101
|
Yakoub Y, Ashton NJ, Strikwerda-Brown C, Montoliu-Gaya L, Karikari TK, Kac PR, Gonzalez-Ortiz F, Gallego-Rudolf J, Meyer PF, St-Onge F, Schöll M, Soucy JP, Breitner JCS, Zetterberg H, Blennow K, Poirier J, Villeneuve S. Longitudinal blood biomarker trajectories in preclinical Alzheimer's disease. Alzheimers Dement 2023; 19:5620-5631. [PMID: 37294682 DOI: 10.1002/alz.13318] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/03/2023] [Accepted: 05/11/2023] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Plasma biomarkers are altered years prior to Alzheimer's disease (AD) clinical onset. METHODS We measured longitudinal changes in plasma amyloid-beta (Aβ)42/40 ratio, pTau181, pTau231, neurofilament light chain (NfL), and glial fibrillary acidic protein (GFAP) in a cohort of older adults at risk of AD (n = 373 total, n = 229 with Aβ and tau positron emission tomography [PET] scans) considering genetic and demographic factors as possible modifiers of these markers' progression. RESULTS Aβ42/40 ratio concentrations decreased, while NfL and GFAP values increased over the 4-year follow-up. Apolipoprotein E (APOE) ε4 carriers showed faster increase in plasma pTau181 than non-carriers. Older individuals showed a faster increase in plasma NfL, and females showed a faster increase in plasma GFAP values. In the PET subsample, individuals both Aβ-PET and tau-PET positive showed faster plasma pTau181 and GFAP increase compared to PET-negative individuals. DISCUSSION Plasma markers can track biological change over time, with plasma pTau181 and GFAP markers showing longitudinal change in individuals with preclinical AD. HIGHLIGHTS Longitudinal increase of plasma pTau181 and glial fibrillary acidic protein (GFAP) can be measured in the preclinical phase of AD. Apolipoprotein E ε4 carriers experience faster increase in plasma pTau181 over time than non-carriers. Female sex showed accelerated increase in plasma GFAP over time compared to males. Aβ42/40 and pTau231 values are already abnormal at baseline in individuals with both amyloid and tau PET burden.
Collapse
Affiliation(s)
- Yara Yakoub
- Douglas Mental Health University Institute, Centre for Studies on the Prevention of Alzheimer's Disease (StoP-AD), Montreal, Quebec, Canada
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Cherie Strikwerda-Brown
- Douglas Mental Health University Institute, Centre for Studies on the Prevention of Alzheimer's Disease (StoP-AD), Montreal, Quebec, Canada
| | - Laia Montoliu-Gaya
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Przemysław R Kac
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fernando Gonzalez-Ortiz
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jonathan Gallego-Rudolf
- Douglas Mental Health University Institute, Centre for Studies on the Prevention of Alzheimer's Disease (StoP-AD), Montreal, Quebec, Canada
| | - Pierre-François Meyer
- Douglas Mental Health University Institute, Centre for Studies on the Prevention of Alzheimer's Disease (StoP-AD), Montreal, Quebec, Canada
| | - Frédéric St-Onge
- Douglas Mental Health University Institute, Centre for Studies on the Prevention of Alzheimer's Disease (StoP-AD), Montreal, Quebec, Canada
| | - Michael Schöll
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Jean-Paul Soucy
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - John C S Breitner
- Douglas Mental Health University Institute, Centre for Studies on the Prevention of Alzheimer's Disease (StoP-AD), Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- McGill Centre for Integrative Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- UW Department of Medicine, School of Medicine and Public Health, Madison, WI, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Judes Poirier
- Douglas Mental Health University Institute, Centre for Studies on the Prevention of Alzheimer's Disease (StoP-AD), Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Sylvia Villeneuve
- Douglas Mental Health University Institute, Centre for Studies on the Prevention of Alzheimer's Disease (StoP-AD), Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
102
|
Edwards NC, Lao PJ, Alshikho MJ, Ericsson OM, Rizvi B, Petersen ME, O’Bryant S, Flores-Aguilar L, Simoes S, Mapstone M, Tudorascu DL, Janelidze S, Hansson O, Handen BL, Christian BT, Lee JH, Lai F, Rosas HD, Zaman S, Lott IT, Yassa MA, Gutierrez J, Wilcock DM, Head E, Brickman AM. Cerebrovascular disease drives Alzheimer plasma biomarker concentrations in adults with Down syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.28.23298693. [PMID: 38076904 PMCID: PMC10705616 DOI: 10.1101/2023.11.28.23298693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Importance By age 40 years over 90% of adults with Down syndrome (DS) have Alzheimer's disease (AD) pathology and most progress to dementia. Despite having few systemic vascular risk factors, individuals with DS have elevated cerebrovascular disease (CVD) markers that track with the clinical progression of AD, suggesting a role for CVD that is hypothesized to be mediated by inflammatory factors. Objective To examine the pathways through which small vessel CVD contributes to AD-related pathophysiology and neurodegeneration in adults with DS. Design Cross sectional analysis of neuroimaging, plasma, and clinical data. Setting Participants were enrolled in Alzheimer's Biomarker Consortium - Down Syndrome (ABC-DS), a multisite study of AD in adults with DS. Participants One hundred eighty-five participants (mean [SD] age=45.2 [9.3] years) with available MRI and plasma biomarker data were included. White matter hyperintensity (WMH) volumes were derived from T2-weighted FLAIR MRI scans and plasma biomarker concentrations of amyloid beta (Aβ42/Aβ40), phosphorylated tau (p-tau217), astrocytosis (glial fibrillary acidic protein, GFAP), and neurodegeneration (neurofilament light chain, NfL) were measured with ultrasensitive immunoassays. Main Outcomes and Measures We examined the bivariate relationships of WMH, Aβ42/Aβ40, p-tau217, and GFAP with age-residualized NfL across AD diagnostic groups. A series of mediation and path analyses examined causal pathways linking WMH and AD pathophysiology to promote neurodegeneration in the total sample and groups stratified by clinical diagnosis. Results There was a direct and indirect bidirectional effect through GFAP of WMH on p-tau217 concentration, which was associated with NfL concentration in the entire sample. Among cognitively stable participants, WMH was directly and indirectly, through GFAP, associated with p-tau217 concentration, and in those with MCI, there was a direct effect of WMH on p-tau217 and NfL concentrations. There were no associations of WMH with biomarker concentrations among those diagnosed with dementia. Conclusions and Relevance The findings suggest that among individuals with DS, CVD promotes neurodegeneration by increasing astrocytosis and tau pathophysiology in the presymptomatic phases of AD. This work joins an emerging literature that implicates CVD and its interface with neuroinflammation as a core pathological feature of AD in adults with DS.
Collapse
Affiliation(s)
- Natalie C. Edwards
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York City, NY, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
- Department of Neuroscience, Columbia University, New York City, NY, USA
| | - Patrick J. Lao
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York City, NY, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Mohamad J. Alshikho
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York City, NY, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Olivia M. Ericsson
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York City, NY, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Batool Rizvi
- Department of Neurobiology & Behavior, University of California, Irvine, CA, USA
| | | | - Sid O’Bryant
- University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Lisi Flores-Aguilar
- Department of Pathology and Laboratory Medicine, University of California Irvine School of Medicine, University of California, Irvine, CA, USA
| | - Sabrina Simoes
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York City, NY, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Mark Mapstone
- Department of Neurology, University of California, Irvine, CA, USA
| | - Dana L. Tudorascu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | | | | | - Joseph H. Lee
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York City, NY, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Florence Lai
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - H Diana Rosas
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Center for Neuroimaging of Aging and neurodegenerative Diseases, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Shahid Zaman
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Ira T. Lott
- Department of Pediatrics and Neurology, School of Medicine, University of California, Irvine, CA, USA
| | - Michael A. Yassa
- Department of Neurobiology & Behavior, University of California, Irvine, CA, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA
| | - José Gutierrez
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Donna M. Wilcock
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
- Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California Irvine School of Medicine, University of California, Irvine, CA, USA
| | - Adam M. Brickman
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York City, NY, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| |
Collapse
|
103
|
Fesharaki-Zadeh A. Navigating the Complexities of Traumatic Encephalopathy Syndrome (TES): Current State and Future Challenges. Biomedicines 2023; 11:3158. [PMID: 38137378 PMCID: PMC10740836 DOI: 10.3390/biomedicines11123158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a unique neurodegenerative disease that is associated with repetitive head impacts (RHI) in both civilian and military settings. In 2014, the research criteria for the clinical manifestation of CTE, traumatic encephalopathy syndrome (TES), were proposed to improve the clinical identification and understanding of the complex neuropathological phenomena underlying CTE. This review provides a comprehensive overview of the current understanding of the neuropathological and clinical features of CTE, proposed biomarkers of traumatic brain injury (TBI) in both research and clinical settings, and a range of treatments based on previous preclinical and clinical research studies. Due to the heterogeneity of TBI, there is no universally agreed-upon serum, CSF, or neuroimaging marker for its diagnosis. However, as our understanding of this complex disease continues to evolve, it is likely that there will be more robust, early diagnostic methods and effective clinical treatments. This is especially important given the increasing evidence of a correlation between TBI and neurodegenerative conditions, such as Alzheimer's disease and CTE. As public awareness of these conditions grows, it is imperative to prioritize both basic and clinical research, as well as the implementation of necessary safe and preventative measures.
Collapse
Affiliation(s)
- Arman Fesharaki-Zadeh
- Department of Neurology and Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
104
|
Ramezani M, Fernando M, Eslick S, Asih PR, Shadfar S, Bandara EMS, Hillebrandt H, Meghwar S, Shahriari M, Chatterjee P, Thota R, Dias CB, Garg ML, Martins RN. Ketone bodies mediate alterations in brain energy metabolism and biomarkers of Alzheimer's disease. Front Neurosci 2023; 17:1297984. [PMID: 38033541 PMCID: PMC10687427 DOI: 10.3389/fnins.2023.1297984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. AD is a progressive neurodegenerative disorder characterized by cognitive dysfunction, including learning and memory deficits, and behavioral changes. Neuropathology hallmarks of AD such as amyloid beta (Aβ) plaques and neurofibrillary tangles containing the neuron-specific protein tau is associated with changes in fluid biomarkers including Aβ, phosphorylated tau (p-tau)-181, p-tau 231, p-tau 217, glial fibrillary acidic protein (GFAP), and neurofilament light (NFL). Another pathological feature of AD is neural damage and hyperactivation of astrocytes, that can cause increased pro-inflammatory mediators and oxidative stress. In addition, reduced brain glucose metabolism and mitochondrial dysfunction appears up to 15 years before the onset of clinical AD symptoms. As glucose utilization is compromised in the brain of patients with AD, ketone bodies (KBs) may serve as an alternative source of energy. KBs are generated from the β-oxidation of fatty acids, which are enhanced following consumption of ketogenic diets with high fat, moderate protein, and low carbohydrate. KBs have been shown to cross the blood brain barrier to improve brain energy metabolism. This review comprehensively summarizes the current literature on how increasing KBs support brain energy metabolism. In addition, for the first time, this review discusses the effects of ketogenic diet on the putative AD biomarkers such as Aβ, tau (mainly p-tau 181), GFAP, and NFL, and discusses the role of KBs on neuroinflammation, oxidative stress, and mitochondrial metabolism.
Collapse
Affiliation(s)
- Matin Ramezani
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Malika Fernando
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Shaun Eslick
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Prita R. Asih
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Sina Shadfar
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | | | - Heidi Hillebrandt
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Silochna Meghwar
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Maryam Shahriari
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Pratishtha Chatterjee
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Rohith Thota
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Cintia B. Dias
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Manohar L. Garg
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Ralph N. Martins
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
105
|
Lin J, Ou R, Li C, Hou Y, Zhang L, Wei Q, Pang D, Liu K, Jiang Q, Yang T, Xiao Y, Zhao B, Chen X, Song W, Yang J, Wu Y, Shang H. Plasma glial fibrillary acidic protein as a biomarker of disease progression in Parkinson's disease: a prospective cohort study. BMC Med 2023; 21:420. [PMID: 37932720 PMCID: PMC10626747 DOI: 10.1186/s12916-023-03120-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/19/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Reactive astrogliosis has been demonstrated to have a role in Parkinson's disease (PD); however, astrocyte-specific plasma glial fibrillary acidic protein (GFAP)'s correlation with PD progression remains unknown. We aimed to determine whether plasma GFAP can monitor and predict PD progression. METHODS A total of 184 patients with PD and 95 healthy controls (HCs) were included in this prospective cohort study and followed-up for 5 years. Plasma GFAP, amyloid-beta (Aβ), p-tau181, and neurofilament light chain (NfL) were measured at baseline and at 1- and 2-year follow-ups. Motor and non-motor symptoms, activities of daily living, global cognitive function, executive function, and disease stage were evaluated using the Unified Parkinson's Disease Rating Scale (UPDRS) part III, UPDRS-I, UPDRS-II, Montreal Cognitive Assessment (MoCA), Frontal Assessment Battery (FAB), and Hoehn and Yahr (H&Y) scales at each visit, respectively. RESULTS Plasma GFAP levels were higher in patients with PD (mean [SD]: 69.80 [36.18], pg/mL) compared to HCs (mean [SD]: 57.89 [23.54], pg/mL). Higher levels of GFAP were observed in female and older PD patients. The adjusted linear mixed-effects models showed that plasma GFAP levels were significantly associated with UPDRS-I scores (β: 0.006, 95% CI [0.001-0.011], p = 0.027). Higher baseline plasma GFAP correlated with faster increase in UPDRS-I (β: 0.237, 95% CI [0.055-0.419], p = 0.011) and UPDRS-III (β: 0.676, 95% CI [0.023-1.330], p = 0.043) scores and H&Y stage (β: 0.098, 95% CI [0.047-0.149], p < 0.001) and faster decrease in MoCA (β: - 0.501, 95% CI [- 0.768 to - 0.234], p < 0.001) and FAB scores (β: - 0.358, 95% CI [- 0.587 to - 0.129], p = 0.002). Higher baseline plasma GFAP predicted a more rapid progression to postural instability (hazard ratio: 1.009, 95% CI [1.001-1.017], p = 0.033). CONCLUSIONS Plasma GFAP might be a potential biomarker for monitoring and predicting disease progression in PD.
Collapse
Affiliation(s)
- Junyu Lin
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ruwei Ou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chunyu Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yanbing Hou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lingyu Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qianqian Wei
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Dejiang Pang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Kuncheng Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qirui Jiang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Tianmi Yang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yi Xiao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Bi Zhao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xueping Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wei Song
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jing Yang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ying Wu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Huifang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
106
|
Yang Z, Sreenivasan K, Toledano Strom EN, Osse AML, Pasia LG, Cosme CG, Mugosa MRN, Chevalier EL, Ritter A, Miller JB, Cordes D, Cummings JL, Kinney JW. Clinical and biological relevance of glial fibrillary acidic protein in Alzheimer's disease. Alzheimers Res Ther 2023; 15:190. [PMID: 37924152 PMCID: PMC10623866 DOI: 10.1186/s13195-023-01340-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023]
Abstract
INTRODUCTION There is a tremendous need for identifying reliable blood-based biomarkers for Alzheimer's disease (AD) that are tied to the biological ATN (amyloid, tau and neurodegeneration) framework as well as clinical assessment and progression. METHODS One hundred forty-four elderly participants underwent 18F-AV45 positron emission tomography (PET) scan, structural magnetic resonance imaging (MRI) scan, and blood sample collection. The composite standardized uptake value ratio (SUVR) was derived from 18F-AV45 PET to assess brain amyloid burden, and the hippocampal volume was determined from structural MRI scans. Plasma glial fibrillary acidic protein (GFAP), phosphorylated tau-181 (ptau-181), and neurofilament light (NfL) measured by single molecular array (SIMOA) technology were assessed with respect to ATN framework, genetic risk factor, age, clinical assessment, and future functional decline among the participants. RESULTS Among the three plasma markers, GFAP best discriminated participants stratified by clinical diagnosis and brain amyloid status. Age was strongly associated with NfL, followed by GFAP and ptau-181 at much weaker extent. Brain amyloid was strongly associated with plasma GFAP and ptau-181 and to a lesser extent with plasma NfL. Moderate association was observed between plasma markers. Hippocampal volume was weakly associated with all three markers. Elevated GFAP and ptau-181 were associated with worse cognition, and plasma GFAP was the most predictive of future functional decline. Combining GFAP and ptau-181 together was the best model to predict brain amyloid status across all participants (AUC = 0.86) or within cognitively impaired participants (AUC = 0.93); adding NfL as an additional predictor only had a marginal improvement. CONCLUSION Our findings indicate that GFAP is of potential clinical utility in screening amyloid pathology and predicting future cognitive decline. GFAP, NfL, and ptau-181 were moderately associated with each other, with discrepant relevance to age, sex, and AD genetic risk, suggesting their relevant but differential roles for AD assessment. The combination of GFAP with ptau-181 provides an accurate model to predict brain amyloid status, with the superior performance of GFAP over ptau-181 when the prediction is limited to cognitively impaired participants.
Collapse
Affiliation(s)
- Zhengshi Yang
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA.
