101
|
Lin YW, Akrouh A, Hsu Y, Hughes N, Nichols CG, De León DD. Compound heterozygous mutations in the SUR1 (ABCC 8) subunit of pancreatic K(ATP) channels cause neonatal diabetes by perturbing the coupling between Kir6.2 and SUR1 subunits. Channels (Austin) 2012; 6:133-8. [PMID: 22562119 DOI: 10.4161/chan.19980] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
KATP channels regulate insulin secretion by coupling β-cell metabolism to membrane excitability. These channels are comprised of a pore-forming Kir6.2 tetramer which is enveloped by four regulatory SUR1 subunits. ATP acts on Kir6.2 to stabilize the channel closed state while ADP (coordinated with Mg(2+)) activates channels via the SUR1 domains. Aberrations in nucleotide-binding or in coupling binding to gating can lead to hyperinsulinism or diabetes. Here, we report a case of diabetes in a 7-mo old child with compound heterozygous mutations in ABCC8 (SUR1[A30V] and SUR1[G296R]). In unison, these mutations lead to a gain of KATP channel function, which will attenuate the β-cell response to increased metabolism and will thereby decrease insulin secretion. (86)Rb(+) flux assays on COSm6 cells coexpressing the mutant subunits (to recapitulate the compound heterozygous state) show a 2-fold increase in basal rate of (86)Rb(+) efflux relative to WT channels. Experiments on excised inside-out patches also reveal a slight increase in activity, manifested as an enhancement in stimulation by MgADP in channels expressing the compound heterozygous mutations or homozygous G296R mutation. In addition, the IC 50 for ATP inhibition of homomeric A30V channels was increased ~6-fold, and was increased ~3-fold for both heteromeric A30V+WT channels or compound heterozygous (A30V +G296R) channels. Thus, each mutation makes a mechanistically distinct contribution to the channel gain-of-function that results in neonatal diabetes, and which we predict may contribute to diabetes in related carrier individuals.
Collapse
Affiliation(s)
- Yu-Wen Lin
- Department of Cell Biology and Physiology and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St Louis, MO, USA
| | | | | | | | | | | |
Collapse
|
102
|
Riveline JP, Rousseau E, Reznik Y, Fetita S, Philippe J, Dechaume A, Hartemann A, Polak M, Petit C, Charpentier G, Gautier JF, Froguel P, Vaxillaire M. Clinical and metabolic features of adult-onset diabetes caused by ABCC8 mutations. Diabetes Care 2012; 35:248-51. [PMID: 22210575 PMCID: PMC3263906 DOI: 10.2337/dc11-1469] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Gain-of-function ABCC8/sulfonylurea (SU) receptor 1 mutations cause neonatal diabetes mellitus (NDM) or late-onset diabetes in adult relatives. Given the effectiveness of SU treatment in ABCC8-NDM patients, we further characterized late-onset ABCC8-associated diabetes. RESEARCH DESIGN AND METHODS Seven adult subjects from three NDM families and one family with type 2 diabetes were studied. Insulin secretion and insulin sensitivity were assessed using clamp techniques. We screened 139 type 2 diabetic patients who were well controlled by SU for ABCC8 mutations. RESULTS ABCC8 mutation carriers exhibited glucose intolerance, frank diabetes, or insulin-requiring diabetes since diagnosis. HbA(1c) improved in five SU-treated patients. Insulin secretion capacity was impaired in three patients compared with adult control subjects but was restored after a 4-week SU trial in two patients. Cohort screening revealed four SU-treated patients with ABCC8 mutations, two of which are likely causal. CONCLUSIONS Although of rare occurrence, recognition of adult-onset ABCC8-associated diabetes may help in targeting patients for SU therapy.
Collapse
Affiliation(s)
- Jean-Pierre Riveline
- Department of Diabetes and Endocrinology, Centre Hospitalier Sud Francilien, Corbeil-Essonnes, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
van der Heyden MAG. Finding inward rectifier channel inhibitors: why and how? Front Pharmacol 2012; 2:95. [PMID: 22291650 PMCID: PMC3253586 DOI: 10.3389/fphar.2011.00095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 12/23/2011] [Indexed: 11/13/2022] Open
Affiliation(s)
- Marcel A G van der Heyden
- Division Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, Netherlands.
| |
Collapse
|
104
|
Bowman P, Flanagan SE, Edghill EL, Damhuis A, Shepherd MH, Paisey R, Hattersley AT, Ellard S. Heterozygous ABCC8 mutations are a cause of MODY. Diabetologia 2012; 55:123-7. [PMID: 21989597 DOI: 10.1007/s00125-011-2319-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 08/26/2011] [Indexed: 10/17/2022]
Abstract
AIMS/HYPOTHESIS The ABCC8 gene encodes the sulfonylurea receptor 1 (SUR1) subunit of the pancreatic beta cell ATP-sensitive potassium (K(ATP)) channel. Inactivating mutations cause congenital hyperinsulinism (CHI) and activating mutations cause transient neonatal diabetes (TNDM) or permanent neonatal diabetes (PNDM) that can usually be treated with sulfonylureas. Sulfonylurea sensitivity is also a feature of HNF1A and HNF4A MODY, but patients referred for genetic testing with clinical features of these types of diabetes do not always have mutations in the HNF1A/4A genes. Our aim was to establish whether mutations in the ABCC8 gene cause MODY that is responsive to sulfonylurea therapy. METHODS We sequenced the ABCC8 gene in 85 patients with a BMI <30 kg/m², no family history of neonatal diabetes and who were deemed sensitive to sulfonylureas by the referring clinician or were sulfonylurea-treated. All had tested negative for mutations in the HNF1A and HNF4A genes. RESULTS ABCC8 mutations were found in seven of the 85 (8%) probands. Four patients were heterozygous for previously reported mutations and four novel mutations, E100K, G214R, Q485R and N1245D, were identified. Only four probands fulfilled MODY criteria, with two diagnosed after 25 years and one patient, who had no family history of diabetes, as a result of a proven de novo mutation. CONCLUSIONS/INTERPRETATION ABCC8 mutations can cause MODY in patients whose clinical features are similar to those with HNF1A/4A MODY. Therefore, sequencing of ABCC8 in addition to the known MODY genes should be considered if such features are present, to facilitate optimal clinical management of these patients.
Collapse
Affiliation(s)
- P Bowman
- Peninsula NIHR Clinical Research Facility, Peninsula Medical School, University of Exeter, Exeter, UK
| | | | | | | | | | | | | | | |
Collapse
|
105
|
Abstract
Diabetes mellitus diagnosed during the first 2 years of life differs from the disease in older children regarding its causes, clinical characteristics, treatment options and needs in terms of education and psychosocial support. Over the past decade, new genetic causes of neonatal diabetes mellitus have been elucidated, including monogenic β-cell defects and chromosome 6q24 abnormalities. In patients with KCNJ11 or ABCC8 mutations and diabetes mellitus, oral sulfonylurea offers an easy and effective treatment option. Type 1 diabetes mellitus in infants is characterized by a more rapid disease onset, poorer residual β-cell function and lower rate of partial remission than in older children. Insulin therapy in infants with type 1 diabetes mellitus or other monogenic causes of diabetes mellitus is a challenge, and novel data highlight the value of continuous subcutaneous insulin infusion in this very young patient population. Infants are entirely dependent on caregivers for insulin therapy, nutrition and glucose monitoring, which emphasizes the need for appropriate education and psychosocial support of parents. To achieve optimal long-term metabolic control with low rates of acute and chronic complications, continuous and structured diabetes care should be provided by a multidisciplinary health-care team.
Collapse
Affiliation(s)
- Beate Karges
- Division of Endocrinology and Diabetes, RWTH Aachen University, Pauwelsstraße 30, D-52074 Aachen, Germany.
| | | | | | | | | |
Collapse
|
106
|
Russo L, Iafusco D, Brescianini S, Nocerino V, Bizzarri C, Toni S, Cerutti F, Monciotti C, Pesavento R, Iughetti L, Bernardini L, Bonfanti R, Gargantini L, Vanelli M, Aguilar-Bryan L, Stazi MA, Grasso V, Colombo C, Barbetti F. Permanent diabetes during the first year of life: multiple gene screening in 54 patients. Diabetologia 2011; 54:1693-701. [PMID: 21544516 PMCID: PMC3110270 DOI: 10.1007/s00125-011-2094-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 01/25/2011] [Indexed: 11/30/2022]
Abstract
AIMS/HYPOTHESIS The aim of this study was to investigate the genetic aetiology of permanent diabetes mellitus with onset in the first 12 months of age. METHODS We studied 46 probands with permanent, insulin-requiring diabetes with onset within the first 6 months of life (permanent neonatal diabetes mellitus [PNDM]/monogenic diabetes of infancy [MDI]) (group 1) and eight participants with diabetes diagnosed between 7 and 12 months of age (group 2). KCNJ11, INS and ABCC8 genes were sequentially sequenced in all patients. For those who were negative in the initial screening, we examined ERN1, CHGA, CHGB and NKX6-1 genes and, in selected probands, CACNA1C, GCK, FOXP3, NEUROG3 and CDK4. The incidence rate for PNDM/MDI was calculated using a database of Italian patients collected from 1995 to 2009. RESULTS In group 1 we found mutations in KCNJ11, INS and ABCC8 genes in 23 (50%), 9 (19.5%) and 4 (8.6%) patients respectively, and a single homozygous mutation in GCK (2.1%). In group 2, we identified one incidence of a KCNJ11 mutation. No genetic defects were detected in other loci. The incidence rate of PNDM/MDI in Italy is estimated to be 1:210,287. CONCLUSIONS/INTERPRETATION Genetic mutations were identified in ~75% of non-consanguineous probands with PNDM/MDI, using sequential screening of KCNJ11, INS and ABCC8 genes in infants diagnosed within the first 6 months of age. This percentage decreased to 12% in those with diabetes diagnosed between 7 and 12 months. Patients belonging to the latter group may either carry mutations in genes different from those commonly found in PNDM/MDI or have developed an early-onset form of autoimmune diabetes.
