Department of Cardiology, Qianfoshan Hospital of Shandong Province, Jinan, China
| | - Ye Wang
- Department of Cardiology, Qianfoshan Hospital of Shandong Province, Jinan, China
| | - Yan Li
- Medical Research Center, Qianfoshan Hospital of Shandong Province, Jinan, China
| | - Yugen Shi
- School of Medicine, Shandong University, Jinan, China
| | - Jiayu Tan
- School of Medicine, Shandong University, Jinan, China
| | - Xinran Li
- Department of Cardiology, Qianfoshan Hospital of Shandong Province, Jinan, China
| | - Fuhong Liu
- Medical Research Center, Qianfoshan Hospital of Shandong Province, Jinan, China
| | - Qiang Liu
- Medical Research Center, Qianfoshan Hospital of Shandong Province, Jinan, China
| | - Suhua Yan
- School of Medicine, Shandong University, Jinan, China.,Department of Cardiology, Qianfoshan Hospital of Shandong Province, Jinan, China
| |
Collapse
|
136
|
Zhou J, Li J, Yu Y, Liu Y, Li H, Liu Y, Wang J, Zhang L, Lu X, Chen Z, Zuo D. Mannan-binding lectin deficiency exacerbates sterile liver injury in mice through enhancing hepatic neutrophil recruitment. J Leukoc Biol 2018; 105:177-186. [PMID: 30351498 DOI: 10.1002/jlb.3a0718-251r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/10/2018] [Accepted: 10/03/2018] [Indexed: 12/16/2022] Open
Abstract
Noninfectious liver injury, including the effects of drugs and diet, is a major cause of liver diseases worldwide. The innate inflammatory response to hepatocyte death plays a crucial role in the outcome of liver injury. Mannan-binding lectin (MBL) is a pattern recognition molecule of the innate immune system, which is primarily produced by liver. MBL deficiency occurs with high frequency in the population and is reported associated with predisposition to infectious diseases. We here observed that genetic MBL ablation strongly sensitizes mice to sterile liver injury induced by carbon tetrachloride (CCl4 ). Aggravated liver damage was shown in CCl4 -administrated MBL-/- mice, as evidenced by severe hepatocyte death, elevated serum alanine aminotransferase and lactate dehydrogenase activity, and enhanced production of inflammatory cytokines. Mechanistic studies established that MBL deficiency caused increased chemokine CXCL2 production from liver macrophages upon CCl4 stimulation, thereby promoting the hepatic recruitment of neutrophils and subsequent liver damage. Furthermore, MBL-mediated protection from CCl4 -induced liver injury was validated by administration of an MBL-expressing liver-specific adeno-associated virus, which effectively ameliorated the hepatic damage in CCl4-treated MBL-/- mice. We propose that MBL may be exploited as a new therapeutic approach in the treatment of chemical-induced sterile liver injury in patients with MBL deficiency.
Collapse
Affiliation(s)
- Jia Zhou
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Junru Li
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yu Yu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan Liu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Huifang Li
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunzhi Liu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jun Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Liyun Zhang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiao Lu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhengliang Chen
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Province Key Laboratory of Proteomics, Southern Medical University, Guangzhou, Guangdong, China
| | - Daming Zuo
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Province Key Laboratory of Proteomics, Southern Medical University, Guangzhou, Guangdong, China.,Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China.,Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
137
|
Preconditioning in the Rhesus Macaque Induces a Proteomic Signature Following Cerebral Ischemia that Is Associated with Neuroprotection. Transl Stroke Res 2018; 10:440-448. [PMID: 30341719 DOI: 10.1007/s12975-018-0670-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/07/2018] [Accepted: 10/09/2018] [Indexed: 12/28/2022]
Abstract
Each year, thousands of patients are at risk of cerebral ischemic injury, due to iatrogenic responses to surgical procedures. Prophylactic treatment of these patients as standard care could minimize potential neurological complications. We have shown that protection of brain tissue, in a non-human primate model of cerebral ischemic injury, is possible through pharmacological preconditioning using the immune activator D192935. We postulate that preconditioning with D192935 results in neuroprotective reprogramming that is evident in the brain following experimentally induced cerebral ischemia. We performed quantitative proteomic analysis of cerebral spinal fluid (CSF) collected post-stroke from our previously published efficacy study to determine whether CSF protein profiles correlated with induced protection. Four groups of animals were examined: naïve animals (no treatment or stroke); animals treated with vehicle prior to stroke; D192935 treated and stroked animals, further delineated into two groups, ones that were protected (small infarcts) and those that were not protected (large infarcts). We found that distinct protein clusters defined the protected and non-protected animal groups, with a 16-member cluster of proteins induced exclusively in D192935 protected animals. Seventy percent of the proteins induced in the protected animals have functions that would enhance neuroprotection and tissue repair, including several members associated with M2 macrophages, a macrophage phenotype shown to contribute to neuroprotection and repair during ischemic injury. These studies highlight the translational importance of CSF biomarkers in defining mechanism and monitoring responses to treatment in development of stroke therapeutics.