- Department of Brain Health, University of Nevada Las Vegas, Las Vegas, NV, USA.
| | - Karthik Sreenivasan
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
- Department of Brain Health, University of Nevada Las Vegas, Las Vegas, NV, USA
| | | | | | | | - Celica Glenn Cosme
- Kirk Kerkorian School of Medicine, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Maya Rae N Mugosa
- Department of Brain Health, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Emma Léa Chevalier
- Department of Brain Health, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Aaron Ritter
- Hoag's Pickup Family Neurosciences Institute, Newport Beach, CA, USA
| | - Justin B Miller
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Dietmar Cordes
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
- Department of Brain Health, University of Nevada Las Vegas, Las Vegas, NV, USA
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, 80309, USA
| | - Jeffrey L Cummings
- Department of Brain Health, University of Nevada Las Vegas, Las Vegas, NV, USA
- Chambers-Grundy Center for Transformative Neuroscience, Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Jefferson W Kinney
- Department of Brain Health, University of Nevada Las Vegas, Las Vegas, NV, USA
- Chambers-Grundy Center for Transformative Neuroscience, Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, University of Nevada Las Vegas, Las Vegas, NV, USA
| |
Collapse
|
107
|
Kang JH, Korecka M, Lee EB, Cousins KAQ, Tropea TF, Chen-Plotkin AA, Irwin DJ, Wolk D, Brylska M, Wan Y, Shaw LM. Alzheimer Disease Biomarkers: Moving from CSF to Plasma for Reliable Detection of Amyloid and tau Pathology. Clin Chem 2023; 69:1247-1259. [PMID: 37725909 PMCID: PMC10895336 DOI: 10.1093/clinchem/hvad139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 07/07/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Development of validated biomarkers to detect early Alzheimer disease (AD) neuropathology is needed for therapeutic AD trials. Abnormal concentrations of "core" AD biomarkers, cerebrospinal fluid (CSF) amyloid beta1-42, total tau, and phosphorylated tau correlate well with neuroimaging biomarkers and autopsy findings. Nevertheless, given the limitations of established CSF and neuroimaging biomarkers, accelerated development of blood-based AD biomarkers is underway. CONTENT Here we describe the clinical significance of CSF and plasma AD biomarkers to detect disease pathology throughout the Alzheimer continuum and correlate with imaging biomarkers. Use of the AT(N) classification by CSF and imaging biomarkers provides a more objective biologically based diagnosis of AD than clinical diagnosis alone. Significant progress in measuring CSF AD biomarkers using extensively validated highly automated assay systems has facilitated their transition from research use only to approved in vitro diagnostics tests for clinical use. We summarize development of plasma AD biomarkers as screening tools for enrollment and monitoring participants in therapeutic trials and ultimately in clinical care. Finally, we discuss the challenges for AD biomarkers use in clinical trials and precision medicine, emphasizing the possible ethnocultural differences in the levels of AD biomarkers. SUMMARY CSF AD biomarker measurements using fully automated analytical platforms is possible. Building on this experience, validated blood-based biomarker tests are being implemented on highly automated immunoassay and mass spectrometry platforms. The progress made developing analytically and clinically validated plasma AD biomarkers within the AT(N) classification scheme can accelerate use of AD biomarkers in therapeutic trials and routine clinical practice.
Collapse
Affiliation(s)
- Ju Hee Kang
- Department of Pharmacology and Clinical Pharmacology, Research Center for Controlling Intercellular Communication, Inha University, Incheon, South Korea
| | - Magdalena Korecka
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Katheryn A Q Cousins
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Thomas F Tropea
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Alice A Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - David J Irwin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - David Wolk
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Magdalena Brylska
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yang Wan
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Leslie M Shaw
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
108
|
Mizutani Y, Ohdake R, Tatebe H, Higashi A, Shima S, Ueda A, Ito M, Tokuda T, Watanabe H. Associations of Alzheimer's-related plasma biomarkers with cognitive decline in Parkinson's disease. J Neurol 2023; 270:5461-5474. [PMID: 37480401 PMCID: PMC10576723 DOI: 10.1007/s00415-023-11875-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is associated with cognitive decline through multiple mechanisms, including Alzheimer's disease (AD) pathology and cortical Lewy body involvement. However, its underlying mechanisms remain unclear. Recently, AD-related plasma biomarkers have emerged as potential tools for predicting abnormal pathological protein accumulation. We aimed to investigate the association between AD-related plasma biomarkers and cognitive decline in PD patients. METHODS Plasma biomarkers were measured in 70 PD patients (49 with nondemented Parkinson's disease (PDND) and 21 with Parkinson's disease dementia (PDD)) and 38 healthy controls (HCs) using a single-molecule array. The study evaluated (1) the correlation between plasma biomarkers and clinical parameters, (2) receiver operating characteristic curves and areas under the curve to evaluate the discrimination capacity of plasma biomarkers among groups, and (3) a generalized linear model to analyze associations with Addenbrooke's Cognitive Examination-Revised and Montreal Cognitive Assessment-Japanese version scores. RESULTS Plasma glial fibrillary acidic protein significantly correlated with cognitive function tests, including all subdomains, with a notable increase in the PDD group compared with the HC and PDND groups, while plasma neurofilament light chain captured both cognitive decline and disease severity in the PDND and PDD groups. Plasma beta-amyloid 42/40 and pholphorylated-tau181 indicated AD pathology in the PDD group, but plasma beta-amyloid 42/40 was increased in the PDND group compared with HCs and decreased in the PDD group compared with the PDND group. CONCLUSIONS AD-related plasma biomarkers may predict cognitive decline in PD and uncover underlying mechanisms suggesting astrocytic pathologies related to cognitive decline in PD.
Collapse
Affiliation(s)
- Yasuaki Mizutani
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakugo, Kutsukake-Cho, Toyoake, Aichi, 470-1192, Japan
| | - Reiko Ohdake
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakugo, Kutsukake-Cho, Toyoake, Aichi, 470-1192, Japan
| | - Harutsugu Tatebe
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Chiba, Japan
| | - Atsuhiro Higashi
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakugo, Kutsukake-Cho, Toyoake, Aichi, 470-1192, Japan
| | - Sayuri Shima
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakugo, Kutsukake-Cho, Toyoake, Aichi, 470-1192, Japan
| | - Akihiro Ueda
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakugo, Kutsukake-Cho, Toyoake, Aichi, 470-1192, Japan
| | - Mizuki Ito
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakugo, Kutsukake-Cho, Toyoake, Aichi, 470-1192, Japan
| | - Takahiko Tokuda
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Chiba, Japan
| | - Hirohisa Watanabe
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakugo, Kutsukake-Cho, Toyoake, Aichi, 470-1192, Japan.
| |
Collapse
|
109
|
Huang Z, Haile K, Gedefaw L, Lau BWM, Jin L, Yip SP, Huang CL. Blood Biomarkers as Prognostic Indicators for Neurological Injury in COVID-19 Patients: A Systematic Review and Meta-Analysis. Int J Mol Sci 2023; 24:15738. [PMID: 37958721 PMCID: PMC10649265 DOI: 10.3390/ijms242115738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has been linked to various neurological complications. This meta-analysis assessed the relationship between glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) levels in the blood and neurological injury in COVID-19 patients. A comprehensive search of various databases was conducted until 18 August 2023, to find studies reporting GFAP and NfL blood levels in COVID-19 patients with neurological complications. GFAP and NfL levels were estimated between COVID-19 patients and healthy controls, and meta-analyses were performed using RevMan 5.4 software for analysis. In the 21 collected studies, it was found that COVID-19 patients had significantly higher levels of pooled GFAP (SMD = 0.52; 95% CI: 0.31, 0.73; p ≤ 0.001) and NfL (SMD = 0.60; 95% CI: 0.37, 0.82; p ≤ 0.001) when compared to the healthy controls. The pooled GFAP (SMD = 0.86; 95% CI: 0.26, 1.45; p ≤ 0.01) and NfL (SMD = 0.87; 95% CI: 0.48, 1.26; p ≤ 0.001) were significantly higher in non-survivors. These findings indicate a significant association between COVID-19 severity and elevated levels of GFAP and NfL, suggesting that GFAP and NfL could serve as potential diagnostic and prognostic markers for the early detection and monitoring of COVID-19-related neurological injuries.
Collapse
Affiliation(s)
- Zhiwei Huang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (Z.H.); (L.G.); (L.J.)
| | - Kassahun Haile
- Department of Medical Laboratory Science, Wolkite University, Wolkite P.O. Box 07, Ethiopia;
| | - Lealem Gedefaw
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (Z.H.); (L.G.); (L.J.)
| | - Benson Wui-Man Lau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China;
| | - Ling Jin
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (Z.H.); (L.G.); (L.J.)
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Shea Ping Yip
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (Z.H.); (L.G.); (L.J.)
| | - Chien-Ling Huang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (Z.H.); (L.G.); (L.J.)
| |
Collapse
|
110
|
Yuan D, Huang B, Gu M, Qin BE, Su Z, Dai K, Peng FH, Jiang Y. Exploring Shared Genetic Signatures of Alzheimer's Disease and Multiple Sclerosis: A Bioinformatic Analysis Study. Eur Neurol 2023; 86:363-376. [PMID: 37848007 PMCID: PMC10733940 DOI: 10.1159/000533397] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/31/2023] [Indexed: 10/19/2023]
Abstract
INTRODUCTION Many clinical studies reported the coexistence of Alzheimer's disease (AD) and multiple sclerosis (MS), but the common molecular signature between AD and MS remains elusive. The purpose of our study was to explore the genetic linkage between AD and MS through bioinformatic analysis, providing new insights into the shared signatures and possible pathogenesis of two diseases. METHODS The common differentially expressed genes (DEGs) were determined between AD and MS from datasets obtained from Gene Expression Omnibus (GEO) database. Further, functional and pathway enrichment analysis, protein-protein interaction network construction, and identification of hub genes were carried out. The expression level of hub genes was validated in two other external AD and MS datasets. Transcription factor (TF)-gene interactions and gene-miRNA interactions were performed in NetworkAnalyst. Finally, receiver operating characteristic (ROC) curve analysis was applied to evaluate the predictive value of hub genes. RESULTS A total of 75 common DEGs were identified between AD and MS. Functional and pathway enrichment analysis emphasized the importance of exocytosis and synaptic vesicle cycle, respectively. Six significant hub genes, including CCL2, CD44, GFAP, NEFM, STXBP1, and TCEAL6, were identified and verified as common hub genes shared by AD and MS. FOXC1 and hsa-mir-16-5p are the most common TF and miRNA in regulating hub genes, respectively. In the ROC curve analysis, all hub genes showed good efficiency in helping distinguish patients from controls. CONCLUSION Our study first identified a common genetic signature between AD and MS, paving the road for investigating shared mechanism of AD and MS.
Collapse
Affiliation(s)
- Dasen Yuan
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Bihui Huang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, PR China
| | - Meifeng Gu
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Bang-e Qin
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Zhihui Su
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Kai Dai
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Fu-hua Peng
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Ying Jiang
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| |
Collapse
|
111
|
Zhu S, Shi J, Jin Q, Zhang Y, Zhang R, Chen X, Wang C, Shi T, Li L. Mitochondrial dysfunction following repeated administration of alprazolam causes attenuation of hippocampus-dependent memory consolidation in mice. Aging (Albany NY) 2023; 15:10428-10452. [PMID: 37801512 PMCID: PMC10599724 DOI: 10.18632/aging.205087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/12/2023] [Indexed: 10/08/2023]
Abstract
The frequently repeated administration of alprazolam (Alp), a highly effective benzodiazepine sedative-hypnotic agent, in anxiety, insomnia, and other diseases is closely related to many negative adverse reactions that are mainly manifested as memory impairment. However, the exact molecular mechanisms underlying these events are poorly understood. Therefore, we conducted a proteomic analysis on the hippocampus in mice that received repeated administration of Alp for 24 days. A total of 439 significantly differentially expressed proteins (DEPs) were identified in mice with repeated administration of Alp compared to the control group, and the GO and KEGG analysis revealed the enrichment of terms related to mitochondrial function, cycle, mitophagy and cognition. In vitro experiments have shown that Alp may affect the cell cycle, reduce the mitochondrial membrane potential (MMP) to induce apoptosis in HT22 cells, and affect the progress of mitochondrial energy metabolism and morphology in the hippocampal neurons. Furthermore, in vivo behavioral experiments including IntelliCage System (ICS) and nover object recognition (NOR), hippocampal neuronal pathological changes with HE staining, and the expression levels of brain-deprived neuron factor (BDNF) with immunohistochemistry showed a significant decrease in memory consolidation in mice with repeated administration of Alp, which could be rescued by the co-administration of the mitochondrial protector NSI-189. To the best of our knowledge, this is the first study to identify a link between repeated administration of Alp and mitochondrial dysfunction and that mitochondrial impairment directly causes the attenuation of memory consolidation in mice.
Collapse
Affiliation(s)
- Siqing Zhu
- State Key Laboratory of NBC Protection for Civilian, Changping, Beijing 102205, China
| | - Jingjing Shi
- State Key Laboratory of NBC Protection for Civilian, Changping, Beijing 102205, China
| | - Qian Jin
- State Key Laboratory of NBC Protection for Civilian, Changping, Beijing 102205, China
| | - Yi Zhang
- State Key Laboratory of NBC Protection for Civilian, Changping, Beijing 102205, China
| | - Ruihua Zhang
- State Key Laboratory of NBC Protection for Civilian, Changping, Beijing 102205, China
| | - Xuejun Chen
- State Key Laboratory of NBC Protection for Civilian, Changping, Beijing 102205, China
| | - Chen Wang
- State Key Laboratory of NBC Protection for Civilian, Changping, Beijing 102205, China
| | - Tong Shi
- State Key Laboratory of NBC Protection for Civilian, Changping, Beijing 102205, China
| | - Liqin Li
- State Key Laboratory of NBC Protection for Civilian, Changping, Beijing 102205, China
| |
Collapse
|
112
|
Ferreira PCL, Zhang Y, Snitz B, Chang CCH, Bellaver B, Jacobsen E, Kamboh MI, Zetterberg H, Blennow K, Pascoal TA, Villemagne VL, Ganguli M, Karikari TK. Plasma biomarkers identify older adults at risk of Alzheimer's disease and related dementias in a real-world population-based cohort. Alzheimers Dement 2023; 19:4507-4519. [PMID: 36876954 PMCID: PMC10480336 DOI: 10.1002/alz.12986] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 03/07/2023]
Abstract
INTRODUCTION Plasma biomarkers-cost effective, non-invasive indicators of Alzheimer's disease (AD) and related disorders (ADRD)-have largely been studied in clinical research settings. Here, we examined plasma biomarker profiles and their associated factors in a population-based cohort to determine whether they could identify an at-risk group, independently of brain and cerebrospinal fluid biomarkers. METHODS We measured plasma phosphorylated tau181 (p-tau181), neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), and amyloid beta (Aβ)42/40 ratio in 847 participants from a population-based cohort in southwestern Pennsylvania. RESULTS K-medoids clustering identified two distinct plasma Aβ42/40 modes, further categorizable into three biomarker profile groups: normal, uncertain, and abnormal. In different groups, plasma p-tau181, NfL, and GFAP were inversely correlated with Aβ42/40, Clinical Dementia Rating, and memory composite score, with the strongest associations in the abnormal group. DISCUSSION Abnormal plasma Aβ42/40 ratio identified older adult groups with lower memory scores, higher dementia risks, and higher ADRD biomarker levels, with potential implications for population screening. HIGHLIGHTS Population-based plasma biomarker studies are lacking, particularly in cohorts without cerebrospinal fluid or neuroimaging data. In the Monongahela-Youghiogheny Healthy Aging Team study (n = 847), plasma biomarkers associated with worse memory and Clinical Dementia Rating (CDR), apolipoprotein E ε4, and greater age. Plasma amyloid beta (Aβ)42/40 ratio levels allowed clustering participants into abnormal, uncertain, and normal groups. Plasma Aβ42/40 correlated differently with neurofilament light chain, glial fibrillary acidic protein, phosphorylated tau181, memory composite, and CDR in each group. Plasma biomarkers can enable relatively affordable and non-invasive community screening for evidence of Alzheimer's disease and related disorders pathophysiology.
Collapse
Affiliation(s)
- Pamela C. L Ferreira
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Yingjin Zhang
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Beth Snitz
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Chung-Chou H. Chang
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Bruna Bellaver
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Erin Jacobsen
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - M. Ilyas Kamboh
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Mölndal, 431 41, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, 431 41, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London, WC1N 3BG, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, HKG, China
- UW Department of Medicine, School of Medicine and Public Health, Madison, WI, 53726, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Mölndal, 431 41, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, 431 41, Sweden
| | - Tharick A. Pascoal
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Victor L. Villemagne
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Mary Ganguli
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Thomas K. Karikari
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Mölndal, 431 41, Sweden
| |
Collapse
|
113
|
Ferreira PCL, Therriault J, Tissot C, Ferrari-Souza JP, Benedet AL, Povala G, Bellaver B, Leffa DT, Brum WS, Lussier FZ, Bezgin G, Servaes S, Vermeiren M, Macedo AC, Cabrera A, Stevenson J, Triana-Baltzer G, Kolb H, Rahmouni N, Klunk WE, Lopez O, Villemagne VL, Cohen A, Tudorascu DL, Zimmer ER, Karikari TK, Ashton NJ, Zetterberg H, Blennow K, Gauthier S, Rosa-Neto P, Pascoal TA. Plasma p-tau231 and p-tau217 inform on tau tangles aggregation in cognitively impaired individuals. Alzheimers Dement 2023; 19:4463-4474. [PMID: 37534889 PMCID: PMC10592380 DOI: 10.1002/alz.13393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 08/04/2023]
Abstract
INTRODUCTION Phosphorylated tau (p-tau) biomarkers have been recently proposed to represent brain amyloid-β (Aβ) pathology. Here, we evaluated the plasma biomarkers' contribution beyond the information provided by demographics (age and sex) to identify Aβ and tau pathologies in individuals segregated as cognitively unimpaired (CU) and impaired (CI). METHODS We assessed 138 CU and 87 CI with available plasma p-tau231, 217+ , and 181, Aβ42/40, GFAP and Aβ- and tau-PET. RESULTS In CU, only plasma p-tau231 and p-tau217+ significantly improved the performance of the demographics in detecting Aβ-PET positivity, while no plasma biomarker provided additional information to identify tau-PET positivity. In CI, p-tau217+ and GFAP significantly contributed to demographics to identify both Aβ-PET and tau-PET positivity, while p-tau231 only provided additional information to identify tau-PET positivity. DISCUSSION Our results support plasma p-tau231 and p-tau217+ as state markers of early Aβ deposition, but in later disease stages they inform on tau tangle accumulation. HIGHLIGHTS It is still unclear how much plasma biomarkers contribute to identification of AD pathology across the AD spectrum beyond the information already provided by demographics (age + sex). Plasma p-tau231 and p-tau217+ contribute to demographic information to identify brain Aβ pathology in preclinical AD. In CI individuals, plasma p-tau231 contributes to age and sex to inform on the accumulation of tau tangles, while p-tau217+ and GFAP inform on both Aβ deposition and tau pathology.
