101
|
Ciampa CJ, Parent JH, Harrison TM, Fain RM, Betts MJ, Maass A, Winer JR, Baker SL, Janabi M, Furman DJ, D'Esposito M, Jagust WJ, Berry AS. Associations among locus coeruleus catecholamines, tau pathology, and memory in aging. Neuropsychopharmacology 2022; 47:1106-1113. [PMID: 35034099 PMCID: PMC8938463 DOI: 10.1038/s41386-022-01269-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/16/2021] [Accepted: 01/04/2022] [Indexed: 12/20/2022]
Abstract
The locus coeruleus (LC) is the brain's major source of the neuromodulator norepinephrine, and is also profoundly vulnerable to the development of Alzheimer's disease (AD)-related tau pathology. Norepinephrine plays a role in neuroprotective functions that may reduce AD progression, and also underlies optimal memory performance. Successful maintenance of LC neurochemical function represents a candidate mechanism of protection against the propagation of AD-related pathology and may facilitate the preservation of memory performance despite pathology. Using [18F]Fluoro-m-tyrosine ([18F]FMT) PET imaging to measure catecholamine synthesis capacity in LC regions of interest, we examined relationships among LC neurochemical function, AD-related pathology, and memory performance in cognitively normal older adults (n = 49). Participants underwent [11C]Pittsburgh compound B and [18F]Flortaucipir PET to quantify β-amyloid (n = 49) and tau burden (n = 42) respectively. In individuals with substantial β-amyloid, higher LC [18F]FMT net tracer influx (Kivis) was associated with lower temporal tau. Longitudinal tau-PET analyses in a subset of our sample (n = 30) support these findings to reveal reduced temporal tau accumulation in the context of higher LC [18F]FMT Kivis. Higher LC catecholamine synthesis capacity was positively correlated with self-reported cognitive engagement and physical activity across the lifespan, established predictors of successful aging measured with the Lifetime Experiences Questionnaire. LC catecholamine synthesis capacity moderated tau's negative effect on memory, such that higher LC catecholamine synthesis capacity was associated with better-than-expected memory performance given an individual's tau burden. These PET findings provide insight into the neurochemical mechanisms of AD vulnerability and cognitive resilience in the living human brain.
Collapse
Affiliation(s)
- Claire J Ciampa
- Department of Psychology, Brandeis University, Waltham, MA, 02453, USA
| | - Jourdan H Parent
- Department of Psychology, Brandeis University, Waltham, MA, 02453, USA
| | - Theresa M Harrison
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Rebekah M Fain
- Department of Psychology, Brandeis University, Waltham, MA, 02453, USA
| | - Matthew J Betts
- Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University, Magdeburg, 39106, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Magdeburg, 39120, Germany
- Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| | - Anne Maass
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Magdeburg, 39120, Germany
| | - Joseph R Winer
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Suzanne L Baker
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Mustafa Janabi
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Daniella J Furman
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
- University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Mark D'Esposito
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Anne S Berry
- Department of Psychology, Brandeis University, Waltham, MA, 02453, USA.
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
102
|
Hu Y, Kirmess KM, Meyer MR, Rabinovici GD, Gatsonis C, Siegel BA, Whitmer RA, Apgar C, Hanna L, Kanekiyo M, Kaplow J, Koyama A, Verbel D, Holubasch MS, Knapik SS, Connor J, Contois JH, Jackson EN, Harpstrite SE, Bateman RJ, Holtzman DM, Verghese PB, Fogelman I, Braunstein JB, Yarasheski KE, West T. Assessment of a Plasma Amyloid Probability Score to Estimate Amyloid Positron Emission Tomography Findings Among Adults With Cognitive Impairment. JAMA Netw Open 2022; 5:e228392. [PMID: 35446396 PMCID: PMC9024390 DOI: 10.1001/jamanetworkopen.2022.8392] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
IMPORTANCE The diagnostic evaluation for Alzheimer disease may be improved by a blood-based diagnostic test identifying presence of brain amyloid plaque pathology. OBJECTIVE To determine the clinical performance associated with a diagnostic algorithm incorporating plasma amyloid-β (Aβ) 42:40 ratio, patient age, and apoE proteotype to identify brain amyloid status. DESIGN, SETTING, AND PARTICIPANTS This cohort study includes analysis from 2 independent cross-sectional cohort studies: the discovery cohort of the Plasma Test for Amyloidosis Risk Screening (PARIS) study, a prospective add-on to the Imaging Dementia-Evidence for Amyloid Scanning study, including 249 patients from 2018 to 2019, and MissionAD, a dataset of 437 biobanked patient samples obtained at screenings during 2016 to 2019. Data were analyzed from May to November 2020. EXPOSURES Amyloid detected in blood and by positron emission tomography (PET) imaging. MAIN OUTCOMES AND MEASURES The main outcome was the diagnostic performance of plasma Aβ42:40 ratio, together with apoE proteotype and age, for identifying amyloid PET status, assessed by accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC). RESULTS All 686 participants (mean [SD] age 73.2 [6.3] years; 368 [53.6%] men; 378 participants [55.1%] with amyloid PET findings) had symptoms of mild cognitive impairment or mild dementia. The AUC of plasma Aβ42:40 ratio for PARIS was 0.79 (95% CI, 0.73-0.85) and 0.86 (95% CI, 0.82-0.89) for MissionAD. Ratio cutoffs for Aβ42:40 based on the Youden index were similar between cohorts (PARIS: 0.089; MissionAD: 0.092). A logistic regression model (LRM) incorporating Aβ42:40 ratio, apoE proteotype, and age improved diagnostic performance within each cohort (PARIS: AUC, 0.86 [95% CI, 0.81-0.91]; MissionAD: AUC, 0.89 [95% CI, 0.86-0.92]), and overall accuracy was 78% (95% CI, 72%-83%) for PARIS and 83% (95% CI, 79%-86%) for MissionAD. The model developed on the prospectively collected samples from PARIS performed well on the MissionAD samples (AUC, 0.88 [95% CI, 0.84-0.91]; accuracy, 78% [95% CI, 74%-82%]). Training the LRM on combined cohorts yielded an AUC of 0.88 (95% CI, 0.85-0.91) and accuracy of 81% (95% CI, 78%-84%). The output of this LRM is the Amyloid Probability Score (APS). For clinical use, 2 APS cutoff values were established yielding 3 categories, with low, intermediate, and high likelihood of brain amyloid plaque pathology. CONCLUSIONS AND RELEVANCE These findings suggest that this blood biomarker test could allow for distinguishing individuals with brain amyloid-positive PET findings from individuals with amyloid-negative PET findings and serve as an aid for Alzheimer disease diagnosis.
Collapse
Affiliation(s)
- Yan Hu
- C2N Diagnostics, St Louis, Missouri
| | | | | | - Gil D. Rabinovici
- Departments of Neurology, Radiology & Biomedical Imaging, University of California, San Francisco
| | - Constantine Gatsonis
- Center for Statistical Sciences, Brown University School of Public Health, Providence, Rhode Island
| | - Barry A. Siegel
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri
| | - Rachel A. Whitmer
- Department of Public Health Sciences, University of California, Davis
| | | | - Lucy Hanna
- Center for Statistical Sciences, Brown University School of Public Health, Providence, Rhode Island
| | | | | | | | | | | | | | | | | | | | | | - Randall J. Bateman
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - David M. Holtzman
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | | | | | | | | | - Tim West
- C2N Diagnostics, St Louis, Missouri
| |
Collapse
|
103
|
Putcha D, Eckbo R, Katsumi Y, Dickerson BC, Touroutoglou A, Collins JA. Tau and the fractionated default mode network in atypical Alzheimer's disease. Brain Commun 2022; 4:fcac055. [PMID: 35356035 PMCID: PMC8963312 DOI: 10.1093/braincomms/fcac055] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/26/2022] [Accepted: 03/07/2022] [Indexed: 11/12/2022] Open
Abstract
Alzheimer's disease-related atrophy in the posterior cingulate cortex, a key node of the default mode network, is present in the early stages of disease progression across clinical phenotypic variants of the disease. In the typical amnestic variant, posterior cingulate cortex neuropathology has been linked with disrupted connectivity of the posterior default mode network, but it remains unclear if this relationship is observed across atypical variants of Alzheimer's disease. In the present study, we first sought to determine if tau pathology is consistently present in the posterior cingulate cortex and other posterior nodes of the default mode network across the atypical Alzheimer's disease syndromic spectrum. Second, we examined functional connectivity disruptions within the default mode network and sought to determine if tau pathology is related to functional disconnection within this network. We studied a sample of 25 amyloid-positive atypical Alzheimer's disease participants examined with high-resolution MRI, tau (18F-AV-1451) PET, and resting-state functional MRI. In these patients, high levels of tau pathology in the posteromedial cortex and hypoconnectivity between temporal and parietal nodes of the default mode network were observed relative to healthy older controls. Furthermore, higher tau signal and reduced grey matter density in the posterior cingulate cortex and angular gyrus were associated with reduced parietal functional connectivity across individual patients, related to poorer cognitive scores. Our findings converge with what has been reported in amnestic Alzheimer's disease, and together these observations offer a unifying mechanistic feature that relates posterior cingulate cortex tau deposition to aberrant default mode network connectivity across heterogeneous clinical phenotypes of Alzheimer's disease.
Collapse
Affiliation(s)
- Deepti Putcha
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ryan Eckbo
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Yuta Katsumi
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bradford C. Dickerson
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Alzheimer’s Disease Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexandra Touroutoglou
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jessica A. Collins
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
104
|
Matsuda H, Yamao T. Software development for quantitative analysis of brain amyloid PET. Brain Behav 2022; 12:e2499. [PMID: 35134278 PMCID: PMC8933769 DOI: 10.1002/brb3.2499] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/01/2021] [Accepted: 01/02/2022] [Indexed: 11/07/2022] Open
Abstract
INTRODUCTION Centiloid (CL) scaling has become a standard quantitative measure in amyloid PET because it allows the direct comparison of results across sites, even when different analytical methods or PET tracers are used. METHODS In the present study, we developed new standalone software to easily handle a pipeline for accurate calculation of the CL scale for the five currently available amyloid PET tracers-11 C-PiB, 18 F-florbetapir, 18 F-flutemetamol, 18 F-florbetaben, and 18 F-NAV4694. This pipeline requires reorientation and coregistration of PET and MRI, anatomic standardization of coregistered PET to a standardized space using a warping parameter for coregistered MRI, application of standard volumes of interest (VOIs) to the warped PET, calculation of the standardized uptake value ratio (SUVR) for the target VOIs, and finally conversion of the SUVR to the CL scale. The PET data for these tracers were collected from the publicly available Global Alzheimer's Association Interactive Network (GAAIN) repository. We also developed software to map Z-scores for the statistical comparison of a patient's PET data with a negative control database obtained from young healthy controls in the GAAIN repository. RESULTS When whole cerebellum or whole cerebellum plus brainstem was chosen as the reference area, an excellent correlation was found between the CL scale calculated by this software and the CL scale published by GAAIN. There were no significant differences in the detection performance of significant amyloid accumulation using Z-score mapping between each 18 F-labeled tracer and 11 C-PiB. The cutoff CL values providing the most accurate detection of regional amyloid positivity in Z-score mapping were 11.8, 14.4, 14.7, 15.6, and 17.7 in the posterior cingulate gyrus and precuneus, frontal cortex, temporal cortex, parietal cortex, and striatum, respectively. CONCLUSION This software is able to not only provide reliable calculation of the global CL scale but also detect significant local amyloid accumulation in an individual patient.
Collapse
Affiliation(s)
- Hiroshi Matsuda
- Department of Biofunctional Imaging, Fukushima Medical University, Fukushima City, Fukushima, Japan.,Drug Discovery and Cyclotron Research Center, Southern Tohoku Research Institute for Neuroscience, Koriyama, Fukushima, Japan.,Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Tensho Yamao
- Drug Discovery and Cyclotron Research Center, Southern Tohoku Research Institute for Neuroscience, Koriyama, Fukushima, Japan.,Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University, Sakae, Fukushima, Japan
| |
Collapse
|
105
|
Stevens DA, Workman CI, Kuwabara H, Butters MA, Savonenko A, Nassery N, Gould N, Kraut M, Joo JH, Kilgore J, Kamath V, Holt DP, Dannals RF, Nandi A, Onyike CU, Smith GS. Regional amyloid correlates of cognitive performance in ageing and mild cognitive impairment. Brain Commun 2022; 4:fcac016. [PMID: 35233522 PMCID: PMC8882008 DOI: 10.1093/braincomms/fcac016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/03/2021] [Accepted: 02/02/2022] [Indexed: 11/13/2022] Open
Abstract
Beta-amyloid deposition is one of the earliest pathological markers associated with Alzheimer's disease. Mild cognitive impairment in the setting of beta-amyloid deposition is considered to represent a preclinical manifestation of Alzheimer's disease. In vivo imaging studies are unique in their potential to advance our understanding of the role of beta-amyloid deposition in cognitive deficits in Alzheimer's disease and in mild cognitive impairment. Previous work has shown an association between global cortical measures of beta-amyloid deposition ('amyloid positivity') in mild cognitive impairment with greater cognitive deficits and greater risk of progression to Alzheimer's disease. The focus of the present study was to examine the relationship between the regional distribution of beta-amyloid deposition and specific cognitive deficits in people with mild cognitive impairment and cognitively normal elderly individuals. Forty-seven participants with multi-domain, amnestic mild cognitive impairment (43% female, aged 57-82 years) and 37 healthy, cognitively normal comparison subjects (42% female, aged 55-82 years) underwent clinical and neuropsychological assessments and high-resolution positron emission tomography with the radiotracer 11C-labelled Pittsburgh compound B to measure beta-amyloid deposition. Brain-behaviour partial least-squares analysis was conducted to identify spatial patterns of beta-amyloid deposition that correlated with the performance on neuropsychological assessments. Partial least-squares analysis identified a single significant (P < 0.001) latent variable which accounted for 80% of the covariance between demographic and cognitive measures and beta-amyloid deposition. Performance in immediate verbal recall (R = -0.46 ± 0.07, P < 0.001), delayed verbal recall (R = -0.39 ± 0.09, P < 0.001), immediate visual-spatial recall (R = -0.39 ± 0.08, P < 0.001), delayed visual-spatial recall (R = -0.45 ± 0.08, P < 0.001) and semantic fluency (R = -0.33 ± 0.11, P = 0.002) but not phonemic fluency (R = -0.05 ± 0.12, P < 0.705) negatively covaried with beta-amyloid deposition in the identified regions. Partial least-squares analysis of the same cognitive measures with grey matter volumes showed similar associations in overlapping brain regions. These findings suggest that the regional distribution of beta-amyloid deposition and grey matter volumetric decreases is associated with deficits in executive function and memory in mild cognitive impairment. Longitudinal analysis of these relationships may advance our understanding of the role of beta-amyloid deposition in relation to grey matter volumetric decreases in cognitive decline.