Collapse
|
138
|
Komorowski M, Tisonczyk J, Kolakowska A, Drozdz R, Kozbor D. Modulation of the Tumor Microenvironment by CXCR4 Antagonist-Armed Viral Oncotherapy Enhances the Antitumor Efficacy of Dendritic Cell Vaccines against Neuroblastoma in Syngeneic Mice. Viruses 2018; 10:v10090455. [PMID: 30149659 PMCID: PMC6165252 DOI: 10.3390/v10090455] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 02/06/2023] Open
Abstract
The induction of antitumor immune responses in tumor-bearing hosts depends on efficient uptake and processing of native or modified tumors/self-antigens by dendritic cells (DCs) to activate immune effector cells, as well as the extent of the immunosuppressive network in the tumor microenvironment (TME). Because the C-X-C motif chemokine receptor 4 (CXCR4) for the C-X-C motif chemokine 12 (CXCL12) is involved in signaling interactions between tumor cells and their TME, we used oncolytic virotherapy with a CXCR4 antagonist to investigate whether targeting of the CXCL12/CXCR4 signaling axis in murine neuroblastoma cells (NXS2)-bearing syngeneic mice affects the efficacy of bone marrow (BM)-derived DCs loaded with autologous tumor cells treated with doxorubicin for induction of immunogenic cell death. Here, we show that CXCR4 antagonist expression from an oncolytic vaccinia virus delivered intravenously to mice with neuroblastoma tumors augmented efficacy of the DC vaccines compared to treatments mediated by a soluble CXCR4 antagonist or oncolysis alone. This study is the first demonstration that modulating the tumor microenvironment by an armed oncolytic virus could have a significant impact on the efficacy of DC vaccines, leading to the generation of effective protection against neuroblastoma challenge.
Collapse
Affiliation(s)
- Marcin Komorowski
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| | - Joanna Tisonczyk
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, USA.
- Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Medical School, Medyczna 9, 30-688 Cracow, Poland.
| | - Agnieszka Kolakowska
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, USA.
- Department of Virology, National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland.
| | - Ryszard Drozdz
- Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Medical School, Medyczna 9, 30-688 Cracow, Poland.
| | - Danuta Kozbor
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| |
Collapse
|
139
|
Feng M, Marjon KD, Zhu F, Weissman-Tsukamoto R, Levett A, Sullivan K, Kao KS, Markovic M, Bump PA, Jackson HM, Choi TS, Chen J, Banuelos AM, Liu J, Gip P, Cheng L, Wang D, Weissman IL. Programmed cell removal by calreticulin in tissue homeostasis and cancer. Nat Commun 2018; 9:3194. [PMID: 30097573 PMCID: PMC6086865 DOI: 10.1038/s41467-018-05211-7] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 06/19/2018] [Indexed: 02/05/2023] Open
Abstract
Macrophage-mediated programmed cell removal (PrCR) is a process essential for the clearance of unwanted (damaged, dysfunctional, aged, or harmful) cells. The detection and recognition of appropriate target cells by macrophages is a critical step for successful PrCR, but its molecular mechanisms have not been delineated. Here using the models of tissue turnover, cancer immunosurveillance, and hematopoietic stem cells, we show that unwanted cells such as aging neutrophils and living cancer cells are susceptible to "labeling" by secreted calreticulin (CRT) from macrophages, enabling their clearance through PrCR. Importantly, we identified asialoglycans on the target cells to which CRT binds to regulate PrCR, and the availability of such CRT-binding sites on cancer cells correlated with the prognosis of patients in various malignancies. Our study reveals a general mechanism of target cell recognition by macrophages, which is the key for the removal of unwanted cells by PrCR in physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Mingye Feng
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA.
