101
|
Wu Z, Chen H, Pan Y, Feng H, Fang D, Yang J, Wang Y, Yang J, Sahu SK, Liu J, Xing Y, Wang X, Liu M, Luo X, Gao P, Li L, Liu Z, Yang H, Liu X, Xu X, Liu H, Wang E. Genome of Hippophae rhamnoides provides insights into a conserved molecular mechanism in actinorhizal and rhizobial symbioses. THE NEW PHYTOLOGIST 2022; 235:276-291. [PMID: 35118662 DOI: 10.1111/nph.18017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Sea buckthorn (Hippophae rhamnoides), a horticulturally multipurpose species in the family Elaeagnaceae, can build associations with Frankia actinomycetes to enable symbiotic nitrogen-fixing. Currently, no high-quality reference genome is available for an actinorhizal plant, which greatly hinders the study of actinorhizal symbiotic nodulation. Here, by combining short-read, long-read and Hi-C sequencing technologies, we generated a chromosome-level reference genome of H. rhamnoides (scaffold N50: 65 Mb, and genome size: 730 Mb) and predicted 30 812 protein-coding genes mainly on 12 pseudochromosomes. Hippophae rhamnoides was found to share a high proportion of symbiotic nodulation genes with Medicago truncatula, implying a shared molecular mechanism between actinorhizal and rhizobial symbioses. Phylogenetic analysis clustered the three paralogous NODULE INCEPTION (NIN) genes of H. rhamnoides with those of other nodulating species, forming the NIN group that most likely evolved from the ancestral NLP group. The genome of H. rhamnoides will help us to decipher the underlying genetic programming of actinorhizal symbiosis, and our high-quality genome and transcriptomic resources will make H. rhamnoides a new excellent model plant for actinorhizal symbiosis research.
Collapse
Affiliation(s)
- Zefeng Wu
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Hongyun Chen
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, China
| | - Ya Pan
- Jinzhong Institute of Forestry, Jinzhong, Shanxi, 030600, China
| | - Huan Feng
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Dongming Fang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, China
| | - Jun Yang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yayu Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, China
| | - Jun Yang
- Shanghai Chenshan Plant Science Research Center (CAS), Shanghai, 210602, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, China
| | - Jianling Liu
- Jinzhong Institute of Forestry, Jinzhong, Shanxi, 030600, China
| | - Yu'e Xing
- Jinzhong Institute of Forestry, Jinzhong, Shanxi, 030600, China
| | - Xiaolin Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Min Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, China
| | - Xinyue Luo
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, China
| | - Peng Gao
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, China
| | - Lifeng Li
- Jinzhong Municipal Planning and Natural Resources Bureau, Jinzhong, Shanxi, 030600, China
| | - Zhongjian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Huanming Yang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, China
| | - Xin Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, China
| | - Xun Xu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, Guangdong, 518083, China
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
102
|
Wu Q, Tong W, Zhao H, Ge R, Li R, Huang J, Li F, Wang Y, Mallano AI, Deng W, Wang W, Wan X, Zhang Z, Xia E. Comparative transcriptomic analysis unveils the deep phylogeny and secondary metabolite evolution of 116 Camellia plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:406-421. [PMID: 35510493 DOI: 10.1111/tpj.15799] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/21/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Camellia plants include more than 200 species of great diversity and immense economic, ornamental, and cultural values. We sequenced the transcriptomes of 116 Camellia plants from almost all sections of the genus Camellia. We constructed a pan-transcriptome of Camellia plants with 89 394 gene families and then resolved the phylogeny of genus Camellia based on 405 high-quality low-copy core genes. Most of the inferred relationships are well supported by multiple nuclear gene trees and morphological traits. We provide strong evidence that Camellia plants shared a recent whole genome duplication event, followed by large expansions of transcription factor families associated with stress resistance and secondary metabolism. Secondary metabolites, particularly those associated with tea quality such as catechins and caffeine, were preferentially heavily accumulated in the Camellia plants from section Thea. We thoroughly examined the expression patterns of hundreds of genes associated with tea quality, and found that some of them exhibited significantly high expression and correlations with secondary metabolite accumulations in Thea species. We also released a web-accessible database for efficient retrieval of Camellia transcriptomes. The reported transcriptome sequences and obtained novel findings will facilitate the efficient conservation and utilization of Camellia germplasm towards a breeding program for cultivated tea, camellia, and oil-tea plants.
Collapse
Affiliation(s)
- Qiong Wu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Wei Tong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Huijuan Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Ruoheng Ge
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Ruopei Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Jin Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Fangdong Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Yanli Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Ali Inayat Mallano
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Weiwei Deng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Wenjie Wang
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Zhengzhu Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Enhua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
103
|
Xu Z, Li Z, Ren F, Gao R, Wang Z, Zhang J, Zhao T, Ma X, Pu X, Xin T, Rombauts S, Sun W, Van de Peer Y, Chen S, Song J. The genome of Corydalis reveals the evolution of benzylisoquinoline alkaloid biosynthesis in Ranunculales. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:217-230. [PMID: 35476217 PMCID: PMC7614287 DOI: 10.1111/tpj.15788] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/05/2022] [Accepted: 04/24/2022] [Indexed: 05/05/2023]
Abstract
Species belonging to the order Ranunculales have attracted much attention because of their phylogenetic position as a sister group to all other eudicot lineages and their ability to produce unique yet diverse benzylisoquinoline alkaloids (BIAs). The Papaveraceae family in Ranunculales is often used as a model system for studying BIA biosynthesis. Here, we report the chromosome-level genome assembly of Corydalis tomentella, a species of Fumarioideae, one of the two subfamilies of Papaveraceae. Based on comparisons of sequenced Ranunculalean species, we present clear evidence of a shared whole-genome duplication (WGD) event that has occurred before the divergence of Ranunculales but after its divergence from other eudicot lineages. The C. tomentella genome enabled us to integrate isotopic labeling and comparative genomics to reconstruct the BIA biosynthetic pathway for both sanguinarine biosynthesis shared by papaveraceous species and the cavidine biosynthesis that is specific to Corydalis. Also, our comparative analysis revealed that gene duplications, especially tandem gene duplications, underlie the diversification of BIA biosynthetic pathways in Ranunculales. In particular, tandemly duplicated berberine bridge enzyme-like genes appear to be involved in cavidine biosynthesis. In conclusion, our study of the C. tomentella genome provides important insights into the occurrence of WGDs during the early evolution of eudicots, as well as into the evolution of BIA biosynthesis in Ranunculales.
Collapse
Affiliation(s)
- Zhichao Xu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent 9052, Belgium
| | - Fengming Ren
- Chongqing Institute of Medicinal Plant Cultivation, Chongqing 408435, China
| | - Ranran Gao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing 100700, China
| | - Zhe Wang
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jinlan Zhang
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Tao Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Xiao Ma
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent 9052, Belgium
| | - Xiangdong Pu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Tianyi Xin
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Stephane Rombauts
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent 9052, Belgium
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing 100700, China
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent 9052, Belgium
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
- Academy for Advanced Interdisciplinary Studies and College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Corresponding Authors: Jingyuan Song (), Shilin Chen (), and Yves Van de Peer ()
| | - Shilin Chen
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing 100700, China
- Corresponding Authors: Jingyuan Song (), Shilin Chen (), and Yves Van de Peer ()
| | - Jingyuan Song
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
- Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Jinghong 666100, China
- Corresponding Authors: Jingyuan Song (), Shilin Chen (), and Yves Van de Peer ()
| |
Collapse
|
104
|
Qiao X, Zhang S, Paterson AH. Pervasive genome duplications across the plant tree of life and their links to major evolutionary innovations and transitions. Comput Struct Biotechnol J 2022; 20:3248-3256. [PMID: 35782740 PMCID: PMC9237934 DOI: 10.1016/j.csbj.2022.06.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/12/2022] [Accepted: 06/12/2022] [Indexed: 01/09/2023] Open
Abstract
Whole-genome duplication (WGD) has occurred repeatedly during plant evolution and diversification, providing genetic layers for evolving new functions and phenotypes. Advances in long-read sequencing technologies have enabled sequencing and assembly of over 1000 plant genomes spanning nearly 800 species, in which a large set of ancient WGDs has been uncovered. Here, we review the recently reported WGDs that occurred in major plant lineages and key evolutionary positions, and highlight their contributions to morphological innovation and adaptive evolution. Current gaps and challenges in integrating enormous volumes of sequenced plant genomes, accurately inferring WGDs, and developing web-based analysis tools are emphasized. Looking to the future, ambitious genome sequencing projects and global efforts may substantially recapitulate the plant tree of life based on broader sampling of phylogenetic diversity, reveal much of the timetable of ancient WGDs, and address the biological significance of WGDs in plant adaptation and radiation.
Collapse
Affiliation(s)
- Xin Qiao
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Andrew H. Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30605, USA
| |
Collapse
|
105
|
Bewg WP, Harding SA, Engle NL, Vaidya BN, Zhou R, Reeves J, Horn TW, Joshee N, Jenkins JW, Shu S, Barry KW, Yoshinaga Y, Grimwood J, Schmitz RJ, Schmutz J, Tschaplinski TJ, Tsai CJ. Multiplex knockout of trichome-regulating MYB duplicates in hybrid poplar using a single gRNA. PLANT PHYSIOLOGY 2022; 189:516-526. [PMID: 35298644 PMCID: PMC9157173 DOI: 10.1093/plphys/kiac128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/24/2022] [Indexed: 05/13/2023]
Abstract
As the focus for CRISPR/Cas-edited plants moves from proof-of-concept to real-world applications, precise gene manipulation will increasingly require concurrent multiplex editing for polygenic traits. A common approach for editing across multiple sites is to design one guide RNA (gRNA) per target; however, this complicates construct assembly and increases the possibility of off-target mutations. In this study, we utilized one gRNA to target MYB186, a known positive trichome regulator, as well as its paralogs MYB138 and MYB38 at a consensus site for mutagenesis in hybrid poplar (Populus tremula × P. alba INRA 717-1B4). Unexpected duplications of MYB186 and MYB138 resulted in eight alleles for the three targeted genes in the hybrid poplar. Deep sequencing and polymerase chain reaction analyses confirmed editing across all eight targets in nearly all of the resultant glabrous mutants, ranging from small indels to large genomic dropouts, with no off-target activity detected at four potential sites. This highlights the effectiveness of a single gRNA targeting conserved exonic regions for multiplex editing. Additionally, cuticular wax and whole-leaf analyses showed a complete absence of triterpenes in the trichomeless mutants, hinting at a previously undescribed role for the nonglandular trichomes of poplar.
Collapse
Affiliation(s)
- William P Bewg
- School of Forestry and Natural Resources, University of Georgia, Athens, Georgia 30602, USA
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Scott A Harding
- School of Forestry and Natural Resources, University of Georgia, Athens, Georgia 30602, USA
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Nancy L Engle
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - Brajesh N Vaidya
- Department of Plant Science, Fort Valley State University, Georgia, 31030, USA
| | - Ran Zhou
- School of Forestry and Natural Resources, University of Georgia, Athens, Georgia 30602, USA
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Jacob Reeves
- Department of Computer Science, University of Georgia, Athens, Georgia 30602, USA
| | - Thomas W Horn
- Department of Computer Science, University of Georgia, Athens, Georgia 30602, USA
| | - Nirmal Joshee
- Department of Plant Science, Fort Valley State University, Georgia, 31030, USA
| | - Jerry W Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
- U.S. Department of Energy Joint Genome Institute, Berkeley, California 94720, USA
| | - Shengqiang Shu
- U.S. Department of Energy Joint Genome Institute, Berkeley, California 94720, USA
| | - Kerrie W Barry
- U.S. Department of Energy Joint Genome Institute, Berkeley, California 94720, USA
| | - Yuko Yoshinaga
- U.S. Department of Energy Joint Genome Institute, Berkeley, California 94720, USA
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
- U.S. Department of Energy Joint Genome Institute, Berkeley, California 94720, USA
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
- U.S. Department of Energy Joint Genome Institute, Berkeley, California 94720, USA
| | | | - Chung-Jui Tsai
- School of Forestry and Natural Resources, University of Georgia, Athens, Georgia 30602, USA
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
106
|
Huang X, Wang W, Gong T, Wickell D, Kuo LY, Zhang X, Wen J, Kim H, Lu F, Zhao H, Chen S, Li H, Wu W, Yu C, Chen S, Fan W, Chen S, Bao X, Li L, Zhang D, Jiang L, Khadka D, Yan X, Liao Z, Zhou G, Guo Y, Ralph J, Sederoff RR, Wei H, Zhu P, Li FW, Ming R, Li Q. The flying spider-monkey tree fern genome provides insights into fern evolution and arborescence. NATURE PLANTS 2022; 8:500-512. [PMID: 35534720 PMCID: PMC9122828 DOI: 10.1038/s41477-022-01146-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/30/2022] [Indexed: 05/03/2023]
Abstract
To date, little is known about the evolution of fern genomes, with only two small genomes published from the heterosporous Salviniales. Here we assembled the genome of Alsophila spinulosa, known as the flying spider-monkey tree fern, onto 69 pseudochromosomes. The remarkable preservation of synteny, despite resulting from an ancient whole-genome duplication over 100 million years ago, is unprecedented in plants and probably speaks to the uniqueness of tree ferns. Our detailed investigations into stem anatomy and lignin biosynthesis shed new light on the evolution of stem formation in tree ferns. We identified a phenolic compound, alsophilin, that is abundant in xylem, and we provided the molecular basis for its biosynthesis. Finally, analysis of demographic history revealed two genetic bottlenecks, resulting in rapid demographic declines of A. spinulosa. The A. spinulosa genome fills a crucial gap in the plant genomic landscape and helps elucidate many unique aspects of tree fern biology.
Collapse
Affiliation(s)
- Xiong Huang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Wenling Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Ting Gong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - David Wickell
- Thompson Institute, Ithaca, NY, USA
- Plant Biology Section, Cornell University, Ithaca, NY, USA
| | - Li-Yaung Kuo
- Institute of Molecular & Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Xingtan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jialong Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, China
| | - Hoon Kim
- Department of Biochemistry and DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI, USA
| | - Fachuang Lu
- Department of Biochemistry and DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI, USA
| | - Hansheng Zhao
- State Forestry Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, Institute of Gene for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, China
| | - Song Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Hui Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Wenqi Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Changjiang Yu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, China
| | - Su Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Wei Fan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Shuai Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xiuqi Bao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Li Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Longyu Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dipak Khadka
- GoldenGate International College, Tribhuvan University, Battisputali, Kathmandu, Nepal
| | - Xiaojing Yan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Zhenyang Liao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Gongke Zhou
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, China
| | - Yalong Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Science, Beijing, China
| | - John Ralph
- Department of Biochemistry and DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI, USA
| | - Ronald R Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USA.
| | - Ping Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Fay-Wei Li
- Thompson Institute, Ithaca, NY, USA.
- Plant Biology Section, Cornell University, Ithaca, NY, USA.