Collapse
Affiliation(s)
- Daniel A. Stevens
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Clifford I. Workman
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Hiroto Kuwabara
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Meryl A. Butters
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alena Savonenko
- Department of Pathology (Neuropathology), School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Najilla Nassery
- Department of General Internal Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Neda Gould
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Michael Kraut
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jin Hui Joo
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jessica Kilgore
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Vidya Kamath
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Daniel P. Holt
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Robert F. Dannals
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ayon Nandi
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Chiadi U. Onyike
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Gwenn S. Smith
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
106
|
Meyer PF, Ashton NJ, Karikari TK, Strikwerda-Brown C, Köbe T, Gonneaud J, Pichet Binette A, Ozlen H, Yakoub Y, Simrén J, Pannee J, Lantero-Rodriguez J, Labonté A, Baker SL, Schöll M, Vanmechelen E, Breitner JCS, Zetterberg H, Blennow K, Poirier J, Villeneuve S. Plasma p-tau231, p-tau181, PET biomarkers and cognitive change in older adults. Ann Neurol 2022; 91:548-560. [PMID: 35084051 DOI: 10.1002/ana.26308] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To evaluate novel plasma p-tau231, p-tau181 as well as Aβ40 and Aβ42 assays as indicators of tau and Aβ pathologies measured with positron emission tomography (PET), and their association with cognitive change, in cognitively unimpaired older adults. METHODS In a cohort of 244 older adults at risk of AD owing to a family history of AD dementia, we measured single molecule array (Simoa)-based plasma tau biomarkers (p-tau231, p-tau181), Aβ40 and Aβ42 with immunoprecipitation mass spectrometry, and Simoa NfL. A subset of 129 participants underwent amyloid-β (18 F-NAV4694) and tau (18 F-flortaucipir) PET assessments. We investigated plasma biomarker associations with Aβ and tau PET at the global and voxel level and tested plasma biomarker combinations for improved detection of Aβ-PET positivity. We also investigated associations with 8-year cognitive change. RESULTS Plasma p-tau biomarkers correlated with flortaucipir binding in medial temporal, parietal and inferior temporal regions. P-tau231 showed further associations in lateral parietal and occipital cortices. Plasma Aβ42/40 explained more variance in global Aβ-PET binding than Aβ42 alone. P-tau231 also showed strong and widespread associations with cortical Aβ-PET binding. Combining Aβ42/40 with p-tau231 or p-tau181 allowed for good distinction between Aβ-negative and -positive participants (AUC range 0.81-0.86). Individuals with low plasma Aβ42/40 and high p-tau experienced faster cognitive decline. INTERPRETATION Plasma p-tau231 showed more robust associations with PET biomarkers than p-tau181 in pre-symptomatic individuals. The combination of p-tau and Aβ42/40 biomarkers detected early AD pathology and cognitive decline. Such markers could be used as pre-screening tools to reduce the cost of prevention trials. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Pierre-François Meyer
- Douglas Mental Health University Institute, Centre for Studies on Prevention of Alzheimer's Disease (StoP-AD), Montreal, Quebec, Canada
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden.,King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, UK.,NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Cherie Strikwerda-Brown
- Douglas Mental Health University Institute, Centre for Studies on Prevention of Alzheimer's Disease (StoP-AD), Montreal, Quebec, Canada
| | - Theresa Köbe
- Douglas Mental Health University Institute, Centre for Studies on Prevention of Alzheimer's Disease (StoP-AD), Montreal, Quebec, Canada
| | - Julie Gonneaud
- Douglas Mental Health University Institute, Centre for Studies on Prevention of Alzheimer's Disease (StoP-AD), Montreal, Quebec, Canada
| | - Alexa Pichet Binette
- Douglas Mental Health University Institute, Centre for Studies on Prevention of Alzheimer's Disease (StoP-AD), Montreal, Quebec, Canada.,Department of Psychiatry, McGill University, Montreal, Quebec, Canada.,McGill Centre for Integrative Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Hazal Ozlen
- Douglas Mental Health University Institute, Centre for Studies on Prevention of Alzheimer's Disease (StoP-AD), Montreal, Quebec, Canada
| | - Yara Yakoub
- Douglas Mental Health University Institute, Centre for Studies on Prevention of Alzheimer's Disease (StoP-AD), Montreal, Quebec, Canada
| | - Joel Simrén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Josef Pannee
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Juan Lantero-Rodriguez
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anne Labonté
- Douglas Mental Health University Institute, Centre for Studies on Prevention of Alzheimer's Disease (StoP-AD), Montreal, Quebec, Canada
| | - Suzanne L Baker
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Michael Schöll
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | | | - John C S Breitner
- Douglas Mental Health University Institute, Centre for Studies on Prevention of Alzheimer's Disease (StoP-AD), Montreal, Quebec, Canada.,Department of Psychiatry, McGill University, Montreal, Quebec, Canada.,McGill Centre for Integrative Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Judes Poirier
- Douglas Mental Health University Institute, Centre for Studies on Prevention of Alzheimer's Disease (StoP-AD), Montreal, Quebec, Canada.,Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Sylvia Villeneuve
- Douglas Mental Health University Institute, Centre for Studies on Prevention of Alzheimer's Disease (StoP-AD), Montreal, Quebec, Canada.,Department of Psychiatry, McGill University, Montreal, Quebec, Canada.,McGill Centre for Integrative Neuroscience, McGill University, Montreal, Quebec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
107
|
Strikwerda-Brown C, Ozlen H, Pichet Binette A, Chapleau M, Marchant NL, Breitner JC, Villeneuve S. Trait Mindfulness Is Associated With Less Amyloid, Tau, and Cognitive Decline in Individuals at Risk for Alzheimer's Disease. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022; 3:130-138. [PMID: 36712573 PMCID: PMC9874144 DOI: 10.1016/j.bpsgos.2022.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 02/01/2023] Open
Abstract
Background Mindfulness, defined as nonjudgmental awareness of the present moment, has been associated with an array of mental and physical health benefits. Mindfulness may also represent a protective factor for Alzheimer's disease (AD). Here, we tested the potential protective effect of trait mindfulness on cognitive decline and AD pathology in older adults at risk for AD dementia. Methods Measures of trait mindfulness, longitudinal cognitive assessments, and amyloid-β (Aβ) and tau positron emission tomography scans were collected in 261 nondemented older adults with a family history of AD dementia from the PREVENT-AD (Pre-symptomatic Evaluation of Experimental or Novel Treatments for AD) observational cohort study. Multivariate partial least squares analyses were used to examine relationships between combinations of different facets of trait mindfulness and 1) cognitive decline, 2) Aβ, and 3) tau. Results Higher levels of mindful nonjudgment, describing, and nonreactivity were associated with less cognitive decline in attention, global cognition, and immediate and delayed memory. Higher levels of mindful nonjudgment and nonreactivity were related to less Aβ positron emission tomography signal in bilateral medial and lateral temporoparietal and frontal regions. Higher levels of mindful acting with awareness, describing, nonjudgment, and nonreactivity were associated with less tau positron emission tomography signal in bilateral medial and lateral temporal regions. Conclusions Trait mindfulness was associated with less cognitive decline and less Aβ and tau in the brain in older adults at risk for AD dementia. Longitudinal studies examining the temporal relationship between trait mindfulness and AD markers, along with mindfulness intervention studies, will be important for further clarifying the potential protective benefits of mindfulness on AD risk.
Collapse
Affiliation(s)
- Cherie Strikwerda-Brown
- Centre for Studies on the Prevention of Alzheimer’s Disease, Douglas Mental Health University Institute, Montreal, Quebec, Canada,Department of Psychiatry, McGill University, Montreal, Quebec, Canada,Cherie Strikwerda-Brown, Ph.D.
| | - Hazal Ozlen
- Centre for Studies on the Prevention of Alzheimer’s Disease, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Alexa Pichet Binette
- Centre for Studies on the Prevention of Alzheimer’s Disease, Douglas Mental Health University Institute, Montreal, Quebec, Canada,Department of Psychiatry, McGill University, Montreal, Quebec, Canada,McGill Centre for Integrative Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Marianne Chapleau
- Centre for Studies on the Prevention of Alzheimer’s Disease, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Natalie L. Marchant
- Division of Psychiatry, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - John C.S. Breitner
- Centre for Studies on the Prevention of Alzheimer’s Disease, Douglas Mental Health University Institute, Montreal, Quebec, Canada,Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Sylvia Villeneuve
- Centre for Studies on the Prevention of Alzheimer’s Disease, Douglas Mental Health University Institute, Montreal, Quebec, Canada,Department of Psychiatry, McGill University, Montreal, Quebec, Canada,McGill Centre for Integrative Neuroscience, McGill University, Montreal, Quebec, Canada,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada,McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Quebec, Canada,Address correspondence to Sylvia Villeneuve, Ph.D.
| |
Collapse
|
108
|
Teipel SJ, Dyrba M, Vergallo A, Lista S, Habert MO, Potier MC, Lamari F, Dubois B, Hampel H, Grothe MJ. Partial Volume Correction Increases the Sensitivity of 18F-Florbetapir-Positron Emission Tomography for the Detection of Early Stage Amyloidosis. Front Aging Neurosci 2022; 13:748198. [PMID: 35002673 PMCID: PMC8729321 DOI: 10.3389/fnagi.2021.748198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/05/2021] [Indexed: 11/25/2022] Open
Abstract
Purpose: To test whether correcting for unspecific signal from the cerebral white matter increases the sensitivity of amyloid-PET for early stages of cerebral amyloidosis. Methods: We analyzed 18F-Florbetapir-PET and cerebrospinal fluid (CSF) Aβ42 data from 600 older individuals enrolled in the Alzheimer’s Disease Neuroimaging Initiative (ADNI), including people with normal cognition, mild cognitive impairment (MCI), and Alzheimer’s disease (AD) dementia. We determined whether three compartmental partial volume correction (PVC-3), explicitly modeling signal spill-in from white matter, significantly improved the association of CSF Aβ42 levels with global 18F-Florbetapir-PET values compared with standard processing without PVC (non-PVC) and a widely used two-compartmental PVC method (PVC-2). In additional voxel-wise analyses, we determined the sensitivity of PVC-3 compared with non-PVC and PVC-2 for detecting early regional amyloid build-up as modeled by decreasing CSF Aβ42 levels. For replication, we included an independent sample of 43 older individuals with subjective memory complaints from the INveStIGation of AlzHeimer’s PredicTors cohort (INSIGHT-preAD study). Results: In the ADNI sample, PVC-3 18F-Florbetapir-PET values normalized to whole cerebellum signal showed significantly stronger associations with CSF Aβ42 levels than non-PVC or PVC-2, particularly in the lower range of amyloid levels. These effects were replicated in the INSIGHT-preAD sample. PVC-3 18F-Florbetapir-PET data detected regional amyloid build-up already at higher (less abnormal) CSF Aβ42 levels than non-PVC or PVC-2 data. Conclusion: A PVC approach that explicitly models unspecific white matter binding improves the sensitivity of amyloid-PET for identifying the earliest stages of cerebral amyloid pathology which has implications for future primary prevention trials.
Collapse
Affiliation(s)
- Stefan J Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany.,Department of Psychosomatic Medicine, University Medicine Rostock, Rostock, Germany
| | - Martin Dyrba
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Andrea Vergallo
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'Hôpital, Paris, France
| | - Simone Lista
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'Hôpital, Paris, France.,Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'Hôpital, Paris, France.,Department of Neurology, Institute of Memory and Alzheimer's Disease (IM2A), Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'Hôpital, Paris, France
| | - Marie Odile Habert
- Laboratoire d'Imagerie Biomédicale, CNRS, INSERM, LIB, Sorbonne University, Paris, France.,Department of Nuclear Medicine, Pitié-Salpêtrière Hospital, AP-HP, Paris, France.,Centre d'Acquisition et Traitement des Images (CATI platform), Paris, France
| | - Marie-Claude Potier
- ICM Institut du Cerveau et de la Moelle Épinière, CNRS UMR 7225, INSERM U1127, UPMC, Hôpital de la Pitié-Salpêtrière, 47 Bd de l'Hôpital, Paris, France
| | - Foudil Lamari
- UF Biochimie des Maladies Neurométaboliques, Service de Biochimie Métabolique, Hôpital Pitié-Salpêtrière, Paris, France
| | - Bruno Dubois
- Department of Neurology, Institute of Memory and Alzheimer's Disease (IM2A), Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'Hôpital, Paris, France
| | - Harald Hampel
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'Hôpital, Paris, France
| | - Michel J Grothe
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany.,Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| |
Collapse
|
109
|
Ali DG, Bahrani AA, Barber JM, El Khouli RH, Gold BT, Harp JP, Jiang Y, Wilcock DM, Jicha GA. Amyloid-PET Levels in the Precuneus and Posterior Cingulate Cortices Are Associated with Executive Function Scores in Preclinical Alzheimer's Disease Prior to Overt Global Amyloid Positivity. J Alzheimers Dis 2022; 88:1127-1135. [PMID: 35754276 PMCID: PMC10349398 DOI: 10.3233/jad-220294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Global amyloid-β (Aβ) deposition in the brain can be quantified by Aβ-PET scans to support or refute a diagnosis of preclinical Alzheimer's disease (pAD). Yet, Aβ-PET scans enable quantitative evaluation of regional Aβ elevations in pAD, potentially allowing even earlier detection of pAD, long before global positivity is achieved. It remains unclear as to whether such regional changes are clinically meaningful. OBJECTIVE Test the hypothesis that early focal regional amyloid deposition in the brain is associated with cognitive performance in specific cognitive domain scores in pAD. METHODS Global and regional standardized uptake value ratios (SUVr) from 18F-florbetapir PET/CT scanning were determined using the Siemens Syngo.via® Neurology software package across a sample of 99 clinically normal participants with Montreal Cognitive Assessment (MoCA) scores≥23. Relationships between regional SUVr and cognitive test scores were analyzed using linear regression models adjusted for age, sex, and education. Participants were divided into two groups based on SUVr in the posterior cingulate and precuneus gyri (SUVR≥1.17). Between group differences in cognitive test scores were analyzed using ANCOVA models. RESULTS Executive function performance was associated with increased regional SUVr in the precuneus and posterior cingulate regions only (p < 0.05). There were no significant associations between memory and Aβ-PET SUVr in any regions of the brain. CONCLUSION These data demonstrate that increased Aβ deposition in the precuneus and posterior cingulate (the earliest brain regions affected with Aβ pathology) is associated with changes in executive function that may precede memory decline in pAD.
Collapse
Affiliation(s)
- Doaa G. Ali
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, 40506, United States
- Department of Behavioral Science, College of Medicine, University of Kentucky, Lexington, KY, 40506, United States
| | - Ahmed A. Bahrani
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, 40506, United States
| | - Justin M. Barber
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, 40506, United States
| | - Riham H. El Khouli
- Department of Radiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Brian T. Gold
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, 40506, United States
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Jordan P. Harp
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, 40506, United States
- Department of Neurology, College of Medicine, University of Kentucky, Lexington, KY, 40506, United States
| | - Yang Jiang
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, 40506, United States
- Department of Behavioral Science, College of Medicine, University of Kentucky, Lexington, KY, 40506, United States
| | - Donna M. Wilcock
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, 40506, United States
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40506, USA
| | - Gregory A. Jicha
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, 40506, United States
- Department of Behavioral Science, College of Medicine, University of Kentucky, Lexington, KY, 40506, United States
- Department of Neurology, College of Medicine, University of Kentucky, Lexington, KY, 40506, United States
| |
Collapse
|
110
|
Sacchi L, Carandini T, Fumagalli GG, Pietroboni AM, Contarino VE, Siggillino S, Arcaro M, Fenoglio C, Zito F, Marotta G, Castellani M, Triulzi F, Galimberti D, Scarpini E, Arighi A. Unravelling the Association Between Amyloid-PET and Cerebrospinal Fluid Biomarkers in the Alzheimer's Disease Spectrum: Who Really Deserves an A+? J Alzheimers Dis 2021; 85:1009-1020. [PMID: 34897084 DOI: 10.3233/jad-210593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Association between cerebrospinal fluid (CSF)-amyloid-β (Aβ)42 and amyloid-PET measures is inconstant across the Alzheimer's disease (AD) spectrum. However, they are considered interchangeable, along with Aβ 42/40 ratio, for defining 'Alzheimer's Disease pathologic change' (A+). OBJECTIVE Herein, we further characterized the association between amyloid-PET and CSF biomarkers and tested their agreement in a cohort of AD spectrum patients. METHODS We include ed 23 patients who underwent amyloid-PET, MRI, and CSF analysis showing reduced levels of Aβ 42 within a 365-days interval. Thresholds used for dichotomization were: Aβ 42 < 640 pg/mL (Aβ 42+); pTau > 61 pg/mL (pTau+); and Aβ 42/40 < 0.069 (ADratio+). Amyloid-PET scans were visually assessed and processed by four pipelines (SPMCL, SPMAAL, FSGM, FSWC). RESULTS Different pipelines gave highly inter-correlated standardized uptake value ratios (SUVRs) (rho = 0.93-0.99). The most significant findings were: pTau positive correlation with SPMCL SUVR (rho = 0.56, p = 0.0063) and Aβ 42/40 negative correlation with SPMCL and SPMAAL SUVRs (rho = -0.56, p = 0.0058; rho = -0.52, p = 0.0117 respectively). No correlations between CSF-Aβ 42 and global SUVRs were observed. In subregion analysis, both pTau and Aβ 42/40 values significantly correlated with cingulate SUVRs from any pipeline (R2 = 0.55-0.59, p < 0.0083), with the strongest associations observed for the posterior/isthmus cingulate areas. However, only associations observed for Aβ 42/40 ratio were still significant in linear regression models. Moreover, combining pTau with Aβ 42 or using Aβ 42/40, instead of Aβ 42 alone, increased concordance with amyloid-PET status from 74% to 91% based on visual reads and from 78% to 96% based on Centiloids. CONCLUSION We confirmed that, in the AD spectrum, amyloid-PET measures show a stronger association and a better agreement with CSF-Aβ 42/40 and secondarily pTau rather than Aβ 42 levels.
Collapse
Affiliation(s)
- Luca Sacchi
- University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Tiziana Carandini
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Anna Margherita Pietroboni
- University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Silvia Siggillino
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marina Arcaro
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Fenoglio
- University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Felicia Zito
- University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giorgio Marotta
- University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Massimo Castellani
- University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Fabio Triulzi
- University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Galimberti
- University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elio Scarpini
- University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Arighi
- University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
111
|
Baker SL, Provost K, Thomas W, Whitman AJ, Janabi M, Schmidt ME, Timmers M, Kolb HC, Rabinovici GD, Jagust WJ. Evaluation of [ 18F]-JNJ-64326067-AAA tau PET tracer in humans. J Cereb Blood Flow Metab 2021; 41:3302-3313. [PMID: 34259071 PMCID: PMC8669274 DOI: 10.1177/0271678x211031035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The [18F]-JNJ-64326067-AAA ([18F]-JNJ-067) tau tracer was evaluated in healthy older controls (HCs), mild cognitive impairment (MCI), Alzheimer's disease (AD), and progressive supranuclear palsy (PSP) participants. Seventeen subjects (4 HCs, 5 MCIs, 5 ADs, and 3 PSPs) received a [11C]-PIB amyloid PET scan, and a tau [18F]-JNJ-067 PET scan 0-90 minutes post-injection. Only MCIs and ADs were amyloid positive. The simplified reference tissue model, Logan graphical analysis distribution volume ratio, and SUVR were evaluated for quantification. The [18F]-JNJ-067 tau signal relative to the reference region continued to increase to 90 min, indicating the tracer had not reached steady state. There was no significant difference in any bilateral ROIs for MCIs or PSPs relative to HCs; AD participants showed elevated tracer relative to controls in most cortical ROIs (P < 0.05). Only AD participants showed elevated retention in the entorhinal cortex. There was off-target signal in the putamen, pallidum, thalamus, midbrain, superior cerebellar gray, and white matter. [18F]-JNJ-067 significantly correlated (p < 0.05) with Mini-Mental State Exam in entorhinal cortex and temporal meta regions. There is clear binding of [18F]-JNJ-067 in AD participants. Lack of binding in HCs, MCIs and PSPs suggests [18F]-JNJ-067 may not bind to low levels of AD-related tau or 4 R tau.
