101
|
Brennan GP, Henshall DC. microRNAs in the pathophysiology of epilepsy. Neurosci Lett 2017; 667:47-52. [PMID: 28104433 DOI: 10.1016/j.neulet.2017.01.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/06/2017] [Accepted: 01/08/2017] [Indexed: 12/12/2022]
Abstract
Temporal lobe epilepsy is a common and often drug-resistant seizure disorder. The underlying pathological processes which give rise to the development of spontaneous seizures include neuroinflammation, cell loss, neurogenesis and dendritic abnormalities and many of these are driven by insult-induced changes in gene expression and gene expression regulation. MicroRNAs are powerful modulators of post-transcriptional gene expression which are dysregulated during epileptogenesis. The advent of locked nucleic acid (LNA) based inhibitory methods and mimic technology has facilitated in vivo functional assessment of these molecules in epilepsy. Here we review recent advances in our understanding of the role of these short non-coding RNAs in the pathophysiology of epilepsy.
Collapse
Affiliation(s)
- Gary P Brennan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland,123 St. Stephens Green, Dublin D02 YN77, Ireland
| | - David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland,123 St. Stephens Green, Dublin D02 YN77, Ireland.
| |
Collapse
|
102
|
Genome-Wide DNA Methylation Patterns Analysis of Noncoding RNAs in Temporal Lobe Epilepsy Patients. Mol Neurobiol 2017; 55:793-803. [PMID: 28058582 DOI: 10.1007/s12035-016-0353-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 12/13/2016] [Indexed: 12/13/2022]
Abstract
Temporal lobe epilepsy (TLE) is the most common form of adult epilepsy and frequently evolving drug resistance. Although there is growing consensus that noncoding ribonucleic acids (ncRNAs) are modulators of TLE, the knowledge about the deoxyribonucleic acid (DNA) methylation patterns of ncRNAs in TLE remains limited. In the current study, we constructed DNA methylation profiles from 30 TLE patients and 30 healthy controls for ncRNAs, primarily focusing on long ncRNAs (lncRNAs) and microRNAs (miRNAs), by reannotating data of DNA methylation BeadChip. Statistics analyses have revealed a global hypermethylation pattern in miRNA and lncRNA gene in TLE patients. Bioinformatic analyses have found aberrantly methylated miRNAs and lncRNAs are related to ion channel activity, drug metabolism, mitogen-activated protein kinase (MAPK) signaling pathway, and neurotrophin signaling pathway. Aberrantly methylated ncRNA and pathway target might be involved in TLE development and progression. The methylated and demethylated ncRNAs identified in this study provide novel insights for developing TLE biomarkers and potential therapeutic targets.
Collapse
|
103
|
He F, Liu B, Meng Q, Sun Y, Wang W, Wang C. Modulation of miR-146a/complement factor H-mediated inflammatory responses in a rat model of temporal lobe epilepsy. Biosci Rep 2016; 36:e00433. [PMID: 27852797 PMCID: PMC5180253 DOI: 10.1042/bsr20160290] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/13/2016] [Accepted: 11/15/2016] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence supports the involvement of inflammatory and immune processes in temporal lobe epilepsy (TLE). miRNAs represent small regulatory RNA molecules that have been shown to act as negative regulators of gene expression controlling different biological processes, including immune system homoeostasis and function. We investigated the expression and cellular distribution of miRNA-146a (miR-146a) in a rat model of TLE. Prominent up-regulation of miR-146a activation was evident in 1 week after status epilepticus (SE) and persisted in the chronic phase. The predicted miR-146a's target complement factor H (CFH) mRNA and protein expression was also down-regulated in TLE rat model. Furthermore, transfection of miR-146a mimics in neuronal and glial cells down-regulated CFH mRNA and protein levels respectively. Luciferase reporter assays demonstrated that miR-146a down-regulated CFH mRNA expression via 3'-UTR pairing. Down-regulating miR-146a by intracerebroventricular injection of antagomir-146a enhanced the hippocampal expression of CFH in TLE model and decreased seizure susceptibility. These findings suggest that immunopathological deficits associated with TLE can in part be explained by a generalized miR-146a-mediated down-regulation of CFH that may contribute to epileptogenesis in a rat model of TLE.
