101
|
Kahriman A, Bouley J, Smith TW, Bosco DA, Woerman AL, Henninger N. Mouse closed head traumatic brain injury replicates the histological tau pathology pattern of human disease: characterization of a novel model and systematic review of the literature. Acta Neuropathol Commun 2021; 9:118. [PMID: 34187585 PMCID: PMC8243463 DOI: 10.1186/s40478-021-01220-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/18/2021] [Indexed: 12/15/2022] Open
Abstract
Traumatic brain injury (TBI) constitutes one of the strongest environmental risk factors for several progressive neurodegenerative disorders of cognitive impairment and dementia that are characterized by the pathological accumulation of hyperphosphorylated tau (p-Tau). It has been questioned whether mouse closed-head TBI models can replicate human TBI-associated tauopathy. We conducted longitudinal histopathological characterization of a mouse closed head TBI model, with a focus on pathological features reported in human TBI-associated tauopathy. Male C57BL/6 J mice were subjected to once daily TBI for 5 consecutive days using a weight drop paradigm. Histological analyses (AT8, TDP-43, pTDP-43, NeuN, GFAP, Iba-1, MBP, SMI-312, Prussian blue, IgG, βAPP, alpha-synuclein) were conducted at 1 week, 4 weeks, and 24 weeks after rTBI and compared to sham operated controls. We conducted a systematic review of the literature for mouse models of closed-head injury focusing on studies referencing tau protein assessment. At 1-week post rTBI, p-Tau accumulation was restricted to the corpus callosum and perivascular spaces adjacent to the superior longitudinal fissure. Progressive p-Tau accumulation was observed in the superficial layers of the cerebral cortex, as well as in mammillary bodies and cortical perivascular, subpial, and periventricular locations at 4 to 24 weeks after rTBI. Associated cortical histopathologies included microvascular injury, neuroaxonal rarefaction, astroglial and microglial activation, and cytoplasmatic localization of TDP-43 and pTDP-43. In our systematic review, less than 1% of mouse studies (25/3756) reported p-Tau using immunostaining, of which only 3 (0.08%) reported perivascular p-Tau, which is considered a defining feature of chronic traumatic encephalopathy. Commonly reported associated pathologies included neuronal loss (23%), axonal loss (43%), microglial activation and astrogliosis (50%, each), and beta amyloid deposition (29%). Our novel model, supported by systematic review of the literature, indicates progressive tau pathology after closed head murine TBI, highlighting the suitability of mouse models to replicate pertinent human histopathology.
Collapse
Affiliation(s)
- Aydan Kahriman
- Department of Neurology, Medical School, University of Massachusetts, 55 Lake Ave, Worcester, USA
| | - James Bouley
- Department of Neurology, Medical School, University of Massachusetts, 55 Lake Ave, Worcester, USA
| | - Thomas W Smith
- Department of Pathology, Medical School, University of Massachusetts, 55 Lake Ave, Worcester, USA
| | - Daryl A Bosco
- Department of Neurology, Medical School, University of Massachusetts, 55 Lake Ave, Worcester, USA
| | - Amanda L Woerman
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Nils Henninger
- Department of Neurology, Medical School, University of Massachusetts, 55 Lake Ave, Worcester, USA.
- Department of Psychiatry, Medical School, University of Massachusetts, 55 Lake Ave, Worcester, USA.
| |
Collapse
|
102
|
Farajzadeh Khosroshahi S, Yin X, K Donat C, McGarry A, Yanez Lopez M, Baxan N, J Sharp D, Sastre M, Ghajari M. Multiscale modelling of cerebrovascular injury reveals the role of vascular anatomy and parenchymal shear stresses. Sci Rep 2021; 11:12927. [PMID: 34155289 PMCID: PMC8217506 DOI: 10.1038/s41598-021-92371-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/07/2021] [Indexed: 01/28/2023] Open
Abstract
Neurovascular injury is often observed in traumatic brain injury (TBI). However, the relationship between mechanical forces and vascular injury is still unclear. A key question is whether the complex anatomy of vasculature plays a role in increasing forces in cerebral vessels and producing damage. We developed a high-fidelity multiscale finite element model of the rat brain featuring a detailed definition of the angioarchitecture. Controlled cortical impacts were performed experimentally and in-silico. The model was able to predict the pattern of blood-brain barrier damage. We found strong correlation between the area of fibrinogen extravasation and the brain area where axial strain in vessels exceeds 0.14. Our results showed that adjacent vessels can sustain profoundly different axial stresses depending on their alignment with the principal direction of stress in parenchyma, with a better alignment leading to larger stresses in vessels. We also found a strong correlation between axial stress in vessels and the shearing component of the stress wave in parenchyma. Our multiscale computational approach explains the unrecognised role of the vascular anatomy and shear stresses in producing distinct distribution of large forces in vasculature. This new understanding can contribute to improving TBI diagnosis and prevention.
Collapse
Affiliation(s)
| | - Xianzhen Yin
- Shanghai Institute of Materia Medica, Shanghai, China
| | - Cornelius K Donat
- Department of Brain Sciences, Imperial College London, London, UK
- Centre for Blast Injury Studies, Imperial College London, London, UK
| | - Aisling McGarry
- Department of Brain Sciences, Imperial College London, London, UK
| | | | - Nicoleta Baxan
- Biological Imaging Centre, Imperial College London, London, UK
| | - David J Sharp
- Department of Brain Sciences, Imperial College London, London, UK
| | - Magdalena Sastre
- Department of Brain Sciences, Imperial College London, London, UK
| | - Mazdak Ghajari
- Dyson School of Design Engineering, Imperial College London, London, UK
| |
Collapse
|
103
|
Mester JR, Bazzigaluppi P, Dorr A, Beckett T, Burke M, McLaurin J, Sled JG, Stefanovic B. Attenuation of tonic inhibition prevents chronic neurovascular impairments in a Thy1-ChR2 mouse model of repeated, mild traumatic brain injury. Am J Cancer Res 2021; 11:7685-7699. [PMID: 34335958 PMCID: PMC8315057 DOI: 10.7150/thno.60190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 06/04/2021] [Indexed: 12/24/2022] Open
Abstract
Rationale: Mild traumatic brain injury (mTBI), the most common type of brain trauma, frequently leads to chronic cognitive and neurobehavioral deficits. Intervening effectively is impeded by our poor understanding of its pathophysiological sequelae. Methods: To elucidate the long-term neurovascular sequelae of mTBI, we combined optogenetics, two-photon fluorescence microscopy, and intracortical electrophysiological recordings in mice to selectively stimulate peri-contusional neurons weeks following repeated closed-head injury and probe individual vessel's function and local neuronal reactivity. Results: Compared to sham-operated animals, mTBI mice showed doubled cortical venular speeds (115 ± 25%) and strongly elevated cortical venular reactivity (53 ± 17%). Concomitantly, the pericontusional neurons exhibited attenuated spontaneous activity (-57 ± 79%) and decreased reactivity (-47 ± 28%). Post-mortem immunofluorescence revealed signs of peri-contusional senescence and DNA damage, in the absence of neuronal loss or gliosis. Alteration of neuronal and vascular functioning was largely prevented by chronic, low dose, systemic administration of a GABA-A receptor inverse agonist (L-655,708), commencing 3 days following the third impact. Conclusions: Our findings indicate that repeated mTBI leads to dramatic changes in the neurovascular unit function and that attenuation of tonic inhibition can prevent these alterations. The sustained disruption of the neurovascular function may underlie the concussed brain's long-term susceptibility to injury, and calls for development of better functional assays as well as of neurovascularly targeted interventions.
Collapse
|
104
|
Mughal A, Sackheim AM, Sancho M, Longden TA, Russell S, Lockette W, Nelson MT, Freeman K. Impaired capillary-to-arteriolar electrical signaling after traumatic brain injury. J Cereb Blood Flow Metab 2021; 41:1313-1327. [PMID: 33050826 PMCID: PMC8142130 DOI: 10.1177/0271678x20962594] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/28/2020] [Accepted: 08/31/2020] [Indexed: 12/20/2022]
Abstract
Traumatic brain injury (TBI) acutely impairs dynamic regulation of local cerebral blood flow, but long-term (>72 h) effects on functional hyperemia are unknown. Functional hyperemia depends on capillary endothelial cell inward rectifier potassium channels (Kir2.1) responding to potassium (K+) released during neuronal activity to produce a regenerative, hyperpolarizing electrical signal that propagates from capillaries to dilate upstream penetrating arterioles. We hypothesized that TBI causes widespread disruption of electrical signaling from capillaries-to-arterioles through impairment of Kir2.1 channel function. We randomized mice to TBI or control groups and allowed them to recover for 4 to 7 days post-injury. We measured in vivo cerebral hemodynamics and arteriolar responses to local stimulation of capillaries with 10 mM K+ using multiphoton laser scanning microscopy through a cranial window under urethane and α-chloralose anesthesia. Capillary angio-architecture was not significantly affected following injury. However, K+-induced hyperemia was significantly impaired. Electrophysiology recordings in freshly isolated capillary endothelial cells revealed diminished Ba2+-sensitive Kir2.1 currents, consistent with a reduction in channel function. In pressurized cerebral arteries isolated from TBI mice, K+ failed to elicit the vasodilation seen in controls. We conclude that disruption of endothelial Kir2.1 channel function impairs capillary-to-arteriole electrical signaling, contributing to altered cerebral hemodynamics after TBI.
Collapse
Affiliation(s)
- Amreen Mughal
- Department of Pharmacology, University of Vermont, Burlington, VT, USA
| | | | - Maria Sancho
- Department of Pharmacology, University of Vermont, Burlington, VT, USA
| | - Thomas A Longden
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Sheila Russell
- Department of Surgery, University of Vermont, Burlington, VT, USA
| | - Warren Lockette
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI, USA
| | - Mark T Nelson
- Department of Pharmacology, University of Vermont, Burlington, VT, USA
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Kalev Freeman
- Department of Pharmacology, University of Vermont, Burlington, VT, USA
- Department of Surgery, University of Vermont, Burlington, VT, USA
| |
Collapse
|
105
|
Miller ST, Cooper CF, Elsbernd P, Kerwin J, Mejia-Alvarez R, Willis AM. Localizing Clinical Patterns of Blast Traumatic Brain Injury Through Computational Modeling and Simulation. Front Neurol 2021; 12:547655. [PMID: 34093380 PMCID: PMC8173077 DOI: 10.3389/fneur.2021.547655] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 03/10/2021] [Indexed: 11/13/2022] Open
Abstract
Blast traumatic brain injury is ubiquitous in modern military conflict with significant morbidity and mortality. Yet the mechanism by which blast overpressure waves cause specific intracranial injury in humans remains unclear. Reviewing of both the clinical experience of neurointensivists and neurosurgeons who treated service members exposed to blast have revealed a pattern of injury to cerebral blood vessels, manifested as subarachnoid hemorrhage, pseudoaneurysm, and early diffuse cerebral edema. Additionally, a seminal neuropathologic case series of victims of blast traumatic brain injury (TBI) showed unique astroglial scarring patterns at the following tissue interfaces: subpial glial plate, perivascular, periventricular, and cerebral gray-white interface. The uniting feature of both the clinical and neuropathologic findings in blast TBI is the co-location of injury to material interfaces, be it solid-fluid or solid-solid interface. This motivates the hypothesis that blast TBI is an injury at the intracranial mechanical interfaces. In order to investigate the intracranial interface dynamics, we performed a novel set of computational simulations using a model human head simplified but containing models of gyri, sulci, cerebrospinal fluid (CSF), ventricles, and vasculature with high spatial resolution of the mechanical interfaces. Simulations were performed within a hybrid Eulerian—Lagrangian simulation suite (CTH coupled via Zapotec to Sierra Mechanics). Because of the large computational meshes, simulations required high performance computing resources. Twenty simulations were performed across multiple exposure scenarios—overpressures of 150, 250, and 500 kPa with 1 ms overpressure durations—for multiple blast exposures (front blast, side blast, and wall blast) across large variations in material model parameters (brain shear properties, skull elastic moduli). All simulations predict fluid cavitation within CSF (where intracerebral vasculature reside) with cavitation occurring deep and diffusely into cerebral sulci. These cavitation events are adjacent to high interface strain rates at the subpial glial plate. Larger overpressure simulations (250 and 500kPa) demonstrated intraventricular cavitation—also associated with adjacent high periventricular strain rates. Additionally, models of embedded intraparenchymal vascular structures—with diameters as small as 0.6 mm—predicted intravascular cavitation with adjacent high perivascular strain rates. The co-location of local maxima of strain rates near several of the regions that appear to be preferentially damaged in blast TBI (vascular structures, subpial glial plate, perivascular regions, and periventricular regions) suggest that intracranial interface dynamics may be important in understanding how blast overpressures leads to intracranial injury.
Collapse
Affiliation(s)
- Scott T Miller
- Computational Solid Mechanics & Structural Dynamics, Sandia National Laboratories, Albuquerque, NM, United States
| | - Candice F Cooper
- Terminal Ballistics Technology, Sandia National Laboratories, Albuquerque, NM, United States
| | - Paul Elsbernd
- Department of Neurology, Brooke Army Medical Center, Fort Sam Houston, TX, United States
| | - Joseph Kerwin
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, United States
| | - Ricardo Mejia-Alvarez
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, United States
| | - Adam M Willis
- Department of Neurology, Brooke Army Medical Center, Fort Sam Houston, TX, United States.,Department of Mechanical Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
106
|
High-frequency head impact causes chronic synaptic adaptation and long-term cognitive impairment in mice. Nat Commun 2021; 12:2613. [PMID: 33972519 PMCID: PMC8110563 DOI: 10.1038/s41467-021-22744-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 03/24/2021] [Indexed: 02/03/2023] Open
Abstract
Repeated head impact exposure can cause memory and behavioral impairments. Here, we report that exposure to non-damaging, but high frequency, head impacts can alter brain function in mice through synaptic adaptation. High frequency head impact mice develop chronic cognitive impairments in the absence of traditional brain trauma pathology, and transcriptomic profiling of mouse and human chronic traumatic encephalopathy brain reveal that synapses are strongly affected by head impact. Electrophysiological analysis shows that high frequency head impacts cause chronic modification of the AMPA/NMDA ratio in neurons that underlie the changes to cognition. To demonstrate that synaptic adaptation is caused by head impact-induced glutamate release, we pretreated mice with memantine prior to head impact. Memantine prevents the development of the key transcriptomic and electrophysiological signatures of high frequency head impact, and averts cognitive dysfunction. These data reveal synapses as a target of high frequency head impact in human and mouse brain, and that this physiological adaptation in response to head impact is sufficient to induce chronic cognitive impairment in mice.
