101
|
Singh AK, Novakova L, Axelsson M, Malmeström C, Zetterberg H, Lycke J, Cardell SL. High Interferon-γ Uniquely in Vδ1 T Cells Correlates with Markers of Inflammation and Axonal Damage in Early Multiple Sclerosis. Front Immunol 2017; 8:260. [PMID: 28337205 PMCID: PMC5343019 DOI: 10.3389/fimmu.2017.00260] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/21/2017] [Indexed: 11/25/2022] Open
Abstract
We have identified a population of T lymphocytes in peripheral blood, Vδ1 TCRγδ T lymphocytes, which unexpectedly was uniquely expressing high production of interferon-γ in newly diagnosed, untreated multiple sclerosis (MS) patients. IFN-γ production in this population distinctly correlated to parameters of clinical disease activity, inflammation, and neuronal damage. These Vδ1 T lymphocytes belong to a population of innate T lymphocytes that recognize antigen in the context of CD1d/CD1c and which include reactivity to the myelin glycosphingolipid sulfatide. Importantly, patients treated with natalizumab, blocking leukocyte transmigration to central nervous system, had completely normalized levels of interferon-γ-producing Vδ1 T lymphocytes. A biomarker and early sign of demyelinating disease in MS is much warranted and would help identify immunopathogenesis and prognosis of disease as well as monitor success with adequate treatment. The present study identifies the Vδ1 T lymphocytes as an early marker of MS and a possible link to understanding the disease etiology.
Collapse
Affiliation(s)
- Avadhesh Kumar Singh
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Lenka Novakova
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Markus Axelsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Clas Malmeström
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Jan Lycke
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Susanna L Cardell
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| |
Collapse
|
102
|
Terrazas C, de Dios Ruiz-Rosado J, Amici SA, Jablonski KA, Martinez-Saucedo D, Webb LM, Cortado H, Robledo-Avila F, Oghumu S, Satoskar AR, Rodriguez-Sosa M, Terrazas LI, Guerau-de-Arellano M, Partida-Sánchez S. Helminth-induced Ly6C hi monocyte-derived alternatively activated macrophages suppress experimental autoimmune encephalomyelitis. Sci Rep 2017; 7:40814. [PMID: 28094319 PMCID: PMC5240103 DOI: 10.1038/srep40814] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/12/2016] [Indexed: 12/14/2022] Open
Abstract
Helminths cause chronic infections and affect the immune response to unrelated inflammatory diseases. Although helminths have been used therapeutically to ameliorate inflammatory conditions, their anti-inflammatory properties are poorly understood. Alternatively activated macrophages (AAMϕs) have been suggested as the anti-inflammatory effector cells during helminth infections. Here, we define the origin of AAMϕs during infection with Taenia crassiceps, and their disease-modulating activity on the Experimental Autoimmune Encephalomyelitis (EAE). Our data show two distinct populations of AAMϕs, based on the expression of PD-L1 and PD-L2 molecules, resulting upon T. crassiceps infection. Adoptive transfer of Ly6C+ monocytes gave rise to PD-L1+/PD-L2+, but not PD-L1+/PD-L2- cells in T. crassiceps-infected mice, demonstrating that the PD-L1+/PD-L2+ subpopulation of AAMϕs originates from blood monocytes. Furthermore, adoptive transfer of PD-L1+/PD-L2+ AAMϕs into EAE induced mice reduced disease incidence, delayed disease onset, and diminished the clinical disability, indicating the critical role of these cells in the regulation of autoimmune disorders.
Collapse
Affiliation(s)
- Cesar Terrazas
- Department of Pathology, The Ohio State University, Columbus, OH 43221, USA
| | - Juan de Dios Ruiz-Rosado
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Stephanie A. Amici
- School of Health and Rehabilitation Sciences, Medical Laboratory Science Division, The Ohio State University, Columbus, Ohio, USA
| | - Kyle A. Jablonski
- School of Health and Rehabilitation Sciences, Medical Laboratory Science Division, The Ohio State University, Columbus, Ohio, USA
| | - Diana Martinez-Saucedo
- Unidad de Biomedicina, Facultad de Estudios Superiores-Iztacala, UNAM, Tlalnepantla, MEX, Mexico
| | - Lindsay M. Webb
- School of Health and Rehabilitation Sciences, Medical Laboratory Science Division, The Ohio State University, Columbus, Ohio, USA
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio, USA
| | - Hanna Cortado
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Frank Robledo-Avila
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Steve Oghumu
- Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH, USA
| | - Abhay R. Satoskar
- Department of Pathology, The Ohio State University, Columbus, OH 43221, USA
| | - Miriam Rodriguez-Sosa
- Unidad de Biomedicina, Facultad de Estudios Superiores-Iztacala, UNAM, Tlalnepantla, MEX, Mexico
| | - Luis I. Terrazas
- Unidad de Biomedicina, Facultad de Estudios Superiores-Iztacala, UNAM, Tlalnepantla, MEX, Mexico
| | - Mireia Guerau-de-Arellano
- School of Health and Rehabilitation Sciences, Medical Laboratory Science Division, The Ohio State University, Columbus, Ohio, USA
| | - Santiago Partida-Sánchez
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
103
|
Ren J, Li B. The Functional Stability of FOXP3 and RORγt in Treg and Th17 and Their Therapeutic Applications. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 107:155-189. [PMID: 28215223 DOI: 10.1016/bs.apcsb.2016.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The balance of CD4+CD25+FOXP3+ regulatory T cells (Tregs) and effector T cells plays a key role in maintaining immune homeostasis, while the imbalance of them is related to many inflammatory diseases in both human and mice. Here we discuss about the plasticity of Tregs and Th17 cells, and the related human diseases resulted from the imbalance of them. Further, we will focus on the mechanisms regulating the plasticity between Tregs and Th17 cells and the potential therapeutic strategies by targeting regulators of the expression and activity of FOXP3 and RORγt or regulators of Treg/Th17 balance in autoimmune diseases, allergy, infection, and cancer.
Collapse
Affiliation(s)
- J Ren
- Key Laboratory of Molecular Virology and Immunology, CAS Center for Excellence in Molecular Cell Science, Unit of Molecular Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Universities and Colleges Admissions Service, Shanghai, PR China
| | - B Li
- Key Laboratory of Molecular Virology and Immunology, CAS Center for Excellence in Molecular Cell Science, Unit of Molecular Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Universities and Colleges Admissions Service, Shanghai, PR China; Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
104
|
Nuro-Gyina PK, Rieser EL, Granitto MC, Pei W, Liu Y, Lee PW, Aqel S, Zhang J, Lovett-Racke AE, Racke MK, Yang Y. Regulation of effector function of CNS autoreactive CD4 T cells through inhibitory receptors and IL-7Rα. J Neuroinflammation 2016; 13:302. [PMID: 27912762 PMCID: PMC5135771 DOI: 10.1186/s12974-016-0768-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 11/24/2016] [Indexed: 12/14/2022] Open
Abstract
Background Multiple sclerosis (MS) is a chronic CNS autoimmune disease characterized by inflammation, demyelination, and neuronal degeneration, where myelin-specific CD4 T cells play critical roles in the formation of acute MS lesions and disease progression. The suppression of IL-7Rα expression and the upregulation of inhibitory receptors (PD-1, etc.) are essential parts of the cell-intrinsic immunosuppressive program regulating T effector functions to prevent autoimmunity. However, little is known on the factors regulating IL-7Rα/PD-1 balance in myelin-specific CD4 T effector/memory cells during the development of CNS autoimmunity. Methods We analyzed the roles of the transcription factor T-bet in regulating the expression of IL-7Rα and inhibitory receptors in myelin-specific CD4 T cells. Furthermore, we compared the effects of different inflammatory cytokines that are crucial for Th1 and Th17 development in regulating the IL-7Rα/PD-1 balance. Results We discovered that T-bet suppresses the expression of inhibitory receptors (PD-1 and LAG-3) and promotes IL-7Rα expression in myelin-specific CD4 T cells in vitro and in vivo. As a result, T-bet skews IL-7Rα/PD-1 balance towards IL-7Rα and promotes enhanced effector function. Furthermore, IL-12 enhances IL-7Rα expression in a T-bet independent manner in myelin-specific Th1 cells. Meanwhile, IL-6, the cytokine inducing highly encephalitogenic Th17 differentiation, suppresses PD-1 while upregulating IL-7Rα, skewing IL-7Rα/PD-1 balance towards IL-7Rα, and promoting enhanced effector function. Moreover, blocking IL-7 signaling in myelin-specific CD4 T cells by αIL-7Rα significantly delays experimental autoimmune encephalomyelitis (EAE) onset and reduces disease severity. Conclusions T-bet is a major transcription factor regulating IL-7Rα/PD-1 balance in myelin-specific CD4 T cells during EAE development, and there is a positive correlation between several major determinants promoting T cell encephalitogenicity (T-bet, IL-6, IL-12) and an IL-7Rα/PD-1 balance skewed towards IL-7Rα. Furthermore, IL-7 signaling inhibits PD-1 expression in myelin-specific CD4 T cells and blocking IL-7 signaling suppresses T cell encephalitogenicity. Therefore, interference with inhibitory pathways and IL-7Rα expression may suppress the encephalitogenic potential of myelin-specific CD4 T cells and have therapeutic benefits for MS patients. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0768-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Patrick K Nuro-Gyina
- Postbacculaureate Research Education Program, The Ohio State University, Columbus, OH, USA
| | - Elizabeth L Rieser
- Neuroscience program, College of Arts and Sciences, The Ohio State University, Columbus, OH, USA
| | - Marissa C Granitto
- Neuroscience program, College of Arts and Sciences, The Ohio State University, Columbus, OH, USA
| | - Wei Pei
- Department of Neurology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Yue Liu
- Department of Microbial Infection and Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Priscilla W Lee
- Molecular Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Saba Aqel
- Department of Neurology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Jian Zhang
- Department of Microbial Infection and Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Amy E Lovett-Racke
- Department of Microbial Infection and Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.,Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Michael K Racke
- Department of Neurology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.,Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Yuhong Yang
- Department of Neurology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA. .,Department of Neurology, Wexner Medical Center, Biomedical Research Tower, The Ohio State University, 460 W 12th Ave, Room 0604, Columbus, OH, 43210, USA.
| |
Collapse
|
105
|
Tabansky I, Messina MD, Bangeranye C, Goldstein J, Blitz-Shabbir KM, Machado S, Jeganathan V, Wright P, Najjar S, Cao Y, Sands W, Keskin DB, Stern JNH. Advancing drug delivery systems for the treatment of multiple sclerosis. Immunol Res 2016; 63:58-69. [PMID: 26475738 DOI: 10.1007/s12026-015-8719-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory autoimmune disease of the central nervous system. It is characterized by demyelination of neurons and loss of neuronal axons and oligodendrocytes. In MS, auto-reactive T cells and B cells cross the blood-brain barrier (BBB), causing perivenous demyelinating lesions that form multiple discrete inflammatory demyelinated plaques located primarily in the white matter. In chronic MS, cortical demyelination and progressive axonal transections develop. Treatment for MS can be stratified into disease-modifying therapies (DMTs) and symptomatic therapy. DMTs aim to decrease circulating immune cells or to prevent these cells from crossing the BBB and reduce the inflammatory response. There are currently 10 DMTs approved for the relapsing forms of MS; these vary with regard to their efficacy, route and frequency of administration, adverse effects, and toxicity profile. Better drug delivery systems are being developed in order to decrease adverse effects, increase drug efficacy, and increase patient compliance through the direct targeting of pathologic cells. Here, we address the uses and benefits of advanced drug delivery systems, including nanoparticles, microparticles, fusion antibodies, and liposomal formulations. By altering the properties of therapeutic particles and enhancing targeting, breakthrough drug delivery technologies potentially applicable to multiple disease treatments may rapidly emerge.
Collapse
Affiliation(s)
- Inna Tabansky
- Department of Neurobiology and Behavior, The Rockefeller University, New York, NY, USA
| | - Mark D Messina
- Department of Neurology, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA.,Department of Science Education, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA
| | - Catherine Bangeranye
- Department of Science Education, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA
| | - Jeffrey Goldstein
- Department of Neurology, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA.,Department of Science Education, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA
| | - Karen M Blitz-Shabbir
- Department of Neurology, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA
| | - Suly Machado
- Department of Neurology, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA.,Department of Science Education, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA
| | - Venkatesh Jeganathan
- Department of Autoimmunity, The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY, USA
| | - Paul Wright
- Department of Neurology, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA
| | - Souhel Najjar
- Department of Neurology, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA
| | - Yonghao Cao
- Department of Autoimmunity, The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY, USA
| | - Warren Sands
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.,Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Derin B Keskin
- Department of Cancer Immunology and AIDS, Dana Farber-Harvard Cancer Institute, Boston, MA, USA
| | - Joel N H Stern
- Department of Neurobiology and Behavior, The Rockefeller University, New York, NY, USA. .,Department of Neurology, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA. .,Department of Science Education, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA. .,Department of Autoimmunity, The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY, USA.
| |
Collapse
|
106
|
Colbeck EJ, Hindley JP, Smart K, Jones E, Bloom A, Bridgeman H, McPherson RC, Turner DG, Ladell K, Price DA, O'Connor RA, Anderton SM, Godkin AJ, Gallimore AM. Eliminating roles for T-bet and IL-2 but revealing superior activation and proliferation as mechanisms underpinning dominance of regulatory T cells in tumors. Oncotarget 2016; 6:24649-59. [PMID: 26433463 PMCID: PMC4694785 DOI: 10.18632/oncotarget.5584] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 08/22/2015] [Indexed: 12/28/2022] Open
Abstract
Foxp3+ regulatory T cells (Tregs) are often highly enriched within the tumor-infiltrating T cell pool. Using a well-characterised model of carcinogen-induced fibrosarcomas we show that the enriched tumor-infiltrating Treg population comprises largely of CXCR3+ T-bet+ ‘TH1-like’ Tregs which are thymus-derived Helios+ cells. Whilst IL-2 maintains homeostatic ratios of Tregs in lymphoid organs, we found that the perturbation in Treg frequencies in tumors is IL-2 independent. Moreover, we show that the TH1 phenotype of tumor-infiltrating Tregs is dispensable for their ability to influence tumor progression. We did however find that unlike Tconvs, the majority of intra-tumoral Tregs express the activation markers CD69, CD25, ICOS, CD103 and CTLA4 and are significantly more proliferative than Tconvs. Moreover, we have found that CD69+ Tregs are more suppressive than their CD69− counterparts. Collectively, these data indicate superior activation of Tregs in the tumor microenvironment, promoting their suppressive ability and selective proliferation at this site.