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China.
| |
Collapse
|
107
|
Nishii K, Hart M, Kelso N, Barber S, Chen Y, Thomson M, Trivedi U, Twyford AD, Möller M. The first genome for the Cape Primrose Streptocarpus rexii (Gesneriaceae), a model plant for studying meristem-driven shoot diversity. PLANT DIRECT 2022; 6:e388. [PMID: 35388373 PMCID: PMC8977575 DOI: 10.1002/pld3.388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/26/2022] [Accepted: 01/30/2022] [Indexed: 05/16/2023]
Abstract
Cape Primroses (Streptocarpus, Gesneriaceae) are an ideal study system for investigating the genetics underlying species diversity in angiosperms. Streptocarpus rexii has served as a model species for plant developmental research for over five decades due to its unusual extended meristem activity present in the leaves. In this study, we sequenced and assembled the complete nuclear, chloroplast, and mitochondrial genomes of S. rexii using Oxford Nanopore Technologies long read sequencing. Two flow cells of PromethION sequencing resulted in 32 billion reads and were sufficient to generate a draft assembly including the chloroplast, mitochondrial and nuclear genomes, spanning 776 Mbp. The final nuclear genome assembly contained 5,855 contigs, spanning 766 Mbp of the 929-Mbp haploid genome with an N50 of 3.7 Mbp and an L50 of 57 contigs. Over 70% of the draft genome was identified as repeats. A genome repeat library of Gesneriaceae was generated and used for genome annotation, with a total of 45,045 genes annotated in the S. rexii genome. Ks plots of the paranomes suggested a recent whole genome duplication event, shared between S. rexii and Primulina huaijiensis. A new chloroplast and mitochondrial genome assembly method, based on contig coverage and identification, was developed, and successfully used to assemble both organellar genomes of S. rexii. This method was developed into a pipeline and proved widely applicable. The nuclear genome of S. rexii and other datasets generated and reported here will be invaluable resources for further research to aid in the identification of genes involved in morphological variation underpinning plant diversification.
Collapse
Affiliation(s)
- Kanae Nishii
- Royal Botanic Garden EdinburghEdinburghUK
- Kanagawa UniversityHiratsukaJapan
| | | | | | | | - Yun‐Yu Chen
- Royal Botanic Garden EdinburghEdinburghUK
- Institute of Molecular Plant SciencesThe University of EdinburghEdinburghUK
| | - Marian Thomson
- Edinburgh Genomics, Ashworth LaboratoriesThe University of EdinburghEdinburghUK
| | - Urmi Trivedi
- Edinburgh Genomics, Ashworth LaboratoriesThe University of EdinburghEdinburghUK
| | - Alex D. Twyford
- Royal Botanic Garden EdinburghEdinburghUK
- Institute of Evolutionary Biology, Ashworth LaboratoriesThe University of EdinburghEdinburghUK
| | | |
Collapse
|
108
|
Wang Z, Xue JY, Hu SY, Zhang F, Yu R, Chen D, Van de Peer Y, Jiang J, Song A, Ni L, Hua J, Lu Z, Yu C, Yin Y, Gu C. The genome of hibiscus hamabo reveals its adaptation to saline and waterlogged habitat. HORTICULTURE RESEARCH 2022; 9:uhac067. [PMID: 35480957 PMCID: PMC9039499 DOI: 10.1093/hr/uhac067] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Hibiscus hamabo is a semi-mangrove species with strong tolerance to salt and waterlogging stress. However, the molecular basis and mechanisms that underlie this strong adaptability to harsh environments remain poorly understood. Here, we assembled a high-quality, chromosome-level genome of this semi-mangrove plant and analyzed its transcriptome under different stress treatments to reveal regulatory responses and mechanisms. Our analyses suggested that H. hamabo has undergone two recent successive polyploidy events, a whole-genome duplication followed by a whole-genome triplication, resulting in an unusually large gene number (107 309 genes). Comparison of the H. hamabo genome with that of its close relative Hibiscus cannabinus, which has not experienced a recent WGT, indicated that genes associated with high stress resistance have been preferentially preserved in the H. hamabo genome, suggesting an underlying association between polyploidy and stronger stress resistance. Transcriptomic data indicated that genes in the roots and leaves responded differently to stress. In roots, genes that regulate ion channels involved in biosynthetic and metabolic processes responded quickly to adjust the ion concentration and provide metabolic products to protect root cells, whereas no such rapid response was observed from genes in leaves. Using co-expression networks, potential stress resistance genes were identified for use in future functional investigations. The genome sequence, along with several transcriptome datasets, provide insights into genome evolution and the mechanism of salt and waterlogging tolerance in H. hamabo, suggesting the importance of polyploidization for environmental adaptation.
Collapse
Affiliation(s)
- Zhiquan Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Jia-Yu Xue
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuai-Ya Hu
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Fengjiao Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Ranran Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Dijun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yves Van de Peer
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
- Department of Plant Biotechnology and Bioinformatics, Ghent University, VIB-UGent Center for Plant Systems Biology, B-9052 Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
| | - Jiafu Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Aiping Song
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Longjie Ni
- College of Forest Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Jianfeng Hua
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Zhiguo Lu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Chaoguang Yu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Yunlong Yin
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Chunsun Gu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
- College of Forest Sciences, Nanjing Forestry University, Nanjing, 210037, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Utilization of Agricultural Germplasm, Nanjing, 210014, China
| |
Collapse
|
109
|
Zhang Q, Zhao L, Folk RA, Zhao JL, Zamora NA, Yang SX, Soltis DE, Soltis PS, Gao LM, Peng H, Yu XQ. Phylotranscriptomics of Theaceae: generic-level relationships, reticulation and whole-genome duplication. ANNALS OF BOTANY 2022; 129:457-471. [PMID: 35037017 PMCID: PMC8944729 DOI: 10.1093/aob/mcac007] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/16/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND AND AIMS Theaceae, with three tribes, nine genera and more than 200 species, are of great economic and ecological importance. Recent phylogenetic analyses based on plastomic data resolved the relationships among the three tribes and the intergeneric relationships within two of those tribes. However, generic-level relationships within the largest tribe, Theeae, were not fully resolved. The role of putative whole-genome duplication (WGD) events in the family and possible hybridization events among genera within Theeae also remain to be tested further. METHODS Transcriptomes or low-depth whole-genome sequencing of 57 species of Theaceae, as well as additional plastome sequence data, were generated. Using a dataset of low-copy nuclear genes, we reconstructed phylogenetic relationships using concatenated, species tree and phylogenetic network approaches. We further conducted molecular dating analyses and inferred possible WGD events by examining the distribution of the number of synonymous substitutions per synonymous site (Ks) for paralogues in each species. For plastid protein-coding sequences , phylogenies were reconstructed for comparison with the results obtained from analysis of the nuclear dataset. RESULTS Based on the 610 low-copy nuclear genes (858 606 bp in length) investigated, Stewartieae was resolved as sister to the other two tribes. Within Theeae, the Apterosperma-Laplacea clade grouped with Pyrenaria, leaving Camellia and Polyspora as sister. The estimated ages within Theaceae were largely consistent with previous studies based mainly on plastome data. Two reticulation events within Camellia and one between the common ancestor of Gordonia and Schima were found. All members of the tea family shared two WGD events, an older At-γ and a recent Ad-β; both events were also shared with the outgroups (Diapensiaceae, Pentaphylacaceae, Styracaceae and Symplocaceae). CONCLUSIONS Our analyses using low-copy nuclear genes improved understanding of phylogenetic relationships at the tribal and generic levels previously proposed based on plastome data, but the phylogenetic position of the Apterosperma-Laplacea clade needs more attention. There is no evidence for extensive intergeneric hybridization within Theeae or for a Theaceae-specific WGD event. Land bridges (e.g. the Bering land bridge) during the Late Oligocene may have permitted the intercontinental plant movements that facilitated the putative ancient introgression between the common ancestor of Gordonia and Schima.
Collapse
Affiliation(s)
- Qiong Zhang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Zhao
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ryan A Folk
- Department of Biological Sciences, Mississippi State University, MS, USA
| | - Jian-Li Zhao
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
| | - Nelson A Zamora
- National Herbarium of Costa Rica (CR), Natural History Department of National Museum of Costa Rica, San José, Costa Rica
| | - Shi-Xiong Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Lian-Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Yunnan Lijiang Forest Ecosystem National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, Yunnan, China
| | | | | |
Collapse
|
110
|
Mandal K, Dutta S, Upadhyay A, Panda A, Tripathy S. Comparative Genome Analysis Across 128 Phytophthora Isolates Reveal Species-Specific Microsatellite Distribution and Localized Evolution of Compartmentalized Genomes. Front Microbiol 2022; 13:806398. [PMID: 35369471 PMCID: PMC8967354 DOI: 10.3389/fmicb.2022.806398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Phytophthora sp. are invasive groups of pathogens belonging to class Oomycetes. In order to contain and control them, a deep knowledge of their biology and infection strategy is imperative. With the availability of large-scale sequencing data, it has been possible to look directly into their genetic material and understand the strategies adopted by them for becoming successful pathogens. Here, we have studied the genomes of 128 Phytophthora species available publicly with reasonable quality. Our analysis reveals that the simple sequence repeats (SSRs) of all Phytophthora sp. follow distinct isolate specific patterns. We further show that TG/CA dinucleotide repeats are far more abundant in Phytophthora sp. than other classes of repeats. In case of tri- and tetranucleotide SSRs also, TG/CA-containing motifs always dominate over others. The GC content of the SSRs are stable without much variation across the isolates of Phytophthora. Telomeric repeats of Phytophthora follow a pattern of (TTTAGGG)n or (TTAGGGT)n rather than the canonical (TTAGGG)n. RxLR (arginine-any amino acid-leucine-arginine) motifs containing effectors diverge rapidly in Phytophthora and do not show any core common group. The RxLR effectors of some Phytophthora isolates have a tendency to form clusters with RxLRs from other species than within the same species. An analysis of the flanking intergenic distance clearly indicates a two-speed genome organization for all the Phytophthora isolates. Apart from effectors and the transposons, a large number of other virulence genes such as carbohydrate-active enzymes (CAZymes), transcriptional regulators, signal transduction genes, ATP-binding cassette transporters (ABC), and ubiquitins are also present in the repeat-rich compartments. This indicates a rapid co-evolution of this powerful arsenal for successful pathogenicity. Whole genome duplication studies indicate that the pattern followed is more specific to a geographic location. To conclude, the large-scale genomic studies of Phytophthora have thrown light on their adaptive evolution, which is largely guided by the localized host-mediated selection pressure.
Collapse
Affiliation(s)
- Kajal Mandal
- Computational Genomics Laboratory, Department of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Subhajeet Dutta
- Computational Genomics Laboratory, Department of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Aditya Upadhyay
- Computational Genomics Laboratory, Department of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Arijit Panda
- Department of Quantitative Health Science, Mayo Clinic, Rochester, MN, United States
| | - Sucheta Tripathy
- Computational Genomics Laboratory, Department of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
111
|
Wang S, Liang H, Wang H, Li L, Xu Y, Liu Y, Liu M, Wei J, Ma T, Le C, Yang J, He C, Liu J, Zhao J, Zhao Y, Lisby M, Sahu SK, Liu H. The chromosome-scale genomes of Dipterocarpus turbinatus and Hopea hainanensis (Dipterocarpaceae) provide insights into fragrant oleoresin biosynthesis and hardwood formation. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:538-553. [PMID: 34687252 PMCID: PMC8882806 DOI: 10.1111/pbi.13735] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/01/2021] [Accepted: 10/12/2021] [Indexed: 05/30/2023]
Abstract
Dipterocarpaceae are typical tropical plants (dipterocarp forests) that are famous for their high economic value because of their production of fragrant oleoresins, top-quality timber and usage in traditional Chinese medicine. Currently, the lack of Dipterocarpaceae genomes has been a limiting factor to decipher the fragrant oleoresin biosynthesis and gain evolutionary insights into high-quality wood formation in Dipterocarpaceae. We generated chromosome-level genome assemblies for two representative Dipterocarpaceae species viz. Dipterocarpus turbinatus Gaertn. f. and Hopea hainanensis Merr. et Chun. Our whole-genome duplication (WGD) analysis revealed that Dipterocarpaceae underwent a shared WGD event, which showed significant impacts on increased copy numbers of genes related to the biosynthesis of terpene, BAHD acyltransferases, fatty acid and benzenoid/phenylpropanoid, which probably confer to the formation of their characteristic fragrant oleoresin. Additionally, compared with common soft wood plants, the expansion of gene families was also found to be associated with wood formation, such as in CESA (cellulose synthase), CSLE (cellulose synthase-like protein E), laccase and peroxidase in Dipterocarpaceae genomes, which might also contribute to the formation of harder, stronger and high-density timbers. Finally, an integrative analysis on a combination of genomic, transcriptomic and metabolic data from different tissues provided further insights into the molecular basis of fragrant oleoresins biosynthesis and high-quality wood formation of Dipterocarpaceae. Our study contributes the first two representative genomes for Dipterocarpaceae, which are valuable genetic resources for further researches on the fragrant oleoresins and superior-quality timber, genome-assisted breeding and improvement, and conservation biology of this family.
Collapse
Affiliation(s)
- Sibo Wang
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
| | - Hongping Liang
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Hongli Wang
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Linzhou Li
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| | - Yan Xu
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Yang Liu
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
| | - Min Liu
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
| | - Jinpu Wei
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
| | - Tao Ma
- Key Laboratory of Bio‐resource and Eco‐Environment of Ministry of EducationCollege of Life SciencesSichuan UniversityChengduChina
| | - Cheng Le
- BGI‐Yunnan, BGI‐ShenzhenYunnanChina
| | - Jinlong Yang
- BGI‐Yunnan, BGI‐ShenzhenYunnanChina
- College of Forensic ScienceXi'an Jiaotong UniversityXi'anChina
| | | | - Jie Liu
- Forestry Bureau of RuiliYunnan Dehong, RuiliChina
| | | | | | - Michael Lisby
- Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
| | - Huan Liu
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
112
|
Cui X, Meng F, Pan X, Qiu X, Zhang S, Li C, Lu S. Chromosome-level genome assembly of Aristolochia contorta provides insights into the biosynthesis of benzylisoquinoline alkaloids and aristolochic acids. HORTICULTURE RESEARCH 2022; 9:uhac005. [PMID: 35147168 PMCID: PMC8973263 DOI: 10.1093/hr/uhac005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 05/11/2023]
Abstract
Aristolochic acids (AAs) and their derivatives exist in multiple Aristolochiaceae species which had been or are being used as medicinal materials. During the past decades, AAs have received increasing attention due to their nephrotoxicity and carcinogenecity. Elimination of AAs in medicinal materials using biotechnological approaches is important to improve medication safety. However, it has not been achieved because of the limited information of AA biosynthesis available. Here, we report a high-quality reference-grade genome assembly of the AA-containing vine, Aristolochia contorta. Total size of the assembly is 209.27 Mb, which is assembled into 7 pseudochromosomes. Synteny analysis, Ks distribution and 4DTv suggest absences of whole-genome duplication events in A. contorta after the angiosperm-wide WGD. Based on genomic, transcriptomic and metabolic data, pathways and candidate genes of benzylisoquinoline alkaloid (BIA) and AA biosynthesis in A. contorta were proposed. Five O-methyltransferase genes, including AcOMT1-3, AcOMT5 and AcOMT7, were cloned and functionally characterized. The results provide a high-quality reference genome for AA-containing species of Aristolochiaceae. It lays a solid foundation for further elucidation of AA biosynthesis and regulation and molecular breeding of Aristolochiaceae medicinal materials.