Collapse
|
107
|
Baker TL, Agoston DV, Brady RD, Major B, McDonald SJ, Mychasiuk R, Wright DK, Yamakawa GR, Sun M, Shultz SR. Targeting the Cerebrovascular System: Next-Generation Biomarkers and Treatment for Mild Traumatic Brain Injury. Neuroscientist 2021; 28:594-612. [PMID: 33966527 DOI: 10.1177/10738584211012264] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The diagnosis, prognosis, and treatment of mild traumatic brain injuries (mTBIs), such as concussions, are significant unmet medical issues. The kinetic forces that occur in mTBI adversely affect the cerebral vasculature, making cerebrovascular injury (CVI) a pathophysiological hallmark of mTBI. Given the importance of a healthy cerebrovascular system in overall brain function, CVI is likely to contribute to neurological dysfunction after mTBI. As such, CVI and related pathomechanisms may provide objective biomarkers and therapeutic targets to improve the clinical management and outcomes of mTBI. Despite this potential, until recently, few studies have focused on the cerebral vasculature in this context. This article will begin by providing a brief overview of the cerebrovascular system followed by a review of the literature regarding how mTBI can affect the integrity and function of the cerebrovascular system, and how this may ultimately contribute to neurological dysfunction and neurodegenerative conditions. We then discuss promising avenues of research related to mTBI biomarkers and interventions that target CVI, and conclude that a clinical approach that takes CVI into account could result in substantial improvements in the care and outcomes of patients with mTBI.
Collapse
Affiliation(s)
- Tamara L Baker
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Denes V Agoston
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, MD, USA
| | - Rhys D Brady
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Brendan Major
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Stuart J McDonald
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia.,Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - David K Wright
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Glenn R Yamakawa
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Mujun Sun
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
108
|
Hiskens MI, Schneiders AG, Vella RK, Fenning AS. Repetitive mild traumatic brain injury affects inflammation and excitotoxic mRNA expression at acute and chronic time-points. PLoS One 2021; 16:e0251315. [PMID: 33961674 PMCID: PMC8104440 DOI: 10.1371/journal.pone.0251315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/24/2021] [Indexed: 12/30/2022] Open
Abstract
The cumulative effect of mild traumatic brain injuries (mTBI) can result in chronic neurological damage, however the molecular mechanisms underpinning this detriment require further investigation. A closed head weight drop model that replicates the biomechanics and head acceleration forces of human mTBI was used to provide an exploration of the acute and chronic outcomes following single and repeated impacts. Adult male C57BL/6J mice were randomly assigned into one of four impact groups (control; one, five and 15 impacts) which were delivered over 23 days. Outcomes were assessed 48 hours and 3 months following the final mTBI. Hippocampal spatial learning and memory assessment revealed impaired performance in the 15-impact group compared with control in the acute phase that persisted at chronic measurement. mRNA analyses were performed on brain tissue samples of the cortex and hippocampus using quantitative RT-PCR. Eight genes were assessed, namely MAPT, GFAP, AIF1, GRIA1, CCL11, TARDBP, TNF, and NEFL, with expression changes observed based on location and follow-up duration. The cortex and hippocampus showed vulnerability to insult, displaying upregulation of key excitotoxicity and inflammation genes. Serum samples showed no difference between groups for proteins phosphorylated tau and GFAP. These data suggest that the cumulative effect of the impacts was sufficient to induce mTBI pathophysiology and clinical features. The genes investigated in this study provide opportunity for further investigation of mTBI-related neuropathology and may provide targets in the development of therapies that help mitigate the effects of mTBI.
Collapse
Affiliation(s)
- Matthew I. Hiskens
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia
- Mackay Institute of Research and Innovation, Mackay Hospital and Health Service, Mackay, Queensland, Australia
| | - Anthony G. Schneiders
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia
| | - Rebecca K. Vella
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia
| | - Andrew S. Fenning
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia
| |
Collapse
|
109
|
Tucker LB, Fu AH, McCabe JT. Hippocampal-Dependent Cognitive Dysfunction following Repeated Diffuse Rotational Brain Injury in Male and Female Mice. J Neurotrauma 2021; 38:1585-1606. [PMID: 33622092 PMCID: PMC8126427 DOI: 10.1089/neu.2021.0025] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cognitive dysfunction is a common, often long-term complaint following acquired traumatic brain injury (TBI). Cognitive deficits suggest dysfunction in hippocampal circuits. The goal of the studies described here is to phenotype in both male and female mice the hippocampal-dependent learning and memory deficits resulting from TBI sustained by the Closed-Head Impact Model of Engineered Rotational Acceleration (CHIMERA) device—a model that delivers both a contact–concussion injury as well as unrestrained rotational head movement. Mice sustained either sham procedures or four injuries (0.7 J, 24-h intervals). Spatial learning and memory skills assessed in the Morris water maze (MWM) approximately 3 weeks following injuries were significantly impaired by brain injuries; however, slower swimming speeds and poor performance on visible platform trials suggest that measurement of cognitive impairment with this test is confounded by injury-induced motor and/or visual impairments. A separate experiment confirmed hippocampal-dependent cognitive deficits with trace fear conditioning (TFC), a behavioral test less dependent on motor and visual function. Male mice had greater injury-induced deficits on both the MWM and TFC tests than female mice. Pathologically, the injury was characterized by white matter damage as observed by silver staining and glial fibrillary acidic protein (astrogliosis) in the optic tracts, with milder damage seen in the corpus callosum, and fimbria and brainstem (cerebral peduncles) of some animals. No changes in the density of GABAergic parvalbumin-expressing cells in the hippocampus, amygdala, or parietal cortex were found. This experiment confirmed significant sexually dimorphic cognitive impairments following a repeated, diffuse brain injury.
Collapse
Affiliation(s)
- Laura B Tucker
- Center for Neuroscience and Regenerative Medicine, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Amanda H Fu
- Center for Neuroscience and Regenerative Medicine, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Joseph T McCabe
- Center for Neuroscience and Regenerative Medicine, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
110
|
Wu Y, Wu H, Zeng J, Pluimer B, Dong S, Xie X, Guo X, Ge T, Liang X, Feng S, Yan Y, Chen JF, Sta Maria N, Ma Q, Gomez-Pinilla F, Zhao Z. Mild traumatic brain injury induces microvascular injury and accelerates Alzheimer-like pathogenesis in mice. Acta Neuropathol Commun 2021; 9:74. [PMID: 33892818 PMCID: PMC8063402 DOI: 10.1186/s40478-021-01178-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/10/2021] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Traumatic brain injury (TBI) is considered as the most robust environmental risk factor for Alzheimer's disease (AD). Besides direct neuronal injury and neuroinflammation, vascular impairment is also a hallmark event of the pathological cascade after TBI. However, the vascular connection between TBI and subsequent AD pathogenesis remains underexplored. METHODS In a closed-head mild TBI (mTBI) model in mice with controlled cortical impact, we examined the time courses of microvascular injury, blood-brain barrier (BBB) dysfunction, gliosis and motor function impairment in wild type C57BL/6 mice. We also evaluated the BBB integrity, amyloid pathology as well as cognitive functions after mTBI in the 5xFAD mouse model of AD. RESULTS mTBI induced microvascular injury with BBB breakdown, pericyte loss, basement membrane alteration and cerebral blood flow reduction in mice, in which BBB breakdown preceded gliosis. More importantly, mTBI accelerated BBB leakage, amyloid pathology and cognitive impairment in the 5xFAD mice. DISCUSSION Our data demonstrated that microvascular injury plays a key role in the pathogenesis of AD after mTBI. Therefore, restoring vascular functions might be beneficial for patients with mTBI, and potentially reduce the risk of developing AD.
Collapse
Affiliation(s)
- Yingxi Wu
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute, Room: 241, 1501 San Pablo Street, Los Angeles, CA, 90033, USA
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Haijian Wu
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute, Room: 241, 1501 San Pablo Street, Los Angeles, CA, 90033, USA
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
| | - Jianxiong Zeng
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute, Room: 241, 1501 San Pablo Street, Los Angeles, CA, 90033, USA
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Brock Pluimer
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute, Room: 241, 1501 San Pablo Street, Los Angeles, CA, 90033, USA
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Neuroscience Graduate Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Shirley Dong
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute, Room: 241, 1501 San Pablo Street, Los Angeles, CA, 90033, USA
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Xiaochun Xie
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute, Room: 241, 1501 San Pablo Street, Los Angeles, CA, 90033, USA
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Xinying Guo
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute, Room: 241, 1501 San Pablo Street, Los Angeles, CA, 90033, USA
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Tenghuan Ge
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute, Room: 241, 1501 San Pablo Street, Los Angeles, CA, 90033, USA
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Xinyan Liang
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute, Room: 241, 1501 San Pablo Street, Los Angeles, CA, 90033, USA
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Neuroscience Graduate Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Sudi Feng
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute, Room: 241, 1501 San Pablo Street, Los Angeles, CA, 90033, USA
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Youzhen Yan
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute, Room: 241, 1501 San Pablo Street, Los Angeles, CA, 90033, USA
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jian-Fu Chen
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, 90033, USA
| | - Naomi Sta Maria
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute, Room: 241, 1501 San Pablo Street, Los Angeles, CA, 90033, USA
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Qingyi Ma
- Lawrence D. Longo, MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Fernando Gomez-Pinilla
- Brain Injury Research Center, Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Zhen Zhao
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute, Room: 241, 1501 San Pablo Street, Los Angeles, CA, 90033, USA.
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- Neuroscience Graduate Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
111
|
Brain microvascular damage linked to a moderate level of strain induced by controlled cortical impact. J Biomech 2021; 122:110452. [PMID: 33901935 DOI: 10.1016/j.jbiomech.2021.110452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/30/2021] [Accepted: 04/09/2021] [Indexed: 01/10/2023]
Abstract
Cerebral blood vessels play an important role in brain metabolic activity in general and following traumatic brain injury (TBI) in particular. However, the extent to which TBI alters microvessel structure is not well understood. Specifically, how intracranial mechanical responses produced during impacts relate to vascular damage needs to be better studied. Therefore, the objective of this study was to investigate the biomechanical mechanisms and thresholds of brain microvascular injury. Detailed microvascular damage of mouse brain was quantified using Arterial Spin Labeling (ASL) magnetic resonance imaging (MRI) and ex vivo Serial Two-Photon Tomography (STPT) in seven mice that had undergone controlled cortical impact. Mechanical strains were investigated through finite element (FE) modeling of the mouse brain. We then compared the post-injury vessel density map with FE-predicted strain and found a moderate correlation between the vessel length density and the predicted peak maximum principal strains (MPS) (R2 = 0.52). High MPS was observed at the impact regions with low vessel length density, supporting the mechanism of strain-triggered microvascular damage. Using logistic regression, the MPS corresponding to a 50% probability of injury was found to be 0.17. Given the literature reporting MPS of over 0.2 in the human brain for mild TBI/concussion cases, it is highly recommended to consider microvascular damage when investigating mild TBI/concussion in the future.
Collapse
|
112
|
Zhan X, Liu Y, Raymond S, Vahid Alizadeh H, Domel A, Gevaert O, Zeineh M, Grant G, Camarillo D. Rapid Estimation of Entire Brain Strain Using Deep Learning Models. IEEE Trans Biomed Eng 2021; 68:3424-3434. [PMID: 33852381 DOI: 10.1109/tbme.2021.3073380] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Many recent studies have suggested that brain deformation resulting from a head impact is linked to the corresponding clinical outcome, such as mild traumatic brain injury (mTBI). Even though several finite element (FE) head models have been developed and validated to calculate brain deformation based on impact kinematics, the clinical application of these FE head models is limited due to the time-consuming nature of FE simulations. This work aims to accelerate the process of brain deformation calculation and thus improve the potential for clinical applications. METHODS We propose a deep learning head model with a five-layer deep neural network and feature engineering, and trained and tested the model on 2511 total head impacts from a combination of head model simulations and on-field college football and mixed martial arts impacts. RESULTS The proposed deep learning head model can calculate the maximum principal strain (Green Lagrange) for every element in the entire brain in less than 0.001s with an average root mean squared error of 0.022, and with a standard deviation of 0.001 over twenty repeats with random data partition and model initialization. CONCLUSION Trained and tested using the dataset of 2511 head impacts, this model can be applied to various sports in the calculation of brain strain with accuracy, and its applicability can even further be extended by incorporating data from other types of head impacts. SIGNIFICANCE In addition to the potential clinical application in real-time brain deformation monitoring, this model will help researchers estimate the brain strain from a large number of head impacts more efficiently than using FE models.
Collapse
|
113
|
Pierre K, Dyson K, Dagra A, Williams E, Porche K, Lucke-Wold B. Chronic Traumatic Encephalopathy: Update on Current Clinical Diagnosis and Management. Biomedicines 2021; 9:biomedicines9040415. [PMID: 33921385 PMCID: PMC8069746 DOI: 10.3390/biomedicines9040415] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 02/05/2023] Open
Abstract
Chronic traumatic encephalopathy is a disease afflicting individuals exposed to repetitive neurotrauma. Unfortunately, diagnosis is made by postmortem pathologic analysis, and treatment options are primarily symptomatic. In this clinical update, we review clinical and pathologic diagnostic criteria and recommended symptomatic treatments. We also review animal models and recent discoveries from pre-clinical studies. Furthermore, we highlight the recent advances in diagnosis using diffusor tensor imaging, functional magnetic resonance imaging, positron emission tomography, and the fluid biomarkers t-tau, sTREM2, CCL11, NFL, and GFAP. We also provide an update on emerging pharmaceutical treatments, including immunotherapies and those that target tau acetylation, tau phosphorylation, and inflammation. Lastly, we highlight the current literature gaps and guide future directions to further improve clinical diagnosis and management of patients suffering from this condition.