Collapse
Affiliation(s)
- Suzanne L Baker
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Karine Provost
- Memory and Aging Center, Department of Neurology, University of California, Berkeley, CA, USA
| | - Wesley Thomas
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - A J Whitman
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mustafa Janabi
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mark E Schmidt
- Janssen Research and Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Maarten Timmers
- Janssen Research and Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | | | - Gil D Rabinovici
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Memory and Aging Center, Department of Neurology, University of California, Berkeley, CA, USA.,Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.,Department of Radiology and Biomedical Imaging, University of California, Berkeley, CA, USA
| | - William J Jagust
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
112
|
Levin F, Jelistratova I, Betthauser TJ, Okonkwo O, Johnson SC, Teipel SJ, Grothe MJ. In vivo staging of regional amyloid progression in healthy middle-aged to older people at risk of Alzheimer's disease. Alzheimers Res Ther 2021; 13:178. [PMID: 34674764 PMCID: PMC8532333 DOI: 10.1186/s13195-021-00918-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/11/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND We investigated regional amyloid staging characteristics in 11C-PiB-PET data from middle-aged to older participants at elevated risk for AD enrolled in the Wisconsin Registry for Alzheimer's Prevention. METHODS We analyzed partial volume effect-corrected 11C-PiB-PET distribution volume ratio maps from 220 participants (mean age = 61.4 years, range 46.9-76.8 years). Regional amyloid positivity was established using region-specific thresholds. We used four stages from the frequency-based staging of amyloid positivity to characterize individual amyloid deposition. Longitudinal PET data was used to assess the temporal progression of stages and to evaluate the emergence of regional amyloid positivity in participants who were amyloid-negative at baseline. We also assessed the effect of amyloid stage on longitudinal cognitive trajectories. RESULTS The staging model suggested progressive accumulation of amyloid from associative to primary neocortex and gradually involving subcortical regions. Longitudinal PET measurements supported the cross-sectionally estimated amyloid progression. In mixed-effects longitudinal analysis of cognitive follow-up data obtained over an average period of 6.5 years following the baseline PET measurement, amyloid stage II showed a faster decline in executive function, and advanced amyloid stages (III and IV) showed a faster decline across multiple cognitive domains compared to stage 0. CONCLUSIONS Overall, the 11C-PiB-PET-based staging model was generally consistent with previously derived models from 18F-labeled amyloid PET scans and a longitudinal course of amyloid accumulation. Differences in longitudinal cognitive decline support the potential clinical utility of in vivo amyloid staging for risk stratification of the preclinical phase of AD even in middle-aged to older individuals at risk for AD.
Collapse
Affiliation(s)
- Fedor Levin
- German Center for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Rostock, Germany
| | - Irina Jelistratova
- German Center for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Rostock, Germany
| | - Tobey J Betthauser
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Ozioma Okonkwo
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Sterling C Johnson
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer's Institute, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Stefan J Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Rostock, Germany
- Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany
| | - Michel J Grothe
- German Center for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Rostock, Germany.
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, s/n, 41013, Seville, Spain.
| |
Collapse
|
113
|
Slegers A, Chafouleas G, Montembeault M, Bedetti C, Welch AE, Rabinovici GD, Langlais P, Gorno-Tempini ML, Brambati SM. Connected speech markers of amyloid burden in primary progressive aphasia. Cortex 2021; 145:160-168. [PMID: 34731686 DOI: 10.1016/j.cortex.2021.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/16/2021] [Accepted: 09/26/2021] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Positron emission tomography (PET) amyloid imaging has become an important part of the diagnostic workup for patients with primary progressive aphasia (PPA) and uncertain underlying pathology. Here, we employ a semi-automated analysis of connected speech (CS) with a twofold objective. First, to determine if quantitative CS features can help select primary progressive aphasia (PPA) patients with a higher probability of a positive PET amyloid imaging result. Second, to examine the relevant group differences from a clinical perspective. METHODS 117 CS samples from a well-characterised cohort of PPA patients who underwent PET amyloid imaging were collected. Expert consensus established PET amyloid status for each patient, and 40% of the sample was amyloid positive. RESULTS Leave-one-out cross-validation yields 77% classification accuracy (sensitivity: 74%, specificity: 79%). DISCUSSION Our results confirm the potential of CS analysis as a screening tool. Discriminant CS features from lexical, syntactic, pragmatic, and semantic domains are discussed.
Collapse
Affiliation(s)
- Antoine Slegers
- Department of Psychology, Université de Montréal, Canada; Centre de Recherche de L'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, Canada
| | - Geneviève Chafouleas
- Department of Computer Science and Operational Research, Université de Montréal, Montréal, Canada
| | - Maxime Montembeault
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Christophe Bedetti
- Department of Psychology, Université de Montréal, Canada; Centre de Recherche de L'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, Canada
| | - Ariane E Welch
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Gil D Rabinovici
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Philippe Langlais
- Department of Computer Science and Operational Research, Université de Montréal, Montréal, Canada
| | - Maria L Gorno-Tempini
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Simona M Brambati
- Department of Psychology, Université de Montréal, Canada; Centre de Recherche de L'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, Canada; Centre de recherche du Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal, Montréal, Québec, Canada.
| |
Collapse
|
114
|
Tennant VR, Harrison TM, Adams JN, La Joie R, Winer JR, Jagust WJ. Fusiform Gyrus Phospho-Tau is Associated with Failure of Proper Name Retrieval in Aging. Ann Neurol 2021; 90:988-993. [PMID: 34590340 DOI: 10.1002/ana.26237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 09/01/2021] [Accepted: 09/26/2021] [Indexed: 11/06/2022]
Abstract
Difficulty retrieving proper names is common in older adults, coinciding with the accumulation of aggregated proteins in mid-life. We investigated the ability of healthy older adults to retrieve the names of famous faces in relation to positron emission tomography measurements of amyloid-β plaques and tau neurofibrillary tangles. More tau in the left fusiform and parahippocampal gyrus was related to reduced proper name retrieval performance and this effect was potentiated by amyloid-β. These findings provide an explanation for a common complaint of older adults and link proper name retrieval to neural systems involved in face perception, memory, and naming. ANN NEUROL 2021;90:988-993.
Collapse
Affiliation(s)
- Victoria R Tennant
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA
| | - Theresa M Harrison
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA
| | - Jenna N Adams
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
| | - Joseph R Winer
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA
| |
Collapse
|
115
|
Peira E, Grazzini M, Bauckneht M, Sensi F, Bosco P, Arnaldi D, Morbelli S, Chincarini A, Pardini M, Nobili F. Probing the Role of a Regional Quantitative Assessment of Amyloid PET. J Alzheimers Dis 2021; 80:383-396. [PMID: 33554908 DOI: 10.3233/jad-201156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND In clinical practice, the amy-PET is globally inspected to provide a binary outcome, but the role of a regional assessment has not been fully investigated yet. OBJECTIVE To deepen the role of regional amyloid burden and its implication on clinical-neuropsychological features. MATERIALS Amy-PET and a complete neuropsychological assessment (Trail Making Test, Rey Auditory Verbal Learning Test, semantic verbal fluency, Symbol Digit, Stroop, visuoconstruction) were available in 109 patients with clinical suspicion of Alzheimer's disease. By averaging the standardized uptake value ratio and ELBA, a regional quantification was calculated for each scan. Patients were grouped according to their overall amyloid load: correlation maps, based on regional quantification, were calculated and compared. A regression analysis between neuropsychological assessment and the regional amyloid-β (Aβ) load was carried out. RESULTS Significant differences were observed between the correlation maps of patients at increasing levels of Aβ and the overall dataset. The Aβ uptake of the subcortical gray matter resulted not related to other brain regions independently of the global Aβ level. A significant association of semantic verbal fluency was observed with ratios of cortical and subcortical distribution of Aβ which represent a coarse measure of differences in regional distribution of Aβ. CONCLUSION Our observations confirmed the different susceptibility to Aβ accumulation among brain regions. The association between cognition and Aβ distribution deserves further investigations: it is possibly due to a direct local effect or it represents a proxy marker of a more aggressive disease subtype. Regional Aβ assessment represents an available resource on amy-PET scan with possibly clinical and prognostic implications.
Collapse
Affiliation(s)
- Enrico Peira
- INFN, Genoa, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Child and Maternal Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Matteo Grazzini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Child and Maternal Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Matteo Bauckneht
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Nuclear Medicine Unit, Dept. of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | | | | | - Dario Arnaldi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Child and Maternal Health (DINOGMI), University of Genoa, Genoa, Italy.,Neurology Clinic, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Silvia Morbelli
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Nuclear Medicine Unit, Dept. of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | | | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Child and Maternal Health (DINOGMI), University of Genoa, Genoa, Italy.,Neurology Clinic, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Flavio Nobili
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Child and Maternal Health (DINOGMI), University of Genoa, Genoa, Italy.,Neurology Clinic, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
116
|
Gonneaud J, Baria AT, Pichet Binette A, Gordon BA, Chhatwal JP, Cruchaga C, Jucker M, Levin J, Salloway S, Farlow M, Gauthier S, Benzinger TLS, Morris JC, Bateman RJ, Breitner JCS, Poirier J, Vachon-Presseau E, Villeneuve S. Accelerated functional brain aging in pre-clinical familial Alzheimer's disease. Nat Commun 2021; 12:5346. [PMID: 34504080 PMCID: PMC8429427 DOI: 10.1038/s41467-021-25492-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/06/2021] [Indexed: 01/02/2023] Open
Abstract
Resting state functional connectivity (rs-fMRI) is impaired early in persons who subsequently develop Alzheimer's disease (AD) dementia. This impairment may be leveraged to aid investigation of the pre-clinical phase of AD. We developed a model that predicts brain age from resting state (rs)-fMRI data, and assessed whether genetic determinants of AD, as well as beta-amyloid (Aβ) pathology, can accelerate brain aging. Using data from 1340 cognitively unimpaired participants between 18-94 years of age from multiple sites, we showed that topological properties of graphs constructed from rs-fMRI can predict chronological age across the lifespan. Application of our predictive model to the context of pre-clinical AD revealed that the pre-symptomatic phase of autosomal dominant AD includes acceleration of functional brain aging. This association was stronger in individuals having significant Aβ pathology.
Collapse
Affiliation(s)
- Julie Gonneaud
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| | - Alex T Baria
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Alexa Pichet Binette
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Brian A Gordon
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Jasmeer P Chhatwal
- Brigham and Women's Hospital-Massachusetts General Hospital, Boston, MA, USA
| | - Carlos Cruchaga
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Mathias Jucker
- Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Johannes Levin
- Ludwig-Maximilians-Universität München, German Center for Neurodegenerative Diseases and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | | | - Martin Farlow
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Serge Gauthier
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Tammie L S Benzinger
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - John C Morris
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Randall J Bateman
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - John C S Breitner
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Judes Poirier
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Etienne Vachon-Presseau
- Department of Anesthesia, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Sylvia Villeneuve
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
117
|
Winer JR, Morehouse A, Fenton L, Harrison TM, Ayangma L, Reed M, Kumar S, Baker SL, Jagust WJ, Walker MP. Tau and β-Amyloid Burden Predict Actigraphy-Measured and Self-Reported Impairment and Misperception of Human Sleep. J Neurosci 2021; 41:7687-7696. [PMID: 34290080 PMCID: PMC8425979 DOI: 10.1523/jneurosci.0353-21.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/23/2021] [Accepted: 06/30/2021] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease is associated with poor sleep, but the impact of tau and β-amyloid (Aβ) pathology on sleep remains largely unknown. Here, we test the hypothesis that tau and Aβ predict unique impairments in objective and self-perceived human sleep under real-life, free-living conditions. Eighty-nine male and female cognitively healthy older adults received 18F-FTP-tau and 11C-PIB-Aβ PET imaging, 7 nights of sleep actigraphy and questionnaire measures, and neurocognitive assessment. Tau burden, but not Aβ, was associated with markedly worse objective sleep. In contrast, Aβ and tau were associated with worse self-reported sleep quality. Of clinical relevance, Aβ burden predicted a unique perceptual mismatch between objective and subject sleep evaluation, with individuals underestimating their sleep. The magnitude of this mismatch was further predicted by worse executive function. Thus, early-stage tau and Aβ deposition are linked with distinct phenotypes of real-world sleep impairment, one that includes a cognitive misperception of their own sleep health.SIGNIFICANCE STATEMENT Alzheimer's disease is associated with sleep disruption, often before significant memory decline. Thus, real-life patterns of sleep behavior have the potential to serve as a window into early disease progression. In 89 cognitive healthy older adults, we found that tau burden was associated with worse wristwatch actigraphy-measured sleep quality, and that both tau and β-amyloid were independently predictive of self-reported sleep quality. Furthermore, individuals with greater β-amyloid deposition were more likely to underestimate their sleep quality, and sleep quality underestimation was associated with worse executive function. These data support the role of sleep impairment as a key marker of early Alzheimer's disease, and offer the possibility that actigraphy may be an affordable and scalable tool in quantifying Alzheimer's disease-related behavioral changes.
Collapse
Affiliation(s)
- Joseph R Winer
- Center for Human Sleep Science, Department of Psychology, University of California Berkeley, Berkeley, California 94720
| | - Allison Morehouse
- Center for Human Sleep Science, Department of Psychology, University of California Berkeley, Berkeley, California 94720
| | - Laura Fenton
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720
| | - Theresa M Harrison
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720
| | - Lylian Ayangma
- Center for Human Sleep Science, Department of Psychology, University of California Berkeley, Berkeley, California 94720
| | - Mark Reed
- Center for Human Sleep Science, Department of Psychology, University of California Berkeley, Berkeley, California 94720
| | - Samika Kumar
- Center for Human Sleep Science, Department of Psychology, University of California Berkeley, Berkeley, California 94720
| | - Suzanne L Baker
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Matthew P Walker
- Center for Human Sleep Science, Department of Psychology, University of California Berkeley, Berkeley, California 94720
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720
| |
Collapse
|
118
|
Lockhart SN, Schaich CL, Craft S, Sachs BC, Rapp SR, Jung Y, Whitlow CT, Solingapuram Sai KK, Cleveland M, Williams BJ, Burke GL, Bertoni A, Hayden KM, Hughes TM. Associations among vascular risk factors, neuroimaging biomarkers, and cognition: Preliminary analyses from the Multi-Ethnic Study of Atherosclerosis (MESA). Alzheimers Dement 2021; 18:551-560. [PMID: 34482601 PMCID: PMC8897510 DOI: 10.1002/alz.12429] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/07/2021] [Accepted: 06/24/2021] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Little is known about how antecedent vascular risk factor (VRF) profiles impact late-life brain health. METHODS We examined baseline VRFs, and cognitive testing and neuroimaging measures (β-amyloid [Aβ] PET, MRI) in a diverse longitudinal cohort (N = 159; 50% African-American, 50% White) from Wake Forest's Multi-Ethnic Study of Atherosclerosis Core. RESULTS African-Americans exhibited greater baseline Cardiovascular Risk Factors, Aging, and Incidence of Dementia (CAIDE), Framingham stroke risk profile (FSRP), and atherosclerotic cardiovascular disease risk estimate (ASCVD) scores than Whites. We observed no significant racial differences in Aβ positivity, cortical thickness, or white matter hyperintensity (WMH) volume. Higher baseline VRF scores were associated with lower cortical thickness and greater WMH volume, and FSRP and CAIDE were associated with Aβ. Aβ was cross-sectionally associated with cognition, and all imaging biomarkers were associated with greater 6-year cognitive decline. DISCUSSION Results suggest the convergence of multiple vascular and Alzheimer's processes underlying neurodegeneration and cognitive decline.
Collapse
Affiliation(s)
- Samuel N Lockhart
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Alzheimer's Disease Research Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Christopher L Schaich
- Department of Surgery-Hypertension and Vascular Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Suzanne Craft
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Alzheimer's Disease Research Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Bonnie C Sachs
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Alzheimer's Disease Research Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Department of Neurology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Division of Public Health Sciences, Department of Social Sciences & Health Policy, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Stephen R Rapp
- Alzheimer's Disease Research Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Department of Psychiatry and Behavioral Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Youngkyoo Jung
- Alzheimer's Disease Research Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,University of California Davis, Davis, California, USA
| | - Christopher T Whitlow
- Alzheimer's Disease Research Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Division of Public Health Sciences, Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | | | - Maryjo Cleveland
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Alzheimer's Disease Research Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Benjamin J Williams
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Alzheimer's Disease Research Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Department of Neurology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Gregory L Burke
- Division of Public Health Sciences, Department of Social Sciences & Health Policy, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Alain Bertoni
- Division of Public Health Sciences, Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Kathleen M Hayden
- Alzheimer's Disease Research Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Division of Public Health Sciences, Department of Social Sciences & Health Policy, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Timothy M Hughes
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Alzheimer's Disease Research Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Division of Public Health Sciences, Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
119
|
Cassady KE, Adams JN, Chen X, Maass A, Harrison TM, Landau S, Baker S, Jagust W. Alzheimer's Pathology Is Associated with Dedifferentiation of Intrinsic Functional Memory Networks in Aging. Cereb Cortex 2021; 31:4781-4793. [PMID: 34037210 PMCID: PMC8408467 DOI: 10.1093/cercor/bhab122] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 11/14/2022] Open
Abstract
In presymptomatic Alzheimer's disease (AD), beta-amyloid plaques (Aβ) and tau tangles accumulate in distinct spatiotemporal patterns within the brain, tracking closely with episodic memory decline. Here, we tested whether age-related changes in the segregation of the brain's intrinsic functional episodic memory networks-anterior-temporal (AT) and posterior-medial (PM) networks-are associated with the accumulation of Aβ, tau, and memory decline using fMRI and PET. We found that AT and PM networks were less segregated in older than that in younger adults and this reduced specialization was associated with more tau and Aβ in the same regions. The effect of network dedifferentiation on memory depended on the amount of Aβ and tau, with low segregation and pathology associated with better performance at baseline and low segregation and high pathology related to worse performance over time. This pattern suggests a compensation phase followed by a degenerative phase in the early, preclinical phase of AD.