Collapse
Affiliation(s)
- Fang He
- Outpatient Department, The 316 Military Hospital, Beijing 100093, China
| | - Bei Liu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Qiang Meng
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Yang Sun
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Weiwen Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Chao Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| |
Collapse
|
104
|
MicroRNAs in epilepsy: pathophysiology and clinical utility. Lancet Neurol 2016; 15:1368-1376. [DOI: 10.1016/s1474-4422(16)30246-0] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/14/2016] [Accepted: 09/16/2016] [Indexed: 12/18/2022]
|
105
|
de Araújo MA, Marques TEBS, Octacílio-Silva S, de Arroxelas-Silva CL, Pereira MGAG, Peixoto-Santos JE, Kandratavicius L, Leite JP, Garcia-Cairasco N, Castro OW, Duzzioni M, Passos GA, Paçó-Larson ML, Góes Gitaí DL. Identification of microRNAs with Dysregulated Expression in Status Epilepticus Induced Epileptogenesis. PLoS One 2016; 11:e0163855. [PMID: 27695061 PMCID: PMC5047645 DOI: 10.1371/journal.pone.0163855] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/15/2016] [Indexed: 11/18/2022] Open
Abstract
The involvement of miRNA in mesial temporal lobe epilepsy (MTLE) pathogenesis has increasingly become a focus of epigenetic studies. Despite advances, the number of known miRNAs with a consistent expression response during epileptogenesis is still small. Addressing this situation requires additional miRNA profiling studies coupled to detailed individual expression analyses. Here, we perform a miRNA microarray analysis of the hippocampus of Wistar rats 24 hours after intra-hippocampal pilocarpine-induced Status Epilepticus (H-PILO SE). We identified 73 miRNAs that undergo significant changes, of which 36 were up-regulated and 37 were down-regulated. To validate, we selected 5 of these (10a-5p, 128a-3p, 196b-5p, 352 and 324-3p) for RT-qPCR analysis. Our results confirmed that miR-352 and 196b-5p levels were significantly higher and miR-128a-3p levels were significantly lower in the hippocampus of H-PILO SE rats. We also evaluated whether the 3 miRNAs show a dysregulated hippocampal expression at three time periods (0h, 24h and chronic phase) after systemic pilocarpine-induced status epilepticus (S-PILO SE). We demonstrate that miR-128a-3p transcripts are significantly reduced at all time points compared to the naïve group. Moreover, miR-196b-5p was significantly higher only at 24h post-SE, while miR-352 transcripts were significantly up-regulated after 24h and in chronic phase (epileptic) rats. Finally, when we compared hippocampi of epileptic and non-epileptic humans, we observed that transcript levels of miRNAs show similar trends to the animal models. In summary, we successfully identified two novel dysregulated miRNAs (196b-5p and 352) and confirmed miR-128a-3p downregulation in SE-induced epileptogenesis. Further functional assays are required to understand the role of these miRNAs in MTLE pathogenesis.
Collapse
Affiliation(s)
- Mykaella Andrade de Araújo
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | | | - Shirley Octacílio-Silva
- Department of Morphology, Health and Biological Sciences Center, Federal University of Sergipe, Aracajú, Sergipe, Brazil
| | - Carmem Lúcia de Arroxelas-Silva
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | | | - José Eduardo Peixoto-Santos
- Division of Neurology, Department of Neurosciences and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ludmyla Kandratavicius
- Division of Neurology, Department of Neurosciences and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - João Pereira Leite
- Division of Neurology, Department of Neurosciences and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Norberto Garcia-Cairasco
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Olagide Wagner Castro
- Department of Physiology and Pharmacology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | - Marcelo Duzzioni
- Department of Physiology and Pharmacology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | - Geraldo Aleixo Passos
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Maria Luisa Paçó-Larson
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Daniel Leite Góes Gitaí
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
- * E-mail:
| |
Collapse
|
106
|
Bednarczyk J, Dębski KJ, Bot AM, Lukasiuk K. MBD3 expression and DNA binding patterns are altered in a rat model of temporal lobe epilepsy. Sci Rep 2016; 6:33736. [PMID: 27650712 PMCID: PMC5030630 DOI: 10.1038/srep33736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 09/02/2016] [Indexed: 12/18/2022] Open
Abstract
The aim of the present study was to examine involvement of MBD3 (methyl-CpG-binding domain protein 3), a protein involved in reading DNA methylation patterns, in epileptogenesis and epilepsy. We used a well-characterized rat model of temporal lobe epilepsy that is triggered by status epilepticus, evoked by electrical stimulation of the amygdala. Stimulated and sham-operated animals were sacrificed 14 days after stimulation. We found that MBD3 transcript was present in neurons, oligodendrocytes, and astrocytes in both control and epileptic animals. We detected the nuclear localization of MBD3 protein in neurons, mature oligodendrocytes, and a subpopulation of astrocytes but not in microglia. Amygdala stimulation significantly increased the level of MBD3 immunofluorescence. Immunoprecipitation followed by mass spectrometry and Western blot revealed that MBD3 in the adult brain assembles the NuRD complex, which also contains MTA2, HDAC2, and GATAD2B. Using chromatin immunoprecipitation combined with deep sequencing, we observed differences in the occupancy of DNA regions by MBD3 protein between control and stimulated animals. This was not followed by subsequent changes in the mRNA expression levels of selected MBD3 targets. Our data demonstrate for the first time alterations in the MBD3 expression and DNA occupancy in the experimental model of epilepsy.