Collapse
Affiliation(s)
- Kevin Pierre
- College of Medicine, University of Florida, Gainesville, FL 32611, USA; (K.P.); (K.D.); (A.D.); (E.W.)
| | - Kyle Dyson
- College of Medicine, University of Florida, Gainesville, FL 32611, USA; (K.P.); (K.D.); (A.D.); (E.W.)
| | - Abeer Dagra
- College of Medicine, University of Florida, Gainesville, FL 32611, USA; (K.P.); (K.D.); (A.D.); (E.W.)
| | - Eric Williams
- College of Medicine, University of Florida, Gainesville, FL 32611, USA; (K.P.); (K.D.); (A.D.); (E.W.)
| | - Ken Porche
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA;
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA;
- Correspondence:
| |
Collapse
|
114
|
Amoo M, O'Halloran PJ, Henry J, Husien MB, Brennan P, Campbell M, Caird J, Curley GF. Permeability of the Blood-Brain Barrier after Traumatic Brain Injury; Radiological Considerations. J Neurotrauma 2021; 39:20-34. [PMID: 33632026 DOI: 10.1089/neu.2020.7545] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability, especially in young persons, and constitutes a major socioeconomic burden worldwide. It is regarded as the leading cause of mortality and morbidity in previously healthy young persons. Most of the mechanisms underpinning the development of secondary brain injury are consequences of disruption of the complex relationship between the cells and proteins constituting the neurovascular unit or a direct result of loss of integrity of the tight junctions (TJ) in the blood-brain barrier (BBB). A number of changes have been described in the BBB after TBI, including loss of TJ proteins, pericyte loss and migration, and altered expressions of water channel proteins at astrocyte end-feet processes. There is a growing research interest in identifying optimal biological and radiological biomarkers of severity of BBB dysfunction and its effects on outcomes after TBI. This review explores the microscopic changes occurring at the neurovascular unit, after TBI, and current radiological adjuncts for its evaluation in pre-clinical and clinical practice.
Collapse
Affiliation(s)
- Michael Amoo
- National Centre for Neurosurgery, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland.,Royal College of Surgeons in Ireland, Dublin, Ireland.,Beacon Academy, Beacon Hospital, Sandyford, Dublin, Ireland
| | - Philip J O'Halloran
- Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Neurosurgery, Royal London Hospital, Whitechapel, London, United Kingdom
| | - Jack Henry
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Mohammed Ben Husien
- National Centre for Neurosurgery, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland.,Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Paul Brennan
- Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Radiology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | | | - John Caird
- National Centre for Neurosurgery, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Gerard F Curley
- Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Anaesthesia and Critical Care, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
115
|
Marklund N, Vedung F, Lubberink M, Tegner Y, Johansson J, Blennow K, Zetterberg H, Fahlström M, Haller S, Stenson S, Larsson EM, Wall A, Antoni G. Tau aggregation and increased neuroinflammation in athletes after sports-related concussions and in traumatic brain injury patients - A PET/MR study. NEUROIMAGE-CLINICAL 2021; 30:102665. [PMID: 33894460 PMCID: PMC8091173 DOI: 10.1016/j.nicl.2021.102665] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/11/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023]
Abstract
Traumatic brain injury (TBI) leads to axonal injury and an inflammatory response. Repeated sports-related concussions (rSRC) are linked to neurodegeneration. We studied tau aggregation and neuroinflammation in rSRC and TBI using PET/MRI. In young rSRC and TBI patients, tau aggregation and neuroinflammation was increased. PET useful when studying the long-term consequences of rSRC and TBI.
Traumatic brain injury (TBI) and repeated sports-related concussions (rSRCs) are associated with an increased risk for neurodegeneration. Autopsy findings of selected cohorts of long-term TBI survivors and rSRC athletes reveal increased tau aggregation and a persistent neuroinflammation. To assess in vivo tau aggregation and neuroinflammation in young adult TBI and rSRC cohorts, we evaluated 9 healthy controls (mean age 26 ± 5 years; 4 males, 5 females), 12 symptomatic athletes (26 ± 7 years; 6 males, 6 females) attaining ≥3 previous SRCs, and 6 moderate-to severe TBI patients (27 ± 7 years; 4 males, 2 females) in a combined positron emission tomography (PET)/magnetic resonance (MR) scanner ≥6 months post-injury. Dual PET tracers, [18F]THK5317 for tau aggregation and [11C]PK11195 for neuroinflammation/microglial activation, were investigated on the same day. The Repeated Battery Assessment of Neurological Status (RBANS) scores, used for cognitive evaluation, were lower in both the rSRC and TBI groups (p < 0.05). Neurofilament-light (NF-L) levels were increased in plasma and cerebrospinal fluid (CSF; p < 0.05), and serum tau levels lower, in TBI although not in rSRC. In rSRC athletes, PET imaging showed increased neuroinflammation in the hippocampus and tau aggregation in the corpus callosum. In TBI patients, tau aggregation was observed in thalami, temporal white matter and midbrain; widespread neuroinflammation was found e.g. in temporal white matter, hippocampus and corpus callosum. In mixed-sex cohorts of young adult athletes with persistent post-concussion symptoms and in TBI patients, increased tau aggregation and neuroinflammation are observed at ≥6 months post-injury using PET. Studies with extended clinical follow-up, biomarker examinations and renewed PET imaging are needed to evaluate whether these findings progress to a neurodegenerative disorder or if spontaneous resolution is possible.
Collapse
Affiliation(s)
- Niklas Marklund
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden; Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Neurosurgery, Lund, Sweden.
| | - Fredrik Vedung
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Mark Lubberink
- Medical Physics, Uppsala University Hospital, Uppsala, Sweden; Department of Surgical Sciences, Nuclear Medicine and PET, Uppsala University, Sweden
| | - Yelverton Tegner
- Department of Health Sciences, Luleå University of Technology, Sweden
| | - Jakob Johansson
- Department of Surgical Sciences, Anesthesiology, Uppsala University, Sweden
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; UK Dementia Research Institute at UCL, London, United Kingdom; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - Markus Fahlström
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Sven Haller
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden; CIMC - Centre d'Imagerie Médicale de Cornavin, Place de Cornavin 18, 1201 Genève, Switzerland
| | - Staffan Stenson
- Department of Neuroscience, Rehabilitation Medicine PET Centre, Uppsala University Hospital, Uppsala, Sweden
| | - Elna-Marie Larsson
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Anders Wall
- Department of Surgical Sciences, Nuclear Medicine and PET, Uppsala University, Sweden; Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Gunnar Antoni
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| |
Collapse
|
116
|
Champagne AA, Coverdale NS, Ross A, Murray C, Vallee I, Cook DJ. Characterizing changes in network connectivity following chronic head trauma in special forces military personnel: a combined resting-fMRI and DTI study. Brain Inj 2021; 35:760-768. [PMID: 33792439 DOI: 10.1080/02699052.2021.1906951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Soldiers are exposed to significant repetitive head trauma, which may disrupt functional and structural brain connectivity patterns. PURPOSE/HYPOTHESIS Integrate resting-state functional MRI (rs-fMRI) and diffusion tensor imaging (DTI) to characterize changes in connectivity biomarkers within Canadian Special Operations Forces (CANSOF), hypothesizing that alterations in architectural organization of cortical hubs may follow chronic repetitive head trauma. METHODS Fifteen CANSOFs with a history of chronic exposure to sub-concussive head trauma and concussive injuries (1.9 ± 2.0 concussions (range: [0-6])), as well as an equal age-matched cohort of controls (CTLs) were recruited. BOLD-based rs-fMRI was combined with DTI to reconstruct functional and structural networks using independent component analyses and probabilistic tractography. Connectivity markers were computed based on the distance between functional seeds to assess for possible differences in injury susceptibility of short- and long-range connections. RESULTS/DISCUSSION Significant hyper- and hypo-connectivity differences in cortical connections were observed suggesting that chronic head trauma may predispose soldiers to changes in the functional organization of brain networks. Significant structural alterations in axonal fibers directly connecting disrupted functional nodes were specific to hyper-connected long-range connections, suggesting a potential relationship between axonal injury and increases in neural recruitment following repetitive head trauma from high-exposure military duties.
Collapse
Affiliation(s)
- Allen A Champagne
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.,School of Medicine, Queen's University, Kingston, ON, Canada
| | - Nicole S Coverdale
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | | | | | - Isabelle Vallee
- Canadian Special Operations Forces Command, Ottawa, ON, Canada
| | - Douglas J Cook
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.,Department of Surgery, Queen's University, Kingston, ON, Canada
| |
Collapse
|
117
|
Lee J, Anderson LJ, Migula D, Yuen KCJ, McPeak L, Garcia JM. Experience of a Pituitary Clinic for US Military Veterans With Traumatic Brain Injury. J Endocr Soc 2021; 5:bvab005. [PMID: 33655093 DOI: 10.1210/jendso/bvab005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 01/02/2023] Open
Abstract
Context Traumatic brain injury (TBI) is considered the "signature" injury of veterans returning from wartime conflicts in Iraq and Afghanistan. While moderate/severe TBI is associated with pituitary dysfunction, this association has not been well established in the military setting and in mild TBI (mTBI). Screening for pituitary dysfunction resulting from TBI in veteran populations is inconsistent across Veterans Affairs (VA) institutions, and such dysfunction often goes unrecognized and untreated. Objective This work aims to report the experience of a pituitary clinic in screening for and diagnosis of pituitary dysfunction. Methods A retrospective analysis was conducted in a US tertiary care center of veterans referred to the VA Puget Sound Healthcare System pituitary clinic with a history of TBI at least 12 months prior. Main outcome measures included demographics, medical history, symptom burden, baseline hormonal evaluation, brain imaging, and provocative testing for adrenal insufficiency (AI) and adult-onset growth hormone deficiency (AGHD). Results Fatigue, cognitive/memory problems, insomnia, and posttraumatic stress disorder were reported in at least two-thirds of the 58 patients evaluated. Twenty-two (37.9%) were diagnosed with at least one pituitary hormone deficiency, including 13 (22.4%) AI, 12 (20.7%) AGHD, 2 (3.4%) secondary hypogonadism, and 5 (8.6%) hyperprolactinemia diagnoses; there were no cases of thyrotropin deficiency. Conclusion A high prevalence of chronic AI and AGHD was observed among veterans with TBI. Prospective, larger studies are needed to confirm these results and determine the effects of hormone replacement on long-term outcomes in this setting.
Collapse
Affiliation(s)
- Jonathan Lee
- Geriatric Research, Education and Clinical Center (GRECC), VA Puget Sound Health Care System, and Department of Medicine, Division of Gerontology & Geriatric Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Lindsey J Anderson
- Geriatric Research, Education and Clinical Center (GRECC), VA Puget Sound Health Care System, and Department of Medicine, Division of Gerontology & Geriatric Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Dorota Migula
- Geriatric Research, Education and Clinical Center (GRECC), VA Puget Sound Health Care System, and Department of Medicine, Division of Gerontology & Geriatric Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Kevin C J Yuen
- Barrow Pituitary Center, Barrow Neurological Institute and St. Joseph's Hospital and Medical Center, University of Arizona College of Medicine and Creighton School of Medicine, Phoenix, Arizona, USA
| | - Lisa McPeak
- Center for Polytrauma Care, Rehabilitation Care Services, VA Puget Sound Health Care System, Seattle, Washington, USA
| | - Jose M Garcia
- Geriatric Research, Education and Clinical Center (GRECC), VA Puget Sound Health Care System, and Department of Medicine, Division of Gerontology & Geriatric Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
118
|
Alosco ML, Culhane J, Mez J. Neuroimaging Biomarkers of Chronic Traumatic Encephalopathy: Targets for the Academic Memory Disorders Clinic. Neurotherapeutics 2021; 18:772-791. [PMID: 33847906 PMCID: PMC8423967 DOI: 10.1007/s13311-021-01028-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with exposure to repetitive head impacts, such as those from contact sports. The pathognomonic lesion for CTE is the perivascular accumulation of hyper-phosphorylated tau in neurons and other cell process at the depths of sulci. CTE cannot be diagnosed during life at this time, limiting research on risk factors, mechanisms, epidemiology, and treatment. There is an urgent need for in vivo biomarkers that can accurately detect CTE and differentiate it from other neurological disorders. Neuroimaging is an integral component of the clinical evaluation of neurodegenerative diseases and will likely aid in diagnosing CTE during life. In this qualitative review, we present the current evidence on neuroimaging biomarkers for CTE with a focus on molecular, structural, and functional modalities routinely used as part of a dementia evaluation. Supporting imaging-pathological correlation studies are also presented. We targeted neuroimaging studies of living participants at high risk for CTE (e.g., aging former elite American football players, fighters). We conclude that an optimal tau PET radiotracer with high affinity for the 3R/4R neurofibrillary tangles in CTE has not yet been identified. Amyloid PET scans have tended to be negative. Converging structural and functional imaging evidence together with neuropathological evidence show frontotemporal and medial temporal lobe neurodegeneration, and increased likelihood for a cavum septum pellucidum. The literature offers promising neuroimaging biomarker targets of CTE, but it is limited by cross-sectional studies of small samples where the presence of underlying CTE is unknown. Imaging-pathological correlation studies will be important for the development and validation of neuroimaging biomarkers of CTE.
Collapse
Affiliation(s)
- Michael L Alosco
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University School of Medicine, 72 E Concord St, Suite B7800, MA, 02118, Boston, USA.
| | - Julia Culhane
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University School of Medicine, 72 E Concord St, Suite B7800, MA, 02118, Boston, USA
| | - Jesse Mez
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University School of Medicine, 72 E Concord St, Suite B7800, MA, 02118, Boston, USA
- Framingham Heart Study, Boston University School of Medicine, MA, Boston, USA
| |
Collapse
|
119
|
DeSimone JC, Davenport EM, Urban J, Xi Y, Holcomb JM, Kelley ME, Whitlow CT, Powers AK, Stitzel JD, Maldjian JA. Mapping default mode connectivity alterations following a single season of subconcussive impact exposure in youth football. Hum Brain Mapp 2021; 42:2529-2545. [PMID: 33734521 PMCID: PMC8090779 DOI: 10.1002/hbm.25384] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/14/2022] Open
Abstract
Repetitive head impact (RHI) exposure in collision sports may contribute to adverse neurological outcomes in former players. In contrast to a concussion, or mild traumatic brain injury, “subconcussive” RHIs represent a more frequent and asymptomatic form of exposure. The neural network‐level signatures characterizing subconcussive RHIs in youth collision‐sport cohorts such as American Football are not known. Here, we used resting‐state functional MRI to examine default mode network (DMN) functional connectivity (FC) following a single football season in youth players (n = 50, ages 8–14) without concussion. Football players demonstrated reduced FC across widespread DMN regions compared with non‐collision sport controls at postseason but not preseason. In a subsample from the original cohort (n = 17), players revealed a negative change in FC between preseason and postseason and a positive and compensatory change in FC during the offseason across the majority of DMN regions. Lastly, significant FC changes, including between preseason and postseason and between in‐ and off‐season, were specific to players at the upper end of the head impact frequency distribution. These findings represent initial evidence of network‐level FC abnormalities following repetitive, non‐concussive RHIs in youth football. Furthermore, the number of subconcussive RHIs proved to be a key factor influencing DMN FC.