Collapse
Affiliation(s)
- Kaitlin E Cassady
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Jenna N Adams
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Xi Chen
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Anne Maass
- German Center for Neurodegenerative Disease, Magdeburg 39120, Germany
| | - Theresa M Harrison
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Susan Landau
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Suzanne Baker
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - William Jagust
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
120
|
Integration of Imaging Genomics Data for the Study of Alzheimer's Disease Using Joint-Connectivity-Based Sparse Nonnegative Matrix Factorization. J Mol Neurosci 2021; 72:255-272. [PMID: 34410569 DOI: 10.1007/s12031-021-01888-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
Imaging genetics reveals the connection between microscopic genetics and macroscopic imaging, enabling the identification of disease biomarkers. In this work, we make full use of prior knowledge that has significant reference value for investigating the correlation between the brain and genetics to explore more biologically substantial biomarkers. In this paper, we propose joint-connectivity-based sparse nonnegative matrix factorization (JCB-SNMF). The algorithm simultaneously projects structural magnetic resonance imaging (sMRI), single-nucleotide polymorphism sites (SNPs), and gene expression data onto a common feature space, where heterogeneous variables with large coefficients in the same projection direction form a common module. In addition, the connectivity information for each region of the brain and genetic data are added as prior knowledge to identify regions of interest (ROIs), SNPs, and gene-related risks related to Alzheimer's disease (AD) patients. GraphNet regularization increases the anti-noise performance of the algorithm and the biological interpretability of the results. The simulation results show that compared with other NMF-based algorithms (JNMF, JSNMNMF), JCB-SNMF has better anti-noise performance and can identify and predict biomarkers closely related to AD from significant modules. By constructing a protein-protein interaction (PPI) network, we identified SF3B1, RPS20, and RBM14 as potential biomarkers of AD. We also found some significant SNP-ROI and gene-ROI pairs. Among them, two SNPs rs4472239 and rs11918049 and three genes KLHL8, ZC3H11A, and OSGEPL1 may have effects on the gray matter volume of multiple brain regions. This model provides a new way to further integrate multimodal impact genetic data to identify complex disease association patterns.
Collapse
|
121
|
Yao W, Chen H, Sheng X, Zhao H, Xu Y, Bai F. Core-Centered Connection Abnormalities Associated with Pathological Features Mediate the Progress of Cognitive Impairments in Alzheimer's Disease Spectrum Patients. J Alzheimers Dis 2021; 82:1499-1511. [PMID: 34180417 DOI: 10.3233/jad-210481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Abnormal default mode network (DMN) was associated with the progress of Alzheimer's disease (AD). Rather than treat the DMN as a unitary network, it can be further divided into three subsystems with different functions. OBJECTIVE It remains unclear the interactions of DMN subsystems associated with the progress of cognitive impairments and AD pathological features. METHODS This study has recruited 187 participants, including test data and verification data. Firstly, an imaging analysis approach was utilized to investigate disease-related differences in the interactions of DMN subsystems in test data (n = 149), including 42 cognitively normal subjects, 43 early mild cognitive impairment (EMCI), 32 late mild cognitive impairment (LMCI), and 32 AD patients. Brain-behavior-pathological relationships regarding to the interactions among DMN subsystems were then further examined. Secondly, DMN subsystems abnormalities for classifying AD spectrum population in the independent verification data (n = 38). RESULTS This study found that the impaired cognition relates to disturbances in the interactions between DMN subsystems but preferentially in core subsystem, and the abnormal regulatory processes of core subsystem were significantly associated with the levels of cerebrospinal fluid Aβ and tau in AD-spectrum patients. Meantime, the nonlinear relationship between dysfunctional core subsystem and impaired cognition was observed as one progresses through the stages of MCI to AD. Importantly, this classification presented a higher sensitivity and specificity dependent on the core-centered connection abnormalities. CONCLUSION The abnormal interaction patterns of DMN subsystems at an early stage of AD appeared and presented as core-centered connection abnormalities, which were the potential neuroimaging features for monitoring the development of AD.
Collapse
Affiliation(s)
- Weina Yao
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Haifeng Chen
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Xiaoning Sheng
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Hui Zhao
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Feng Bai
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | | |
Collapse
|
122
|
Strom A, Iaccarino L, Edwards L, Lesman-Segev OH, Soleimani-Meigooni DN, Pham J, Baker SL, Landau S, Jagust WJ, Miller BL, Rosen HJ, Gorno-Tempini ML, Rabinovici GD, La Joie R. Cortical hypometabolism reflects local atrophy and tau pathology in symptomatic Alzheimer's disease. Brain 2021; 145:713-728. [PMID: 34373896 PMCID: PMC9014741 DOI: 10.1093/brain/awab294] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/09/2021] [Accepted: 07/21/2021] [Indexed: 11/14/2022] Open
Abstract
Posterior cortical hypometabolism measured with [18F]-Fluorodeoxyglucose (FDG)-PET is a well-known marker of Alzheimer's disease-related neurodegeneration, but its associations with underlying neuropathological processes are unclear. We assessed cross-sectionally the relative contributions of three potential mechanisms causing hypometabolism in the retrosplenial and inferior parietal cortices: local molecular (amyloid and tau) pathology and atrophy, distant factors including contributions from the degenerating medial temporal lobe or molecular pathology in functionally connected regions, and the presence of the apolipoprotein E (APOE) ε4 allele. Two hundred and thirty-two amyloid-positive cognitively impaired patients from two cohorts (University of California, San Francisco, UCSF, and Alzheimer's Disease Neuroimaging Initiative, ADNI) underwent MRI and PET with FDG, amyloid-PET using [11C]-Pittsburgh Compound B, [18F]-Florbetapir, or [18F]-Florbetaben, and [18F]-Flortaucipir tau-PET within one year. Standard uptake value ratios (SUVR) were calculated using tracer-specific reference regions. Regression analyses were run within cohorts to identify variables associated with retrosplenial or inferior parietal FDG SUVR. On average, ADNI patients were older and were less impaired than UCSF patients. Regional patterns of hypometabolism were similar between cohorts, though there were cohort differences in regional gray matter atrophy. Local cortical thickness and tau-PET (but not amyloid-PET) were independently associated with both retrosplenial and inferior parietal FDG SUVR (ΔR2 = .09 to .21) across cohorts in models that also included age and disease severity (local model). Including medial temporal lobe volume improved the retrosplenial FDG model in ADNI (ΔR2 = .04, p = .008) but not UCSF (ΔR2 < .01, p = .52), and did not improve the inferior parietal models (ΔR2s < .01, ps > .37). Interaction analyses revealed that medial temporal volume was more strongly associated with retrosplenial FDG SUVR at earlier disease stages (p = .06 in UCSF, p = .046 in ADNI). Exploratory analyses across the cortex confirmed overall associations between hypometabolism and local tau pathology and thickness and revealed associations between medial temporal degeneration and hypometabolism in retrosplenial, orbitofrontal, and anterior cingulate cortices. Finally, our data did not support hypotheses of a detrimental effect of pathology in connected regions or of an effect of the APOE ε4 allele in impaired participants. Overall, in two independent groups of patients at symptomatic stages of Alzheimer's disease, cortical hypometabolism mainly reflected structural neurodegeneration and tau, but not amyloid, pathology.
Collapse
Affiliation(s)
- Amelia Strom
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Leonardo Iaccarino
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Lauren Edwards
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Orit H Lesman-Segev
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.,Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - David N Soleimani-Meigooni
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Julie Pham
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Suzanne L Baker
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Susan Landau
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - William J Jagust
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Howard J Rosen
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.,Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.,Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
123
|
Ni W, Jagust W, Wang D. Multiplex Mass Spectrometry Analysis of Amyloid Proteins in Human Plasma for Alzheimer's Disease Diagnosis. J Proteome Res 2021; 20:4106-4112. [PMID: 34314176 PMCID: PMC8699791 DOI: 10.1021/acs.jproteome.1c00424] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Direct analysis of amyloid proteins in human plasma will promote rapid screening of brain amyloidosis, the earliest pathological signature of Alzheimer's disease. We developed a microflow liquid chromatography-targeted mass spectrometry assay for quantitation of four intact β-amyloid proteins starting from 1 mL of human plasma samples. This method showed 90% accuracy for predicting brain amyloid using plasma Aβ42/Aβ40 values from 36 cognitively normal individuals in a prospective clinical study (raw data deposited in MassIVE, Data set ID MSV000087451). Our method may contribute to early diagnosis of Alzheimer's disease.
Collapse
Affiliation(s)
- Weimin Ni
- Newomics Inc., Berkeley, CA 94710, USA
| | - William Jagust
- School of Public Health and Helen Wills Neuroscience Institute, University of California at Berkeley, CA 94710, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley CA 94710, USA
| | | |
Collapse
|
124
|
Milà-Alomà M, Shekari M, Salvadó G, Gispert JD, Arenaza-Urquijo EM, Operto G, Falcon C, Vilor-Tejedor N, Grau-Rivera O, Sala-Vila A, Sánchez-Benavides G, González-de-Echávarri JM, Minguillon C, Fauria K, Niñerola-Baizán A, Perissinotti A, Simon M, Kollmorgen G, Zetterberg H, Blennow K, Suárez-Calvet M, Molinuevo JL. Cognitively unimpaired individuals with a low burden of Aβ pathology have a distinct CSF biomarker profile. ALZHEIMERS RESEARCH & THERAPY 2021; 13:134. [PMID: 34315519 PMCID: PMC8314554 DOI: 10.1186/s13195-021-00863-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 06/20/2021] [Indexed: 12/25/2022]
Abstract
Background Understanding the changes that occur in the transitional stage between absent and overt amyloid-β (Aβ) pathology within the Alzheimer’s continuum is crucial to develop therapeutic and preventive strategies. The objective of this study is to test whether cognitively unimpaired individuals with a low burden of Aβ pathology have a distinct CSF, structural, and functional neuroimaging biomarker profile. Methods Cross-sectional study of 318 middle-aged, cognitively unimpaired individuals from the ALFA+ cohort. We measured CSF Aβ42/40, phosphorylated tau (p-tau), total tau (t-tau), neurofilament light (NfL), neurogranin, sTREM2, YKL40, GFAP, IL6, S100B, and α-synuclein. Participants also underwent cognitive assessments, APOE genotyping, structural MRI, [18F]-FDG, and [18F]-flutemetamol PET. To ensure the robustness of our results, we used three definitions of low burden of Aβ pathology: (1) positive CSF Aβ42/40 and < 30 Centiloids in Aβ PET, (2) positive CSF Aβ42/40 and negative Aβ PET visual read, and (3) 20–40 Centiloid range in Aβ PET. We tested CSF and neuroimaging biomarker differences between the low burden group and the corresponding Aβ-negative group, adjusted by age and sex. Results The prevalence and demographic characteristics of the low burden group differed between the three definitions. CSF p-tau and t-tau were increased in the low burden group compared to the Aβ-negative in all definitions. CSF neurogranin was increased in the low burden group definitions 1 and 3, while CSF NfL was only increased in the low burden group definition 1. None of the defined low burden groups showed signs of atrophy or glucose hypometabolism. Instead, we found slight increases in cortical thickness and metabolism in definition 2. Conclusions There are biologically meaningful Aβ-downstream effects in individuals with a low burden of Aβ pathology, while structural and functional changes are still subtle or absent. These findings support considering individuals with a low burden of Aβ pathology for clinical trials. Trial registration NCT02485730 Supplementary Information The online version contains supplementary material available at 10.1186/s13195-021-00863-y.
Collapse
Affiliation(s)
- Marta Milà-Alomà
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Mahnaz Shekari
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Gemma Salvadó
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain
| | - Eider M Arenaza-Urquijo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Grégory Operto
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Carles Falcon
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain
| | - Natalia Vilor-Tejedor
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain.,Department of Clinical Genetics, ERASMUS MC, Rotterdam, the Netherlands
| | - Oriol Grau-Rivera
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.,Servei de Neurologia, Hospital del Mar, Barcelona, Spain
| | - Aleix Sala-Vila
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Gonzalo Sánchez-Benavides
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - José Maria González-de-Echávarri
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Carolina Minguillon
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Karine Fauria
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Aida Niñerola-Baizán
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain.,Servei de Medicina Nuclear, Hospital Clínic, Barcelona, Spain
| | - Andrés Perissinotti
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain.,Servei de Medicina Nuclear, Hospital Clínic, Barcelona, Spain
| | - Maryline Simon
- Roche Diagnostics International Ltd., Rotkreuz, Switzerland
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005, Barcelona, Spain. .,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain. .,Servei de Neurologia, Hospital del Mar, Barcelona, Spain.
| | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005, Barcelona, Spain. .,Present address: H. Lundbeck A/S, Copenhagen, Denmark.
| | | |
Collapse
|
125
|
Grande X, Berron D, Maass A, Bainbridge WA, Düzel E. Content-specific vulnerability of recent episodic memories in Alzheimer's disease. Neuropsychologia 2021; 160:107976. [PMID: 34314781 PMCID: PMC8434425 DOI: 10.1016/j.neuropsychologia.2021.107976] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 11/21/2022]
Abstract
Endel Tulving's episodic memory framework emphasizes the multifaceted re-experiencing of personal events. Indeed, decades of research focused on the experiential nature of episodic memories, usually treating recent episodic memory as a coherent experiential quality. However, recent insights into the functional architecture of the medial temporal lobe show that different types of mnemonic information are segregated into distinct neural pathways in brain circuits empirically associated with episodic memory. Moreover, recent memories do not fade as a whole under conditions of progressive neurodegeneration in these brain circuits, notably in Alzheimer's disease. Instead, certain memory content seem particularly vulnerable from the moment of their encoding while other content can remain memorable consistently across individuals and contexts. We propose that these observations are related to the content-specific functional architecture of the medial temporal lobe and consequently to a content-specific impairment of memory at different stages of the neurodegeneration. To develop Endel Tulving's inspirational legacy further and to advance our understanding of how memory function is affected by neurodegenerative conditions such as Alzheimer's disease, we postulate that it is compelling to focus on the representational content of recent episodic memories. The functional anatomy of episodic memory segregates different memory content. Alzheimer's disease may cause content-specific loss of recent memories Content-specific memorability across individuals changes with Alzheimer's disease. Content-specific assessment could provide new insights into episodic memory in health and disease
Collapse
Affiliation(s)
- Xenia Grande
- German Center for Neurodegenerative Diseases, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University Magdeburg, Germany.
| | - David Berron
- German Center for Neurodegenerative Diseases, Magdeburg, Germany; Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Anne Maass
- German Center for Neurodegenerative Diseases, Magdeburg, Germany
| | | | - Emrah Düzel
- German Center for Neurodegenerative Diseases, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University Magdeburg, Germany; Institute of Cognitive Neuroscience, University College London, United Kingdom.
| |
Collapse
|
126
|
Dubois B, Villain N, Frisoni GB, Rabinovici GD, Sabbagh M, Cappa S, Bejanin A, Bombois S, Epelbaum S, Teichmann M, Habert MO, Nordberg A, Blennow K, Galasko D, Stern Y, Rowe CC, Salloway S, Schneider LS, Cummings JL, Feldman HH. Clinical diagnosis of Alzheimer's disease: recommendations of the International Working Group. Lancet Neurol 2021; 20:484-496. [PMID: 33933186 PMCID: PMC8339877 DOI: 10.1016/s1474-4422(21)00066-1] [Citation(s) in RCA: 472] [Impact Index Per Article: 118.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/21/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022]
Abstract
In 2018, the US National Institute on Aging and the Alzheimer's Association proposed a purely biological definition of Alzheimer's disease that relies on biomarkers. Although the intended use of this framework was for research purposes, it has engendered debate and challenges regarding its use in everyday clinical practice. For instance, cognitively unimpaired individuals can have biomarker evidence of both amyloid β and tau pathology but will often not develop clinical manifestations in their lifetime. Furthermore, a positive Alzheimer's disease pattern of biomarkers can be observed in other brain diseases in which Alzheimer's disease pathology is present as a comorbidity. In this Personal View, the International Working Group presents what we consider to be the current limitations of biomarkers in the diagnosis of Alzheimer's disease and, on the basis of this evidence, we propose recommendations for how biomarkers should and should not be used for diagnosing Alzheimer's disease in a clinical setting. We recommend that Alzheimer's disease diagnosis be restricted to people who have positive biomarkers together with specific Alzheimer's disease phenotypes, whereas biomarker-positive cognitively unimpaired individuals should be considered only at-risk for progression to Alzheimer's disease.