Collapse
Affiliation(s)
- L. Russo
- Laboratory of Mendelian Diabetes, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - D. Iafusco
- Department of Pediatrics, Second University of Naples, Naples, Italy
| | - S. Brescianini
- Department of Epidemiology, Istituto Superiore di Sanità, Rome, Italy
| | - V. Nocerino
- Laboratory of Mendelian Diabetes, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - C. Bizzarri
- Endocrinology Unit, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - S. Toni
- Regional Center for Juvenile Diabetes, Meyer Pediatric Hospital, Florence, Italy
| | - F. Cerutti
- Department of Pediatrics, University of Turin, Turin, Italy
| | - C. Monciotti
- Department of Pediatrics, University of Padua, Padua, Italy
| | - R. Pesavento
- Pediatric Unit, Boldrini Hospital, Thiene, Italy
| | - L. Iughetti
- Department of Pediatrics, University of Modena, Modena, Italy
| | - L. Bernardini
- Mendel Laboratory, Casa Sollievo della Sofferenza, S Giovanni, Rotondo, Italy
| | - R. Bonfanti
- Department of Pediatrics, H S Raffaele Hospital and Scientific Institute, Milan, Italy
| | - L. Gargantini
- Department of Pediatrics, Treviglio Hospital, Treviglio, Italy
| | - M. Vanelli
- Department of Pediatrics, University of Parma, Parma, Italy
| | | | - M. A. Stazi
- Department of Epidemiology, Istituto Superiore di Sanità, Rome, Italy
| | - V. Grasso
- Department of Laboratory Medicine, Tor Vergata University Hospital, Rome, Italy
| | - C. Colombo
- Laboratory of Mendelian Diabetes, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - F. Barbetti
- Laboratory of Mendelian Diabetes, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
- Department of Internal Medicine, University of Tor Vergata, Via Montpellier 1, 00134 Rome, Italy
| | | |
Collapse
|
107
|
Abstract
Neonatal diabetes mellitus (NDM) is the term commonly used to describe diabetes with onset before 6 months-of-age. It occurs in approximately one out of every 100,000-300,000 live births. Although this term encompasses diabetes of any etiology, it is recognized that NDM diagnosed before 6 months-of-age is most often monogenic in nature. Clinically, NDM subgroups include transient (TNDM) and permanent NDM (PNDM), as well as syndromic cases of NDM. TNDM often develops within the first few weeks of life and remits by a few months of age. However, relapse occurs in 50% of cases, typically in adolescence or adulthood. TNDM is most frequently caused by abnormalities in the imprinted region of chromosome 6q24, leading to overexpression of paternally derived genes. Mutations in KCNJ11 and ABCC8, encoding the two subunits of the adenosine triphosphate-sensitive potassium channel on the β-cell membrane, can cause TNDM, but more often result in PNDM. NDM as a result of mutations in KCNJ11 and ABCC8 often responds to sulfonylureas, allowing transition from insulin therapy. Mutations in other genes important to β-cell function and regulation, and in the insulin gene itself, also cause NDM. In 40% of NDM cases, the genetic cause remains unknown. Correctly identifying monogenic NDM has important implications for appropriate treatment, expected disease course and associated conditions, and genetic testing for at-risk family members. Early recognition of monogenic NDM allows for the implementation of appropriate therapy, leading to improved outcomes and potential societal cost savings. (J Diabetes Invest, doi:10.1111/j.2040-1124.2011.00106.x, 2011).
Collapse
Affiliation(s)
| | | | - Graeme I Bell
- Medicine, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, The University of Chicago, Chicago, Illinois, USA
| | - Louis H Philipson
- Departments of Pediatrics
- Medicine, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
108
|
Gonsorcikova L, Vaxillaire M, Pruhova S, Dechaume A, Dusatkova P, Cinek O, Pedersen O, Froguel P, Hansen T, Lebl J. Familial mild hyperglycemia associated with a novel ABCC8-V84I mutation within three generations. Pediatr Diabetes 2011; 12:266-9. [PMID: 21214702 DOI: 10.1111/j.1399-5448.2010.00719.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We present a unique case of a 19-year-old man with a positive family history of persistent mild hyperglycemia and a novel V84I mutation in ABCC8. The proband was initially detected to have fasting hyperglycemia (ranging 6.1-6.4 mmol/L) at the age of 12 years. Increased fasting blood glucose was also subsequently detected in five additional family members (in his twin brother, sister, mother, maternal aunt, and grandfather). The grandfather has been known to have mild diabetes since 30 years and has never been treated. After having excluded a causative mutation in five maturity-onset diabetes of the young genes (MODY1-4 and 6), we identified a novel ABCC8 V84I mutation, which segregated with autosomal dominant transmission of mild hyperglycemia within three generations. This mutation that is located in a conserved area of transmembrane domain TMD0 seems to be a rare cause of clinical phenotype resembling glucokinase-deficient diabetes.
Collapse
Affiliation(s)
- Lucie Gonsorcikova
- Department of Pediatrics, Second Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Rubio-Cabezas O, Klupa T, Malecki MT. Permanent neonatal diabetes mellitus--the importance of diabetes differential diagnosis in neonates and infants. Eur J Clin Invest 2011; 41:323-33. [PMID: 21054355 DOI: 10.1111/j.1365-2362.2010.02409.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND The differential diagnosis of various types and forms of diabetes is of great practical importance. This is particularly true for monogenic disease forms, where some spectacular applications of pharmacogenetics have recently been described. DESIGN For many years the distinct character of diabetes diagnosed in the first weeks and months of life remained unnoticed. The results of the search for type 1 diabetes-related autoantibodies, description of the HLA haplotypes distribution and analysis of clinical features in patients diagnosed in the first 6 months of life provided the initial evidence that the etiology of their disease might be different from that of autoimmune diabetes. RESULTS Over the last decade, mutations in about a dozen of genes have been linked to the development of Permanent Neonatal Diabetes Mellitus (PNDM). The most frequent causes of PNDM are heterozygous mutations in the KCNJ11, INS and ABCC8 genes. Although PNDM is a rare phenomenon (one case in about 200,000 live births), this discovery has had a large impact on clinical practice as most carriers of KCNJ11 and ABCC8 gene mutations have been switched from insulin to oral sulphonylureas with an improvement in glycemic control. In this review we summarize the practical aspects of diabetes differential diagnosis in neonates and infants. CONCLUSIONS Genetic testing should be advised in all subjects with PNDM as it may influence medical care in subjects with these monogenic forms of early onset diabetes.
Collapse
Affiliation(s)
- Oscar Rubio-Cabezas
- Institute of Biomedical and Clinical Science, Peninsula Medical School, Universities of Exeter & Plymouth, Exeter, UK
| | | | | | | |
Collapse
|
110
|
Ioannou YS, Ellard S, Hattersley A, Skordis N. KCNJ11 activating mutations cause both transient and permanent neonatal diabetes mellitus in Cypriot patients. Pediatr Diabetes 2011; 12:133-7. [PMID: 21352428 DOI: 10.1111/j.1399-5448.2010.00743.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Heterozygous mutations of the KCNJ11 gene encoding the Kir6.2 subunit of the ATP-sensitive potassium channel (K(ATP) channel) of the pancreatic β-cell cause diabetes in about 30-60% of all permanent neonatal diabetes mellitus cases diagnosed before 6 months of age. The K(ATP) channel plays an essential role in the regulation of the electrical status of the membrane through which the secretion of insulin is activated. Transient neonatal diabetes mellitus due to KCNJ11 mutations is less frequent than abnormalities affecting the imprinted region of chromosome 6q24. We studied the genetic basis of two Cypriot patients who developed diabetes before 6 months of age. They both carried mutations of the KCNJ11 gene. The R201H mutation was identified in a patient who developed hyperglycemia and ketoacidosis at the age of 40 d and was successfully transferred to sulphonylureas which activate the channel through an ATP independent route. The R50Q mutation was identified in a child diagnosed at day 45 after birth with remission of his diabetes at 9 months of age. The same defect was identified both in his asymptomatic mother and the recently diagnosed 'type 2' diabetic maternal grandmother. The remission-relapse mechanism in cases of transient neonatal diabetes is not known. Nevertheless, it is possible that the residue of the mutation within the Kir6.2 molecule is associated with the sensitivity to ATP reflecting to the severity of the diabetic phenotype.
Collapse
|
111
|
Li CJ, Zhou HL, Li J, Yao HT, Su R, Li WP. Roles of sulfonylurea receptor 1 and multidrug resistance protein 1 in modulating insulin secretion in human insulinoma. Hepatobiliary Pancreat Dis Int 2011; 10:88-94. [PMID: 21269941 DOI: 10.1016/s1499-3872(11)60013-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Sulfonylurea receptor 1 (SUR1) and multidrug resistance protein 1 (MRP1) are two prominent members of multidrug resistance proteins associated with insulin secretion. The aims of this study were to investigate their expression in insulinomas and their sole and synergistic effects in modulating abnormal insulin secretion. METHODS Fasting glucose, insulin and C-peptide were measured in 11 insulinoma patients and 11 healthy controls. Prolonged oral glucose tolerance tests were performed in 6 insulinoma patients. Insulin content, SUR1 and MRP1 were detected in 11 insulinoma patients by immunohistochemistry. SUR1 and MRP1 were also detected in 6 insulinoma patients by immunofluorescence. RESULTS Insulinoma patients presented the typical demonstrations of Whipple's triad. Fasting glucose of each insulinoma patient was lower than 2.8 mmol/L, and simultaneous insulin and C-peptide were increased in insulinoma patients. Prolonged oral glucose tolerance tests showed that insulin secretion in insulinoma patients were also stimulated by high glucose. Immunohistochemistry and immunofluorescence staining showed that SUR1 increased, but MRP1 decreased in insulinoma compared with the adjacent islets. CONCLUSIONS The hypersecretion of insulin in insulinomas might be, at least partially, due to the enrichment of SUR1. In contrast, MRP1, which is down-regulated in insulinomas, might reflect a negative feedback in insulin secretion.
Collapse
Affiliation(s)
- Cheng-Jiang Li
- Department of Endocrinology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | | | | | | | | | | |
Collapse
|
112
|
Pearl EJ, Jarikji Z, Horb ME. Functional analysis of Rfx6 and mutant variants associated with neonatal diabetes. Dev Biol 2011; 351:135-45. [PMID: 21215266 DOI: 10.1016/j.ydbio.2010.12.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 12/13/2010] [Accepted: 12/23/2010] [Indexed: 11/30/2022]
Abstract
Mutations in rfx6 were recently associated with Mitchell-Riley syndrome, which involves neonatal diabetes, and other digestive system defects. To better define the function of Rfx6 in early endoderm development we cloned the Xenopus homologue. Expression of rfx6 begins early, showing broad expression throughout the anterior endoderm; at later stages rfx6 expression becomes restricted to the endocrine cells of the gut and pancreas. Morpholino knockdown of rfx6 caused a loss of pancreas marker expression, as well as other abnormalities. Co-injection of exogenous wild-type rfx6 rescued the morpholino phenotype in Xenopus tadpoles, whereas attempts to rescue the loss-of-function phenotype using mutant rfx6 based on Mitchell-Riley patients were unsuccessful. To better define the pleiotropic effects, we performed microarray analyses of gene expression in knockdown foregut tissue. In addition to pancreatic defects, the microarray analyses revealed downregulation of lung, stomach and heart markers and an upregulation of kidney markers. We verified these results using RT-PCR and in situ hybridization. Based on the different rfx6 expression patterns and our functional analyses, we propose that rfx6 has both early and late functions. In early development Rfx6 plays a broad role, being essential for development of most anterior endodermal organs. At later stages however, Rfx6 function is restricted to endocrine cells.