Collapse
Affiliation(s)
- Jesse C. DeSimone
- Advanced Neuroscience Imaging Research (ANSIR) LaboratoryUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of RadiologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Elizabeth M. Davenport
- Advanced Neuroscience Imaging Research (ANSIR) LaboratoryUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of RadiologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Jillian Urban
- Department of Biomedical EngineeringWake Forest School of MedicineWinston SalemNorth CarolinaUSA
- Virginia Tech – Wake Forest School of Biomedical EngineeringWake Forest School of MedicineWinston SalemNorth CarolinaUSA
| | - Yin Xi
- Department of RadiologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - James M. Holcomb
- Advanced Neuroscience Imaging Research (ANSIR) LaboratoryUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of RadiologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Mireille E. Kelley
- Department of Biomedical EngineeringWake Forest School of MedicineWinston SalemNorth CarolinaUSA
- Virginia Tech – Wake Forest School of Biomedical EngineeringWake Forest School of MedicineWinston SalemNorth CarolinaUSA
| | - Christopher T. Whitlow
- Virginia Tech – Wake Forest School of Biomedical EngineeringWake Forest School of MedicineWinston SalemNorth CarolinaUSA
- Department of Radiology – NeuroradiologyWake Forest School of MedicineWinston SalemNorth CarolinaUSA
- Clinical and Translational Sciences InstituteWake Forest School of MedicineWinston SalemNorth CarolinaUSA
| | - Alexander K. Powers
- Department of NeurosurgeryWake Forest School of MedicineWinston SalemNorth CarolinaUSA
| | - Joel D. Stitzel
- Department of Biomedical EngineeringWake Forest School of MedicineWinston SalemNorth CarolinaUSA
- Virginia Tech – Wake Forest School of Biomedical EngineeringWake Forest School of MedicineWinston SalemNorth CarolinaUSA
- Clinical and Translational Sciences InstituteWake Forest School of MedicineWinston SalemNorth CarolinaUSA
- Childress Institute for Pediatric TraumaWake Forest School of MedicineWinston SalemNorth CarolinaUSA
| | - Joseph A. Maldjian
- Advanced Neuroscience Imaging Research (ANSIR) LaboratoryUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of RadiologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| |
Collapse
|
120
|
Player age and initial helmet contact among American football players. Am J Emerg Med 2021; 47:115-118. [PMID: 33794473 DOI: 10.1016/j.ajem.2021.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/03/2021] [Accepted: 03/10/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Concussions and chronic traumatic encephalopathy (CTE) related to professional football has received much attention within emergency care and sports medicine. Research suggests that some of this may be due to a greater likelihood of initial helmet contact (IHC), however this association has not been studied across all age groups. This study aims to investigate the association between player age and IHC in American football. METHODS Retrospective review of championship games between 2016 and 2018 at 6 levels of amateur tackle football as well as the National Football League (NFL). Trained raters classified plays as IHC using pre-specified criteria. A priori power analysis established the requisite impacts needed to establish non-inferiority of the incidence rate of IHC across the levels of play. RESULTS Thirty-seven games representing 2912 hits were rated. The overall incidence of IHC was 16% across all groups, ranging from 12.6% to 18.9%. All but 2 of the non-NFL divisions had a statistically reduced risk of IHC when compared with the NFL, with relative risk ratios ranging from 0.55-0.92. IHC initiated by defensive participants were twice as high as offensive participants (RR 2.04, p < 0.01) while 6% [95% CI 5.4-7.2] of all hits were helmet-on-helmet contact. CONCLUSIONS There is a high rate of IHC with a lower relative risk of IHC at most levels of play compared to the NFL. Further research is necessary to determine the impact of IHC; the high rates across all age groups suggests an important role for education and prevention.
Collapse
|
121
|
Postupna N, Rose SE, Gibbons LE, Coleman NM, Hellstern LL, Ritchie K, Wilson AM, Cudaback E, Li X, Melief EJ, Beller AE, Miller JA, Nolan AL, Marshall DA, Walker R, Montine TJ, Larson EB, Crane PK, Ellenbogen RG, Lein ES, Dams-O'Connor K, Keene CD. The Delayed Neuropathological Consequences of Traumatic Brain Injury in a Community-Based Sample. Front Neurol 2021; 12:624696. [PMID: 33796061 PMCID: PMC8008107 DOI: 10.3389/fneur.2021.624696] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/12/2021] [Indexed: 12/14/2022] Open
Abstract
The late neuropathological effects of traumatic brain injury have yet to be fully elucidated, particularly with respect to community-based cohorts. To contribute to this critical gap in knowledge, we designed a multimodal neuropathological study, integrating traditional and quantitative approaches to detect pathologic changes in 532 consecutive brain autopsies from participants in the Adult Changes in Thought (ACT) study. Diagnostic evaluation including assessment for chronic traumatic encephalopathy (CTE) and quantitative immunoassay-based methods were deployed to examine levels of pathological (hyperphosphorylated) tau (pTau) and amyloid (A) β in brains from ACT participants with (n = 107) and without (n = 425) history of remote TBI with loss of consciousness (w/LOC). Further neuropathological assessments included immunohistochemistry for α-synuclein and phospho-TDP-43 pathology and astro- (GFAP) and micro- (Iba1) gliosis, mass spectrometry analysis of free radical injury, and gene expression evaluation (RNA sequencing) in a smaller sub-cohort of matched samples (49 cases with TBI and 49 non-exposed matched controls). Out of 532 cases, only 3 (0.6%-none with TBI w/LOC history) showed evidence of the neuropathologic signature of chronic traumatic encephalopathy (CTE). Across the entire cohort, the levels of pTau and Aβ showed expected differences for brain region (higher levels in temporal cortex), neuropathological diagnosis (higher in participants with Alzheimer's disease), and APOE genotype (higher in participants with one or more APOE ε4 allele). However, no differences in PHF-tau or Aβ1-42 were identified by Histelide with respect to the history of TBI w/LOC. In a subset of TBI cases with more carefully matched control samples and more extensive analysis, those with TBI w/LOC history had higher levels of hippocampal pTau but no significant differences in Aβ, α-synuclein, pTDP-43, GFAP, Iba1, or free radical injury. RNA-sequencing also did not reveal significant gene expression associated with any measure of TBI exposure. Combined, these findings suggest long term neuropathological changes associated with TBI w/LOC may be subtle, involve non-traditional pathways of neurotoxicity and neurodegeneration, and/or differ from those in autopsy cohorts specifically selected for neurotrauma exposure.
Collapse
Affiliation(s)
- Nadia Postupna
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Shannon E. Rose
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Laura E. Gibbons
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| | - Natalie M. Coleman
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Leanne L. Hellstern
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Kayla Ritchie
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Angela M. Wilson
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Eiron Cudaback
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Xianwu Li
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Erica J. Melief
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Allison E. Beller
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | | | - Amber L. Nolan
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Desiree A. Marshall
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Rod Walker
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, United States
| | - Thomas J. Montine
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Eric B. Larson
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, United States
| | - Paul K. Crane
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| | - Richard G. Ellenbogen
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, United States
| | - Edward S. Lein
- Allen Institute for Brain Science, Seattle, WA, United States
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, United States
| | - Kristen Dams-O'Connor
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - C. Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
122
|
Lugo GJ, Beletanga M, Goldstein L, Rana M, Jonas R, Torres AR. Assessment and Treatment of Concussion in the Pediatric Population. Semin Neurol 2021; 41:132-146. [PMID: 33657625 DOI: 10.1055/s-0041-1725135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Traumatic brain injury (TBI) is common in children. The evaluation and management of children with TBI is based on the research performed in adults. There is a relative paucity of research in the literature involving children and many of the practice recommendations for this age are based on expert opinion in the absence of good research studies in both sports and non-sports-related injuries. The pediatric population is heterogeneous and the approach might be specific for infants, preschoolers, school age children, and adolescents. Children may also suffer from neurodevelopmental disabilities, making their evaluation even more challenging. Adult neurologists are often asked to see children due to increasing demands. This review will focus on specific issues related to TBI in children that might be useful to adult neurologists. Science, however, is evolving rapidly and physicians should make sure to remain up to date to offer evidence-based services to their patients.
Collapse
Affiliation(s)
- Giancarlo J Lugo
- Division of Pediatric Neurology, Department of Pediatrics, Boston Medical Center, Boston, Massachusetts
| | - Maria Beletanga
- Division of Pediatric Neurology, Department of Pediatrics, Boston Medical Center, Boston, Massachusetts
| | - Laura Goldstein
- Division of Child Psychiatry, Department of Psychiatry, Boston Medical Center, Boston, Massachusetts
| | - Mandeep Rana
- Division of Pediatric Neurology, Department of Pediatrics, Boston Medical Center, Boston, Massachusetts
| | - Rinat Jonas
- Division of Pediatric Neurology, Department of Pediatrics, Boston Medical Center, Boston, Massachusetts
| | - Alcy R Torres
- Division of Pediatric Neurology, Department of Pediatrics, Boston Medical Center, Boston, Massachusetts.,Pediatric Brain Injury Program, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
123
|
Campolettano ET, Rowson S. Relating on-field youth football head impacts to pneumatic ram laboratory testing procedures. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS. PART P, JOURNAL OF SPORTS ENGINEERING AND TECHNOLOGY 2021; 235:62-69. [PMID: 34621331 PMCID: PMC8494248 DOI: 10.1177/1754337120949061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A youth-specific football helmet testing standard has been proposed to address the physical and biomechanical differences between adult and youth football players. This study sought to relate the proposed youth standard-defined laboratory impacts to on-field head impacts collected from youth football players. Head impact data from 112 youth football players (ages 9-14) were collected through the use of helmet-mounted accelerometer arrays. These head impacts were filtered to only include those that resided in corridors near prescribed National Operating Committee on Standards for Athletic Equipment (NOCSAE) impact locations. Peak linear head acceleration and peak rotational head acceleration magnitudes collected from pneumatic ram impactor tests as specified by the proposed NOCSAE youth standard were compared to the distribution of on-field head impacts. All laboratory impact tests were among the top 10% in terms of magnitude for Severity Index and peak rotational acceleration of matched location head impacts experienced by youth football players. As concussive head impacts are among the most severe impacts experienced on the field, a safety standard geared toward mitigating concussion should assess the most severe on-field head impacts. This proposed testing standard may be refined as more becomes known regarding the biomechanics of concussion among youth athletes.
Collapse
Affiliation(s)
- Eamon T Campolettano
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - Steven Rowson
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
124
|
Graham NSN, Jolly A, Zimmerman K, Bourke NJ, Scott G, Cole JH, Schott JM, Sharp DJ. Diffuse axonal injury predicts neurodegeneration after moderate-severe traumatic brain injury. Brain 2021; 143:3685-3698. [PMID: 33099608 DOI: 10.1093/brain/awaa316] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/16/2020] [Accepted: 08/03/2020] [Indexed: 11/14/2022] Open
Abstract
Traumatic brain injury is associated with elevated rates of neurodegenerative diseases such as Alzheimer's disease and chronic traumatic encephalopathy. In experimental models, diffuse axonal injury triggers post-traumatic neurodegeneration, with axonal damage leading to Wallerian degeneration and toxic proteinopathies of amyloid and hyperphosphorylated tau. However, in humans the link between diffuse axonal injury and subsequent neurodegeneration has yet to be established. Here we test the hypothesis that the severity and location of diffuse axonal injury predicts the degree of progressive post-traumatic neurodegeneration. We investigated longitudinal changes in 55 patients in the chronic phase after moderate-severe traumatic brain injury and 19 healthy control subjects. Fractional anisotropy was calculated from diffusion tensor imaging as a measure of diffuse axonal injury. Jacobian determinant atrophy rates were calculated from serial volumetric T1 scans as a measure of measure post-traumatic neurodegeneration. We explored a range of potential predictors of longitudinal post-traumatic neurodegeneration and compared the variance in brain atrophy that they explained. Patients showed widespread evidence of diffuse axonal injury, with reductions of fractional anisotropy at baseline and follow-up in large parts of the white matter. No significant changes in fractional anisotropy over time were observed. In contrast, abnormally high rates of brain atrophy were seen in both the grey and white matter. The location and extent of diffuse axonal injury predicted the degree of brain atrophy: fractional anisotropy predicted progressive atrophy in both whole-brain and voxelwise analyses. The strongest relationships were seen in central white matter tracts, including the body of the corpus callosum, which are most commonly affected by diffuse axonal injury. Diffuse axonal injury predicted substantially more variability in white matter atrophy than other putative clinical or imaging measures, including baseline brain volume, age, clinical measures of injury severity and microbleeds (>50% for fractional anisotropy versus <5% for other measures). Grey matter atrophy was not predicted by diffuse axonal injury at baseline. In summary, diffusion MRI measures of diffuse axonal injury are a strong predictor of post-traumatic neurodegeneration. This supports a causal link between axonal injury and the progressive neurodegeneration that is commonly seen after moderate/severe traumatic brain injury but has been of uncertain aetiology. The assessment of diffuse axonal injury with diffusion MRI is likely to improve prognostic accuracy and help identify those at greatest neurodegenerative risk for inclusion in clinical treatment trials.