Collapse
Affiliation(s)
- Xinyun Cui
- Medicinal Plant Cultivation Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing 100193, China
| | - Fanqi Meng
- Medicinal Plant Cultivation Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing 100193, China
| | - Xian Pan
- Medicinal Plant Cultivation Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing 100193, China
| | - Xiaoxiao Qiu
- Medicinal Plant Cultivation Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing 100193, China
| | - Sixuan Zhang
- Medicinal Plant Cultivation Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing 100193, China
| | - Caili Li
- Medicinal Plant Cultivation Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing 100193, China
| | - Shanfa Lu
- Medicinal Plant Cultivation Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing 100193, China
| |
Collapse
|
113
|
Yan N, Yang T, Yu XT, Shang LG, Guo DP, Zhang Y, Meng L, Qi QQ, Li YL, Du YM, Liu XM, Yuan XL, Qin P, Qiu J, Qian Q, Zhang ZF. Chromosome-level genome assembly of Zizania latifolia provides insights into its seed shattering and phytocassane biosynthesis. Commun Biol 2022; 5:36. [PMID: 35017643 PMCID: PMC8752815 DOI: 10.1038/s42003-021-02993-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 12/21/2021] [Indexed: 12/25/2022] Open
Abstract
Chinese wild rice (Zizania latifolia; family: Gramineae) is a valuable medicinal homologous grain in East and Southeast Asia. Here, using Nanopore sequencing and Hi-C scaffolding, we generated a 547.38 Mb chromosome-level genome assembly comprising 332 contigs and 164 scaffolds (contig N50 = 4.48 Mb; scaffold N50 = 32.79 Mb). The genome harbors 38,852 genes, with 52.89% of the genome comprising repetitive sequences. Phylogenetic analyses revealed close relation of Z. latifolia to Leersia perrieri and Oryza species, with a divergence time of 19.7-31.0 million years. Collinearity and transcriptome analyses revealed candidate genes related to seed shattering, providing basic information on abscission layer formation and degradation in Z. latifolia. Moreover, two genomic blocks in the Z. latifolia genome showed good synteny with the rice phytocassane biosynthetic gene cluster. The updated genome will support future studies on the genetic improvement of Chinese wild rice and comparative analyses between Z. latifolia and other plants.
Collapse
Affiliation(s)
- Ning Yan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| | - Ting Yang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Xiu-Ting Yu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lian-Guang Shang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - De-Ping Guo
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yu Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Lin Meng
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Qian-Qian Qi
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ya-Li Li
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yong-Mei Du
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Xin-Min Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Xiao-Long Yuan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Peng Qin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jie Qiu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China.
| | - Zhong-Feng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| |
Collapse
|
114
|
Signatures of selection in recently domesticated macadamia. Nat Commun 2022; 13:242. [PMID: 35017544 PMCID: PMC8752631 DOI: 10.1038/s41467-021-27937-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 12/21/2021] [Indexed: 01/08/2023] Open
Abstract
Macadamia is a high value nut crop that is recently domesticated, ideal for testing the effect of artificial selection. Here, we sequence the genome of Hawaiian cultivar ‘Kau’ and assemble into 794 Mb in 14 pseudo-chromosomes with 37,728 genes. Genome analysis reveals a whole-genome duplication event, occurred 46.8 million years ago. Gene expansions occurred in gene families involves in fatty acid biosynthesis. Gene duplication of MADS-Box transcription factors in proanthocyanidin biosynthesis are relevant for seed coat development. Genome re-sequencing of 112 accessions reveals the origin of Hawaiian cultivars from Mount Bauple in southeast Queensland in Australia. Selective sweeps are detected in macadamia cultivars, including genes involved in fatty acid biosynthesis, seed coat development, and heat stress response. Such strong effects of artificial selection in few generations reveals the genomic basis for ‘one-step operation’ for clonal crop domestication. The knowledge gained could accelerate domestication of new crops from wild species. Macadamia is a recently domesticated nut crop. Here, the authors report the genome assembly of Hawaiian cultivar ‘Kau’ and conduct population genomic analyses to reveal the origin of Hawaiian cultivars and the genomic basis for one-step operation for the clonal crop domestication.
Collapse
|
115
|
Zhao D, Zhang Y, Lu Y, Fan L, Zhang Z, Chai M, Zheng J. Genome sequence and transcriptome of Sorbus pohuashanensis provides insights into population evolution and leaf sunburn response. J Genet Genomics 2022; 49:547-558. [PMID: 34995812 DOI: 10.1016/j.jgg.2021.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022]
Abstract
Sorbus pohuashanensis is a potential horticulture and medicinal plant, but its genomic and genetic backgrounds remain unknown. Here, we sequenced and assembled the S. pohuashanensis (Hance) Hedl. reference genome using PacBio long reads. Based on the new reference genome, we resequenced a core collection of 22 Sorbus spp. samples, which were divided into 2 groups (G1 and G2) based on phylogenetic and PCA analyses. These phylogenetic clusters were highly consistent with their classification based on leaf shape. Natural hybridization between the G1 and G2 groups was evidenced by a sample (R21) with a highly heterozygous genotype. Nucleotide diversity (π) analysis showed that G1 had a higher diversity than G2 and that G2 originated from G1. During the evolution process, the gene families involved in photosynthesis pathways expanded and the gene families involved in energy consumption contracted. RNA-seq data suggested that flavonoid biosynthesis and heat-shock protein (HSP)-heat-shock factor (HSF) pathways play important roles in protection against sunburn. This study provides new insights into the evolution of Sorbus spp. genomes. In addition, the genomic resources, and the identified genetic variations, especially those related to stress resistance, will help future efforts to produce and breed Sorbus spp.
Collapse
Affiliation(s)
- Dongxue Zhao
- School of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
| | - Yan Zhang
- School of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
| | - Yizeng Lu
- Shandong Provincial Center of Forest Tree Germplasm Resources, Jinan, Shandong 250102, China
| | - Liqiang Fan
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Zhibin Zhang
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Mao Chai
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China.
| | - Jian Zheng
- School of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China.
| |
Collapse
|
116
|
Sensalari C, Maere S, Lohaus R. ksrates: positioning whole-genome duplications relative to speciation events in KS distributions. Bioinformatics 2022; 38:530-532. [PMID: 34406368 DOI: 10.1093/bioinformatics/btab602] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/07/2021] [Accepted: 08/17/2021] [Indexed: 02/03/2023] Open
Abstract
SUMMARY We present ksrates, a user-friendly command-line tool to position ancient whole-genome duplication events with respect to speciation events in a phylogeny by comparing paralog and ortholog KS distributions derived from genomic or transcriptomic sequences, while adjusting for substitution rate differences among the lineages involved. AVAILABILITY AND IMPLEMENTATION ksrates is implemented in Python 3 and as a Nextflow pipeline. The source code, Singularity and Docker containers, documentation and tutorial are available via https://github.com/VIB-PSB/ksrates. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Cecilia Sensalari
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium.,VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Steven Maere
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium.,VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Rolf Lohaus
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium.,VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| |
Collapse
|
117
|
Liu S, Fang S, Cong B, Li T, Yi D, Zhang Z, Zhao L, Zhang P. The Antarctic Moss Pohlia nutans Genome Provides Insights Into the Evolution of Bryophytes and the Adaptation to Extreme Terrestrial Habitats. FRONTIERS IN PLANT SCIENCE 2022; 13:920138. [PMID: 35783932 PMCID: PMC9247546 DOI: 10.3389/fpls.2022.920138] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/19/2022] [Indexed: 05/09/2023]
Abstract
The Antarctic continent has extreme natural environment and fragile ecosystem. Mosses are one of the dominant floras in the Antarctic continent. However, their genomic features and adaptation processes to extreme environments remain poorly understood. Here, we assembled the high-quality genome sequence of the Antarctic moss (Pohlia nutans) with 698.20 Mb and 22 chromosomes. We found that the high proportion of repeat sequences and a recent whole-genome duplication (WGD) contribute to the large size genome of P. nutans when compared to other bryophytes. The genome of P. nutans harbors the signatures of massive segmental gene duplications and large expansions of gene families, likely facilitating neofunctionalization. Genomic characteristics that may support the Antarctic lifestyle of this moss comprise expanded gene families involved in phenylpropanoid biosynthesis, unsaturated fatty acid biosynthesis, and plant hormone signal transduction. Additional contributions include the significant expansion and upregulation of several genes encoding DNA photolyase, antioxidant enzymes, flavonoid biosynthesis enzymes, possibly reflecting diverse adaptive strategies. Notably, integrated multi-omic analyses elucidate flavonoid biosynthesis may function as the reactive oxygen species detoxification under UV-B radiation. Our studies provide insight into the unique features of the Antarctic moss genome and their molecular responses to extreme terrestrial environments.
Collapse
Affiliation(s)
- Shenghao Liu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, China
| | - Shuo Fang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Bailin Cong
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, China
| | - Tingting Li
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Dan Yi
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Zhaohui Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Linlin Zhao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, China
- *Correspondence: Linlin Zhao,
| | - Pengying Zhang
- National Glycoengineering Research Center, School of Life Sciences and Shandong University, Qingdao, China
- Pengying Zhang,
| |
Collapse
|
118
|
Gao Y, Zhang Y, Feng C, Chu H, Feng C, Wang H, Wu L, Yin S, Liu C, Chen H, Li Z, Zou Z, Tang L. A chromosome-level genome assembly of Amorphophallus konjac provides insights into konjac glucomannan biosynthesis. Comput Struct Biotechnol J 2022; 20:1002-1011. [PMID: 35242290 PMCID: PMC8860920 DOI: 10.1016/j.csbj.2022.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 11/17/2022] Open
Abstract
Amorphophallus konjac, a perennial herb in the Araceae family, is a cash crop that can produce a large amount of konjac glucomannan. To explore mechanisms underlying such large genomes in the genus Amorphophallus as well as the gene regulation of glucomannan biosynthesis, we present a chromosome-level genome assembly of A. konjac with a total genome size of 5.60 Gb and a contig N50 of 1.20 Mb. Comparative genomic analysis reveals that A. konjac has undergone two whole-genome duplication (WGD) events in quick succession. Two recent bursts of transposable elements are identified in the A. konjac genome, which contribute greatly to the large genome size. Our transcriptomic analysis of the developmental corms characterizes key genes involved in the biosynthesis of glucomannan and related starches. High expression of cellulose synthase-like A, Cellulose synthase-like D, mannan-synthesis related 1, GDP-mannose pyrophosphorylase and phosphomannomutase fructokinase contributes to glucomannan synthesis during the corm expansion period while high expression of starch synthase, starch branching enzyme and phosphoglucomutase is responsible for starch synthesis in the late corm development stage. In conclusion, we generate a high-quality genome of A. konjac with different sequencing technologies. The expansion of transposable elements has caused the large genome of this species. And the identified key genes in the glucomannan biosynthesis provide valuable candidates for molecular breeding of this crop in the future.
Collapse
Affiliation(s)
- Yong Gao
- College of Biological Resource and Food Engineering, Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, Yunnan 655011, China
| | - Yanan Zhang
- College of Biological Resource and Food Engineering, Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, Yunnan 655011, China
| | - Chen Feng
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - Honglong Chu
- College of Biological Resource and Food Engineering, Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, Yunnan 655011, China
| | - Chao Feng
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Haibo Wang
- College of Biological Resource and Food Engineering, Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, Yunnan 655011, China
| | - Lifang Wu
- College of Biological Resource and Food Engineering, Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, Yunnan 655011, China
| | - Si Yin
- College of Biological Resource and Food Engineering, Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, Yunnan 655011, China
| | - Chao Liu
- College of Biological Resource and Food Engineering, Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, Yunnan 655011, China
| | - Huanhuan Chen
- College of Biological Resource and Food Engineering, Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, Yunnan 655011, China
| | - Zhumei Li
- College of Biological Resource and Food Engineering, Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, Yunnan 655011, China
| | - Zhengrong Zou
- College of Lifesciences, Jiangxi Normal University, Nanchang 330022, China
- Corresponding authors.
| | - Lizhou Tang
- College of Lifesciences, Jiangxi Normal University, Nanchang 330022, China
- Corresponding authors.
| |
Collapse
|
119
|
Sharma P, Murigneux V, Haimovitz J, Nock CJ, Tian W, Kharabian Masouleh A, Topp B, Alam M, Furtado A, Henry RJ. The genome of the endangered Macadamia jansenii displays little diversity but represents an important genetic resource for plant breeding. PLANT DIRECT 2021; 5:e364. [PMID: 34938939 DOI: 10.1101/2021.09.08/459545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 05/28/2023]
Abstract
Macadamia, a recently domesticated expanding nut crop in the tropical and subtropical regions of the world, is one of the most economically important genera in the diverse and widely adapted Proteaceae family. All four species of Macadamia are rare in the wild with the most recently discovered, M. jansenii, being endangered. The M. jansenii genome has been used as a model for testing sequencing methods using a wide range of long read sequencing techniques. Here, we report a chromosome level genome assembly, generated using a combination of Pacific Biosciences sequencing and Hi-C, comprising 14 pseudo-molecules, with a N50 of 52 Mb and a total genome assembly size of 758 Mb of which 56% is repetitive. Completeness assessment revealed that the assembly covered -97.1% of the conserved single copy genes. Annotation predicted 31,591 protein coding genes and allowed the characterization of genes encoding biosynthesis of cyanogenic glycosides, fatty acid metabolism, and anti-microbial proteins. Re-sequencing of seven other genotypes confirmed low diversity and low heterozygosity within this endangered species. Important morphological characteristics of this species such as small tree size and high kernel recovery suggest that M. jansenii is an important source of these commercial traits for breeding. As a member of a small group of families that are sister to the core eudicots, this high-quality genome also provides a key resource for evolutionary and comparative genomics studies.