Collapse
Affiliation(s)
- Esther J Pearl
- Laboratory of Molecular Organogenesis, Institut de recherches cliniques de Montréal, 110 avenue des Pins Ouest, Montreal, QC H2V4K1, Canada.
| | | | | |
Collapse
|
113
|
Zhou Q, Garin I, Castaño L, Argente J, Muñoz-Calvo MT, Perez de Nanclares G, Shyng SL. Neonatal diabetes caused by mutations in sulfonylurea receptor 1: interplay between expression and Mg-nucleotide gating defects of ATP-sensitive potassium channels. J Clin Endocrinol Metab 2010; 95:E473-8. [PMID: 20810569 PMCID: PMC2999977 DOI: 10.1210/jc.2010-1231] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT ATP-sensitive potassium (KATP) channels regulate insulin secretion by coupling glucose metabolism to β-cell membrane potential. Gain-of-function mutations in the sulfonylurea receptor 1 (SUR1) or Kir6.2 channel subunit underlie neonatal diabetes. OBJECTIVE The objective of the study was to determine the mechanisms by which two SUR1 mutations, E208K and V324M, associated with transient neonatal diabetes affect KATP channel function. DESIGN E208K or V324M mutant SUR1 was coexpressed with Kir6.2 in COS cells, and expression and gating properties of the resulting channels were assessed biochemically and electrophysiologically. RESULTS Both E208K and V324M augment channel response to MgADP stimulation without altering sensitivity to ATP4- or sulfonylureas. Surprisingly, whereas E208K causes only a small increase in MgADP response consistent with the mild transient diabetes phenotype, V324M causes a severe activating gating defect. Unlike E208K, V324M also impairs channel expression at the cell surface, which is expected to dampen its functional impact on β-cells. When either mutation was combined with a mutation in the second nucleotide binding domain of SUR1 previously shown to abolish Mg-nucleotide response, the activating effect of E208K and V324M was also abolished. Moreover, combination of E208K and V324M results in channels with Mg-nucleotide sensitivity greater than that seen in individual mutations alone. CONCLUSION The results demonstrate that E208K and V324M, located in distinct domains of SUR1, enhance transduction of Mg-nucleotide stimulation from the SUR1 nucleotide binding folds to Kir6.2. Furthermore, they suggest that diabetes severity is determined by interplay between effects of a mutation on channel expression and channel gating.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, Oregon 97239, USA
| | | | | | | | | | | | | |
Collapse
|
114
|
Lang V, Light PE. The molecular mechanisms and pharmacotherapy of ATP-sensitive potassium channel gene mutations underlying neonatal diabetes. Pharmgenomics Pers Med 2010; 3:145-61. [PMID: 23226049 PMCID: PMC3513215 DOI: 10.2147/pgpm.s6969] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Indexed: 12/14/2022] Open
Abstract
Neonatal diabetes mellitus (NDM) is a monogenic disorder caused by mutations in genes involved in regulation of insulin secretion from pancreatic β-cells. Mutations in the KCNJ11 and ABCC8 genes, encoding the adenosine triphosphate (ATP)-sensitive potassium (K(ATP)) channel Kir6.2 and SUR1 subunits, respectively, are found in ∼50% of NDM patients. In the pancreatic β-cell, K(ATP) channel activity couples glucose metabolism to insulin secretion via cellular excitability and mutations in either KCNJ11 or ABCC8 genes alter K(ATP) channel activity, leading to faulty insulin secretion. Inactivation mutations decrease K(ATP) channel activity and stimulate excessive insulin secretion, leading to hyperinsulinism of infancy. In direct contrast, activation mutations increase K(ATP) channel activity, resulting in impaired insulin secretion, NDM, and in severe cases, developmental delay and epilepsy. Many NDM patients with KCNJ11 and ABCC8 mutations can be successfully treated with sulfonylureas (SUs) that inhibit the K(ATP) channel, thus replacing the need for daily insulin injections. There is also strong evidence indicating that SU therapy ameliorates some of the neurological defects observed in patients with more severe forms of NDM. This review focuses on the molecular and cellular mechanisms of mutations in the K(ATP) channel that underlie NDM. SU pharmacogenomics is also discussed with respect to evaluating whether patients with certain K(ATP) channel activation mutations can be successfully switched to SU therapy.
Collapse
Affiliation(s)
- Veronica Lang
- Department of Pharmacology and Alberta Diabetes Institute, Faculty of Medicine and Dentistry, School of Molecular and Systems Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Peter E Light
- Department of Pharmacology and Alberta Diabetes Institute, Faculty of Medicine and Dentistry, School of Molecular and Systems Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
115
|
Padidela R, Kapoor RR, Moyo Y, Gilbert C, Flanagan SE, Ellard S, Hussain K. Focal congenital hyperinsulinism in a patient with septo-optic dysplasia. Nat Rev Endocrinol 2010; 6:646-50. [PMID: 20842182 DOI: 10.1038/nrendo.2010.153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND An infant diagnosed as having hypopituitarism and on adequate hydrocortisone replacement therapy was referred to a tertiary endocrine unit at 5 weeks of age with persistent hypoglycemia that required a high rate of intravenous glucose infusion (up to 18 mg/kg•min⁻¹) to maintain euglycemia. INVESTIGATIONS A controlled hypoglycemia screen was performed to measure levels of plasma glucose, insulin, C-peptide and 3-β-hydroxybutyrate concentrations. The pancreas was analyzed by fluorine-18-L-3,4-dihydroxyphenylalanine ((18)F-DOPA) PET scan. Genetic analyses were performed on the peripheral blood leukocytes, and loss of heterozygosity within the resected focal lesion of the pancreas was investigated by microsatellite analysis. A glucagon stimulation test helped determine pituitary function, and an MRI of the brain and pituitary gland was performed to define the anatomy of the intracranial structures and the pituitary gland. DIAGNOSIS Focal form of congenital hyperinsulinism localized to the head of the pancreas, septo-optic dysplasia and pituitary hormone deficiencies. MANAGEMENT Resection of the focal lesion from the head of the pancreas and hormonal replacement therapy for hypopituitarism.
Collapse
Affiliation(s)
- Raja Padidela
- Clinical and Molecular Genetics Unit, UCL Institute of Child Health and Great Ormond Street Hospital for Children, 30 Guilford Street, London WC1N 1EH, UK
| | | | | | | | | | | | | |
Collapse
|
116
|
Bonnefond A, Durand E, Sand O, De Graeve F, Gallina S, Busiah K, Lobbens S, Simon A, Bellanné-Chantelot C, Létourneau L, Scharfmann R, Delplanque J, Sladek R, Polak M, Vaxillaire M, Froguel P. Molecular diagnosis of neonatal diabetes mellitus using next-generation sequencing of the whole exome. PLoS One 2010; 5:e13630. [PMID: 21049026 PMCID: PMC2964316 DOI: 10.1371/journal.pone.0013630] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 09/30/2010] [Indexed: 11/18/2022] Open
Abstract
Background Accurate molecular diagnosis of monogenic non-autoimmune neonatal diabetes mellitus (NDM) is critical for patient care, as patients carrying a mutation in KCNJ11 or ABCC8 can be treated by oral sulfonylurea drugs instead of insulin therapy. This diagnosis is currently based on Sanger sequencing of at least 42 PCR fragments from the KCNJ11, ABCC8, and INS genes. Here, we assessed the feasibility of using the next-generation whole exome sequencing (WES) for the NDM molecular diagnosis. Methodology/Principal Findings We carried out WES for a patient presenting with permanent NDM, for whom mutations in KCNJ11, ABCC8 and INS and abnormalities in chromosome 6q24 had been previously excluded. A solution hybridization selection was performed to generate WES in 76 bp paired-end reads, by using two channels of the sequencing instrument. WES quality was assessed using a high-resolution oligonucleotide whole-genome genotyping array. From our WES with high-quality reads, we identified a novel non-synonymous mutation in ABCC8 (c.1455G>C/p.Q485H), despite a previous negative sequencing of this gene. This mutation, confirmed by Sanger sequencing, was not present in 348 controls and in the patient's mother, father and young brother, all of whom are normoglycemic. Conclusions/Significance WES identified a novel de novo ABCC8 mutation in a NDM patient. Compared to the current Sanger protocol, WES is a comprehensive, cost-efficient and rapid method to identify mutations in NDM patients. We suggest WES as a near future tool of choice for further molecular diagnosis of NDM cases, negative for chr6q24, KCNJ11 and INS abnormalities.
Collapse
Affiliation(s)
| | | | - Olivier Sand
- CNRS-UMR-8199, Univ Lille Nord de France, UDSL, Lille, France
| | | | - Sophie Gallina
- CNRS-UMR-8199, Univ Lille Nord de France, UDSL, Lille, France
| | - Kanetee Busiah
- Inserm-U845, Department of Pediatric Endocrinology, Necker Enfants Malades Hospital, Université Paris Descartes, Paris, France
| | | | - Albane Simon
- Inserm-U845, Department of Pediatric Endocrinology, Necker Enfants Malades Hospital, Université Paris Descartes, Paris, France
| | | | - Louis Létourneau
- Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, and Genome Quebec Innovation Centre, Montreal, Canada
| | - Raphael Scharfmann
- Inserm-U845, Department of Pediatric Endocrinology, Necker Enfants Malades Hospital, Université Paris Descartes, Paris, France
| | | | - Robert Sladek
- Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, and Genome Quebec Innovation Centre, Montreal, Canada
| | - Michel Polak
- Inserm-U845, Department of Pediatric Endocrinology, Necker Enfants Malades Hospital, Université Paris Descartes, Paris, France
| | | | - Philippe Froguel
- CNRS-UMR-8199, Univ Lille Nord de France, UDSL, Lille, France
- Department of Genomics of Common Disease, School of Public Health, Imperial College London, Hammersmith Hospital, London, United Kingdom
- * E-mail:
| |
Collapse
|
117
|
Belostotsky R, Seboun E, Idelson GH, Milliner DS, Becker-Cohen R, Rinat C, Monico CG, Feinstein S, Ben-Shalom E, Magen D, Weissman I, Charon C, Frishberg Y. Mutations in DHDPSL are responsible for primary hyperoxaluria type III. Am J Hum Genet 2010; 87:392-9. [PMID: 20797690 DOI: 10.1016/j.ajhg.2010.07.023] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 07/25/2010] [Accepted: 07/29/2010] [Indexed: 12/22/2022] Open
Abstract
Primary hyperoxaluria (PH) is an autosomal-recessive disorder of endogenous oxalate synthesis characterized by accumulation of calcium oxalate primarily in the kidney. Deficiencies of alanine-glyoxylate aminotransferase (AGT) or glyoxylate reductase (GRHPR) are the two known causes of the disease (PH I and II, respectively). To determine the etiology of an as yet uncharacterized type of PH, we selected a cohort of 15 non-PH I/PH II patients from eight unrelated families with calcium oxalate nephrolithiasis for high-density SNP microarray analysis. We determined that mutations in an uncharacterized gene, DHDPSL, on chromosome 10 cause a third type of PH (PH III). To overcome the difficulties in data analysis attributed to a state of compound heterozygosity, we developed a strategy of "heterozygosity mapping"-a search for long heterozygous patterns unique to all patients in a given family and overlapping between families, followed by reconstruction of haplotypes. This approach enabled us to determine an allelic fragment shared by all patients of Ashkenazi Jewish descent and bearing a 3 bp deletion in DHDPSL. Overall, six mutations were detected: four missense mutations, one in-frame deletion, and one splice-site mutation. Our assumption is that DHDPSL is the gene encoding 4-hydroxy-2-oxoglutarate aldolase, catalyzing the final step in the metabolic pathway of hydroxyproline.