Collapse
Affiliation(s)
- Emily J Colbeck
- Institute of Infection Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - James P Hindley
- Institute of Infection Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Kathryn Smart
- Institute of Infection Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Emma Jones
- Institute of Infection Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Anja Bloom
- Institute of Infection Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Hayley Bridgeman
- Institute of Infection Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Rhoanne C McPherson
- MRC Centre for Inflammation Research, Centre for Multiple Sclerosis Research and Centre for Immunity Infection and Evolution, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Darryl G Turner
- MRC Centre for Inflammation Research, Centre for Multiple Sclerosis Research and Centre for Immunity Infection and Evolution, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Kristin Ladell
- Institute of Infection Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - David A Price
- Institute of Infection Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Richard A O'Connor
- MRC Centre for Inflammation Research, Centre for Multiple Sclerosis Research and Centre for Immunity Infection and Evolution, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Stephen M Anderton
- MRC Centre for Inflammation Research, Centre for Multiple Sclerosis Research and Centre for Immunity Infection and Evolution, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Andrew J Godkin
- Institute of Infection Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Awen M Gallimore
- Institute of Infection Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| |
Collapse
|
107
|
Kabat AM, Pott J, Maloy KJ. The Mucosal Immune System and Its Regulation by Autophagy. Front Immunol 2016; 7:240. [PMID: 27446072 PMCID: PMC4916208 DOI: 10.3389/fimmu.2016.00240] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 06/07/2016] [Indexed: 12/20/2022] Open
Abstract
The gastrointestinal tract presents a unique challenge to the mucosal immune system, which has to constantly monitor the vast surface for the presence of pathogens, while at the same time maintaining tolerance to beneficial or innocuous antigens. In the intestinal mucosa, specialized innate and adaptive immune components participate in directing appropriate immune responses toward these diverse challenges. Recent studies provide compelling evidence that the process of autophagy influences several aspects of mucosal immune responses. Initially described as a “self-eating” survival pathway that enables nutrient recycling during starvation, autophagy has now been connected to multiple cellular responses, including several aspects of immunity. Initial links between autophagy and host immunity came from the observations that autophagy can target intracellular bacteria for degradation. However, subsequent studies indicated that autophagy plays a much broader role in immune responses, as it can impact antigen processing, thymic selection, lymphocyte homeostasis, and the regulation of immunoglobulin and cytokine secretion. In this review, we provide a comprehensive overview of mucosal immune cells and discuss how autophagy influences many aspects of their physiology and function. We focus on cell type-specific roles of autophagy in the gut, with a particular emphasis on the effects of autophagy on the intestinal T cell compartment. We also provide a perspective on how manipulation of autophagy may potentially be used to treat mucosal inflammatory disorders.
Collapse
Affiliation(s)
- Agnieszka M Kabat
- Sir William Dunn School of Pathology, University of Oxford , Oxford , UK
| | - Johanna Pott
- Sir William Dunn School of Pathology, University of Oxford , Oxford , UK
| | - Kevin J Maloy
- Sir William Dunn School of Pathology, University of Oxford , Oxford , UK
| |
Collapse
|
108
|
RETRACTED ARTICLE: Mouse models of intestinal inflammation and cancer. Arch Toxicol 2016; 90:2109-2130. [DOI: 10.1007/s00204-016-1747-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/01/2016] [Indexed: 12/19/2022]
|
109
|
Interferons and inflammasomes: Cooperation and counterregulation in disease. J Allergy Clin Immunol 2016; 138:37-46. [PMID: 27373324 DOI: 10.1016/j.jaci.2016.05.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 02/07/2023]
Abstract
Interferons and the IL-1 family of cytokines have important roles in host defense against invading viruses and bacteria. Inflammasomes, multimeric cytosolic sensors of infection, are required for IL-1β and IL-18 processing and release. Interferons, IL-1β, and IL-18 are also implicated in autoimmune disease and chronic inflammation. Although independent but complementary pathways induce these cytokine subsets during infection, in some circumstances the cross-talk between these key inflammatory mediators is a particular requirement for effective host defense. In this review we will summarize recent discoveries concerning the potentiation of inflammasome responses by type I interferons, particularly in patients with gram-negative bacterial infections, and reflect on the molecular mechanisms of IFN-β's immunosuppressive effects through modulation of inflammasome and IL-1β signaling in patients with tuberculosis and multiple sclerosis.
Collapse
|
110
|
Brucklacher-Waldert V, Ferreira C, Innocentin S, Kamdar S, Withers DR, Kullberg MC, Veldhoen M. Tbet or Continued RORγt Expression Is Not Required for Th17-Associated Immunopathology. THE JOURNAL OF IMMUNOLOGY 2016; 196:4893-904. [PMID: 27183623 PMCID: PMC4891569 DOI: 10.4049/jimmunol.1600137] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/14/2016] [Indexed: 01/08/2023]
Abstract
The discovery of Th17 cell plasticity, in which CD4+ IL-17–producing Th17 cells give rise to IL-17/IFN-γ double-producing cells and Th1-like IFNγ+ ex-Th17 lymphocytes, has raised questions regarding which of these cell types contribute to immunopathology during inflammatory diseases. In this study, we show using Helicobacter hepaticus-induced intestinal inflammation that IL-17ACre– or Rag1Cre-mediated deletion of Tbx21 has no effect on the generation of IL-17/IFN-γ double-producing cells, but leads to a marked absence of Th1-like IFNγ+ ex-Th17 cells. Despite the lack of Th1-like ex-Th17 cells, the degree of H. hepaticus-triggered intestinal inflammation in mice in which Tbx21 was excised in IL-17–producing or Rag1-expressing cells is indistinguishable from that observed in control mice. In stark contrast, using experimental autoimmune encephalomyelitis, we show that IL-17ACre–mediated deletion of Tbx21 prevents the conversion of Th17 cells to IL-17A/IFN-γ double-producing cells as well as Th1-like IFN-γ+ ex-Th17 cells. However, IL-17ACre–mediated deletion of Tbx21 has only limited effects on disease course in this model and is not compensated by Ag-specific Th1 cells. IL-17ACre–mediated deletion of Rorc reveals that RORγt is essential for the maintenance of the Th17 cell lineage, but not immunopathology during experimental autoimmune encephalomyelitis. These results show that neither the single Th17 subset, nor its progeny, is solely responsible for immunopathology or autoimmunity.
Collapse
Affiliation(s)
- Verena Brucklacher-Waldert
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Cristina Ferreira
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Silvia Innocentin
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Shraddha Kamdar
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, York YO10 5DD, United Kingdom; and
| | - David R Withers
- Medical Research Council Centre for Immune Regulation, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Marika C Kullberg
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, York YO10 5DD, United Kingdom; and
| | - Marc Veldhoen
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge CB22 3AT, United Kingdom;
| |
Collapse
|
111
|
Fawaz L, Mrad MF, Kazan JM, Sayegh S, Akika R, Khoury SJ. Comparative effect of 25(OH)D3 and 1,25(OH)2D3 on Th17 cell differentiation. Clin Immunol 2016; 166-167:59-71. [PMID: 27041081 DOI: 10.1016/j.clim.2016.02.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 12/30/2022]
Abstract
Vitamin D is a secosteroid hormone that plays an important regulatory role in calcium homeostasis and bone metabolism. Immune cells can both produce and respond to 1,25(OH)2D3. CD4+ T cells from vitamin D receptor (VDR) KO mice produce higher levels of IFN-γ and IL-17 than their wild type counterparts, and play a crucial role in the pathogenesis of autoimmune diseases (AID). We are particularly interested in studying the effect of vitamin D on pathogenic Th17 cells in humans. We investigated the in vitro effect of 1,25(OH)2D3 and 25(OH)D3 on the differentiation and cytokine production of primary CD4+ T cells from normal donors, and cultured in Th17 polarizing conditions. Both forms of vitamin D reduced the expression of pathogenic Th17 markers and their secretion of pro-inflammatory cytokines (IL-17A, IFN-γ). Furthermore, both vitamin D forms induced an expansion of CD25hi cells and upregulated their expression of CTLA-4 and Foxp3 regulatory markers.
Collapse
Affiliation(s)
- Lama Fawaz
- Department of Experimental Pathology, Microbiology & Immunology, Faculty of Medicine, American University of Beirut, PO Box 11-0236, Beirut, Lebanon
| | - May F Mrad
- Nehme and Therese Tohme Multiple Sclerosis Center, Abu Haidar Neuroscience Institute, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Jalal M Kazan
- Nehme and Therese Tohme Multiple Sclerosis Center, Abu Haidar Neuroscience Institute, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Souraya Sayegh
- Department of Experimental Pathology, Microbiology & Immunology, Faculty of Medicine, American University of Beirut, PO Box 11-0236, Beirut, Lebanon
| | - Reem Akika
- Department of Experimental Pathology, Microbiology & Immunology, Faculty of Medicine, American University of Beirut, PO Box 11-0236, Beirut, Lebanon
| | - Samia J Khoury
- Nehme and Therese Tohme Multiple Sclerosis Center, Abu Haidar Neuroscience Institute, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon.
| |
Collapse
|
112
|
Cao Y, Goods BA, Raddassi K, Nepom GT, Kwok WW, Love JC, Hafler DA. Functional inflammatory profiles distinguish myelin-reactive T cells from patients with multiple sclerosis. Sci Transl Med 2016; 7:287ra74. [PMID: 25972006 DOI: 10.1126/scitranslmed.aaa8038] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Myelin-reactive T cells have been identified in patients with multiple sclerosis (MS) and healthy subjects with comparable frequencies, but the contribution of these autoreactive T cells to disease pathology remains unknown. A total of 13,324 T cell libraries generated from blood of 23 patients and 22 healthy controls were interrogated for reactivity to myelin antigens. Libraries derived from CCR6(+) myelin-reactive T cells from patients with MS exhibited significantly enhanced production of interferon-γ (IFN-γ), interleukin-17 (IL-17), and granulocyte-macrophage colony-stimulating factor (GM-CSF) compared to healthy controls. Single-cell clones isolated by major histocompatibility complex/peptide tetramers from CCR6(+) T cell libraries also secreted more proinflammatory cytokines, whereas clones isolated from controls secreted more IL-10. The transcriptomes of myelin-specific CCR6(+) T cells from patients with MS were distinct from those derived from healthy controls and, notably, were enriched in T helper cell 17 (TH17)-induced experimental autoimmune encephalitis gene signatures, and gene signatures derived from TH17 cells isolated other human autoimmune diseases. These data, although not causal, imply that functional differences between antigen-specific T cells from MS and healthy controls are fundamental to disease development and support the notion that IL-10 production from myelin-reactive T cells may act to limit disease progression or even pathogenesis.