Collapse
Affiliation(s)
- Pamela C. L Ferreira
- Department of Psychiatry, School of medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Joseph Therriault
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, QC H4H 1R3, Canada
| | - Cécile Tissot
- Department of Psychiatry, School of medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, QC H4H 1R3, Canada
| | - João Pedro Ferrari-Souza
- Department of Psychiatry, School of medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
| | - Andréa L. Benedet
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 41, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, 431 41, Sweden
| | - Guilherme Povala
- Department of Psychiatry, School of medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Bruna Bellaver
- Department of Psychiatry, School of medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
| | - Douglas T. Leffa
- Department of Psychiatry, School of medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Wagner S. Brum
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 41, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, 431 41, Sweden
| | - Firoza Z. Lussier
- Department of Psychiatry, School of medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Gleb Bezgin
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, QC H4H 1R3, Canada
| | - Stijn Servaes
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, QC H4H 1R3, Canada
| | - Marie Vermeiren
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, QC H4H 1R3, Canada
| | - Arthur C. Macedo
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, QC H4H 1R3, Canada
| | - Arlec Cabrera
- Department of Psychiatry, School of medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jenna Stevenson
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, QC H4H 1R3, Canada
| | - Gallen Triana-Baltzer
- Neuroscience Biomarkers, Janssen Research and Development, La Jolla, CA, 92121-1126, USA
| | - Hartmuth Kolb
- Neuroscience Biomarkers, Janssen Research and Development, La Jolla, CA, 92121-1126, USA
| | - Nesrine Rahmouni
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, QC H4H 1R3, Canada
| | - William E. Klunk
- Department of Psychiatry, School of medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Oscar Lopez
- Department of Psychiatry, School of medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Victor L. Villemagne
- Department of Psychiatry, School of medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Ann Cohen
- Department of Psychiatry, School of medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Dana L. Tudorascu
- Department of Psychiatry, School of medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Eduardo R. Zimmer
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
- Department of Pharmacology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
- Graduate Program in Biological Sciences: Pharmacology and Therapeuctis, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
- Brain Insitute of Rio Grande do Sul, PUCRS, Porto Alegre, 90619-900, Brazil
| | - Thomas K. Karikari
- Department of Psychiatry, School of medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 41, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, 431 41, Sweden
| | - Nicholas J. Ashton
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 41, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, 431 41, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, 431 41, Sweden
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, WC1N 3BG, UK
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 41, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, 431 41, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London, WC1N 3BG, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, HKG, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 41, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, 431 41, Sweden
| | - Serge Gauthier
- Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, QC H4H 1R3, Canada
| | - Pedro Rosa-Neto
- Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, QC H4H 1R3, Canada
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
| | - Tharick A. Pascoal
- Department of Psychiatry, School of medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Neurology, School of medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| |
Collapse
|
114
|
Bilgel M, An Y, Walker KA, Moghekar AR, Ashton NJ, Kac PR, Karikari TK, Blennow K, Zetterberg H, Jedynak BM, Thambisetty M, Ferrucci L, Resnick SM. Longitudinal changes in Alzheimer's-related plasma biomarkers and brain amyloid. Alzheimers Dement 2023; 19:4335-4345. [PMID: 37216632 PMCID: PMC10592628 DOI: 10.1002/alz.13157] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023]
Abstract
INTRODUCTION Understanding longitudinal plasma biomarker trajectories relative to brain amyloid changes can help devise Alzheimer's progression assessment strategies. METHODS We examined the temporal order of changes in plasma amyloid-β ratio (A β 42 / A β 40 ${{\rm A}\beta }_{42}/{{\rm A}\beta }_{40}$ ), glial fibrillary acidic protein (GFAP), neurofilament light chain (NfL), and phosphorylated tau ratios (p-tau181 / A β 42 $\text{p-tau181}/\mathrm{A}{\beta}_{42}$ ,p-tau231 / A β 42 $\text{p-tau231}/\mathrm{A}{\beta}_{42}$ ) relative to 11 C-Pittsburgh compound B (PiB) positron emission tomography (PET) cortical amyloid burden (PiB-/+). Participants (n = 199) were cognitively normal at index visit with a median 6.1-year follow-up. RESULTS PiB groups exhibited different rates of longitudinal change inA β 42 / A β 40 ( β = 5.41 × 10 - 4 , SE = 1.95 × 10 - 4 , p = 0.0073 ) ${{\rm A}\beta }_{42}/{{\rm A}\beta }_{40}\ ( {\beta \ = \ 5.41 \times {{10}}^{ - 4},{\rm{\ SE\ }} = \ 1.95 \times {{10}}^{ - 4},\ p\ = \ 0.0073} )$ . Change in brain amyloid correlated with change in GFAP (r = 0.5, 95% CI = [0.26, 0.68]). The greatest relative decline inA β 42 / A β 40 ${{\rm A}\beta }_{42}/{{\rm A}\beta }_{40}$ (-1%/year) preceded brain amyloid positivity by 41 years (95% CI = [32, 53]). DISCUSSION PlasmaA β 42 / A β 40 ${{\rm A}\beta }_{42}/{{\rm A}\beta }_{40}$ may begin declining decades prior to brain amyloid accumulation, whereas p-tau ratios, GFAP, and NfL increase closer in time. HIGHLIGHTS PlasmaA β 42 / A β 40 ${{\rm A}\beta }_{42}/{{\rm A}\beta }_{40}$ declines over time among PiB- but does not change among PiB+. Phosphorylated-tau to Aβ42 ratios increase over time among PiB+ but do not change among PiB-. Rate of change in brain amyloid is correlated with change in GFAP and neurofilament light chain. The greatest decline inA β 42 / A β 40 ${{\rm A}\beta }_{42}/{{\rm A}\beta }_{40}$ may precede brain amyloid positivity by decades.
Collapse
Affiliation(s)
- Murat Bilgel
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland, 21224, USA
| | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland, 21224, USA
| | - Keenan A. Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland, 21224, USA
| | - Abhay R. Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA
| | - Nicholas J. Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 431 80 Mölndal, Sweden
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9RX, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research, Unit for Dementia at South London and Maudsley, NHS Foundation, London, SE5 8AF, UK
- Centre for Age-Related Medicine, Stavanger University Hospital, 4019 Stavanger, Norway
| | - Przemysław R. Kac
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 431 80 Mölndal, Sweden
| | - Thomas K. Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 431 80 Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 431 80 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 80 Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 431 80 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 80 Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Bruno M. Jedynak
- Department of Mathematics and Statistics, Portland State University, Portland, Oregon, 97201, USA
| | - Madhav Thambisetty
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland, 21224, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, Baltimore, Maryland, 21224, USA
| | - Susan M. Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland, 21224, USA
| |
Collapse
|
115
|
Akel S, Asztely F, Banote RK, Axelsson M, Zetterberg H, Zelano J. Neurofilament light, glial fibrillary acidic protein, and tau in a regional epilepsy cohort: High plasma levels are rare but related to seizures. Epilepsia 2023; 64:2690-2700. [PMID: 37469165 DOI: 10.1111/epi.17713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023]
Abstract
OBJECTIVE Higher levels of biochemical blood markers of brain injury have been described immediately after tonic-clonic seizures and in drug-resistant epilepsy, but the levels of such markers in epilepsy in general have not been well characterized. We analyzed neurofilament light (NfL), glial fibrillary acidic protein (GFAP), and tau in a regional hospital-based epilepsy cohort and investigated what proportion of patients have levels suggesting brain injury, and whether certain epilepsy features are associated with high levels. METHODS Biomarker levels were measured in 204 patients with an epilepsy diagnosis participating in a prospective regional biobank study, with age and sex distribution correlating closely to that of all patients seen for epilepsy in the health care region. Absolute biomarker levels were assessed between two patient groups: patients reporting seizures within the 2 months preceding inclusion and patients who did not have seizures for more than 1 year. We also assessed the proportion of patients with above-normal levels of NfL. RESULTS NfL and GFAP, but not tau, increased with age. Twenty-seven patients had abnormally high levels of NfL. Factors associated with such levels were recent seizures (p = .010) and epileptogenic lesion on radiology (p = .001). Levels of NfL (p = .006) and GFAP (p = .032) were significantly higher in young patients (<65 years) with seizures ≤2 months before inclusion compared to those who reported no seizures for >1 year. NfL and GFAP correlated weakly with the number of days since last seizure (NfL: rs = -.228, p = .007; GFAP: rs = -.167, p = .048) in young patients. NfL also correlated weakly with seizure frequency in the last 2 months (rs = .162, p = .047). SIGNIFICANCE Most patients with epilepsy do not have biochemical evidence of brain injury. The association with seizures merits further study; future studies should aim for longitudinal sampling and examine whether individual variations in NfL or GFAP levels could reflect seizure activity.
Collapse
Affiliation(s)
- Sarah Akel
- Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Center of Molecular and Translational Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Asztely
- Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Rakesh Kumar Banote
- Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Center of Molecular and Translational Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Markus Axelsson
- Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Johan Zelano
- Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Center of Molecular and Translational Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
116
|
Ally M, Sugarman MA, Zetterberg H, Blennow K, Ashton NJ, Karikari TK, Aparicio HJ, Frank B, Tripodis Y, Martin B, Palmisano JN, Steinberg EG, Simkin I, Farrer LA, Jun GR, Turk KW, Budson AE, O'Connor MK, Au R, Goldstein LE, Kowall NW, Killiany R, Stern RA, Stein TD, McKee AC, Qiu WQ, Mez J, Alosco ML. Cross-sectional and longitudinal evaluation of plasma glial fibrillary acidic protein to detect and predict clinical syndromes of Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12492. [PMID: 37885919 PMCID: PMC10599277 DOI: 10.1002/dad2.12492] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/15/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023]
Abstract
Introduction This study examined plasma glial fibrillary acidic protein (GFAP) as a biomarker of cognitive impairment due to Alzheimer's disease (AD) with and against plasma neurofilament light chain (NfL), and phosphorylated tau (p-tau)181+231. Methods Plasma samples were analyzed using Simoa platform for 567 participants spanning the AD continuum. Cognitive diagnosis, neuropsychological testing, and dementia severity were examined for cross-sectional and longitudinal outcomes. Results Plasma GFAP discriminated AD dementia from normal cognition (adjusted mean difference = 0.90 standard deviation [SD]) and mild cognitive impairment (adjusted mean difference = 0.72 SD), and demonstrated superior discrimination compared to alternative plasma biomarkers. Higher GFAP was associated with worse dementia severity and worse performance on 11 of 12 neuropsychological tests. Longitudinally, GFAP predicted decline in memory, but did not predict conversion to mild cognitive impairment or dementia. Discussion Plasma GFAP was associated with clinical outcomes related to suspected AD and could be of assistance in a plasma biomarker panel to detect in vivo AD.
Collapse
Affiliation(s)
- Madeline Ally
- Boston University Alzheimer's Disease Research Center and CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Department of PsychologyUniversity of ArizonaTucsonArizonaUSA
| | - Michael A. Sugarman
- Boston University Alzheimer's Disease Research Center and CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Department of NeurologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Henrik Zetterberg
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCL, UCL Institute of NeurologyUniversity College LondonLondonUK
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
| | - Kaj Blennow
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
| | - Nicholas J. Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
- Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology, and NeuroscienceKing's College LondonLondonUK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and MaudsleyNHS FoundationLondonUK
- Centre for Age‐Related MedicineStavanger University HospitalStavangerNorway
| | - Thomas K. Karikari
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Hugo J. Aparicio
- Boston University Alzheimer's Disease Research Center and CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Brandon Frank
- Boston University Alzheimer's Disease Research Center and CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- US Department of Veterans AffairsVA Boston Healthcare SystemJamaica PlainMassachusettsUSA
| | - Yorghos Tripodis
- Boston University Alzheimer's Disease Research Center and CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
| | - Brett Martin
- Boston University Alzheimer's Disease Research Center and CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Biostatistics and Epidemiology Data Analytics CenterBoston University School of Public HealthBostonMassachusettsUSA
| | - Joseph N. Palmisano
- Boston University Alzheimer's Disease Research Center and CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Biostatistics and Epidemiology Data Analytics CenterBoston University School of Public HealthBostonMassachusettsUSA
| | - Eric G. Steinberg
- Boston University Alzheimer's Disease Research Center and CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Irene Simkin
- Department of MedicineBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Lindsay A. Farrer
- Boston University Alzheimer's Disease Research Center and CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
- Department of MedicineBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- The Framingham Heart StudyFraminghamMassachusettsUSA
- Department of EpidemiologyBoston University School of Public HealthBostonMassachusettsUSA
- Department of OphthalmologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Gyungah R. Jun
- Department of MedicineBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Katherine W. Turk
- Boston University Alzheimer's Disease Research Center and CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- US Department of Veterans AffairsVA Boston Healthcare SystemJamaica PlainMassachusettsUSA
| | - Andrew E. Budson
- Boston University Alzheimer's Disease Research Center and CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- US Department of Veterans AffairsVA Boston Healthcare SystemJamaica PlainMassachusettsUSA
| | - Maureen K. O'Connor
- Boston University Alzheimer's Disease Research Center and CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Department of NeuropsychologyEdith Nourse Rogers Memorial Veterans HospitalBedfordMassachusettsUSA
| | - Rhoda Au
- Boston University Alzheimer's Disease Research Center and CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- The Framingham Heart StudyFraminghamMassachusettsUSA
- Department of EpidemiologyBoston University School of Public HealthBostonMassachusettsUSA
- Department of Anatomy and NeurobiologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Lee E. Goldstein
- Boston University Alzheimer's Disease Research Center and CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Biostatistics and Epidemiology Data Analytics CenterBoston University School of Public HealthBostonMassachusettsUSA
- Department of OphthalmologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Department of Biomedical, Electrical, and Computer EngineeringBoston University College of EngineeringBostonMassachusettsUSA
| | - Neil W. Kowall
- Boston University Alzheimer's Disease Research Center and CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- US Department of Veterans AffairsVA Boston Healthcare SystemJamaica PlainMassachusettsUSA
- Department of Pathology and Laboratory MedicineBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Ronald Killiany
- Boston University Alzheimer's Disease Research Center and CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Department of Anatomy and NeurobiologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Center for Biomedical ImagingBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Robert A. Stern
- Boston University Alzheimer's Disease Research Center and CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Department of Anatomy and NeurobiologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Department of NeurosurgeryBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Thor D. Stein
- Boston University Alzheimer's Disease Research Center and CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- US Department of Veterans AffairsVA Boston Healthcare SystemJamaica PlainMassachusettsUSA
- Department of Pathology and Laboratory MedicineBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- US Department of Veterans AffairsVA Bedford Healthcare SystemBedfordMassachusettsUSA
| | - Ann C. McKee
- Boston University Alzheimer's Disease Research Center and CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- US Department of Veterans AffairsVA Boston Healthcare SystemJamaica PlainMassachusettsUSA
- Department of Pathology and Laboratory MedicineBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- US Department of Veterans AffairsVA Bedford Healthcare SystemBedfordMassachusettsUSA
| | - Wei Qiao Qiu
- Boston University Alzheimer's Disease Research Center and CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Department of PsychiatryBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Department of Pharmacology and Experimental TherapeuticsBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Jesse Mez
- Boston University Alzheimer's Disease Research Center and CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Michael L. Alosco
- Boston University Alzheimer's Disease Research Center and CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| |
Collapse
|
117
|
Thaker AA, McConnell BV, Rogers DM, Carlson NE, Coughlan C, Jensen AM, Lopez-Paniagua D, Holden SK, Pressman PS, Pelak VS, Filley CM, Potter H, Solano DA, Heffernan KS, Bettcher BM. Astrogliosis, neuritic microstructure, and sex effects: GFAP is an indicator of neuritic orientation in women. Brain Behav Immun 2023; 113:124-135. [PMID: 37394144 PMCID: PMC10584366 DOI: 10.1016/j.bbi.2023.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 06/14/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023] Open
Abstract
BACKGROUND Data from human studies suggest that immune dysregulation is associated with Alzheimer's disease (AD) pathology and cognitive decline and that neurites may be affected early in the disease trajectory. Data from animal studies further indicate that dysfunction in astrocytes and inflammation may have a pivotal role in facilitating dendritic damage, which has been linked with negative cognitive outcomes. To elucidate these relationships further, we have examined the relationship between astrocyte and immune dysregulation, AD-related pathology, and neuritic microstructure in AD-vulnerable regions in late life. METHODS We evaluated panels of immune, vascular, and AD-related protein markers in blood and conducted in vivo multi-shell neuroimaging using Neurite Orientation Dispersion and Density Imaging (NODDI) to assess indices of neuritic density (NDI) and dispersion (ODI) in brain regions vulnerable to AD in a cohort of older adults (n = 109). RESULTS When examining all markers in tandem, higher plasma GFAP levels were strongly related to lower neurite dispersion (ODI) in grey matter. No biomarker associations were found with higher neuritic density. Associations between GFAP and neuritic microstructure were not significantly impacted by symptom status, APOE status, or plasma Aβ42/40 ratio; however, there was a large sex effect observed for neurite dispersion, wherein negative associations between GFAP and ODI were only observed in females. DISCUSSION This study provides a comprehensive, concurrent appraisal of immune, vascular, and AD-related biomarkers in the context of advanced grey matter neurite orientation and dispersion methodology. Sex may be an important modifier of the complex associations between astrogliosis, immune dysregulation, and brain microstructure in older adults.