Collapse
Affiliation(s)
- Neil S N Graham
- Department of Brain Sciences, Division of Medicine, Imperial College London, London, UK.,UK Dementia Research Institute, Centre for Care, Research and Technology, London, UK
| | - Amy Jolly
- Department of Brain Sciences, Division of Medicine, Imperial College London, London, UK.,UK Dementia Research Institute, Centre for Care, Research and Technology, London, UK
| | - Karl Zimmerman
- Department of Brain Sciences, Division of Medicine, Imperial College London, London, UK.,UK Dementia Research Institute, Centre for Care, Research and Technology, London, UK
| | - Niall J Bourke
- Department of Brain Sciences, Division of Medicine, Imperial College London, London, UK.,UK Dementia Research Institute, Centre for Care, Research and Technology, London, UK
| | - Gregory Scott
- Department of Brain Sciences, Division of Medicine, Imperial College London, London, UK.,UK Dementia Research Institute, Centre for Care, Research and Technology, London, UK
| | - James H Cole
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK.,Centre for Medical Image Computing, University College London, London, UK
| | - Jonathan M Schott
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - David J Sharp
- Department of Brain Sciences, Division of Medicine, Imperial College London, London, UK.,UK Dementia Research Institute, Centre for Care, Research and Technology, London, UK.,Centre for Blast Injury Studies, Imperial College London, London, UK
| |
Collapse
|
125
|
Brett BL, Walton SR, Kerr ZY, Nelson LD, Chandran A, Defreese JD, Echemendia RJ, Guskiewicz KM, Meehan Iii WP, McCrea MA. Distinct latent profiles based on neurobehavioural, physical and psychosocial functioning of former National Football League (NFL) players: an NFL-LONG Study. J Neurol Neurosurg Psychiatry 2021; 92:282-290. [PMID: 33483350 DOI: 10.1136/jnnp-2020-324244] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/30/2020] [Accepted: 09/22/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To identify subgroups of former National Football League (NFL) players using latent profile analysis (LPA) and examine their associations with total years of participation (TYP) and self-reported lifetime sport-related concussion history (SR-CHx). METHODS Former NFL players (N=686) aged 50-70 years, with an average 18.0 TYP (±4.5) completed a questionnaire. SR-CHx distributions included: low (0-3; n=221); intermediate (4-8; n=209) and high (9+; n=256). LPA measures included: Quality of Life in Neurological Disorders Emotional-Behavioral Dyscontrol, Patient Reported Outcomes Measurement Information System Cognitive Function, Emotional Support, Self-Efficacy, Meaning and Purpose, Physical Function, Pain Interference, Participation in Social Roles and Activities, Anxiety, Depression, Fatigue, and Sleep Disturbance. Demographic, medical/psychiatric history, current psychosocial stressors, TYP and SR-CHx were compared across latent profiles (LPs). RESULTS A five profile solution emerged: (LP1) global higher functioning (GHF; 26.5%); (LP2) average functioning (10.2%); (LP3) mild somatic (pain and physical functioning) concerns (22.0%); (LP4) somatic and cognitive difficulties with mild anxiety (SCA; 27.5%); LP5) global impaired functioning (GIF; 13.8%). The GIF and SCA groups reported the largest number ofe- medical/psychiatric conditions and higher psychosocial stressor levels. SR-CHx was associated with profile group (χ2(8)=100.38, p<0.001); with a higher proportion of GIF (72.6%) and SCA (43.1%) groups reporting being in the high SR-CHx category, compared with GHF (23.1%), average (31.4%) and somatic (27.8%) groups. TYP was not significantly associated with group (p=0.06), with greater TYP reported by the GHF group. CONCLUSIONS Five distinct profiles of self-reported functioning were identified among former NFL players. Several comorbid factors (ie, medical/psychiatric diagnoses and psychosocial stressors) and SR-CHx were associated with greater neurobehavioural and psychosocial dysfunction.
Collapse
Affiliation(s)
- Benjamin L Brett
- Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA .,Neurology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Samuel R Walton
- Exercise and Sports Science, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Zachery Y Kerr
- Exercise and Sports Science, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lindsay D Nelson
- Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Neurology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Avinash Chandran
- NCAA Injury Surveillance Program, Datalys Center for Sports Injury Research and Prevention, Indianapolis, Indiana, USA
| | - J D Defreese
- Exercise and Sports Science, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ruben J Echemendia
- Psychological and Neurobehavioral Associates, State College, Pennsylvania, USA
| | - Kevin M Guskiewicz
- Exercise and Sports Science, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | - Michael A McCrea
- Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Neurology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
126
|
Chen Y, Herrold AA, Walter AE, Reilly JL, Seidenberg PH, Nauman EA, Talavage T, Vandenbergh DJ, Slobounov SM, Breiter HC. Brain Perfusion Bridges Virtual-Reality Spatial Behavior to TPH2 Genotype for Head Acceleration Events. J Neurotrauma 2021; 38:1368-1376. [PMID: 33413020 DOI: 10.1089/neu.2020.7016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neuroimaging demonstrates that athletes of collision sports can suffer significant changes to their brain in the absence of concussion, attributable to head acceleration event (HAE) exposure. In a sample of 24 male Division I collegiate football players, we examine the relationships between tryptophan hydroxylase 2 (TPH2), a gene involved in neurovascular function, regional cerebral blood flow (rCBF) measured by arterial spin labeling, and virtual reality (VR) motor performance, both pre-season and across a single football season. For the pre-season, TPH2 T-carriers showed lower rCBF in two left hemisphere foci (fusiform gyrus/thalamus/hippocampus and cerebellum) in association with higher (better performance) VR Reaction Time, a dynamic measure of sensory-motor reactivity and efficiency of visual-spatial processing. For TPH2 CC homozygotes, higher pre-season rCBF in these foci was associated with better performance on VR Reaction Time. A similar relationship was observed across the season, where TPH2 T-carriers showed improved VR Reaction Time associated with decreases in rCBF in the right hippocampus/amygdala, left middle temporal lobe, and left insula/putamen/pallidum. In contrast, TPH2 CC homozygotes showed improved VR Reaction Time associated with increases in rCBF in the same three clusters. These findings show that TPH2 T-carriers have an abnormal relationship between rCBF and the efficiency of visual-spatial processing that is exacerbated after a season of high-impact sports in the absence of diagnosable concussion. Such gene-environment interactions associated with behavioral changes after exposure to repetitive HAEs have been unrecognized with current clinical analytical tools and warrant further investigation. Our results demonstrate the importance of considering neurovascular factors along with traumatic axonal injury to study long-term effects of repetitive HAEs.
Collapse
Affiliation(s)
- Yufen Chen
- Center for Translational Imaging, Department of Radiology, Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Amy A Herrold
- Edward Hines Jr., VA Hospital, Research Service, Hines, Illinois, USA.,Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Alexa E Walter
- Department of Kinesiology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - James L Reilly
- Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Peter H Seidenberg
- Departments of Orthopedics and Rehabilitation and Family and Community Medicine, College of Medicine, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Eric A Nauman
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA.,Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana, USA.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Thomas Talavage
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - David J Vandenbergh
- Department of Biobehavioral Health, Pennsylvania State University, University Park, Pennsylvania, USA.,Penn State Neuroscience Institute, Pennsylvania State University, University Park, Pennsylvania, USA.,Molecular, Cellular, and Integrative Biosciences Program, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Semyon M Slobounov
- Department of Kinesiology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Hans C Breiter
- Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Laboratory of Neuroimaging and Genetics, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
127
|
Poluyi E, Morgan E, Poluyi C, Ikwuegbuenyi C, Imaguezegie G. Examining the Relationship between Concussion and Neurodegenerative Disorders: A Review on Amyotrophic Lateral Sclerosis (ALS) and Alzheimer’s Disease (AD). INDIAN JOURNAL OF NEUROTRAUMA 2021. [DOI: 10.1055/s-0041-1725571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Abstract
Background Current epidemiological studies have examined the associations between moderate and severe traumatic brain injury (TBI) and their risks of developing neurodegenerative diseases. Concussion, also known as mild TBI (mTBI), is however quite distinct from moderate or severe TBIs. Only few studies in this burgeoning area have examined concussion—especially repetitive episodes—and neurodegenerative diseases. Thus, no definite relationship has been established between them.
Objectives This review will discuss the available literatures linking concussion and amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease (AD).
Materials and Methods Given the complexity of this subject, a realist review methodology was selected which includes clarifying the scope and developing a theoretical framework, developing a search strategy, selection and appraisal, data extraction, and synthesis. A detailed literature matrix was set out in order to get relevant and recent findings on this topic.
Results Presently, there is no objective clinical test for the diagnosis of concussion because the features are less obvious on physical examination. Absence of an objective test in diagnosing concussion sometimes leads to skepticism when confirming the presence or absence of concussion. Intriguingly, several possible explanations have been proposed in the pathological mechanisms that lead to the development of some neurodegenerative disorders (such as ALS and AD) and concussion but the two major events are deposition of tau proteins (abnormal microtubule proteins) and neuroinflammation, which ranges from glutamate excitotoxicity pathways and inflammatory pathways (which leads to a rise in the metabolic demands of microglia cells and neurons), to mitochondrial function via the oxidative pathways.
Conclusion mTBI constitutes majority of brain injuries. However, studies have focused mostly on moderate-to-severe TBI as highlighted above with inconclusive and paucity of studies linking concussion and neurodegenerative disorders. Although, it is highly probable that repetitive concussion (mTBI) and subconcussive head injuries may be risk factors for ALS) and AD from this review. It will be imperative therefore to conduct more research with a focus on mTBI and its association with ALS and AD.
Collapse
Affiliation(s)
- Edward Poluyi
- Department of Clinical Neuroscience, University of Roehampton, London, United Kingdom
| | - Eghosa Morgan
- Department of Neurosurgery, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Charles Poluyi
- MPH Program, University of Buffalo, New York, United States
| | | | - Grace Imaguezegie
- Department of Surgery, Lagos University Teaching Hospital, Lagos, Nigeria
| |
Collapse
|
128
|
Antonoff DG, Goss J, Langevin TL, Renodin C, Spahr L, McDevitt J, Langford D, Rosene JM. Unexpected Findings from a Pilot Study on Vision Training as a Potential Intervention to Reduce Subconcussive Head Impacts during a Collegiate Ice Hockey Season. J Neurotrauma 2021; 38:1783-1790. [PMID: 33446039 DOI: 10.1089/neu.2020.7397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Player-to-player contact is the most frequent head impact mechanism in collegiate ice hockey. Training with three-dimensional multiple-object tracking (3D-MOT) could potentially reduce the quantity and severity of head impacts by enhancing player anticipation of these impacts. The purpose of this study was to evaluate the efficacy of 3D-MOT training to reduce the numbers of head impacts sustained by National Collegiate Athletic Association Division III men's and women's ice hockey players. Collegiate men's and women's ice hockey players (N = 33; men = 17, women = 16) were randomly assigned to a 3D-MOT group (n = 17) or a control (C) group (n = 16). Head impacts were monitored during practices and games, and 3D-MOT training occurred twice per week for 12 weeks throughout one regular season. 3D-MOT forwards sustained head impacts with greater mean peak linear acceleration (3D-MOT = 41.33 ± 28.54 g; C = 38.03 ± 24.30 g) and mean peak rotational velocity (3D-MOT = 13.59 ± 8.18 rad.sec-1; C = 12.47 ± 7.69 rad.sec-1) in games, and greater mean peak rotational velocity in practices versus C forwards (3D-MOT = 11.96 ± 6.77 rad.sec-1; C = 10.22 ± 6.95 rad.sec-1). Conversely, 3D-MOT defensemen sustained head impacts with a mean peak rotational velocity less than that of C defensemen (3D-MOT = 11.54 ± 6.76 rad.sec-1; C = 13.65 ± 8.43 rad.sec-1). There was no significant difference for all other parameters analyzed between 3D-MOT and C groups. Player position may play an important role in future interventions to reduce head impacts in collegiate ice hockey.
Collapse
Affiliation(s)
- Daniel G Antonoff
- Department of Exercise and Sport Performance, University of New England, Biddeford, Maine, USA
| | - Jordan Goss
- Department of Exercise and Sport Performance, University of New England, Biddeford, Maine, USA
| | - Taylor L Langevin
- Department of Exercise and Sport Performance, University of New England, Biddeford, Maine, USA
| | - Christina Renodin
- Department of Exercise and Sport Performance, University of New England, Biddeford, Maine, USA
| | - Lee Spahr
- Department of Exercise and Sport Performance, University of New England, Biddeford, Maine, USA
| | - Jane McDevitt
- Department of Health and Rehabilitation Sciences, Temple University, Philadelphia, Pennsylvania, USA
| | - Dianne Langford
- Department of Neuroscience, Temple University, Philadelphia, Pennsylvania, USA
| | - John M Rosene
- Department of Exercise and Sport Performance, University of New England, Biddeford, Maine, USA
| |
Collapse
|
129
|
Verboon LN, Patel HC, Greenhalgh AD. The Immune System's Role in the Consequences of Mild Traumatic Brain Injury (Concussion). Front Immunol 2021; 12:620698. [PMID: 33679762 PMCID: PMC7928307 DOI: 10.3389/fimmu.2021.620698] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
Mild traumatic brain injury (mild TBI), often referred to as concussion, is the most common form of TBI and affects millions of people each year. A history of mild TBI increases the risk of developing emotional and neurocognitive disorders later in life that can impact on day to day living. These include anxiety and depression, as well as neurodegenerative conditions such as chronic traumatic encephalopathy (CTE) and Alzheimer's disease (AD). Actions of brain resident or peripherally recruited immune cells are proposed to be key regulators across these diseases and mood disorders. Here, we will assess the impact of mild TBI on brain and patient health, and evaluate the recent evidence for immune cell involvement in its pathogenesis.
Collapse
Affiliation(s)
- Laura N. Verboon
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
| | - Hiren C. Patel
- Division of Cardiovascular Sciences, Salford Royal National Health Service Foundation Trust, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance National Health Service Group, University of Manchester, Manchester, United Kingdom
| | - Andrew D. Greenhalgh
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance National Health Service Group, University of Manchester, Manchester, United Kingdom
- Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
130
|
Brett BL, Koch KM, Muftuler LT, Budde M, McCrea MA, Meier TB. Association of Head Impact Exposure with White Matter Macrostructure and Microstructure Metrics. J Neurotrauma 2021; 38:474-484. [PMID: 33003979 PMCID: PMC7875606 DOI: 10.1089/neu.2020.7376] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Prior studies have reported white matter abnormalities associated with a history of cumulative concussion and/or repetitive head impacts (RHI) in contact sport athletes. Growing evidence suggests these abnormalities may begin as more subtle changes earlier in life in active younger athletes. We investigated the relationship between prior concussion and contact sport exposure with multi-modal white matter microstructure and macrostructure using magnetic resonance imaging. High school and collegiate athletes (n = 121) completed up to four evaluations involving neuroimaging. Linear mixed-effects models examined associations of years of contact sport exposure (i.e., RHI proxy) and prior concussion across multiple metrics of white matter, including total white matter volume, diffusion tensor imaging (DTI) metrics, diffusion kurtosis imaging (DKI) metrics, and quantitative susceptibility mapping (QSM). A significant inverse association between cumulative years of contact sport exposure and QSM was observed, F(1, 237.77) = 4.67, p = 0.032. Cumulative contact sport exposure was also associated with decreased radial diffusivity, F(1, 114.56) = 5.81, p = 0.018, as well as elevated fractional anisotropy, F(1, 115.32) = 5.40, p = 0.022, and radial kurtosis, F(1, 113.45) = 4.03, p = 0.047. In contrast, macroscopic white matter volume was not significantly associated with cumulative contact sport exposure (p > 0.05). Concussion history was not significantly associated with QSM, DTI, DKI, or white matter volume (all, p > 0.05). Cumulative contact sport exposure is associated with subtle differences in white matter microstructure, but not gross white matter macrostructure, in young active athletes. Longitudinal follow-up is required to assess the progression of these findings to determine their contribution to potential adverse effects later in life.