Collapse
|
118
|
Abstract
The pancreatic β-cell ATP-sensitive K(+) channel (K(ATP) channel) plays a critical role in glucose homeostasis by linking glucose metabolism to electrical excitability and insulin secretion. Changes in the intracellular ratio of ATP/ADP mediate the metabolic regulation of channel activity. The β-cell K(ATP) channel is a hetero-octameric complex composed of two types of subunits: four inward-rectifying potassium channel pore-forming (Kir6.2) subunits and four high-affinity sulfonylurea receptor 1 (SUR1) subunits. Kir6.2 and SUR1 are encoded by the genes KCNJ11 and ABCC8, respectively. Mutations in these genes can result in congenital hyperinsulinism and permanent neonatal diabetes. This review highlights the important role of the β-cell K(ATP) channel in glucose physiology and provides an introduction to some of the other review articles in this special edition of the Reviews in Endocrine and Metabolic Disorders.
Collapse
Affiliation(s)
- Kate Bennett
- Developmental Endocrinology Research Group, Clinical and Molecular Genetics Unit, Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | | | | |
Collapse
|
119
|
Edghill EL, Flanagan SE, Ellard S. Permanent neonatal diabetes due to activating mutations in ABCC8 and KCNJ11. Rev Endocr Metab Disord 2010; 11:193-8. [PMID: 20922570 DOI: 10.1007/s11154-010-9149-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ATP-sensitive potassium (K(ATP)) channel is composed of two subunits SUR1 and Kir6.2. The channel is key for glucose stimulated insulin release from the pancreatic beta cell. Activating mutations have been identified in the genes encoding these subunits, ABCC8 and KCNJ11, and account for approximately 40% of permanent neonatal diabetes cases. The majority of patients with a K(ATP) mutation present with isolated diabetes however some have presented with the Developmental delay, Epilepsy and Neonatal Diabetes syndrome. This review focuses on mutations in the K(ATP) channel which result in permanent neonatal diabetes, we review the clinical and functional effects as well as the implications for treatment.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- ATP-Binding Cassette Transporters/physiology
- Diabetes Mellitus/congenital
- Diabetes Mellitus/genetics
- Diabetes Mellitus/therapy
- Genetic Association Studies
- Humans
- Infant, Newborn
- Infant, Newborn, Diseases/genetics
- Infant, Newborn, Diseases/therapy
- KATP Channels/genetics
- KATP Channels/metabolism
- KATP Channels/physiology
- Models, Biological
- Mutation/physiology
- Potassium Channels, Inwardly Rectifying/genetics
- Potassium Channels, Inwardly Rectifying/metabolism
- Potassium Channels, Inwardly Rectifying/physiology
- Receptors, Drug/genetics
- Receptors, Drug/metabolism
- Receptors, Drug/physiology
- Sulfonylurea Receptors
Collapse
Affiliation(s)
- Emma L Edghill
- Institute of Biomedical and Clinical Science, Peninsula College of Medicine and Dentistry, University of Exeter, Barrack Road, Exeter, UK
| | | | | |
Collapse
|
120
|
Greeley SAW, Tucker SE, Naylor RN, Bell GI, Philipson LH. Neonatal diabetes mellitus: a model for personalized medicine. Trends Endocrinol Metab 2010; 21:464-72. [PMID: 20434356 PMCID: PMC2914172 DOI: 10.1016/j.tem.2010.03.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 03/19/2010] [Accepted: 03/19/2010] [Indexed: 01/30/2023]
Abstract
Neonatal diabetes mellitus occurs in approximately 1 out of every 100,000 live births. It can be either permanent or transient, and recent studies indicate that is likely to have an underlying genetic cause, particularly when diagnosed before 6 months of age. Permanent neonatal diabetes is most commonly due to activating mutations in either of the genes encoding the two subunits of the ATP-sensitive potassium channel. In most of these patients, switching from insulin to oral sulfonylurea therapy leads to improved metabolic control, as well as possible amelioration of occasional associated neurodevelopmental disabilities. It remains to be determined what is the most appropriate treatment of other causes. The diagnosis and treatment of neonatal diabetes, therefore, represents a model for personalized medicine.
Collapse
Affiliation(s)
- Siri Atma W Greeley
- Department of Pediatrics, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, University of Chicago Pritzker School of Medicine, 5841 S Maryland Ave, MC 1027, Chicago, IL 60637, USA.
| | | | | | | | | |
Collapse
|
121
|
Drews G, Krippeit-Drews P, Düfer M. Electrophysiology of islet cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 654:115-63. [PMID: 20217497 DOI: 10.1007/978-90-481-3271-3_7] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Stimulus-Secretion Coupling (SSC) of pancreatic islet cells comprises electrical activity. Changes of the membrane potential (V(m)) are regulated by metabolism-dependent alterations in ion channel activity. This coupling is best explored in beta-cells. The effect of glucose is directly linked to mitochondrial metabolism as the ATP/ADP ratio determines the open probability of ATP-sensitive K(+) channels (K(ATP) channels). Nucleotide sensitivity and concentration in the direct vicinity of the channels are controlled by several factors including phospholipids, fatty acids, and kinases, e.g., creatine and adenylate kinase. Closure of K(ATP) channels leads to depolarization of beta-cells via a yet unknown depolarizing current. Ca(2+) influx during action potentials (APs) results in an increase of the cytosolic Ca(2+) concentration ([Ca(2+)](c)) that triggers exocytosis. APs are elicited by the opening of voltage-dependent Na(+) and/or Ca(2+) channels and repolarized by voltage- and/or Ca(2+)-dependent K(+) channels. At a constant stimulatory glucose concentration APs are clustered in bursts that are interrupted by hyperpolarized interburst phases. Bursting electrical activity induces parallel fluctuations in [Ca(2+)](c) and insulin secretion. Bursts are terminated by I(Kslow) consisting of currents through Ca(2+)-dependent K(+) channels and K(ATP) channels. This review focuses on structure, characteristics, physiological function, and regulation of ion channels in beta-cells. Information about pharmacological drugs acting on K(ATP) channels, K(ATP) channelopathies, and influence of oxidative stress on K(ATP) channel function is provided. One focus is the outstanding significance of L-type Ca(2+) channels for insulin secretion. The role of less well characterized beta-cell channels including voltage-dependent Na(+) channels, volume sensitive anion channels (VSACs), transient receptor potential (TRP)-related channels, and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels is discussed. A model of beta-cell oscillations provides insight in the interplay of the different channels to induce and maintain electrical activity. Regulation of beta-cell electrical activity by hormones and the autonomous nervous system is discussed. alpha- and delta-cells are also equipped with K(ATP) channels, voltage-dependent Na(+), K(+), and Ca(2+) channels. Yet the SSC of these cells is less clear and is not necessarily dependent on K(ATP) channel closure. Different ion channels of alpha- and delta-cells are introduced and SSC in alpha-cells is described in special respect of paracrine effects of insulin and GABA secreted from beta-cells.
Collapse
Affiliation(s)
- Gisela Drews
- Institute of Pharmacy, Department of Pharmacology and Clinical Pharmacy, University of Tübingen, 72076 Tübingen, Germany.
| | | | | |
Collapse
|
122
|
ATP-binding cassette proteins involved in glucose and lipid homeostasis. Biosci Biotechnol Biochem 2010; 74:899-907. [PMID: 20460728 DOI: 10.1271/bbb.90921] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Glucose and lipids are essential to the body, but excess glucose or lipids lead to metabolic syndrome. ATP-binding cassette (ABC) proteins are involved in the homeostasis of glucose and lipid in that they regulate insulin secretion and remove excess cholesterol from the body. Sulfonylurea receptor (SUR) is a subunit of the ATP-sensitive potassium channels, which regulate insulin secretion from pancreatic beta-cells by sensing cellular metabolic levels. ABCG1 removes excess cholesterol from peripheral tissues and functions in reverse cholesterol transport to the liver. ABCG5 and ABCG8 suppress the absorption of cholesterol in the intestine and exclude cholesterol from the liver to the bile duct. ABCG1 and ABCG4, expressed in the central nervous system, play roles in lipid metabolism in the brain. These ABC proteins are targets of drugs and functional foods to cure and prevent diabetes, hyperlipidemia, and neurodegenerative diseases. In this review, recent knowledge of the physiological function and regulation of ABC proteins in the homeostasis of glucose and lipids is discussed.
Collapse
|
123
|
Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y. Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev 2010; 90:291-366. [PMID: 20086079 DOI: 10.1152/physrev.00021.2009] [Citation(s) in RCA: 1087] [Impact Index Per Article: 77.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Inwardly rectifying K(+) (Kir) channels allow K(+) to move more easily into rather than out of the cell. They have diverse physiological functions depending on their type and their location. There are seven Kir channel subfamilies that can be classified into four functional groups: classical Kir channels (Kir2.x) are constitutively active, G protein-gated Kir channels (Kir3.x) are regulated by G protein-coupled receptors, ATP-sensitive K(+) channels (Kir6.x) are tightly linked to cellular metabolism, and K(+) transport channels (Kir1.x, Kir4.x, Kir5.x, and Kir7.x). Inward rectification results from pore block by intracellular substances such as Mg(2+) and polyamines. Kir channel activity can be modulated by ions, phospholipids, and binding proteins. The basic building block of a Kir channel is made up of two transmembrane helices with cytoplasmic NH(2) and COOH termini and an extracellular loop which folds back to form the pore-lining ion selectivity filter. In vivo, functional Kir channels are composed of four such subunits which are either homo- or heterotetramers. Gene targeting and genetic analysis have linked Kir channel dysfunction to diverse pathologies. The crystal structure of different Kir channels is opening the way to understanding the structure-function relationships of this simple but diverse ion channel family.
Collapse
Affiliation(s)
- Hiroshi Hibino
- Department of Pharmacology, Graduate School of Medicine and The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
124
|
Wiedemann B, Schober E, Waldhoer T, Koehle J, Flanagan SE, Mackay DJ, Steichen E, Meraner D, Zimmerhackl LB, Hattersley AT, Ellard S, Hofer S. Incidence of neonatal diabetes in Austria-calculation based on the Austrian Diabetes Register. Pediatr Diabetes 2010; 11:18-23. [PMID: 19496964 DOI: 10.1111/j.1399-5448.2009.00530.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Neonatal diabetes mellitus (NDM) is a rare monogenic form of diabetes which is diagnosed in the first 6 months of life. Several studies in the last few years provide information on genetic causes for NDM. OBJECTIVE The aim of this study was to identify all patients with diabetes in the first 6 months of life through the Austrian Diabetes Register, which is available since 1989. A retrospective data analyses was performed to calculate the current incidence of NDM. SUBJECTS AND METHODS Ten patients were registered with diabetes onset within the first 6 months of life in the Austrian Diabetes Register. Evaluation of detailed clinical data was performed by sending a questionnaire to all diabetes centers. RESULTS Ten patients from nine different families with NDM were diagnosed in Austria from 1989 until September 2007. Seven patients (one male, six females) had transient NDM (TNDM), three (two males, one female) showed a permanent course [permanent neonatal diabetes mellitus (PNDM)]. One had immunodeficiency, polyendocrinopathy and enteropathy X-linked (IPEX) syndrome and another showed aplasia of the pancreas; no genetic etiology was found in the third case. In three out of seven patients with a transient course of NDM a genetic diagnosis was possible. Two female siblings had activating point mutations in the ABCC8 gene, although one patient had paternal uniparental isodisomy of chromosome 6q24. One patient's family did not consent to genetic testing. CONCLUSIONS The incidence of NDM in Austria is 1/160 949, with an incidence of 1/ 536 499 for PNDM and 1/229 928 for TNDM.