Collapse
Affiliation(s)
- Bruno Dubois
- Assistance Publique-Hôpitaux de Paris (AP-HP) Department of Neurology, Sorbonne University, Paris, France; Institut du Cerveau, Sorbonne University, Paris, France.
| | - Nicolas Villain
- Assistance Publique-Hôpitaux de Paris (AP-HP) Department of Neurology, Sorbonne University, Paris, France; Institut du Cerveau, Sorbonne University, Paris, France
| | - Giovanni B Frisoni
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland; Memory Clinic, University Hospital of Geneva, Geneva, Switzerland; Laboratory of Alzheimer's Neuroimaging and Epidemiology (LANE), Saint John of God Clinical Research Centre, Brescia, Italy
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology and Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Marwan Sabbagh
- Cleveland Clinic, Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Stefano Cappa
- University School for Advanced Studies, Pavia, Italy; RCCS Mondino Foundation, Pavia, Italy
| | - Alexandre Bejanin
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain; Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain; Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Stéphanie Bombois
- Assistance Publique-Hôpitaux de Paris (AP-HP) Department of Neurology, Sorbonne University, Paris, France; INSERM, CHU Lille, U1171 - Degenerative and vascular cognitive disorders, University of Lille, Lille, France
| | - Stéphane Epelbaum
- Assistance Publique-Hôpitaux de Paris (AP-HP) Department of Neurology, Sorbonne University, Paris, France; Inria ARAMIS project team, Inria-APHP collaboratio, Sorbonne University, Paris, France; Institut du Cerveau, Sorbonne University, Paris, France
| | - Marc Teichmann
- Assistance Publique-Hôpitaux de Paris (AP-HP) Department of Neurology, Sorbonne University, Paris, France
| | - Marie-Odile Habert
- AP-HP Department of Nuclear Medicine, Sorbonne University, Paris, France; CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Sorbonne University, Paris, France; Institut du Cerveau, Sorbonne University, Paris, France
| | - Agneta Nordberg
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institute, Stockholm, Sweden; Theme Aging, The Aging Brain, Karolinska University Hospital, Stockholm, Sweden
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Douglas Galasko
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Yaakov Stern
- Cognitive Neuroscience Division, Department of Neurology, Columbia University, New York, NY, USA
| | - Christopher C Rowe
- Department of Molecular Imaging and Therapy, Austin Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Stephen Salloway
- Department of Neurology and Department of Psychiatry, Alpert Medical School of Brown University, Providence, RI, USA; Butler Hospital, Providence, RI, USA
| | - Lon S Schneider
- Keck School of Medicine of the University of Southern California, Los Angeles, USA
| | - Jeffrey L Cummings
- Cleveland Clinic, Lou Ruvo Center for Brain Health, Las Vegas, NV, USA; Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Howard H Feldman
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA; Shiley-Marcos Alzheimer's Disease Research Center, University of California San Diego, La Jolla, CA, USA; Alzheimer Disease Cooperative Study, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
127
|
Pichet Binette A, Theaud G, Rheault F, Roy M, Collins DL, Levin J, Mori H, Lee JH, Farlow MR, Schofield P, Chhatwal JP, Masters CL, Benzinger T, Morris J, Bateman R, Breitner JC, Poirier J, Gonneaud J, Descoteaux M, Villeneuve S. Bundle-specific associations between white matter microstructure and Aβ and tau pathology in preclinical Alzheimer's disease. eLife 2021; 10:62929. [PMID: 33983116 PMCID: PMC8169107 DOI: 10.7554/elife.62929] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Beta-amyloid (Aβ) and tau proteins, the pathological hallmarks of Alzheimer's disease (AD), are believed to spread through connected regions of the brain. Combining diffusion imaging and positron emission tomography, we investigated associations between white matter microstructure specifically in bundles connecting regions where Aβ or tau accumulates and pathology. We focused on free-water-corrected diffusion measures in the anterior cingulum, posterior cingulum, and uncinate fasciculus in cognitively normal older adults at risk of sporadic AD and presymptomatic mutation carriers of autosomal dominant AD. In Aβ-positive or tau-positive groups, lower tissue fractional anisotropy and higher mean diffusivity related to greater Aβ and tau burden in both cohorts. Associations were found in the posterior cingulum and uncinate fasciculus in preclinical sporadic AD, and in the anterior and posterior cingulum in presymptomatic mutation carriers. These results suggest that microstructural alterations accompany pathological accumulation as early as the preclinical stage of both sporadic and autosomal dominant AD.
Collapse
Affiliation(s)
- Alexa Pichet Binette
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Canada.,Douglas Mental Health University Institute, Montreal, Canada
| | - Guillaume Theaud
- Sherbrooke Connectivity Imaging Laboratory (SCIL), Université de Sherbrooke, Sherbrooke, Canada
| | - François Rheault
- Electrical Engineering, Vanderbilt University, Nashville, United States
| | - Maggie Roy
- Sherbrooke Connectivity Imaging Laboratory (SCIL), Université de Sherbrooke, Sherbrooke, Canada
| | - D Louis Collins
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Hiroshi Mori
- Department of Clinical Neuroscience, Osaka City University Medical School, Osaka, Japan
| | - Jae Hong Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | - Peter Schofield
- Neuroscience Research Australia, Sydney, Australia.,School of Medical Sciences, UNSW Sydney, Sydney, Australia
| | - Jasmeer P Chhatwal
- Harvard Medical School, Massachusetts General Hospital, Boston, United States
| | - Colin L Masters
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Tammie Benzinger
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, United States.,Department of Neurology, Washington University School of Medicine, St. Louis, United States
| | - John Morris
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, United States.,Department of Neurology, Washington University School of Medicine, St. Louis, United States
| | - Randall Bateman
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, United States.,Department of Neurology, Washington University School of Medicine, St. Louis, United States
| | - John Cs Breitner
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Canada.,Douglas Mental Health University Institute, Montreal, Canada
| | - Judes Poirier
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Canada.,Douglas Mental Health University Institute, Montreal, Canada
| | - Julie Gonneaud
- Douglas Mental Health University Institute, Montreal, Canada.,Normandie Univ, UNICAEN, INSERM, U1237, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Laboratory (SCIL), Université de Sherbrooke, Sherbrooke, Canada
| | - Sylvia Villeneuve
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Canada.,Douglas Mental Health University Institute, Montreal, Canada.,McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
| | | | | |
Collapse
|
128
|
Elahi FM, Ashimatey SB, Bennett DJ, Walters SM, La Joie R, Jiang X, Wolf A, Cobigo Y, Staffaroni AM, Rosen HJ, Miller BL, Rabinovici GD, Kramer JH, Green AJ, Kashani AH. Retinal imaging demonstrates reduced capillary density in clinically unimpaired APOE ε4 gene carriers. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12181. [PMID: 34013017 PMCID: PMC8111703 DOI: 10.1002/dad2.12181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Apolipoprotein E (APOE) ε4, the strongest non-Mendelian genetic risk factor for Alzheimer's disease (AD), has been shown to affect brain capillaries in mice, with potential implications for AD-related neurodegenerative disease. However, human brain capillaries cannot be directly visualized in vivo. We therefore used retinal imaging to test APOE ε4 effects on human central nervous system capillaries. METHODS We collected retinal optical coherence tomography angiography, cognitive testing, and brain imaging in research participants and built statistical models to test genotype-phenotype associations. RESULTS Our analyses demonstrate lower retinal capillary densities in early disease, in cognitively normal APOE ε4 gene carriers. Furthermore, through regression modeling with a measure of brain perfusion (arterial spin labeling), we provide support for the relevance of these findings to cerebral vasculature. DISCUSSION These results suggest that APOE ε4 affects capillary health in humans and that retinal capillary measures could serve as surrogates for brain capillaries, providing an opportunity to study microangiopathic contributions to neurodegenerative disorders directly in humans.
Collapse
Affiliation(s)
- Fanny M. Elahi
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesSan FranciscoUniversity of CaliforniaSan FranciscoCaliforniaUSA
- San Francisco Veterans Affairs Health Care SystemSan FranciscoCaliforniaUSA
| | - Senyo B. Ashimatey
- Department of OphthalmologyUSC Roski Eye InstituteKeck School of Medicine of the University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Daniel J. Bennett
- Department of NeurologyDivision of Neuroimmunology and Glial BiologyWeill Institute for NeurosciencesSan FranciscoUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Samantha M. Walters
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesSan FranciscoUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Renaud La Joie
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesSan FranciscoUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Xuejuan Jiang
- Department of OphthalmologyUSC Roski Eye InstituteKeck School of Medicine of the University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Amy Wolf
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesSan FranciscoUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Yann Cobigo
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesSan FranciscoUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Adam M. Staffaroni
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesSan FranciscoUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Howie J. Rosen
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesSan FranciscoUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Bruce L. Miller
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesSan FranciscoUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Gil D. Rabinovici
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesSan FranciscoUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of Radiology and Biomedical ImagingSan FranciscoUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Joel H. Kramer
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesSan FranciscoUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Ari J. Green
- Department of NeurologyDivision of Neuroimmunology and Glial BiologyWeill Institute for NeurosciencesSan FranciscoUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of OphthalmologySan FranciscoUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Amir H. Kashani
- Department of OphthalmologyUSC Roski Eye InstituteKeck School of Medicine of the University of Southern CaliforniaLos AngelesCaliforniaUSA
- USC Ginsberg Institute for Biomedical TherapeuticsLos AngelesCaliforniaUSA
| |
Collapse
|
129
|
Wang YJ, Hu H, Yang YX, Zuo CT, Tan L, Yu JT. Regional Amyloid Accumulation and White Matter Integrity in Cognitively Normal Individuals. J Alzheimers Dis 2021; 74:1261-1270. [PMID: 32176644 DOI: 10.3233/jad-191350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Recent studies have shown that amyloid-β (Aβ) burden influenced white matter (WM) integrity before the onset of dementia. OBJECTIVE To assess whether the effects of Aβ burden on WM integrity in cognitively normal (CN) individuals were regionally specific. METHODS Our cohort consisted of 71 CNs from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database who underwent both AV45 amyloid-PET and diffusion tensor imaging. Standardized uptake value ratio (SUVR) was computed across four bilateral regions of interest (ROIs) corresponding to four stages of in vivo amyloid staging model (Amyloid stages I-IV). Linear regression models were conducted in entire CN group and between APOEɛ4 carriers and non-carriers. RESULTS Our results indicated that higher global Aβ-SUVR was associated with higher mean diffusivity (MD) in the entire CN group (p = 0.023), and with both higher MD (p = 0.015) and lower fractional anisotropy (FA) (p = 0.026) in APOEɛ4 carriers. Subregion analysis showed that higher Amyloid stage I-II Aβ-SUVRs were associated with higher MD (Stage-1: p = 0.030; Stage-2: p = 0.016) in the entire CN group, and with both higher MD (Stage-1: p = 0.004; Stage-2: p = 0.010) and lower FA (Stage-1: p = 0.022; Stage-2: p = 0.014) in APOEɛ4 carriers. No associations were found in APOEɛ4 non-carriers and in Amyloid stage III-IV ROIs. CONCLUSIONS Our results indicated that the effects of Aβ burden on WM integrity in CNs might be regionally specific, particularly in Amyloid stage I-II ROIs, and modulated by APOEɛ4 status.
Collapse
Affiliation(s)
- Ya-Juan Wang
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, China
| | - Hao Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, China
| | - Yu-Xiang Yang
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chuan-Tao Zuo
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, China.,Department of Neurology, Qingdao Municipal Hospital, Qingdao University, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | | |
Collapse
|
130
|
Smith GS, Kuwabara H, Nandi A, Gould NF, Nassery N, Savonenko A, Joo JH, Kraut M, Brasic J, Holt DP, Hall AW, Mathews WB, Dannals RF, Avramopoulos D, Workman CI. Molecular imaging of beta-amyloid deposition in late-life depression. Neurobiol Aging 2021; 101:85-93. [PMID: 33592548 PMCID: PMC8730327 DOI: 10.1016/j.neurobiolaging.2021.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/16/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022]
Abstract
Late-life depression (LLD) is associated with an increased risk of all-cause dementia and may involve Alzheimer's disease pathology. Twenty-one LLD patients who met the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, criteria for a current major depressive episode and 21 healthy controls underwent clinical and neuropsychological assessments, magnetic resonance imaging to measure gray matter volumes, and high-resolution positron emission tomography to measure beta-amyloid (Aβ) deposition. Clinical and neuropsychological assessments were repeated after 10-12 weeks of Citalopram or Sertraline treatment (LLD patients only). LLD patients did not differ from healthy controls in baseline neuropsychological function, although patients improved in both depressive symptoms and visual-spatial memory during treatment. Greater Aβ in the left parietal cortex was observed in LLD patients compared with controls. Greater Aβ was correlated with greater depressive symptoms and poorer visual-spatial memory, but not with improvement with treatment. The study of LLD patients with prospective measurements of mood and cognitive responses to antidepressant treatment is an opportunity to understand early neurobiological mechanisms underlying the association between depression and subsequent cognitive decline.
Collapse
Affiliation(s)
- Gwenn S Smith
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Division of Nuclear Medicine and Molecular Imaging.
| | | | - Ayon Nandi
- Division of Nuclear Medicine and Molecular Imaging
| | - Neda F Gould
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Najilla Nassery
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alena Savonenko
- Department of Pathology (Neuropathology), Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jin Hui Joo
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Kraut
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James Brasic
- Division of Nuclear Medicine and Molecular Imaging
| | | | | | | | | | - Dimitrios Avramopoulos
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Clifford I Workman
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
131
|
Multimodal neuroimaging of sex differences in cognitively impaired patients on the Alzheimer's continuum: greater tau-PET retention in females. Neurobiol Aging 2021; 105:86-98. [PMID: 34049062 DOI: 10.1016/j.neurobiolaging.2021.04.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 12/23/2022]
Abstract
We assessed sex differences in amyloid- and tau-PET retention in 119 amyloid positive patients with mild cognitive impairment or Alzheimer's disease (AD) dementia. Patients underwent 3T-MRI, 11C-PIB amyloid-PET and 18F-Flortaucipir tau-PET. Linear ordinary least squares regression models tested sex differences in Flortaucipir-PET SUVR in a summary temporal region of interest as well as global PIB-PET. No sex differences were observed in demographics, Clinical Dementia Rating Sum of Boxes (CDR-SoB), Mini-Mental State Exam (MMSE), raw episodic memory scores, or cortical thickness. Females had higher global PIB SUVR (ηp²=.043, p=.025) and temporal Flortaucipir SUVR (ηp²=.070, p=.004), adjusting for age and CDR-SoB. Sex differences in temporal Flortaucipir-PET remained significant when controlling additionally for PIB SUVR and APOE4 status (ηp²=.055, p=.013), or when using partial volume-corrected data. No sex differences were present in areas of known Flortaucipir off-target binding. Overall, females demonstrated greater AD regional tau-PET burden than males despite clinical comparability. Further characterization of sex differences will provide insight into AD pathogenesis and support development of personalized therapeutic strategies.
Collapse
|
132
|
Pichet Binette A, Vachon-Presseau É, Morris J, Bateman R, Benzinger T, Collins DL, Poirier J, Breitner JCS, Villeneuve S. Amyloid and Tau Pathology Associations With Personality Traits, Neuropsychiatric Symptoms, and Cognitive Lifestyle in the Preclinical Phases of Sporadic and Autosomal Dominant Alzheimer's Disease. Biol Psychiatry 2021; 89:776-785. [PMID: 32228870 PMCID: PMC7415608 DOI: 10.1016/j.biopsych.2020.01.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Major prevention trials for Alzheimer's disease (AD) are now focusing on multidomain lifestyle interventions. However, the exact combination of behavioral factors related to AD pathology remains unclear. In 2 cohorts of cognitively unimpaired individuals at risk of AD, we examined which combinations of personality traits, neuropsychiatric symptoms, and cognitive lifestyle (years of education or lifetime cognitive activity) related to the pathological hallmarks of AD, amyloid-β, and tau deposits. METHODS A total of 115 older adults with a parental or multiple-sibling family history of sporadic AD (PREVENT-AD [PRe-symptomatic EValuation of Experimental or Novel Treatments for AD] cohort) underwent amyloid and tau positron emission tomography and answered several questionnaires related to behavioral attributes. Separately, we studied 117 mutation carriers from the DIAN (Dominant Inherited Alzheimer Network) study group cohort with amyloid positron emission tomography and behavioral data. Using partial least squares analysis, we identified latent variables relating amyloid or tau pathology with combinations of personality traits, neuropsychiatric symptoms, and cognitive lifestyle. RESULTS In PREVENT-AD, lower neuroticism, neuropsychiatric burden, and higher education were associated with less amyloid deposition (p = .014). Lower neuroticism and neuropsychiatric features, along with higher measures of openness and extraversion, were related to less tau deposition (p = .006). In DIAN, lower neuropsychiatric burden and higher education were also associated with less amyloid (p = .005). The combination of these factors accounted for up to 14% of AD pathology. CONCLUSIONS In the preclinical phase of both sporadic and autosomal dominant AD, multiple behavioral features were associated with AD pathology. These results may suggest potential pathways by which multidomain interventions might help delay AD onset or progression.
Collapse
Affiliation(s)
- Alexa Pichet Binette
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Étienne Vachon-Presseau
- Department of Anesthesia, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Faculty of Dentistry, McGill University, Montreal, Quebec, Canada; Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
| | - John Morris
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, Missouri; Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Randall Bateman
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, Missouri; Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Tammie Benzinger
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, Missouri; Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - D Louis Collins
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Judes Poirier
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - John C S Breitner
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Sylvia Villeneuve
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada.
| |
Collapse
|
133
|
Buckley RF. Recent Advances in Imaging of Preclinical, Sporadic, and Autosomal Dominant Alzheimer's Disease. Neurotherapeutics 2021; 18:709-727. [PMID: 33782864 PMCID: PMC8423933 DOI: 10.1007/s13311-021-01026-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2021] [Indexed: 12/25/2022] Open
Abstract
Observing Alzheimer's disease (AD) pathological changes in vivo with neuroimaging provides invaluable opportunities to understand and predict the course of disease. Neuroimaging AD biomarkers also allow for real-time tracking of disease-modifying treatment in clinical trials. With recent neuroimaging advances, along with the burgeoning availability of longitudinal neuroimaging data and big-data harmonization approaches, a more comprehensive evaluation of the disease has shed light on the topographical staging and temporal sequencing of the disease. Multimodal imaging approaches have also promoted the development of data-driven models of AD-associated pathological propagation of tau proteinopathies. Studies of autosomal dominant, early sporadic, and late sporadic courses of the disease have shed unique insights into the AD pathological cascade, particularly with regard to genetic vulnerabilities and the identification of potential drug targets. Further, neuroimaging markers of b-amyloid, tau, and neurodegeneration have provided a powerful tool for validation of novel fluid cerebrospinal and plasma markers. This review highlights some of the latest advances in the field of human neuroimaging in AD across these topics, particularly with respect to positron emission tomography and structural and functional magnetic resonance imaging.
Collapse
Affiliation(s)
- Rachel F Buckley
- Department of Neurology, Massachusetts General Hospital & Brigham and Women's, Harvard Medical School, Boston, MA, USA.
- Melbourne School of Psychological Sciences and Florey Institutes, University of Melbourne, Melbourne, VIC, Australia.