Collapse
Affiliation(s)
- Benjamin L. Brett
- Department of Neurosurgery, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Neurology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Center for Neurotrauma Research, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Kevin M. Koch
- Center for Neurotrauma Research, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Depertment of Radiology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Center for Imaging Research, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - L. Tugan Muftuler
- Department of Neurosurgery, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Center for Neurotrauma Research, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Depertment of Radiology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Matthew Budde
- Department of Neurosurgery, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Center for Neurotrauma Research, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Michael A. McCrea
- Department of Neurosurgery, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Neurology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Center for Neurotrauma Research, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Timothy B. Meier
- Department of Neurosurgery, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Center for Neurotrauma Research, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Biomedical Engineering, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
131
|
Clark AL, Weigand AJ, Bangen KJ, Merritt VC, Bondi MW, Delano-Wood L. Repetitive mTBI is associated with age-related reductions in cerebral blood flow but not cortical thickness. J Cereb Blood Flow Metab 2021; 41:431-444. [PMID: 32248731 PMCID: PMC8369996 DOI: 10.1177/0271678x19897443] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mild traumatic brain injury (mTBI) is a risk factor for Alzheimer's disease (AD), and evidence suggests cerebrovascular dysregulation initiates deleterious neurodegenerative cascades. We examined whether mTBI history alters cerebral blood flow (CBF) and cortical thickness in regions vulnerable to early AD-related changes. Seventy-four young to middle-aged Veterans (mean age = 34, range = 23-48) underwent brain scans. Participants were divided into: (1) Veteran Controls (n = 27), (2) 1-2 mTBIs (n = 26), and (2) 3+ mTBIs (n = 21) groups. Resting CBF was measured using MP-PCASL. T1 structural scans were processed with FreeSurfer. CBF and cortical thickness estimates were extracted from nine AD-vulnerable regions. Regression analyses examined whether mTBI moderated the association between age, CBF, and cortical thickness. Regressions adjusting for sex and posttraumatic stress revealed mTBI moderated the association between age and CBF of the precuneus as well as superior and inferior parietal cortices (p's < .05); increasing age was associated with lower CBF in the 3+ mTBIs group, but not in the VCs or 1-2 mTBIs groups. mTBI did not moderate associations between age and cortical thickness (p's >.05). Repetitive mTBI is associated with cerebrovascular dysfunction in AD-vulnerable regions and may accelerate pathological aging trajectories.
Collapse
Affiliation(s)
- Alexandra L Clark
- VA San Diego Healthcare System (VASDHS), San Diego, CA, USA.,School of Medicine, Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Alexandra J Weigand
- San Diego State University/University of California, San Diego (SDSU/UCSD) Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Katherine J Bangen
- VA San Diego Healthcare System (VASDHS), San Diego, CA, USA.,School of Medicine, Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Victoria C Merritt
- VA San Diego Healthcare System (VASDHS), San Diego, CA, USA.,School of Medicine, Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Mark W Bondi
- VA San Diego Healthcare System (VASDHS), San Diego, CA, USA.,School of Medicine, Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Lisa Delano-Wood
- VA San Diego Healthcare System (VASDHS), San Diego, CA, USA.,School of Medicine, Department of Psychiatry, University of California San Diego, San Diego, CA, USA.,Center of Excellence for Stress and Mental Health, VASDHS, San Diego, CA, USA
| |
Collapse
|
132
|
Zimmerman KA, Kim J, Karton C, Lochhead L, Sharp DJ, Hoshizaki T, Ghajari M. Player position in American football influences the magnitude of mechanical strains produced in the location of chronic traumatic encephalopathy pathology: A computational modelling study. J Biomech 2021; 118:110256. [PMID: 33545573 PMCID: PMC7612336 DOI: 10.1016/j.jbiomech.2021.110256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/24/2020] [Accepted: 01/10/2021] [Indexed: 12/14/2022]
Abstract
American football players are frequently exposed to head impacts, which can cause concussions and may lead to neurodegenerative diseases such as chronic traumatic encephalopathy (CTE). Player position appears to influence the risk of concussion but there is limited work on its effect on the risk of CTE. Computational modelling has shown that large brain deformations during head impacts co-localise with CTE pathology in sulci. Here we test whether player position has an effect on brain deformation within the sulci, a possible biomechanical trigger for CTE. We physically reconstructed 148 head impact events from video footage of American Football games. Players were separated into 3 different position profiles based on the magnitude and frequency of impacts. A detailed finite element model of TBI was then used to predict Green-Lagrange strain and strain rate across the brain and in sulci. Using a one-way ANOVA, we found that in positions where players were exposed to large magnitude and low frequency impacts (e.g. defensive back and wide receiver), strain and strain rate across the brain and in sulci were highest. We also found that rotational head motion is a key determinant in producing large strains and strain rates in the sulci. Our results suggest that player position has a significant effect on impact kinematics, influencing the magnitude of deformations within sulci, which spatially corresponds to where CTE pathology is observed. This work can inform future studies investigating different player-position risks for concussion and CTE and guide design of prevention systems.
Collapse
Affiliation(s)
- K A Zimmerman
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Department of Brain Sciences, Hammersmith Hospital, Imperial College London, London, UK; HEAD Lab, Dyson School of Design Engineering, Imperial College London, UK.
| | - J Kim
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Department of Brain Sciences, Hammersmith Hospital, Imperial College London, London, UK
| | - C Karton
- Neurotrauma Impact Science Laboratory, University of Ottawa, Canada
| | - L Lochhead
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Department of Brain Sciences, Hammersmith Hospital, Imperial College London, London, UK
| | - D J Sharp
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Department of Brain Sciences, Hammersmith Hospital, Imperial College London, London, UK; Care Research & Technology Centre, UK Dementia Research Institute, London, UK
| | - T Hoshizaki
- Neurotrauma Impact Science Laboratory, University of Ottawa, Canada
| | - M Ghajari
- HEAD Lab, Dyson School of Design Engineering, Imperial College London, UK
| |
Collapse
|
133
|
Costanza A, Radomska M, Zenga F, Amerio A, Aguglia A, Serafini G, Amore M, Berardelli I, Ojio Y, Nguyen KD. Severe Suicidality in Athletes with Chronic Traumatic Encephalopathy: A Case Series and Overview on Putative Ethiopathogenetic Mechanisms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18030876. [PMID: 33498520 PMCID: PMC7908343 DOI: 10.3390/ijerph18030876] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/14/2022]
Abstract
Chronic traumatic encephalopathy (CTE) results from repetitive brain injuries and is a common neurotraumatic sequela in contact sports. CTE is often accompanied by neuropsychiatric symptoms, which could escalate to suicidal ideation (SI) and suicidal behaviour (SB). Nevertheless, fairly limited emphasis about the association between suicidality and CTE exists in medical literature. Here, we report two cases of retired professional athletes in high contact sports (boxing and ice hockey) who have developed similar clinical trajectories characterized by progressive neuropsychiatric symptoms compatible with a CTE diagnosis and subsequent SB in its severe forms (medical serious suicide attempt (SA) and completed suicide). In addition to the description of outlining clinical, neuropsychological, neuroimaging, and differential diagnosis elements related to these cases, we also hypothesized some mechanisms that might augment the suicide risk in CTE. They include those related to neurobiological (neuroanatomic/neuroinflammatory) dysfunctions as well as those pertaining to psychiatry and psychosocial maladaptation to neurotraumas and retirement from professional competitive activity. Findings described here can provide clinical pictures to improve the identification of patients with CTE and also potential mechanistic insights to refine the knowledge of eventual severe SB development, which might enable its earlier prevention.
Collapse
Affiliation(s)
- Alessandra Costanza
- Department of Psychiatry, Faculty of Medicine, University of Geneva (UNIGE), 1211 Geneva, Switzerland
- Department of Psychiatry, ASO Santi Antonio e Biagio e Cesare Arrigo Hospital, 15121 Alessandria, Italy
- Correspondence:
| | - Michalina Radomska
- Faculty of Psychology, University of Geneva (UNIGE), 1206 Geneva, Switzerland;
| | - Francesco Zenga
- Department of Neurosurgery, City of Health and Science Hospital, 10126 Torino, Italy;
| | - Andrea Amerio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, 16132 Genoa, Italy; (A.A.); (A.A.); (G.S.); (M.A.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Department of Psychiatry, Tufts University, Boston, MA 02111, USA
| | - Andrea Aguglia
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, 16132 Genoa, Italy; (A.A.); (A.A.); (G.S.); (M.A.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Gianluca Serafini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, 16132 Genoa, Italy; (A.A.); (A.A.); (G.S.); (M.A.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Mario Amore
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, 16132 Genoa, Italy; (A.A.); (A.A.); (G.S.); (M.A.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Isabella Berardelli
- Suicide Prevention Center, Department of Neurosciences, Mental Health and Sensory Organs, Sant’Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy;
| | - Yasutaka Ojio
- National Center of Neurology and Psychiatry, Department of Community Mental Health Law, National Institute of Mental Health, Tokyo 187-8553, Japan;
| | - Khoa D. Nguyen
- Department of Microbiology and Immunology, Stanford University, Palo Alto, CA 94304, USA;
- Tranquis Therapeutics, Palo Alto, CA 94304, USA
- Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
134
|
Veksler R, Vazana U, Serlin Y, Prager O, Ofer J, Shemen N, Fisher AM, Minaeva O, Hua N, Saar-Ashkenazy R, Benou I, Riklin-Raviv T, Parker E, Mumby G, Kamintsky L, Beyea S, Bowen CV, Shelef I, O'Keeffe E, Campbell M, Kaufer D, Goldstein LE, Friedman A. Slow blood-to-brain transport underlies enduring barrier dysfunction in American football players. Brain 2021; 143:1826-1842. [PMID: 32464655 PMCID: PMC7297017 DOI: 10.1093/brain/awaa140] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 02/27/2020] [Accepted: 03/11/2020] [Indexed: 12/14/2022] Open
Abstract
Repetitive mild traumatic brain injury in American football players has garnered increasing public attention following reports of chronic traumatic encephalopathy, a progressive tauopathy. While the mechanisms underlying repetitive mild traumatic brain injury-induced neurodegeneration are unknown and antemortem diagnostic tests are not available, neuropathology studies suggest a pathogenic role for microvascular injury, specifically blood–brain barrier dysfunction. Thus, our main objective was to demonstrate the effectiveness of a modified dynamic contrast-enhanced MRI approach we have developed to detect impairments in brain microvascular function. To this end, we scanned 42 adult male amateur American football players and a control group comprising 27 athletes practicing a non-contact sport and 26 non-athletes. MRI scans were also performed in 51 patients with brain pathologies involving the blood–brain barrier, namely malignant brain tumours, ischaemic stroke and haemorrhagic traumatic contusion. Based on data from prolonged scans, we generated maps that visualized the permeability value for each brain voxel. Our permeability maps revealed an increase in slow blood-to-brain transport in a subset of amateur American football players, but not in sex- and age-matched controls. The increase in permeability was region specific (white matter, midbrain peduncles, red nucleus, temporal cortex) and correlated with changes in white matter, which were confirmed by diffusion tensor imaging. Additionally, increased permeability persisted for months, as seen in players who were scanned both on- and off-season. Examination of patients with brain pathologies revealed that slow tracer accumulation characterizes areas surrounding the core of injury, which frequently shows fast blood-to-brain transport. Next, we verified our method in two rodent models: rats and mice subjected to repeated mild closed-head impact injury, and rats with vascular injury inflicted by photothrombosis. In both models, slow blood-to-brain transport was observed, which correlated with neuropathological changes. Lastly, computational simulations and direct imaging of the transport of Evans blue-albumin complex in brains of rats subjected to recurrent seizures or focal cerebrovascular injury suggest that increased cellular transport underlies the observed slow blood-to-brain transport. Taken together, our findings suggest dynamic contrast-enhanced-MRI can be used to diagnose specific microvascular pathology after traumatic brain injury and other brain pathologies.
Collapse
Affiliation(s)
- Ronel Veksler
- Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Udi Vazana
- Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yonatan Serlin
- Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Neurology Residency Training Program, McGill University, Montreal, QC, Canada
| | - Ofer Prager
- Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jonathan Ofer
- Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nofar Shemen
- Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Andrew M Fisher
- Molecular Aging and Development Laboratory, Boston University School of Medicine, College of Engineering, Alzheimer's Disease and CTE Center, and Photonics Center, Boston University, Boston, MA, USA
| | - Olga Minaeva
- Molecular Aging and Development Laboratory, Boston University School of Medicine, College of Engineering, Alzheimer's Disease and CTE Center, and Photonics Center, Boston University, Boston, MA, USA
| | - Ning Hua
- Molecular Aging and Development Laboratory, Boston University School of Medicine, College of Engineering, Alzheimer's Disease and CTE Center, and Photonics Center, Boston University, Boston, MA, USA
| | - Rotem Saar-Ashkenazy
- Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Department of Psychology and the School of Social-work, Ashkelon Academic College, Israel
| | - Itay Benou
- Department of Electrical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tammy Riklin-Raviv
- Department of Electrical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ellen Parker
- Department of Medical Neuroscience, Dalhousie University, Faculty of Medicine, Halifax, NS, Canada
| | - Griffin Mumby
- Department of Medical Neuroscience, Dalhousie University, Faculty of Medicine, Halifax, NS, Canada
| | - Lyna Kamintsky
- Department of Medical Neuroscience, Dalhousie University, Faculty of Medicine, Halifax, NS, Canada
| | - Steven Beyea
- Biomedical Translational Imaging Centre (BIOTIC), IWK Health Centre and QEII Health Sciences Center, Dalhousie University, Halifax, NS, Canada
| | - Chris V Bowen
- Biomedical Translational Imaging Centre (BIOTIC), IWK Health Centre and QEII Health Sciences Center, Dalhousie University, Halifax, NS, Canada
| | - Ilan Shelef
- Department of Medical Imaging, Soroka University Medical Center, Beer-Sheva, Israel
| | - Eoin O'Keeffe
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Matthew Campbell
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Daniela Kaufer
- Department of Integrative Biology and the Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Lee E Goldstein
- Molecular Aging and Development Laboratory, Boston University School of Medicine, College of Engineering, Alzheimer's Disease and CTE Center, and Photonics Center, Boston University, Boston, MA, USA
| | - Alon Friedman
- Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Department of Medical Neuroscience, Dalhousie University, Faculty of Medicine, Halifax, NS, Canada
| |
Collapse
|
135
|
Repetitive Traumatic Brain Injury Causes Neuroinflammation before Tau Pathology in Adolescent P301S Mice. Int J Mol Sci 2021; 22:ijms22020907. [PMID: 33477535 PMCID: PMC7831108 DOI: 10.3390/ijms22020907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 01/22/2023] Open
Abstract
Repetitive closed head injury (rCHI) is commonly encountered in young athletes engaged in contact and collision sports. Traumatic brain injury (TBI) including rCHI has been reported to be an important risk factor for several tauopathies in studies of adult humans and animals. However, the link between rCHI and the progression of tau pathology in adolescents remains to be elucidated. We evaluated whether rCHI can trigger the initial acceleration of pathological tau in adolescent mice and impact the long-term outcomes post-injury. To this end, we subjected adolescent transgenic mice expressing the P301S tau mutation to mild rCHI and assessed tau hyperphosphorylation, tangle formation, markers of neuroinflammation, and behavioral deficits at 40 days post rCHI. We report that rCHI did not accelerate tau pathology and did not worsen behavioral outcomes compared to control mice. However, rCHI induced cortical and hippocampal microgliosis and corpus callosum astrocytosis in P301S mice by 40 days post-injury. In contrast, we did not find significant microgliosis or astrocytosis after rCHI in age-matched WT mice or sham-injured P301S mice. Our data suggest that neuroinflammation precedes the development of Tau pathology in this rCHI model of adolescent repetitive mild TBI.