Collapse
Affiliation(s)
- Barbara Wiedemann
- Department of Pediatrics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Recessive mutations in the INS gene result in neonatal diabetes through reduced insulin biosynthesis. Proc Natl Acad Sci U S A 2010; 107:3105-10. [PMID: 20133622 DOI: 10.1073/pnas.0910533107] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Heterozygous coding mutations in the INS gene that encodes preproinsulin were recently shown to be an important cause of permanent neonatal diabetes. These dominantly acting mutations prevent normal folding of proinsulin, which leads to beta-cell death through endoplasmic reticulum stress and apoptosis. We now report 10 different recessive INS mutations in 15 probands with neonatal diabetes. Functional studies showed that recessive mutations resulted in diabetes because of decreased insulin biosynthesis through distinct mechanisms, including gene deletion, lack of the translation initiation signal, and altered mRNA stability because of the disruption of a polyadenylation signal. A subset of recessive mutations caused abnormal INS transcription, including the deletion of the C1 and E1 cis regulatory elements, or three different single base-pair substitutions in a CC dinucleotide sequence located between E1 and A1 elements. In keeping with an earlier and more severe beta-cell defect, patients with recessive INS mutations had a lower birth weight (-3.2 SD score vs. -2.0 SD score) and were diagnosed earlier (median 1 week vs. 10 weeks) compared to those with dominant INS mutations. Mutations in the insulin gene can therefore result in neonatal diabetes as a result of two contrasting pathogenic mechanisms. Moreover, the recessively inherited mutations provide a genetic demonstration of the essential role of multiple sequence elements that regulate the biosynthesis of insulin in man.
Collapse
|
126
|
Clark R, Proks P. ATP-sensitive potassium channels in health and disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 654:165-92. [PMID: 20217498 DOI: 10.1007/978-90-481-3271-3_8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ATP-sensitive potassium (K(ATP)) channel plays a crucial role in insulin secretion and thus glucose homeostasis. K(ATP) channel activity in the pancreatic beta-cell is finely balanced; increased activity prevents insulin secretion, whereas reduced activity stimulates insulin release. The beta-cell metabolism tightly regulates K(ATP) channel gating, and if this coupling is perturbed, two distinct disease states can result. Diabetes occurs when the K(ATP) channel fails to close in response to increased metabolism, whereas congenital hyperinsulinism results when K(ATP) channels remain closed even at very low blood glucose levels. In general there is a good correlation between the magnitude of K(ATP) current and disease severity. Mutations that cause a complete loss of K(ATP) channels in the beta-cell plasma membrane produce a severe form of congenital hyperinsulinism, whereas mutations that partially impair channel function produce a milder phenotype. Similarly mutations that greatly reduce the ATP sensitivity of the K(ATP) channel lead to a severe form of neonatal diabetes with associated neurological complications, whilst mutations that cause smaller shifts in ATP sensitivity cause neonatal diabetes alone. This chapter reviews our current understanding of the pancreatic beta-cell K(ATP) channel and highlights recent structural, functional and clinical advances.
Collapse
Affiliation(s)
- Rebecca Clark
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.
| | | |
Collapse
|
127
|
Rubio-Cabezas O, Patch AM, Minton JAL, Flanagan SE, Edghill EL, Hussain K, Balafrej A, Deeb A, Buchanan CR, Jefferson IG, Mutair A, Hattersley AT, Ellard S. Wolcott-Rallison syndrome is the most common genetic cause of permanent neonatal diabetes in consanguineous families. J Clin Endocrinol Metab 2009; 94:4162-70. [PMID: 19837917 PMCID: PMC2775655 DOI: 10.1210/jc.2009-1137] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT AND OBJECTIVE Mutations in EIF2AK3 cause Wolcott-Rallison syndrome (WRS), a rare recessive disorder characterized by early-onset diabetes, skeletal abnormalities, and liver dysfunction. Although early diagnosis is important for clinical management, genetic testing is generally performed after the full clinical picture develops. We aimed to identify patients with WRS before any other abnormalities apart from diabetes are present and study the overall frequency of WRS among patients with permanent neonatal diabetes. RESEARCH DESIGN AND METHODS The coding regions of EIF2AK3 were sequenced in 34 probands with infancy-onset diabetes with a clinical phenotype suggestive of WRS (n = 28) or homozygosity at the WRS locus (n = 6). RESULTS Twenty-five probands (73.5%) were homozygous or compound heterozygous for mutations in EIF2AK3. Twenty of the 26 mutations identified were novel. Whereas a diagnosis of WRS was suspected before genetic testing in 22 probands, three patients with apparently isolated diabetes were diagnosed after identifying a large homozygous region encompassing EIF2AK3. In contrast to nonconsanguineous pedigrees, mutations in EIF2AK3 are the most common known genetic cause of diabetes among patients born to consanguineous parents (24 vs. < 2%). Age at diabetes onset and birth weight might be used to prioritize genetic testing in the latter group. CONCLUSIONS WRS is the most common cause of permanent neonatal diabetes mellitus in consanguineous pedigrees. In addition to testing patients with a definite clinical diagnosis, EIF2AK3 should be tested in patients with isolated neonatal diabetes diagnosed after 3 wk of age from known consanguineous families, isolated populations, or countries in which inbreeding is frequent.
Collapse
Affiliation(s)
- Oscar Rubio-Cabezas
- Institute of Biomedical and Clinical Science, Peninsula Medical School, Exeter EX2 5DW, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Della Manna T, Battistim C, Radonsky V, Savoldelli RD, Damiani D, Kok F, Pearson ER, Ellard S, Hattersley AT, Reis AF. Glibenclamide unresponsiveness in a Brazilian child with permanent neonatal diabetes mellitus and DEND syndrome due to a C166Y mutation in KCNJ11 (Kir6.2) gene. ACTA ACUST UNITED AC 2009; 52:1350-5. [PMID: 19169493 DOI: 10.1590/s0004-27302008000800024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 11/04/2008] [Indexed: 12/13/2022]
Abstract
Heterozygous activating mutations of KCNJ11 (Kir6.2) are the most common cause of permanent neonatal diabetes mellitus (PNDM) and several cases have been successfully treated with oral sulfonylureas. We report on the attempted transfer of insulin therapy to glibenclamide in a 4-year old child with PNDM and DEND syndrome, bearing a C166Y mutation in KCNJ11. An inpatient transition from subcutaneous NPH insulin (0.2 units/kg/d) to oral glibenclamide (1 mg/kg/d and 1.5 mg/kg/d) was performed. Glucose and C-peptide responses stimulated by oral glucose tolerance test (OGTT), hemoglobin A1c levels, the 8-point self-measured blood glucose (SMBG) profile and the frequency of hypoglycemia episodes were analyzed, before and during treatment with glibenclamide. Neither diabetes control nor neurological improvements were observed. We concluded that C166Y mutation was associated with a form of PNDM insensitive to glibenclamide.
Collapse
Affiliation(s)
- Thais Della Manna
- Instituto da Criança, Hospital das Clínicas, Universidade de São Paulo, SP, Brasil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Klupa T, Kowalska I, Wyka K, Skupien J, Patch AM, Flanagan SE, Noczynska A, Arciszewska M, Ellard S, Hattersley AT, Sieradzki J, Mlynarski W, Malecki MT. Mutations in the ABCC8 (SUR1 subunit of the K(ATP) channel) gene are associated with a variable clinical phenotype. Clin Endocrinol (Oxf) 2009; 71:358-62. [PMID: 19021632 DOI: 10.1111/j.1365-2265.2008.03478.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Mutations in the ABCC8 gene encoding the SUR1 subunits of the beta-cell K-ATP channel cause neonatal diabetes (ND) mellitus. We aimed to determine the contribution of ABCC8 gene to ND in Poland, to describe the clinical phenotype associated with its mutations and to examine potential modifying factors. PATIENTS The Nationwide Registry of ND in Poland includes patients diagnosed before 6 months of age. In total 16 Kir6.2 negative patients with ND, 14 permanent and 2 relapsed transient, were examined. MEASUREMENTS ABCC8 gene mutations were detected by direct sequencing. Mutation carriers' characteristics included clinical data and biochemical parameters. In addition, we performed the hyperinsulinaemic euglycaemic clamp and tested for islet-specific antibodies in diabetic subjects. RESULTS We identified two probands with permanent ND (one heterozygous F132V mutation carrier and one compound heterozygote with N23H and R826W mutations) and two others with relapsed transient ND (heterozygotes for R826W and V86A substitutions, respectively). One subject, a heterozygous relative with the R826W mutation, had adult onset diabetes. There were striking differences in the clinical picture of the mutation carriers as the carrier of two mutations, N23H and R826W, was controlled on diet alone with HbA(1c) of 7.3%, whereas the F132V mutation carrier was on 0.66 IU/kg/day of insulin with HbA(1c) of 11.7%. The C-peptide level varied from 0.1 ng/ml (F132V) to 0.75 ng/ml (V86A). We also observed a variable insulin resistance, from moderate (M = 5.5 and 5.6 mg/kg/min, respectively, in the two R826W mutation carriers) to severe (M = 2.6 mg/kg/min in the F132V mutation carrier). We were able to transfer two patients off insulin to sulphonylurea (SU) and to reduce insulin dose in one other patient. Interestingly, there was no response to SU in the most insulin resistant F132V mutation carrier despite high dose of glibenclamide. All examined auto-antibodies were present in one of the subjects, the V86A mutation carrier, although this did not seem to influence the clinical picture, as we were able to transfer this girl off insulin. CONCLUSION Mutations in SUR1 are the cause of about 15% of Kir6.2 negative permanent ND in Poland. The clinical phenotype of SUR1 diabetic mutation carriers is heterogeneous and it appears to be modified by variable sensitivity to insulin.
Collapse
Affiliation(s)
- Tomasz Klupa
- Department of Metabolic Diseases, Jagiellonian University, Medical College, Krakow, Poland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Ellard S, Shields B, Tysoe C, Treacy R, Yau S, Mattocks C, Wallace A. Semi-automated unidirectional sequence analysis for mutation detection in a clinical diagnostic setting. Genet Test Mol Biomarkers 2009; 13:381-6. [PMID: 19405871 DOI: 10.1089/gtmb.2008.0096] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The past 10 years have seen an improvement in sequence data quality due to the introduction of capillary sequencers and new sequencing chemistries. In parallel, new software programs for automated mutation detection have been developed. We evaluated the sensitivity of semiautomated unidirectional sequence analysis for the detection of heterozygous base substitutions using the Mutation Surveyor software package. METHODS Detection rates for heterozygous base substitutions in 29 genes by automated and visual inspection were compared. Examples of heterozygous bases not detected in one direction during bidirectional analysis were also sought through a national survey of United Kingdom (UK) genetics laboratories. Sequence quality was assessed in a consecutive cohort of 50 patients for whom the 39 exons of the ABCC8 gene had been sequenced in one direction. RESULTS A total of 701 different heterozygous base substitutions were detected by the software with no false negatives (sensitivity >or=99.57%). Four examples of heterozygous bases missed in one direction during bidirectional analysis were reported. Two were detected using unidirectional analysis settings, and the other two bases had low-quality scores. Of the 1950 amplicons examined, 97.2% had a quality score >or=30 and an average PHRED-like score >or=50 for the defined region of interest, and 98.1% of the 323,650 bases had a PHRED score >40. CONCLUSIONS We found no evidence to support a requirement for bidirectional sequencing. Semiautomated analysis of good quality unidirectional sequence data has high sensitivity and is suitable for heterozygote mutation scanning in clinical diagnostic laboratories. Further work is required to determine minimum quality parameters for semiautomated analysis.