- Department of Neurology, Massachusetts General Hospital, 149 13th St, Charlestown, MA, 02129, USA.
| |
Collapse
|
134
|
Collij LE, Ingala S, Top H, Wottschel V, Stickney KE, Tomassen J, Konijnenberg E, ten Kate M, Sudre C, Lopes Alves I, Yaqub MM, Wink AM, Van ‘t Ent D, Scheltens P, van Berckel BN, Visser PJ, Barkhof F, Braber AD. White matter microstructure disruption in early stage amyloid pathology. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12124. [PMID: 33816751 PMCID: PMC8015832 DOI: 10.1002/dad2.12124] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Amyloid beta (Aβ) accumulation is the first pathological hallmark of Alzheimer's disease (AD), and it is associated with altered white matter (WM) microstructure. We aimed to investigate this relationship at a regional level in a cognitively unimpaired cohort. METHODS We included 179 individuals from the European Medical Information Framework for AD (EMIF-AD) preclinAD study, who underwent diffusion magnetic resonance (MR) to determine tract-level fractional anisotropy (FA); mean, radial, and axial diffusivity (MD/RD/AxD); and dynamic [18F]flutemetamol) positron emission tomography (PET) imaging to assess amyloid burden. RESULTS Regression analyses showed a non-linear relationship between regional amyloid burden and WM microstructure. Low amyloid burden was associated with increased FA and decreased MD/RD/AxD, followed by decreased FA and increased MD/RD/AxD upon higher amyloid burden. The strongest association was observed between amyloid burden in the precuneus and body of the corpus callosum (CC) FA and diffusivity (MD/RD) measures. In addition, amyloid burden in the anterior cingulate cortex strongly related to AxD and RD measures in the genu CC. DISCUSSION Early amyloid deposition is associated with changes in WM microstructure. The non-linear relationship might reflect multiple stages of axonal damage.
Collapse
Affiliation(s)
- Lyduine E. Collij
- Dept. of Radiology and Nuclear MedicineAmsterdam UMC, Location VUmcAmsterdamThe Netherlands
| | - Silvia Ingala
- Dept. of Radiology and Nuclear MedicineAmsterdam UMC, Location VUmcAmsterdamThe Netherlands
| | - Herwin Top
- Dept. of Radiology and Nuclear MedicineAmsterdam UMC, Location VUmcAmsterdamThe Netherlands
| | - Viktor Wottschel
- Dept. of Radiology and Nuclear MedicineAmsterdam UMC, Location VUmcAmsterdamThe Netherlands
| | | | - Jori Tomassen
- Alzheimer CenterAmsterdam UMC, Location VUmcAmsterdamThe Netherlands
| | | | - Mara ten Kate
- Dept. of Radiology and Nuclear MedicineAmsterdam UMC, Location VUmcAmsterdamThe Netherlands
| | - Carole Sudre
- Alzheimer CenterAmsterdam UMC, Location VUmcAmsterdamThe Netherlands
- Institute of Neurology and Healthcare EngineeringUniversity College LondonLondonUK
| | - Isadora Lopes Alves
- Dept. of Radiology and Nuclear MedicineAmsterdam UMC, Location VUmcAmsterdamThe Netherlands
| | - Maqsood M. Yaqub
- Dept. of Radiology and Nuclear MedicineAmsterdam UMC, Location VUmcAmsterdamThe Netherlands
| | - Alle Meije Wink
- Dept. of Radiology and Nuclear MedicineAmsterdam UMC, Location VUmcAmsterdamThe Netherlands
| | - Dennis Van ‘t Ent
- Dept. of Biological PsychologyVU University AmsterdamAmsterdamThe Netherlands
| | - Philip Scheltens
- Alzheimer CenterAmsterdam UMC, Location VUmcAmsterdamThe Netherlands
| | - Bart N.M. van Berckel
- Dept. of Radiology and Nuclear MedicineAmsterdam UMC, Location VUmcAmsterdamThe Netherlands
| | - Pieter Jelle Visser
- Alzheimer CenterAmsterdam UMC, Location VUmcAmsterdamThe Netherlands
- Department of Psychiatry and NeuropsychologySchool for Mental Health and Neuroscience (MHeNS), Alzheimer Centrum LimburgMaastricht UniversityMaastrichtThe Netherlands
- Department of NeurobiologyCare Sciences Division of NeurogeriatricsKarolinska InstitutetStockholmSweden
| | - Frederik Barkhof
- Dept. of Radiology and Nuclear MedicineAmsterdam UMC, Location VUmcAmsterdamThe Netherlands
- Institute of Neurology and Healthcare EngineeringUniversity College LondonLondonUK
| | - Anouk Den Braber
- Dept. of Biological PsychologyVU University AmsterdamAmsterdamThe Netherlands
- Alzheimer CenterAmsterdam UMC, Location VUmcAmsterdamThe Netherlands
| |
Collapse
|
135
|
Schwarz CG. Uses of Human MR and PET Imaging in Research of Neurodegenerative Brain Diseases. Neurotherapeutics 2021; 18:661-672. [PMID: 33723751 PMCID: PMC8423895 DOI: 10.1007/s13311-021-01030-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2021] [Indexed: 01/18/2023] Open
Abstract
In the past decades, many neuroimaging studies have aimed to improve the scientific understanding of human neurodegenerative diseases using MRI and PET. This article is designed to provide an overview of the major classes of brain imaging and how/why they are used in this line of research. It is intended as a primer for individuals who are relatively unfamiliar with the methods of neuroimaging research to gain a better understanding of the vocabulary and overall methodologies. It is not intended to describe or review any research findings for any disease or biology, but rather to broadly describe the imaging methodologies that are used in conducting this neurodegeneration research. We will also review challenges and strategies for analyzing neuroimaging data across multiple sites and studies, i.e., harmonization and standardization of imaging data for multi-site and meta-analyses.
Collapse
|
136
|
Bullich S, Roé-Vellvé N, Marquié M, Landau SM, Barthel H, Villemagne VL, Sanabria Á, Tartari JP, Sotolongo-Grau O, Doré V, Koglin N, Müller A, Perrotin A, Jovalekic A, De Santi S, Tárraga L, Stephens AW, Rowe CC, Sabri O, Seibyl JP, Boada M. Early detection of amyloid load using 18F-florbetaben PET. ALZHEIMERS RESEARCH & THERAPY 2021; 13:67. [PMID: 33773598 PMCID: PMC8005243 DOI: 10.1186/s13195-021-00807-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/10/2021] [Indexed: 03/26/2023]
Abstract
BACKGROUND A low amount and extent of Aβ deposition at early stages of Alzheimer's disease (AD) may limit the use of previously developed pathology-proven composite SUVR cutoffs. This study aims to characterize the population with earliest abnormal Aβ accumulation using 18F-florbetaben PET. Quantitative thresholds for the early (SUVRearly) and established (SUVRestab) Aβ deposition were developed, and the topography of early Aβ deposition was assessed. Subsequently, Aβ accumulation over time, progression from mild cognitive impairment (MCI) to AD dementia, and tau deposition were assessed in subjects with early and established Aβ deposition. METHODS The study population consisted of 686 subjects (n = 287 (cognitively normal healthy controls), n = 166 (subjects with subjective cognitive decline (SCD)), n = 129 (subjects with MCI), and n = 101 (subjects with AD dementia)). Three categories in the Aβ-deposition continuum were defined based on the developed SUVR cutoffs: Aβ-negative subjects, subjects with early Aβ deposition ("gray zone"), and subjects with established Aβ pathology. RESULTS SUVR using the whole cerebellum as the reference region and centiloid (CL) cutoffs for early and established amyloid pathology were 1.10 (13.5 CL) and 1.24 (35.7 CL), respectively. Cingulate cortices and precuneus, frontal, and inferior lateral temporal cortices were the regions showing the initial pathological tracer retention. Subjects in the "gray zone" or with established Aβ pathology accumulated more amyloid over time than Aβ-negative subjects. After a 4-year clinical follow-up, none of the Aβ-negative or the gray zone subjects progressed to AD dementia while 91% of the MCI subjects with established Aβ pathology progressed. Tau deposition was infrequent in those subjects without established Aβ pathology. CONCLUSIONS This study supports the utility of using two cutoffs for amyloid PET abnormality defining a "gray zone": a lower cutoff of 13.5 CL indicating emerging Aβ pathology and a higher cutoff of 35.7 CL where amyloid burden levels correspond to established neuropathology findings. These cutoffs define a subset of subjects characterized by pre-AD dementia levels of amyloid burden that precede other biomarkers such as tau deposition or clinical symptoms and accelerated amyloid accumulation. The determination of different amyloid loads, particularly low amyloid levels, is useful in determining who will eventually progress to dementia. Quantitation of amyloid provides a sensitive measure in these low-load cases and may help to identify a group of subjects most likely to benefit from intervention. TRIAL REGISTRATION Data used in this manuscript belong to clinical trials registered in ClinicalTrials.gov ( NCT00928304 , NCT00750282 , NCT01138111 , NCT02854033 ) and EudraCT (2014-000798-38).
Collapse
Affiliation(s)
- Santiago Bullich
- Life Molecular Imaging GmbH, Tegeler Str. 6-7, 13353, Berlin, Germany.
| | - Núria Roé-Vellvé
- Life Molecular Imaging GmbH, Tegeler Str. 6-7, 13353, Berlin, Germany
| | - Marta Marquié
- Fundació ACE Institut Català de Neurociències Aplicades, Research Center and Memory Unit - Universitat Internacional de Catalunya (UIC), Barcelona, Spain.,Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Susan M Landau
- Helen Wills Neuroscience Institute, University of California, Berkeley and Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Henryk Barthel
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Victor L Villemagne
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.,Departments of Medicine and Molecular Imaging, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
| | - Ángela Sanabria
- Fundació ACE Institut Català de Neurociències Aplicades, Research Center and Memory Unit - Universitat Internacional de Catalunya (UIC), Barcelona, Spain.,Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Pablo Tartari
- Fundació ACE Institut Català de Neurociències Aplicades, Research Center and Memory Unit - Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Oscar Sotolongo-Grau
- Fundació ACE Institut Català de Neurociències Aplicades, Research Center and Memory Unit - Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Vincent Doré
- Departments of Medicine and Molecular Imaging, University of Melbourne, Austin Health, Melbourne, Victoria, Australia.,The Australian e-Health Research Centre, Health and Biosecurity, CSIRO, Melbourne, Victoria, Australia
| | - Norman Koglin
- Life Molecular Imaging GmbH, Tegeler Str. 6-7, 13353, Berlin, Germany
| | - Andre Müller
- Life Molecular Imaging GmbH, Tegeler Str. 6-7, 13353, Berlin, Germany
| | - Audrey Perrotin
- Life Molecular Imaging GmbH, Tegeler Str. 6-7, 13353, Berlin, Germany
| | | | | | - Lluís Tárraga
- Fundació ACE Institut Català de Neurociències Aplicades, Research Center and Memory Unit - Universitat Internacional de Catalunya (UIC), Barcelona, Spain.,Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Andrew W Stephens
- Life Molecular Imaging GmbH, Tegeler Str. 6-7, 13353, Berlin, Germany
| | - Christopher C Rowe
- Departments of Medicine and Molecular Imaging, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
| | - Osama Sabri
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | | | - Mercè Boada
- Fundació ACE Institut Català de Neurociències Aplicades, Research Center and Memory Unit - Universitat Internacional de Catalunya (UIC), Barcelona, Spain.,Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
137
|
Reduced Repetition Suppression in Aging is Driven by Tau-Related Hyperactivity in Medial Temporal Lobe. J Neurosci 2021; 41:3917-3931. [PMID: 33731446 DOI: 10.1523/jneurosci.2504-20.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 11/21/2022] Open
Abstract
Tau deposition begins in the medial temporal lobe (MTL) in aging and Alzheimer's disease (AD), and MTL neural dysfunction is commonly observed in these groups. However, the association between tau and MTL neural activity has not been fully characterized. We investigated the effects of tau on repetition suppression, the reduction of activity for repeated stimulus presentations compared to novel stimuli. We used task-based functional MRI (fMRI) to assess MTL subregional activity in 21 young adults (YA) and 45 cognitively normal human older adults (OA; total sample: 37 females, 29 males). AD pathology was measured with position emission tomography (PET), using 18F-Flortaucipir for tau and 11C-Pittsburgh compound B (PiB) for amyloid-β (Aβ). The MTL was segmented into six subregions using high-resolution structural images. We compared the effects of low tau pathology, restricted to entorhinal cortex and hippocampus (Tau- OA), to high tau pathology, also occurring in temporal and limbic regions (Tau+ OA). Low levels of tau (Tau- OA vs YA) were associated with reduced repetition suppression activity specifically in anterolateral entorhinal cortex (alEC) and hippocampus, the first regions to accumulate tau. High tau pathology (Tau+ vs Tau- OA) was associated with widespread reductions in repetition suppression across MTL. Further analyses indicated that reduced repetition suppression was driven by hyperactivity to repeated stimuli, rather than decreased activity to novel stimuli. Increased activation was associated with entorhinal tau, but not Aβ. These findings reveal a link between tau deposition and neural dysfunction in MTL, in which tau-related hyperactivity prevents deactivation to repeated stimuli, leading to reduced repetition suppression.SIGNIFICANCE STATEMENT Abnormal neural activity occurs in the medial temporal lobe (MTL) in aging and Alzheimer's disease (AD). Because tau pathology first deposits in the MTL in aging, this altered activity may be due to local tau pathology, and distinct MTL subregions may be differentially vulnerable. We demonstrate that in older adults (OAs) with low tau pathology, there are focal alterations in activity in MTL subregions that first develop tau pathology, while OAs with high tau pathology have aberrant activity throughout MTL. Tau was associated with hyperactivity to repeated stimulus presentations, leading to reduced repetition suppression, the discrimination between novel and repeated stimuli. Our data suggest that tau deposition is related to abnormal activity in MTL before the onset of cognitive decline.
Collapse
|
138
|
Kolinger GD, Vállez García D, Willemsen ATM, Reesink FE, de Jong BM, Dierckx RAJO, De Deyn PP, Boellaard R. Amyloid burden quantification depends on PET and MR image processing methodology. PLoS One 2021; 16:e0248122. [PMID: 33667281 PMCID: PMC7935288 DOI: 10.1371/journal.pone.0248122] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/19/2021] [Indexed: 11/19/2022] Open
Abstract
Quantification of amyloid load with positron emission tomography can be useful to assess Alzheimer's Disease in-vivo. However, quantification can be affected by the image processing methodology applied. This study's goal was to address how amyloid quantification is influenced by different semi-automatic image processing pipelines. Images were analysed in their Native Space and Standard Space; non-rigid spatial transformation methods based on maximum a posteriori approaches and tissue probability maps (TPM) for regularisation were explored. Furthermore, grey matter tissue segmentations were defined before and after spatial normalisation, and also using a population-based template. Five quantification metrics were analysed: two intensity-based, two volumetric-based, and one multi-parametric feature. Intensity-related metrics were not substantially affected by spatial normalisation and did not significantly depend on the grey matter segmentation method, with an impact similar to that expected from test-retest studies (≤10%). Yet, volumetric and multi-parametric features were sensitive to the image processing methodology, with an overall variability up to 45%. Therefore, the analysis should be carried out in Native Space avoiding non-rigid spatial transformations. For analyses in Standard Space, spatial normalisation regularised by TPM is preferred. Volumetric-based measurements should be done in Native Space, while intensity-based metrics are more robust against differences in image processing pipelines.
Collapse
Affiliation(s)
- Guilherme D. Kolinger
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - David Vállez García
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Antoon T. M. Willemsen
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Fransje E. Reesink
- Department of Neurology, Alzheimer Research Centre, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bauke M. de Jong
- Department of Neurology, Alzheimer Research Centre, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rudi A. J. O. Dierckx
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Peter P. De Deyn
- Department of Neurology, Alzheimer Research Centre, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Laboratory of Neurochemistry and Behaviour, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Ronald Boellaard
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, VU Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
139
|
Schoemaker D, Charidimou A, Zanon Zotin MC, Raposo N, Johnson KA, Sanchez JS, Greenberg SM, Viswanathan A. Association of Memory Impairment With Concomitant Tau Pathology in Patients With Cerebral Amyloid Angiopathy. Neurology 2021; 96:e1975-e1986. [PMID: 33627498 DOI: 10.1212/wnl.0000000000011745] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 01/13/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Relying on tau-PET imaging, this cross-sectional study explored whether memory impairment is linked to the presence of concomitant tau pathology in individuals with cerebral amyloid angiopathy (CAA). METHODS Forty-six patients with probable CAA underwent a neuropsychological examination and an MRI for quantification of structural markers of cerebral small vessel disease. A subset of these participants also completed a [11C]-Pittsburgh compound B (n = 39) and [18F]-flortaucipir (n = 40) PET for in vivo estimation of amyloid and tau burden, respectively. Participants were classified as amnestic or nonamnestic on the basis of neuropsychological performance. Statistical analyses were performed to examine differences in cognition, structural markers of cerebral small vessel disease, and amyloid- and tau-PET retention between participants with amnestic and those with nonamnestic CAA. RESULTS Patients with probable CAA with an amnestic presentation displayed a globally more severe profile of cognitive impairment, smaller hippocampal volume (p < 0.001), and increased tau-PET binding in regions susceptible to Alzheimer disease neurodegeneration (p = 0.003) compared to their nonamnestic counterparts. Amnestic and nonamnestic patients with CAA did not differ on any other MRI markers or on amyloid-PET binding. In a generalized linear model including all evaluated neuroimaging markers, tau-PET retention (β = -0.85, p = 0.001) and hippocampal volume (β = 0.64 p = 0.01) were the only significant predictors of memory performance. The cognitive profile of patients with CAA with an elevated tau-PET retention was distinctly characterized by a significantly lower performance on the memory domain (p = 0.004). CONCLUSIONS These results suggest that the presence of objective memory impairment in patients with probable CAA could serve as a marker for underlying tau pathology. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that tau-PET retention is related to the presence of objective memory impairment in patients with CAA.