Collapse
|
136
|
The interaction between brain and liver regulates lipid metabolism in the TBI pathology. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166078. [PMID: 33444711 DOI: 10.1016/j.bbadis.2021.166078] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/28/2020] [Accepted: 01/03/2021] [Indexed: 12/31/2022]
Abstract
To shed light on the impact of systemic physiology on the pathology of traumatic brain injury (TBI), we examine the effects of TBI (concussive injury) and dietary fructose on critical aspects of lipid homeostasis in the brain and liver of young-adult rats. Lipids are integral components of brain structure and function, and the liver has a role on the synthesis and metabolism of lipids. Fructose is mainly metabolized in the liver with potential implications for brain function. Lipidomic analysis accompanied by unbiased sparse partial least squares discriminant analysis (sPLS-DA) identified lysophosphatidylcholine (LPC) and cholesterol ester (CE) as the top lipid families impacted by TBI and fructose in the hippocampus, and only LPC (16:0) was associated with hippocampal-dependent memory performance. Fructose and TBI elevated liver pro-inflammatory markers, interleukin-1α (IL-1α), Interferon-γ (IFN-γ) that correlated with hippocampal-dependent memory dysfunction, and monocyte chemoattractant protein-1 (MCP-1) positively correlated with LPC levels in the hippocampus. The effects of fructose were more pronounced in the liver, in agreement with the role of liver on fructose metabolism and suggest that fructose could exacerbate liver inflammation caused by TBI. The overall results indicate that TBI and fructose interact to influence systemic and central inflammation by engaging liver lipids. The impact of TBI and fructose diet on the periphery provides a therapeutic target to counteract the TBI pathogenesis.
Collapse
|
137
|
Assessing the Severity of Traumatic Brain Injury-Time for a Change? J Clin Med 2021; 10:jcm10010148. [PMID: 33406786 PMCID: PMC7795933 DOI: 10.3390/jcm10010148] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 01/09/2023] Open
Abstract
Traumatic brain injury (TBI) has been described to be man's most complex disease, in man's most complex organ. Despite this vast complexity, variability, and individuality, we still classify the severity of TBI based on non-specific, often unreliable, and pathophysiologically poorly understood measures. Current classifications are primarily based on clinical evaluations, which are non-specific and poorly predictive of long-term disability. Brain imaging results have also been used, yet there are multiple ways of doing brain imaging, at different timepoints in this very dynamic injury. Severity itself is a vague concept. All prediction models based on combining variables that can be assessed during the acute phase have reached only modest predictive values for later outcome. Yet, these early labels of severity often determine how the patient is treated by the healthcare system at large. This opinion paper examines the problems and provides caveats regarding the use of current severity labels and the many practical and scientific issues that arise from doing so. The objective of this paper is to show the causes and consequences of current practice and propose a new approach based on risk classification. A new approach based on multimodal quantifiable data (including imaging and biomarkers) and risk-labels would be of benefit both for the patients and for TBI clinical research and should be a priority for international efforts in the field.
Collapse
|
138
|
Balagopal R, Won M, Patel SS, Chuang AZ, Sereno AB. Heading-Related Slowing by Twenty-Four Hours in Youth Athletes. J Neurotrauma 2020; 37:2664-2673. [PMID: 32799741 DOI: 10.1089/neu.2020.7085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Research suggests cumulative effects of repetitive head impacts (RHIs) on brain structure, especially with younger age of first exposure. Further, recent evidence suggests no immediate cognitive changes with increased RHIs but impairments across a sports season. The aim was to examine more closely the short-term time course of behavioral effects of exposure to RHI. Across 2 years, 18 female adolescent soccer players were tested on ProPoint (sensorimotor) and AntiPoint (cognitive) tasks with reaction time (RT) being the main outcome measure. The athletes were tested before and after workout with ball heading (immediate effect), as well as 24 h after workout (24 h effect) throughout two consecutive seasons. The number of headers performed 24 h before workout, during workout, and season average per workout were recorded. The athletes showed a decrease in ProPoint and AntiPoint RTs immediately after a workout, with no change or decrease in RTs with increasing RHIs. However, increasing RHIs during workout increased RTs in both tasks when tested 24 h later. The athletes also showed an increase in AntiPoint RTs with increasing season average RHIs. Our findings show a complex time course of effects of RHIs on sensorimotor and cognitive performance in adolescent athletes, with exposure to RHIs associated with no change or immediate benefits and then deficits by 24 h. Pathophysiological changes associated with exercise and traumatic brain injury can account for the sensorimotor and cognitive performance changes occurring within 24 h after RHIs.
Collapse
Affiliation(s)
- Radhika Balagopal
- Department of Neurobiology and Anatomy, McGovern Medical School, UTHealth, Houston, Texas, USA.,Department of Biological Sciences, University of California, Santa Barbara, California, USA
| | - Michelle Won
- Department of Neurobiology and Anatomy, McGovern Medical School, UTHealth, Houston, Texas, USA.,Department of Neurobiology and Anatomy, Texas A&M College of Medicine, Bryan, Texas, USA
| | - Saumil S Patel
- Department of Neurobiology and Anatomy, McGovern Medical School, UTHealth, Houston, Texas, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Alice Z Chuang
- Department of Ophthalmology and Visual Science, McGovern Medical School, UTHealth, Houston, Texas, USA
| | - Anne B Sereno
- Department of Neurobiology and Anatomy, McGovern Medical School, UTHealth, Houston, Texas, USA.,Department of Psychological Sciences, Purdue University, West Lafayette, Indiana, USA.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
139
|
Cherry JD, Meng G, Daley S, Xia W, Svirsky S, Alvarez VE, Nicks R, Pothast M, Kelley H, Huber B, Tripodis Y, Alosco ML, Mez J, McKee AC, Stein TD. CCL2 is associated with microglia and macrophage recruitment in chronic traumatic encephalopathy. J Neuroinflammation 2020; 17:370. [PMID: 33278887 PMCID: PMC7718711 DOI: 10.1186/s12974-020-02036-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Background Neuroinflammation has been implicated in the pathogenesis of chronic traumatic encephalopathy (CTE), a progressive neurodegenerative disease association with exposure to repetitive head impacts (RHI) received though playing contact sports such as American football. Past work has implicated early and sustained activation of microglia as a potential driver of tau pathology within the frontal cortex in CTE. However, the RHI induced signals required to recruit microglia to areas of damage and pathology are unknown. Methods Postmortem brain tissue was obtained from 261 individuals across multiple brain banks. Comparisons were made using cases with CTE, cases with Alzheimer’s disease (AD), and cases with no neurodegenerative disease and lacked exposure to RHI (controls). Recruitment of Iba1+ cells around the CTE perivascular lesion was compared to non-lesion vessels. TMEM119 staining was used to characterize microglia or macrophage involvement. The potent chemoattractant CCL2 was analyzed using frozen tissue from the dorsolateral frontal cortex (DLFC) and the calcarine cortex. Finally, the amounts of hyperphosphorylated tau (pTau) and Aβ42 were compared to CCL2 levels to examine possible mechanistic pathways. Results An increase in Iba1+ cells was found around blood vessels with perivascular tau pathology compared to non-affected vessels in individuals with RHI. TMEM119 staining revealed the majority of the Iba1+ cells were microglia. CCL2 protein levels in the DLFC were found to correlate with greater years of playing American football, the density of Iba1+ cells, the density of CD68+ cells, and increased CTE severity. When comparing across multiple brain regions, CCL2 increases were more pronounced in the DLFC than the calcarine cortex in cases with RHI but not in AD. When examining the individual contribution of pathogenic proteins to CCL2 changes, pTau correlated with CCL2, independent of age at death and Aβ42 in AD and CTE. Although levels of Aβ42 were not correlated with CCL2 in cases with CTE, in males in the AD group, Aβ42 trended toward an inverse relationship with CCL2 suggesting possible gender associations. Conclusion Overall, CCL2 is implicated in the pathways recruiting microglia and the development of pTau pathology after exposure to RHI, and may represent a future therapeutic target in CTE.
Collapse
Affiliation(s)
- Jonathan D Cherry
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA. .,Department of Neurology, Boston University School of Medicine, Boston, MA, USA. .,Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA. .,VA Boston Healthcare System, Jamaica Plain, 150 S Huntington Ave, Boston, MA, 02130, USA.
| | - Gaoyuan Meng
- Department of Veterans Affairs Medical Center, Bedford, MA, USA
| | - Sarah Daley
- Department of Veterans Affairs Medical Center, Bedford, MA, USA.,Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Weiming Xia
- Department of Veterans Affairs Medical Center, Bedford, MA, USA.,Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Sarah Svirsky
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA.,VA Boston Healthcare System, Jamaica Plain, 150 S Huntington Ave, Boston, MA, 02130, USA.,Department of Veterans Affairs Medical Center, Bedford, MA, USA
| | - Victor E Alvarez
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA.,Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA.,VA Boston Healthcare System, Jamaica Plain, 150 S Huntington Ave, Boston, MA, 02130, USA.,Department of Veterans Affairs Medical Center, Bedford, MA, USA
| | - Raymond Nicks
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA.,VA Boston Healthcare System, Jamaica Plain, 150 S Huntington Ave, Boston, MA, 02130, USA.,Department of Veterans Affairs Medical Center, Bedford, MA, USA
| | - Morgan Pothast
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA.,VA Boston Healthcare System, Jamaica Plain, 150 S Huntington Ave, Boston, MA, 02130, USA.,Department of Veterans Affairs Medical Center, Bedford, MA, USA
| | - Hunter Kelley
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA.,VA Boston Healthcare System, Jamaica Plain, 150 S Huntington Ave, Boston, MA, 02130, USA
| | - Bertrand Huber
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA.,Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA.,VA Boston Healthcare System, Jamaica Plain, 150 S Huntington Ave, Boston, MA, 02130, USA.,National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
| | - Yorghos Tripodis
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA.,Department of Biostatistics, Boston University School of Medicine, Boston, MA, USA
| | - Michael L Alosco
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA.,Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
| | - Jesse Mez
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA.,Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
| | - Ann C McKee
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA.,Department of Neurology, Boston University School of Medicine, Boston, MA, USA.,Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA.,VA Boston Healthcare System, Jamaica Plain, 150 S Huntington Ave, Boston, MA, 02130, USA.,Department of Veterans Affairs Medical Center, Bedford, MA, USA
| | - Thor D Stein
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA. .,Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA. .,VA Boston Healthcare System, Jamaica Plain, 150 S Huntington Ave, Boston, MA, 02130, USA. .,Department of Veterans Affairs Medical Center, Bedford, MA, USA.
| |
Collapse
|
140
|
Ross LF. The Pediatrician’s Moral Obligation to Counsel Directively Against Youth Tackle Football. THE JOURNAL OF CLINICAL ETHICS 2020. [DOI: 10.1086/jce2020314331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
141
|
Shah BR, Holcomb JM, Davenport EM, Lack CM, McDaniel JM, Imphean DM, Xi Y, Rosenbaum DA, Urban JE, Wagner BC, Powers AK, Whitlow CT, Stitzel JD, Maldjian JA. Prevalence and Incidence of Microhemorrhages in Adolescent Football Players. AJNR Am J Neuroradiol 2020; 41:1263-1268. [PMID: 32661051 DOI: 10.3174/ajnr.a6618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/20/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND PURPOSE SWI is an advanced imaging modality that is especially useful in cerebral microhemorrhage detection. Such microhemorrhages have been identified in adult contact sport athletes, and the sequelae of these focal bleeds are thought to contribute to neurodegeneration. The purpose of this study was to utilize SWI to determine whether the prevalence and incidence of microhemorrhages in adolescent football players are significantly greater than those of adolescent noncontact athletes. MATERIALS AND METHODS Preseason and postseason SWI was performed and evaluated on 78 adolescent football players. SWI was also performed on 27 adolescent athletes who reported no contact sport history. Two separate one-tailed Fisher exact tests were performed to determine whether the prevalence and incidence of microhemorrhages in adolescent football players are greater than those of noncontact athlete controls. RESULTS Microhemorrhages were observed in 12 football players. No microhemorrhages were observed in any controls. Adolescent football players demonstrated a significantly greater prevalence of microhemorrhages than adolescent noncontact controls (P = .02). Although 2 football players developed new microhemorrhages during the season, microhemorrhage incidence during 1 football season was not statistically greater in the football population than in noncontact control athletes (P = .55). CONCLUSIONS Adolescent football players have a greater prevalence of microhemorrhages compared with adolescent athletes who have never engaged in contact sports. While microhemorrhage incidence during 1 season is not significantly greater in adolescent football players compared to adolescent controls, there is a temporal association between playing football and the appearance of new microhemorrhages.