Collapse
Affiliation(s)
- Ashesh A Thaker
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brice V McConnell
- Department of Neurology, Behavioral Neurology Section, University of Colorado Alzheimer's & Cognition Center, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Dustin M Rogers
- Department of Biostatistics and Informatics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Nichole E Carlson
- Department of Biostatistics and Informatics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Christina Coughlan
- Department of Neurology, University of Colorado Alzheimer's & Cognition Center, Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alexandria M Jensen
- Quantitative Sciences Unit, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Dan Lopez-Paniagua
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Samantha K Holden
- Department of Neurology, Behavioral Neurology Section, University of Colorado Alzheimer's & Cognition Center, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Peter S Pressman
- Department of Neurology, Behavioral Neurology Section, University of Colorado Alzheimer's & Cognition Center, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Victoria S Pelak
- Department of Neurology, Behavioral Neurology Section, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA; Department of Ophthalmology, Sue Anschutz-Rodgers University of Colorado Eye Center, University of Colorado School of Medicine, Aurora, CO, USA
| | - Christopher M Filley
- Behavioral Neurology Section, Departments of Neurology and Psychiatry, University of Colorado Alzheimer's & Cognition Center, Marcus Institute for Brain Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Huntington Potter
- Department of Neurology, University of Colorado Alzheimer's & Cognition Center, Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - D Adriana Solano
- Department of Neurology, University of Colorado Alzheimer's & Cognition Center, Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kate S Heffernan
- Division of Neuropharmacology and Neurological Disorders, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Brianne M Bettcher
- Department of Neurology, Behavioral Neurology Section, University of Colorado Alzheimer's & Cognition Center, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
118
|
Jucker M, Walker LC. Alzheimer's disease: From immunotherapy to immunoprevention. Cell 2023; 186:4260-4270. [PMID: 37729908 PMCID: PMC10578497 DOI: 10.1016/j.cell.2023.08.021] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023]
Abstract
Recent Aβ-immunotherapy trials have yielded the first clear evidence that removing aggregated Aβ from the brains of symptomatic patients can slow the progression of Alzheimer's disease. The clinical benefit achieved in these trials has been modest, however, highlighting the need for both a deeper understanding of disease mechanisms and the importance of intervening early in the pathogenic cascade. An immunoprevention strategy for Alzheimer's disease is required that will integrate the findings from clinical trials with mechanistic insights from preclinical disease models to select promising antibodies, optimize the timing of intervention, identify early biomarkers, and mitigate potential side effects.
Collapse
Affiliation(s)
- Mathias Jucker
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany.
| | - Lary C Walker
- Department of Neurology and Emory National Primate Research Center, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
119
|
Zou Y, Li L, Guan L, Ma C, Yu S, Ma X, Mao C, Gao J, Qiu L. Research trends and hotspots of glial fibrillary acidic protein within the area of Alzheimer's disease: a bibliometric analysis. Front Aging Neurosci 2023; 15:1196272. [PMID: 37829140 PMCID: PMC10565806 DOI: 10.3389/fnagi.2023.1196272] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023] Open
Abstract
Objective Our aim was to analyze the trends and hotspots on glial fibrillary acidic protein (GFAP) within the area of Alzheimer's disease (AD) by using a bibliometric method, which is currently missing. Methods All articles and reviews on GFAP within the area of AD from inception to December 31, 2022, were searched from the Web of Science Core Collection. Full records were derived, imported into Microsoft Excel, and analyzed by BIBLIOMETRC, VOSviewer, and CiteSpace. Results In total, 2,269 publications, including 2,166 articles, were ultimately included. The number of publications from 81 countries/regions and 527 academic journals increased annually. The top three prolific countries and institutions were the USA, China, and England, the University of Gothenburg (Sweden), Universidade Federal Rio Grande do Sul (Brasilia), and UCL Queen Square Institute of Neurology (England). Henrik Zetterberg from the University of Gothenburg, Kaj Blennow from the University of Gothenburg, and Alexei Verkhratsky from the University of Manchester were the top three prolific and cited authors; Journal of Alzheimer's Disease, Brain Research, and Neuroscience contributed the most publications. The top key areas of research included "molecular, biology, and genetics" and "molecular, biology, and immunology," and the top published and linked meaningful keywords included oxidative stress, inflammation/neuroinflammation, microglia, hippocampus, amyloid, cognitive impairment, tau, and dysfunction. Conclusion Based on the bibliometric analysis, the number of publications on GFAP within the area of AD has been rapidly increasing, especially in the past several years. Oxidative stress and inflammation are research hotspots, and GFAP in body fluids, especially blood, could be used for large-scale screening for AD.
Collapse
Affiliation(s)
- Yutong Zou
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Lei Li
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Lihua Guan
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Chaochao Ma
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Songlin Yu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Xiaoli Ma
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- Medical Science Research Center (MRC), Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Chenhui Mao
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Gao
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ling Qiu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
120
|
Álvarez-Sánchez L, Peña-Bautista C, Ferré-González L, Cubas L, Balaguer A, Casanova-Estruch B, Baquero M, Cháfer-Pericás C. Early Alzheimer's Disease Screening Approach Using Plasma Biomarkers. Int J Mol Sci 2023; 24:14151. [PMID: 37762457 PMCID: PMC10532221 DOI: 10.3390/ijms241814151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent dementia, but it shows similar initial symptoms to other neurocognitive diseases (Lewy body disease (LBD) and frontotemporal dementia (FTD)). Thus, the identification of reliable AD plasma biomarkers is required. The aim of this work is to evaluate the use of a few plasma biomarkers to develop an early and specific AD screening method. Plasma p-Tau181, neurofilament light (NfL), and glial fibrillary acid protein (GFAP) were determined by Single Molecule Assay (SIMOA® Quanterix, Billerica, MA, USA) in patients with mild cognitive impairment due to AD (MCI-AD, n = 50), AD dementia (n = 10), FTD (n = 20), LBD (n = 5), and subjective cognitive impairment (SCI (n = 21)). Plasma p-Tau181 and GFAP showed the highest levels in AD dementia, and significant correlations with clinical AD characteristics; meanwhile, NfL showed the highest levels in FTD, but no significant correlations with AD. The partial least squares (PLS) diagnosis model developed between the AD and SCI groups showed good accuracy with a receiver operating characteristic (ROC) area under curve (AUC) of 0.935 (CI 95% 0.87-0.98), sensitivity of 86%, and specificity of 88%. In a first screen, NfL plasma levels could identify FTD patients among subjects with cognitive impairment. Then, the developed PLS model including p-Tau181 and GFAP levels could identify AD patients, constituting a simple, early, and specific diagnosis approach.
Collapse
Affiliation(s)
- Lourdes Álvarez-Sánchez
- Alzheimer Disease Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (L.Á.-S.); (C.P.-B.); (L.F.-G.); (M.B.)
| | - Carmen Peña-Bautista
- Alzheimer Disease Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (L.Á.-S.); (C.P.-B.); (L.F.-G.); (M.B.)
| | - Laura Ferré-González
- Alzheimer Disease Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (L.Á.-S.); (C.P.-B.); (L.F.-G.); (M.B.)
| | - Laura Cubas
- Division of Neuroinmunology, University and Polytechnic Hospital La Fe, 46026 Valencia, Spain; (L.C.); (B.C.-E.)
| | - Angel Balaguer
- Math Faculty, Universitat de València, 46026 Valencia, Spain;
| | - Bonaventura Casanova-Estruch
- Division of Neuroinmunology, University and Polytechnic Hospital La Fe, 46026 Valencia, Spain; (L.C.); (B.C.-E.)
| | - Miguel Baquero
- Alzheimer Disease Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (L.Á.-S.); (C.P.-B.); (L.F.-G.); (M.B.)
| | - Consuelo Cháfer-Pericás
- Alzheimer Disease Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (L.Á.-S.); (C.P.-B.); (L.F.-G.); (M.B.)
| |
Collapse
|
121
|
Mastrangelo A, Vacchiano V, Zenesini C, Ruggeri E, Baiardi S, Cherici A, Avoni P, Polischi B, Santoro F, Capellari S, Liguori R, Parchi P. Amyloid-Beta Co-Pathology Is a Major Determinant of the Elevated Plasma GFAP Values in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2023; 24:13976. [PMID: 37762278 PMCID: PMC10531493 DOI: 10.3390/ijms241813976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/29/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Recent studies reported increased plasma glial acidic fibrillary protein (GFAP) levels in amyotrophic lateral sclerosis (ALS) patients compared to controls. We expanded these findings in a larger cohort, including 156 ALS patients and 48 controls, and investigated the associations of plasma GFAP with clinical variables and other biofluid biomarkers. Plasma GFAP and Alzheimer's disease (AD) cerebrospinal fluid (CSF) biomarkers were assessed by the single molecule array and the Lumipulse platforms, respectively. In ALS patients, plasma GFAP was higher than in controls (p < 0.001) and associated with measures of cognitive decline. Twenty ALS patients (12.8%) showed a positive amyloid status (A+), of which nine also exhibited tau pathology (A+T+, namely ALS-AD). ALS-AD patients showed higher plasma GFAP than A- ALS participants (p < 0.001) and controls (p < 0.001), whereas the comparison between A- ALS and controls missed statistical significance (p = 0.07). Plasma GFAP distinguished ALS-AD subjects more accurately (area under the curve (AUC) 0.932 ± 0.027) than plasma p-tau181 (AUC 0.692 ± 0.058, p < 0.0001) and plasma neurofilament light chain protein (AUC, 0.548 ± 0.088, p < 0.0001). Cognitive measures differed between ALS-AD and other ALS patients. AD co-pathology deeply affects plasma GFAP values in ALS patients. Plasma GFAP is an accurate biomarker for identifying AD co-pathology in ALS, which can influence the cognitive phenotype.
Collapse
Affiliation(s)
- Andrea Mastrangelo
- Dipartimento di Scienze Biomediche e Neuromotorie, Alma Mater Studiorum Università di Bologna, 40139 Bologna, Italy; (A.M.); (S.B.); (P.A.); (S.C.); (R.L.)
| | - Veria Vacchiano
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (V.V.); (C.Z.); (E.R.); (A.C.); (B.P.); (F.S.)
| | - Corrado Zenesini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (V.V.); (C.Z.); (E.R.); (A.C.); (B.P.); (F.S.)
| | - Edoardo Ruggeri
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (V.V.); (C.Z.); (E.R.); (A.C.); (B.P.); (F.S.)
| | - Simone Baiardi
- Dipartimento di Scienze Biomediche e Neuromotorie, Alma Mater Studiorum Università di Bologna, 40139 Bologna, Italy; (A.M.); (S.B.); (P.A.); (S.C.); (R.L.)
| | - Arianna Cherici
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (V.V.); (C.Z.); (E.R.); (A.C.); (B.P.); (F.S.)
| | - Patrizia Avoni
- Dipartimento di Scienze Biomediche e Neuromotorie, Alma Mater Studiorum Università di Bologna, 40139 Bologna, Italy; (A.M.); (S.B.); (P.A.); (S.C.); (R.L.)
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (V.V.); (C.Z.); (E.R.); (A.C.); (B.P.); (F.S.)
| | - Barbara Polischi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (V.V.); (C.Z.); (E.R.); (A.C.); (B.P.); (F.S.)
| | - Francesca Santoro
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (V.V.); (C.Z.); (E.R.); (A.C.); (B.P.); (F.S.)
| | - Sabina Capellari
- Dipartimento di Scienze Biomediche e Neuromotorie, Alma Mater Studiorum Università di Bologna, 40139 Bologna, Italy; (A.M.); (S.B.); (P.A.); (S.C.); (R.L.)
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (V.V.); (C.Z.); (E.R.); (A.C.); (B.P.); (F.S.)
| | - Rocco Liguori
- Dipartimento di Scienze Biomediche e Neuromotorie, Alma Mater Studiorum Università di Bologna, 40139 Bologna, Italy; (A.M.); (S.B.); (P.A.); (S.C.); (R.L.)
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (V.V.); (C.Z.); (E.R.); (A.C.); (B.P.); (F.S.)
| | - Piero Parchi
- Dipartimento di Scienze Biomediche e Neuromotorie, Alma Mater Studiorum Università di Bologna, 40139 Bologna, Italy; (A.M.); (S.B.); (P.A.); (S.C.); (R.L.)
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (V.V.); (C.Z.); (E.R.); (A.C.); (B.P.); (F.S.)
| |
Collapse
|
122
|
Chiotis K, Johansson C, Rodriguez-Vieitez E, Ashton NJ, Blennow K, Zetterberg H, Graff C, Nordberg A. Tracking reactive astrogliosis in autosomal dominant and sporadic Alzheimer's disease with multi-modal PET and plasma GFAP. Mol Neurodegener 2023; 18:60. [PMID: 37697307 PMCID: PMC10496408 DOI: 10.1186/s13024-023-00647-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/07/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Plasma assays for the detection of Alzheimer's disease neuropathological changes are receiving ever increasing interest. The concentration of plasma glial fibrillary acidic protein (GFAP) has been suggested as a potential marker of astrocytes or recently, amyloid-β burden, although this hypothesis remains unproven. We compared plasma GFAP levels with the astrocyte tracer 11C-Deuterium-L-Deprenyl (11C-DED) in a multi-modal PET design in participants with sporadic and Autosomal Dominant Alzheimer's disease. METHODS Twenty-four individuals from families with known Autosomal Dominant Alzheimer's Disease mutations (mutation carriers = 10; non-carriers = 14) and fifteen patients with sporadic Alzheimer's disease were included. The individuals underwent PET imaging with 11C-DED, 11C-PIB and 18F-FDG, as markers of reactive astrogliosis, amyloid-β deposition, and glucose metabolism, respectively, and plasma sampling for measuring GFAP concentrations. Twenty-one participants from the Autosomal Dominant Alzheimer's Disease group underwent follow-up plasma sampling and ten of these participants underwent follow-up PET imaging. RESULTS In mutation carriers, plasma GFAP levels and 11C-PIB binding increased, while 11C-DED binding and 18F-FDG uptake significantly decreased across the estimated years to symptom onset. Cross-sectionally, plasma GFAP demonstrated a negative correlation with 11C-DED binding in both mutation carriers and patients with sporadic disease. Plasma GFAP indicated cross-sectionally a significant positive correlation with 11C-PIB binding and a significant negative correlation with 18F-FDG in the whole sample. The longitudinal levels of 11C-DED binding showed a significant negative correlation with longitudinal plasma GFAP concentrations over the follow-up interval. CONCLUSIONS Plasma GFAP concentration and astrocyte 11C-DED brain binding levels followed divergent trajectories and may reflect different underlying processes. The strong negative association between plasma GFAP and 11C-DED binding in Autosomal Dominant and sporadic Alzheimer's disease brains may indicate that if both are markers of reactive astrogliosis, they may detect different states or subtypes of astrogliosis. Increased 11C-DED brain binding seems to be an earlier phenomenon in Alzheimer's disease progression than increased plasma GFAP concentration.
Collapse
Affiliation(s)
- Konstantinos Chiotis
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Charlotte Johansson
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Elena Rodriguez-Vieitez
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Caroline Graff
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
- Unit for Hereditary Dementia, Karolinska University Hospital-Solna, Solna, Sweden
| | - Agneta Nordberg
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden.
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
123
|
Bun S, Ito D, Tezuka T, Kubota M, Ueda R, Takahata K, Moriguchi S, Kurose S, Momota Y, Suzuki N, Morimoto A, Hoshino Y, Seki M, Mimura Y, Shikimoto R, Yamamoto Y, Hoshino T, Sato Y, Tabuchi H, Mimura M. Performance of plasma Aβ42/40, measured using a fully automated immunoassay, across a broad patient population in identifying amyloid status. Alzheimers Res Ther 2023; 15:149. [PMID: 37667408 PMCID: PMC10476307 DOI: 10.1186/s13195-023-01296-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND Plasma biomarkers have emerged as promising screening tools for Alzheimer's disease (AD) because of their potential to detect amyloid β (Aβ) accumulation in the brain. One such candidate is the plasma Aβ42/40 ratio (Aβ42/40). Unlike previous research that used traditional immunoassay, recent studies that measured plasma Aβ42/40 using fully automated platforms reported promising results. However, its utility should be confirmed using a broader patient population, focusing on the potential for early detection. METHODS We recruited 174 participants, including healthy controls (HC) and patients with clinical diagnoses of AD, frontotemporal lobar degeneration, dementia with Lewy bodies/Parkinson's disease, mild cognitive impairment (MCI), and others, from a university memory clinic. We examined the performance of plasma Aβ42/40, measured using the fully automated high-sensitivity chemiluminescence enzyme (HISCL) immunoassay, in detecting amyloid-positron emission tomography (PET)-derived Aβ pathology. We also compared its performance with that of Simoa-based plasma phosphorylated tau at residue 181 (p-tau181), glial fibrillary acidic protein (GFAP), and neurofilament light (NfL). RESULTS Using the best cut-off derived from the Youden Index, plasma Aβ42/40 yielded an area under the receiver operating characteristic curve (AUC) of 0.949 in distinguishing visually assessed 18F-Florbetaben amyloid PET positivity. The plasma Aβ42/40 had a significantly superior AUC than p-tau181, GFAP, and NfL in the 167 participants with measurements for all four biomarkers. Next, we analyzed 99 participants, including only the HC and those with MCI, and discovered that plasma Aβ42/40 outperformed the other plasma biomarkers, suggesting its ability to detect early amyloid accumulation. Using the Centiloid scale (CL), Spearman's rank correlation coefficient between plasma Aβ42/40 and CL was -0.767. Among the 15 participants falling within the CL values indicative of potential future amyloid accumulation (CL between 13.5 and 35.7), plasma Aβ42/40 categorized 61.5% (8/13) as Aβ-positive, whereas visual assessment of amyloid PET identified 20% (3/15) as positive. CONCLUSION Plasma Aβ42/40 measured using the fully automated HISCL platform showed excellent performance in identifying Aβ accumulation in the brain in a well-characterized cohort. This equipment may be useful for screening amyloid pathology because it has the potential to detect early amyloid pathology and is readily applied in clinical settings.