Collapse
Affiliation(s)
- Priyanka Sharma
- Queensland Alliance for Agriculture and Food Innovation University of Queensland Brisbane Australia
| | | | | | - Catherine J Nock
- Southern Cross Plant Science Southern Cross University Lismore New South Wales Australia
| | - Wei Tian
- BGI-Shenzhen Shenzhen Guangdong Province China
- BGI International Pty Ltd Herston Queensland Australia
| | | | - Bruce Topp
- Queensland Alliance for Agriculture and Food Innovation University of Queensland Brisbane Australia
| | - Mobashwer Alam
- Queensland Alliance for Agriculture and Food Innovation University of Queensland Brisbane Australia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation University of Queensland Brisbane Australia
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation University of Queensland Brisbane Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture University of Queensland Brisbane Australia
| |
Collapse
|
120
|
Sharma P, Murigneux V, Haimovitz J, Nock CJ, Tian W, Kharabian Masouleh A, Topp B, Alam M, Furtado A, Henry RJ. The genome of the endangered Macadamia jansenii displays little diversity but represents an important genetic resource for plant breeding. PLANT DIRECT 2021; 5:e364. [PMID: 34938939 PMCID: PMC8671617 DOI: 10.1002/pld3.364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 05/05/2023]
Abstract
Macadamia, a recently domesticated expanding nut crop in the tropical and subtropical regions of the world, is one of the most economically important genera in the diverse and widely adapted Proteaceae family. All four species of Macadamia are rare in the wild with the most recently discovered, M. jansenii, being endangered. The M. jansenii genome has been used as a model for testing sequencing methods using a wide range of long read sequencing techniques. Here, we report a chromosome level genome assembly, generated using a combination of Pacific Biosciences sequencing and Hi-C, comprising 14 pseudo-molecules, with a N50 of 52 Mb and a total genome assembly size of 758 Mb of which 56% is repetitive. Completeness assessment revealed that the assembly covered -97.1% of the conserved single copy genes. Annotation predicted 31,591 protein coding genes and allowed the characterization of genes encoding biosynthesis of cyanogenic glycosides, fatty acid metabolism, and anti-microbial proteins. Re-sequencing of seven other genotypes confirmed low diversity and low heterozygosity within this endangered species. Important morphological characteristics of this species such as small tree size and high kernel recovery suggest that M. jansenii is an important source of these commercial traits for breeding. As a member of a small group of families that are sister to the core eudicots, this high-quality genome also provides a key resource for evolutionary and comparative genomics studies.
Collapse
Affiliation(s)
- Priyanka Sharma
- Queensland Alliance for Agriculture and Food InnovationUniversity of QueenslandBrisbaneAustralia
| | | | | | - Catherine J. Nock
- Southern Cross Plant ScienceSouthern Cross UniversityLismoreNew South WalesAustralia
| | - Wei Tian
- BGI‐ShenzhenShenzhenGuangdong ProvinceChina
- BGI International Pty LtdHerstonQueenslandAustralia
| | | | - Bruce Topp
- Queensland Alliance for Agriculture and Food InnovationUniversity of QueenslandBrisbaneAustralia
| | - Mobashwer Alam
- Queensland Alliance for Agriculture and Food InnovationUniversity of QueenslandBrisbaneAustralia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food InnovationUniversity of QueenslandBrisbaneAustralia
| | - Robert J. Henry
- Queensland Alliance for Agriculture and Food InnovationUniversity of QueenslandBrisbaneAustralia
- ARC Centre of Excellence for Plant Success in Nature and AgricultureUniversity of QueenslandBrisbaneAustralia
| |
Collapse
|
121
|
Xiao L, Yu M, Zhang Y, Hu J, Zhang R, Wang J, Guo H, Zhang H, Guo X, Deng T, Lv S, Li X, Huang J, Fan G. Chromosome-scale assembly reveals asymmetric paleo-subgenome evolution and targets for the acceleration of fungal resistance breeding in the nut crop, pecan. PLANT COMMUNICATIONS 2021; 2:100247. [PMID: 34778752 PMCID: PMC8577110 DOI: 10.1016/j.xplc.2021.100247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/18/2021] [Accepted: 09/22/2021] [Indexed: 05/16/2023]
Abstract
Pecan (Carya illinoinensis) is a tree nut crop of worldwide economic importance that is rich in health-promoting factors. However, pecan production and nut quality are greatly challenged by environmental stresses such as the outbreak of severe fungal diseases. Here, we report a high-quality, chromosome-scale genome assembly of the controlled-cross pecan cultivar 'Pawnee' constructed by integrating Nanopore sequencing and Hi-C technologies. Phylogenetic and evolutionary analyses reveal two whole-genome duplication (WGD) events and two paleo-subgenomes in pecan and walnut. Time estimates suggest that the recent WGD event and considerable genome rearrangements in pecan and walnut account for expansions in genome size and chromosome number after the divergence from bayberry. The two paleo-subgenomes differ in size and protein-coding gene sets. They exhibit uneven ancient gene loss, asymmetrical distribution of transposable elements (especially LTR/Copia and LTR/Gypsy), and expansions in transcription factor families (such as the extreme pecan-specific expansion in the far-red impaired response 1 family), which are likely to reflect the long evolutionary history of species in the Juglandaceae. A whole-genome scan of resequencing data from 86 pecan scab-associated core accessions identified 47 chromosome regions containing 185 putative candidate genes. Significant changes were detected in the expression of candidate genes associated with the chitin response pathway under chitin treatment in the scab-resistant and scab-susceptible cultivars 'Excell' and 'Pawnee'. These findings enable us to identify key genes that may be important susceptibility factors for fungal diseases in pecan. The high-quality sequences are valuable resources for pecan breeders and will provide a foundation for the production and quality improvement of tree nut crops.
Collapse
Affiliation(s)
- Lihong Xiao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St. Lin'an District, Hangzhou 311300, China
- Corresponding author
| | - Mengjun Yu
- BGI-Qingdao, BGI-Shenzhen, No. 2 Hengyunshan Rd. Huangdao District, Qingdao 266555, China
| | - Ying Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St. Lin'an District, Hangzhou 311300, China
| | - Jie Hu
- BGI-Qingdao, BGI-Shenzhen, No. 2 Hengyunshan Rd. Huangdao District, Qingdao 266555, China
| | - Rui Zhang
- BGI-Qingdao, BGI-Shenzhen, No. 2 Hengyunshan Rd. Huangdao District, Qingdao 266555, China
| | - Jianhua Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St. Lin'an District, Hangzhou 311300, China
| | - Haobing Guo
- BGI-Qingdao, BGI-Shenzhen, No. 2 Hengyunshan Rd. Huangdao District, Qingdao 266555, China
| | - He Zhang
- BGI-Qingdao, BGI-Shenzhen, No. 2 Hengyunshan Rd. Huangdao District, Qingdao 266555, China
| | - Xinyu Guo
- BGI-Qingdao, BGI-Shenzhen, No. 2 Hengyunshan Rd. Huangdao District, Qingdao 266555, China
| | | | - Saibin Lv
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St. Lin'an District, Hangzhou 311300, China
| | - Xuan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St. Lin'an District, Hangzhou 311300, China
| | - Jianqin Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St. Lin'an District, Hangzhou 311300, China
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, No. 2 Hengyunshan Rd. Huangdao District, Qingdao 266555, China
- Corresponding author
| |
Collapse
|
122
|
Wickell D, Kuo LY, Yang HP, Dhabalia Ashok A, Irisarri I, Dadras A, de Vries S, de Vries J, Huang YM, Li Z, Barker MS, Hartwick NT, Michael TP, Li FW. Underwater CAM photosynthesis elucidated by Isoetes genome. Nat Commun 2021; 12:6348. [PMID: 34732722 PMCID: PMC8566536 DOI: 10.1038/s41467-021-26644-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
To conserve water in arid environments, numerous plant lineages have independently evolved Crassulacean Acid Metabolism (CAM). Interestingly, Isoetes, an aquatic lycophyte, can also perform CAM as an adaptation to low CO2 availability underwater. However, little is known about the evolution of CAM in aquatic plants and the lack of genomic data has hindered comparison between aquatic and terrestrial CAM. Here, we investigate underwater CAM in Isoetes taiwanensis by generating a high-quality genome assembly and RNA-seq time course. Despite broad similarities between CAM in Isoetes and terrestrial angiosperms, we identify several key differences. Notably, Isoetes may have recruited the lesser-known 'bacterial-type' PEPC, along with the 'plant-type' exclusively used in other CAM and C4 plants for carboxylation of PEP. Furthermore, we find that circadian control of key CAM pathway genes has diverged considerably in Isoetes relative to flowering plants. This suggests the existence of more evolutionary paths to CAM than previously recognized.
Collapse
Affiliation(s)
- David Wickell
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
- Boyce Thompson Institute, Ithaca, NY, USA
| | - Li-Yaung Kuo
- Institute of Molecular & Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | | | - Amra Dhabalia Ashok
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goettingen, Germany
| | - Iker Irisarri
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goettingen, Germany
- Campus Institute Data Science, University of Goettingen, Goettingen, Germany
| | - Armin Dadras
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goettingen, Germany
| | - Sophie de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goettingen, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goettingen, Germany
- Campus Institute Data Science, University of Goettingen, Goettingen, Germany
- Department of Applied Bioinformatics, Goettingen Center for Molecular Biosciences, University of Goettingen, Goettingen, Germany
| | | | - Zheng Li
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Nolan T Hartwick
- The Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Todd P Michael
- The Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| | - Fay-Wei Li
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
- Boyce Thompson Institute, Ithaca, NY, USA.
| |
Collapse
|
123
|
Zhang W, Lin J, Li J, Zheng S, Zhang X, Chen S, Ma X, Dong F, Jia H, Xu X, Yang Z, Ma P, Deng F, Deng B, Huang Y, Li Z, Lv X, Ma Y, Liao Z, Lin Z, Lin J, Zhang S, Matsumoto T, Xia R, Zhang J, Ming R. Rambutan genome revealed gene networks for spine formation and aril development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1037-1052. [PMID: 34519122 DOI: 10.1111/tpj.15491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/28/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Rambutan is a popular tropical fruit known for its exotic appearance, has long flexible spines on shells, extraordinary aril growth, desirable nutrition, and a favorable taste. The genome of an elite rambutan cultivar Baoyan 7 was assembled into 328 Mb in 16 pseudo-chromosomes. Comparative genomics analysis between rambutan and lychee revealed that rambutan chromosomes 8 and 12 are collinear with lychee chromosome 1, which resulted in a chromosome fission event in rambutan (n = 16) or a fusion event in lychee (n = 15) after their divergence from a common ancestor 15.7 million years ago. Root development genes played a crucial role in spine development, such as endoplasmic reticulum pathway genes, jasmonic acid response genes, vascular bundle development genes, and K+ transport genes. Aril development was regulated by D-class genes (STK and SHP1), plant hormone and phenylpropanoid biosynthesis genes, and sugar metabolism genes. The lower rate of male sterility of hermaphroditic flowers appears to be regulated by MYB24. Population genomic analyses revealed genes in selective sweeps during domestication that are related to fruit morphology and environment stress response. These findings enhance our understanding of spine and aril development and provide genomic resources for rambutan improvement.
Collapse
Affiliation(s)
- Wenping Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Jishan Lin
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Jianguo Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Litchi Engineering Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Shaoquan Zheng
- Fujian Fruit Breeding Engineering Technology Research Center for Longan and Loquat, Fuzhou, Fujian, 350013, China
| | - Xingtan Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Shuai Chen
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Xiaokai Ma
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Fei Dong
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Haifeng Jia
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Xiuming Xu
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Ziqin Yang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 570100, China
| | - Panpan Ma
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Fang Deng
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Ban Deng
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Yongji Huang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Zhanjie Li
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Xiaozhou Lv
- Tropical Crops Institute, Baoting, Hainan, 572311, China
| | - Yaying Ma
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Zhenyang Liao
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Zhicong Lin
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Jing Lin
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Shengcheng Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Tracie Matsumoto
- USDA-ARS, Pacific Basin Agricultural Research Center, Hilo, HI, USA
| | - Rui Xia
- Tropical Crops Institute, Baoting, Hainan, 572311, China
| | - Jisen Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 6180, USA
| |
Collapse
|
124
|
Ma X, Olsen JL, Reusch TBH, Procaccini G, Kudrna D, Williams M, Grimwood J, Rajasekar S, Jenkins J, Schmutz J, Van de Peer Y. Improved chromosome-level genome assembly and annotation of the seagrass, Zostera marina (eelgrass). F1000Res 2021; 10:289. [PMID: 34621505 PMCID: PMC8482049 DOI: 10.12688/f1000research.38156.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/01/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Seagrasses (Alismatales) are the only fully marine angiosperms.
Zostera marina (eelgrass) plays a crucial role in the functioning of coastal marine ecosystems and global carbon sequestration. It is the most widely studied seagrass and has become a marine model system for exploring adaptation under rapid climate change. The original draft genome (v.1.0) of the seagrass
Z.
marina (L.) was based on a combination of Illumina mate-pair libraries and fosmid-ends. A total of 25.55 Gb of Illumina and 0.14 Gb of Sanger sequence was obtained representing 47.7× genomic coverage. The assembly resulted in ~2000 unordered scaffolds (L50 of 486 Kb), a final genome assembly size of 203MB, 20,450 protein coding genes and 63% TE content. Here, we present an upgraded chromosome-scale genome assembly and compare v.1.0 and the new v.3.1, reconfirming previous results from Olsen et al. (2016), as well as pointing out new findings. Methods: The same high molecular weight DNA used in the original sequencing of the Finnish clone was used. A high-quality reference genome was assembled with the MECAT assembly pipeline combining PacBio long-read sequencing and Hi-C scaffolding. Results: In total, 75.97 Gb PacBio data was produced. The final assembly comprises six pseudo-chromosomes and 304 unanchored scaffolds with a total length of 260.5Mb and an N50 of 34.6 MB, showing high contiguity and few gaps (~0.5%). 21,483 protein-encoding genes are annotated in this assembly, of which 20,665 (96.2%) obtained at least one functional assignment based on similarity to known proteins. Conclusions: As an important marine angiosperm, the improved
Z. marina genome assembly will further assist evolutionary, ecological, and comparative genomics at the chromosome level. The new genome assembly will further our understanding into the structural and physiological adaptations from land to marine life.
Collapse
Affiliation(s)
- Xiao Ma
- Department of Plant Biotechnology and Bioinformatics, Ghent University - Center for Plant Systems Biology, VIB, Ghent, 9052, Belgium
| | - Jeanine L Olsen
- Groningen Institute of Evolutionary Life Sciences, Groningen, 9747 AG, The Netherlands
| | - Thorsten B H Reusch
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Evolutionary Ecology, Kiel, 24105, Germany
| | - Gabriele Procaccini
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Napoli, 80123, Italy
| | - Dave Kudrna
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Lab, Berkeley, CA, USA
| | | | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Shanmugam Rajasekar
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona Tucson, Tucson, AZ, 85721, USA
| | - Jerry Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Jeremy Schmutz
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Lab, Berkeley, CA, USA.,HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University - Center for Plant Systems Biology, VIB, Ghent, 9052, Belgium.,Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.,College of Horticulture, Nanjing Agricultural University, Nanjing, 210014, China
| |
Collapse
|
125
|
Yin Y, Peng F, Zhou L, Yin X, Chen J, Zhong H, Hou F, Xie X, Wang L, Shi X, Ren B, Pei J, Peng C, Gao J. The chromosome-scale genome of Magnolia officinalis provides insight into the evolutionary position of magnoliids. iScience 2021; 24:102997. [PMID: 34505009 PMCID: PMC8417397 DOI: 10.1016/j.isci.2021.102997] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/05/2021] [Accepted: 08/13/2021] [Indexed: 01/01/2023] Open
Abstract
Magnolia officinalis, a representative tall aromatic tree of the Magnoliaceae family, is a medicinal plant that is widely used in diverse industries from medicine to cosmetics. We report a chromosome-scale draft genome of M. officinalis, in which ∼99.66% of the sequences were anchored onto 19 chromosomes with the scaffold N50 of 76.62 Mb. We found that a high proportion of repetitive sequences was a common feature of three Magnoliaceae with known genomic data. Magnoliids were a sister clade to eudicots-monocots, which provided more support for understanding the phylogenetic position among angiosperms. An ancient duplication event occurred in the genome of M. officinalis and was shared with Lauraceae. Based on RNA-seq analysis, we identified several key enzyme-coding gene families associated with the biosynthesis of lignans in the genome. The construction of the M. officinalis genome sequence will serve as a reference for further studies of Magnolia, as well as other Magnoliaceae.