Collapse
Affiliation(s)
- Sian Ellard
- Department of Molecular Genetics, Royal Devon & Exeter NHS Foundation Trust, Exeter, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
131
|
Flanagan SE, Clauin S, Bellanné-Chantelot C, de Lonlay P, Harries LW, Gloyn AL, Ellard S. Update of mutations in the genes encoding the pancreatic beta-cell K(ATP) channel subunits Kir6.2 (KCNJ11) and sulfonylurea receptor 1 (ABCC8) in diabetes mellitus and hyperinsulinism. Hum Mutat 2009; 30:170-80. [PMID: 18767144 DOI: 10.1002/humu.20838] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The beta-cell ATP-sensitive potassium (K(ATP)) channel is a key component of stimulus-secretion coupling in the pancreatic beta-cell. The channel couples metabolism to membrane electrical events bringing about insulin secretion. Given the critical role of this channel in glucose homeostasis it is therefore not surprising that mutations in the genes encoding for the two essential subunits of the channel can result in both hypo- and hyperglycemia. The channel consists of four subunits of the inwardly rectifying potassium channel Kir6.2 and four subunits of the sulfonylurea receptor 1 (SUR1). It has been known for some time that loss of function mutations in KCNJ11, which encodes for Kir6.2, and ABCC8, which encodes for SUR1, can cause oversecretion of insulin and result in hyperinsulinism of infancy, while activating mutations in KCNJ11 and ABCC8 have recently been described that result in the opposite phenotype of diabetes. This review focuses on reported mutations in both genes, the spectrum of phenotypes, and the implications for treatment on diagnosing patients with mutations in these genes.
Collapse
Affiliation(s)
- Sarah E Flanagan
- Institute of Biomedical and Clinical Science, Peninsula Medical School, Exeter, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
132
|
Aittoniemi J, Fotinou C, Craig TJ, de Wet H, Proks P, Ashcroft FM. Review. SUR1: a unique ATP-binding cassette protein that functions as an ion channel regulator. Philos Trans R Soc Lond B Biol Sci 2009; 364:257-67. [PMID: 18990670 DOI: 10.1098/rstb.2008.0142] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
SUR1 is an ATP-binding cassette (ABC) transporter with a novel function. In contrast to other ABC proteins, it serves as the regulatory subunit of an ion channel. The ATP-sensitive (KATP) channel is an octameric complex of four pore-forming Kir6.2 subunits and four regulatory SUR1 subunits, and it links cell metabolism to electrical activity in many cell types. ATPase activity at the nucleotide-binding domains of SUR results in an increase in KATP channel open probability. Conversely, ATP binding to Kir6.2 closes the channel. Metabolic regulation is achieved by the balance between these two opposing effects. Precisely how SUR1 talks to Kir6.2 remains unclear, but recent studies have identified some residues and domains that are involved in both physical and functional interactions between the two proteins. The importance of these interactions is exemplified by the fact that impaired regulation of Kir6.2 by SUR1 results in human disease, with loss-of-function SUR1 mutations causing congenital hyperinsulinism and gain-of-function SUR1 mutations leading to neonatal diabetes. This paper reviews recent data on the regulation of Kir6.2 by SUR1 and considers the molecular mechanisms by which SUR1 mutations produce disease.
Collapse
Affiliation(s)
- Jussi Aittoniemi
- Department of Physiology, Henry Wellcome Centre for Gene Function, University of Oxford, Parks Road, Oxford, UK
| | | | | | | | | | | |
Collapse
|
133
|
Abstract
ATP-sensitive potassium (K(ATP)) channels play a key role in glucose-dependent insulin secretion in pancreatic beta-cells. Recently, activating mutations in beta-cell K(ATP) channels were found to be an important cause of neonatal diabetes. In some patients, these mutations may also affect K(ATP) channel function in muscles, nerves and brain which can result in a severe disease termed DEND syndrome (Developmental delay, Epilepsy and Neonatal Diabetes). This review focuses on mutations in the pore-forming K(ATP) channel subunit (Kir6.2) that cause neonatal diabetes and discusses recent advances in our understanding of clinical features of neonatal diabetes, its underlying molecular mechanisms and their impact on treatment.
Collapse
Affiliation(s)
- Kenju Shimomura
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
134
|
Rubio-Cabezas O, Minton JAL, Caswell R, Shield JP, Deiss D, Sumnik Z, Cayssials A, Herr M, Loew A, Lewis V, Ellard S, Hattersley AT. Clinical heterogeneity in patients with FOXP3 mutations presenting with permanent neonatal diabetes. Diabetes Care 2009; 32:111-6. [PMID: 18931102 PMCID: PMC2606841 DOI: 10.2337/dc08-1188] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome is caused by FOXP3 mutations. We aimed to determine the prevalence, genetics, and clinical phenotype of FOXP3 mutations in a large cohort with permanent neonatal diabetes (PNDM). RESEARCH DESIGN AND METHODS The 11 coding exons and the polyadenylation region of FOXP3 were sequenced in 26 male subjects with diabetes diagnosed before 6 months of age in whom common genetic causes of PNDM had been excluded. Ten subjects had at least one additional immune-related disorder, and the remaining 16 had isolated diabetes. RESULTS We identified four hemizygous FOXP3 mutations in 6 of 10 patients with associated immune-related disorders and in 0 of 16 patients with isolated diabetes (P = 0.002). Three patients with two novel mutations (R337Q and P339A) and the previously reported L76QfsX53 developed classic IPEX syndrome and died within the first 13 months. The novel mutation V408M was found in three patients from two unrelated families and had a mild phenotype with hypothyroidism and autoimmune enteropathy (n = 2) or nephrotic syndrome (n = 1) and survival to 12-15 years. CONCLUSIONS FOXP3 mutations result in approximately 4% of cases of male patients with permanent diabetes diagnosed before 6 months. Patients not only have classic IPEX syndrome but, unexpectedly, may have a more benign phenotype. FOXP3 sequencing should be performed in any male patient with the diagnosis of diabetes in the first 6 months who develops other possible autoimmune-associated conditions, even in the absence of full IPEX syndrome.
Collapse
Affiliation(s)
- Oscar Rubio-Cabezas
- Institute of Biomedical and Clinical Science, Peninsula Medical School, Exeter, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Malecki MT, Mlynarski W, Skupien J. Can geneticists help clinicians to understand and treat non-autoimmune diabetes? Diabetes Res Clin Pract 2008; 82 Suppl 2:S83-93. [PMID: 19010562 DOI: 10.1016/j.diabres.2008.09.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Approximately, a few percent of the European population suffers from diabetes. Scientific evidence showed that specific treatment of this disease could be successfully tailored on the basis of proper differential diagnosis that in many instances also requires genetic testing. This may be helpful in achieving metabolic control of the disease, increasing quality of life and potentially reducing the prevalence of chronic complications. Identification of the molecular background of these specific forms of diabetes gives new insight into the underlying aetiology. This knowledge helps to optimize treatment in specific clinical situations. Monogenic diabetes is an excellent example of a clinical area where new advances in molecular genetics can aid patient care and treatment decisions. The most frequently diagnosed forms of monogenic diabetes are MODY, mitochondrial diabetes, permanent and transient neonatal diabetes (PNDM and TNDM). These rare forms probably constitute at least a few percent of all diabetes cases seen in diabetic clinics. The proper differential diagnosis also helps to predict the progress of diabetes in affected individuals and defines the prognosis in the family. Recently, several genome wide association studies added new facts to the knowledge on complex forms of type 2 diabetes mellitus (T2DM) as the scientists substantially extended the short list of previously identified genes. Most newly identified variants influence beta-cell insulin secretion, while a few modulate peripheral insulin action. It is not clear whether in the future the genetic testing of frequent polymorphisms will influence the treatment of T2DM. In this review, we present the clinical application of genetic testing in non-autoimmune diabetes, mostly monogenic forms of disease.
Collapse
Affiliation(s)
- Maciej T Malecki
- Department of Metabolic Diseases, Jagiellonian University, Medical College, 15 Kopernika Street, 31-501 Krakow, Poland.
| | | | | |
Collapse
|
136
|
Tarasov AI, Nicolson TJ, Riveline JP, Taneja TK, Baldwin SA, Baldwin JM, Charpentier G, Gautier JF, Froguel P, Vaxillaire M, Rutter GA. A rare mutation in ABCC8/SUR1 leading to altered ATP-sensitive K+ channel activity and beta-cell glucose sensing is associated with type 2 diabetes in adults. Diabetes 2008; 57:1595-604. [PMID: 18346985 PMCID: PMC6101196 DOI: 10.2337/db07-1547] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE ATP-sensitive K(+) channels (K(ATP) channels) link glucose metabolism to the electrical activity of the pancreatic beta-cell to regulate insulin secretion. Mutations in either the Kir6.2 or sulfonylurea receptor (SUR) 1 subunit of the channel have previously been shown to cause neonatal diabetes. We describe here an activating mutation in the ABCC8 gene, encoding SUR1, that is associated with the development of type 2 diabetes only in adults. RESEARCH DESIGN AND METHODS Recombinant K(ATP) channel subunits were expressed using pIRES2-based vectors in human embryonic kidney (HEK) 293 or INS1(832/13) cells and the subcellular distribution of c-myc-tagged SUR1 channels analyzed by confocal microscopy. K(ATP) channel activity was measured in inside-out patches and plasma membrane potential in perforated whole-cell patches. Cytoplasmic [Ca(2+)] was imaged using Fura-Red. RESULTS A mutation in ABCC8/SUR1, leading to a Y356C substitution in the seventh membrane-spanning alpha-helix, was observed in a patient diagnosed with hyperglycemia at age 39 years and in two adult offspring with impaired insulin secretion. Single K(ATP) channels incorporating SUR1-Y356C displayed lower sensitivity to MgATP (IC(50) = 24 and 95 micromol/l for wild-type and mutant channels, respectively). Similar effects were observed in the absence of Mg(2+), suggesting an allosteric effect via associated Kir6.2 subunits. Overexpression of SUR1-Y356C in INS1(832/13) cells impaired glucose-induced cell depolarization and increased in intracellular free Ca(2+) concentration, albeit more weakly than neonatal diabetes-associated SUR1 mutants. CONCLUSIONS An ABCC8/SUR1 mutation with relatively minor effects on K(ATP) channel activity and beta-cell glucose sensing causes diabetes in adulthood. These data suggest a close correlation between altered SUR1 properties and clinical phenotype.