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA.
| | - Kristopher D Marjon
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA, 94305, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
| | - Fangfang Zhu
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA, 94305, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
| | - Rachel Weissman-Tsukamoto
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA, 94305, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
| | - Aaron Levett
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA, 94305, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
| | - Katie Sullivan
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA, 94305, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
| | - Kevin S Kao
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA, 94305, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
| | - Maxim Markovic
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA, 94305, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
| | - Paul A Bump
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA, 94305, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
| | - Hannah M Jackson
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA, 94305, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
| | - Timothy S Choi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA, 94305, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
| | - Jing Chen
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Allison M Banuelos
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA, 94305, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
| | - Jie Liu
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA, 94305, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
| | - Phung Gip
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA, 94305, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
| | - Lei Cheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Denong Wang
- SRI International, Menlo Park, CA, 94025, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA.
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA, 94305, USA.
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA.
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
140
|
Tajbakhsh A, Rezaee M, Kovanen PT, Sahebkar A. Efferocytosis in atherosclerotic lesions: Malfunctioning regulatory pathways and control mechanisms. Pharmacol Ther 2018; 188:12-25. [DOI: 10.1016/j.pharmthera.2018.02.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
141
|
Forouzanfar F, Butler AE, Banach M, Barreto GE, Sahbekar A. Modulation of heat shock proteins by statins. Pharmacol Res 2018; 134:134-144. [DOI: 10.1016/j.phrs.2018.06.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 12/19/2022]
|
142
|
Mehrabi M, Amini F, Mehrabi S. Active Role of the Necrotic Zone in Desensitization of Hypoxic Macrophages and Regulation of CSC-Fate: A hypothesis. Front Oncol 2018; 8:235. [PMID: 29988496 PMCID: PMC6026632 DOI: 10.3389/fonc.2018.00235] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 06/11/2018] [Indexed: 01/30/2023] Open
Abstract
Fast-proliferating cancer cells in the hypoxic region face a shortage of oxygen and nutrients, undergo necrotic cell death, and release numerous signaling components. Hypoxia-induced chemo-attractants signal for macrophages/monocytes to clear debris and return the system to steady state. Accordingly, macrophages arrange into pre-necrotic positions, where they are continuously exposed to stress signals. It can thus be hypothesized that gradual alteration of gene expression in macrophages eventually turns off their phagocytic machinery. Uncleared cell corpses within the hypoxic region potentially provide a rich source of building blocks for anaerobic metabolism of cancer stem cells via macropinocytosis, and are conceivably implicated in tumor progression and invasion.
Collapse
Affiliation(s)
| | - Fatemeh Amini
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Shima Mehrabi
- Internal Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
143
|
Cardiac-derived CTRP9 protects against myocardial ischemia/reperfusion injury via calreticulin-dependent inhibition of apoptosis. Cell Death Dis 2018; 9:723. [PMID: 29925877 PMCID: PMC6010444 DOI: 10.1038/s41419-018-0726-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/10/2018] [Accepted: 05/17/2018] [Indexed: 12/17/2022]
Abstract
Cardiokines play an essential role in maintaining normal cardiac functions and responding to acute myocardial injury. Studies have demonstrated the heart itself is a significant source of C1q/TNF-related protein 9 (CTRP9). However, the biological role of cardiac-derived CTRP9 remains unclear. We hypothesize cardiac-derived CTRP9 responds to acute myocardial ischemia/reperfusion (MI/R) injury as a cardiokine. We explored the role of cardiac-derived CTRP9 in MI/R injury via genetic manipulation and a CTRP9-knockout (CTRP9-KO) animal model. Inhibition of cardiac CTRP9 exacerbated, whereas its overexpression ameliorated, left ventricular dysfunction and myocardial apoptosis. Endothelial CTRP9 expression was unchanged while cardiomyocyte CTRP9 levels decreased after simulated ischemia/`reperfusion (SI/R) in vitro. Cardiomyocyte CTRP9 overexpression inhibited SI/R-induced apoptosis, an effect abrogated by CTRP9 antibody. Mechanistically, cardiac-derived CTRP9 activated anti-apoptotic signaling pathways and inhibited endoplasmic reticulum (ER) stress-related apoptosis in MI/R injury. Notably, CTRP9 interacted with the ER molecular chaperone calreticulin (CRT) located on the cell surface and in the cytoplasm of cardiomyocytes. The CTRP9-CRT interaction activated the protein kinase A-cAMP response element binding protein (PKA-CREB) signaling pathway, blocked by functional neutralization of the autocrine CTRP9. Inhibition of either CRT or PKA blunted cardiac-derived CTRP9's anti-apoptotic actions against MI/R injury. We further confirmed these findings in CTRP9-KO rats. Together, these results demonstrate that autocrine CTRP9 of cardiomyocyte origin protects against MI/R injury via CRT association, activation of the PKA-CREB pathway, ultimately inhibiting cardiomyocyte apoptosis.