Collapse
Affiliation(s)
- Yanpeng Yin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fu Peng
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Luojing Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianmei Yin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Junren Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hongjin Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Feixia Hou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Wang
- Sichuan Academy of Forestry Sciences, Chengdu 610081, China
| | | | - Bo Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jin Pei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jihai Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
126
|
Fan Y, Sahu SK, Yang T, Mu W, Wei J, Cheng L, Yang J, Liu J, Zhao Y, Lisby M, Liu H. The Clausena lansium (Wampee) genome reveal new insights into the carbazole alkaloids biosynthesis pathway. Genomics 2021; 113:3696-3704. [PMID: 34520805 DOI: 10.1016/j.ygeno.2021.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/17/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
Clausena lansium (Lour.) Skeels (Rutaceae), recognized as wampee, is a widely distributed fruit tree which is utilized as a folk-medicine for treatment of several common diseases. However, the genomic information about this medicinally important species is still lacking. Therefore, we assembled the first genome of Clausena genus with a total length of 310.51 Mb and scaffold N50 of 2.24 Mb by using 10× Genomics technology. Further annotation revealed a total of 34,419 protein-coding genes, while repetitive elements covered 39.08% (121.36 Mb) of the genome. The Clausena and Citrus genus were found to diverge around 22 MYA, and also shared an ancient whole-genome triplication event with Vitis. Furthermore, multi-tissue transcriptomic analysis enabled the identification of genes involved in the synthesis of carbazole alkaloids. Altogether, these findings provided new insights into the genome evolution of Wampee species and highlighted the possible role of key genes involved in the carbazole alkaloids biosynthetic pathway.
Collapse
Affiliation(s)
- Yannan Fan
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518120, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518120, China
| | - Ting Yang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518120, China
| | - Weixue Mu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518120, China
| | - Jinpu Wei
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518120, China
| | - Le Cheng
- BGI-Yunnan, BGI-Shenzhen, Kunming 650106, China
| | - Jinlong Yang
- BGI-Yunnan, BGI-Shenzhen, Kunming 650106, China; College of Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Jie Liu
- Forestry Bureau of Ruili, Yunnan Dehong, Ruili 678600, China
| | | | - Michael Lisby
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518120, China; Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
127
|
Yang Y, Wang T, Chen J, Wu L, Wu X, Zhang W, Luo J, Xia J, Meng Z, Liu X. Whole-genome sequencing of brown-marbled grouper (Epinephelus fuscoguttatus) provides insights into adaptive evolution and growth differences. Mol Ecol Resour 2021; 22:711-723. [PMID: 34455708 DOI: 10.1111/1755-0998.13494] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 07/29/2021] [Accepted: 08/23/2021] [Indexed: 11/27/2022]
Abstract
The brown-marbled grouper (Epinephelus fuscoguttatus) is an important species of fish in the coral reef ecosystem and marine aquaculture industry. In this study, a high-quality chromosome-level genome of brown-marbled grouper was assembled using Oxford Nanopore technology and Hi-C technology. The GC content and heterozygosity were approximately 42% and 0.35%, respectively. A total of 230 contigs with a total length of 1047 Mb and contig N50 of 13.8 Mb were assembled, and 228 contigs (99.13%) were anchored into 24 chromosomes. A total of 24,005 protein-coding genes were predicted, among which 23,862 (99.4%) predicted genes were annotated. Phylogenetic analysis showed that brown-marbled grouper and humpback grouper were clustered into one clade that separated approximately 11-23 million years ago. Collinearity analyses showed that there was no obvious duplication of large fragments between chromosomes in the brown-marbled grouper. Genomes of the humpback grouper and giant grouper showed a high collinearity with that of the brown-marbled grouper. A total of 305 expanded gene families were detected in the brown-marbled grouper genome, which is mainly involved in disease resistance. In addition, a genetic linkage map with 3061.88 cM was constructed. Based on the physical and genetic map, one growth-related quantitative trait loci was detected in 32,332,447 bp of chromosome 20, and meox1 and etv4 were considered candidate growth-related genes. This study provides pivotal genetic resources for further evolutionary analyses and artificial breeding of groupers.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Biocontrol, Life Sciences School, Sun Yat-sen University, Guangzhou, China
| | - Tong Wang
- State Key Laboratory of Biocontrol, Life Sciences School, Sun Yat-sen University, Guangzhou, China
| | - Jingfang Chen
- State Key Laboratory of Biocontrol, Life Sciences School, Sun Yat-sen University, Guangzhou, China
| | - Lina Wu
- State Key Laboratory of Biocontrol, Life Sciences School, Sun Yat-sen University, Guangzhou, China
| | - Xi Wu
- State Key Laboratory of Biocontrol, Life Sciences School, Sun Yat-sen University, Guangzhou, China
| | - Weiwei Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Biological Resources of Education, Marine Sciences College of Hainan University, Haikou, China
| | - Jian Luo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Biological Resources of Education, Marine Sciences College of Hainan University, Haikou, China
| | - Junhong Xia
- State Key Laboratory of Biocontrol, Life Sciences School, Sun Yat-sen University, Guangzhou, China.,Southern Laboratory of Ocean Science and Engineering, Zhuhai, China
| | - Zining Meng
- State Key Laboratory of Biocontrol, Life Sciences School, Sun Yat-sen University, Guangzhou, China.,Southern Laboratory of Ocean Science and Engineering, Zhuhai, China
| | - Xiaochun Liu
- State Key Laboratory of Biocontrol, Life Sciences School, Sun Yat-sen University, Guangzhou, China.,Southern Laboratory of Ocean Science and Engineering, Zhuhai, China
| |
Collapse
|
128
|
Han Y, Zhang W, Zhou B, Zeng P, Tian Z, Cai J. Chromosome-level genome assembly of Welwitschia mirabilis, a unique Namib Desert species. Mol Ecol Resour 2021; 22:391-403. [PMID: 34288504 DOI: 10.1111/1755-0998.13475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 11/30/2022]
Abstract
Welwitschia mirabilis, which is endemic to the Namib Desert, is the only living species within the family Welwitschiaceae. This species has an extremely long lifespan of up to 2,000 years and bears a single pair of opposite leaves that persist whilst alive. However, the underlying genetic mechanisms and evolution of the species remain poorly elucidated. Here, we report on a chromosome-level genome assembly for W. mirabilis, with a 6.30-Gb genome sequence and contig N50 of 27.50 Mb. In total, 39,019 protein-coding genes were predicted from the genome. Two brassinosteroid-related genes (BRI1 and CYCD3), key regulators of cell division and elongation, were strongly selected in W. mirabilis and may contribute to their long ever-growing leaves. Furthermore, 29 gene families in the mitogen-activated protein kinase signalling pathway showed significant expansion, which may contribute to the desert adaptations of the plant. Three positively selected genes (EHMT1, EIF4E, SOD2) may be involved in the mechanisms leading to long lifespan. Based on molecular clock dating and fossil calibrations, the divergence time of W. mirabilis and Gnetum montanum was estimated at ~123.5 million years ago. Reconstruction of population dynamics from genome data coincided well with the aridification of the Namib Desert. The genome sequence detailed in the current study provides insight into the evolution of W. mirabilis and should be an important resource for further study on gnetophyte and gymnosperm evolution.
Collapse
Affiliation(s)
- Yuwei Han
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Weixiong Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Botong Zhou
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Peng Zeng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Zunzhe Tian
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Jing Cai
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
129
|
Guo XM, Wang ZF, Zhang Y, Wang RJ. Chromosomal-level assembly of the Leptodermis oblonga (Rubiaceae) genome and its phylogenetic implications. Genomics 2021; 113:3072-3082. [PMID: 34246693 DOI: 10.1016/j.ygeno.2021.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 06/16/2021] [Accepted: 07/07/2021] [Indexed: 11/26/2022]
Abstract
Rubiaceae is the fourth largest and a taxonomically complex family of angiosperms. Many species in this family harbor low reproductive isolation and frequently exhibit inconsistent phenotypic characteristics. Therefore, taxonomic classification and their phylogenetic relationships in the Rubiaceae family is challenging, especially in the genus Leptodermis. Considering the low taxonomic confusion and wide distribution, Leptodermis oblonga is selected as a representative Leptodermis for genome sequencing. The assemblies resulted in 497 Mbp nuclear and 155,100 bp chloroplast genomes, respectively. Using the nuclear genome as a reference, SNPs were called from 37 Leptodermis species or varieties. The phylogenetic tree based on SNPs exhibited high resolution for species delimitation of the complex and well-resolved phylogenetic relationships in the genus. Moreover, 28,987 genes were predicted in the nuclear genome and used for comparative genomics study. As the first chromosomal-level genome of the subfamily Rubioideae in Rubiaceae, it will provide fruitfully evolutionary understanding in the family.
Collapse
Affiliation(s)
- Xiao-Ming Guo
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong Province, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zheng-Feng Wang
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, Guangdong Province, China; Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong Province, China
| | - Ying Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong Province, China; University of Chinese Academy of Sciences, Beijing, China
| | - Rui-Jiang Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong Province, China.
| |
Collapse
|
130
|
Ma X, Vaistij FE, Li Y, Jansen van Rensburg WS, Harvey S, Bairu MW, Venter SL, Mavengahama S, Ning Z, Graham IA, Van Deynze A, Van de Peer Y, Denby KJ. A chromosome-level Amaranthus cruentus genome assembly highlights gene family evolution and biosynthetic gene clusters that may underpin the nutritional value of this traditional crop. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:613-628. [PMID: 33960539 DOI: 10.1111/tpj.15298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Traditional crops have historically provided accessible and affordable nutrition to millions of rural dwellers but have been neglected, with most modern agricultural systems over-reliant on a small number of internationally traded crops. Traditional crops are typically well-adapted to local agro-ecological conditions and many are nutrient-dense. They can play a vital role in local food systems through enhanced nutrition (particularly where diets are dominated by starch crops), food security and livelihoods for smallholder farmers, and a climate-resilient and biodiverse agriculture. Using short-read, long-read and phased sequencing technologies, we generated a high-quality chromosome-level genome assembly for Amaranthus cruentus, an under-researched crop with micronutrient- and protein-rich leaves and gluten-free seed, but lacking improved varieties, with respect to productivity and quality traits. The 370.9 Mb genome demonstrates a shared whole genome duplication with a related species, Amaranthus hypochondriacus. Comparative genome analysis indicates chromosomal loss and fusion events following genome duplication that are common to both species, as well as fission of chromosome 2 in A. cruentus alone, giving rise to a haploid chromosome number of 17 (versus 16 in A. hypochondriacus). Genomic features potentially underlying the nutritional value of this crop include two A. cruentus-specific genes with a likely role in phytic acid synthesis (an anti-nutrient), expansion of ion transporter gene families, and identification of biosynthetic gene clusters conserved within the amaranth lineage. The A. cruentus genome assembly will underpin much-needed research and global breeding efforts to develop improved varieties for economically viable cultivation and realization of the benefits to global nutrition security and agrobiodiversity.
Collapse
Affiliation(s)
- Xiao Ma
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9054, Belgium
- Center for Plant Systems Biology, VIB, Ghent, 9054, Belgium
| | - Fabián E Vaistij
- Department of Biology, Centre for Novel Agricultural Products (CNAP), University of York, Wentworth Way, York, YO10 5DD, UK
| | - Yi Li
- Department of Biology, Centre for Novel Agricultural Products (CNAP), University of York, Wentworth Way, York, YO10 5DD, UK
| | - Willem S Jansen van Rensburg
- Agricultural Research Council, Vegetable, Industrial and Medicinal Plants Research Campus, Private Bag X293, Pretoria, 0001, South Africa
| | - Sarah Harvey
- Department of Biology, Centre for Novel Agricultural Products (CNAP), University of York, Wentworth Way, York, YO10 5DD, UK
| | - Michael W Bairu
- Agricultural Research Council, Vegetable, Industrial and Medicinal Plants Research Campus, Private Bag X293, Pretoria, 0001, South Africa
| | - Sonja L Venter
- Agricultural Research Council, Vegetable, Industrial and Medicinal Plants Research Campus, Private Bag X293, Pretoria, 0001, South Africa
| | - Sydney Mavengahama
- Crop Science Department, Faculty of Natural and Agricultural Sciences, North West University, P/Bag X2046, Mmabatho, 2735, South Africa
| | - Zemin Ning
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Ian A Graham
- Department of Biology, Centre for Novel Agricultural Products (CNAP), University of York, Wentworth Way, York, YO10 5DD, UK
| | - Allen Van Deynze
- Department of Plant Sciences, Seed Biotechnology Center, University of California, Davis, CA, 95616, USA
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9054, Belgium
- Center for Plant Systems Biology, VIB, Ghent, 9054, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0028, South Africa
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Katherine J Denby
- Department of Biology, Centre for Novel Agricultural Products (CNAP), University of York, Wentworth Way, York, YO10 5DD, UK
| |
Collapse
|
131
|
Chen F, Su L, Hu S, Xue JY, Liu H, Liu G, Jiang Y, Du J, Qiao Y, Fan Y, Liu H, Yang Q, Lu W, Shao ZQ, Zhang J, Zhang L, Chen F, Cheng ZMM. A chromosome-level genome assembly of rugged rose (Rosa rugosa) provides insights into its evolution, ecology, and floral characteristics. HORTICULTURE RESEARCH 2021; 8:141. [PMID: 34145222 PMCID: PMC8213826 DOI: 10.1038/s41438-021-00594-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/12/2021] [Accepted: 05/11/2021] [Indexed: 05/09/2023]
Abstract
Rosa rugosa, commonly known as rugged rose, is a perennial ornamental shrub. It produces beautiful flowers with a mild fragrance and colorful seed pods. Unlike many other cultivated roses, R. rugosa adapts to a wide range of habitat types and harsh environmental conditions such as salinity, alkaline, shade, drought, high humidity, and frigid temperatures. Here, we produced and analyzed a high-quality genome sequence for R. rugosa to understand its ecology, floral characteristics and evolution. PacBio HiFi reads were initially used to construct the draft genome of R. rugosa, and then Hi-C sequencing was applied to assemble the contigs into 7 chromosomes. We obtained a 382.6 Mb genome encoding 39,704 protein-coding genes. The genome of R. rugosa appears to be conserved with no additional whole-genome duplication after the gamma whole-genome triplication (WGT), which occurred ~100 million years ago in the ancestor of core eudicots. Based on a comparative analysis of the high-quality genome assembly of R. rugosa and other high-quality Rosaceae genomes, we found a unique large inverted segment in the Chinese rose R. chinensis and a retroposition in strawberry caused by post-WGT events. We also found that floral development- and stress response signaling-related gene modules were retained after the WGT. Two MADS-box genes involved in floral development and the stress-related transcription factors DREB2A-INTERACTING PROTEIN 2 (DRIP2) and PEPTIDE TRANSPORTER 3 (PTR3) were found to be positively selected in evolution, which may have contributed to the unique ability of this plant to adapt to harsh environments. In summary, the high-quality genome sequence of R. rugosa provides a map for genetic studies and molecular breeding of this plant and enables comparative genomic studies of Rosa in the near future.