Collapse
Affiliation(s)
- Joanna Bednarczyk
- Laboratory of Epileptogenesis, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Konrad J. Dębski
- Laboratory of Epileptogenesis, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
- Laboratory of Bioinformatics, Neurobiology Center, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Anna M. Bot
- Laboratory of Epileptogenesis, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Lukasiuk
- Laboratory of Epileptogenesis, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
107
|
Piletič K, Kunej T. MicroRNA epigenetic signatures in human disease. Arch Toxicol 2016; 90:2405-19. [DOI: 10.1007/s00204-016-1815-7] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/04/2016] [Indexed: 01/27/2023]
|
108
|
Epigenetics of Epileptogenesis-Evoked Upregulation of Matrix Metalloproteinase-9 in Hippocampus. PLoS One 2016; 11:e0159745. [PMID: 27505431 PMCID: PMC4978505 DOI: 10.1371/journal.pone.0159745] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 07/07/2016] [Indexed: 01/20/2023] Open
Abstract
Enhanced levels of Matrix Metalloproteinase-9 (MMP-9) have been implicated in the pathogenesis of epilepsy in humans and rodents. Lack of Mmp-9 impoverishes, whereas excess of Mmp-9 facilitates epileptogenesis. Epigenetic mechanisms driving the epileptogenesis-related upregulation of MMP-9 expression are virtually unknown. The aim of this study was to reveal these mechanisms. We analyzed hippocampi extracted from adult and pediatric patients with temporal lobe epilepsy as well as from partially and fully pentylenetetrazole kindled rats. We used a unique approach to the analysis of the kindling model results (inclusion in the analysis of rats being during kindling, and not only a group of fully kindled animals), which allowed us to separate the molecular effects exerted by the epileptogenesis from those related to epilepsy and epileptic activity. Consequently, it allowed for a disclosure of molecular mechanisms underlying causes, and not consequences, of epilepsy. Our data show that the epileptogenesis-evoked upregulation of Mmp-9 expression is regulated by removal from Mmp-9 gene proximal promoter of the two, interweaved potent silencing mechanisms–DNA methylation and Polycomb Repressive Complex 2 (PRC2)-related repression. Demethylation depends on a gradual dissociation of the DNA methyltransferases, Dnmt3a and Dnmt3b, and on progressive association of the DNA demethylation promoting protein Gadd45β to Mmp-9 proximal gene promoter in vivo. The PRC2-related mechanism relies on dissociation of the repressive transcription factor YY1 and the dissipation of the PRC2-evoked trimethylation on Lys27 of the histone H3 from the proximal Mmp-9 promoter chromatin in vivo. Moreover, we show that the DNA hydroxymethylation, a new epigenetic DNA modification, which is localized predominantly in the gene promoters and is particularly abundant in the brain, is not involved in a regulation of MMP-9 expression during the epileptogenesis in the rat hippocampus as well as in the hippocampi of pediatric and adult epileptic patients. Additionally, we have also found that despite of its transient nature, the histone modification H3S10ph is strongly and gradually accumulated during epileptogenesis in the cell nuclei and in the proximal Mmp-9 gene promoter in the hippocampus, which suggests that H3S10ph can be involved in DNA demethylation in mammals, and not only in Neurospora. The study identifies MMP-9 as the first protein coding gene which expression is regulated by DNA methylation in human epilepsy. We present a detailed epigenetic model of the epileptogenesis-evoked upregulation of MMP-9 expression in the hippocampus. To our knowledge, it is the most complex and most detailed mechanism of epigenetic regulation of gene expression ever revealed for a particular gene in epileptogenesis. Our results also suggest for the first time that dysregulation of DNA methylation found in epilepsy is a cause rather than a consequence of this condition.
Collapse
|
109
|
Toti KS, Osborne D, Ciancetta A, Boison D, Jacobson KA. South (S)- and North (N)-Methanocarba-7-Deazaadenosine Analogues as Inhibitors of Human Adenosine Kinase. J Med Chem 2016; 59:6860-77. [PMID: 27410258 PMCID: PMC5032833 DOI: 10.1021/acs.jmedchem.6b00689] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adenosine kinase (AdK) inhibitors raise endogenous adenosine levels, particularly in disease states, and have potential for treatment of seizures, neurodegeneration, and inflammation. On the basis of the South (S) ribose conformation and molecular dynamics (MD) analysis of nucleoside inhibitors bound in AdK X-ray crystallographic structures, (S)- and North (N)-methanocarba (bicyclo[3.1.0]hexane) derivatives of known inhibitors were prepared and compared as human (h) AdK inhibitors. 5'-Hydroxy (34, MRS4202 (S); 55, MRS4380 (N)) and 5'-deoxy 38a (MRS4203 (S)) analogues, containing 7- and N(6)-NH phenyl groups in 7-deazaadenine, robustly inhibited AdK activity (IC50 ∼ 100 nM), while the 5'-hydroxy derivative 30 lacking the phenyl substituents was weak. Docking in the hAdK X-ray structure and MD simulation suggested a mode of binding similar to 5'-deoxy-5-iodotubercidin and other known inhibitors. Thus, a structure-based design approach for further potency enhancement is possible. The potent AdK inhibitors in this study are ready to be further tested in animal models of epilepsy.