Collapse
Affiliation(s)
- Andrei I Tarasov
- Section of Cell Biology, Division of Medicine, Imperial College London, London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
D'Amato E, Tammaro P, Craig TJ, Tosi A, Giorgetti R, Lorini R, Ashcroft FM. Variable phenotypic spectrum of diabetes mellitus in a family carrying a novel KCNJ11 gene mutation. Diabet Med 2008; 25:651-6. [PMID: 18544102 DOI: 10.1111/j.1464-5491.2008.02443.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIMS Heterozygous activating mutations in KCNJ11, which encodes the Kir6.2 subunit of the pancreatic ATP-sensitive potassium (K(ATP)) channel, cause both permanent and transient neonatal diabetes. Identification of KCNJ11 mutations has important therapeutic implications, as many patients can replace insulin injections with sulphonylurea tablets. The aim was to determine if a KCNJ11 mutation was responsible for a dominantly inherited form of diabetes mellitus, showing variability in age at diagnosis, in an Italian family. METHODS We sequenced KCNJ11 in members of a three-generation family with variable phenotypes of dominantly inherited diabetes mellitus. One had transient early-onset diabetes, one had impaired glucose tolerance during the second pregnancy, and two had young-onset diabetes. None of the subjects showed permanent neonatal diabetes or neurological symptoms. RESULTS A novel heterozygous mutation (c. 679C-->G and c. 680A-->T) was identified, resulting in a GAG-->CTG (E227L) substitution in KCNJ11. Functional studies of recombinant heterozygous K(ATP) channels revealed a small reduction in channel inhibition by ATP (IC(50) of 15 micromol/l and 38 micromol/l for wild-type and heterozygous channels, respectively) and an increase in the resting K(ATP) current. This would be expected to impair insulin secretion. The results are in agreement with the mild phenotype of the patients. CONCLUSIONS Our results broaden the spectrum of diabetes phenotypes resulting from KCNJ11 mutations. They indicate testing for KCNJ11 mutations should be considered not only for neonatal diabetes but also for other forms of dominantly inherited diabetes with later onset, especially where these are associated with a low body mass index and low birth weight.
Collapse
Affiliation(s)
- E D'Amato
- Department of Paediatrics, University of Genoa, IRCCS G. Gaslini, Largo Gaslini, Genoa, Italy.
| | | | | | | | | | | | | |
Collapse
|
138
|
Locke JM, Harries LW. RNA processing and mRNA surveillance in monogenic diabetes. GENE REGULATION AND SYSTEMS BIOLOGY 2008; 2:203-12. [PMID: 19787084 PMCID: PMC2733086 DOI: 10.4137/grsb.s782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In the eukaryotic cell a number of molecular mechanisms exist to regulate the nature and quantity of transcripts intended for translation. For monogenic diabetes an understanding of these processes is aiding scientists and clinicians in studying and managing this disease. Knowledge of RNA processing and mRNA surveillance pathways is helping to explain disease mechanisms, form genotype-phenotype relationships, and identifying new regions within genes to screen for mutations. Furthermore, recent insights into the regulatory role of micro RNAs (miRNAs) and RNA editing in the pancreas suggests that these mechanisms may also be important in the progression to the diabetic state.
Collapse
Affiliation(s)
- Jonathan M Locke
- Institute of Biomedical and Clinical Sciences, Peninsula Medical School, Exeter, UK
| | | |
Collapse
|
139
|
Abstract
An explosion of work over the last decade has produced insight into the multiple hereditary causes of a nonimmunological form of diabetes diagnosed most frequently within the first 6 months of life. These studies are providing increased understanding of genes involved in the entire chain of steps that control glucose homeostasis. Neonatal diabetes is now understood to arise from mutations in genes that play critical roles in the development of the pancreas, of beta-cell apoptosis and insulin processing, as well as the regulation of insulin release. For the basic researcher, this work is providing novel tools to explore fundamental molecular and cellular processes. For the clinician, these studies underscore the need to identify the genetic cause underlying each case. It is increasingly clear that the prognosis, therapeutic approach, and genetic counseling a physician provides must be tailored to a specific gene in order to provide the best medical care.
Collapse
Affiliation(s)
- Lydia Aguilar-Bryan
- Pacific Northwest Diabetes Research Institute, 720 Broadway, Seattle, Washington 98122, USA.
| | | |
Collapse
|
140
|
Edghill EL, Flanagan SE, Patch AM, Boustred C, Parrish A, Shields B, Shepherd MH, Hussain K, Kapoor RR, Malecki M, MacDonald MJ, Støy J, Steiner DF, Philipson LH, Bell GI, Hattersley AT, Ellard S. Insulin mutation screening in 1,044 patients with diabetes: mutations in the INS gene are a common cause of neonatal diabetes but a rare cause of diabetes diagnosed in childhood or adulthood. Diabetes 2008; 57:1034-42. [PMID: 18162506 PMCID: PMC7611804 DOI: 10.2337/db07-1405] [Citation(s) in RCA: 271] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Insulin gene (INS) mutations have recently been described as a cause of permanent neonatal diabetes (PND). We aimed to determine the prevalence, genetics, and clinical phenotype of INS mutations in large cohorts of patients with neonatal diabetes and permanent diabetes diagnosed in infancy, childhood, or adulthood. RESEARCH DESIGN AND METHODS The INS gene was sequenced in 285 patients with diabetes diagnosed before 2 years of age, 296 probands with maturity-onset diabetes of the young (MODY), and 463 patients with young-onset type 2 diabetes (nonobese, diagnosed <45 years). None had a molecular genetic diagnosis of monogenic diabetes. RESULTS We identified heterozygous INS mutations in 33 of 141 probands diagnosed at <6 months, 2 of 86 between 6 and 12 months, and none of 58 between 12 and 24 months of age. Three known mutations (A24D, F48C, and R89C) account for 46% of cases. There were six novel mutations: H29D, L35P, G84R, C96S, S101C, and Y103C. INS mutation carriers were all insulin treated from diagnosis and were diagnosed later than ATP-sensitive K(+) channel mutation carriers (11 vs. 8 weeks, P < 0.01). In 279 patients with PND, the frequency of KCNJ11, ABCC8, and INS gene mutations was 31, 10, and 12%, respectively. A heterozygous R6C mutation cosegregated with diabetes in a MODY family and is probably pathogenic, but the L68M substitution identified in a patient with young-onset type 2 diabetes may be a rare nonfunctional variant. CONCLUSIONS We conclude that INS mutations are the second most common cause of PND and a rare cause of MODY. Insulin gene mutation screening is recommended for all diabetic patients diagnosed before 1 year of age.
Collapse
Affiliation(s)
- Emma L Edghill
- Institute of Biomedical and Clinical Science, Peninsula Medical School, Barrack Road, Exeter EX2 5DW, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Murphy R, Ellard S, Hattersley AT. Clinical implications of a molecular genetic classification of monogenic beta-cell diabetes. ACTA ACUST UNITED AC 2008; 4:200-13. [PMID: 18301398 DOI: 10.1038/ncpendmet0778] [Citation(s) in RCA: 388] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Accepted: 12/14/2007] [Indexed: 02/06/2023]
Abstract
Monogenic diabetes resulting from mutations that primarily reduce beta-cell function accounts for 1-2% of diabetes cases, although it is often misdiagnosed as either type 1 or type 2 diabetes. Knowledge of the genetic etiology of diabetes enables more-appropriate treatment, better prediction of disease progression, screening of family members and genetic counseling. We propose that the old clinical classifications of maturity-onset diabetes of the young and neonatal diabetes are obsolete and that specific genetic etiologies should be sought in four broad clinical situations because of their specific treatment implications. Firstly, diabetes diagnosed before 6 months of age frequently results from mutation of genes that encode Kir6.2 (ATP-sensitive inward rectifier potassium channel) or sulfonylurea receptor 1 subunits of an ATP-sensitive potassium channel, and improved glycemic control can be achieved by treatment with high-dose sulfonylureas rather than insulin. Secondly, patients with stable, mild fasting hyperglycemia detected particularly when they are young could have a glucokinase mutation and might not require specific treatment. Thirdly, individuals with familial, young-onset diabetes that does not fit with either type 1 or type 2 diabetes might have mutations in the transcription factors HNF-1alpha (hepatocyte nuclear factor 1-alpha) or HNF-4alpha, and can be treated with low-dose sulfonylureas. Finally, extrapancreatic features, such as renal disease (caused by mutations in HNF-1beta) or deafness (caused by a mitochondrial m.3243A>G mutation), usually require early treatment with insulin.
Collapse
|
142
|
Rafiq M, Flanagan SE, Patch AM, Shields BM, Ellard S, Hattersley AT. Effective treatment with oral sulfonylureas in patients with diabetes due to sulfonylurea receptor 1 (SUR1) mutations. Diabetes Care 2008; 31:204-9. [PMID: 18025408 PMCID: PMC7611807 DOI: 10.2337/dc07-1785] [Citation(s) in RCA: 183] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Neonatal diabetes can result from mutations in the Kir6.2 or sulfonylurea receptor 1 (SUR1) subunits of the ATP-sensitive K(+) channel. Transfer from insulin to oral sulfonylureas in patients with neonatal diabetes due to Kir6.2 mutations is well described, but less is known about changing therapy in patients with SUR1 mutations. We aimed to describe the response to sulfonylurea therapy in patients with SUR1 mutations and to compare it with Kir6.2 mutations. RESEARCH DESIGN AND METHODS We followed 27 patients with SUR1 mutations for at least 2 months after attempted transfer to sulfonylureas. Information was collected on clinical features, treatment before and after transfer, and the transfer protocol used. We compared successful and unsuccessful transfer patients, glycemic control before and after transfer, and treatment requirements in patients with SUR1 and Kir6.2 mutations. RESULTS Twenty-three patients (85%) successfully transferred onto sulfonylureas without significant side effects or increased hypoglycemia and did not need insulin injections. In these patients, median A1C fell from 7.2% (interquartile range 6.6-8.2%) on insulin to 5.5% (5.3-6.2%) on sulfonylureas (P = 0.01). When compared with Kir6.2 patients, SUR1 patients needed lower doses of both insulin before transfer (0.4 vs. 0.7 units x kg(-1) x day(-1); P = 0.002) and sulfonylureas after transfer (0.26 vs. 0.45 mg x kg(-1) x day(-1); P = 0.005). CONCLUSIONS Oral sulfonylurea therapy is safe and effective in the short term in most patients with diabetes due to SUR1 mutations and may successfully replace treatment with insulin injections. A different treatment protocol needs to be developed for this group because they require lower doses of sulfonylureas than required by Kir6.2 patients.