Collapse
Affiliation(s)
- Fei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liyao Su
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuaiya Hu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jia-Yu Xue
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hui Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guanhua Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yifan Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianke Du
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yushan Qiao
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yannan Fan
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Huan Liu
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Qi Yang
- Grandomics Biosciences Co., Ltd, Wuhan, China
| | - Wenjie Lu
- Grandomics Biosciences Co., Ltd, Wuhan, China
| | - Zhu-Qing Shao
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Jian Zhang
- College of life science, Nantong University, Nantong, China
| | - Liangsheng Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Feng Chen
- Department of plant sciences, University of Tennessee, Knoxville, TN, USA
| | - Zong-Ming Max Cheng
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
132
|
Abstract
Wolfberry Lycium, an economically important genus of the Solanaceae family, contains approximately 80 species and shows a fragmented distribution pattern among the Northern and Southern Hemispheres. Although several herbaceous species of Solanaceae have been subjected to genome sequencing, thus far, no genome sequences of woody representatives have been available. Here, we sequenced the genomes of 13 perennial woody species of Lycium, with a focus on Lycium barbarum. Integration with other genomes provides clear evidence supporting a whole-genome triplication (WGT) event shared by all hitherto sequenced solanaceous plants, which occurred shortly after the divergence of Solanaceae and Convolvulaceae. We identified new gene families and gene family expansions and contractions that first appeared in Solanaceae. Based on the identification of self-incompatibility related-gene families, we inferred that hybridization hotspots are enriched for genes that might be functioning in gametophytic self-incompatibility pathways in wolfberry. Extremely low expression of LOCULE NUBER (LC) and COLORLESS NON-RIPENING (CNR) orthologous genes during Lycium fruit development and ripening processes suggests functional diversification of these two genes between Lycium and tomato. The existence of additional flowering locus C-like MADS-box genes might correlate with the perennial flowering cycle of Lycium. Differential gene expression involved in the lignin biosynthetic pathway between Lycium and tomato likely illustrates woody and herbaceous differentiation. We also provide evidence that Lycium migrated from Africa into Asia, and subsequently from Asia into North America. Our results provide functional insights into Solanaceae origins, evolution and diversification.
Collapse
|
133
|
Liu L, Tumi L, Suni ML, Arakaki M, Wang ZF, Ge XJ. Draft genome of Puya raimondii (Bromeliaceae), the Queen of the Andes. Genomics 2021; 113:2537-2546. [PMID: 34089785 DOI: 10.1016/j.ygeno.2021.05.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/16/2021] [Accepted: 05/31/2021] [Indexed: 01/20/2023]
Abstract
Puya raimondii, the Queen of the Andes, is an endangered high Andean species in the Bromeliaceae family. Here, we report its first genome to promote its conservation and evolutionary study. Comparative genomics showed P. raimondii diverged from Ananas comosus about 14.8 million years ago, and the long terminal repeats were likely to contribute to the genus diversification in last 3.5 million years. The gene families related to plant reproductive development and stress responses significantly expanded in the genome. At the same time, gene families involved in disease defense, photosynthesis and carbohydrate metabolism significantly contracted, which may be an evolutionary strategy to adapt to the harsh conditions in high Andes. The demographic history analysis revealed the P. raimondii population size sharply declined in the Pleistocene and then increased in the Holocene. We also designed and tested 46 pairs of universal primers for amplifying orthologous single-copy nuclear genes in Puya species.
Collapse
Affiliation(s)
- Lu Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Liscely Tumi
- Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Mery L Suni
- Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Monica Arakaki
- Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Zheng-Feng Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China; South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
| | - Xue-Jun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China; South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
134
|
Carey SB, Jenkins J, Lovell JT, Maumus F, Sreedasyam A, Payton AC, Shu S, Tiley GP, Fernandez-Pozo N, Healey A, Barry K, Chen C, Wang M, Lipzen A, Daum C, Saski CA, McBreen JC, Conrad RE, Kollar LM, Olsson S, Huttunen S, Landis JB, Burleigh JG, Wickett NJ, Johnson MG, Rensing SA, Grimwood J, Schmutz J, McDaniel SF. Gene-rich UV sex chromosomes harbor conserved regulators of sexual development. SCIENCE ADVANCES 2021; 7:7/27/eabh2488. [PMID: 34193417 PMCID: PMC8245031 DOI: 10.1126/sciadv.abh2488] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/14/2021] [Indexed: 05/19/2023]
Abstract
Nonrecombining sex chromosomes, like the mammalian Y, often lose genes and accumulate transposable elements, a process termed degeneration. The correlation between suppressed recombination and degeneration is clear in animal XY systems, but the absence of recombination is confounded with other asymmetries between the X and Y. In contrast, UV sex chromosomes, like those found in bryophytes, experience symmetrical population genetic conditions. Here, we generate nearly gapless female and male chromosome-scale reference genomes of the moss Ceratodon purpureus to test for degeneration in the bryophyte UV sex chromosomes. We show that the moss sex chromosomes evolved over 300 million years ago and expanded via two chromosomal fusions. Although the sex chromosomes exhibit weaker purifying selection than autosomes, we find that suppressed recombination alone is insufficient to drive degeneration. Instead, the U and V sex chromosomes harbor thousands of broadly expressed genes, including numerous key regulators of sexual development across land plants.
Collapse
Affiliation(s)
- Sarah B Carey
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Jerry Jenkins
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - John T Lovell
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Florian Maumus
- Université Paris-Saclay, INRAE, URGI, 78026 Versailles, France
| | - Avinash Sreedasyam
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Adam C Payton
- Department of Biology, University of Florida, Gainesville, FL, USA
- RAPiD Genomics, Gainesville, FL, USA
| | - Shengqiang Shu
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | | | - Adam Healey
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Cindy Chen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mei Wang
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Chris Daum
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Christopher A Saski
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, USA
| | - Jordan C McBreen
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Roth E Conrad
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Leslie M Kollar
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Sanna Olsson
- Department of Forest Ecology and Genetics, INIA-CIFOR, Madrid, Spain
| | - Sanna Huttunen
- Department of Biology and Biodiversity Unit, University of Turku, Turku, Finland
| | - Jacob B Landis
- L.H. Bailey Hortorium and Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | | | - Norman J Wickett
- Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, Glencoe, IL, USA
| | - Matthew G Johnson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Stefan A Rensing
- Plant Cell Biology, University of Marburg, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), University of Marburg, Hans-Meerwein-Straße 6, 35032 Marburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg im Breisgau, Germany
| | - Jane Grimwood
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jeremy Schmutz
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | |
Collapse
|
135
|
Ma PF, Liu YL, Jin GH, Liu JX, Wu H, He J, Guo ZH, Li DZ. The Pharus latifolius genome bridges the gap of early grass evolution. THE PLANT CELL 2021; 33:846-864. [PMID: 33630094 PMCID: PMC8226297 DOI: 10.1093/plcell/koab015] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/11/2021] [Indexed: 05/07/2023]
Abstract
The grass family (Poaceae) includes all commercial cereal crops and is a major contributor to biomass in various terrestrial ecosystems. The ancestry of all grass genomes includes a shared whole-genome duplication (WGD), named rho (ρ) WGD, but the evolutionary significance of ρ-WGD remains elusive. We sequenced the genome of Pharus latifolius, a grass species (producing a true spikelet) in the subfamily Pharoideae, a sister lineage to the core Poaceae including the (Panicoideae, Arundinoideae, Chloridoideae, Micrairoideae, Aristidoideae, and Danthonioideae (PACMAD) and Bambusoideae, Oryzoideae, and Pooideae (BOP) clades. Our results indicate that the P. latifolius genome has evolved slowly relative to cereal grass genomes, as reflected by moderate rates of molecular evolution, limited chromosome rearrangements and a low rate of gene loss for duplicated genes. We show that the ρ-WGD event occurred approximately 98.2 million years ago (Ma) in a common ancestor of the Pharoideae and the PACMAD and BOP grasses. This was followed by contrasting patterns of diploidization in the Pharus and core Poaceae lineages. The presence of two FRIZZY PANICLE-like genes in P. latifolius, and duplicated MADS-box genes, support the hypothesis that the ρ-WGD may have played a role in the origin and functional diversification of the spikelet, an adaptation in grasses related directly to cereal yields. The P. latifolius genome sheds light on the origin and early evolution of grasses underpinning the biology and breeding of cereals.
Collapse
Affiliation(s)
- Peng-Fei Ma
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yun-Long Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Gui-Hua Jin
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jing-Xia Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Hong Wu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650201, China
| | - Jun He
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Zhen-Hua Guo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650201, China
- Author for correspondence: (D.-Z.L)
| |
Collapse
|
136
|
Guo X, Mandáková T, Trachtová K, Özüdoğru B, Liu J, Lysak MA. Linked by Ancestral Bonds: Multiple Whole-Genome Duplications and Reticulate Evolution in a Brassicaceae Tribe. Mol Biol Evol 2021; 38:1695-1714. [PMID: 33331908 PMCID: PMC8097306 DOI: 10.1093/molbev/msaa327] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pervasive hybridization and whole-genome duplications (WGDs) influenced genome evolution in several eukaryotic lineages. Although frequent and recurrent hybridizations may result in reticulate phylogenies, the evolutionary events underlying these reticulations, including detailed structure of the ancestral diploid and polyploid genomes, were only rarely reconstructed. Here, we elucidate the complex genomic history of a monophyletic clade from the mustard family (Brassicaceae), showing contentious relationships to the early-diverging clades of this model plant family. Genome evolution in the crucifer tribe Biscutelleae (∼60 species, 5 genera) was dominated by pervasive hybridizations and subsequent genome duplications. Diversification of an ancestral diploid genome into several divergent but crossable genomes was followed by hybridizations between these genomes. Whereas a single genus (Megadenia) remained diploid, the four remaining genera originated by allopolyploidy (Biscutella, Lunaria, Ricotia) or autopolyploidy (Heldreichia). The contentious relationships among the Biscutelleae genera, and between the tribe and other early diverged crucifer lineages, are best explained by close genomic relatedness among the recurrently hybridizing ancestral genomes. By using complementary cytogenomics and phylogenomics approaches, we demonstrate that the origin of a monophyletic plant clade can be more complex than a parsimonious assumption of a single WGD spurring postpolyploid cladogenesis. Instead, recurrent hybridization among the same and/or closely related parental genomes may phylogenetically interlink diploid and polyploid genomes despite the incidence of multiple independent WGDs. Our results provide new insights into evolution of early-diverging Brassicaceae lineages and elucidate challenges in resolving the contentious relationships within and between land plant lineages with pervasive hybridization and WGDs.
Collapse
Affiliation(s)
- Xinyi Guo
- CEITEC—Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Terezie Mandáková
- CEITEC—Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Karolína Trachtová
- CEITEC—Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Barış Özüdoğru
- Department of Biology, Faculty of Science, Hacettepe University, Beytepe, Ankara, Turkey
| | - Jianquan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Martin A Lysak
- CEITEC—Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
137
|
Feng C, Feng C, Lin X, Liu S, Li Y, Kang M. A chromosome-level genome assembly provides insights into ascorbic acid accumulation and fruit softening in guava (Psidium guajava). PLANT BIOTECHNOLOGY JOURNAL 2021; 19:717-730. [PMID: 33098334 PMCID: PMC8051600 DOI: 10.1111/pbi.13498] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 05/11/2023]
Abstract
Guava (Psidium guajava) is an important fleshy-fruited tree of the Myrtaceae family that is widely cultivated in tropical and subtropical areas of the world and has attracted considerable attention for the richness of ascorbic acid in its fruits. However, studies on the evolution and genetic breeding potential of guava are hindered by the lack of a reference genome. Here, we present a chromosome-level genomic assembly of guava using PacBio sequencing and Hi-C technology. We found that the genome assembly size was 443.8 Mb with a contig N50 of ~15.8 Mb. We annotated a total of 25 601 genes and 193.2 Mb of repetitive sequences for this genome. Comparative genomic analysis revealed that guava has undergone a recent whole-genome duplication (WGD) event shared by all species in Myrtaceae. In addition, through metabolic analysis, we determined that the L-galactose pathway plays a major role in ascorbic acid biosynthesis in guava fruits. Moreover, the softening of fruits of guava may result from both starch and cell wall degradation according to analyses of gene expression profiles and positively selected genes. Our data provide a foundational resource to support molecular breeding of guava and represent new insights into the evolution of soft, fleshy fruits in Myrtaceae.
Collapse
Affiliation(s)
- Chen Feng
- Key Laboratory of Plant Resources Conservation and Sustainable UtilizationSouth China Botanical GardenChinese Academy of SciencesGuangzhouChina
| | - Chao Feng
- Key Laboratory of Plant Resources Conservation and Sustainable UtilizationSouth China Botanical GardenChinese Academy of SciencesGuangzhouChina
| | - Xinggu Lin
- Key Laboratory of Plant Resources Conservation and Sustainable UtilizationSouth China Botanical GardenChinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Shenghui Liu
- South Subtropical Crops Research InstituteChinese Academy of Tropical Agriculture SciencesZhanjiangChina
| | - Yingzhi Li
- Horticulture and Forestry DepartmentGuangdong Ocean UniversityZhanjiangChina
| | - Ming Kang
- Key Laboratory of Plant Resources Conservation and Sustainable UtilizationSouth China Botanical GardenChinese Academy of SciencesGuangzhouChina
- Innovation Academy of South China Sea Ecology and Environmental EngineeringChinese Academy of SciencesGuangzhouChina
| |
Collapse
|
138
|
Jiang L, Song C, Zhu X, Yang J. SWEET Transporters and the Potential Functions of These Sequences in Tea ( Camellia sinensis). Front Genet 2021; 12:655843. [PMID: 33868386 PMCID: PMC8044585 DOI: 10.3389/fgene.2021.655843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/15/2021] [Indexed: 01/04/2023] Open
Abstract
Tea (Camellia sinensis) is an important economic beverage crop. Its flowers and leaves could be used as healthcare tea for its medicinal value. SWEET proteins were recently identified in plants as sugar transporters, which participate in diverse physiological processes, including pathogen nutrition, seed filling, nectar secretion, and phloem loading. Although SWEET genes have been characterized and identified in model plants, such as Arabidopsis thaliana and Oryza sativa, there is very little knowledge of these genes in C. sinensis. In this study, 28 CsSWEETs were identified in C. sinensis and further phylogenetically divided into four subfamilies with A. thaliana. These identified CsSWEETs contained seven transmembrane helixes (TMHs) which were generated by an ancestral three-TMH unit with an internal duplication experience. Microsynteny analysis revealed that the large-scale duplication events were the main driving forces for members from CsSWEET family expansion in C. sinensis. The expression profiles of the 28 CsSWEETs revealed that some genes were highly expressed in reproductive tissues. Among them, CsSWEET1a might play crucial roles in the efflux of sucrose, and CsSWEET17b could control fructose content as a hexose transporter in C. sinensis. Remarkably, CsSWEET12 and CsSWEET17c were specifically expressed in flowers, indicating that these two genes might be involved in sugar transport during flower development. The expression patterns of all CsSWEETs were differentially regulated under cold and drought treatments. This work provided a systematic understanding of the members from the CsSWEET gene family, which would be helpful for further functional studies of CsSWEETs in C. sinensis.