Collapse
Affiliation(s)
- Kiran S Toti
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bldg. 8A, Rm. B1A-19, Bethesda, Maryland 20892-0810, United States
| | - Danielle Osborne
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute , 1225 NE Second Avenue, Portland, Oregon 97232, United States
| | - Antonella Ciancetta
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bldg. 8A, Rm. B1A-19, Bethesda, Maryland 20892-0810, United States
| | - Detlev Boison
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute , 1225 NE Second Avenue, Portland, Oregon 97232, United States
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bldg. 8A, Rm. B1A-19, Bethesda, Maryland 20892-0810, United States
| |
Collapse
|
110
|
Wang JG, Cai Q, Zheng J, Dong YS, Li JJ, Li JC, Hao GZ, Wang C, Wang JL. Epigenetic Suppression of GADs Expression is Involved in Temporal Lobe Epilepsy and Pilocarpine-Induced Mice Epilepsy. Neurochem Res 2016; 41:1751-60. [PMID: 27220336 DOI: 10.1007/s11064-016-1891-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/06/2016] [Accepted: 03/17/2016] [Indexed: 01/02/2023]
Abstract
Recent studies have shown that histone acetylation is involved with the regulation of enzyme glutamate decarboxylases (GADs), including GAD67 and GAD65. Here, we investigated the histone acetylation modifications of GADs in the pathogenesis of epilepsy and explored the therapeutic effect of a novel second-generation histone deacetylase inhibitor (HDACi) JNJ-26481585 in epilepsy animals. We revealed the suppression of GADs protein and mRNA level, and histone hypoacetylation in patients with temporal lobe epilepsy and pilocarpine-induced epilepsy mice model. Double-immunofluorescence also indicated that the hypoacetyl-H3 was located in hippocampal GAD67/GAD65 positive neurons in epilepsy mice. JNJ-26481585 significantly reversed the decrease of the GAD67/GAD65 both protein and mRNA levels, and the histone hypoacetylation of GABAergic neurons in epilepsy mice. Meanwhile, single-cell real-time PCR performed in GFP-GAD67/GAD65 transgenic mice demonstrated that JNJ-26481585 induced increase of GAD67/GAD65 mRNA level in GABAergic neurons. Furthermore, JNJ-26481585 significantly alleviated the epileptic seizures in mice model. Together, our findings demonstrate inhibition of GADs gene via histone acetylation plays an important role in the pathgenesis of epilepsy, and suggest JNJ-26481585 as a promising therapeutic strategy for epilepsy.
Collapse
Affiliation(s)
- Jin-Gang Wang
- Department of Neurosurgery, The 463rd Hospital of PLA, Shenyang, Liaoning, 110042, People's Republic of China
| | - Qing Cai
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Jun Zheng
- Department of Neurosurgery, The 463rd Hospital of PLA, Shenyang, Liaoning, 110042, People's Republic of China
| | - Yu-Shu Dong
- Department of Neurosurgery, General Hospital of Shenyang Military Command Area, Shenyang, Liaoning, 110016, People's Republic of China
| | - Jin-Jiang Li
- Department of Neurosurgery, General Hospital of Shenyang Military Command Area, Shenyang, Liaoning, 110016, People's Republic of China
| | - Jing-Chen Li
- Department of Neurosurgery, General Hospital of Shenyang Military Command Area, Shenyang, Liaoning, 110016, People's Republic of China
| | - Guang-Zhi Hao
- Department of Neurosurgery, General Hospital of Shenyang Military Command Area, Shenyang, Liaoning, 110016, People's Republic of China
| | - Chao Wang
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
| | - Ju-Lei Wang
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
| |
Collapse
|
111
|
Dębski KJ, Pitkanen A, Puhakka N, Bot AM, Khurana I, Harikrishnan KN, Ziemann M, Kaspi A, El-Osta A, Lukasiuk K, Kobow K. Etiology matters - Genomic DNA Methylation Patterns in Three Rat Models of Acquired Epilepsy. Sci Rep 2016; 6:25668. [PMID: 27157830 PMCID: PMC4860710 DOI: 10.1038/srep25668] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/20/2016] [Indexed: 12/21/2022] Open
Abstract
This study tested the hypothesis that acquired epileptogenesis is accompanied by DNA methylation changes independent of etiology. We investigated DNA methylation and gene expression in the hippocampal CA3/dentate gyrus fields at 3 months following epileptogenic injury in three experimental models of epilepsy: focal amygdala stimulation, systemic pilocarpine injection, or lateral fluid-percussion induced traumatic brain injury (TBI) in rats. In the models studies, DNA methylation and gene expression profiles distinguished controls from injured animals. We observed consistent increased methylation in gene bodies and hypomethylation at non-genic regions. We did not find a common methylation signature in all three different models and few regions common to any two models. Our data provide evidence that genome-wide alteration of DNA methylation signatures is a general pathomechanism associated with epileptogenesis and epilepsy in experimental animal models, but the broad pathophysiological differences between models (i.e. pilocarpine, amygdala stimulation, and post-TBI) are reflected in distinct etiology-dependent DNA methylation patterns.