Collapse
Affiliation(s)
- Yonghao Cao
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Brittany A Goods
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Khadir Raddassi
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Gerald T Nepom
- Benaroya Research Institute, Virginia Mason Research Center, Seattle, WA 98101, USA
| | - William W Kwok
- Benaroya Research Institute, Virginia Mason Research Center, Seattle, WA 98101, USA. Department of Medicine, University of Washington, Seattle, WA 98101, USA
| | - J Christopher Love
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA. The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - David A Hafler
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA. The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
113
|
Clark MP, Leaman DW, Hazelhurst LA, Hwang ES, Quinn A. An aza-anthrapyrazole negatively regulates Th1 activity and suppresses experimental autoimmune encephalomyelitis. Int Immunopharmacol 2016; 31:74-87. [DOI: 10.1016/j.intimp.2015.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/16/2015] [Accepted: 12/08/2015] [Indexed: 12/24/2022]
|
114
|
Cao Y, Amezquita RA, Kleinstein SH, Stathopoulos P, Nowak RJ, O'Connor KC. Autoreactive T Cells from Patients with Myasthenia Gravis Are Characterized by Elevated IL-17, IFN-γ, and GM-CSF and Diminished IL-10 Production. THE JOURNAL OF IMMUNOLOGY 2016; 196:2075-84. [PMID: 26826242 DOI: 10.4049/jimmunol.1501339] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 12/27/2015] [Indexed: 12/29/2022]
Abstract
Myasthenia gravis (MG) is a prototypical autoimmune disease that is among the few for which the target Ag and the pathogenic autoantibodies are clearly defined. The pathology of the disease is affected by autoantibodies directed toward the acetylcholine receptor (AChR). Mature, Ag-experienced B cells rely on the action of Th cells to produce these pathogenic Abs. The phenotype of the MG Ag-reactive T cell compartment is not well defined; thus, we sought to determine whether such cells exhibit both a proinflammatory and a pathogenic phenotype. A novel T cell library assay that affords multiparameter interrogation of rare Ag-reactive CD4(+) T cells was applied. Proliferation and cytokine production in response to both AChR and control Ags were measured from 3120 T cell libraries derived from 11 MG patients and paired healthy control subjects. The frequency of CCR6(+) memory T cells from MG patients proliferating in response to AChR-derived peptides was significantly higher than that of healthy control subjects. Production of both IFN-γ and IL-17, in response to AChR, was also restricted to the CCR6(+) memory T cell compartment in the MG cohort, indicating a proinflammatory phenotype. These T cells also included an elevated expression of GM-CSF and absence of IL-10 expression, indicating a proinflammatory and pathogenic phenotype. This component of the autoimmune response in MG is of particular importance when considering the durability of MG treatment strategies that eliminate B cells, because the autoreactive T cells could renew autoimmunity in the reconstituted B cell compartment with ensuing clinical manifestations.
Collapse
Affiliation(s)
- Yonghao Cao
- Department of Neurology, Yale School of Medicine, New Haven, CT 06511; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06511;
| | - Robert A Amezquita
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06511
| | - Steven H Kleinstein
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06511; Department of Pathology, Yale School of Medicine, New Haven, CT 06511; and Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511
| | | | - Richard J Nowak
- Department of Neurology, Yale School of Medicine, New Haven, CT 06511
| | - Kevin C O'Connor
- Department of Neurology, Yale School of Medicine, New Haven, CT 06511;
| |
Collapse
|
115
|
Gubán B, Vas K, Balog Z, Manczinger M, Bebes A, Groma G, Széll M, Kemény L, Bata-Csörgő Z. Abnormal regulation of fibronectin production by fibroblasts in psoriasis. Br J Dermatol 2016; 174:533-41. [PMID: 26471375 DOI: 10.1111/bjd.14219] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Data indicate that in psoriasis, abnormalities are already present in nonlesional skin. Transforming growth factor-β and keratinocyte growth factor (KGF), together with fibronectin and α5β1 integrin, were suggested to play a crucial role in the pathogenesis of psoriasis by influencing inflammation and keratinocyte hyperproliferation. OBJECTIVES To investigate the expression of KGF, fibroblast growth factor receptor (FGFR)2, fibronectin (FN) and extra domain A (EDA)-positive FN in healthy and nonlesional psoriatic skin, and to study the effect of KGF on the regulation of FN and EDA(+) FN production by fibroblasts. METHODS Healthy, nonlesional psoriatic skin and lesional psoriatic skin were immunostained for α5 integrin, KGF, FGFR2, EDA(+) FN and signal transducer and activator of transcription (STAT)1. KGF-treated cell cultures were analysed for FN and EDA(+) FN mRNA and protein by real-time reverse-transcriptase polymerase chain reaction and flow cytometry, respectively. The major downstream signalling of KGF was investigated by blocking experiments using inhibitors of mitogen-activated protein kinase (MAPK) kinase (MEK1), AKT1/2, STAT1 and STAT3. RESULTS The expression of α5 integrin, EDA(+) FN, KGF and its receptor FGFR2 is elevated in psoriatic nonlesional skin compared with healthy skin. KGF mildly induced EDA(+) FN, but not FN expression in healthy fibroblasts through MAPK signalling. Fibroblasts express the FGFR2-IIIc splice variant. STAT1 negatively regulates both FN and EDA(+) FN expression in healthy fibroblasts, and this regulation is compromised in fibroblasts derived from nonlesional psoriatic dermis. We detected active STAT1 in healthy and lesional skin, similarly to a previous report. However, in the nonlesional skin STAT1 activation was absent in tissues far away from lesions. CONCLUSIONS The production of FN and EDA(+) FN by fibroblasts and the signalling of STAT1 are abnormally regulated in psoriatic nonlesional skin.
Collapse
Affiliation(s)
- B Gubán
- Department of Dermatology and Allergology, University of Szeged, Korányi fasor 6, H-6720, Szeged, Hungary
| | - K Vas
- Department of Dermatology and Allergology, University of Szeged, Korányi fasor 6, H-6720, Szeged, Hungary
| | - Z Balog
- Department of Dermatology and Allergology, University of Szeged, Korányi fasor 6, H-6720, Szeged, Hungary
| | - M Manczinger
- Department of Dermatology and Allergology, University of Szeged, Korányi fasor 6, H-6720, Szeged, Hungary
| | - A Bebes
- Department of Dermatology and Allergology, University of Szeged, Korányi fasor 6, H-6720, Szeged, Hungary
| | - G Groma
- MTA-SZTE Dermatological Research Group, University of Szeged, Korányi fasor 6, H-6720, Szeged, Hungary
| | - M Széll
- MTA-SZTE Dermatological Research Group, University of Szeged, Korányi fasor 6, H-6720, Szeged, Hungary.,Department of Medical Genetics, University of Szeged, Korányi fasor 6, H-6720, Szeged, Hungary
| | - L Kemény
- Department of Dermatology and Allergology, University of Szeged, Korányi fasor 6, H-6720, Szeged, Hungary.,MTA-SZTE Dermatological Research Group, University of Szeged, Korányi fasor 6, H-6720, Szeged, Hungary
| | - Z Bata-Csörgő
- Department of Dermatology and Allergology, University of Szeged, Korányi fasor 6, H-6720, Szeged, Hungary.,MTA-SZTE Dermatological Research Group, University of Szeged, Korányi fasor 6, H-6720, Szeged, Hungary
| |
Collapse
|
116
|
Sato F, Omura S, Jaffe S, Tsunoda I. Role of CD4+ T Cells in the Pathophysiology of Multiple Sclerosis. MULTIPLE SCLEROSIS 2016. [PMCID: PMC7150304 DOI: 10.1016/b978-0-12-800763-1.00004-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system. Although the precise etiology of MS remains unclear, CD4+ T cells have been proposed to play not only effector but also regulatory roles in MS. CD4+ T cells can be divided into four subsets: pro-inflammatory helper T (Th) 1 and Th17 cells, anti-inflammatory Th2 cells and regulatory T cells (Tregs). The roles of CD4+ T cells in MS have been clarified by either “loss-of-function” or “gain-of-function” methods, which have been carried out mainly in autoimmune and viral models of MS: experimental autoimmune encephalomyelitis and Theiler's murine encephalomyelitis virus infection, respectively. Observations in MS patients were consistent with the mechanisms found in the MS models, that is, increased pro-inflammatory Th1 and Th17 activity is associated with disease exacerbation, while anti-inflammatory Th2 cells and Tregs appear to play a protective role.
Collapse
|
117
|
Regulation and Immune Function of IL-27. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 941:191-211. [DOI: 10.1007/978-94-024-0921-5_9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
118
|
Volpe E, Battistini L, Borsellino G. Advances in T Helper 17 Cell Biology: Pathogenic Role and Potential Therapy in Multiple Sclerosis. Mediators Inflamm 2015; 2015:475158. [PMID: 26770017 PMCID: PMC4685148 DOI: 10.1155/2015/475158] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/19/2015] [Indexed: 01/08/2023] Open
Abstract
The discovery of the T helper (Th) 17 lineage, involved in the protection against fungal and extracellular bacterial infections, has profoundly revolutionized our current understanding of T cell-mediated responses in autoimmune diseases, including multiple sclerosis (MS). Indeed, recent data demonstrate the pathogenic role of Th17 cells in autoimmune disorders. In particular, studies in MS and in its animal model (EAE, experimental autoimmune encephalomyelitis) have revealed a crucial role of Th17 cells in the pathogenesis of autoimmune demyelinating diseases in both mice and humans. Over the past years, several important aspects concerning Th17 cells have been elucidated, such as the factors which promote or inhibit their differentiation and the effector cytokines which mediate their responses. The identification of the features endowing Th17 cells with high pathogenicity in MS is of particular interest, and discoveries in Th17 cell biology and function could lead to the design of new strategies aimed at modulating the immune response in MS. Here, we will discuss recent advances in this field, with particular focus on the mechanisms conferring pathogenicity in MS and their potential modulation.
Collapse
Affiliation(s)
- Elisabetta Volpe
- Neuroimmunology Unit, Santa Lucia Foundation, Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - Luca Battistini
- Neuroimmunology Unit, Santa Lucia Foundation, Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - Giovanna Borsellino
- Neuroimmunology Unit, Santa Lucia Foundation, Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| |
Collapse
|
119
|
Simvastatin ameliorates experimental autoimmune encephalomyelitis by inhibiting Th1/Th17 response and cellular infiltration. Inflammopharmacology 2015; 23:343-54. [PMID: 26559850 DOI: 10.1007/s10787-015-0252-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/20/2015] [Indexed: 12/14/2022]
Abstract
AIM Experimental autoimmune encephalomyelitis (EAE) is a CD4(+)-mediated autoimmune pathology of the central nervous system (CNS) that is used as a model for the study of the human neuroinflammatory disease, multiple sclerosis. During the development of EAE, auto-reactive Th1 and Th17 CD4(+) T cells infiltrate the CNS promoting inflammatory cells recruitment, focal inflammation and tissue destruction. In this sense, statins, agents used to lower lipid levels, have recently shown to exert interesting immunomodulatory function. In fact, statins promote a bias towards a Th2 response, which ameliorates the clinical outcome of EAE. Additionally, simvastatin can inhibit Th17 differentiation. However, many other effects exerted on the immune system by statins have yet to be clarified, in particular during neuroinflammation. Thus, the aim of this study was to investigate the effects of simvastatin on the development of experimental autoimmune encephalomyelitis. METHODS Mice were immunized with MOG(35-55) and EAE severity was assessed daily and scored using a clinical scale. Cytokine secretion by mononuclear cells infiltrating the CNS was evaluated by flow cytometry. RESULTS Simvastatin (5 mg/kg/day) improved clinical outcome, induced an increase in TGF-β mRNA expression and inhibited IL-6, IL-12p40, IL-12p70, RANTES and MIP-1β secretion (p < 0.05). This was accompanied by a significant decrease in CNS inflammatory mononuclear cell infiltration, with reduced frequencies of both Th1 and Th17 cells. Simvastatin inhibited the proliferation of T lymphocytes co-cultured with primary microglial cells. CONCLUSIONS Simvastatin treatment promotes EAE clinical amelioration by inhibiting T cell proliferation and CNS infiltration by pathogenic Th1 and Th17 cells.
Collapse
|
120
|
Chien MW, Lin MH, Huang SH, Fu SH, Hsu CY, Yen BLJ, Chen JT, Chang DM, Sytwu HK. Glucosamine Modulates T Cell Differentiation through Down-regulating N-Linked Glycosylation of CD25. J Biol Chem 2015; 290:29329-44. [PMID: 26468284 DOI: 10.1074/jbc.m115.674671] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Indexed: 01/16/2023] Open
Abstract
Glucosamine has immunomodulatory effects on autoimmune diseases. However, the mechanism(s) through which glucosamine modulates different T cell subsets and diseases remain unclear. We demonstrate that glucosamine impedes Th1, Th2, and iTreg but promotes Th17 differentiation through down-regulating N-linked glycosylation of CD25 and subsequently inhibiting its downstream Stat5 signaling in a dose-dependent manner. The effect of glucosamine on T helper cell differentiation was similar to that induced by anti-IL-2 treatment, further supporting an IL-2 signaling-dependent modulation. Interestingly, excess glucose rescued this glucosamine-mediated regulation, suggesting a functional competition between glucose and glucosamine. High-dose glucosamine significantly decreased Glut1 N-glycosylation in Th1-polarized cells. This finding suggests that both down-regulated IL-2 signaling and Glut1-dependent glycolytic metabolism contribute to the inhibition of Th1 differentiation by glucosamine. Finally, glucosamine treatment inhibited Th1 cells in vivo, prolonged the survival of islet grafts in diabetic recipients, and exacerbated the severity of EAE. Taken together, our results indicate that glucosamine interferes with N-glycosylation of CD25, and thereby attenuates IL-2 downstream signaling. These effects suggest that glucosamine may be an important modulator of T cell differentiation and immune homeostasis.