Collapse
Affiliation(s)
- Shogyoku Bun
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan.
| | - Daisuke Ito
- Memory Center, Keio University School of Medicine, Tokyo, Japan
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Toshiki Tezuka
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Masahito Kubota
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Ryo Ueda
- Office of Radiation Technology, Keio University Hospital, Tokyo, Japan
| | - Keisuke Takahata
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Sho Moriguchi
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Shin Kurose
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yuki Momota
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Natsumi Suzuki
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Ayaka Morimoto
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Yuka Hoshino
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Morinobu Seki
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Yu Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Ryo Shikimoto
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Yasuharu Yamamoto
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Takayuki Hoshino
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
- Graduate School of Media and Governance, Keio University, Kanagawa, Japan
| | - Yoshiaki Sato
- Eisai-Keio Innovation Laboratory for Dementia, Human Biology Integration Foundation, Eisai Co., Ltd, Tokyo, Japan
| | - Hajime Tabuchi
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| |
Collapse
|
124
|
Self WK, Holtzman DM. Emerging diagnostics and therapeutics for Alzheimer disease. Nat Med 2023; 29:2187-2199. [PMID: 37667136 DOI: 10.1038/s41591-023-02505-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/18/2023] [Indexed: 09/06/2023]
Abstract
Alzheimer disease (AD) is the most common contributor to dementia in the world, but strategies that slow or prevent its clinical progression have largely remained elusive, until recently. This Review highlights the latest advances in biomarker technologies and therapeutic development to improve AD diagnosis and treatment. We review recent results that enable pathological staging of AD with neuroimaging and fluid-based biomarkers, with a particular emphasis on the role of amyloid, tau and neuroinflammation in disease pathogenesis. We discuss the lessons learned from randomized controlled trials, including some supporting the proposal that certain anti-amyloid antibodies slow cognitive decline during the mildly symptomatic phase of AD. In addition, we highlight evidence for newly identified therapeutic targets that may be able to modify AD pathogenesis and progression. Collectively, these recent discoveries-and the research directions that they open-have the potential to move AD clinical care toward disease-modifying treatment strategies with maximal benefits for patients.
Collapse
Affiliation(s)
- Wade K Self
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
125
|
Gao F, Dai L, Wang Q, Liu C, Deng K, Cheng Z, Lv X, Wu Y, Zhang Z, Tao Q, Yuan J, Li S, Wang Y, Su Y, Cheng X, Ni J, Wu Z, Zhang S, Shi J, Shen Y. Blood-based biomarkers for Alzheimer's disease: a multicenter-based cross-sectional and longitudinal study in China. Sci Bull (Beijing) 2023; 68:1800-1808. [PMID: 37500404 DOI: 10.1016/j.scib.2023.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/03/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023]
Abstract
Discrepancies in diagnostic biomarkers for Alzheimer's Disease (AD) may arise from racial disparities, risk factors, or lifestyle differences. Moreover, there has been a lack of systematic and multicenter studies to evaluate baselines of the AD biomarkers in Chinese populations. Thus, there is an urgent need for research to investigate the effectiveness of blood biomarkers for AD, specifically in the Chinese Han population, using a multicenter approach. In the present multicenter-based cross-sectional and longitudinal study, we evaluated 817 blood samples from 6 different clinical centers. We measured plasma amyloid beta (Aβ)-40, Aβ42, phosphorylated tau 181 (pTau), total tau (tTau), serum neurofilament light (NFL), and glial fibrillary acidic protein (GFAP). Additionally, 18F-florbetapir positron electron tomography and magnetic resonance imaging were also performed. A combination of the APOE genotype with plasma pTau and serum GFAP demonstrated exceptional performance in distinguishing Aβ status. Furthermore, baseline GFAP levels exhibited a strong association with cognitive decline over time and brain atrophy, with higher GFAP levels predicting a faster rate of neurodegeneration. In summary, these results validate the practicality of blood biomarkers in the Chinese Han population, encompassing various regions within China. Additionally, they emphasize the potential of pTau and GFAP as non-invasive methods for detecting and screening AD at an early stage.
Collapse
Affiliation(s)
- Feng Gao
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Linbin Dai
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Qiong Wang
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Chang Liu
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Kexue Deng
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zhaozhao Cheng
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Xinyi Lv
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Yan Wu
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Ziyi Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qingqing Tao
- Department of Neurology and Research Center of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jing Yuan
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100006, China
| | - Shiping Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yue Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Ya Su
- Department of Neurology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xin Cheng
- Department of Neurology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Jun Ni
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100006, China.
| | - Zhiying Wu
- Department of Neurology and Research Center of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Shuting Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Jiong Shi
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Yong Shen
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
126
|
Gokce M, Velioglu HA, Bektay MY, Guler EM. Evaluating the Clinical Significance of Diazepam Binding Inhibitor in Alzheimer's Disease: A Comparison with Inflammatory, Oxidative, and Neurodegenerative Biomarkers. Gerontology 2023; 69:1104-1112. [PMID: 37607528 DOI: 10.1159/000531849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 06/26/2023] [Indexed: 08/24/2023] Open
Abstract
INTRODUCTION Alzheimer's disease (AD) is one of the pathologies that the scientific world is still desperate for. The aim of this study was the investigation of diazepam binding inhibitor (DBI) as a prognostic factor for AD prognosis. METHODS A total of 120 participants were divided into 3 groups. Forty new diagnosed Alzheimer patients (NDG) who have been diagnosed but have not started AD treatment, 40 patients who diagnosed 5 years ago (D5YG), and 40 healthy control groups (CG) were included in the study. Levels of DBI, oxidative stress, inflammatory, and neurodegenerative biomarkers were compared between 3 groups. RESULTS Plasma levels of DBI, oligomeric Aβ, total tau, glial fibrillary acidic protein, α-synuclein, interleukin (IL) 1β, IL6, tumor necrosis factor α, oxidative stress index, high-sensitive C-reactive protein, and DNA damage were found higher in D5YG and NDG as compared to CG (p < 0.001). On the contrary, plasma levels of total thiol, native thiol, vitamin D and vitamin B12 were lower in D5YG and NDG as compared to CG (p < 0.001). DISCUSSION DBI may be a potential plasma biomarker and promising drug target for AD. It could help physicians make a comprehensive evaluation with cognitive and neurodegenerative tests.
Collapse
Affiliation(s)
- Mustafa Gokce
- Department of Pharmacology, Bezmialem Vakif University School of Pharmacy, Istanbul, Turkey
- Department of Pharmacology, Institute of Health Sciences, Istanbul University, Istanbul, Turkey
| | - Halil Aziz Velioglu
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, New York, USA
- Functional Imaging and Cognitive-Affective Neuroscience Lab (fINCAN), Health Sciences and Technology Research Institute (SABITA), Regenerative and Restorative Medicine Research Center (REMER), Istanbul Medipol University, Istanbul, Turkey
| | - Muhammed Yunus Bektay
- Department of Clinical Pharmacy, Bezmialem Vakif University School of Pharmacy, Istanbul, Turkey
| | - Eray Metin Guler
- Department of Medical Biochemistry, Faculty of Hamidiye Medicine, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
127
|
Luarte A, Nardocci G, Chakraborty A, Batiz LF, Pino-Lagos K, Wyneken Ú. Astrocyte-derived extracellular vesicles in stress-associated mood disorders. Does the immune system get astrocytic? Pharmacol Res 2023; 194:106833. [PMID: 37348692 DOI: 10.1016/j.phrs.2023.106833] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Life stressors can wreak havoc on our health, contributing to mood disorders like major depressive disorder (MDD), a widespread and debilitating condition. Unfortunately, current treatments and diagnostic strategies fall short of addressing these disorders, highlighting the need for new approaches. In this regard, the relationship between MDD, brain inflammation (neuroinflammation), and systemic inflammation in the body may offer novel insights. Recent research has uncovered the crucial role of astrocytes in coordinating the inflammatory response through the release of extracellular vesicles (ADEVs) during different neuroinflammatory conditions. While the contribution of ADEVs to stress and MDD remains largely unexplored, their potential to modulate immune cells and contribute to MDD pathogenesis is significant. In this article, we delve into the immunomodulatory role of ADEVs, their potential impact on peripheral immune cells, and how their microRNA (miRNA) landscape may hold the key to controlling immune cell activity. Together, these mechanisms may constitute an opportunity to develop novel therapeutic pharmacological approaches to tackle mood disorders.
Collapse
Affiliation(s)
- Alejandro Luarte
- Faculty of Medicine, Universidad de los Andes, Santiago 7620001, Chile; Program in Neuroscience, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago 7620001, Chile.
| | - Gino Nardocci
- Faculty of Medicine, Universidad de los Andes, Santiago 7620001, Chile; Molecular Biology and Bioinformatics Lab, Program in Molecular Biology and Bioinformatics, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago 7620001, Chile; IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago 7620001, Chile
| | - Ankush Chakraborty
- Program in Neuroscience, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago 7620001, Chile
| | - Luis Federico Batiz
- Faculty of Medicine, Universidad de los Andes, Santiago 7620001, Chile; Program in Neuroscience, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago 7620001, Chile; IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago 7620001, Chile
| | - Karina Pino-Lagos
- Faculty of Medicine, Universidad de los Andes, Santiago 7620001, Chile; Program in Immunology, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago 7620001, Chile
| | - Úrsula Wyneken
- Faculty of Medicine, Universidad de los Andes, Santiago 7620001, Chile; Program in Neuroscience, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago 7620001, Chile; IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago 7620001, Chile.
| |
Collapse
|
128
|
Bucci M, Bluma M, Savitcheva I, Ashton NJ, Chiotis K, Matton A, Kivipelto M, Di Molfetta G, Blennow K, Zetterberg H, Nordberg A. Profiling of plasma biomarkers in the context of memory assessment in a tertiary memory clinic. Transl Psychiatry 2023; 13:268. [PMID: 37491358 PMCID: PMC10368630 DOI: 10.1038/s41398-023-02558-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 07/27/2023] Open
Abstract
Plasma biomarkers have shown promising performance in research cohorts in discriminating between different stages of Alzheimer's disease (AD). Studies in clinical populations are necessary to provide insights on the clinical utility of plasma biomarkers before their implementation in real-world settings. Here we investigated plasma biomarkers (glial fibrillary acidic protein (GFAP), tau phosphorylated at 181 and 231 (pTau181, pTau231), amyloid β (Aβ) 42/40 ratio, neurofilament light) in 126 patients (age = 65 ± 8) who were admitted to the Clinic for Cognitive Disorders, at Karolinska University Hospital. After extensive clinical assessment (including CSF analysis), patients were classified as: mild cognitive impairment (MCI) (n = 75), AD (n = 25), non-AD dementia (n = 16), no dementia (n = 9). To refine the diagnosis, patients were examined with [18F]flutemetamol PET (Aβ-PET). Aβ-PET images were visually rated for positivity/negativity and quantified in Centiloid. Accordingly, 68 Aβ+ and 54 Aβ- patients were identified. Plasma biomarkers were measured using single molecule arrays (SIMOA). Receiver-operated curve (ROC) analyses were performed to detect Aβ-PET+ using the different biomarkers. In the whole cohort, the Aβ-PET centiloid values correlated positively with plasma GFAP, pTau231, pTau181, and negatively with Aβ42/40 ratio. While in the whole MCI group, only GFAP was associated with Aβ PET centiloid. In ROC analyses, among the standalone biomarkers, GFAP showed the highest area under the curve discriminating Aβ+ and Aβ- compared to other plasma biomarkers. The combination of plasma biomarkers via regression was the most predictive of Aβ-PET, especially in the MCI group (prior to PET, n = 75) (sensitivity = 100%, specificity = 82%, negative predictive value = 100%). In our cohort of memory clinic patients (mainly MCI), the combination of plasma biomarkers was sensitive in ruling out Aβ-PET negative individuals, thus suggesting a potential role as rule-out tool in clinical practice.
Collapse
Affiliation(s)
- Marco Bucci
- Department of Neurobiology, Care Sciences and Society, Centre for Alzheimer Research, Division of Clinical Geriatrics, Karolinska Institutet, SE-14183, Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, SE-14186, Stockholm, Sweden
| | - Marina Bluma
- Department of Neurobiology, Care Sciences and Society, Centre for Alzheimer Research, Division of Clinical Geriatrics, Karolinska Institutet, SE-14183, Stockholm, Sweden
| | - Irina Savitcheva
- Medical Radiation Physics and Nuclear Medicine, Karolinska University, SE-14186, Stockholm, Sweden
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, SE-43180, Mölndal, Sweden
| | - Konstantinos Chiotis
- Department of Neurobiology, Care Sciences and Society, Centre for Alzheimer Research, Division of Clinical Geriatrics, Karolinska Institutet, SE-14183, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, SE-14186, Stockholm, Sweden
| | - Anna Matton
- Department of Neurobiology, Care Sciences and Society, Centre for Alzheimer Research, Division of Clinical Geriatrics, Karolinska Institutet, SE-14183, Stockholm, Sweden
| | - Miia Kivipelto
- Department of Neurobiology, Care Sciences and Society, Centre for Alzheimer Research, Division of Clinical Geriatrics, Karolinska Institutet, SE-14183, Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, SE-14186, Stockholm, Sweden
| | - Guglielmo Di Molfetta
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, SE-43180, Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, SE-43180, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, SE-43180, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, SE-43180, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, SE-43180, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London, WC1N 3BG, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Agneta Nordberg
- Department of Neurobiology, Care Sciences and Society, Centre for Alzheimer Research, Division of Clinical Geriatrics, Karolinska Institutet, SE-14183, Stockholm, Sweden.
- Theme Inflammation and Aging, Karolinska University Hospital, SE-14186, Stockholm, Sweden.
| |
Collapse
|
129
|
Asken BM, Tanner JA, Gaynor LS, VandeVrede L, Mantyh WG, Casaletto KB, Staffaroni AM, Fonseca C, Shankar R, Grant H, Smith K, Lago AL, Xu H, La Joie R, Cobigo Y, Rosen H, Perry DC, Rojas JC, Miller BL, Gardner RC, Wang KKW, Kramer JH, Rabinovici GD. Alzheimer's pathology is associated with altered cognition, brain volume, and plasma biomarker patterns in traumatic encephalopathy syndrome. Alzheimers Res Ther 2023; 15:126. [PMID: 37480088 PMCID: PMC10360257 DOI: 10.1186/s13195-023-01275-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Traumatic encephalopathy syndrome (TES) is a clinical phenotype sensitive but non-specific to underlying chronic traumatic encephalopathy (CTE) neuropathology. However, cognitive symptoms of TES overlap with Alzheimer's disease (AD), and features of AD pathology like beta-amyloid (Aβ) plaques often co-occur with CTE, making clinical-to-pathological conclusions of TES diagnoses challenging. We investigated how Alzheimer's neuropathological changes associated with cognition, brain volume, and plasma biomarkers in patients with repetitive head impacts (RHI)/TES, clinical AD, or typically aging controls. METHODS We studied 154 participants including 33 with RHI/TES (age 61.5 ± 11.5, 100% male, 11/33 Aβ[ +]), 62 with AD and no known prior RHI (age 67.1 ± 10.2, 48% male, 62/62 Aβ[ +]), and 59 healthy controls without RHI (HC; age 73.0 ± 6.2, 40% male, 0/59 Aβ[ +]). Patients completed neuropsychological testing (memory, executive functioning, language, visuospatial) and structural MRI (voxel-based morphometry analysis), and provided plasma samples analyzed for GFAP, NfL, IL-6, IFN-γ, and YKL-40. For cognition and plasma biomarkers, patients with RHI/TES were stratified as Aβ[ +] or Aβ[ -] and compared to each other plus the AD and HC groups (ANCOVA adjusting for age and sex). Differences with at least a medium effect size (Cohen's d > 0.50) were interpreted as potentially meaningful. RESULTS Cognitively, within the TES group, Aβ[ +] RHI/TES performed worse than Aβ[-] RHI/TES on visuospatial (p = .04, d = 0.86) and memory testing (p = .07, d = 0.74). Comparing voxel-wise brain volume, both Aβ[ +] and Aβ[ -] RHI/TES had lower medial and anterior temporal lobe volume than HC and did not significantly differ from AD. Comparing plasma biomarkers, Aβ[ +] RHI/TES had higher plasma GFAP than HC (p = .01, d = 0.88) and did not significantly differ from AD. Conversely, Aβ[ -] RHI/TES had higher NfL than HC (p = .004, d = 0.93) and higher IL-6 than all other groups (p's ≤ .004, d's > 1.0). CONCLUSIONS Presence of Alzheimer's pathology in patients with RHI/TES is associated with altered cognitive and biomarker profiles. Patients with RHI/TES and positive Aβ-PET have cognitive and plasma biomarker changes that are more like patients with AD than patients with Aβ[ -] RHI/TES. Measuring well-validated Alzheimer's biomarkers in patients with RHI/TES could improve interpretation of research findings and heighten precision in clinical management.