Collapse
|
144
|
Abstract
Cell death is a perpetual feature of tissue microenvironments; each day under homeostatic conditions, billions of cells die and must be swiftly cleared by phagocytes. However, cell death is not limited to this natural turnover-apoptotic cell death can be induced by infection, inflammation, or severe tissue injury. Phagocytosis of apoptotic cells is thus coupled to specific functions, from the induction of growth factors that can stimulate the replacement of dead cells to the promotion of tissue repair or tissue remodeling in the affected site. In this review, we outline the mechanisms by which phagocytes sense apoptotic cell death and discuss how phagocytosis is integrated with environmental cues to drive appropriate responses.
Collapse
Affiliation(s)
- Lidia Bosurgi
- I. Medizinische Klinik und Poliklinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,Bernard-Nocht-Institut für Tropenmedizin, Hamburg, Germany
| | - Lindsey D Hughes
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| | - Carla V Rothlin
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA.,Department of Pharmacology, School of Medicine, Yale University, New Haven, CT, USA
| | - Sourav Ghosh
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT, USA.,Department of Neurology, School of Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
145
|
Kuehn S, Reinehr S, Stute G, Rodust C, Grotegut P, Hensel AT, Dick HB, Joachim SC. Interaction of complement system and microglia activation in retina and optic nerve in a NMDA damage model. Mol Cell Neurosci 2018; 89:95-106. [PMID: 29738834 DOI: 10.1016/j.mcn.2018.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/14/2018] [Accepted: 05/04/2018] [Indexed: 01/01/2023] Open
Abstract
It is known that intravitreally injected N-methyl-d-aspartate (NMDA) leads to fast retina and optic nerve degeneration and can directly activate microglia. Here, we analyzed the relevance for microglia related degenerating factors, the proteins of the complement system, at a late stage in the NMDA damage model. Therefore, different doses of NMDA (0 (PBS), 20, 40, 80 nmol) were intravitreally injected in rat eyes. Proliferative and activated microglia/macrophages (MG/Mϕ) were found in retina and optic nerve 2 weeks after NMDA injection. All three complement pathway proteins were activated in retinas after 40 and 80 nmol NMDA treatment. 80 nmol NMDA injection also lead to more numerous depositions of complement factors C3 and membrane attack complex (MAC) in retina and MAC in optic nerve. Additionally, more MAC+ depositions were detected in optic nerves of the 40 nmol NMDA group. In this NMDA model, the retina is first affected followed by optic nerve damage. However, we found initiating complement processes in the retina, while more deposits of the terminal complex were present 2 weeks after NMDA injection in the optic nerve. The complement system can be activated in waves and possibly a second wave is still on-going in the retina, while the first activation wave is in the final phase in the optic nerve. Only the damaged tissues showed microglia activation as well as proliferation and an increase of complement proteins. Interestingly, the microglia/macrophages (MG/Mϕ) in this model were closely connected with the inductors of the classical and lectin pathway, but not with the alternative pathway. However, all three initiating complement pathways were upregulated in the retina. The alternative pathway seems to be triggered by other mechanisms in this NMDA model. Our study showed an ongoing interaction of microglia and complement proteins in a late stage of a degenerative process.
Collapse
Affiliation(s)
- Sandra Kuehn
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Sabrina Reinehr
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Gesa Stute
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Cara Rodust
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Pia Grotegut
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Alexander-Tobias Hensel
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - H Burkhard Dick
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Stephanie C Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany.