Collapse
Affiliation(s)
- Ming-Wei Chien
- From the Graduate Institute of Life Sciences, Department and Graduate Institute of Microbiology and Immunology
| | - Ming-Hong Lin
- Department and Graduate Institute of Microbiology and Immunology
| | | | - Shin-Huei Fu
- Department and Graduate Institute of Microbiology and Immunology
| | - Chao-Yuan Hsu
- From the Graduate Institute of Life Sciences, Department and Graduate Institute of Microbiology and Immunology
| | - B Lin-Ju Yen
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, 35053 Taiwan
| | | | - Deh-Ming Chang
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, 11490 Taiwan and
| | - Huey-Kang Sytwu
- From the Graduate Institute of Life Sciences, Department and Graduate Institute of Microbiology and Immunology,
| |
Collapse
|
121
|
O’Connor RA, Anderton SM. Inflammation-associated genes: risks and benefits to Foxp3+ regulatory T-cell function. Immunology 2015; 146:194-205. [PMID: 26190495 PMCID: PMC4582961 DOI: 10.1111/imm.12507] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/30/2015] [Accepted: 07/02/2015] [Indexed: 01/10/2023] Open
Abstract
Foxp3(+) regulatory T (Treg) cells prevent the development of autoimmunity and immunopathology, as well as maintaining homeostasis and tolerance to commensal microorganisms. The suppressive activity of Treg cells is their defining characteristic, generating great interest in their therapeutic potential. However, suppressive and effector functions are not entirely exclusive. Considerable evidence points to the ability of supposedly anti-inflammatory Foxp3-expressing Treg cells to also express transcription factors that have been characterized as cardinal drivers of T effector cell function. We will consider the mounting evidence that Treg cells can function in non-suppressive capacities and review the impetus for this functional change, its relevance to developing immune and autoimmune responses and its significance to the development of Treg-based therapies.
Collapse
Affiliation(s)
- Richard A O’Connor
- MRC Centre for Inflammation Research, Centre for Multiple Sclerosis Research and Centre for Immunity Infection and Evolution, University of EdinburghEdinburgh, UK
| | - Stephen M Anderton
- MRC Centre for Inflammation Research, Centre for Multiple Sclerosis Research and Centre for Immunity Infection and Evolution, University of EdinburghEdinburgh, UK
| |
Collapse
|
122
|
Arellano G, Ottum PA, Reyes LI, Burgos PI, Naves R. Stage-Specific Role of Interferon-Gamma in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. Front Immunol 2015; 6:492. [PMID: 26483787 PMCID: PMC4586507 DOI: 10.3389/fimmu.2015.00492] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/09/2015] [Indexed: 12/21/2022] Open
Abstract
The role of interferon (IFN)-γ in multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), has remained as an enigmatic paradox for more than 30 years. Several studies attribute this cytokine a prominent proinflammatory and pathogenic function in these pathologies. However, accumulating evidence shows that IFN-γ also plays a protective role inducing regulatory cell activity and modulating the effector T cell response. Several innate and adaptive immune cells also develop opposite functions strongly associated with the production of IFN-γ in EAE. Even the suppressive activity of different types of regulatory cells is dependent on IFN-γ. Interestingly, recent data supports a stage-specific participation of IFN-γ in EAE providing a plausible explanation for previous conflicting results. In this review, we will summarize and discuss such literature, emphasizing the protective role of IFN-γ on immune cells. These findings are fundamental to understand the complex role of IFN-γ in the pathogenesis of these diseases and can provide basis for potential stage-specific therapy for MS targeting IFN-γ-signaling or IFN-γ-producing immune cells.
Collapse
Affiliation(s)
- Gabriel Arellano
- Immunology Program, Biomedical Sciences Institute, School of Medicine, Universidad de Chile , Santiago , Chile
| | - Payton A Ottum
- Immunology Program, Biomedical Sciences Institute, School of Medicine, Universidad de Chile , Santiago , Chile
| | - Lilian I Reyes
- Faculty of Science, Universidad San Sebastián , Santiago , Chile
| | - Paula I Burgos
- Department of Clinical Immunology and Rheumatology, School of Medicine, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Rodrigo Naves
- Immunology Program, Biomedical Sciences Institute, School of Medicine, Universidad de Chile , Santiago , Chile
| |
Collapse
|
123
|
Edwards SC, McGinley AM, McGuinness NC, Mills KHG. γδ T Cells and NK Cells - Distinct Pathogenic Roles as Innate-Like Immune Cells in CNS Autoimmunity. Front Immunol 2015; 6:455. [PMID: 26441960 PMCID: PMC4561808 DOI: 10.3389/fimmu.2015.00455] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/24/2015] [Indexed: 12/31/2022] Open
Affiliation(s)
- Sarah C Edwards
- Immune Regulation Research Group, Trinity Biomedical Sciences Institute, School of Biochemistry and Immunology, Trinity College Dublin , Dublin , Ireland
| | - Aoife M McGinley
- Immune Regulation Research Group, Trinity Biomedical Sciences Institute, School of Biochemistry and Immunology, Trinity College Dublin , Dublin , Ireland
| | - Niamh C McGuinness
- Immune Regulation Research Group, Trinity Biomedical Sciences Institute, School of Biochemistry and Immunology, Trinity College Dublin , Dublin , Ireland ; Trinity College Institute of Neuroscience, Trinity College Dublin , Dublin , Ireland
| | - Kingston H G Mills
- Immune Regulation Research Group, Trinity Biomedical Sciences Institute, School of Biochemistry and Immunology, Trinity College Dublin , Dublin , Ireland
| |
Collapse
|
124
|
Carbajal KS, Mironova Y, Ulrich-Lewis JT, Kulkarni D, Grifka-Walk HM, Huber AK, Shrager P, Giger RJ, Segal BM. Th Cell Diversity in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. THE JOURNAL OF IMMUNOLOGY 2015; 195:2552-9. [PMID: 26238492 DOI: 10.4049/jimmunol.1501097] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/08/2015] [Indexed: 11/19/2022]
Abstract
Multiple sclerosis (MS) is believed to be initiated by myelin-reactive CD4(+) Th cells. IL-12-polarized Th1 cells, IL-23-polarized Th17 cells, and Th17 cells that acquire Th1 characteristics were each implicated in autoimmune pathogenesis. It is debated whether Th cells that can drive the development of demyelinating lesions are phenotypically diverse or arise from a single lineage. In the current study, we assessed the requirement of IL-12 or IL-23 stimulation, as well as Th plasticity, for the differentiation of T cells capable of inducing CNS axon damage. We found that stable murine Th1 and Th17 cells independently transfer experimental autoimmune encephalomyelitis (widely used as an animal model of MS) in the absence of IL-23 and IL-12, respectively. Plastic Th17 cells are particularly potent mediators of demyelination and axonopathy. In parallel studies, we identified MS patients who consistently mount either IFN-γ- or IL-17-skewed responses to myelin basic protein over the course of a year. Brain magnetic resonance imaging revealed that patients with mixed IFN-γ and IL-17 responses have relatively high T1 lesion burden, a measure of permanent axon damage. Our data challenge the dogma that IL-23 and Th17 plasticity are universally required for the development of experimental autoimmune encephalomyelitis. This study definitively demonstrates that autoimmune demyelinating disease can be driven by distinct Th-polarizing factors and effector subsets, underscoring the importance of a customized approach to the pharmaceutical management of MS.
Collapse
Affiliation(s)
- Kevin S Carbajal
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan, Ann Arbor, MI 48109
| | - Yevgeniya Mironova
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109; Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48109
| | - Justin T Ulrich-Lewis
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan, Ann Arbor, MI 48109
| | - Deven Kulkarni
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan, Ann Arbor, MI 48109
| | - Heather M Grifka-Walk
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan, Ann Arbor, MI 48109; Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109
| | - Amanda K Huber
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan, Ann Arbor, MI 48109
| | - Peter Shrager
- Department of Neurobiology and Anatomy, University of Rochester Medical Center, Rochester, NY 14642; and
| | - Roman J Giger
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109; Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48109
| | - Benjamin M Segal
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan, Ann Arbor, MI 48109; Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109; Neurology Service, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105
| |
Collapse
|
125
|
Procaccini C, De Rosa V, Pucino V, Formisano L, Matarese G. Animal models of Multiple Sclerosis. Eur J Pharmacol 2015; 759:182-91. [PMID: 25823807 PMCID: PMC7094661 DOI: 10.1016/j.ejphar.2015.03.042] [Citation(s) in RCA: 222] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 01/30/2015] [Accepted: 03/12/2015] [Indexed: 12/26/2022]
Abstract
Multiple Sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) which involves a complex interaction between immune system and neural cells. Animal modeling has been critical for addressing MS pathogenesis. The three most characterized animal models of MS are (1) the experimental autoimmune/allergic encephalomyelitis (EAE); (2) the virally-induced chronic demyelinating disease, known as Theiler׳s murine encephalomyelitis virus (TMEV) infection and (3) the toxin-induced demyelination. All these models, in a complementary way, have allowed to reach a good knowledge of the pathogenesis of MS. Specifically, EAE is the model which better reflects the autoimmune pathogenesis of MS and is extremely useful to study potential experimental treatments. Furthermore, both TMEV and toxin-induced demyelination models are suitable for characterizing the role of the axonal injury/repair and the remyelination process in MS. In conclusion, animal models, despite their limitations, remain the most useful instrument for implementing the study of MS.
Collapse
MESH Headings
- Animals
- Cardiovirus Infections/pathology
- Cardiovirus Infections/virology
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/etiology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Humans
- Mice
- Mice, Transgenic
- Multiple Sclerosis/etiology
- Multiple Sclerosis/genetics
- Multiple Sclerosis/immunology
- Multiple Sclerosis/pathology
- Theilovirus/pathogenicity
Collapse
Affiliation(s)
- Claudio Procaccini
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR) c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Napoli, Italy
| | - Veronica De Rosa
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR) c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Napoli, Italy; Unità di NeuroImmunologia, IRCCS Fondazione Santa Lucia, 00143 Roma, Italy
| | - Valentina Pucino
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli Federico II, 80131 Napoli, Italy
| | - Luigi Formisano
- Divisione di Farmacologia, Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, 82100 Benevento, Italy
| | - Giuseppe Matarese
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Salerno, Baronissi Campus, 84081 Baronissi, Salerno, Italy; IRCCS Multimedica, 20138 Milano, Italy.
| |
Collapse
|
126
|
Liu Y, Holdbrooks AT, Meares GP, Buckley JA, Benveniste EN, Qin H. Preferential Recruitment of Neutrophils into the Cerebellum and Brainstem Contributes to the Atypical Experimental Autoimmune Encephalomyelitis Phenotype. THE JOURNAL OF IMMUNOLOGY 2015; 195:841-52. [PMID: 26085687 DOI: 10.4049/jimmunol.1403063] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 05/22/2015] [Indexed: 01/03/2023]
Abstract
The JAK/STAT pathway is critical for development, regulation, and termination of immune responses, and dysregulation of the JAK/STAT pathway, that is, hyperactivation, has pathological implications in autoimmune and neuroinflammatory diseases. Suppressor of cytokine signaling 3 (SOCS3) regulates STAT3 activation in response to cytokines that play important roles in the pathogenesis of neuroinflammatory diseases, including IL-6 and IL-23. We previously demonstrated that myeloid lineage-specific deletion of SOCS3 resulted in a severe, nonresolving atypical form of experimental autoimmune encephalomyelitis (EAE), characterized by lesions, inflammatory infiltrates, elevated STAT activation, and elevated cytokine and chemokine expression in the cerebellum. Clinically, these mice exhibit ataxia and tremors. In this study, we provide a detailed analysis of this model, demonstrating that the atypical EAE observed in LysMCre-SOCS3(fl/fl) mice is characterized by extensive neutrophil infiltration into the cerebellum and brainstem, increased inducible NO synthase levels in the cerebellum and brainstem, and prominent axonal damage. Importantly, infiltrating SOCS3-deficient neutrophils produce high levels of CXCL2, CCL2, CXCL10, NO, TNF-α, and IL-1β. Kinetic studies demonstrate that neutrophil infiltration into the cerebellum and brainstem of LysMCre-SOCS3(fl/fl) mice closely correlates with atypical EAE clinical symptoms. Ab-mediated depletion of neutrophils converts the atypical phenotype to the classical EAE phenotype and, in some cases, a mixed atypical/classical phenotype. Blocking CXCR2 signaling ameliorates atypical EAE development by reducing neutrophil infiltration into the cerebellum/brainstem. Thus, neutrophils lacking SOCS3 display elevated STAT3 activation and expression of proinflammatory mediators and play a critical role in the development of atypical EAE.
Collapse
Affiliation(s)
- Yudong Liu
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL 35294
| | - Andrew T Holdbrooks
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL 35294
| | - Gordon P Meares
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jessica A Buckley
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL 35294
| | - Etty N Benveniste
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL 35294
| | - Hongwei Qin
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
127
|
Regulation of the Neurodegenerative Process Associated to Parkinson's Disease by CD4+ T-cells. J Neuroimmune Pharmacol 2015; 10:561-75. [PMID: 26018603 DOI: 10.1007/s11481-015-9618-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/19/2015] [Indexed: 01/09/2023]
Abstract
Neuroinflammation constitutes a fundamental process involved in the physiopathology of Parkinson's disease (PD). Microglial cells play a central role in the outcome of neuroinflammation and consequent neurodegeneration of dopaminergic neurons in the substantia nigra. Current evidence indicates that CD4+ T-cells infiltrate the central nervous system (CNS) in PD, where they play a critical role determining the functional phenotype of microglia, thus regulating the progression of the neurodegenerative process. Here, we first analysed the pathogenic role of inflammatory phenotypes and the beneficial role of anti-inflammatory phenotypes of encephalitogenic CD4+ T-cells involved in the physiopathology of PD. Next, we discussed how alterations of neurotransmitter levels observed in the basal ganglia throughout the time course of PD progression could be strongly affecting the behaviour of encephalitogenic CD4+ T-cells and thereby the outcome of the neuroinflammatory process and the consequent neurodegeneration of dopaminergic neurons. Afterward, we integrated the evidence indicating the involvement of an antigen-specific immune response mediated by T-cells and B-cells against CNS-derived self-constituents in PD. Consistent with the involvement of a relevant autoimmune component in PD, we also reviewed the polymorphisms of both, class I and class II major histocompatibility complexes, associated to the risk of PD. Overall, this study gives an overview of how an autoimmune component involved in PD plays a fundamental role in the progression of the neurodegenerative process.