Collapse
Affiliation(s)
- Konrad J. Dębski
- Laboratory of Epileptogenesis, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Asla Pitkanen
- Epilepsy Research Laboratory, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Noora Puhakka
- Epilepsy Research Laboratory, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Anna M. Bot
- Laboratory of Epileptogenesis, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Ishant Khurana
- Epigenetics in Human Health and Disease, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC, Australia
| | - KN Harikrishnan
- Epigenetics in Human Health and Disease, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC, Australia
| | - Mark Ziemann
- Epigenetics in Human Health and Disease, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC, Australia
| | - Antony Kaspi
- Epigenetics in Human Health and Disease, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC, Australia
| | - Assam El-Osta
- Epigenetics in Human Health and Disease, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC, Australia
| | - Katarzyna Lukasiuk
- Laboratory of Epileptogenesis, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Katja Kobow
- Department of Neuropathology, University Hospital Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany
| |
Collapse
|
112
|
Boison D. The Biochemistry and Epigenetics of Epilepsy: Focus on Adenosine and Glycine. Front Mol Neurosci 2016; 9:26. [PMID: 27147960 PMCID: PMC4829603 DOI: 10.3389/fnmol.2016.00026] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/31/2016] [Indexed: 12/14/2022] Open
Abstract
Epilepsy, one of the most prevalent neurological conditions, presents as a complex disorder of network homeostasis characterized by spontaneous non-provoked seizures and associated comorbidities. Currently used antiepileptic drugs have been designed to suppress neuronal hyperexcitability and thereby to suppress epileptic seizures. However, the current armamentarium of antiepileptic drugs is not effective in over 30% of patients, does not affect the comorbidities of epilepsy, and does not prevent the development and progression of epilepsy (epileptogenesis). Prevention of epilepsy and its progression remains the Holy Grail for epilepsy research and therapy development, requiring novel conceptual advances to find a solution to this urgent medical need. The methylation hypothesis of epileptogenesis suggests that changes in DNA methylation are implicated in the progression of the disease. In particular, global DNA hypermethylation appears to be associated with chronic epilepsy. Clinical as well as experimental evidence demonstrates that epilepsy and its progression can be prevented by biochemical manipulations and those that target previously unrecognized epigenetic functions contributing to epilepsy development and maintenance of the epileptic state. This mini-review will discuss, epigenetic mechanisms implicated in epileptogenesis and biochemical interactions between adenosine and glycine as a conceptual advance to understand the contribution of maladaptive changes in biochemistry as a major contributing factor to the development of epilepsy. New findings based on biochemical manipulation of the DNA methylome suggest that: (i) epigenetic mechanisms play a functional role in epileptogenesis; and (ii) therapeutic reconstruction of the epigenome is an effective antiepileptogenic therapy.
Collapse
Affiliation(s)
- Detlev Boison
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute Portland, OR, USA
| |
Collapse
|
113
|
Jackson EK, Boison D, Schwarzschild MA, Kochanek PM. Purines: forgotten mediators in traumatic brain injury. J Neurochem 2016; 137:142-53. [PMID: 26809224 DOI: 10.1111/jnc.13551] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 12/12/2022]
Abstract
Recently, the topic of traumatic brain injury has gained attention in both the scientific community and lay press. Similarly, there have been exciting developments on multiple fronts in the area of neurochemistry specifically related to purine biology that are relevant to both neuroprotection and neurodegeneration. At the 2105 meeting of the National Neurotrauma Society, a session sponsored by the International Society for Neurochemistry featured three experts in the field of purine biology who discussed new developments that are germane to both the pathomechanisms of secondary injury and development of therapies for traumatic brain injury. This included presentations by Drs. Edwin Jackson on the novel 2',3'-cAMP pathway in neuroprotection, Detlev Boison on adenosine in post-traumatic seizures and epilepsy, and Michael Schwarzschild on the potential of urate to treat central nervous system injury. This mini review summarizes the important findings in these three areas and outlines future directions for the development of new purine-related therapies for traumatic brain injury and other forms of central nervous system injury. In this review, novel therapies based on three emerging areas of adenosine-related pathobiology in traumatic brain injury (TBI) were proposed, namely, therapies targeting 1) the 2',3'-cyclic adenosine monophosphate (cAMP) pathway, 2) adenosine deficiency after TBI, and 3) augmentation of urate after TBI.