Collapse
Affiliation(s)
- Lan Jiang
- Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Cheng Song
- College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, China
| | - Xi Zhu
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Jianke Yang
- School of Preclinical Medicine, Wannan Medical College, Wuhu, China
| |
Collapse
|
139
|
Rajewski A, Carter-House D, Stajich J, Litt A. Datura genome reveals duplications of psychoactive alkaloid biosynthetic genes and high mutation rate following tissue culture. BMC Genomics 2021; 22:201. [PMID: 33752605 PMCID: PMC7986286 DOI: 10.1186/s12864-021-07489-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/26/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Datura stramonium (Jimsonweed) is a medicinally and pharmaceutically important plant in the nightshade family (Solanaceae) known for its production of various toxic, hallucinogenic, and therapeutic tropane alkaloids. Recently, we published a tissue-culture based transformation protocol for D. stramonium that enables more thorough functional genomics studies of this plant. However, the tissue culture process can lead to undesirable phenotypic and genomic consequences independent of the transgene used. Here, we have assembled and annotated a draft genome of D. stramonium with a focus on tropane alkaloid biosynthetic genes. We then use mRNA sequencing and genome resequencing of transformants to characterize changes following tissue culture. RESULTS Our draft assembly conforms to the expected 2 gigabasepair haploid genome size of this plant and achieved a BUSCO score of 94.7% complete, single-copy genes. The repetitive content of the genome is 61%, with Gypsy-type retrotransposons accounting for half of this. Our gene annotation estimates the number of protein-coding genes at 52,149 and shows evidence of duplications in two key alkaloid biosynthetic genes, tropinone reductase I and hyoscyamine 6 β-hydroxylase. Following tissue culture, we detected only 186 differentially expressed genes, but were unable to correlate these changes in expression with either polymorphisms from resequencing or positional effects of transposons. CONCLUSIONS We have assembled, annotated, and characterized the first draft genome for this important model plant species. Using this resource, we show duplications of genes leading to the synthesis of the medicinally important alkaloid, scopolamine. Our results also demonstrate that following tissue culture, mutation rates of transformed plants are quite high (1.16 × 10- 3 mutations per site), but do not have a drastic impact on gene expression.
Collapse
Affiliation(s)
- Alex Rajewski
- Department of Botany and Plant Science, University of California, Riverside, California 92521 USA
| | - Derreck Carter-House
- Department of Microbiology and Plant Pathology, University of California, Riverside, California 92521 USA
| | - Jason Stajich
- Department of Microbiology and Plant Pathology, University of California, Riverside, California 92521 USA
| | - Amy Litt
- Department of Botany and Plant Science, University of California, Riverside, California 92521 USA
| |
Collapse
|
140
|
Zheng J, Meinhardt LW, Goenaga R, Zhang D, Yin Y. The chromosome-level genome of dragon fruit reveals whole-genome duplication and chromosomal co-localization of betacyanin biosynthetic genes. HORTICULTURE RESEARCH 2021; 8:63. [PMID: 33750805 PMCID: PMC7943767 DOI: 10.1038/s41438-021-00501-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 05/05/2023]
Abstract
Dragon fruits are tropical fruits economically important for agricultural industries. As members of the family of Cactaceae, they have evolved to adapt to the arid environment. Here we report the draft genome of Hylocereus undatus, commercially known as the white-fleshed dragon fruit. The chromosomal level genome assembly contains 11 longest scaffolds corresponding to the 11 chromosomes of H. undatus. Genome annotation of H. undatus found ~29,000 protein-coding genes, similar to Carnegiea gigantea (saguaro). Whole-genome duplication (WGD) analysis revealed a WGD event in the last common ancestor of Cactaceae followed by extensive genome rearrangements. The divergence time between H. undatus and C. gigantea was estimated to be 9.18 MYA. Functional enrichment analysis of orthologous gene clusters (OGCs) in six Cactaceae plants found significantly enriched OGCs in drought resistance. Fruit flavor-related functions were overrepresented in OGCs that are significantly expanded in H. undatus. The H. undatus draft genome also enabled the discovery of carbohydrate and plant cell wall-related functional enrichment in dragon fruits treated with trypsin for a longer storage time. Lastly, genes of the betacyanin (a red-violet pigment and antioxidant with a very high concentration in dragon fruits) biosynthetic pathway were found to be co-localized on a 12 Mb region of one chromosome. The consequence may be a higher efficiency of betacyanin biosynthesis, which will need experimental validation in the future. The H. undatus draft genome will be a great resource to study various cactus plants.
Collapse
Affiliation(s)
- Jinfang Zheng
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska, Lincoln, NE, 68588, USA
| | | | - Ricardo Goenaga
- Tropical Agriculture Research Station, USDA-ARS, Puerto Rico, PR, USA
| | - Dapeng Zhang
- Sustainable Perennial Crops Lab, USDA-ARS, Beltsville, MD, USA.
| | - Yanbin Yin
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska, Lincoln, NE, 68588, USA.
| |
Collapse
|
141
|
Bally ISE, Bombarely A, Chambers AH, Cohen Y, Dillon NL, Innes DJ, Islas-Osuna MA, Kuhn DN, Mueller LA, Ophir R, Rambani A, Sherman A, Yan H. The 'Tommy Atkins' mango genome reveals candidate genes for fruit quality. BMC PLANT BIOLOGY 2021; 21:108. [PMID: 33618672 PMCID: PMC7898432 DOI: 10.1186/s12870-021-02858-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Mango, Mangifera indica L., an important tropical fruit crop, is grown for its sweet and aromatic fruits. Past improvement of this species has predominantly relied on chance seedlings derived from over 1000 cultivars in the Indian sub-continent with a large variation for fruit size, yield, biotic and abiotic stress resistance, and fruit quality among other traits. Historically, mango has been an orphan crop with very limited molecular information. Only recently have molecular and genomics-based analyses enabled the creation of linkage maps, transcriptomes, and diversity analysis of large collections. Additionally, the combined analysis of genomic and phenotypic information is poised to improve mango breeding efficiency. RESULTS This study sequenced, de novo assembled, analyzed, and annotated the genome of the monoembryonic mango cultivar 'Tommy Atkins'. The draft genome sequence was generated using NRGene de-novo Magic on high molecular weight DNA of 'Tommy Atkins', supplemented by 10X Genomics long read sequencing to improve the initial assembly. A hybrid population between 'Tommy Atkins' x 'Kensington Pride' was used to generate phased haplotype chromosomes and a highly resolved phased SNP map. The final 'Tommy Atkins' genome assembly was a consensus sequence that included 20 pseudomolecules representing the 20 chromosomes of mango and included ~ 86% of the ~ 439 Mb haploid mango genome. Skim sequencing identified ~ 3.3 M SNPs using the 'Tommy Atkins' x 'Kensington Pride' mapping population. Repeat masking identified 26,616 genes with a median length of 3348 bp. A whole genome duplication analysis revealed an ancestral 65 MYA polyploidization event shared with Anacardium occidentale. Two regions, one on LG4 and one on LG7 containing 28 candidate genes, were associated with the commercially important fruit size characteristic in the mapping population. CONCLUSIONS The availability of the complete 'Tommy Atkins' mango genome will aid global initiatives to study mango genetics.
Collapse
Affiliation(s)
- Ian S E Bally
- Department of Agriculture and Fisheries, Horticulture and Forestry Science, 28 Peters St, Mareeba, QLD, 4880, Australia
| | - Aureliano Bombarely
- Department of Bioscience, University of Milan, Via Celoria 26, 20133, Milan, Italy
- School of Plants and Environmental Sciences, Virginia Tech, Ag Quad Lane, Blacksburg, VA, 24061, USA
| | - Alan H Chambers
- Tropical Research and Education Center, Horticultural Sciences Department, University of Florida, 18905 SW 280th St, Homestead, FL, 33031, USA.
| | - Yuval Cohen
- Department of Fruit Tree Sciences, Volcani Research Center, Derech Hamacabim 68, P.O. Box 15159, 7528809, Rishon Le'Zion, Israel
| | - Natalie L Dillon
- Department of Agriculture and Fisheries, Horticulture and Forestry Science, 28 Peters St, Mareeba, QLD, 4880, Australia
| | - David J Innes
- Department of Agriculture and Fisheries, Horticulture and Forestry Science, EcoSciences Precinct, 41 Boggo Rd, Dutton Park, QLD, 4102, Australia
| | - María A Islas-Osuna
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Col. La Victoria, 83304, Hermosillo, Sonora, Mexico
| | - David N Kuhn
- Subtropical Horticulture Research Station, USDA-ARS, 13601 Old Cutler Rd, Coral Gables, FL, 33158, USA
| | - Lukas A Mueller
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY, 14853, USA
| | - Ron Ophir
- Department of Fruit Tree Sciences, Volcani Research Center, Derech Hamacabim 68, P.O. Box 15159, 7528809, Rishon Le'Zion, Israel
| | - Aditi Rambani
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY, 14853, USA
| | - Amir Sherman
- Department of Fruit Tree Sciences, Volcani Research Center, Derech Hamacabim 68, P.O. Box 15159, 7528809, Rishon Le'Zion, Israel
| | - Haidong Yan
- School of Plants and Environmental Sciences, Virginia Tech, Ag Quad Lane, Blacksburg, VA, 24061, USA
| |
Collapse
|
142
|
Fu A, Wang Q, Mu J, Ma L, Wen C, Zhao X, Gao L, Li J, Shi K, Wang Y, Zhang X, Zhang X, Wang F, Grierson D, Zuo J. Combined genomic, transcriptomic, and metabolomic analyses provide insights into chayote (Sechium edule) evolution and fruit development. HORTICULTURE RESEARCH 2021; 8:35. [PMID: 33517348 PMCID: PMC7847470 DOI: 10.1038/s41438-021-00487-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 05/11/2023]
Abstract
Chayote (Sechium edule) is an agricultural crop in the Cucurbitaceae family that is rich in bioactive components. To enhance genetic research on chayote, we used Nanopore third-generation sequencing combined with Hi-C data to assemble a draft chayote genome. A chromosome-level assembly anchored on 14 chromosomes (N50 contig and scaffold sizes of 8.40 and 46.56 Mb, respectively) estimated the genome size as 606.42 Mb, which is large for the Cucurbitaceae, with 65.94% (401.08 Mb) of the genome comprising repetitive sequences; 28,237 protein-coding genes were predicted. Comparative genome analysis indicated that chayote and snake gourd diverged from sponge gourd and that a whole-genome duplication (WGD) event occurred in chayote at 25 ± 4 Mya. Transcriptional and metabolic analysis revealed genes involved in fruit texture, pigment, flavor, flavonoids, antioxidants, and plant hormones during chayote fruit development. The analysis of the genome, transcriptome, and metabolome provides insights into chayote evolution and lays the groundwork for future research on fruit and tuber development and genetic improvements in chayote.
Collapse
Affiliation(s)
- Anzhen Fu
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, The Collaborative Innovation Center of Cucurbits Crops, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Qing Wang
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, The Collaborative Innovation Center of Cucurbits Crops, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jianlou Mu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Lili Ma
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, The Collaborative Innovation Center of Cucurbits Crops, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Changlong Wen
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, The Collaborative Innovation Center of Cucurbits Crops, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xiaoyan Zhao
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, The Collaborative Innovation Center of Cucurbits Crops, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Lipu Gao
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, The Collaborative Innovation Center of Cucurbits Crops, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jian Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Kai Shi
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Yunxiang Wang
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, China
| | - Xuechuan Zhang
- Biomarker Technologies Corporation, Beijing, 101300, China
| | - Xuewen Zhang
- Biomarker Technologies Corporation, Beijing, 101300, China
| | - Fengling Wang
- Biomarker Technologies Corporation, Beijing, 101300, China
| | - Donald Grierson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK.
| | - Jinhua Zuo
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, The Collaborative Innovation Center of Cucurbits Crops, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
143
|
Ji YT, Xiu Z, Chen CH, Wang Y, Yang JX, Sui JJ, Jiang SJ, Wang P, Yue SY, Zhang QQ, Jin JL, Wang GS, Wei QQ, Wei B, Wang J, Zhang HL, Zhang QY, Liu J, Liu CJ, Jian JB, Qu CQ. Long read sequencing of Toona sinensis (A. Juss) Roem: A chromosome-level reference genome for the family Meliaceae. Mol Ecol Resour 2021; 21:1243-1255. [PMID: 33421343 DOI: 10.1111/1755-0998.13318] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 12/21/2020] [Accepted: 01/05/2021] [Indexed: 11/30/2022]
Abstract
Chinese mahogany (Toona sinensis) is a woody plant that is widely cultivated in China and Malaysia. Toona sinensis is important economically, including as a nutritious food source, as material for traditional Chinese medicine and as a high-quality hardwood. However, the absence of a reference genome has hindered in-depth molecular and evolutionary studies of this plant. In this study, we report a high-quality T. sinensis genome assembly, with scaffolds anchored to 28 chromosomes and a total assembled length of 596 Mb (contig N50 = 1.5 Mb and scaffold N50 = 21.5 Mb). A total of 34,345 genes were predicted in the genome after homology-based and de novo annotation analyses. Evolutionary analysis showed that the genomes of T. sinensis and Populus trichocarpa diverged ~99.1-103.1 million years ago, and the T. sinensis genome underwent a recent genome-wide duplication event at ~7.8 million years and one more ancient whole genome duplication event at ~71.5 million years. These results provide a high-quality chromosome-level reference genome for T. sinensis and confirm its evolutionary position at the genomic level. Such information will offer genomic resources to study the molecular mechanism of terpenoid biosynthesis and the formation of flavour compounds, which will further facilitate its molecular breeding. As the first chromosome-level genome assembled in the family Meliaceae, it will provide unique insights into the evolution of members of the Meliaceae.