Collapse
Affiliation(s)
- Breton M Asken
- Department of Clinical & Health Psychology, 1Florida Alzheimer's Disease Research Center, University of Florida, 1225 Center Drive, Gainesville, FL, 32610, USA.
| | - Jeremy A Tanner
- Department of Neurology, Biggs Institute for Alzheimer's and Neurodegenerative Diseases, South Texas Alzheimer's Disease Research Center, University of Texas Health - San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Leslie S Gaynor
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Lawren VandeVrede
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - William G Mantyh
- Department of Neurology, University of Minnesota, PWB 12-100, 516 Delaware Street SE, Minneapolis, MN, 55455, USA
| | - Kaitlin B Casaletto
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Adam M Staffaroni
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Corrina Fonseca
- Department of Neuroscience, Helen Wills Neuroscience Institute, University of California, 132 Barker Hall MC#3190, Berkeley, CA, 94720, USA
| | - Ranjani Shankar
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Harli Grant
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Karen Smith
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Argentina Lario Lago
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Haiyan Xu
- Department of Surgery, University of Florida, PO Box 100128, Gainesville, FL, 32610, USA
| | - Renaud La Joie
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Yann Cobigo
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Howie Rosen
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - David C Perry
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Julio C Rojas
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Bruce L Miller
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Raquel C Gardner
- Sheba Medical Center, Tel Hashomer City of Health, Tel Aviv District, Derech Sheba 2, Ramat Gan, Israel
| | - Kevin K W Wang
- Department of Neurobiology, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA, 30310, USA
| | - Joel H Kramer
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Gil D Rabinovici
- Department of Neurology, Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| |
Collapse
|
130
|
Antonioni A, Raho EM, Lopriore P, Pace AP, Latino RR, Assogna M, Mancuso M, Gragnaniello D, Granieri E, Pugliatti M, Di Lorenzo F, Koch G. Frontotemporal Dementia, Where Do We Stand? A Narrative Review. Int J Mol Sci 2023; 24:11732. [PMID: 37511491 PMCID: PMC10380352 DOI: 10.3390/ijms241411732] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Frontotemporal dementia (FTD) is a neurodegenerative disease of growing interest, since it accounts for up to 10% of middle-age-onset dementias and entails a social, economic, and emotional burden for the patients and caregivers. It is characterised by a (at least initially) selective degeneration of the frontal and/or temporal lobe, generally leading to behavioural alterations, speech disorders, and psychiatric symptoms. Despite the recent advances, given its extreme heterogeneity, an overview that can bring together all the data currently available is still lacking. Here, we aim to provide a state of the art on the pathogenesis of this disease, starting with established findings and integrating them with more recent ones. In particular, advances in the genetics field will be examined, assessing them in relation to both the clinical manifestations and histopathological findings, as well as considering the link with other diseases, such as amyotrophic lateral sclerosis (ALS). Furthermore, the current diagnostic criteria will be explored, including neuroimaging methods, nuclear medicine investigations, and biomarkers on biological fluids. Of note, the promising information provided by neurophysiological investigations, i.e., electroencephalography and non-invasive brain stimulation techniques, concerning the alterations in brain networks and neurotransmitter systems will be reviewed. Finally, current and experimental therapies will be considered.
Collapse
Affiliation(s)
- Annibale Antonioni
- Unit of Clinical Neurology, Neurosciences and Rehabilitation Department, University of Ferrara, 44121 Ferrara, Italy
- Doctoral Program in Translational Neurosciences and Neurotechnologies, University of Ferrara, 44121 Ferrara, Italy
| | - Emanuela Maria Raho
- Unit of Clinical Neurology, Neurosciences and Rehabilitation Department, University of Ferrara, 44121 Ferrara, Italy
| | - Piervito Lopriore
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Antonia Pia Pace
- Institute of Radiology, Department of Medicine, University of Udine, University Hospital S. Maria della Misericordia, Azienda Sanitaria-Universitaria Friuli Centrale, 33100 Udine, Italy
| | - Raffaela Rita Latino
- Complex Structure of Neurology, Emergency Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Martina Assogna
- Centro Demenze, Policlinico Tor Vergata, University of Rome 'Tor Vergata', 00133 Rome, Italy
- Non Invasive Brain Stimulation Unit, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia, 00179 Rome, Italy
| | - Michelangelo Mancuso
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Daniela Gragnaniello
- Nuerology Unit, Neurosciences and Rehabilitation Department, Ferrara University Hospital, 44124 Ferrara, Italy
| | - Enrico Granieri
- Unit of Clinical Neurology, Neurosciences and Rehabilitation Department, University of Ferrara, 44121 Ferrara, Italy
| | - Maura Pugliatti
- Unit of Clinical Neurology, Neurosciences and Rehabilitation Department, University of Ferrara, 44121 Ferrara, Italy
| | - Francesco Di Lorenzo
- Non Invasive Brain Stimulation Unit, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia, 00179 Rome, Italy
| | - Giacomo Koch
- Non Invasive Brain Stimulation Unit, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia, 00179 Rome, Italy
- Iit@Unife Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, 44121 Ferrara, Italy
- Section of Human Physiology, Neurosciences and Rehabilitation Department, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
131
|
Liu T, Zuo H, Ma D, Song D, Zhao Y, Cheng O. Cerebrospinal fluid GFAP is a predictive biomarker for conversion to dementia and Alzheimer's disease-associated biomarkers alterations among de novo Parkinson's disease patients: a prospective cohort study. J Neuroinflammation 2023; 20:167. [PMID: 37475029 PMCID: PMC10357612 DOI: 10.1186/s12974-023-02843-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/27/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Dementia is a prevalent non-motor manifestation among individuals with advanced Parkinson's disease (PD). Glial fibrillary acidic protein (GFAP) is an inflammatory marker derived from astrocytes. Research has demonstrated the potential of plasma GFAP to forecast the progression to dementia in PD patients with mild cognitive impairment (PD-MCI). However, the predictive role of cerebrospinal fluid (CSF) GFAP on future cognitive transformation and alterations in Alzheimer's disease (AD)-associated CSF biomarkers in newly diagnosed PD patients has not been investigated. METHODS 210 de novo PD patients from the Parkinson's Progression Markers Initiative were recruited. Cognitive progression in PD participants was evaluated using Cox regression. Cross-sectional and longitudinal associations between baseline CSF GFAP and cognitive function and AD-related CSF biomarkers were evaluated using multiple linear regression and generalized linear mixed model. RESULTS At baseline, the mean age of PD participants was 60.85 ± 9.78 years, including 142 patients with normal cognition (PD-NC) and 68 PD-MCI patients. The average follow-up time was 6.42 ± 1.69 years. A positive correlation was observed between baseline CSF GFAP and age (β = 0.918, p < 0.001). There was no statistically significant difference in baseline CSF GFAP levels between PD-NC and PD-MCI groups. Higher baseline CSF GFAP predicted greater global cognitive decline over time in early PD patients (Montreal Cognitive Assessment, β = - 0.013, p = 0.014). Furthermore, Cox regression showed that high baseline CSF GFAP levels were associated with a high risk of developing dementia over an 8-year period in the PD-NC group (adjusted HR = 3.070, 95% CI 1.119-8.418, p = 0.029). In addition, the baseline CSF GFAP was positively correlated with the longitudinal changes of not only CSF α-synuclein (β = 0.313, p < 0.001), but also CSF biomarkers associated with AD, namely, amyloid-β 42 (β = 0.147, p = 0.034), total tau (β = 0.337, p < 0.001) and phosphorylated tau (β = 0.408, p < 0.001). CONCLUSIONS CSF GFAP may be a valuable prognostic tool that can predict the severity and progression of cognitive deterioration, accompanied with longitudinal changes in AD-associated pathological markers in early PD.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Hongzhou Zuo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Di Ma
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Dan Song
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Yuying Zhao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Oumei Cheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| |
Collapse
|
132
|
Matafora V, Gorb A, Yang F, Noble W, Bachi A, Perez‐Nievas BG, Jimenez‐Sanchez M. Proteomics of the astrocyte secretome reveals changes in their response to soluble oligomeric Aβ. J Neurochem 2023; 166:346-366. [PMID: 37303123 PMCID: PMC10952722 DOI: 10.1111/jnc.15875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/13/2023]
Abstract
Astrocytes associate with amyloid plaques in Alzheimer's disease (AD). Astrocytes react to changes in the brain environment, including increasing concentrations of amyloid-β (Aβ). However, the precise response of astrocytes to soluble small Aβ oligomers at concentrations similar to those present in the human brain has not been addressed. In this study, we exposed astrocytes to media from neurons that express the human amyloid precursor protein (APP) transgene with the double Swedish mutation (APPSwe), and which contains APP-derived fragments, including soluble human Aβ oligomers. We then used proteomics to investigate changes in the astrocyte secretome. Our data show dysregulated secretion of astrocytic proteins involved in the extracellular matrix and cytoskeletal organization and increase secretion of proteins involved in oxidative stress responses and those with chaperone activity. Several of these proteins have been identified in previous transcriptomic and proteomic studies using brain tissue from human AD and cerebrospinal fluid (CSF). Our work highlights the relevance of studying astrocyte secretion to understand the brain response to AD pathology and the potential use of these proteins as biomarkers for the disease.
Collapse
Affiliation(s)
| | - Alena Gorb
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Fangjia Yang
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Wendy Noble
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Angela Bachi
- IFOM ETS‐ The AIRC Institute of Molecular OncologyMilanItaly
| | - Beatriz Gomez Perez‐Nievas
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Maria Jimenez‐Sanchez
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| |
Collapse
|
133
|
Snellman A, Ekblad LL, Ashton NJ, Karikari TK, Lantero-Rodriguez J, Pietilä E, Koivumäki M, Helin S, Karrasch M, Zetterberg H, Blennow K, Rinne JO. Head-to-head comparison of plasma p-tau181, p-tau231 and glial fibrillary acidic protein in clinically unimpaired elderly with three levels of APOE4-related risk for Alzheimer's disease. Neurobiol Dis 2023; 183:106175. [PMID: 37268240 DOI: 10.1016/j.nbd.2023.106175] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/02/2023] [Accepted: 05/26/2023] [Indexed: 06/04/2023] Open
Abstract
Plasma phosphorylated tau (p-tau) and glial fibrillary acidic protein (GFAP) both reflect early changes in Alzheimer's disease (AD) pathology. Here, we compared the biomarker levels and their association with regional β-amyloid (Aβ) pathology and cognitive performance head-to-head in clinically unimpaired elderly (n = 88) at three levels of APOE4-related genetic risk for sporadic AD (APOE4/4 n = 19, APOE3/4 n = 32 or non-carriers n = 37). Concentrations of plasma p-tau181, p-tau231 and GFAP were measured using Single molecule array (Simoa), regional Aβ deposition with 11C-PiB positron emission tomography (PET), and cognitive performance with a preclinical composite. Significant differences in plasma p-tau181 and p-tau231, but not plasma GFAP concentrations were present between the APOE4 gene doses, explained solely by brain Aβ load. All plasma biomarkers correlated positively with Aβ PET in the total study population. This correlation was driven by APOE3/3 carriers for plasma p-tau markers and APOE4/4 carriers for plasma GFAP. Voxel-wise associations with amyloid-PET revealed different spatial patterns for plasma p-tau markers and plasma GFAP. Only higher plasma GFAP correlated with lower cognitive scores. Our observations suggest that plasma p-tau and plasma GFAP are both early AD markers reflecting different Aβ-related processes.
Collapse
Affiliation(s)
- Anniina Snellman
- Turku PET Centre, University of Turku, Turku University Hospital, Turku, Finland; Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
| | - Laura L Ekblad
- Turku PET Centre, University of Turku, Turku University Hospital, Turku, Finland
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway; Department of Old Age Psychiatry, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Juan Lantero-Rodriguez
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Elina Pietilä
- Turku PET Centre, University of Turku, Turku University Hospital, Turku, Finland
| | - Mikko Koivumäki
- Turku PET Centre, University of Turku, Turku University Hospital, Turku, Finland
| | - Semi Helin
- Turku PET Centre, University of Turku, Turku University Hospital, Turku, Finland
| | - Mira Karrasch
- Department of Psychology, Åbo Akademi University, Turku, Finland
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; UK Dementia Research Institute at UCL, London, UK; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Juha O Rinne
- Turku PET Centre, University of Turku, Turku University Hospital, Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| |
Collapse
|
134
|
Natale G, Kritikos M, Kuan PF, Carr MA, Yang X, Yang Y, Kotov R, Bromet EJ, Clouston SA, Luft BJ. Glial suppression and post-traumatic stress disorder: A cross-sectional study of 1,520 world trade center responders. Brain Behav Immun Health 2023; 30:100631. [PMID: 37251545 PMCID: PMC10209702 DOI: 10.1016/j.bbih.2023.100631] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/31/2023] Open
Abstract
Background Chronically re-experiencing the memory of a traumatic event might cause a glial response. This study examined whether glial activation would be associated with PTSD in a study of responders present after the 9/11 World Trade Center attacks without comorbid cerebrovascular disease. Methods Plasma was retrieved from 1,520 WTC responders and stored for a cross-sectional sample of responders of varying levels of exposure and PTSD. Plasma levels (pg/ml) of glial fibrillary acidic protein (GFAP) were assayed. Because stroke and other cerebrovascular diseases cause distributional shifts in GFAP levels, multivariable-adjusted finite mixture models analyzed GFAP distributions in responders with and without possible cerebrovascular disease. Results Responders were aged 56.3 years and primarily male; 11.07% (n = 154) had chronic PTSD. Older age was associated with increased GFAP, whereas higher body mass was associated with decreased GFAP. Multivariable-adjusted finite mixture models revealed that severe re-experiencing trauma from 9/11 was associated with lower GFAP (B = -0.558, p = 0.003). Conclusion This study presents evidence of reduced plasma GFAP levels among WTC responders with PTSD. Results suggest re-experiencing traumatic events might cause glial suppression.
Collapse
Affiliation(s)
- Ginny Natale
- Program in Public Health and Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA, 11794
| | - Minos Kritikos
- Program in Public Health and Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA, 11794
| | - Pei-Fen Kuan
- Department of Applied Mathematics, Stony Brook University, Stony Brook, NY, USA, 11794
| | - Melissa A. Carr
- Stony Brook World Trade Center Wellness Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA, 11725
| | - Xiaohua Yang
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA, 11794
| | - Yuan Yang
- Program in Public Health and Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA, 11794
| | - Roman Kotov
- Department of Psychiatry, Stony Brook University, Stony Brook, NY, USA, 11794
| | - Evelyn J. Bromet
- Department of Psychiatry, Stony Brook University, Stony Brook, NY, USA, 11794
| | - Sean A.P. Clouston
- Program in Public Health and Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA, 11794
| | - Benjamin J. Luft
- Stony Brook World Trade Center Wellness Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA, 11725
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA, 11794
| |
Collapse
|
135
|
Chatterjee P, Vermunt L, Gordon BA, Pedrini S, Boonkamp L, Armstrong NJ, Xiong C, Singh AK, Li Y, Sohrabi HR, Taddei K, Molloy MP, Benzinger TL, Morris JC, Karch CM, Berman SB, Chhatwal J, Cruchaga C, Graff-Radford NR, Day GS, Farlow M, Fox NC, Goate AM, Hassenstab J, Lee JH, Levin J, McDade E, Mori H, Perrin RJ, Sanchez-Valle R, Schofield PR, Levey A, Jucker M, Masters CL, Fagan AM, Bateman RJ, Martins RN, Teunissen CE. Plasma glial fibrillary acidic protein in autosomal dominant Alzheimer's disease: Associations with Aβ-PET, neurodegeneration, and cognition. Alzheimers Dement 2023; 19:2790-2804. [PMID: 36576155 PMCID: PMC10300233 DOI: 10.1002/alz.12879] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/22/2022] [Accepted: 10/21/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Glial fibrillary acidic protein (GFAP) is a promising candidate blood-based biomarker for Alzheimer's disease (AD) diagnosis and prognostication. The timing of its disease-associated changes, its clinical correlates, and biofluid-type dependency will influence its clinical utility. METHODS We evaluated plasma, serum, and cerebrospinal fluid (CSF) GFAP in families with autosomal dominant AD (ADAD), leveraging the predictable age at symptom onset to determine changes by stage of disease. RESULTS Plasma GFAP elevations appear a decade before expected symptom onset, after amyloid beta (Aβ) accumulation and prior to neurodegeneration and cognitive decline. Plasma GFAP distinguished Aβ-positive from Aβ-negative ADAD participants and showed a stronger relationship with Aβ load in asymptomatic than symptomatic ADAD. Higher plasma GFAP was associated with the degree and rate of neurodegeneration and cognitive impairment. Serum GFAP showed similar relationships, but these were less pronounced for CSF GFAP. CONCLUSION Our findings support a role for plasma GFAP as a clinical biomarker of Aβ-related astrocyte reactivity that is associated with cognitive decline and neurodegeneration. HIGHLIGHTS Plasma glial fibrillary acidic protein (GFAP) elevations appear a decade before expected symptom onset in autosomal dominant Alzheimer's disease (ADAD). Plasma GFAP was associated to amyloid positivity in asymptomatic ADAD. Plasma GFAP increased with clinical severity and predicted disease progression. Plasma and serum GFAP carried similar information in ADAD, while cerebrospinal fluid GFAP did not.