Collapse
Affiliation(s)
- Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Detlev Boison
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, Oregon, USA
| | - Michael A Schwarzschild
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
114
|
Griffin NG, Wang Y, Hulette CM, Halvorsen M, Cronin KD, Walley NM, Haglund MM, Radtke RA, Skene JHP, Sinha SR, Heinzen EL. Differential gene expression in dentate granule cells in mesial temporal lobe epilepsy with and without hippocampal sclerosis. Epilepsia 2016; 57:376-85. [PMID: 26799155 DOI: 10.1111/epi.13305] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2015] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Hippocampal sclerosis is the most common neuropathologic finding in cases of medically intractable mesial temporal lobe epilepsy. In this study, we analyzed the gene expression profiles of dentate granule cells of patients with mesial temporal lobe epilepsy with and without hippocampal sclerosis to show that next-generation sequencing methods can produce interpretable genomic data from RNA collected from small homogenous cell populations, and to shed light on the transcriptional changes associated with hippocampal sclerosis. METHODS RNA was extracted, and complementary DNA (cDNA) was prepared and amplified from dentate granule cells that had been harvested by laser capture microdissection from surgically resected hippocampi from patients with mesial temporal lobe epilepsy with and without hippocampal sclerosis. Sequencing libraries were sequenced, and the resulting sequencing reads were aligned to the reference genome. Differential expression analysis was used to ascertain expression differences between patients with and without hippocampal sclerosis. RESULTS Greater than 90% of the RNA-Seq reads aligned to the reference. There was high concordance between transcriptional profiles obtained for duplicate samples. Principal component analysis revealed that the presence or absence of hippocampal sclerosis was the main determinant of the variance within the data. Among the genes up-regulated in the hippocampal sclerosis samples, there was significant enrichment for genes involved in oxidative phosphorylation. SIGNIFICANCE By analyzing the gene expression profiles of dentate granule cells from surgically resected hippocampal specimens from patients with mesial temporal lobe epilepsy with and without hippocampal sclerosis, we have demonstrated the utility of next-generation sequencing methods for producing biologically relevant results from small populations of homogeneous cells, and have provided insight on the transcriptional changes associated with this pathology.
Collapse
Affiliation(s)
- Nicole G Griffin
- Institute for Genomic Medicine, Columbia University, New York, New York, U.S.A
| | - Yu Wang
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, U.S.A
| | - Christine M Hulette
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, U.S.A
| | - Matt Halvorsen
- Institute for Genomic Medicine, Columbia University, New York, New York, U.S.A
| | - Kenneth D Cronin
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, U.S.A
| | - Nicole M Walley
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, U.S.A
| | - Michael M Haglund
- Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina, U.S.A
| | - Rodney A Radtke
- Department of Neurology, Duke University School of Medicine, Durham, North Carolina, U.S.A
| | - J H Pate Skene
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, U.S.A
| | - Saurabh R Sinha
- Department of Neurology, Duke University School of Medicine, Durham, North Carolina, U.S.A
| | - Erin L Heinzen
- Institute for Genomic Medicine, Columbia University, New York, New York, U.S.A.,Department of Pathology and Cell Biology, Columbia University, New York, New York, U.S.A
| |
Collapse
|
115
|
Jimenez-Mateos EM, Arribas-Blazquez M, Sanz-Rodriguez A, Concannon C, Olivos-Ore LA, Reschke CR, Mooney CM, Mooney C, Lugara E, Morgan J, Langa E, Jimenez-Pacheco A, Silva LFA, Mesuret G, Boison D, Miras-Portugal MT, Letavic M, Artalejo AR, Bhattacharya A, Diaz-Hernandez M, Henshall DC, Engel T. microRNA targeting of the P2X7 purinoceptor opposes a contralateral epileptogenic focus in the hippocampus. Sci Rep 2015; 5:17486. [PMID: 26631939 PMCID: PMC4668358 DOI: 10.1038/srep17486] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/30/2015] [Indexed: 01/08/2023] Open
Abstract
The ATP-gated ionotropic P2X7 receptor (P2X7R) modulates glial activation, cytokine production and neurotransmitter release following brain injury. Levels of the P2X7R are increased in experimental and human epilepsy but the mechanisms controlling P2X7R expression remain poorly understood. Here we investigated P2X7R responses after focal-onset status epilepticus in mice, comparing changes in the damaged, ipsilateral hippocampus to the spared, contralateral hippocampus. P2X7R-gated inward currents were suppressed in the contralateral hippocampus and P2rx7 mRNA was selectively uploaded into the RNA-induced silencing complex (RISC), suggesting microRNA targeting. Analysis of RISC-loaded microRNAs using a high-throughput platform, as well as functional assays, suggested the P2X7R is a target of microRNA-22. Inhibition of microRNA-22 increased P2X7R expression and cytokine levels in the contralateral hippocampus after status epilepticus and resulted in more frequent spontaneous seizures in mice. The major pro-inflammatory and hyperexcitability effects of microRNA-22 silencing were prevented in P2rx7−/− mice or by treatment with a specific P2X7R antagonist. Finally, in vivo injection of microRNA-22 mimics transiently suppressed spontaneous seizures in mice. The present study supports a role for post-transcriptional regulation of the P2X7R and suggests therapeutic targeting of microRNA-22 may prevent inflammation and development of a secondary epileptogenic focus in the brain.