Collapse
Affiliation(s)
- Meena Rafiq
- Institute of Biomedical and Clinical Science, Peninsula Medical School, Exeter, UK
| | | | | | | | | | | | | |
Collapse
|
143
|
Hussain K, Flanagan SE, Smith VV, Ashworth M, Day M, Pierro A, Ellard S. An ABCC8 gene mutation and mosaic uniparental isodisomy resulting in atypical diffuse congenital hyperinsulinism. Diabetes 2008; 57:259-63. [PMID: 17942822 DOI: 10.2337/db07-0998] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Congenital hyperinsulinism (CHI) may be due to diffuse or focal pancreatic disease. The diffuse form is associated with an increase in the size of beta-cell nuclei throughout the whole of the pancreas and most commonly results from recessive ATP-sensitive K(+) channel (K(ATP) channel) mutations. Focal lesions are the consequence of somatic uniparental disomy for a paternally inherited K(ATP) channel mutation with enlargement of the beta-cell nuclei confined to the focal lesion. Some "atypical" cases defy classification and show pancreatic beta-cell nuclear enlargement confined to discrete regions of the pancreas. We investigated an atypical case with normal morphology within the tail of the pancreas but occasional enlarged endocrine nuclei in parts of the body and head. RESEARCH DESIGN AND METHODS The KCNJ11 and ABCC8 genes encoding the K(ATP) channel subunits and microsatellite markers on chromosome 11 were analyzed in DNA samples from the patient and her parents. RESULTS A mosaic ABCC8 nonsense mutation (Q54X) was identified in the proband. The paternally inherited mutation was present at 90% in lymphocytes and 50% in normal pancreatic sections but between 64 and 74% in abnormal sections. Microsatellite analysis showed mosaic interstitial paternal uniparental isodisomy (UPD) for chromosome 11p15.1. CONCLUSIONS We report a novel genetic mechanism to explain atypical histological diffuse forms of CHI due to mosaic UPD in patients with dominantly inherited ABCC8 (or KCNJ11) gene mutations.
Collapse
Affiliation(s)
- Khalid Hussain
- Department of Endocrinology, Great Ormond Street Hospital for Children NHS Trust and the Institute of Child Health, University College London, London, UK
| | | | | | | | | | | | | |
Collapse
|
144
|
Shield JPH, Flanagan SE, Mackay DJ, Harries LW, Proks P, Girard C, Ashcroft FM, Temple IK, Ellard S. Mosaic paternal uniparental isodisomy and an ABCC8 gene mutation in a patient with permanent neonatal diabetes and hemihypertrophy. Diabetes 2008; 57:255-8. [PMID: 17942821 DOI: 10.2337/db07-0999] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Activating mutations in the KCNJ11 and ABCC8 genes encoding the Kir6.2 and SUR1 subunits of the pancreatic ATP-sensitive K(+) channel are the most common cause of permanent neonatal diabetes. In contrast to KCNJ11, where only dominant heterozygous mutations have been identified, recessively acting ABCC8 mutations have recently been found in some patients with neonatal diabetes. These genes are co-located on chromosome 11p15.1, centromeric to the imprinted Beckwith-Wiedemann syndrome (BWS) locus at 11p15.5. We investigated a male with hemihypertrophy, a condition classically associated with neonatal hyperinsulinemia and hypoglycemia, who developed neonatal diabetes at age 5 weeks. RESEARCH DESIGN AND METHODS The KCNJ11 and ABCC8 genes and microsatellite markers on chromosome 11 were analyzed in DNA samples from the patient and his parents. RESULTS A paternally inherited activating mutation (N72S) in the ABCC8 gene was identified in the proband. The mutation was present at 70% in the patient's leukocytes and 50% in buccal cells. Microsatellite analysis demonstrated mosaic segmental paternal uniparental isodisomy (UPD) of 11pter-11p14 in the proband that encompassed the ABCC8 gene and the BWS locus. CONCLUSIONS We report a patient with neonatal diabetes, hemihypertrophy, and relatively high birth weight resulting from telomeric segmental paternal UPD of chromosome 11, which unmasks a recessively acting gain-of-function mutation in the ABCC8 gene and causes deregulation of imprinted genes at the BWS locus on 11p15.5.
Collapse
Affiliation(s)
- Julian P H Shield
- Department of Endocrinology and Diabetes, Bristol Royal Hospital for Children and University of Bristol, Bristol, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Abstract
The beta-cell ATP-sensitive potassium channel is a key component of stimulus -secretion coupling in the pancreatic beta-cell. The channel consists of four subunits of the inwardly rectifying potassium channel Kir6.2 and four subunits of the sulfonylurea receptor 1. Loss of function mutations in the KCNJ11 and ABCC8 genes that encode for Kir6.2 and SUR1 can cause over-secretion of insulin and result in hyperinsulinism of infancy, while gain of function mutations in KCNJ11 and ABCC8 have recently been described that result in the opposite phenotype of diabetes.Genetic testing is important for patients with hyperinsulinism or neonatal diabetes, as identification of a K(ATP) channel mutation confirms a diagnosis of their disorder. This genetic information may direct the clinical management; for example, patients with neonatal diabetes may transfer from insulin to sulfonylu-reas with an improvement in glycaemic control. The genetic diagnosis can also help to predict the likely course of the disease and may allow accurate counselling in terms of recurrence risk for these families.This chapter focuses on the methodology used for the analysis of the KCNJ11 gene by direct sequencing. The same principles can be employed for ABCC8 analysis although the polymerase chain reaction (PCR) primers will differ. Details on DNA extraction from peripheral blood leukocytes, amplification of the KCNJ11 gene by the PCR, sequencing, and mutation detection are provided.
Collapse
|
146
|
Patch AM, Flanagan SE, Boustred C, Hattersley AT, Ellard S. Mutations in the ABCC8 gene encoding the SUR1 subunit of the KATP channel cause transient neonatal diabetes, permanent neonatal diabetes or permanent diabetes diagnosed outside the neonatal period. Diabetes Obes Metab 2007; 9 Suppl 2:28-39. [PMID: 17919176 PMCID: PMC7611803 DOI: 10.1111/j.1463-1326.2007.00772.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AIM Mutations in the ABCC8 gene encoding the SUR1 subunit of the pancreatic ATP-sensitive potassium channel cause permanent neonatal diabetes mellitus (PNDM) and transient neonatal diabetes mellitus (TNDM). We reviewed the existing literature, extended the number of cases and explored genotype-phenotype correlations. METHODS Mutations were identified by sequencing in patients diagnosed with diabetes before 6 months without a KCNJ11 mutation. RESULTS We identified ABCC8 mutations in an additional nine probands (including five novel mutations L135P, R306H, R1314H, L438F and M1290V), bringing the total of reported families to 48. Both dominant and recessive mutations were observed with recessive inheritance more common in PNDM than TNDM (9 vs. 1; p < 0.01). The remainder of the PNDM probands (n = 12) had de novo mutations. Seventeen of twenty-five children with TNDM inherited their heterozygous mutation from a parent. Nine of these parents had permanent diabetes (median age at diagnosis: 27.5 years, range: 13-35 years). Recurrent mutations of residues R1183 and R1380 were found only in TNDM probands and dominant mutations causing PNDM clustered within exons 2-5. CONCLUSIONS ABCC8 mutations cause PNDM, TNDM or permanent diabetes diagnosed outside the neonatal period. There is some evidence that the location of the mutation is correlated with the clinical phenotype.
Collapse
Affiliation(s)
- A M Patch
- Institute of Biomedical and Clinical Science, Peninsula Medical School, Exeter, UK
| | | | | | | | | |
Collapse
|
147
|
Ashcroft FM. The Walter B. Cannon Physiology in Perspective Lecture, 2007. ATP-sensitive K+ channels and disease: from molecule to malady. Am J Physiol Endocrinol Metab 2007; 293:E880-9. [PMID: 17652156 DOI: 10.1152/ajpendo.00348.2007] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This essay is based on a lecture given to the American Physiological Society in honor of Walter B. Cannon, an advocate of homeostasis. It focuses on the role of the ATP-sensitive potassium K(+) (K(ATP)) channel in glucose homeostasis and, in particular, on its role in insulin secretion from pancreatic beta-cells. The beta-cell K(ATP) channel comprises pore-forming Kir6.2 and regulatory SUR1 subunits, and mutations in either type of subunit can result in too little or too much insulin release. Here, I review the latest information on the relationship between K(ATP) channel structure and function, and consider how mutations in the K(ATP) channel genes lead to neonatal diabetes or congenital hyperinsulinism.
Collapse
Affiliation(s)
- Frances M Ashcroft
- Henry Wellcome Centre for Gene Function, Dept. of Physiology, Anatomy and Genetics, Univ. of Oxford, Parks Road, Oxford OX1 3PT, UK.
| |
Collapse
|
148
|
Støy J, Edghill EL, Flanagan SE, Ye H, Paz VP, Pluzhnikov A, Below JE, Hayes MG, Cox NJ, Lipkind GM, Lipton RB, Greeley SAW, Patch AM, Ellard S, Steiner DF, Hattersley AT, Philipson LH, Bell GI. Insulin gene mutations as a cause of permanent neonatal diabetes. Proc Natl Acad Sci U S A 2007; 104:15040-4. [PMID: 17855560 PMCID: PMC1986609 DOI: 10.1073/pnas.0707291104] [Citation(s) in RCA: 394] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Indexed: 02/06/2023] Open
Abstract
We report 10 heterozygous mutations in the human insulin gene in 16 probands with neonatal diabetes. A combination of linkage and a candidate gene approach in a family with four diabetic members led to the identification of the initial INS gene mutation. The mutations are inherited in an autosomal dominant manner in this and two other small families whereas the mutations in the other 13 patients are de novo. Diabetes presented in probands at a median age of 9 weeks, usually with diabetic ketoacidosis or marked hyperglycemia, was not associated with beta cell autoantibodies, and was treated from diagnosis with insulin. The mutations are in critical regions of the preproinsulin molecule, and we predict that they prevent normal folding and progression of proinsulin in the insulin secretory pathway. The abnormally folded proinsulin molecule may induce the unfolded protein response and undergo degradation in the endoplasmic reticulum, leading to severe endoplasmic reticulum stress and potentially beta cell death by apoptosis. This process has been described in both the Akita and Munich mouse models that have dominant-acting missense mutations in the Ins2 gene, leading to loss of beta cell function and mass. One of the human mutations we report here is identical to that in the Akita mouse. The identification of insulin mutations as a cause of neonatal diabetes will facilitate the diagnosis and possibly, in time, treatment of this disorder.
Collapse
Affiliation(s)
| | - Emma L. Edghill
- Institute of Biomedical and Clinical Science, Peninsula Medical School, Barrack Road, Exeter EX2 5DW, United Kingdom
| | - Sarah E. Flanagan
- Institute of Biomedical and Clinical Science, Peninsula Medical School, Barrack Road, Exeter EX2 5DW, United Kingdom
| | | | | | | | | | | | | | | | - Rebecca B. Lipton
- Pediatrics, University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637; and
| | - Siri Atma W. Greeley
- Pediatrics, University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637; and
| | - Ann-Marie Patch
- Institute of Biomedical and Clinical Science, Peninsula Medical School, Barrack Road, Exeter EX2 5DW, United Kingdom
| | - Sian Ellard
- Institute of Biomedical and Clinical Science, Peninsula Medical School, Barrack Road, Exeter EX2 5DW, United Kingdom
| | | | - Andrew T. Hattersley
- Institute of Biomedical and Clinical Science, Peninsula Medical School, Barrack Road, Exeter EX2 5DW, United Kingdom
| | | | | | - Neonatal Diabetes International Collaborative Group**
- Departments of *Medicine
- Human Genetics
- Biochemistry and Molecular Biology, and
- Pediatrics, University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637; and
- Institute of Biomedical and Clinical Science, Peninsula Medical School, Barrack Road, Exeter EX2 5DW, United Kingdom
| |
Collapse
|