Collapse
|
128
|
Burkett PR, Meyer zu Horste G, Kuchroo VK. Pouring fuel on the fire: Th17 cells, the environment, and autoimmunity. J Clin Invest 2015; 125:2211-9. [PMID: 25961452 DOI: 10.1172/jci78085] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cytokines play a critical role in controlling the differentiation of CD4 Th cells into distinct subsets, including IL-17-producing Th17 cells. Unfortunately, the incidence of a number of autoimmune diseases, particularly those in which the IL-23/IL-17 axis has been implicated, has risen in the last several decades, suggesting that environmental factors can promote autoimmunity. Here we review the role of cytokines in Th17 differentiation, particularly the role of IL-23 in promoting the differentiation of a pathogenic subset of Th17 cells that potently induce autoimmune tissue inflammation. Moreover, we highlight emerging data that indicate that environmental factors, including the intestinal microbiota and changes in diet, can alter normal cytokine regulation with potent effects on Th17 differentiation and thus promote autoimmunity, which has strong implications for human disease.
Collapse
|
129
|
Cencioni MT, Santini S, Ruocco G, Borsellino G, De Bardi M, Grasso MG, Ruggieri S, Gasperini C, Centonze D, Barilá D, Battistini L, Volpe E. FAS-ligand regulates differential activation-induced cell death of human T-helper 1 and 17 cells in healthy donors and multiple sclerosis patients. Cell Death Dis 2015; 6:e1741. [PMID: 25950471 PMCID: PMC4669684 DOI: 10.1038/cddis.2015.100] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 02/13/2015] [Accepted: 02/27/2015] [Indexed: 12/03/2022]
Abstract
Functionally distinct T-helper (Th) subsets orchestrate immune responses. Maintenance of homeostasis through the tight control of inflammatory Th cells is crucial to avoid autoimmune inflammation. Activation-Induced Cell Death (AICD) regulates homeostasis of T cells, and it has never been investigated in human Th cells. We generated stable clones of inflammatory Th subsets involved in autoimmune diseases, such as Th1, Th17 and Th1/17 cells, from healthy donors (HD) and multiple sclerosis (MS) patients and we measured AICD. We find that human Th1 cells are sensitive, whereas Th17 and Th1/17 are resistant, to AICD. In particular, Th1 cells express high level of FAS-ligand (FASL), which interacts with FAS and leads to caspases' cleavage and ultimately to cell death. In contrast, low FASL expression in Th17 and Th1/17 cells blunts caspase 8 activation and thus reduces cell death. Interestingly, Th cells obtained from healthy individuals and MS patients behave similarly, suggesting that this mechanism could explain the persistence of inflammatory IL-17-producing cells in autoimmune diseases, such as MS, where their generation is particularly substantial.
Collapse
Affiliation(s)
- M T Cencioni
- Neuroimmunology Unit, Santa Lucia Foundation, Rome, Italy
| | - S Santini
- 1] Cell Signaling Unit, Santa Lucia Foundation, Rome, Italy [2] Multiple Sclerosis Centre, Santa Lucia Foundation, Rome, Italy
| | - G Ruocco
- Neuroimmunology Unit, Santa Lucia Foundation, Rome, Italy
| | - G Borsellino
- Neuroimmunology Unit, Santa Lucia Foundation, Rome, Italy
| | - M De Bardi
- Neuroimmunology Unit, Santa Lucia Foundation, Rome, Italy
| | - M G Grasso
- Department of Biology, University Tor Vergata, Rome, Italy
| | - S Ruggieri
- Department of Neuroscience, University Tor Vergata, Rome, Italy
| | - C Gasperini
- Department of Neuroscience, University Tor Vergata, Rome, Italy
| | - D Centonze
- 1] Department of Neuroscience "Lancisi", San Camillo Hospital, Rome, Italy [2] Neuroimmunology and Synaptic Plasticity Unit, Santa Lucia Foundation, Rome, Italy
| | - D Barilá
- 1] Cell Signaling Unit, Santa Lucia Foundation, Rome, Italy [2] Multiple Sclerosis Centre, Santa Lucia Foundation, Rome, Italy
| | - L Battistini
- Neuroimmunology Unit, Santa Lucia Foundation, Rome, Italy
| | - E Volpe
- Neuroimmunology Unit, Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
130
|
Reppert S, Zinser E, Holzinger C, Sandrock L, Koch S, Finotto S. NFATc1 deficiency in T cells protects mice from experimental autoimmune encephalomyelitis. Eur J Immunol 2015; 45:1426-40. [PMID: 25689841 PMCID: PMC6681150 DOI: 10.1002/eji.201445150] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 01/28/2015] [Accepted: 02/12/2015] [Indexed: 12/19/2022]
Abstract
NFATc1 is a member of the nuclear factor of activated T cells (NFAT) family of transcription factors. NFAT is activated upon T-cell receptor activation followed by intracytoplasmatic calcium influx where calmodulin, a calcium sensor protein, activates the phosphatase calcineurin that dephosphorylates NFAT proteins and results in NFAT nuclear import. Here, we show the analysis of conditional NFATc1-deficient mice bearing a deletion of NFATc1 in CD4(+) and CD8(+) T cells. NFATc1-deficient CD4(+) T cells polarized under Th17 conditions express reduced levels of the Th17-associated transcription factor RORγT (where ROR is RAR-related orphan receptor) as well as the Th17-associated cytokines IL-17A, IL-17F, IL-21, and IL-10. In the murine model of experimental EAE, we found a strong reduction of the disease outcome in conditional NFATc1-deficient mice, as compared with control littermates. This was accompanied by a diminished inflammation in the brain and spinal cord and reduced IL-17A and IFN-γ expression by antigen-specific spleen, spinal cord, and brain cells. Altogether, these results reveal an important role of NFATc1 in inducing Th17-cell responses and IFN-γ, both being relevant for the EAE development.
Collapse
MESH Headings
- Animals
- Cell Differentiation/immunology
- Cytokines/metabolism
- Down-Regulation
- Encephalomyelitis, Autoimmune, Experimental/etiology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Interferon-gamma/biosynthesis
- Interferon-gamma/genetics
- Interleukin-10/metabolism
- Interleukin-17/genetics
- Interleukin-17/metabolism
- Interleukins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- NFATC Transcription Factors/deficiency
- NFATC Transcription Factors/genetics
- NFATC Transcription Factors/immunology
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Interleukin/metabolism
- Spleen/immunology
- Spleen/pathology
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
- Th1 Cells/immunology
- Th1 Cells/pathology
- Th17 Cells/immunology
- Th17 Cells/pathology
- Transforming Growth Factor beta1/metabolism
Collapse
Affiliation(s)
- Sarah Reppert
- Department of Molecular PneumologyFriedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergUniversitätsklinikum ErlangenErlangenGermany
| | - Elisabeth Zinser
- Department of Immune ModulationFriedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergUniversitätsklinikum ErlangenErlangenGermany
| | - Corinna Holzinger
- Department of Molecular PneumologyFriedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergUniversitätsklinikum ErlangenErlangenGermany
| | - Lena Sandrock
- Department of Immune ModulationFriedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergUniversitätsklinikum ErlangenErlangenGermany
| | - Sonja Koch
- Department of Molecular PneumologyFriedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergUniversitätsklinikum ErlangenErlangenGermany
| | - Susetta Finotto
- Department of Molecular PneumologyFriedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergUniversitätsklinikum ErlangenErlangenGermany
| |
Collapse
|
131
|
Boivin N, Baillargeon J, Doss PMIA, Roy AP, Rangachari M. Interferon-β suppresses murine Th1 cell function in the absence of antigen-presenting cells. PLoS One 2015; 10:e0124802. [PMID: 25885435 PMCID: PMC4401451 DOI: 10.1371/journal.pone.0124802] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/19/2015] [Indexed: 01/08/2023] Open
Abstract
Interferon (IFN)-β is a front-line therapy for the treatment of the relapsing-remitting form of multiple sclerosis. However, its immunosuppressive mechanism of function remains incompletely understood. While it has been proposed that IFN-β suppresses the function of inflammatory myelin antigen-reactive T cells by promoting the release of immunomodulatory cytokines such as IL-27 from antigen-presenting cells (APCs), its direct effects on inflammatory CD4+ Th1 cells are less clear. Here, we establish that IFN-β inhibits mouse IFN-γ+ Th1 cell function in the absence of APCs. CD4+ T cells express the type I interferon receptor, and IFN-β can suppress Th1 cell proliferation under APC-free stimulation conditions. IFN-β-treated myelin antigen-specific Th1 cells are impaired in their ability to induce severe experimental autoimmune encephalomyelitis (EAE) upon transfer to lymphocyte-deficient Rag1-/- mice. Polarized Th1 cells downregulate IFN-γ and IL-2, and upregulate the negative regulatory receptor Tim-3, when treated with IFN-β in the absence of APCs. Further, IFN-β treatment of Th1 cells upregulates phosphorylation of Stat1, and downregulates phosphorylation of Stat4. Our data indicate that IFN-γ-producing Th1 cells are directly responsive to IFN-β and point to a novel mechanism of IFN-β-mediated T cell suppression that is independent of APC-derived signals.
Collapse
Affiliation(s)
- Nicolas Boivin
- Department of Neuroscience, Centre de recherche du CHU de Québec—Université Laval, Québec QC, Canada G1V 4G2
| | - Joanie Baillargeon
- Department of Neuroscience, Centre de recherche du CHU de Québec—Université Laval, Québec QC, Canada G1V 4G2
| | - Prenitha Mercy Ignatius Arokia Doss
- Department of Neuroscience, Centre de recherche du CHU de Québec—Université Laval, Québec QC, Canada G1V 4G2
- Graduate Programme in Microbiology and Immunology, Faculty of Medicine, Université Laval, Québec QC, Canada G1V 0A6
| | - Andrée-Pascale Roy
- Department of Neuroscience, Centre de recherche du CHU de Québec—Université Laval, Québec QC, Canada G1V 4G2
- Graduate Programme in Microbiology and Immunology, Faculty of Medicine, Université Laval, Québec QC, Canada G1V 0A6
| | - Manu Rangachari
- Department of Neuroscience, Centre de recherche du CHU de Québec—Université Laval, Québec QC, Canada G1V 4G2
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec QC, Canada G1V 0A6
- * E-mail:
| |
Collapse
|
132
|
Benveniste EN, Liu Y, McFarland BC, Qin H. Involvement of the janus kinase/signal transducer and activator of transcription signaling pathway in multiple sclerosis and the animal model of experimental autoimmune encephalomyelitis. J Interferon Cytokine Res 2015; 34:577-88. [PMID: 25084174 DOI: 10.1089/jir.2014.0012] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Multiple sclerosis (MS) and its animal model of experimental autoimmune encephalomyelitis (EAE) are characterized by focal inflammatory infiltrates into the central nervous system, demyelinating lesions, axonal damage, and abundant production of cytokines that activate immune cells and damage neurons and oligodendrocytes, including interleukin-12 (IL-12), IL-6, IL-17, IL-21, IL-23, granulocyte macrophage-colony stimulating factor, and interferon-gamma. The Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) signaling pathway mediates the biological activities of these cytokines and is essential for the development and regulation of immune responses. Dysregulation of the JAK/STAT pathway contributes to numerous autoimmune diseases, including MS/EAE. The JAK/STAT pathway is aberrantly activated in MS/EAE because of excessive production of cytokines, loss of expression of negative regulators such as suppressors of cytokine signaling proteins, and significant enrichment of genes encoding components of the JAK/STAT pathway, including STAT3. Specific JAK/STAT inhibitors have been used in numerous preclinical models of MS and demonstrate beneficial effects on the clinical course of disease and attenuation of innate and adaptive immune responses. In addition, other drugs such as statins, glatiramer acetate, laquinimod, and fumarates have beneficial effects that involve inhibition of the JAK/STAT pathway. We conclude by discussing the feasibility of the JAK/STAT pathway as a target for neuroinflammatory diseases.