Collapse
Affiliation(s)
- Eva M Jimenez-Mateos
- Department of Physiology &Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Marina Arribas-Blazquez
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Amaya Sanz-Rodriguez
- Department of Physiology &Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Caoimhin Concannon
- Department of Physiology &Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Luis A Olivos-Ore
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Cristina R Reschke
- Department of Physiology &Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Claire M Mooney
- Department of Physiology &Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Catherine Mooney
- Department of Physiology &Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Eleonora Lugara
- Department of Physiology &Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - James Morgan
- Department of Physiology &Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Elena Langa
- Department of Physiology &Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Alba Jimenez-Pacheco
- Department of Physiology &Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | - Guillaume Mesuret
- Department of Physiology &Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Detlev Boison
- Robert S. Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA
| | - M Teresa Miras-Portugal
- Department of Biochemistry, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Michael Letavic
- Janssen Research &Development, LLC, Neuroscience, 3210 Merryfield Row, San Diego, CA 92121, San Diego, USA
| | - Antonio R Artalejo
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Anindya Bhattacharya
- Janssen Research &Development, LLC, Neuroscience, 3210 Merryfield Row, San Diego, CA 92121, San Diego, USA
| | - Miguel Diaz-Hernandez
- Department of Biochemistry, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - David C Henshall
- Department of Physiology &Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Tobias Engel
- Department of Physiology &Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
116
|
Human brain slices for epilepsy research: Pitfalls, solutions and future challenges. J Neurosci Methods 2015; 260:221-32. [PMID: 26434706 DOI: 10.1016/j.jneumeth.2015.09.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 12/17/2022]
Abstract
Increasingly, neuroscientists are taking the opportunity to use live human tissue obtained from elective neurosurgical procedures for electrophysiological studies in vitro. Access to this valuable resource permits unique studies into the network dynamics that contribute to the generation of pathological electrical activity in the human epileptic brain. Whilst this approach has provided insights into the mechanistic features of electrophysiological patterns associated with human epilepsy, it is not without technical and methodological challenges. This review outlines the main difficulties associated with working with epileptic human brain slices from the point of collection, through the stages of preparation, storage and recording. Moreover, it outlines the limitations, in terms of the nature of epileptic activity that can be observed in such tissue, in particular, the rarity of spontaneous ictal discharges, we discuss manipulations that can be utilised to induce such activity. In addition to discussing conventional electrophysiological techniques that are routinely employed in epileptic human brain slices, we review how imaging and multielectrode array recordings could provide novel insights into the network dynamics of human epileptogenesis. Acute studies in human brain slices are ultimately limited by the lifetime of the tissue so overcoming this issue provides increased opportunity for information gain. We review the literature with respect to organotypic culture techniques that may hold the key to prolonging the viability of this material. A combination of long-term culture techniques, viral transduction approaches and electrophysiology in human brain slices promotes the possibility of large scale monitoring and manipulation of neuronal activity in epileptic microcircuits.
Collapse
|
117
|
Yang J, Yu L, Gaiteri C, Srivastava GP, Chibnik LB, Leurgans SE, Schneider JA, Meissner A, De Jager PL, Bennett DA. Association of DNA methylation in the brain with age in older persons is confounded by common neuropathologies. Int J Biochem Cell Biol 2015; 67:58-64. [PMID: 26003740 PMCID: PMC4564337 DOI: 10.1016/j.biocel.2015.05.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 05/10/2015] [Accepted: 05/11/2015] [Indexed: 11/18/2022]
Abstract
DNA methylation plays a crucial role in the regulation of gene expression, cell differentiation and development. Previous studies have reported age-related alterations of methylation levels in the human brain across the lifespan, but little is known about whether the observed association with age is confounded by common neuropathologies among older persons. Using genome-wide DNA methylation data from 740 postmortem brains, we interrogated 420,132 CpG sites across the genome in a cohort of individuals with ages from 66 to 108 years old, a range of ages at which many neuropathologic indices become quite common. We compared the association of DNA methylation prior to and following adjustment for common neuropathologies using a series of linear regression models. In the simplest model adjusting for technical factors including batch effect and bisulfite conversion rate, we found 8156 CpGs associated with age. The number of CpGs associated with age dropped by more than 10% following adjustment for sex. Notably, after adjusting for common neuropathologies, the total number of CpGs associated with age was reduced by approximately 40%, compared to the sex-adjusted model. These data illustrate that the association of methylation changes in the brain with age is inflated if one does not account for age-related brain pathologies. This article is part of a Directed Issue entitled: Epigenetics dynamics in development and disease.