Collapse
Affiliation(s)
- Pratishtha Chatterjee
- Macquarie Medical School, Macquarie University, North Ryde, NSW 2019, Australia; School of Medical Sciences, Edith Cowan University, Sarich Neuroscience Research Institute, Nedlands, WA 6009, Australia
| | - Lisa Vermunt
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, programme Neurodegeneration, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands
| | - Brian A. Gordon
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Steve Pedrini
- School of Medical Sciences, Edith Cowan University, Sarich Neuroscience Research Institute, Nedlands, WA 6009, Australia
| | - Lynn Boonkamp
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, programme Neurodegeneration, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands
| | - Nicola J. Armstrong
- Department of Mathematics & Statistics, Curtin University, Bentley, WA, Australia
| | - Chengjie Xiong
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA; Division of Biostatistics, Washington University School of Medicine, Saint Louis, MO, USA
| | - Abhay K. Singh
- Macquarie Business School, Macquarie University, North Ryde, NSW, Australia
| | - Yan Li
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Division of Biostatistics, Washington University School of Medicine, Saint Louis, MO, USA
| | - Hamid R. Sohrabi
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW 2019, Australia; School of Medical Sciences, Edith Cowan University, Sarich Neuroscience Research Institute, Nedlands, WA 6009, Australia; School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia; Australian Alzheimer’s Research Foundation, Nedlands, WA, Australia; Centre for Healthy Ageing, Health Future Institute, Murdoch University, Murdoch, WA, Australia
| | - Kevin Taddei
- School of Medical Sciences, Edith Cowan University, Sarich Neuroscience Research Institute, Nedlands, WA 6009, Australia; Australian Alzheimer’s Research Foundation, Nedlands, WA, Australia
| | - Mark P. Molloy
- Bowel Cancer and Biomarker Laboratory, Kolling Institute, The University of Sydney, St Leonards, NSW, Australia; Australian Proteome Analysis Facility, Macquarie University, North Ryde, NSW, Australia
| | - Tammie L.S. Benzinger
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - John C. Morris
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA; Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Celeste M. Karch
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Sarah B. Berman
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jasmeer Chhatwal
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Carlos Cruchaga
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Gregory S Day
- Department of Neurology, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | - Martin Farlow
- Department of Neurology, Indiana University, Indianapolis, IN, USA
| | - Nick C. Fox
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, London, UK
| | - Alison M. Goate
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jason Hassenstab
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jae-Hong Lee
- Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul05505, Republic of Korea
| | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Eric McDade
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Hiroshi Mori
- Osaka Metropolitan University, Nagaoka Sutoku University, Osaka, Japan
| | - Richard J. Perrin
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA; Dominantly Inherited Alzheimer Network, Washington University School of Medicine, St. Louis, MO, USA; Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA; Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Raquel Sanchez-Valle
- Alzheimer’s Disease and other Cognitive Disorders Unit, Neurology Service, Hospital Clinic, Barcelona, Spain
| | - Peter R. Schofield
- Neuroscience Research Australia, Sydney, New South Wales, Australia; School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Allan Levey
- Department of Neurology, Emory University, Atlanta, GA, USA
| | - Mathias Jucker
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany. Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Colin L. Masters
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia; University of Melbourne, Melbourne, Victoria, Australia
| | - Anne M. Fagan
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA; Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Randall J. Bateman
- Dominantly Inherited Alzheimer Network, Washington University School of Medicine, St. Louis, MO, USA; Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Ralph N. Martins
- Macquarie Medical School, Macquarie University, North Ryde, NSW 2019, Australia; School of Medical Sciences, Edith Cowan University, Sarich Neuroscience Research Institute, Nedlands, WA 6009, Australia; The Cooperative Research Centre for Mental Health, Carlton South, Australia; KaRa Institute of Neurological Disease, Sydney, Macquarie Park, Australia; Australian Alzheimer’s Research Foundation, Nedlands, WA, Australia
| | - Charlotte E. Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, programme Neurodegeneration, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands
| | | |
Collapse
|
136
|
Kim JH, Afridi R, Lee WH, Suk K. Analyzing the glial proteome in Alzheimer's disease. Expert Rev Proteomics 2023; 20:197-209. [PMID: 37724426 DOI: 10.1080/14789450.2023.2260955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/18/2023] [Indexed: 09/20/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive cognitive decline, memory loss, and changes in behavior. Accumulating evidence indicates that dysfunction of glial cells, including astrocytes, microglia, and oligodendrocytes, may contribute to the development and progression of AD. Large-scale analysis of glial proteins sheds light on their roles in cellular processes and diseases. In AD, glial proteomics has been utilized to understand glia-based pathophysiology and identify potential biomarkers and therapeutic targets. AREA COVERED In this review, we provide an updated overview of proteomic analysis of glia in the context of AD. Additionally, we discuss current challenges in the field, involving glial complexity and heterogeneity, and describe some cutting-edge proteomic technologies to address them. EXPERT OPINION Unbiased comprehensive analysis of glial proteomes aids our understanding of the molecular and cellular mechanisms of AD pathogenesis. These investigations highlight the crucial role of glial cells and provide novel insights into the mechanisms of AD pathology. A deeper understanding of the AD-related glial proteome could offer a repertoire of potential biomarkers and therapeutics. Further technical advancement of glial proteomics will enable us to identify proteins within individual cells and specific cell types, thus significantly enhancing our comprehension of AD pathogenesis.
Collapse
Affiliation(s)
- Jong-Heon Kim
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Ruqayya Afridi
- Department of Pharmacology, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Won-Ha Lee
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Kyoungho Suk
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
- Department of Pharmacology, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
137
|
Bermudez C, Graff-Radford J, Syrjanen JA, Stricker NH, Algeciras-Schimnich A, Kouri N, Kremers WK, Petersen RC, Jack CR, Knopman DS, Dickson DW, Nguyen AT, Reichard RR, Murray ME, Mielke MM, Vemuri P. Plasma biomarkers for prediction of Alzheimer's disease neuropathologic change. Acta Neuropathol 2023; 146:13-29. [PMID: 37269398 PMCID: PMC10478071 DOI: 10.1007/s00401-023-02594-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/14/2023] [Accepted: 05/24/2023] [Indexed: 06/05/2023]
Abstract
While plasma biomarkers for Alzheimer's disease (AD) are increasingly being evaluated for clinical diagnosis and prognosis, few population-based autopsy studies have evaluated their utility in the context of predicting neuropathological changes. Our goal was to investigate the utility of clinically available plasma markers in predicting Braak staging, neuritic plaque score, Thal phase, and overall AD neuropathological change (ADNC).We utilized a population-based prospective study of 350 participants with autopsy and antemortem plasma biomarker testing using clinically available antibody assay (Quanterix) consisting of Aβ42/40 ratio, p-tau181, GFAP, and NfL. We utilized a variable selection procedure in cross-validated (CV) logistic regression models to identify the best set of plasma predictors along with demographic variables, and a subset of neuropsychological tests comprising the Mayo Clinic Preclinical Alzheimer Cognitive Composite (Mayo-PACC). ADNC was best predicted with plasma GFAP, NfL, p-tau181 biomarkers along with APOE ε4 carrier status and Mayo-PACC cognitive score (CV AUC = 0.798). Braak staging was best predicted using plasma GFAP, p-tau181, and cognitive scores (CV AUC = 0.774). Neuritic plaque score was best predicted using plasma Aβ42/40 ratio, p-tau181, GFAP, and NfL biomarkers (CV AUC = 0.770). Thal phase was best predicted using GFAP, NfL, p-tau181, APOE ε4 carrier status and Mayo-PACC cognitive score (CV AUC = 0.754). We found that GFAP and p-tau provided non-overlapping information on both neuritic plaque and Braak stage scores whereas Aβ42/40 and NfL were mainly useful for prediction of neuritic plaque scores. Separating participants by cognitive status improved predictive performance, particularly when plasma biomarkers were included. Plasma biomarkers can differentially inform about overall ADNC pathology, Braak staging, and neuritic plaque score when combined with demographics and cognitive variables and have significant utility for earlier detection of AD.
Collapse
Affiliation(s)
- Camilo Bermudez
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55902, USA.
| | | | - Jeremy A Syrjanen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Nikki H Stricker
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | | | - Naomi Kouri
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Walter K Kremers
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Ronald C Petersen
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55902, USA
| | | | - David S Knopman
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55902, USA
| | | | - Aivi T Nguyen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - R Ross Reichard
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Michelle M Mielke
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | |
Collapse
|
138
|
Yu L, Boyle PA, Janelidze S, Petyuk VA, Wang T, Bennett DA, Hansson O, Schneider JA. Plasma p-tau181 and p-tau217 in discriminating PART, AD and other key neuropathologies in older adults. Acta Neuropathol 2023; 146:1-11. [PMID: 37031430 PMCID: PMC10261204 DOI: 10.1007/s00401-023-02570-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/10/2023]
Abstract
We examined whether plasma p-tau181 and p-tau217 are specific biomarkers of pathologically confirmed Alzheimer's disease (AD). In particular, we investigated the utility of plasma p-tau for differentiating AD from primary age-related tauopathy (PART), as well as AD with mixed pathologies. Data came from 269 older adults who participated in the Religious Orders Study or the Rush Memory and Aging Project. Blood samples were collected during annual clinical evaluations. Participants died and underwent brain autopsy. P-tau181 and p-tau217 were quantified in the plasma samples proximate to death (average interval before death: 1.4 years) using Lilly-developed MSD immunoassays. Uniform neuropathologic evaluations assessed AD, PART, and other common degenerative and cerebrovascular conditions. Plasma p-tau217 was more strongly correlated with brain β-amyloid and paired helical filament tau (PHFtau) tangles than p-tau181. Both p-tau markers were associated with greater odds of AD, but p-tau217 had higher accuracy (area under the ROC curve (AUC): 0.83) than p-tau181 (AUC: 0.76). Plasma p-tau markers were almost exclusively associated with AD pathologic indices with the exception of cerebral amyloid angiopathy. Compared to p-tau181, p-tau217 showed a higher AUC (0.82 versus 0.74) in differentiating AD from PART. For either p-tau, we did not observe a level difference between individuals with AD alone and those with mixed AD pathologies. In summary, plasma p-tau181and p-tau217 were specifically associated with AD pathological changes. Further, our data provide initial evidence that p-tau217 may be able to differentiate between AD and PART in individuals with comparable burdens of tau tangle pathology. These results demonstrate the specificity of p-tau217 for AD, supporting its use to identify patients suitable for anti-AD therapies including β-amyloid immunotherapies.
Collapse
Affiliation(s)
- Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison Street, Suite 1000, Chicago, IL, 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Patricia A Boyle
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison Street, Suite 1000, Chicago, IL, 60612, USA
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | | | - Tianhao Wang
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison Street, Suite 1000, Chicago, IL, 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison Street, Suite 1000, Chicago, IL, 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.
- Memory Clinic, Skåne University Hospital, SE-205 02, Malmö, Sweden.
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison Street, Suite 1000, Chicago, IL, 60612, USA.
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
139
|
Mohamed W, Kumar J, Alghamdi BS, Soliman AH, Toshihide Y. Neurodegeneration and inflammation crosstalk: Therapeutic targets and perspectives. IBRO Neurosci Rep 2023; 14:95-110. [PMID: 37388502 PMCID: PMC10300452 DOI: 10.1016/j.ibneur.2022.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/19/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Glia, which was formerly considered to exist just to connect neurons, now plays a key function in a wide range of physiological events, including formation of memory, learning, neuroplasticity, synaptic plasticity, energy consumption, and homeostasis of ions. Glial cells regulate the brain's immune responses and confers nutritional and structural aid to neurons, making them an important player in a broad range of neurological disorders. Alzheimer's, ALS, Parkinson's, frontotemporal dementia (FTD), and epilepsy are a few of the neurodegenerative diseases that have been linked to microglia and astroglia cells, in particular. Synapse growth is aided by glial cell activity, and this activity has an effect on neuronal signalling. Each glial malfunction in diverse neurodegenerative diseases is distinct, and we will discuss its significance in the progression of the illness, as well as its potential for future treatment.
Collapse
Affiliation(s)
- Wael Mohamed
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia (IIUM), Kuantan, Malaysia
- Clinical Pharmacology Department, Menoufia Medical School, Menoufia University, Menoufia, Egypt
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, UKM Medical Centre (UKMMC), Kuala Lumpur, Malaysia
| | | | | | | |
Collapse
|
140
|
Luebke M, Parulekar M, Thomas FP. Fluid biomarkers for the diagnosis of neurodegenerative diseases. Biomark Neuropsychiatry 2023. [DOI: 10.1016/j.bionps.2023.100062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
141
|
Bellaver B, Povala G, Ferreira PCL, Ferrari-Souza JP, Leffa DT, Lussier FZ, Benedet AL, Ashton NJ, Triana-Baltzer G, Kolb HC, Tissot C, Therriault J, Servaes S, Stevenson J, Rahmouni N, Lopez OL, Tudorascu DL, Villemagne VL, Ikonomovic MD, Gauthier S, Zimmer ER, Zetterberg H, Blennow K, Aizenstein HJ, Klunk WE, Snitz BE, Maki P, Thurston RC, Cohen AD, Ganguli M, Karikari TK, Rosa-Neto P, Pascoal TA. Astrocyte reactivity influences amyloid-β effects on tau pathology in preclinical Alzheimer's disease. Nat Med 2023:10.1038/s41591-023-02380-x. [PMID: 37248300 PMCID: PMC10353939 DOI: 10.1038/s41591-023-02380-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/01/2023] [Indexed: 05/31/2023]
Abstract
An unresolved question for the understanding of Alzheimer's disease (AD) pathophysiology is why a significant percentage of amyloid-β (Aβ)-positive cognitively unimpaired (CU) individuals do not develop detectable downstream tau pathology and, consequently, clinical deterioration. In vitro evidence suggests that reactive astrocytes unleash Aβ effects in pathological tau phosphorylation. Here, in a biomarker study across three cohorts (n = 1,016), we tested whether astrocyte reactivity modulates the association of Aβ with tau phosphorylation in CU individuals. We found that Aβ was associated with increased plasma phosphorylated tau only in individuals positive for astrocyte reactivity (Ast+). Cross-sectional and longitudinal tau-positron emission tomography analyses revealed an AD-like pattern of tau tangle accumulation as a function of Aβ only in CU Ast+ individuals. Our findings suggest astrocyte reactivity as an important upstream event linking Aβ with initial tau pathology, which may have implications for the biological definition of preclinical AD and for selecting CU individuals for clinical trials.
Collapse
Affiliation(s)
- Bruna Bellaver
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Graduate Program in Biological Sciences-Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Guilherme Povala
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - João Pedro Ferrari-Souza
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Graduate Program in Biological Sciences-Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Douglas T Leffa
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Firoza Z Lussier
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andréa L Benedet
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | | | - Hartmuth C Kolb
- Neuroscience Biomarkers, Janssen Research and Development, La Jolla, CA, USA
| | - Cécile Tissot
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Joseph Therriault
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Stijn Servaes
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Jenna Stevenson
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Nesrine Rahmouni
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Oscar L Lopez
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dana L Tudorascu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biostatistics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Milos D Ikonomovic
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research Education and Clinical Center, VA Pittsburgh HS, Pittsburgh, PA, USA
| | - Serge Gauthier
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Eduardo R Zimmer
- Graduate Program in Biological Sciences-Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Department of Pharmacology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Brain Institute, PUCRS, Porto Alegre, Brazil
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Howard J Aizenstein
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - William E Klunk
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beth E Snitz
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Pauline Maki
- Department of Psychiatry, University of Illinois, Chicago, IL, USA
| | - Rebecca C Thurston
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Ann D Cohen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mary Ganguli
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Thomas K Karikari
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Brain Imaging Centre, Montreal Neurological Institute-Hospital, Montreal, Quebec, Canada
| | - Tharick A Pascoal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
142
|
Fontana IC, Scarpa M, Malarte ML, Rocha FM, Ausellé-Bosch S, Bluma M, Bucci M, Chiotis K, Kumar A, Nordberg A. Astrocyte Signature in Alzheimer's Disease Continuum through a Multi-PET Tracer Imaging Perspective. Cells 2023; 12:1469. [PMID: 37296589 PMCID: PMC10253101 DOI: 10.3390/cells12111469] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/02/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Reactive astrogliosis is an early event in the continuum of Alzheimer's disease (AD). Current advances in positron emission tomography (PET) imaging provide ways of assessing reactive astrogliosis in the living brain. In this review, we revisit clinical PET imaging and in vitro findings using the multi-tracer approach, and point out that reactive astrogliosis precedes the deposition of Aβ plaques, tau pathology, and neurodegeneration in AD. Furthermore, considering the current view of reactive astrogliosis heterogeneity-more than one subtype of astrocyte involved-in AD, we discuss how astrocytic body fluid biomarkers might fit into trajectories different from that of astrocytic PET imaging. Future research focusing on the development of innovative astrocytic PET radiotracers and fluid biomarkers may provide further insights into the heterogeneity of reactive astrogliosis and improve the detection of AD in its early stages.
Collapse
Affiliation(s)
- Igor C. Fontana
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Miriam Scarpa
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Mona-Lisa Malarte
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Filipa M. Rocha
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 52 Stockholm, Sweden
- Instituto de Ciência Biomédicas Abel Salazar da Universidade do Porto, 4050-313 Porto, Portugal
- Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
| | - Sira Ausellé-Bosch
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 52 Stockholm, Sweden
- Faculty of Health and Life Sciences, Pompeu Fabra University, 08003 Barcelona, Spain
| | - Marina Bluma
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Marco Bucci
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Konstantinos Chiotis
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Amit Kumar
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Agneta Nordberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 52 Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, 141 57 Stockholm, Sweden
| |
Collapse
|
143
|
Xu Y, Jiang H, Zhu B, Cao M, Feng T, Sun Z, Du G, Zhao Z. Advances and applications of fluids biomarkers in diagnosis and therapeutic targets of Alzheimer's disease. CNS Neurosci Ther 2023. [PMID: 37144603 DOI: 10.1111/cns.14238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/25/2023] [Accepted: 04/12/2023] [Indexed: 05/06/2023] Open
Abstract
AIMS Alzheimer's disease (AD) is a neurodegenerative disease with challenging early diagnosis and effective treatments due to its complex pathogenesis. AD patients are often diagnosed after the appearance of the typical symptoms, thereby delaying the best opportunity for effective measures. Biomarkers could be the key to resolving the challenge. This review aims to provide an overview of application and potential value of AD biomarkers in fluids, including cerebrospinal fluid, blood, and saliva, in diagnosis and treatment. METHODS A comprehensive search of the relevant literature was conducted to summarize potential biomarkers for AD in fluids. The paper further explored the biomarkers' utility in disease diagnosis and drug target development. RESULTS Research on biomarkers mainly focused on amyloid-β (Aβ) plaques, Tau protein abnormal phosphorylation, axon damage, synaptic dysfunction, inflammation, and related hypotheses associated with AD mechanisms. Aβ42 , total Tau (t-Tau), and phosphorylated Tau (p-Tau), have been endorsed for their diagnostic and predictive capability. However, other biomarkers remain controversial. Drugs targeting Aβ have shown some efficacy and those that target BACE1 and Tau are still undergoing development. CONCLUSION Fluid biomarkers hold considerable potential in the diagnosis and drug development of AD. However, improvements in sensitivity and specificity, and approaches for managing sample impurities, need to be addressed for better diagnosis.