Collapse
Affiliation(s)
- Etty N Benveniste
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham , Birmingham, Alabama
| | | | | | | |
Collapse
|
133
|
Racke MK, Yang Y, Lovett-Racke AE. Is T-bet a potential therapeutic target in multiple sclerosis? J Interferon Cytokine Res 2015; 34:623-32. [PMID: 25084179 DOI: 10.1089/jir.2014.0020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Treatments for multiple sclerosis (MS) have changed over the past years as our understanding of immunology and neuroscience has evolved. Experimental autoimmune encephalomyelitis (EAE) continues to remain the major model for MS and has been a major vehicle in the development of new therapeutic targets for MS, including new agents such as natalizumab, fingolimod, and dimethyl fumarate. As progress in the molecular understanding of immunology continues, many observations in EAE are pursued with the ultimate goal of defining the pathophysiology of MS and development of innovative treatments for the disease. Although many consider MS to be a T cell-mediated autoimmune disease directed against myelin antigens, the exact cause of the disease is still unknown. For many years, it was thought that myelin-specific T cells that secreted interferon-γ and were proinflammatory were the major T cell subset that mediated the disease, but recent studies on the cytokine phenotype of pathogenic T cells in EAE and MS have opened debate on this issue. Work over the past several years suggests that the transcription factor T-bet appears to be an important factor in T cell encephalitogenicity; however, recent data suggest that it is also dispensable in certain situations, particularly for Th17 cells. Understanding the molecular mechanisms responsible for T cell encephalitogenicity in MS and other autoimmune diseases will be essential in the development of specific therapies for these inflammatory diseases.
Collapse
Affiliation(s)
- Michael K Racke
- 1 Department of Neurology, The Ohio State University Wexner Medical Center , Columbus, Ohio
| | | | | |
Collapse
|
134
|
Li CH, Lin MH, Chu SH, Tu PH, Fang CC, Yen CH, Liang PI, Huang JC, Su YC, Sytwu HK, Chen YMA. Role of glycine N-methyltransferase in the regulation of T-cell responses in experimental autoimmune encephalomyelitis. Mol Med 2015; 20:684-96. [PMID: 25535034 DOI: 10.2119/molmed.2014.00133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 12/12/2014] [Indexed: 01/18/2023] Open
Abstract
Glycine N-methyltransferase (GNMT) is known for its function as a tumor suppressor gene. Since 100% of female Gnmt(-/-) mice developed hepatocellular carcinoma, we hypothesized that Gnmt(-/-) mice may have defective immune surveillance. In this study, we examined the immune modulation of GNMT in T-cell responses using experimental autoimmune encephalomyelitis (EAE). The results showed that EAE severity was reduced significantly in Gnmt(-/-) mice. Pathological examination of the spinal cords revealed that Gnmt(-/-) mice had significantly lower levels of mononuclear cell infiltration and demyelination than the wild-type mice. In addition, quantitative real-time PCR showed that expression levels of proinflammatory cytokines, including interferon (IFN)-γ and interleukin (IL)-17A, were much lower in the spinal cord of Gnmt(-/-) than in that of wild-type mice. Accordingly, myelin oligodendrocyte glycoprotein (MOG)-specific T-cell proliferation and induction of T-helper (Th)1 and Th17 cells were markedly suppressed in MOG(35-55)-induced Gnmt(-/-) mice. Moreover, the number of regulatory T (Treg) cells was increased significantly in these mice. When the T-cell receptor was stimulated, the proliferative capacity and the activation status of mTOR-associated downstream signaling were decreased significantly in Gnmt(-/-) CD4(+) T cells via an IL-2- and CD25-independent manner. Moreover, GNMT deficiency enhanced the differentiation of Treg cells without affecting the differentiation of Th1 and Th17 cells. Furthermore, the severity of EAE in mice adoptive transferred with GNMT-deficient CD4(+) T cells was much milder than in those with wild-type CD4(+) T cells. In summary, our findings suggest that GNMT is involved in the pathogenesis of EAE and plays a crucial role in the regulation of CD4(+) T-cell functions.
Collapse
Affiliation(s)
- Chung-Hsien Li
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan.,Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Hong Lin
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Han Chu
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan.,Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pang-Hsien Tu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Cheng-Chieh Fang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan.,Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Hung Yen
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Peir-In Liang
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jason C Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Chia Su
- National Laboratory Animal Center, National Applied Research Laboratories
| | - Huey-Kang Sytwu
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Ming Arthur Chen
- Department of Microbiology and Immunology, Institute of Medical Research and Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
135
|
Nicol B, Salou M, Laplaud DA, Wekerle H. The autoimmune concept of multiple sclerosis. Presse Med 2015; 44:e103-12. [PMID: 25813101 DOI: 10.1016/j.lpm.2015.02.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 02/23/2015] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and demyelinating disease of the central nervous system (CNS). With growing evidence for environmental and genetic factors, MS is now accepted as an autoimmune disease. This complex disease seems to implicate various cell types in both innate and adaptive compartments. Here, we discuss recent advances in the immunological field of MS research.
Collapse
Affiliation(s)
- Bryan Nicol
- CHU de Nantes, service de neurologie, Inserm CR1064, 44093 Nantes cedex, France
| | - Marion Salou
- CHU de Nantes, service de neurologie, Inserm CR1064, 44093 Nantes cedex, France
| | - David-Axel Laplaud
- CHU de Nantes, service de neurologie, Inserm CR1064, 44093 Nantes cedex, France.
| | - Hartmut Wekerle
- Max Planck institute of neurobiology, department of neuroimmunology, Planegg-Martinsried, 31, 81377 Munich, Germany
| |
Collapse
|
136
|
McPherson RC, Turner DG, Mair I, O’Connor RA, Anderton SM. T-bet Expression by Foxp3(+) T Regulatory Cells is Not Essential for Their Suppressive Function in CNS Autoimmune Disease or Colitis. Front Immunol 2015; 6:69. [PMID: 25741342 PMCID: PMC4332357 DOI: 10.3389/fimmu.2015.00069] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/03/2015] [Indexed: 12/14/2022] Open
Abstract
Accumulation of T regulatory (Treg) cells within the central nervous system (CNS) during experimental autoimmune encephalomyelitis (EAE) is essential for the resolution of disease. CNS Treg cells have been shown to uniformly express the Th1-associated molecules, T-bet and CXCR3. Here, we report that the expression of T-bet is not required for the function of these Treg within the CNS. Using mice that lacked T-bet expression specifically within the Treg compartment, we demonstrate that there was no deficit in Treg recruitment into the CNS during EAE and no difference in the resolution of disease compared to control mice. T-bet deficiency did not impact on the in vitro suppressive capacity of Treg. Transfer of T-bet-deficient Treg was able to suppress clinical signs of either EAE or colitis. These observations demonstrate that, although Treg can acquire characteristics associated with pathogenic T effector cells, this process is not necessarily required for their suppressive capacity and the resolution of autoimmune inflammation.
Collapse
Affiliation(s)
- Rhoanne C. McPherson
- MRC Centre for Inflammation Research, Centre for Multiple Sclerosis Research and Centre for Immunity Infection and Evolution, University of Edinburgh, Edinburgh, UK
| | - Darryl G. Turner
- MRC Centre for Inflammation Research, Centre for Multiple Sclerosis Research and Centre for Immunity Infection and Evolution, University of Edinburgh, Edinburgh, UK
| | - Iris Mair
- MRC Centre for Inflammation Research, Centre for Multiple Sclerosis Research and Centre for Immunity Infection and Evolution, University of Edinburgh, Edinburgh, UK
| | - Richard A. O’Connor
- MRC Centre for Inflammation Research, Centre for Multiple Sclerosis Research and Centre for Immunity Infection and Evolution, University of Edinburgh, Edinburgh, UK
| | - Stephen M. Anderton
- MRC Centre for Inflammation Research, Centre for Multiple Sclerosis Research and Centre for Immunity Infection and Evolution, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
137
|
Th17 differentiation and their pro-inflammation function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 841:99-151. [PMID: 25261206 DOI: 10.1007/978-94-017-9487-9_5] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CD4(+) T helper cells are classical but constantly reinterpreted T-cell subset, playing critical roles in a diverse range of inflammatory responses or diseases. Depending on the cytokines they release and the immune responses they mediate, CD4(+) T cells are classically divided into two major cell populations: Th1 and Th2 cells. However, recent studies challenged this Th1/Th2 paradigm by discovering several T-helper cell subsets with specific differentiation program and functions, including Th17 cells, Treg cells, and Tfh cells. In this chapter, we summarize the current understanding and recent progresses on the Th17 lineage differentiation and its effector impacts on variety of inflammatory responses or disease pathogenesis.
Collapse
|
138
|
Yang Y, Winger RC, Lee PW, Nuro-Gyina PK, Minc A, Larson M, Liu Y, Pei W, Rieser E, Racke MK, Lovett-Racke AE. Impact of suppressing retinoic acid-related orphan receptor gamma t (ROR)γt in ameliorating central nervous system autoimmunity. Clin Exp Immunol 2015; 179:108-18. [PMID: 25142403 DOI: 10.1111/cei.12441] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2014] [Indexed: 12/15/2022] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated chronic central nervous system (CNS) disease affecting more than 400 000 people in the United States. Myelin-reactive CD4 T cells play critical roles in the formation of acute inflammatory lesions and disease progression in MS and experimental autoimmune encephalomyelitis (EAE), a well-defined mouse model for MS. Current MS therapies are only partially effective, making it necessary to develop more effective therapies that specifically target pathogenic myelin-specific CD4 T cells for MS treatment. While suppressing T-bet, the key transcription factor in T helper type 1 (Th1) cells, has been demonstrated to be beneficial in prevention and treatment of EAE, the therapeutic potential of retinoic acid-related orphan receptor gamma t (ROR)γt, the key transcription factor for Th17 cells, has not been well-characterized. In this study, we characterized the correlation between RORγt expression and other factors affecting T cell encephalitogenicity and evaluated the therapeutic potential of targeting RORγt by siRNA inhibition of RORγt. Our data showed that RORγt expression correlates with interleukin (IL)-17 production, but not with the encephalitogenicity of myelin-specific CD4 T cells. IL-23, a cytokine that enhances encephalitogenicity, does not enhance RORγt expression significantly. Additionally, granulocyte-macrophage colony-stimulating factor (GM-CSF) levels, which correlate with the encephalitogenicity of different myelin-specific CD4 T cell populations, do not correlate with RORγt. More importantly, inhibiting RORγt expression in myelin-specific CD4 T cells with an siRNA does not reduce disease severity significantly in adoptively transferred EAE. Thus, RORγt is unlikely to be a more effective therapeutic target for ameliorating pathogenicity of encephalitogenic CD4 T cells.
Collapse
Affiliation(s)
- Y Yang
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Haftmann C, Stittrich AB, Zimmermann J, Fang Z, Hradilkova K, Bardua M, Westendorf K, Heinz GA, Riedel R, Siede J, Lehmann K, Weinberger EE, Zimmel D, Lauer U, Häupl T, Sieper J, Backhaus M, Neumann C, Hoffmann U, Porstner M, Chen W, Grün JR, Baumgrass R, Matz M, Löhning M, Scheffold A, Wittmann J, Chang HD, Rajewsky N, Jäck HM, Radbruch A, Mashreghi MF. miR-148a is upregulated by Twist1 and T-bet and promotes Th1-cell survival by regulating the proapoptotic gene Bim. Eur J Immunol 2015; 45:1192-205. [PMID: 25486906 PMCID: PMC4406154 DOI: 10.1002/eji.201444633] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 11/03/2014] [Accepted: 12/02/2014] [Indexed: 12/31/2022]
Abstract
Repeatedly activated T helper 1 (Th1) cells present during chronic inflammation can efficiently adapt to the inflammatory milieu, for example, by expressing the transcription factor Twist1, which limits the immunopathology caused by Th1 cells. Here, we show that in repeatedly activated murine Th1 cells, Twist1 and T-bet induce expression of microRNA-148a (miR-148a). miR-148a regulates expression of the proapoptotic gene Bim, resulting in a decreased Bim/Bcl2 ratio. Inhibition of miR-148a by antagomirs in repeatedly activated Th1 cells increases the expression of Bim, leading to enhanced apoptosis. Knockdown of Bim expression by siRNA in miR-148a antagomir-treated cells restores viability of the Th1 cells, demonstrating that miR-148a controls survival by regulating Bim expression. Thus, Twist1 and T-bet not only control the differentiation and function of Th1 cells, but also their persistence in chronic inflammation.
Collapse
Affiliation(s)
- Claudia Haftmann
- Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), an institute of the Leibniz AssociationBerlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Abstract
The ultraviolet (UV) radiation contained in sunlight is a powerful immune suppressant. While exposure to UV is best known for its ability to cause skin cancer, it is also associated with protection against a range of autoimmune diseases, particularly multiple sclerosis (MS). Although the precise mechanism by which sunlight affords protection from MS remains to be determined, some have hypothesised that UV immunosuppression explains the "latitude-gradient effect" associated with MS. By stimulating the release of soluble factors in exposed skin, UV activates immune suppressive pathways that culminate in the induction of regulatory cells in distant tissues. Each and every one of the immune suppressive cells and molecules activated by UV exposure are potential targets for treating and preventing MS. A thorough understanding of the mechanisms involved is therefore required if we are to realise the therapeutic potential of photoimmunology.