| |
Collapse
|
146
|
Preconditioning by Hydrogen Peroxide Enhances Multiple Properties of Human Decidua Basalis Mesenchymal Stem/Multipotent Stromal Cells. Stem Cells Int 2018; 2018:6480793. [PMID: 29795719 PMCID: PMC5949187 DOI: 10.1155/2018/6480793] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/26/2018] [Indexed: 02/06/2023] Open
Abstract
Stem cell-based therapies rely on stem cell ability to repair in an oxidative stress environment. Preconditioning of mesenchymal stem cells (MSCs) to a stress environment has beneficial effects on their ability to repair injured tissues. We previously reported that MSCs from the decidua basalis (DBMSCs) of human placenta have many important cellular functions that make them potentially useful for cell-based therapies. Here, we studied the effect of DBMSC preconditioning to a stress environment. DBMSCs were exposed to various concentrations of hydrogen peroxide (H2O2), and their functions were then assessed. DBMSC expression of immune molecules after preconditioning was also determined. DBMSC preconditioning with H2O2 enhanced their proliferation, colonogenicity, adhesion, and migration. In addition, DBMSCs regardless of H2O2 treatment displayed antiangiogenic activity. H2O2 preconditioning also increased DBMSC expression of genes that promote cellular functions and decreased the expression of genes, which have opposite effect on their functions. Preconditioning also reduced DBMSC expression of IL-1β, but had no effects on the expression of other immune molecules that promote proliferation, adhesion, and migration. These data show that DBMSCs resist a toxic environment, which adds to their potential as a candidate stem cell type for treating various diseases in hostile environments.
Collapse
|
147
|
Reid KBM. Complement Component C1q: Historical Perspective of a Functionally Versatile, and Structurally Unusual, Serum Protein. Front Immunol 2018; 9:764. [PMID: 29692784 PMCID: PMC5902488 DOI: 10.3389/fimmu.2018.00764] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/27/2018] [Indexed: 12/28/2022] Open
Abstract
Complement component C1q plays an important recognition role in adaptive, and innate, immunity through its ability to interact, via its six globular head regions, with both immunoglobulin and non-immunoglobulin activators of the complement system, and also in the clearance of cell debris, and by playing a role in regulation of cellular events by interacting with a wide range of cell surface molecules. The presence of collagen-like triple-helical structures within C1q appears crucial to the presentation, and multivalent binding, of the globular heads of C1q to targets, and also to its association with the proenzyme complex of C1r2–C1s2, to yield the C1 complex. The possible role that movement of these collagen-like structures may play in the activation of the C1 complex is a controversial area, with there still being no definitive answer as to how the first C1r proenzyme molecule becomes activated within the C1 complex, thus allowing it to activate proenzyme C1s, and initiate and the consequent cascade of events in the activation of the classical pathway of complement. The globular heads of C1q are similar to domains found within the tumor necrosis factor (TNF) superfamily of proteins, and have been shown to bind to a very wide range of ligands. In addition to its well-defined roles in infection and immunity, a variety of other functions associated with C1q include possible roles, in the development of problems in the central nervous system, which occur with aging, and perhaps in the regulation of tumor growth.
Collapse
Affiliation(s)
- Kenneth B M Reid
- Green Templeton College, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
148
|
Coornaert I, Hofmans S, Devisscher L, Augustyns K, Van Der Veken P, De Meyer GRY, Martinet W. Novel drug discovery strategies for atherosclerosis that target necrosis and necroptosis. Expert Opin Drug Discov 2018; 13:477-488. [PMID: 29598451 DOI: 10.1080/17460441.2018.1457644] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Formation and enlargement of a necrotic core play a pivotal role in atherogenesis. Since the discovery of necroptosis, which is a regulated form of necrosis, prevention of necrotic cell death has become an attractive therapeutic goal to reduce plaque formation. Areas covered: This review highlights the triggers and consequences of (unregulated) necrosis and necroptosis in atherosclerosis. The authors discuss different pharmacological strategies to inhibit necrotic cell death in advanced atherosclerotic plaques. Expert opinion: Addition of a necrosis or necroptosis inhibitor to standard statin therapy could be a promising strategy for primary prevention of cardiovascular disease. However, a necrosis inhibitor cannot block all necrosis stimuli in atherosclerotic plaques. A necroptosis inhibitor could be more effective, because necroptosis is mediated by specific proteins, termed receptor-interacting serine/threonine-protein kinases (RIPK) and mixed lineage kinase domain-like pseudokinase (MLKL). Currently, only RIPK1 inhibitors have been successfully used in atherosclerotic mouse models to inhibit necroptosis. However, because RIPK1 is involved in both necroptosis and apoptosis, and also RIPK1-independent necroptosis can occur, we feel that targeting RIPK3 and MLKL could be a more attractive therapeutic approach to inhibit necroptosis. Therefore, future challenges will consist of developing RIPK3 and MLKL inhibitors applicable in both preclinical and clinical settings.