Collapse
Affiliation(s)
- Dorothee Schoemaker
- From the Departments of Psychiatry (D.S.), Neurology (A.C., M.C.Z.Z., K.A.J., J.S.S., S.M.G., A.V.), and Radiology (K.A.J., J.S.S.), Massachusetts General Hospital, Harvard Medical School, Boston; and Department of Neurology (N.R.), Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse (University Hospital Centre), France. M.C.Z.Z. is currently at the Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil; N.R. is at Toulouse Neuroimaging Center, Université de Toulouse, INSERM, UPS, France; and K.A.J. is at the Department of Neurology, Brigham and Women's Hospital, Boston.
| | - Andreas Charidimou
- From the Departments of Psychiatry (D.S.), Neurology (A.C., M.C.Z.Z., K.A.J., J.S.S., S.M.G., A.V.), and Radiology (K.A.J., J.S.S.), Massachusetts General Hospital, Harvard Medical School, Boston; and Department of Neurology (N.R.), Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse (University Hospital Centre), France. M.C.Z.Z. is currently at the Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil; N.R. is at Toulouse Neuroimaging Center, Université de Toulouse, INSERM, UPS, France; and K.A.J. is at the Department of Neurology, Brigham and Women's Hospital, Boston
| | - Maria Clara Zanon Zotin
- From the Departments of Psychiatry (D.S.), Neurology (A.C., M.C.Z.Z., K.A.J., J.S.S., S.M.G., A.V.), and Radiology (K.A.J., J.S.S.), Massachusetts General Hospital, Harvard Medical School, Boston; and Department of Neurology (N.R.), Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse (University Hospital Centre), France. M.C.Z.Z. is currently at the Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil; N.R. is at Toulouse Neuroimaging Center, Université de Toulouse, INSERM, UPS, France; and K.A.J. is at the Department of Neurology, Brigham and Women's Hospital, Boston
| | - Nicolas Raposo
- From the Departments of Psychiatry (D.S.), Neurology (A.C., M.C.Z.Z., K.A.J., J.S.S., S.M.G., A.V.), and Radiology (K.A.J., J.S.S.), Massachusetts General Hospital, Harvard Medical School, Boston; and Department of Neurology (N.R.), Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse (University Hospital Centre), France. M.C.Z.Z. is currently at the Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil; N.R. is at Toulouse Neuroimaging Center, Université de Toulouse, INSERM, UPS, France; and K.A.J. is at the Department of Neurology, Brigham and Women's Hospital, Boston
| | - Keith A Johnson
- From the Departments of Psychiatry (D.S.), Neurology (A.C., M.C.Z.Z., K.A.J., J.S.S., S.M.G., A.V.), and Radiology (K.A.J., J.S.S.), Massachusetts General Hospital, Harvard Medical School, Boston; and Department of Neurology (N.R.), Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse (University Hospital Centre), France. M.C.Z.Z. is currently at the Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil; N.R. is at Toulouse Neuroimaging Center, Université de Toulouse, INSERM, UPS, France; and K.A.J. is at the Department of Neurology, Brigham and Women's Hospital, Boston
| | - Justin S Sanchez
- From the Departments of Psychiatry (D.S.), Neurology (A.C., M.C.Z.Z., K.A.J., J.S.S., S.M.G., A.V.), and Radiology (K.A.J., J.S.S.), Massachusetts General Hospital, Harvard Medical School, Boston; and Department of Neurology (N.R.), Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse (University Hospital Centre), France. M.C.Z.Z. is currently at the Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil; N.R. is at Toulouse Neuroimaging Center, Université de Toulouse, INSERM, UPS, France; and K.A.J. is at the Department of Neurology, Brigham and Women's Hospital, Boston
| | - Steven M Greenberg
- From the Departments of Psychiatry (D.S.), Neurology (A.C., M.C.Z.Z., K.A.J., J.S.S., S.M.G., A.V.), and Radiology (K.A.J., J.S.S.), Massachusetts General Hospital, Harvard Medical School, Boston; and Department of Neurology (N.R.), Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse (University Hospital Centre), France. M.C.Z.Z. is currently at the Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil; N.R. is at Toulouse Neuroimaging Center, Université de Toulouse, INSERM, UPS, France; and K.A.J. is at the Department of Neurology, Brigham and Women's Hospital, Boston
| | - Anand Viswanathan
- From the Departments of Psychiatry (D.S.), Neurology (A.C., M.C.Z.Z., K.A.J., J.S.S., S.M.G., A.V.), and Radiology (K.A.J., J.S.S.), Massachusetts General Hospital, Harvard Medical School, Boston; and Department of Neurology (N.R.), Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse (University Hospital Centre), France. M.C.Z.Z. is currently at the Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil; N.R. is at Toulouse Neuroimaging Center, Université de Toulouse, INSERM, UPS, France; and K.A.J. is at the Department of Neurology, Brigham and Women's Hospital, Boston
| |
Collapse
|
140
|
Liu AJ, Staffaroni AM, Rojas-Martinez JC, Olney NT, Alquezar-Burillo C, Ljubenkov PA, La Joie R, Fong JC, Taylor J, Karydas A, Ramos EM, Coppola G, Boxer AL, Rabinovici GD, Miller BL, Kao AW. Association of Cognitive and Behavioral Features Between Adults With Tuberous Sclerosis and Frontotemporal Dementia. JAMA Neurol 2021; 77:358-366. [PMID: 31860018 DOI: 10.1001/jamaneurol.2019.4284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Importance Individuals with tuberous sclerosis complex can develop a progressive neuropsychiatric syndrome known as tuberous sclerosis-associated neuropsychiatric disorders. Tuberous sclerosis-associated neuropsychiatric disorders symptoms overlap with clinical criteria for frontotemporal dementia, yet the association between the 2 has not been explored. Objective To investigate the potential association between tuberous sclerosis-associated neuropsychiatric disorders and frontotemporal dementia. Design, Setting, and Participants Case-control study that enrolled patients with tuberous sclerosis complex with normal IQs in an observational clinical study at the University of California, San Francisco, from 2017 to 2019 where they underwent a comprehensive clinical evaluation including neuropsychologic testing, cerebral spinal fluid biomarker profiling, and structural neuroimaging. The study included adults who fulfilled the clinical criteria for tuberous sclerosis complex and had normal IQs, had frontotemporal dementia, or were healthy control individuals. Main Outcomes and Measures Tuberous sclerosis-associated neuropsychiatric disorders checklist severity score, neuropsychologic test scores, cerebral spinal fluid concentrations of phosphorylated tau181, total tau, amyloid-β 42, and neurofilament light chain. Amyloid and tau positron emission tomography scans were obtained in a subset of patients. Results Eighteen patients with tuberous sclerosis complex (mean [SD] age, 48 years [9.54]; 13 women [72%]), 16 with frontotemporal dementia (60 [6.93] years; 7 women [44%]) and 18 healthy control individuals (63 [3.85] years; 9 women [50%]) were included. The tuberous sclerosis-associated neuropsychiatric disorders checklist and neuropsychological test results were not significantly different when the tuberous sclerosis complex and frontotemporal dementia cohorts were compared. The tuberous sclerosis complex cohort exhibited elevated cerebral spinal fluid phosphorylated tau181 and neurofilament light chain with a mean of 32 pg/mL and 2300 pg/mL, respectively, when compared to healthy control individuals. All 3 patients with tuberous sclerosis complex who underwent fluorine 1B-labeled flortaucipir tau positron emission tomographic neuroimaging showed punctate foci of elevated [18F]flortaucipir binding in the frontal and temporal regions. Conclusions and Relevance Adults with tuberous sclerosis complex showed phenotypic overlap with frontotemporal dementia. The results support a possible clinical continuum between tuberous sclerosis-associated neuropsychiatric disorders and frontotemporal dementia and highlights a potential pathophysiological link between neurodevelopmental and neurodegenerative processes. Quantitative neuropsychological testing and the tuberous sclerosis-associated neuropsychiatric disorders checklist, potentially supplemented by cerebral spinal fluid and imaging biomarkers, could be used to screen and prognosticate for risk of a neurodegenerative process in adult patients with tuberous sclerosis complex.
Collapse
Affiliation(s)
- Andy J Liu
- Memory and Aging Center, University of California, San Francisco
| | | | | | | | | | | | - Renaud La Joie
- Memory and Aging Center, University of California, San Francisco
| | - Jamie C Fong
- Memory and Aging Center, University of California, San Francisco
| | - Joanne Taylor
- Memory and Aging Center, University of California, San Francisco
| | - Anna Karydas
- Memory and Aging Center, University of California, San Francisco
| | - Eliana Marisa Ramos
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles
| | - Giovanni Coppola
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles
| | - Adam L Boxer
- Memory and Aging Center, University of California, San Francisco
| | - Gil D Rabinovici
- Memory and Aging Center, University of California, San Francisco.,Associate Editor
| | - Bruce L Miller
- Memory and Aging Center, University of California, San Francisco
| | - Aimee W Kao
- Memory and Aging Center, University of California, San Francisco
| |
Collapse
|
141
|
Köbe T, Binette AP, Vogel JW, Meyer PF, Breitner JCS, Poirier J, Villeneuve S. Vascular risk factors are associated with a decline in resting-state functional connectivity in cognitively unimpaired individuals at risk for Alzheimer's disease: Vascular risk factors and functional connectivity changes. Neuroimage 2021; 231:117832. [PMID: 33549747 DOI: 10.1016/j.neuroimage.2021.117832] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Resting-state functional connectivity is suggested to be cross-sectionally associated with both vascular burden and Alzheimer's disease (AD) pathology. However, evidence is lacking regarding longitudinal changes in functional connectivity. This study includes 247 cognitively unimpaired individuals with a family history of sporadic AD (185 women/ 62 men; mean [SD] age of 63 [5.3] years). Plasma total-, HDL-, and LDL-cholesterol and systolic and diastolic blood pressure were measured at baseline. Global (whole-brain) brain functional connectivity and connectivity from canonical functional networks were computed from resting-state functional MRI obtained at baseline and ~3.5 years of annual follow-ups, using a predefined functional parcellation. A subsample underwent Aβ- and tau-PET (n=91). Linear mixed-effects models demonstrated that global functional connectivity increased over time across the entire sample. In contrast, higher total-cholesterol and LDL-cholesterol levels were associated with greater reduction of functional connectivity in the default-mode network over time. In addition, higher diastolic blood pressure was associated with global functional connectivity reduction. The associations were similar when the analyses were repeated using two other functional brain parcellations. Aβ and tau deposition in the brain were not associated with changes in functional connectivity over time in the subsample. These findings provide evidence that vascular burden is associated with a decrease in functional connectivity over time in older adults with elevated risk for AD. Future studies are needed to determine if the impact of vascular risk factors on functional brain changes precede the impact of AD pathology on functional brain changes.
Collapse
Affiliation(s)
- Theresa Köbe
- Department of Psychiatry, McGill University, H3A 1A1, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Studies on Prevention of Alzheimer's Disease (StoP-AD) Centre, H4H 1R3, Montreal, Quebec, Canada; German Center for Neurodegenerative Diseases (DZNE), 01307, Dresden, Germany.
| | - Alexa Pichet Binette
- Department of Psychiatry, McGill University, H3A 1A1, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Studies on Prevention of Alzheimer's Disease (StoP-AD) Centre, H4H 1R3, Montreal, Quebec, Canada
| | - Jacob W Vogel
- Montreal Neurological Institute, McGill University, H3A 2B4, Montreal, QC, Canada
| | - Pierre-François Meyer
- Department of Psychiatry, McGill University, H3A 1A1, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Studies on Prevention of Alzheimer's Disease (StoP-AD) Centre, H4H 1R3, Montreal, Quebec, Canada
| | - John C S Breitner
- Department of Psychiatry, McGill University, H3A 1A1, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Studies on Prevention of Alzheimer's Disease (StoP-AD) Centre, H4H 1R3, Montreal, Quebec, Canada
| | - Judes Poirier
- Department of Psychiatry, McGill University, H3A 1A1, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Studies on Prevention of Alzheimer's Disease (StoP-AD) Centre, H4H 1R3, Montreal, Quebec, Canada
| | - Sylvia Villeneuve
- Department of Psychiatry, McGill University, H3A 1A1, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Studies on Prevention of Alzheimer's Disease (StoP-AD) Centre, H4H 1R3, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, McGill University, H3A 2B4, Montreal, Quebec, Canada.
| | | |
Collapse
|
142
|
Iaccarino L, La Joie R, Lesman-Segev OH, Lee E, Hanna L, Allen IE, Hillner BE, Siegel BA, Whitmer RA, Carrillo MC, Gatsonis C, Rabinovici GD. Association Between Ambient Air Pollution and Amyloid Positron Emission Tomography Positivity in Older Adults With Cognitive Impairment. JAMA Neurol 2021; 78:197-207. [PMID: 33252608 DOI: 10.1001/jamaneurol.2020.3962] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Importance Amyloid-β (Aβ) deposition is a feature of Alzheimer disease (AD) and may be promoted by exogenous factors, such as ambient air quality. Objective To examine the association between the likelihood of amyloid positron emission tomography (PET) scan positivity and ambient air quality in individuals with cognitive impairment. Design, Setting, and Participants This cross-sectional study used data from the Imaging Dementia-Evidence for Amyloid Scanning Study, which included more than 18 000 US participants with cognitive impairment who received an amyloid PET scan with 1 of 3 Aβ tracers (fluorine 18 [18F]-labeled florbetapir, 18F-labeled florbetaben, or 18F-labeled flutemetamol) between February 16, 2016, and January 10, 2018. A sample of older adults with mild cognitive impairment (MCI) or dementia was selected. Exposures Air pollution was estimated at the patient residence using predicted fine particulate matter (PM2.5) and ground-level ozone (O3) concentrations from the Environmental Protection Agency Downscaler model. Air quality was estimated at 2002 to 2003 (early, or approximately 14 [range, 13-15] years before amyloid PET scan) and 2015 to 2016 (late, or approximately 1 [range, 0-2] years before amyloid PET scan). Main Outcomes and Measures Primary outcome measure was the association between air pollution and the likelihood of amyloid PET scan positivity, which was measured as odds ratios (ORs) and marginal effects, adjusting for demographic, lifestyle, and socioeconomic factors and medical comorbidities, including respiratory, cardiovascular, cerebrovascular, psychiatric, and neurological conditions. Results The data set included 18 178 patients, of which 10 991 (60.5%) had MCI and 7187 (39.5%) had dementia (mean [SD] age, 75.8 [6.3] years; 9333 women [51.3%]). Living in areas with higher estimated biennial PM2.5 concentrations in 2002 to 2003 was associated with a higher likelihood of amyloid PET scan positivity (adjusted OR, 1.10; 95% CI, 1.05-1.15; z score = 3.93; false discovery rate [FDR]-corrected P < .001; per 4-μg/m3 increments). Results were similar for 2015 to 2016 data (OR, 1.15; 95% CI, 1.05-1.26, z score = 3.14; FDR-corrected P = .003). An average marginal effect (AME) of +0.5% (SE = 0.1%; z score, 3.93; 95% CI, 0.3%-0.7%; FDR-corrected P < .001) probability of amyloid PET scan positivity for each 1-μg/m3 increase in PM2.5 was observed for 2002 to 2003, whereas an AME of +0.8% (SE = 0.2%; z score = 3.15; 95% CI, 0.3%-1.2%; FDR-corrected P = .002) probability was observed for 2015 to 2016. Post hoc analyses showed no effect modification by sex (2002-2003: interaction term β = 1.01 [95% CI, 0.99-1.04; z score = 1.13; FDR-corrected P = .56]; 2015-2016: β = 1.02 [95% CI, 0.98-1.07; z score = 0.91; FDR-corrected P = .56]) or clinical stage (2002-2003: interaction term β = 1.01 [95% CI, 0.99-1.03; z score = 0.77; FDR-corrected P = .58]; 2015-2016: β = 1.03; 95% CI, 0.99-1.08; z score = 1.46; FDR-corrected P = .47]). Exposure to higher O3 concentrations was not associated with amyloid PET scan positivity in both time windows. Conclusions and Relevance This study found that higher PM2.5 concentrations appeared to be associated with brain Aβ plaques. These findings suggest the need to consider airborne toxic pollutants associated with Aβ pathology in public health policy decisions and to inform individual lifetime risk of developing AD and dementia.