Collapse
Affiliation(s)
- Felix Marsh-Wakefield
- Cellular Photoimmunology Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School, University of Sydney, Camperdown, Australia.,Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.,Discipline of Dermatology, Bosch Institute, Sydney Medical School, University of Sydney, Camperdown, Australia
| | - Scott N Byrne
- Cellular Photoimmunology Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School, University of Sydney, Camperdown, Australia. .,Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia. .,Discipline of Dermatology, Bosch Institute, Sydney Medical School, University of Sydney, Camperdown, Australia. .,Infectious Diseases and Immunology, Level 5 (East), The Charles Perkins Centre Hub (D17), University of Sydney, Camperdown, NSW, 2006, Australia.
| |
Collapse
|
141
|
Fu J, Wang D, Yu Y, Heinrichs J, Wu Y, Schutt S, Kaosaard K, Liu C, Haarberg K, Bastian D, McDonald DG, Anasetti C, Yu XZ. T-bet is critical for the development of acute graft-versus-host disease through controlling T cell differentiation and function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:388-97. [PMID: 25404360 PMCID: PMC4314960 DOI: 10.4049/jimmunol.1401618] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
T-bet is a master regulator for IFN-γ production and Th1 differentiation. We evaluated the roles of T-bet and IFN-γ in T cell responses in acute graft-versus-host disease (GVHD) and found that T-bet(-/-) T cells induced significantly less GVHD compared with wild-type or IFN-γ(-/-) counterparts in both MHC-mismatched and MHC-matched but minor histocompatibility Ag-mismatched models driven by CD4 T cells. T-bet(-/-), but not IFN-γ(-/-), CD4 T cells had a markedly reduced ability to cause tissue damage in liver and gut. This distinct outcome is reflected by the differential gene expression on donor CD4 T cells deficient for T-bet or IFN-γ. At mRNA and protein levels, we defined several T-bet-dependent molecules that may account for the impaired ability of T-bet(-/-) T cells to migrate into target organs and to produce Th1-related cytokines. Moreover, these molecules were independent of either endogenous IFN-γ, such as CXCR3 and programmed death-1, or systematic IFN-γ, such as NKG2D, I-A(b), and granzyme B. Although both T-bet(-/-) and IFN-γ(-/-) CD4 T cells are prone to differentiate into Th17 cells, polarized Th17 cells deficient for T-bet but not for IFN-γ had a significantly reduced ability to cause GVHD. Finally, T-bet(-/-) T cells had a compromised graft-versus-leukemia effect, which could be essentially reversed by neutralization of IL-17 in the recipients. We conclude that T-bet is required for Th1 differentiation and migration, as well as for optimal function of Th17 cells. Thus, targeting T-bet or regulating its downstream effectors independent of IFN-γ may be a promising strategy to control GVHD in the clinic.
Collapse
Affiliation(s)
- Jianing Fu
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL 33612; Immunology, Blood and Marrow Transplantation, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612; Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425
| | - Dapeng Wang
- Immunology, Blood and Marrow Transplantation, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Yu Yu
- Immunology, Blood and Marrow Transplantation, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Jessica Heinrichs
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425; Department of Pathology and Cell Biology, University of South Florida, Tampa, FL 33612
| | - Yongxia Wu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425
| | - Steven Schutt
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425
| | - Kane Kaosaard
- Immunology, Blood and Marrow Transplantation, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Chen Liu
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32611
| | - Kelley Haarberg
- Immunology, Blood and Marrow Transplantation, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - David Bastian
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425
| | - Daniel G McDonald
- Department of Radiation Oncology, Medical University of South Carolina, Charleston, SC 29425; and
| | - Claudio Anasetti
- Immunology, Blood and Marrow Transplantation, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Xue-Zhong Yu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425; Department of Medicine, Medical University of South Carolina, Charleston, SC 29425
| |
Collapse
|
142
|
Rubtsova K, Marrack P, Rubtsov AV. TLR7, IFNγ, and T-bet: their roles in the development of ABCs in female-biased autoimmunity. Cell Immunol 2014; 294:80-3. [PMID: 25541140 PMCID: PMC4380581 DOI: 10.1016/j.cellimm.2014.12.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/04/2014] [Accepted: 12/05/2014] [Indexed: 01/21/2023]
Abstract
The majority of autoimmune diseases have a strong gender bias, affecting mostly females. Gender-specific factors like sex-hormones, the presence or absence of a second X chromosome, and gender-specific gut microbiota may contribute to this bias. In this review we will discuss the role of the X chromosome encoded toll-like receptor 7 (TLR7) and interferon gamma (IFNγ) in the development of autoimmunity. We will also review recent data indicating how these factors may affect an immune response in a gender-dependent manner.
Collapse
Affiliation(s)
- Kira Rubtsova
- Howard Hughes Medical Institute, Denver, CO 80206, USA; Department of Biomedical Science, National Jewish Health and Department of Immunology and Microbiology, University of Colorado Health Sciences Center, Denver, CO 80206, USA.
| | - Philippa Marrack
- Howard Hughes Medical Institute, Denver, CO 80206, USA; Department of Biomedical Science, National Jewish Health and Department of Immunology and Microbiology, University of Colorado Health Sciences Center, Denver, CO 80206, USA; Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Aurora, CO 80045, USA
| | - Anatoly V Rubtsov
- Howard Hughes Medical Institute, Denver, CO 80206, USA; Department of Biomedical Science, National Jewish Health and Department of Immunology and Microbiology, University of Colorado Health Sciences Center, Denver, CO 80206, USA
| |
Collapse
|
143
|
Jafarzadeh A, Mohammadi-Kordkhayli M, Ahangar-Parvin R, Azizi V, Khoramdel-Azad H, Shamsizadeh A, Ayoobi A, Nemati M, Hassan ZM, Moazeni SM, Khaksari M. Ginger extracts influence the expression of IL-27 and IL-33 in the central nervous system in experimental autoimmune encephalomyelitis and ameliorates the clinical symptoms of disease. J Neuroimmunol 2014; 276:80-8. [PMID: 25175065 DOI: 10.1016/j.jneuroim.2014.08.614] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 08/03/2014] [Accepted: 08/11/2014] [Indexed: 01/11/2023]
Abstract
The immunomodulatory effects of the IL-27 and IL-33 and the anti-inflammatory effects of ginger have been reported in some studies. The aim was to evaluate the effects of the ginger extract on the expression of IL-27 and IL-33 in a model of experimental autoimmune encephalomyelitis (EAE). In PBS-treated EAE mice the expression of IL-27 P28 was significantly lower whereas the expression of IL-33 was significantly higher than unimmunized control mice. In 200 and 300 mg/kg ginger-treated EAE groups the expression of IL-27 P28 and IL-27 EBI3 was significantly higher whereas the expression of IL-33 was significantly lower than PBS-treated EAE mice. The EAE clinical symptoms and the pathological scores were significantly lower in ginger-treated EAE groups. These results showed that the ginger extract modulates the expression of the IL-27 and IL-33 in the spinal cord of EAE mice and ameliorates the clinical symptoms of disease.
Collapse
MESH Headings
- Animals
- Body Weight/drug effects
- Central Nervous System/drug effects
- Central Nervous System/metabolism
- Chemotaxis, Leukocyte/drug effects
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Encephalomyelitis, Autoimmune, Experimental/blood
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Female
- Freund's Adjuvant/toxicity
- Zingiber officinale/chemistry
- Interferon-gamma/blood
- Interleukin-27/genetics
- Interleukin-27/metabolism
- Interleukin-33
- Interleukin-7/blood
- Interleukins/genetics
- Interleukins/metabolism
- Mice
- Mice, Inbred C57BL
- Myelin-Oligodendrocyte Glycoprotein/toxicity
- Peptide Fragments/toxicity
- Phytotherapy
- Plant Extracts/therapeutic use
- Time Factors
Collapse
Affiliation(s)
- A Jafarzadeh
- Neuroscience Research Center, Department of Neurology, Kerman University of Medical Sciences, Kerman, Iran; Department of Immunology, Medical School, Kerman University of Medical Sciences, Kerman, Iran; Department of Immunology, Medical School, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - M Mohammadi-Kordkhayli
- Department of Immunology, Medical School, Kerman University of Medical Sciences, Kerman, Iran
| | - R Ahangar-Parvin
- Department of Immunology, Medical School, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - V Azizi
- Department of Immunology, Medical School, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - H Khoramdel-Azad
- Department of Immunology, Medical School, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - A Shamsizadeh
- Department of Physiology, Medical School, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - A Ayoobi
- Department of Physiology, Medical School, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - M Nemati
- Department of Immunology, Medical School, Kerman University of Medical Sciences, Kerman, Iran
| | - Z M Hassan
- Department of Immunology, Medical School, Tarbiat Moddares University, Tehran, Iran
| | - S M Moazeni
- Department of Immunology, Medical School, Tarbiat Moddares University, Tehran, Iran
| | - M Khaksari
- Neuroscience Research Center, Department of Neurology, Kerman University of Medical Sciences, Kerman, Iran; Department of Physiology, Medical School, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
144
|
Luo Q, Sun Y, Gong FY, Liu W, Zheng W, Shen Y, Hua ZC, Xu Q. Blocking initial infiltration of pioneer CD8(+) T-cells into the CNS via inhibition of SHP-2 ameliorates experimental autoimmune encephalomyelitis in mice. Br J Pharmacol 2014; 171:1706-21. [PMID: 24372081 DOI: 10.1111/bph.12565] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 11/10/2013] [Accepted: 12/17/2013] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND PURPOSE In contrast to T-cell priming in the periphery, therapeutic strategies targeting the initiation step of T-cell trafficking into the CNS have not been extensively investigated. In this study, we examined the effect of NSC-87877, a potent Src homology 2-containing protein tyrosine phosphatase 2 (SHP-2) inhibitor, on experimental autoimmune encephalomyelitis (EAE) and elucidated its unique mechanism of action. EXPERIMENTAL APPROACH C57BL/6 mice were immunized with myelin oligodendrocyte glycoprotein35-55 and monitored for clinical severity of disease and histopathological features in the CNS. Levels of cytokines in serum were measured by elisa. Effects of NSC-87877 on expressions of chemokines and cytokines in the CNS were determined by quantitative PCR. KEY RESULTS NSC-87877-treated mice developed conventional TH 1 and TH 17 responses, but were highly resistant to the induction of EAE. NSC-87877 decreased the accumulation of lymphocytes in the CNS and increased the functional expression of chemokine receptor CXCR7 on CD8(+) T-cells. Adoptive transfer of T-cells from 2D2-transgenic mice restored EAE susceptibility in NSC-87877-treated mice, indicating that NSC-87877 only targets the initial migration of pioneer T-cells. Furthermore, T-cell-conditioned SHP-2-deficient mice treated with NSC-87877 were no longer resistant to EAE, suggesting that inhibition of SHP-2 contributes to the amelioration of EAE by NSC-87877. CONCLUSIONS AND IMPLICATIONS NSC-87877 almost completely abolished the development of EAE by blocking the initial infiltration of pioneer CD8(+) T-cells into the uninflamed CNS. These results reveal a critical role for SHP-2 in regulating EAE pathogenesis and indicate that NSC-87877 is a potential candidate for the treatment of relapsing-remitting multiple sclerosis.
Collapse
Affiliation(s)
- Qiong Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
145
|
Kulcsar KA, Baxter VK, Greene IP, Griffin DE. Interleukin 10 modulation of pathogenic Th17 cells during fatal alphavirus encephalomyelitis. Proc Natl Acad Sci U S A 2014; 111:16053-8. [PMID: 25362048 PMCID: PMC4234572 DOI: 10.1073/pnas.1418966111] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mosquito-borne alphaviruses are important causes of epidemic encephalomyelitis. Neuronal cell death during fatal alphavirus encephalomyelitis is immune-mediated; however, the types of cells involved and their regulation have not been determined. We show that the virus-induced inflammatory response was accompanied by production of the regulatory cytokine IL-10, and in the absence of IL-10, paralytic disease occurred earlier and mice died faster. To determine the reason for accelerated disease in the absence of IL-10, immune responses in the CNS of IL-10(-/-) and wild-type (WT) mice were compared. There were no differences in the amounts of brain inflammation or peak virus replication; however, IL-10(-/-) animals had accelerated and increased infiltration of CD4(+)IL-17A(+) and CD4(+)IL-17A(+)IFNγ(+) cells compared with WT animals. Th17 cells infiltrating the brain demonstrated a pathogenic phenotype with the expression of the transcription factor, Tbet, and the production of granzyme B, IL-22, and GM-CSF, with greater production of GM-CSF in IL-10(-/-) mice. Therefore, in fatal alphavirus encephalomyelitis, pathogenic Th17 cells enter the CNS at the onset of neurologic disease and, in the absence of IL-10, appear earlier, develop into Th1/Th17 cells more often, and have greater production of GM-CSF. This study demonstrates a role for pathogenic Th17 cells in fatal viral encephalitis.