Collapse
Affiliation(s)
- Yanan Xu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- School of Pharmacy, Capital Medical University, Beijing, China
| | - Hailun Jiang
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bin Zhu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Mingnan Cao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Feng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhongshi Sun
- Department of Pharmacy, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zhigang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- School of Pharmacy, Capital Medical University, Beijing, China
| |
Collapse
|
144
|
Kim KY, Shin KY, Chang KA. GFAP as a Potential Biomarker for Alzheimer's Disease: A Systematic Review and Meta-Analysis. Cells 2023; 12:cells12091309. [PMID: 37174709 PMCID: PMC10177296 DOI: 10.3390/cells12091309] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Blood biomarkers have been considered tools for the diagnosis, prognosis, and monitoring of Alzheimer's disease (AD). Although amyloid-β peptide (Aβ) and tau are primarily blood biomarkers, recent studies have identified other reliable candidates that can serve as measurable indicators of pathological conditions. One such candidate is the glial fibrillary acidic protein (GFAP), an astrocytic cytoskeletal protein that can be detected in blood samples. Increasing evidence suggests that blood GFAP levels can be used to detect early-stage AD. In this systematic review and meta-analysis, we aimed to evaluate GFAP in peripheral blood as a biomarker for AD and provide an overview of the evidence regarding its utility. Our analysis revealed that the GFAP level in the blood was higher in the Aβ-positive group than in the negative groups, and in individuals with AD or mild cognitive impairment (MCI) compared to the healthy controls. Therefore, we believe that the clinical use of blood GFAP measurements has the potential to accelerate the diagnosis and improve the prognosis of AD.
Collapse
Affiliation(s)
- Ka Young Kim
- Department of Nursing, College of Nursing, Gachon University, Incheon 21936, Republic of Korea
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
| | - Ki Young Shin
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Keun-A Chang
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Bio-Medical Sciences, Gachon Advanced Institute for Health Sciences and Technology, Gachon University, Incheon 21936, Republic of Korea
| |
Collapse
|
145
|
Pais MV, Forlenza OV, Diniz BS. Plasma Biomarkers of Alzheimer's Disease: A Review of Available Assays, Recent Developments, and Implications for Clinical Practice. J Alzheimers Dis Rep 2023; 7:355-380. [PMID: 37220625 PMCID: PMC10200198 DOI: 10.3233/adr-230029] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 05/25/2023] Open
Abstract
Recently, low-sensitive plasma assays have been replaced by new ultra-sensitive assays such as single molecule enzyme-linked immunosorbent assay (Simoa), the Mesoscale Discovery (MSD) platform, and immunoprecipitation-mass spectrometry (IP-MS) with higher accuracy in the determination of plasma biomarkers of Alzheimer's disease (AD). Despite the significant variability, many studies have established in-house cut-off values for the most promising available biomarkers. We first reviewed the most used laboratory methods and assays to measure plasma AD biomarkers. Next, we review studies focused on the diagnostic performance of these biomarkers to identify AD cases, predict cognitive decline in pre-clinical AD cases, and differentiate AD cases from other dementia. We summarized data from studies published until January 2023. A combination of plasma Aβ42/40 ratio, age, and APOE status showed the best accuracy in diagnosing brain amyloidosis with a liquid chromatography-mass spectrometry (LC-MS) assay. Plasma p-tau217 has shown the best accuracy in distinguishing Aβ-PET+ from Aβ-PET-even in cognitively unimpaired individuals. We also summarized the different cut-off values for each biomarker when available. Recently developed assays for plasma biomarkers have undeniable importance in AD research, with improved analytical and diagnostic performance. Some biomarkers have been extensively used in clinical trials and are now clinically available. Nonetheless, several challenges remain to their widespread use in clinical practice.
Collapse
Affiliation(s)
- Marcos V. Pais
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
- Laboratory of Neuroscience (LIM-27), Departamento e Instituto de Psiquiatria, Faculdade de Medicina, Universidade de Sao Paulo (FMUSP), Sao Paulo, SP, Brazil
| | - Orestes V. Forlenza
- Laboratory of Neuroscience (LIM-27), Departamento e Instituto de Psiquiatria, Faculdade de Medicina, Universidade de Sao Paulo (FMUSP), Sao Paulo, SP, Brazil
| | - Breno S. Diniz
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
146
|
Jack CR, Wiste HJ, Algeciras-Schimnich A, Figdore DJ, Schwarz CG, Lowe VJ, Ramanan VK, Vemuri P, Mielke MM, Knopman DS, Graff-Radford J, Boeve BF, Kantarci K, Cogswell PM, Senjem ML, Gunter JL, Therneau TM, Petersen RC. Predicting amyloid PET and tau PET stages with plasma biomarkers. Brain 2023; 146:2029-2044. [PMID: 36789483 PMCID: PMC10151195 DOI: 10.1093/brain/awad042] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/20/2022] [Accepted: 01/21/2023] [Indexed: 02/16/2023] Open
Abstract
Staging the severity of Alzheimer's disease pathology using biomarkers is useful for therapeutic trials and clinical prognosis. Disease staging with amyloid and tau PET has face validity; however, this would be more practical with plasma biomarkers. Our objectives were, first, to examine approaches for staging amyloid and tau PET and, second, to examine prediction of amyloid and tau PET stages using plasma biomarkers. Participants (n = 1136) were enrolled in either the Mayo Clinic Study of Aging or the Alzheimer's Disease Research Center; had a concurrent amyloid PET, tau PET and blood draw; and met clinical criteria for cognitively unimpaired (n = 864), mild cognitive impairment (n = 148) or Alzheimer's clinical syndrome with dementia (n = 124). The latter two groups were combined into a cognitively impaired group (n = 272). We used multinomial regression models to estimate discrimination [concordance (C) statistics] among three amyloid PET stages (low, intermediate, high), four tau PET stages (Braak 0, 1-2, 3-4, 5-6) and a combined amyloid and tau PET stage (none/low versus intermediate/high severity) using plasma biomarkers as predictors separately within unimpaired and impaired individuals. Plasma analytes, p-tau181, Aβ1-42 and Aβ1-40 (analysed as the Aβ42/Aβ40 ratio), glial fibrillary acidic protein and neurofilament light chain were measured on the HD-X Simoa Quanterix platform. Plasma p-tau217 was also measured in a subset (n = 355) of cognitively unimpaired participants using the Lilly Meso Scale Discovery assay. Models with all Quanterix plasma analytes along with risk factors (age, sex and APOE) most often provided the best discrimination among amyloid PET stages (C = 0.78-0.82). Models with p-tau181 provided similar discrimination of tau PET stages to models with all four plasma analytes (C = 0.72-0.85 versus C = 0.73-0.86). Discriminating a PET proxy of intermediate/high from none/low Alzheimer's disease neuropathological change with all four Quanterix plasma analytes was excellent but not better than p-tau181 only (C = 0.88 versus 0.87 for unimpaired and C = 0.91 versus 0.90 for impaired). Lilly p-tau217 outperformed the Quanterix p-tau181 assay for discriminating high versus intermediate amyloid (C = 0.85 versus 0.74) but did not improve over a model with all Quanterix plasma analytes and risk factors (C = 0.85 versus 0.83). Plasma analytes along with risk factors can discriminate between amyloid and tau PET stages and between a PET surrogate for intermediate/high versus none/low neuropathological change with accuracy in the acceptable to excellent range. Combinations of plasma analytes are better than single analytes for many staging predictions with the exception that Quanterix p-tau181 alone usually performed equivalently to combinations of Quanterix analytes for tau PET discrimination.
Collapse
Affiliation(s)
- Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Heather J Wiste
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Dan J Figdore
- Department of Laboratory Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Val J Lowe
- Department of Nuclear Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Vijay K Ramanan
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Michelle M Mielke
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - David S Knopman
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Bradley F Boeve
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | - Terry M Therneau
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
147
|
De Bastiani MA, Bellaver B, Brum WS, Souza DG, Ferreira PCL, Rocha AS, Povala G, Ferrari-Souza JP, Benedet AL, Ashton NJ, Karikari TK, Zetterberg H, Blennow K, Rosa-Neto P, Pascoal TA, Zimmer ER. Hippocampal GFAP-positive astrocyte responses to amyloid and tau pathologies. Brain Behav Immun 2023; 110:175-184. [PMID: 36878332 DOI: 10.1016/j.bbi.2023.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/10/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
INTRODUCTION In Alzheimer's disease clinical research, glial fibrillary acidic protein (GFAP) released/leaked into the cerebrospinal fluid and blood is widely measured and perceived as a biomarker of reactive astrogliosis. However, it was demonstrated that GFAP levels differ in individuals presenting with amyloid-β (Aβ) or tau pathologies. The molecular underpinnings behind this specificity are little explored. Here we investigated biomarker and transcriptomic associations of hippocampal GFAP-positive astrocytes with Aβ and tau pathologies in humans and mouse models. METHODS We studied 90 individuals with plasma GFAP, Aβ- and Tau-PET to investigate the association between biomarkers. Then, transcriptomic analysis in hippocampal GFAP-positive astrocytes isolated from mouse models presenting Aβ (PS2APP) or tau (P301S) pathologies was conducted to explore differentially expressed genes (DEGs), Gene Ontology terms, and protein-protein interaction networks associated with each phenotype. RESULTS In humans, we found that plasma GFAP associates with Aβ but not tau pathology. Unveiling the unique nature of hippocampal GFAP-positive astrocytic responses to Aβ or tau pathologies, mouse transcriptomics showed scarce overlap of DEGs between the Aβ. and tau mouse models. While Aβ GFAP-positive astrocytes were overrepresented with DEGs associated with proteostasis and exocytosis-related processes, tau hippocampal GFAP-positive astrocytes presented greater abnormalities in functions related to DNA/RNA processing and cytoskeleton dynamics. CONCLUSION Our results offer insights into Aβ- and tau-driven specific signatures in hippocampal GFAP-positive astrocytes. Characterizing how different underlying pathologies distinctly influence astrocyte responses is critical for the biological interpretation of astrocyte biomarkers and suggests the need to develop context-specific astrocyte targets to study AD. FUNDING This study was supported by Instituto Serrapilheira, Alzheimer's Association, CAPES, CNPq and FAPERGS.
Collapse
Affiliation(s)
- Marco Antônio De Bastiani
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bruna Bellaver
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wagner S Brum
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Debora G Souza
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Brain Institute of Rio Grande do Sul, PUCRS, Porto Alegre, RS, Brazil
| | | | - Andreia S Rocha
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guilherme Povala
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - João Pedro Ferrari-Souza
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrea L Benedet
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden; Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Thomas K Karikari
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA; Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging (MCSA), Douglas Mental Health University Institute, Departments of Neurology and Neurosurgery, Psychiatry, and Pharmacology, McGill University, Montreal, Canada
| | - Tharick A Pascoal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eduardo R Zimmer
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Pharmacology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Brain Institute of Rio Grande do Sul, PUCRS, Porto Alegre, RS, Brazil.
| |
Collapse
|
148
|
Hansson O, Blennow K, Zetterberg H, Dage J. Blood biomarkers for Alzheimer's disease in clinical practice and trials. NATURE AGING 2023; 3:506-519. [PMID: 37202517 PMCID: PMC10979350 DOI: 10.1038/s43587-023-00403-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/21/2023] [Indexed: 05/20/2023]
Abstract
Blood-based biomarkers hold great promise to revolutionize the diagnostic and prognostic work-up of Alzheimer's disease (AD) in clinical practice. This is very timely, considering the recent development of anti-amyloid-β (Aβ) immunotherapies. Several assays for measuring phosphorylated tau (p-tau) in plasma exhibit high diagnostic accuracy in distinguishing AD from all other neurodegenerative diseases in patients with cognitive impairment. Prognostic models based on plasma p-tau levels can also predict future development of AD dementia in patients with mild cognitive complaints. The use of such high-performing plasma p-tau assays in the clinical practice of specialist memory clinics would reduce the need for more costly investigations involving cerebrospinal fluid samples or positron emission tomography. Indeed, blood-based biomarkers already facilitate identification of individuals with pre-symptomatic AD in the context of clinical trials. Longitudinal measurements of such biomarkers will also improve the detection of relevant disease-modifying effects of new drugs or lifestyle interventions.
Collapse
Affiliation(s)
- Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden.
- Memory Clinic, Skåne University Hospital, Lund, Sweden.
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for 27 Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Jeffrey Dage
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
149
|
Mao S, Teng X, Li Z, Zu J, Zhang T, Xu C, Cui G. Association of serum neurofilament light chain and glial fibrillary acidic protein levels with cognitive decline in Parkinson's disease. Brain Res 2023; 1805:148271. [PMID: 36754139 DOI: 10.1016/j.brainres.2023.148271] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Abstract
OBJECTIVES To investigate whether serum neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) levels are associated with motor and cognitive function in Parkinson's disease (PD). METHODS This cross-sectional study recruited 140 participants, including 103 PD patients and 37 healthy controls (HC). Serum NfL and GFAP levels were measured using the ultrasensitive single-molecule array (Simoa) technique. Motor and cognitive function were evaluated using the Movement Disorder Society Unified Parkinson's Disease Rating Scale Part III (MDS-UPDRS III) and Beijing version of the Montreal Cognitive Assessment (MoCA). Spearman's correlation analyses were used to determine the correlation between serum NfL and GFAP levels and clinical features in PD patients. Binary logistic regression analysis was used to assess the association between serum biomarkers and cognitive impairment in PD patients. RESULTS We observed significantly higher serum NfL and GFAP levels in PD patients than in HC (p < 0.001). Serum NfL and GFAP levels were negatively correlated with MoCA scores (NfL: r = - 0.472, p < 0.001; r = 0.395, p < 0.001) and multiple cognitive domains and showed no correlation with motor symptom severity after adjusting for age and sex. Binary logistic regression analysis showed that the serum NfL and GFAP levels were independent contributors to PD with dementia (p < 0.05). CONCLUSIONS Both serum NfL and GFAP levels correlated with cognitive impairment, but not motor symptoms, in PD patients. Serum NfL and GFAP levels can serve as biomarkers for PD patients at risk of cognitive decline.
Collapse
Affiliation(s)
- Shuai Mao
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu Province 221000, China; Department of Neurology, The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221000, China
| | - Xing Teng
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu Province 221000, China; Department of Neurology, The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221000, China
| | - Zhen Li
- Department of Neurology, The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221000, China
| | - Jie Zu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu Province 221000, China
| | - Tao Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu Province 221000, China
| | - Chuanying Xu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu Province 221000, China; Department of Neurology, The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221000, China.
| | - Guiyun Cui
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu Province 221000, China; Department of Neurology, The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221000, China.
| |
Collapse
|
150
|
Eide PK, Lashkarivand A, Pripp A, Valnes LM, Hovd MH, Ringstad G, Blennow K, Zetterberg H. Plasma neurodegeneration biomarker concentrations associate with glymphatic and meningeal lymphatic measures in neurological disorders. Nat Commun 2023; 14:2084. [PMID: 37045847 PMCID: PMC10097687 DOI: 10.1038/s41467-023-37685-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Clearance of neurotoxic brain proteins via cerebrospinal fluid (CSF) to blood has recently emerged to be crucial, and plasma biomarkers of neurodegeneration were newly introduced to predict neurological disease. This study examines in 106 individuals with neurological disorders associations between plasma biomarkers [40 and 42 amino acid-long amyloid-β (Aβ40 and Aβ42), total-tau, glial fibrillary acidic protein (GFAP), and neurofilament light (NfL)] and magnetic resonance imaging measures of CSF-mediated clearance from brain via extra-vascular pathways (proxy of glymphatic function) and CSF-to-blood clearance variables from pharmacokinetic modeling (proxy of meningeal lymphatic egress). We also examine how biomarkers vary during daytime and associate with subjective sleep quality. Plasma concentrations of neurodegeneration markers associate with indices of glymphatic and meningeal lymphatic functions in individual- and disease-specific manners, vary during daytime, but are unaffected by sleep quality. The results suggest that plasma concentrations of neurodegeneration biomarkers associate with measures of glymphatic and meningeal lymphatic function.
Collapse
Affiliation(s)
- Per Kristian Eide
- Dept. of Neurosurgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway.
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Aslan Lashkarivand
- Dept. of Neurosurgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Are Pripp
- Oslo Centre of Biostatistics and Epidemiology, Research Support Services, Oslo University Hospital, Oslo, Norway
- Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| | - Lars Magnus Valnes
- Dept. of Neurosurgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Markus Herberg Hovd
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Geir Ringstad
- Dept. of Radiology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
- Department of Geriatrics and Internal medicine, Sorlandet Hospital, Arendal, Norway
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- UW Department of Medicine, School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|