Collapse
Affiliation(s)
- Yun-Tao Ji
- Engineering Technology Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Biology and Food Engineering School, Fuyang Normal University, Fuyang, China
| | - Zhihui Xiu
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | | | - Youru Wang
- Hubei Engineering Research Center of Typical Wild Vegetables Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi, China
| | - Jing-Xia Yang
- Engineering Technology Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Biology and Food Engineering School, Fuyang Normal University, Fuyang, China
| | - Juan-Juan Sui
- Engineering Technology Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Biology and Food Engineering School, Fuyang Normal University, Fuyang, China
| | | | - Ping Wang
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Shao-Yun Yue
- Engineering Technology Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Biology and Food Engineering School, Fuyang Normal University, Fuyang, China
| | | | - Ji-Liang Jin
- Engineering Technology Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Biology and Food Engineering School, Fuyang Normal University, Fuyang, China
| | | | | | - Bing Wei
- Engineering Technology Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Biology and Food Engineering School, Fuyang Normal University, Fuyang, China
| | - Juan Wang
- Engineering Technology Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Biology and Food Engineering School, Fuyang Normal University, Fuyang, China
| | | | - Qiu-Yan Zhang
- Engineering Technology Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Biology and Food Engineering School, Fuyang Normal University, Fuyang, China
| | - Jun Liu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, China
| | - Chang-Jin Liu
- State Key Laboratory of Food Nutrition and Safety, School of Food Science and Technology, Tianjin University of Science and Technology, Tianjin, China
| | - Jian-Bo Jian
- BGI Genomics, BGI-Shenzhen, Shenzhen, China.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark.,Key Laboratory of Genomics, Ministry of Agriculture, BGI-Shenzhen, Shenzhen, China
| | - Chang-Qing Qu
- Engineering Technology Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Biology and Food Engineering School, Fuyang Normal University, Fuyang, China
| |
Collapse
|
144
|
Ma L, Wang Q, Mu J, Fu A, Wen C, Zhao X, Gao L, Li J, Shi K, Wang Y, Zhang X, Zhang X, Fei Z, Grierson D, Zuo J. The genome and transcriptome analysis of snake gourd provide insights into its evolution and fruit development and ripening. HORTICULTURE RESEARCH 2020; 7:199. [PMID: 33328440 PMCID: PMC7704671 DOI: 10.1038/s41438-020-00423-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 05/03/2023]
Abstract
Snake gourd (Trichosanthes anguina L.), which belongs to the Cucurbitaceae family, is a popular ornamental and food crop species with medicinal value and is grown in many parts of the world. Although progress has been made in its genetic improvement, the organization, composition, and evolution of the snake gourd genome remain largely unknown. Here, we report a high-quality genome assembly for snake gourd, comprising 202 contigs, with a total size of 919.8 Mb and an N50 size of 20.1 Mb. These findings indicate that snake gourd has one of the largest genomes of Cucurbitaceae species sequenced to date. The snake gourd genome assembly harbors 22,874 protein-coding genes and 80.0% of the genome consists of repetitive sequences. Phylogenetic analysis reveals that snake gourd is closely related to sponge gourd but diverged from their common ancestor ~33-47 million years ago. The genome sequence reported here serves as a valuable resource for snake gourd genetic research and comparative genomic studies in Cucurbitaceae and other plant species. In addition, fruit transcriptome analysis reveals the candidate genes related to quality traits during snake gourd fruit development and provides a basis for future research on snake gourd fruit development and ripening at the transcript level.
Collapse
Affiliation(s)
- Lili Ma
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, The Collaborative Innovation Center of Cucurbit Crops, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Qing Wang
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, The Collaborative Innovation Center of Cucurbit Crops, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jianlou Mu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Anzhen Fu
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, The Collaborative Innovation Center of Cucurbit Crops, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Changlong Wen
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, The Collaborative Innovation Center of Cucurbit Crops, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xiaoyan Zhao
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, The Collaborative Innovation Center of Cucurbit Crops, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Lipu Gao
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, The Collaborative Innovation Center of Cucurbit Crops, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jian Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Kai Shi
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Yunxiang Wang
- Biomarker Technologies Corporation, Beijing, 101300, China
| | - Xuewen Zhang
- Biomarker Technologies Corporation, Beijing, 101300, China
| | - Xuechuan Zhang
- Biomarker Technologies Corporation, Beijing, 101300, China
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14853, USA.
- U.S. Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA.
| | - Donald Grierson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK.
| | - Jinhua Zuo
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, The Collaborative Innovation Center of Cucurbit Crops, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
145
|
Tian YZ, Wang ZF, Liu YD, Zhang GZ, Li G. The whole-genome sequencing and analysis of a Ganoderma lucidum strain provide insights into the genetic basis of its high triterpene content. Genomics 2020; 113:840-849. [PMID: 33091546 DOI: 10.1016/j.ygeno.2020.10.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/27/2020] [Accepted: 10/16/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Yong-Zhen Tian
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Zheng-Feng Wang
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, PR China; Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China.
| | - Yi-De Liu
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Gui-Zhen Zhang
- SunYoKon Biotechnology Co., LTD, Tsingdao, 266400, PR China
| | - Gang Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
146
|
Feng C, Wang J, Wu L, Kong H, Yang L, Feng C, Wang K, Rausher M, Kang M. The genome of a cave plant, Primulina huaijiensis, provides insights into adaptation to limestone karst habitats. THE NEW PHYTOLOGIST 2020; 227:1249-1263. [PMID: 32274804 DOI: 10.1111/nph.16588] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/29/2020] [Indexed: 05/22/2023]
Abstract
Although whole genome duplication (WGD) has been suggested to facilitate adaptive evolution and diversification, the role of specific WGD events in promoting diversification and adaptation in angiosperms remains poorly understood. Primulina, a species-rich genus with > 180 species associated with limestone karst habitat, constitutes an ideal system for studying the impact of WGD events on speciation and evolutionary adaptation. We sequenced and assembled a chromosome-level genome of the cave-dwelling species P. huaijiensis to study gene family expansion and gene retention following WGDs. We provide evidence that P. huaijiensis has undergone two WGDs since the γ triplication event shared by all eudicots. In addition to a WGD shared by almost all Lamiales (L event), we identified a lineage-specific WGD (D event) that occurred in the early Miocene around 20.6-24.2 Myr ago and that is shared by almost the entire subtribe Didymocarpinae. We found that gene retentions following the D event led to gene family proliferation (e.g. WRKYs) that probably facilitated adaptation to the high salinity and drought stress in limestone karst. Our study highlights the role of lineage-specific WGD in species diversification and adaptation of plants from special habitats.
Collapse
Affiliation(s)
- Chao Feng
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Jing Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Lingqing Wu
- Novogene Bioinformatics Institute, Beijing, 100083, China
| | - Hanghui Kong
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Lihua Yang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Chen Feng
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Kai Wang
- Novogene Bioinformatics Institute, Beijing, 100083, China
| | - Mark Rausher
- Department of Biology, Duke University, 125 Science Drive, Durham, NC, 27705, USA
| | - Ming Kang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
| |
Collapse
|
147
|
Carey SB, Jenkins J, Lovell JT, Maumus F, Sreedasyam A, Payton AC, Shu S, Tiley GP, Fernandez-pozo N, Barry K, Chen C, Wang M, Lipzen A, Daum C, Saski CA, Mcbreen JC, Conrad RE, Kollar LM, Olsson S, Huttunen S, Landis JB, Burleigh JG, Wickett NJ, Johnson MG, Rensing SA, Grimwood J, Schmutz J, Mcdaniel SF. The Ceratodon purpureus genome uncovers structurally complex, gene rich sex chromosomes.. [PMID: 0 DOI: 10.1101/2020.07.03.163634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
AbstractNon-recombining sex chromosomes, like the mammalian Y, often lose genes and accumulate transposable elements, a process termed degeneration1,2. The correlation between suppressed recombination and degeneration is clear in animal XY systems1,2, but the absence of recombination is confounded with other asymmetries between the X and Y. In contrast, UV sex chromosomes, like those found in bryophytes, experience symmetrical population genetic conditions3,4. Here we test for degeneration in the bryophyte UV sex chromosome system through genomic comparisons with new female and male chromosome-scale reference genomes of the moss Ceratodon purpureus. We show that the moss sex chromosomes evolved over 300 million years ago and expanded via two chromosomal fusions. Although the sex chromosomes show signs of weaker purifying selection than autosomes, we find suppressed recombination alone is insufficient to drive gene loss on sex-specific chromosomes. Instead, the U and V sex chromosomes harbor thousands of broadly-expressed genes, including numerous key regulators of sexual development across land plants.
Collapse
|
148
|
Fan Y, Sahu SK, Yang T, Mu W, Wei J, Cheng L, Yang J, Mu R, Liu J, Zhao J, Zhao Y, Xu X, Liu X, Liu H. Dissecting the genome of star fruit ( Averrhoa carambola L.). HORTICULTURE RESEARCH 2020; 7:94. [PMID: 32528706 PMCID: PMC7261804 DOI: 10.1038/s41438-020-0306-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/03/2020] [Accepted: 02/14/2020] [Indexed: 05/20/2023]
Abstract
Averrhoa carambola is commonly known as star fruit because of its peculiar shape, and its fruit is a rich source of minerals and vitamins. It is also used in traditional medicines in countries such as India, China, the Philippines, and Brazil for treating various ailments, including fever, diarrhea, vomiting, and skin disease. Here, we present the first draft genome of the Oxalidaceae family, with an assembled genome size of 470.51 Mb. In total, 24,726 protein-coding genes were identified, and 16,490 genes were annotated using various well-known databases. The phylogenomic analysis confirmed the evolutionary position of the Oxalidaceae family. Based on the gene functional annotations, we also identified enzymes that may be involved in important nutritional pathways in the star fruit genome. Overall, the data from this first sequenced genome in the Oxalidaceae family provide an essential resource for nutritional, medicinal, and cultivational studies of the economically important star-fruit plant.
Collapse
Affiliation(s)
- Yannan Fan
- State Key Laboratory of Agricultural Genomics, China National GeneBank, BGI-Shenzhen, 518120 Shenzhen, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, China National GeneBank, BGI-Shenzhen, 518120 Shenzhen, China
| | - Ting Yang
- State Key Laboratory of Agricultural Genomics, China National GeneBank, BGI-Shenzhen, 518120 Shenzhen, China
| | - Weixue Mu
- State Key Laboratory of Agricultural Genomics, China National GeneBank, BGI-Shenzhen, 518120 Shenzhen, China
| | - Jinpu Wei
- State Key Laboratory of Agricultural Genomics, China National GeneBank, BGI-Shenzhen, 518120 Shenzhen, China
| | - Le Cheng
- BGI-Yunnan, BGI-Shenzhen, 650106 Kunming, China
| | | | - Ranchang Mu
- Forestry Bureau of Ruili, Yunnan Dehong, 678600 Ruili, China
| | - Jie Liu
- Forestry Bureau of Ruili, Yunnan Dehong, 678600 Ruili, China
| | - Jianming Zhao
- Forestry Bureau of Ruili, Yunnan Dehong, 678600 Ruili, China
| | | | - Xun Xu
- State Key Laboratory of Agricultural Genomics, China National GeneBank, BGI-Shenzhen, 518120 Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, 518120 Shenzhen, China
| | - Xin Liu
- State Key Laboratory of Agricultural Genomics, China National GeneBank, BGI-Shenzhen, 518120 Shenzhen, China
- BGI-Fuyang, BGI-Shenzhen, 236009 Fuyang, China
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, China National GeneBank, BGI-Shenzhen, 518120 Shenzhen, China
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
149
|
Roelofs D, Zwaenepoel A, Sistermans T, Nap J, Kampfraath AA, Van de Peer Y, Ellers J, Kraaijeveld K. Multi-faceted analysis provides little evidence for recurrent whole-genome duplications during hexapod evolution. BMC Biol 2020; 18:57. [PMID: 32460826 PMCID: PMC7251882 DOI: 10.1186/s12915-020-00789-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/06/2020] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Gene duplication events play an important role in the evolution and adaptation of organisms. Duplicated genes can arise through different mechanisms, including whole-genome duplications (WGDs). Recently, WGD was suggested to be an important driver of evolution, also in hexapod animals. RESULTS Here, we analyzed 20 high-quality hexapod genomes using whole-paranome distributions of estimated synonymous distances (KS), patterns of within-genome co-linearity, and phylogenomic gene tree-species tree reconciliation methods. We observe an abundance of gene duplicates in the majority of these hexapod genomes, yet we find little evidence for WGD. The majority of gene duplicates seem to have originated through small-scale gene duplication processes. We did detect segmental duplications in six genomes, but these lacked the within-genome co-linearity signature typically associated with WGD, and the age of these duplications did not coincide with particular peaks in KS distributions. Furthermore, statistical gene tree-species tree reconciliation failed to support all but one of the previously hypothesized WGDs. CONCLUSIONS Our analyses therefore provide very limited evidence for WGD having played a significant role in the evolution of hexapods and suggest that alternative mechanisms drive gene duplication events in this group of animals. For instance, we propose that, along with small-scale gene duplication events, episodes of increased transposable element activity could have been an important source for gene duplicates in hexapods.
Collapse
Affiliation(s)
- Dick Roelofs
- Department of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
- Keygene N.V, Agro Business Park 90, 6708 PW, Wageningen, The Netherlands
| | - Arthur Zwaenepoel
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| | - Tom Sistermans
- Department of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
| | - Joey Nap
- Department of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
| | - Andries A Kampfraath
- Department of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
| | - Yves Van de Peer
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, Center for Microbial Ecology and Genomics, University of Pretoria, Pretoria, 0028, South Africa
| | - Jacintha Ellers
- Department of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
| | - Ken Kraaijeveld
- Origins Center, Nijenborgh 7, 9747AG, Groningen, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Sciencepark 904, 1090 GE, Amsterdam, The Netherlands
| |
Collapse
|
150
|
Genome and single-cell RNA-sequencing of the earthworm Eisenia andrei identifies cellular mechanisms underlying regeneration. Nat Commun 2020; 11:2656. [PMID: 32461609 PMCID: PMC7253469 DOI: 10.1038/s41467-020-16454-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
The earthworm is particularly fascinating to biologists because of its strong regenerative capacity. However, many aspects of its regeneration in nature remain elusive. Here we report chromosome-level genome, large-scale transcriptome and single-cell RNA-sequencing data during earthworm (Eisenia andrei) regeneration. We observe expansion of LINE2 transposable elements and gene families functionally related to regeneration (for example, EGFR, epidermal growth factor receptor) particularly for genes exhibiting differential expression during earthworm regeneration. Temporal gene expression trajectories identify transcriptional regulatory factors that are potentially crucial for initiating cell proliferation and differentiation during regeneration. Furthermore, early growth response genes related to regeneration are transcriptionally activated in both the earthworm and planarian. Meanwhile, single-cell RNA-sequencing provides insight into the regenerative process at a cellular level and finds that the largest proportion of cells present during regeneration are stem cells. The mechanisms regulating regeneration of the earthworm are unclear. Here, the authors use genomic and transcriptomic analysis of the earthworm Eisenia andrei together with Hi-C analysis to identify genes involved and show activation of LINE2 transposable elements on regeneration.
Collapse
|