Collapse
Affiliation(s)
- Kirsten A Kulcsar
- Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205; and W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Victoria K Baxter
- Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205; and W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Ivorlyne P Greene
- Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205; and W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Diane E Griffin
- Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205; and W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| |
Collapse
|
146
|
Choi KS, Scorpio DG, Dumler JS. Stat1 negatively regulates immune-mediated injury with Anaplasma phagocytophilum infection. THE JOURNAL OF IMMUNOLOGY 2014; 193:5088-98. [PMID: 25305312 DOI: 10.4049/jimmunol.1401381] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human granulocytic anaplasmosis (HGA) is caused by the obligate intracellular bacterium Anaplasma phagocytophilum. Our data previously demonstrated that A. phagocytophilum induces an immunopathologic response by activating IFN-γ production through the Stat1 signaling pathway. In this study, we investigated the broader role of Stat1 signaling in the host response to infection with A. phagocytophilum. In Stat1 knockout (KO) compared with wild-type mice, A. phagocytophilum infection was more highly pathogenic as characterized by the unanticipated development of clinical signs in mice including markedly increased splenomegaly, more severe inflammatory splenic and hepatic histopathology, >100-fold higher blood and splenic bacterial loads, and more elevated proinflammatory cytokine/chemokine responses in serum. CD4(+) and CD8(+) T lymphocyte populations were significantly expanded in spleens of A. phagocytophilum-infected Stat1 KO mice compared with wild-type mice. The leukocyte infiltrates in the livers and spleens of A. phagocytophilum-infected Stat1 KO mice also contained expansions in neutrophil and monocyte/macrophage populations. Importantly, A. phagocytophilum-infected Stat1 KO mice did not demonstrate induction of inducible NO synthase in splenocytes. These results show that Stat1 plays an important role in controlling bacterial loads but also by unexpectedly providing an undefined mechanism for dampening of the immunopathologic response observed with A. phagocytophilum infection.
Collapse
Affiliation(s)
- Kyoung-Seong Choi
- Department of Animal Biotechnology, College of Animal Science, Kyungpook National University, Sangju 742-711, Republic of Korea; Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Diana G Scorpio
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205; Department of Biomedical Sciences, Ross University School of Veterinary Medicine, St. Kitts and Nevis, West Indies
| | - J Stephen Dumler
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205; Department of Pathology, University of Maryland, Baltimore, MD 21201; and Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201
| |
Collapse
|
147
|
Annunziato F, Cosmi L, Liotta F, Maggi E, Romagnani S. Human Th1 dichotomy: origin, phenotype and biologic activities. Immunology 2014; 144:343-351. [PMID: 25284714 PMCID: PMC4557671 DOI: 10.1111/imm.12399] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/30/2014] [Accepted: 09/30/2014] [Indexed: 12/14/2022] Open
Abstract
The great variety of pathogens present in the environment has obliged the immune system to evolve different mechanisms for tailored and maximally protective responses. Initially, two major types of CD4+ T helper (Th) effector cells were identified, and named as type 1 (Th1) and type (Th2) cells because of the different cytokines they produce. More recently, a third type of CD4+ Th effectors has been identified and named as Th17 cells. Th17 cells, however, have been found to exhibit high plasticity because they rapidly shift into the Th1 phenotype in the inflammatory sites. Therefore, in these sites usually there is a dichotomic mixture of classic and non classic (Th17-derived) Th1 cells. In humans, non classic Th1 cells express CD161, as well as the retinoic acid orphan receptor C, IL-17 receptor E, IL-1RI, CCR6, and IL-4-induced gene 1 and Tob-1, which are all virtually absent from classic Th1 cells. The possibility to distinguish these two cell subsets may allow the opportunity to better establish their respective pathogenic role in different chronic inflammatory disorders. In this review, we discuss the different origin, the distinctive phenotypic features and the major biologic activities of classic and non classic Th1 cells. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Francesco Annunziato
- Department of Experimental and Clinical Medicine and DENOTHE Centre, University of FlorenceFlorence, Italy
- Regenerative Medicine Unit and Immunology and Cellular Therapy Unit, Azienda Ospedaliera CareggiFlorence, Italy
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine and DENOTHE Centre, University of FlorenceFlorence, Italy
- Regenerative Medicine Unit and Immunology and Cellular Therapy Unit, Azienda Ospedaliera CareggiFlorence, Italy
| | - Francesco Liotta
- Department of Experimental and Clinical Medicine and DENOTHE Centre, University of FlorenceFlorence, Italy
- Regenerative Medicine Unit and Immunology and Cellular Therapy Unit, Azienda Ospedaliera CareggiFlorence, Italy
| | - Enrico Maggi
- Department of Experimental and Clinical Medicine and DENOTHE Centre, University of FlorenceFlorence, Italy
- Regenerative Medicine Unit and Immunology and Cellular Therapy Unit, Azienda Ospedaliera CareggiFlorence, Italy
| | - Sergio Romagnani
- Department of Experimental and Clinical Medicine and DENOTHE Centre, University of FlorenceFlorence, Italy
| |
Collapse
|
148
|
Rouse M, Singh NP, Nagarkatti PS, Nagarkatti M. Indoles mitigate the development of experimental autoimmune encephalomyelitis by induction of reciprocal differentiation of regulatory T cells and Th17 cells. Br J Pharmacol 2014; 169:1305-21. [PMID: 23586923 DOI: 10.1111/bph.12205] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 03/06/2013] [Accepted: 03/27/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Dietary indole derivatives, indole-3-carbinol (I3C) and diindolylmethane (DIM), possess anti-cancer properties and exhibit the characteristics of aryl hydrocarbon receptor (AhR) ligands. Because AhR activation has recently been shown to regulate T cell differentiation, we tested the hypothesis that I3C and DIM may mediate anti-inflammatory properties by promoting regulatory T cell (T-regs) differentiation while inhibiting Th17 cells. EXPERIMENTAL APPROACH We investigated the therapeutic efficacy of I3C and DIM against experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis (MS). The efficacy was evaluated based on clinical scores of paralysis, histopathology, serum cytokines and infiltration of T cells in the CNS. We next studied the mechanism of induction of T cells against myelin oligodendrocyte glycoprotein (MOG₃₅₋₅₅ ) peptide, both in vivo and in vitro, specifically investigating the differentiation of T-regs and Th17 cells, and determined if indoles were acting through AhR. KEY RESULTS Pretreatment of EAE mice with I3C or DIM completely prevented the clinical symptoms and cellular infiltration into the CNS. Also, post-treatment of EAE with I3C or DIM proved highly effective in curtailing the overall severity of the disease. In addition, I3C or DIM promoted the generation of T-regs, while down-regulating the induction of MOG-specific Th17 cells. The regulation of FoxP3 induction and suppression of Th17 cells by indoles in vivo and in vitro were found to be AhR-dependent. CONCLUSIONS AND IMPLICATIONS Together, our studies demonstrate for the first time that I3C and DIM may serve as novel therapeutics to suppress neuroinflammation seen during MS through activation of AhR.
Collapse
Affiliation(s)
- Michael Rouse
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | | | | | | |
Collapse
|
149
|
Zhang J, Patel MB, Griffiths R, Mao A, Song YS, Karlovich NS, Sparks MA, Jin H, Wu M, Lin EE, Crowley SD. Tumor necrosis factor-α produced in the kidney contributes to angiotensin II-dependent hypertension. Hypertension 2014; 64:1275-81. [PMID: 25185128 DOI: 10.1161/hypertensionaha.114.03863] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Immune system activation contributes to the pathogenesis of hypertension and the resulting progression of chronic kidney disease. In this regard, we recently identified a role for proinflammatory Th1 T-lymphocyte responses in hypertensive kidney injury. Because Th1 cells generate interferon-γ and tumor necrosis factor-α (TNF-α), we hypothesized that interferon-γ and TNF-α propagate renal damage during hypertension induced by activation of the renin-angiotensin system. Therefore, after confirming that mice genetically deficient of Th1 immunity were protected from kidney glomerular injury despite a preserved hypertensive response, we subjected mice lacking interferon-γ or TNF-α to our model of hypertensive chronic kidney disease. Interferon deficiency had no impact on blood pressure elevation or urinary albumin excretion during chronic angiotensin II infusion. By contrast, TNF-deficient (knockout) mice had blunted hypertensive responses and reduced end-organ damage in our model. As angiotensin II-infused TNF knockout mice had exaggerated endothelial nitric oxide synthase expression in the kidney and enhanced nitric oxide bioavailability, we examined the actions of TNF-α generated from renal parenchymal cells in hypertension by transplanting wild-type or TNF knockout kidneys into wild-type recipients before the induction of hypertension. Transplant recipients lacking TNF solely in the kidney had blunted hypertensive responses to angiotensin II and augmented renal endothelial nitric oxide synthase expression, confirming a role for kidney-derived TNF-α to promote angiotensin II-induced blood pressure elevation by limiting renal nitric oxide generation.
Collapse
Affiliation(s)
- Jiandong Zhang
- From the Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (J.Z., M.B.P., R.G., A.M., Y.-s.S., N.S.K., M.S., H.J., S.D.C.); Department of Biology, University of Virginia, Charlottesville (E.E.L.); and Department of Medicine, Southeast University, Nanjing, China (M.W.)
| | - Mehul B Patel
- From the Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (J.Z., M.B.P., R.G., A.M., Y.-s.S., N.S.K., M.S., H.J., S.D.C.); Department of Biology, University of Virginia, Charlottesville (E.E.L.); and Department of Medicine, Southeast University, Nanjing, China (M.W.)
| | - Robert Griffiths
- From the Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (J.Z., M.B.P., R.G., A.M., Y.-s.S., N.S.K., M.S., H.J., S.D.C.); Department of Biology, University of Virginia, Charlottesville (E.E.L.); and Department of Medicine, Southeast University, Nanjing, China (M.W.)
| | - Alice Mao
- From the Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (J.Z., M.B.P., R.G., A.M., Y.-s.S., N.S.K., M.S., H.J., S.D.C.); Department of Biology, University of Virginia, Charlottesville (E.E.L.); and Department of Medicine, Southeast University, Nanjing, China (M.W.)
| | - Young-soo Song
- From the Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (J.Z., M.B.P., R.G., A.M., Y.-s.S., N.S.K., M.S., H.J., S.D.C.); Department of Biology, University of Virginia, Charlottesville (E.E.L.); and Department of Medicine, Southeast University, Nanjing, China (M.W.)
| | - Norah S Karlovich
- From the Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (J.Z., M.B.P., R.G., A.M., Y.-s.S., N.S.K., M.S., H.J., S.D.C.); Department of Biology, University of Virginia, Charlottesville (E.E.L.); and Department of Medicine, Southeast University, Nanjing, China (M.W.)
| | - Matthew A Sparks
- From the Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (J.Z., M.B.P., R.G., A.M., Y.-s.S., N.S.K., M.S., H.J., S.D.C.); Department of Biology, University of Virginia, Charlottesville (E.E.L.); and Department of Medicine, Southeast University, Nanjing, China (M.W.)
| | - Huixia Jin
- From the Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (J.Z., M.B.P., R.G., A.M., Y.-s.S., N.S.K., M.S., H.J., S.D.C.); Department of Biology, University of Virginia, Charlottesville (E.E.L.); and Department of Medicine, Southeast University, Nanjing, China (M.W.)
| | - Min Wu
- From the Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (J.Z., M.B.P., R.G., A.M., Y.-s.S., N.S.K., M.S., H.J., S.D.C.); Department of Biology, University of Virginia, Charlottesville (E.E.L.); and Department of Medicine, Southeast University, Nanjing, China (M.W.)
| | - Eugene E Lin
- From the Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (J.Z., M.B.P., R.G., A.M., Y.-s.S., N.S.K., M.S., H.J., S.D.C.); Department of Biology, University of Virginia, Charlottesville (E.E.L.); and Department of Medicine, Southeast University, Nanjing, China (M.W.)
| | - Steven D Crowley
- From the Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (J.Z., M.B.P., R.G., A.M., Y.-s.S., N.S.K., M.S., H.J., S.D.C.); Department of Biology, University of Virginia, Charlottesville (E.E.L.); and Department of Medicine, Southeast University, Nanjing, China (M.W.).
| |
Collapse
|
150
|
Treatment with the antipsychotic agent, risperidone, reduces disease severity in experimental autoimmune encephalomyelitis. PLoS One 2014; 9:e104430. [PMID: 25116424 PMCID: PMC4130540 DOI: 10.1371/journal.pone.0104430] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/09/2014] [Indexed: 01/11/2023] Open
Abstract
Recent studies have demonstrated that atypical antipsychotic agents, which are known to antagonize dopamine D2 and serotonin 5-HT2a receptors, have immunomodulatory properties. Given the potential of these drugs to modulate the immune system both peripherally and within the central nervous system, we investigated the ability of the atypical anti-psychotic agent, risperidone, to modify disease in the animal model of multiple sclerosis (MS)4, experimental autoimune encephalomyelitis (EAE). We found that chronic oral administration of risperidone dose-dependently reduced the severity of disease and decreased both the size and number of spinal cord lesions. Furthermore, risperidone treatment substantially reduced antigen-specific interleukin (IL)-17a, IL-2, and IL-4 but not interferon (IFN)-γ production by splenocytes at peak disease and using an in vitro model, we show that treatment of macrophages with risperidone alters their ability to bias naïve T cells. Another atypical antipsychotic agent, clozapine, showed a similar ability to modify macrophages in vitro and to reduce disease in the EAE model but this effect was not due to antagonism of the type 1 or type 2 dopamine receptors alone. Finally, we found that while risperidone treatment had little effect on the in vivo activation of splenic macrophages during EAE, it significantly reduced the activation of microglia and macrophages in the central nervous system. Together these studies indicate that atypical antipsychotic agents like risperidone are effective immunomodulatory agents with the potential to treat immune-mediated diseases such as MS.
Collapse
|