Collapse
Affiliation(s)
- Isabelle Coornaert
- a Laboratory of Physiopharmacology , University of Antwerp , Wilrijk , Belgium
| | - Sam Hofmans
- b Laboratory of Medicinal Chemistry , University of Antwerp , Wilrijk , Belgium
| | - Lars Devisscher
- b Laboratory of Medicinal Chemistry , University of Antwerp , Wilrijk , Belgium
| | - Koen Augustyns
- b Laboratory of Medicinal Chemistry , University of Antwerp , Wilrijk , Belgium
| | | | - Guido R Y De Meyer
- a Laboratory of Physiopharmacology , University of Antwerp , Wilrijk , Belgium
| | - Wim Martinet
- a Laboratory of Physiopharmacology , University of Antwerp , Wilrijk , Belgium
| |
Collapse
|
149
|
Kumari R, Gupta P, Tiwari S. Ubc7/Ube2g2 ortholog in Entamoeba histolytica: connection with the plasma membrane and phagocytosis. Parasitol Res 2018; 117:1599-1611. [PMID: 29594345 DOI: 10.1007/s00436-018-5842-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/15/2018] [Indexed: 12/13/2022]
Abstract
Endoplasmic reticulum (ER)-associated degradation (ERAD) and unfolded protein response (UPR) pathways are important for quality and quantity control of membrane and secretory proteins. We have identified orthologs of ER-associated ubiquitin conjugating enzymes (E2s) Ubc6/Ube2j2 and Ubc7/Ube2g2, ubiquitin ligases (E3) Hrd1 and GP78/AMFR, and sensor of UPR, Ire1 in E. histolytica that show conservation of important features of these proteins. Biochemical characterization of the ortholog of ERAD E2, Ubc7/Ube2g2 (termed as EhUbc7), was carried out. This E2 was transcriptionally upregulated several folds upon induction of UPR with tunicamycin. Ire1 ortholog was also upregulated upon UPR induction suggesting a linked UPR and ERAD pathway in this organism. EhUbc7 showed enzymatic activity and, similar to its orthologs in higher eukaryotes, formed polyubiquitin chains in vitro and localized to both cytoplasm and membranes. However, unlike its ortholog in higher eukaryotes, it also showed localization to the plasma membrane along with calreticulin. Inactivation of EhUbc7 significantly inhibited erythrophagocytosis, suggesting a novel function that has not been reported before for this E2. No change in growth, motility, or cell-surface expression of Gal/GalNAC lectin was observed due to inactivation of EhUbc7. The protein was present in the phagocytic cups but not in the phagosomes. A significant decrease in the number of phagocytic cups in inactive EhUbc7 expressing cells was observed, suggesting altered kinetics of phagocytosis. These findings have implications for evolutionary and mechanistic understanding of connection between phagocytosis and ER-associated proteins.
Collapse
Affiliation(s)
- Rinki Kumari
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Preeti Gupta
- Microbiology Division, Defence Research and Development Establishment, Jhansi Road, Gwalior, MP, 474002, India
| | - Swati Tiwari
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
150
|
Expression, Distribution, and Role of C-Type Lectin Receptors in the Human and Animal Middle Ear and Eustachian Tube: A Review. Molecules 2018; 23:molecules23040734. [PMID: 29565818 PMCID: PMC6017961 DOI: 10.3390/molecules23040734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/14/2018] [Accepted: 03/21/2018] [Indexed: 11/17/2022] Open
Abstract
Otitis media (OM) is a group of inflammatory diseases of the middle ear (ME), regardless of cause or pathological mechanism. Among the molecular biological studies assessing the pathology of OM are investigations into the expression of C-type lectin receptors (CLR) in the ME and Eustachian tube (ET). To date, nine studies have evaluated CLR expression in the ME and ET. The expression of individual CLRs in mammalian ME and ET varies by species and model of OM. Assessments have shown that the patterns of CLR expression in the ME and ET vary; that CLR expression may vary by type of OM; and that the distribution and levels of expression of CLRs may depend on the presence or absence of inflammation, with variations even within the same species and same tissue. Infection of the ME and ET with various pathogens is a common cause of all types of OM, with host responses to pathogens mediated initially by the innate immune system. CLRs are important factors in the innate immune system because they act as both adhesion molecules and as pathogen recognition receptors. The expression of CLRs in OM tissues suggests that CLRs are associated with the pathogenesis of various types of OM.
Collapse
|