Collapse
Affiliation(s)
- Leonardo Iaccarino
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco
| | - Orit H Lesman-Segev
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco.,Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Eunice Lee
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco
| | - Lucy Hanna
- Center for Statistical Sciences, Brown University School of Public Health, Providence, Rhode Island
| | - Isabel E Allen
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco
| | - Bruce E Hillner
- Department of Medicine, Virginia Commonwealth University, Richmond
| | - Barry A Siegel
- Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine in St Louis, St Louis, Missouri
| | - Rachel A Whitmer
- Division of Research, Kaiser Permanente, Oakland, California.,Department of Public Health Sciences, University of California, Davis, Davis
| | - Maria C Carrillo
- Medical and Scientific Relations Division, Alzheimer's Association, Chicago, Illinois
| | - Constantine Gatsonis
- Center for Statistical Sciences, Brown University School of Public Health, Providence, Rhode Island.,Department of Biostatistics, Brown University School of Public Health, Providence, Rhode Island
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco.,Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco.,Associate Editor, JAMA Neurology
| |
Collapse
|
143
|
Abstract
This article presents an overview of imaging agents for PET that have been applied for research and diagnostic purposes in patients affected by dementia. Classified by the target which the agents visualize, seven groups of tracers can be distinguished, namely radiopharmaceuticals for: (1) Misfolded proteins (ß-amyloid, tau, α-synuclein), (2) Neuroinflammation (overexpression of translocator protein), (3) Elements of the cholinergic system, (4) Elements of monoamine neurotransmitter systems, (5) Synaptic density, (6) Cerebral energy metabolism (glucose transport/ hexokinase), and (7) Various other proteins. This last category contains proteins involved in mechanisms underlying neuroinflammation or cognitive impairment, which may also be potential therapeutic targets. Many receptors belong to this category: AMPA, cannabinoid, colony stimulating factor 1, metabotropic glutamate receptor 1 and 5 (mGluR1, mGluR5), opioid (kappa, mu), purinergic (P2X7, P2Y12), sigma-1, sigma-2, receptor for advanced glycation endproducts, and triggering receptor expressed on myeloid cells-1, besides several enzymes: cyclooxygenase-1 and 2 (COX-1, COX-2), phosphodiesterase-5 and 10 (PDE5, PDE10), and tropomyosin receptor kinase. Significant advances in neuroimaging have been made in the last 15 years. The use of 2-[18F]-fluoro-2-deoxy-D-glucose (FDG) for quantification of regional cerebral glucose metabolism is well-established. Three tracers for ß-amyloid plaques have been approved by the Food and Drug Administration and European Medicines Agency. Several tracers for tau neurofibrillary tangles are already applied in clinical research. Since many novel agents are in the preclinical or experimental stage of development, further advances in nuclear medicine imaging can be expected in the near future. PET studies with established tracers and tracers for novel targets may result in early diagnosis and better classification of neurodegenerative disorders and in accurate monitoring of therapy trials which involve these targets. PET data have prognostic value and may be used to assess the response of the human brain to interventions, or to select the appropriate treatment strategy for an individual patient.
Collapse
Affiliation(s)
- Aren van Waarde
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen, the Netherlands.
| | - Sofia Marcolini
- University of Groningen, University Medical Center Groningen, Department of Neurology, Groningen, the Netherlands
| | - Peter Paul de Deyn
- University of Groningen, University Medical Center Groningen, Department of Neurology, Groningen, the Netherlands; University of Antwerp, Born-Bunge Institute, Neurochemistry and Behavior, Campus Drie Eiken, Wilrijk, Belgium
| | - Rudi A J O Dierckx
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen, the Netherlands; Ghent University, Ghent, Belgium
| |
Collapse
|
144
|
Park JE, Lee YJ, Byun MS, Yi D, Lee JH, Jeon SY, Hwang JY, Yoon H, Choe YM, Kim YK, Shin SA, Suk HW, Lee DY. Differential associations of age and Alzheimer's disease with sleep and rest-activity rhythms across the adult lifespan. Neurobiol Aging 2021; 101:141-149. [PMID: 33618266 DOI: 10.1016/j.neurobiolaging.2021.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/05/2021] [Accepted: 01/09/2021] [Indexed: 02/06/2023]
Abstract
This study aimed to identify differences between physiological age-related and Alzheimer's disease (AD)-related alterations in sleep and rest-activity rhythm. All participants (n = 280; 20-90 years) underwent clinical assessments, [11C] Pittsburgh compound B-positron emission tomography, and actigraphic monitoring. In cognitively normal adults without cerebral amyloid-β, older age was associated with earlier timing of circadian phase and robust rest-activity rhythm, but sleep quantity and quality were mostly unaffected by age. While preclinical AD was associated with earlier circadian timing, clinical AD exhibited later timing of daily rhythm and increased sleep duration. In conclusion, our findings suggest that older age itself leads to a more regular daily activity rhythm, but does not affect sleep duration. While preclinical AD made the effects of age-related phase advance more prominent, clinical AD was related to later circadian timing and increased sleep duration.
Collapse
Affiliation(s)
- Jee Eun Park
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea; Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
| | - Yu Jin Lee
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea; Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea; Center for Sleep and Chronobiology, Seoul National University Hospital, Seoul, South Korea
| | - Min Soo Byun
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Dahyun Yi
- Medical Research Center, Institute of Human Behavioral Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Jun Ho Lee
- Department of psychiatry, National Center for Mental Health, Seoul, South Korea
| | - So Yeon Jeon
- Department of Psychiatry, Chungnam National University, Daejeon, South Korea
| | - Jeong Yeon Hwang
- Seoul National University College of Medicine, Seoul, South Korea
| | - Heenam Yoon
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, South Korea
| | - Young Min Choe
- Department of Neuropsychiatry, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, South Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, South Korea
| | - Seong A Shin
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, South Korea
| | - Hye Won Suk
- Department of Psychology, Sogang University, Seoul, South Korea
| | - Dong Young Lee
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea; Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea; Medical Research Center, Institute of Human Behavioral Medicine, Seoul National University Hospital, Seoul, South Korea; Interdisiplinary Program in Cognitive science, Seoul National University, Seoul, South Korea.
| | | |
Collapse
|
145
|
Teipel SJ, Temp AGM, Levin F, Dyrba M, Grothe MJ. Association of TDP-43 Pathology with Global and Regional 18F-Florbetapir PET Signal in the Alzheimer's Disease Spectrum. J Alzheimers Dis 2021; 79:663-670. [PMID: 33337372 DOI: 10.3233/jad-201032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND TAR DNA-binding protein 43 (TDP-43) has been recognized as a frequent co-pathology of Alzheimer's disease (AD). The effect of the presence of TDP-43 pathology on in vivo measures of AD-related amyloid pathology using amyloid sensitive PET is still unresolved. OBJECTIVE To study the association of TDP-43 pathology with antemortem amyloid PET signal. METHODS We studied 30 cases from the ADNI autopsy sample with available ratings of presence of TDP-43 and antemortem amyloid sensitive 18F-FlorbetapirPET. We used Bayesian regression to determine the effect of TDP-43 on global and regional amyloid PET signal. In a post-hoc analysis, we assessed the association of TDP-43 pathology with antemortem memory performance. RESULTS We found substantial to strong evidence for a negative effect of TDP-43 (Bayes factor against the null model (BF10) = 9.0) and hippocampal sclerosis (BF10 = 6.4) on partial volume corrected hippocampal 18F-Florbetapir uptake. This effect was only partly mediated by the negative effect of TDP-43 on hippocampal volume. In contrast, Bayesian regression supported that there is no effect of TDP-43 on global cortical PET-signal (BF10 = 0.65). We found an anecdotal level of evidence for a negative effect of TDP-43 pathology on antemortem memory performance after accounting for global amyloid PET signal (BF10 = 1.6). CONCLUSION Presence of TDP-43 pathology does not confound the global amyloid PET-signal but has a selective effect on hippocampal PET-signal that appears only partially dependent on TDP-43 mediated atrophy.
Collapse
Affiliation(s)
- Stefan J Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany.,Department of Psychosomatic Medicine, University Medicine Rostock, Rostock, Germany
| | | | - Fedor Levin
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Martin Dyrba
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Michel J Grothe
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany.,Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | | |
Collapse
|
146
|
Caso F, Agosta F, Magnani G, Cardamone R, Borghesani V, Miller Z, Riva N, La Joie R, Coppola G, Grinberg LT, Seeley WW, Miller BL, Gorno-Tempini ML, Filippi M. Temporal variant of frontotemporal dementia in C9orf72 repeat expansion carriers: two case studies. Brain Imaging Behav 2021; 14:336-345. [PMID: 32180125 DOI: 10.1007/s11682-019-00253-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The temporal variant of frontotemporal dementia (tv-FTD) is a progressive neurodegenerative disease with a complex clinical picture mainly characterized by behavioral and language disorders. In this work, we describe clinical, genetic, neuroanatomical and neuropathological (only in one case) features of two patients with tv-FTD carrying C9orf72 repeat expansion. The first patient (AB) presented with a 1-year disease duration showing focal right anterior temporal lobe (ATL) atrophy on magnetic resonance imaging (MRI). The second patient (BC) came to medical attention 13 years after disease onset and showed a prominent bilateral ATL involvement. Both patients showed naming deficits, impairment in identifying known faces and proper names, and personality changes with new onset behavioral rigidity, and progressing language difficulties to single-word and sentence comprehension difficulties. They were classified as tv-FTD. Clinical, cognitive and MRI follow-up were performed. As cognitive impairment progressed, MRI atrophy worsened in ATL and frontotemporal areas in both patients. Both cases had clear family histories of neurological and/or psychiatric disease. Genetic testing revealed a C9orf72 hexanucleotide repeat expansion in both cases. BC passed away after 15 years of disease and autopsy showed the expected TDP-type B pathology. These genetic cases of tv-FTD highlight the susceptibility of ATL to C9orf72-related pathology and emphasize the importance of genetical testing in FTD-spectrum disorders, regardless of the clinical phenotype.
Collapse
Affiliation(s)
- Francesca Caso
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele, Via Olgettina, 60, 20132, Milan, Italy.,Neurology Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele, Via Olgettina, 60, 20132, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | | | | | | | - Zachary Miller
- Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Nilo Riva
- Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Renaud La Joie
- Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Giovanni Coppola
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA.,Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Lea T Grinberg
- Memory and Aging Center, University of California, San Francisco, CA, USA
| | - William W Seeley
- Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Bruce L Miller
- Memory and Aging Center, University of California, San Francisco, CA, USA
| | | | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele, Via Olgettina, 60, 20132, Milan, Italy. .,Neurology Unit, IRCCS Ospedale San Raffaele, Milan, Italy. .,Vita-Salute San Raffaele University, Milan, Italy. .,Neurophysiology Unit, IRCCS Ospedale San Raffaele, Milan, Italy.
| |
Collapse
|
147
|
Teipel SJ, Temp AGM, Levin F, Dyrba M, Grothe MJ. Association of PET-based stages of amyloid deposition with neuropathological markers of Aβ pathology. Ann Clin Transl Neurol 2021; 8:29-42. [PMID: 33137247 PMCID: PMC7818279 DOI: 10.1002/acn3.51238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/22/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To determine if PET-based stages of regional amyloid deposition are associated with neuropathological phases of Aβ pathology. METHODS We applied data-driven regional frequency-based and a-priori striatum-based PET staging approaches to ante-mortem 18F-Florbetapir-PET scans of 30 cases from the Alzheimer's Disease Neuroimaging Initiative autopsy cohort, and used Bayesian regression analysis to study the associations of these in vivo amyloid stages with neuropathological Thal phases of regional Aβ plaque distribution and with semi-quantitative ratings of neocortical and striatal plaque densities. RESULTS Bayesian regression revealed extreme evidence for an association of both PET-based staging approaches with Thal phases, and these associations were about 44 times more likely for frequency-based stages and 89 times more likely for striatum-based stages than for global cortical 18F-Florbetapir-PET signal. Early (i.e., neocortical-only) PET-based amyloid stages also predicted the absence of striatal/diencephalic cored plaques. Receiver operating characteristics curves revealed highly accurate discrimination between low/high Thal phases and the presence/absence of regional plaques. The median areas under the curve were 0.99 for frequency-based staging (95% credibility interval 0.97-1.00), 0.93 for striatum-based staging (0.83-1.00), and 0.87 for global 18F-Florbetapir-PET signal (0.72-0.98). INTERPRETATION Our data indicate that both regional frequency- and striatum-based amyloid-PET staging approaches were superior to standard global amyloid-PET signal for differentiating between low and high degrees of regional amyloid pathology spread. Despite this, we found no evidence for the ability of either staging scheme to differentiate between low and moderate degrees of amyloid pathology which may be particularly relevant for early, preclinical stages of Alzheimer's disease.
Collapse
Affiliation(s)
- Stefan J. Teipel
- German Center for Neurodegenerative Diseases (DZNE)RostockGermany
- Department of Psychosomatic MedicineUniversity Medicine RostockRostockGermany
| | - Anna G. M. Temp
- German Center for Neurodegenerative Diseases (DZNE)RostockGermany
| | - Fedor Levin
- German Center for Neurodegenerative Diseases (DZNE)RostockGermany
| | - Martin Dyrba
- German Center for Neurodegenerative Diseases (DZNE)RostockGermany
| | - Michel J. Grothe
- German Center for Neurodegenerative Diseases (DZNE)RostockGermany
- Servicio de Neurología y Neurofisiología ClínicaUnidad de Trastornos del MovimientoInstituto de Biomedicina de SevillaHospital Universitario Virgen del Rocío/CSICUniversidad de SevillaSevilleSpain
| | | |
Collapse
|
148
|
Iaccarino L, La Joie R, Edwards L, Strom A, Schonhaut DR, Ossenkoppele R, Pham J, Mellinger T, Janabi M, Baker SL, Soleimani-Meigooni D, Rosen HJ, Miller BL, Jagust WJ, Rabinovici GD. Spatial Relationships between Molecular Pathology and Neurodegeneration in the Alzheimer's Disease Continuum. Cereb Cortex 2021; 31:1-14. [PMID: 32808011 PMCID: PMC7727356 DOI: 10.1093/cercor/bhaa184] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/01/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
A deeper understanding of the spatial relationships of β-amyloid (Aβ), tau, and neurodegeneration in Alzheimer's disease (AD) could provide insight into pathogenesis and clinical trial design. We included 81 amyloid-positive patients (age 64.4 ± 9.5) diagnosed with AD dementia or mild cognitive impairment due to AD and available 11C-PiB (PIB), 18F-Flortaucipir (FTP),18F-FDG-PET, and 3T-MRI, and 31 amyloid-positive, cognitively normal participants (age 77.3 ± 6.5, no FDG-PET). W-score voxel-wise deviation maps were created and binarized for each imaging-modality (W > 1.64, P < 0.05) adjusting for age, sex, and total intracranial volume (sMRI-only) using amyloid-negative cognitively normal adults. For symptomatic patients, FDG-PET and atrophy W-maps were combined into neurodegeneration maps (ND). Aβ-pathology showed the greatest proportion of cortical gray matter suprathreshold voxels (spatial extent) for both symptomatic and asymptomatic participants (median 94-55%, respectively), followed by tau (79-11%) and neurodegeneration (41-3%). Amyloid > tau > neurodegeneration was the most frequent hierarchy for both groups (79-77%, respectively), followed by tau > amyloid > neurodegeneration (13-10%) and amyloid > neurodegeneration > tau (6-13%). For symptomatic participants, most abnormal voxels were PIB+/FTP+/ND- (median 35%), and the great majority of ND+ voxels (91%) colocalized with molecular pathology. Amyloid spatially exceeded tau and neurodegeneration, with individual heterogeneities. Molecular pathology and neurodegeneration showed a progressive overlap along AD course, indicating shared vulnerabilities or synergistic toxic mechanisms.
Collapse
Affiliation(s)
- Leonardo Iaccarino
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Lauren Edwards
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Amelia Strom
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Daniel R Schonhaut
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Rik Ossenkoppele
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Neurology and Alzheimer Center, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam 1081 HV, The Netherlands
| | - Julie Pham
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Taylor Mellinger
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Mustafa Janabi
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Suzanne L Baker
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - David Soleimani-Meigooni
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Howard J Rosen
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
149
|
Abstract
Imaging has made an immense contribution toward supporting the diagnosis of dementias, detecting preclinical and prodromal pathology, and allowing disease progression to be objectively tracked. This has led to consensus guidelines for the use of imaging in dementias to be published and a future task will be to validate these guidelines. Additionally, there needs to be standardised approaches over the use of binary thresholds when assigning an abnormality status. Other medical unmet needs include the need for specific imaging markers of (1) linear tau tangles, TDP-43 and alpha synuclein aggregates; (2) microglial phenotypes that throw light on the activity of these inflammatory cells; (3) activity of intracellular processes which normally act to clear misfolded proteins; (4) epigenetic activity which regulates gene expression. Future imaging studies are predicted to be active in all these areas. Finally, as safer and more effective immunotherapy and other protective strategies against the pathologies of dementias are developed and trialed, imaging will play a major future role in determining the efficacy of neuroprotective treatments and their mechanism of action to be examined.
Collapse
Affiliation(s)
- David J Brooks
- Translational and Clinical Research Institute, University of Newcastle upon Tyne, UK; Department of Nuclear Medicine, PET Centre, Aarhus University, Denmark; Department of Brain Sciences, Imperial College London, UK.
| |
Collapse
|
150
|
Harrison TM, Du R, Klencklen G, Baker SL, Jagust WJ. Distinct effects of beta-amyloid and tau on cortical thickness in cognitively healthy older adults. Alzheimers Dement 2020; 17:1085-1096. [PMID: 33325068 PMCID: PMC8203764 DOI: 10.1002/alz.12249] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 10/22/2020] [Accepted: 11/01/2020] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Published reports of associations between β-amyloid (Aβ) and cortical integrity conflict. Tau biomarkers may help elucidate the complex relationship between pathology and neurodegeneration in aging. METHODS We measured cortical thickness using magnetic resonance imaging, Aβ using Pittsburgh compound B positron emission tomography (PiB-PET), and tau using flortaucipir (FTP)-PET in 125 cognitively normal older adults. We examined relationships among PET measures, cortical thickness, and cognition. RESULTS Cortical thickness was reduced in PiB+/FTP+ participants compared to the PiB+/FTP- and PiB-/FTP- groups. Continuous PiB associations with cortical thickness were weak but positive in FTP- participants and negative in FTP+. FTP strongly negatively predicted thickness regardless of PiB status. FTP was associated with memory and cortical thickness, and mediated the association of PiB with memory. DISCUSSION Past findings linking Aβ and cortical thickness are likely weak due to opposing effects of Aβ on cortical thickness relative to tau burden. Tau, in contrast to Aβ, is strongly related to cortical thickness and memory.
Collapse
Affiliation(s)
- Theresa M Harrison
- Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, California, USA
| | - Richard Du
- Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, California, USA
| | - Giuliana Klencklen
- Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, California, USA
| | - Suzanne L Baker
- Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - William J Jagust
- Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, California, USA.,Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|