Collapse
Affiliation(s)
- Jingyun Yang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Christopher Gaiteri
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Gyan P Srivastava
- Program in Translational NeuroPsychiatric Genomics, Departments of Neurology & Psychiatry, Institute for the Neurosciences, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Lori B Chibnik
- Program in Translational NeuroPsychiatric Genomics, Departments of Neurology & Psychiatry, Institute for the Neurosciences, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Sue E Leurgans
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA; Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - Alexander Meissner
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Philip L De Jager
- Program in Translational NeuroPsychiatric Genomics, Departments of Neurology & Psychiatry, Institute for the Neurosciences, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
118
|
Boison D. Adenosinergic signaling in epilepsy. Neuropharmacology 2015; 104:131-9. [PMID: 26341819 DOI: 10.1016/j.neuropharm.2015.08.046] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 12/12/2022]
Abstract
Despite the introduction of at least 20 new antiepileptic drugs (AEDs) into clinical practice over the past decades, about one third of all epilepsies remain refractory to conventional forms of treatment. In addition, currently used AEDs have been developed to suppress neuronal hyperexcitability, but not necessarily to address pathogenic mechanisms involved in epilepsy development or progression (epileptogenesis). For those reasons endogenous seizure control mechanisms of the brain may provide alternative therapeutic opportunities. Adenosine is a well characterized endogenous anticonvulsant and seizure terminator of the brain. Several lines of evidence suggest that endogenous adenosine-mediated seizure control mechanisms fail in chronic epilepsy, whereas therapeutic adenosine augmentation effectively prevents epileptic seizures, even those that are refractory to conventional AEDs. New findings demonstrate that dysregulation of adenosinergic mechanisms are intricately involved in the development of epilepsy and its comorbidities, whereas adenosine-associated epigenetic mechanisms may play a role in epileptogenesis. The first goal of this review is to discuss how maladaptive changes of adenosinergic mechanisms contribute to the expression of seizures (ictogenesis) and the development of epilepsy (epileptogenesis) by focusing on pharmacological (adenosine receptor dependent) and biochemical (adenosine receptor independent) mechanisms as well as on enzymatic and transport based mechanisms that control the availability (homeostasis) of adenosine. The second goal of this review is to highlight innovative adenosine-based opportunities for therapeutic intervention aimed at reconstructing normal adenosine function and signaling for improved seizure control in chronic epilepsy. New findings suggest that transient adenosine augmentation can have lasting epigenetic effects with disease modifying and antiepileptogenic outcome. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- Detlev Boison
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR 97232, USA.
| |
Collapse
|
119
|
Abstract
With ever-increasing elder population, the high incidence of age-related diseases such as neurodegenerative disorders has turned out to be a huge public concern. Especially the elders and their families dreadfully suffer from the learning, behavioral and cognitive impairments. The lack of effective therapies for such a horrible symptom makes a great demanding for biological mechanism study for cognitive aging. Epigenetics is an emerging field that broadens the dimensions of mammalian genome blueprint. It is, unlike genetics, not only inheritable but also reversible. Recent studies suggest that DNA methylation, one of major epigenetic mechanisms, plays a pivotal role in the pathogenesis of age-related neurodegenerations and cognitive defects. In this review, the evolving knowledge of age-related cognitive functions and the potential DNA methylation mechanism of cognitive aging are discussed. That indicates the impairment of DNA methylation may be a crucial but reversible mechanism of behavioral and cognitive related neurodegeneration. The methods to examine the dynamics of DNA methylation patterns at tissue and single cell level and at the representative scale as well as the whole genome single base resolution are also briefly discussed. Importantly, the challenges of DNA methylation mechanism of cognitive aging research are brought up, and the possible solutions to tackle these difficulties are put forward.
Collapse
Affiliation(s)
- Xiangru Xu
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
120
|
Grote A, Schoch S, Becker AJ. Temporal lobe epilepsy: a unique window into living human brain epigenetic gene regulation. ACTA ACUST UNITED AC 2015; 138:509-11. [PMID: 25713401 DOI: 10.1093/brain/awu386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
121
|
Abstract
Epilepsy is a common, serious neurological disease characterized by recurring seizures. Such abnormal, excessive synchronous firing of neurons arises in part because of imbalances in excitation and inhibition in the brain. The process of epileptogenesis, during which the normal brain is transformed after injury to one capable of generating spontaneous seizures, is associated with large-scale changes in gene expression. These contribute to the remodelling of brain networks that permanently alters excitability. Components of the microRNA (miRNA) biogenesis pathway have been found to be altered in brain tissue from epilepsy patients and experimental epileptogenic insults result in select changes to miRNAs regulating neuronal microstructure, cell death, inflammation, and ion channels. Targeting key miRNAs has been shown to alter brain excitability and suppress or exacerbate seizures, indicating potential for miRNA-based therapeutics in epilepsy. Altered miRNA profiles in biofluids may be potentially useful biomarkers of epileptogenesis. In summary, miRNAs represent an important layer of gene expression control in epilepsy with therapeutic and biomarker potential.
Collapse
|