Collapse
Affiliation(s)
- B R Shah
- From the Department of Radiology (B.R.S., J.M.H., E.M.D., J.M.M., D.M.I., Y.X., B.C.W., J.A.M.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - J M Holcomb
- From the Department of Radiology (B.R.S., J.M.H., E.M.D., J.M.M., D.M.I., Y.X., B.C.W., J.A.M.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - E M Davenport
- From the Department of Radiology (B.R.S., J.M.H., E.M.D., J.M.M., D.M.I., Y.X., B.C.W., J.A.M.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - C M Lack
- Departments of Radiology (C.M.L., C.T.W.)
| | - J M McDaniel
- From the Department of Radiology (B.R.S., J.M.H., E.M.D., J.M.M., D.M.I., Y.X., B.C.W., J.A.M.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - D M Imphean
- From the Department of Radiology (B.R.S., J.M.H., E.M.D., J.M.M., D.M.I., Y.X., B.C.W., J.A.M.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Y Xi
- From the Department of Radiology (B.R.S., J.M.H., E.M.D., J.M.M., D.M.I., Y.X., B.C.W., J.A.M.), University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - J E Urban
- Biomedical Engineering (J.E.U., J.D.S.)
| | - B C Wagner
- From the Department of Radiology (B.R.S., J.M.H., E.M.D., J.M.M., D.M.I., Y.X., B.C.W., J.A.M.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - A K Powers
- Neurosurgery (A.K.P.), Wake Forest School of Medicine, Winston-Salem, North Carolina
| | | | | | - J A Maldjian
- From the Department of Radiology (B.R.S., J.M.H., E.M.D., J.M.M., D.M.I., Y.X., B.C.W., J.A.M.), University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
142
|
Symons GF, Clough M, O’Brien WT, Ernest J, Salberg S, Costello D, Sun M, Brady RD, McDonald SJ, Wright DK, White O, Abel L, O’Brien TJ, Mccullough J, Aniceto R, Lin IH, Agoston DV, Fielding J, Mychasiuk R, Shultz SR. Shortened telomeres and serum protein biomarker abnormalities in collision sport athletes regardless of concussion history and sex. JOURNAL OF CONCUSSION 2020. [DOI: 10.1177/2059700220975609] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mild brain injuries are frequent in athletes engaging in collision sports and have been linked to a range of long-term neurological abnormalities. There is a need to identify how these potential abnormalities manifest using objective measures; determine whether changes are due to concussive and/or sub-concussive injuries; and examine how biological sex affects outcomes. This study investigated cognitive, cellular, and molecular biomarkers in male and female amateur Australian footballers (i.e. Australia’s most participated collision sport). 95 Australian footballers (69 males, 26 females), both with and without a history of concussion, as well as 49 control athletes (28 males, 21 females) with no history of brain trauma or participation in collision sports were recruited to the study. Ocular motor assessment was used to examine cognitive function. Telomere length, a biomarker of cellular senescence and neurological health, was examined in saliva. Serum levels of tau, phosphorylated tau, neurofilament light chain, and 4-hydroxynonenal were used as markers to assess axonal injury and oxidative stress. Australian footballers had reduced telomere length (p = 0.031) and increased serum protein levels of 4-hydroxynonenal (p = 0.001), tau (p = 0.007), and phosphorylated tau (p = 0.036). These findings were independent of concussion history and sex. No significant ocular motor differences were found. Taken together, these findings suggest that engagement in collision sports, regardless of sex or a history of concussion, is associated with shortened telomeres, axonal injury, and oxidative stress. These saliva- and serum-based biomarkers may be useful to monitor neurological injury in collision sport athletes.
Collapse
Affiliation(s)
- Georgia F Symons
- Department of Neuroscience, Monash University, Melbourne, Australia
| | - Meaghan Clough
- Department of Neuroscience, Monash University, Melbourne, Australia
| | | | - Joel Ernest
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Sabrina Salberg
- Department of Neuroscience, Monash University, Melbourne, Australia
| | - Daniel Costello
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Mujun Sun
- Department of Neuroscience, Monash University, Melbourne, Australia
| | - Rhys D Brady
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | | | - David K Wright
- Department of Neuroscience, Monash University, Melbourne, Australia
| | - Owen White
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Larry Abel
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Terence J O’Brien
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Jesse Mccullough
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, MD, USA
| | - Roxanne Aniceto
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, MD, USA
| | - I-Hsuan Lin
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, MD, USA
| | - Denes V Agoston
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, MD, USA
| | - Joanne Fielding
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Psychology, University of Calgary, Calgary, AB, Canada
| | - Sandy R Shultz
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
143
|
Hubbard WB, Dong JF, Cruz MA, Rumbaut RE. Links between thrombosis and inflammation in traumatic brain injury. Thromb Res 2020; 198:62-71. [PMID: 33290884 DOI: 10.1016/j.thromres.2020.10.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/20/2020] [Accepted: 10/30/2020] [Indexed: 12/14/2022]
Abstract
Traumatic brain injury (TBI) continues to be a major healthcare problem and there is much to be explored regarding the secondary pathobiology to identify early predictive markers and new therapeutic targets. While documented changes in thrombosis and inflammation in major trauma have been well described, growing evidence suggests that isolated TBI also results in systemic alterations in these mechanisms. Here, we review recent experimental and clinical findings that demonstrate how blood-brain barrier dysfunction, systemic immune response, inflammation, platelet activation, and thrombosis contribute significantly to the pathogenesis of TBI. Despite advances in the links between thrombosis and inflammation, there is a lack of treatment options aimed at both processes and this could be crucial to treating vascular injury, local and systemic inflammation, and secondary ischemic events following TBI. With emerging evidence of newly-identified roles for platelets, leukocytes, the coagulation system and extracellular vesicles in processes of inflammation and thrombosis, there is a growing need to characterize these mechanisms within the context of TBI and whether these changes persist into the chronic phase of injury. Importantly, this review defines areas in need of further research to advance the field and presents a roadmap to identify new diagnostic and treatment options for TBI.
Collapse
Affiliation(s)
- W Brad Hubbard
- Lexington VA Healthcare System, Lexington, KY, United States of America; Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY, United States of America.
| | - Jing-Fei Dong
- Bloodworks Research Institute, Seattle, WA, United States of America; Division of Hematology, Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Miguel A Cruz
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, TX, United States of America; Baylor College of Medicine, Houston, TX, United States of America
| | - Rolando E Rumbaut
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, TX, United States of America; Baylor College of Medicine, Houston, TX, United States of America
| |
Collapse
|
144
|
Kochanek PM, Jackson TC, Jha RM, Clark RS, Okonkwo DO, Bayır H, Poloyac SM, Wagner AK, Empey PE, Conley YP, Bell MJ, Kline AE, Bondi CO, Simon DW, Carlson SW, Puccio AM, Horvat CM, Au AK, Elmer J, Treble-Barna A, Ikonomovic MD, Shutter LA, Taylor DL, Stern AM, Graham SH, Kagan VE, Jackson EK, Wisniewski SR, Dixon CE. Paths to Successful Translation of New Therapies for Severe Traumatic Brain Injury in the Golden Age of Traumatic Brain Injury Research: A Pittsburgh Vision. J Neurotrauma 2020; 37:2353-2371. [PMID: 30520681 PMCID: PMC7698994 DOI: 10.1089/neu.2018.6203] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
New neuroprotective therapies for severe traumatic brain injury (TBI) have not translated from pre-clinical to clinical success. Numerous explanations have been suggested in both the pre-clinical and clinical arenas. Coverage of TBI in the lay press has reinvigorated interest, creating a golden age of TBI research with innovative strategies to circumvent roadblocks. We discuss the need for more robust therapies. We present concepts for traditional and novel approaches to defining therapeutic targets. We review lessons learned from the ongoing work of the pre-clinical drug and biomarker screening consortium Operation Brain Trauma Therapy and suggest ways to further enhance pre-clinical consortia. Biomarkers have emerged that empower choice and assessment of target engagement by candidate therapies. Drug combinations may be needed, and it may require moving beyond conventional drug therapies. Precision medicine may also link the right therapy to the right patient, including new approaches to TBI classification beyond the Glasgow Coma Scale or anatomical phenotyping-incorporating new genetic and physiologic approaches. Therapeutic breakthroughs may also come from alternative approaches in clinical investigation (comparative effectiveness, adaptive trial design, use of the electronic medical record, and big data). The full continuum of care must also be represented in translational studies, given the important clinical role of pre-hospital events, extracerebral insults in the intensive care unit, and rehabilitation. TBI research from concussion to coma can cross-pollinate and further advancement of new therapies. Misconceptions can stifle/misdirect TBI research and deserve special attention. Finally, we synthesize an approach to deliver therapeutic breakthroughs in this golden age of TBI research.
Collapse
Affiliation(s)
- Patrick M. Kochanek
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Travis C. Jackson
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ruchira M. Jha
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Robert S.B. Clark
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - David O. Okonkwo
- Department of Neurological Surgery, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania, USA
| | - Hülya Bayır
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Samuel M. Poloyac
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Amy K. Wagner
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Philip E. Empey
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Yvette P. Conley
- Health Promotion and Development, University of Pittsburgh School of Nursing, Pittsburgh, Pennsylvania, USA
| | - Michael J. Bell
- Department of Critical Care Medicine, Children's National Medical Center, Washington, DC, USA
| | - Anthony E. Kline
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Corina O. Bondi
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dennis W. Simon
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Shaun W. Carlson
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ava M. Puccio
- Department of Neurological Surgery, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania, USA
| | - Christopher M. Horvat
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Alicia K. Au
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jonathan Elmer
- Departments of Emergency Medicine and Critical Care Medicine, University of Pittsburgh School of Medicine, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania, USA
| | - Amery Treble-Barna
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Milos D. Ikonomovic
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lori A. Shutter
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - D. Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andrew M. Stern
- Drug Discovery Institute, Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Steven H. Graham
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Valerian E. Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Edwin K. Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Stephen R. Wisniewski
- University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - C. Edward Dixon
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
145
|
Lee T, Lycke R, Auger J, Music J, Dziekan M, Newman S, Talavage T, Leverenz L, Nauman E. Head acceleration event metrics in youth contact sports more dependent on sport than level of play. Proc Inst Mech Eng H 2020; 235:208-221. [PMID: 33183139 DOI: 10.1177/0954411920970812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The goal of the study was to evaluate how repetitive head traumas sustained by athletes in contact sports depend on sport and level of play. A total of 16 middle school football players, 107 high school football players, and 65 high school female soccer players participated. Players were separated into levels of play: middle school (MS), freshman (FR), junior varsity (JV), junior varsity-varsity (JV-V), and varsity (V). xPatch sensors were used to measure peak translational and angular accelerations (PTA and PAA, respectively) for each head acceleration event (HAE) during practice and game sessions. Data were analyzed using a custom MATLAB program to compare metrics that have been correlated with functional neurological changes: session metrics (median HAEs per contact session), season metrics (total HAEs, cumulative PTA/PAA), and regressions (cumulative PTA/PAA versus total HAEs, total HAEs versus median HAEs per contact session). Football players had greater session (p<.001) and season (p<.001) metrics than soccer players, but soccer players had a significantly greater player average PAA per HAE than football players (p<.001). Middle school football players had similar session and season metrics to high school level athletes. In conclusion, sport has a greater influence on HAE characteristics than level of play.
Collapse
Affiliation(s)
- Taylor Lee
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Roy Lycke
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Joshua Auger
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Jacob Music
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Michael Dziekan
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Sharlene Newman
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Thomas Talavage
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.,Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
| | - Larry Leverenz
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, USA
| | - Eric Nauman
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.,Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
146
|
Lee JK, Wu J, Bullen J, Banks S, Bernick C, Modic MT, Ruggieri P, Bennett L, Jones SE. Association of Cavum Septum Pellucidum and Cavum Vergae With Cognition, Mood, and Brain Volumes in Professional Fighters. JAMA Neurol 2020; 77:35-42. [PMID: 31498371 DOI: 10.1001/jamaneurol.2019.2861] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Importance Many studies have investigated the imaging findings showing sequelae of repetitive head trauma, with mixed results. Objective To determine whether fighters (boxers and mixed martial arts fighters) with cavum septum pellucidum (CSP) and cavum vergae (CV) have reduced volumes in various brain structures or worse clinical outcomes on cognitive and mood testing. Design, Setting, and Participants This cohort study assessed participants from the Professional Fighters Brain Health Study. Data were collected from April 14, 2011, to January 17, 2018, and were analyzed from September 1, 2018, to May 23, 2019. This study involved a referred sample of 476 active and retired professional fighters. Eligible participants were at least 18 years of age and had at least a fourth-grade reading level. Healthy age-matched controls with no history of trauma were also enrolled. Exposures Presence of CSP, CV, and their total (additive) length (CSPV length). Main Outcomes and Measures Information regarding depression, impulsivity, and sleepiness among study participants was obtained using the Patient Health Questionnaire depression scale, Barrett Impulsiveness Scale, and the Epworth Sleepiness Scale. Cognition was assessed using raw scores from CNS Vital Signs. Volumes of various brain structures were measured via magnetic resonance imaging. Results A total of 476 fighters (440 men, 36 women; mean [SD] age, 30.0 [8.2] years [range, 18-72 years]) and 63 control participants (57 men, 6 women; mean [SD] age, 30.8 [9.6] years [range, 18-58 years]) were enrolled in the study. Compared with fighters without CV, fighters with CV had significantly lower mean psychomotor speed (estimated difference, -11.3; 95% CI, -17.4 to -5.2; P = .004) and lower mean volumes in the supratentorium (estimated difference, -31 191 mm3; 95% CI, -61 903 to -479 mm3; P = .05) and other structures. Longer CSPV length was associated with lower processing speed (slope, -0.39; 95% CI, -0.49 to -0.28; P < .001), psychomotor speed (slope, -0.43; 95% CI, -0.53 to -0.32; P < .001), and lower brain volumes in the supratentorium (slope, -1072 mm3 for every 1-mm increase in CSPV length; 95% CI, -1655 to -489 mm3; P < .001) and other structures. Conclusions and Relevance This study suggests that the presence of CSP and CV is associated with lower regional brain volumes and cognitive performance in a cohort exposed to repetitive head trauma.
Collapse
Affiliation(s)
| | - Jenny Wu
- Imaging Institute, Cleveland Clinic, Cleveland, Ohio
| | | | - Sarah Banks
- Department of Psychology, University of California San Diego Health-La Jolla, San Diego
| | - Charles Bernick
- Lou Ruvo Center for Brain Health, Cleveland Clinic, Cleveland, Ohio
| | - Michael T Modic
- Department of Radiology, Vanderbilt University, Medical Center North, South Nashville, Tennessee
| | - Paul Ruggieri
- Imaging Institute, Cleveland Clinic, Cleveland, Ohio
| | - Lauren Bennett
- Lou Ruvo Center for Brain Health, Cleveland Clinic, Cleveland, Ohio
| | | |
Collapse
|
147
|
Abstract
Traumatic brain injury is among the leading causes of death in individuals under 45 years of age. However, since trauma mechanisms and survival times differ enormously, the exact mechanisms leading to the primary and secondary injury and eventually to death after traumatic brain injury (TBI) remain unclear. Several studies showed the versatile functions of microglia, the innate macrophages of the brain, following a TBI. Earlier being characterized as rather neurotoxic, neuroprotective capacities were recently demonstrated, therefore, making microglia one of the key players following TBI. Especially in cases with only short survival times, immediate microglial reactions are of great forensic interest in questions of wound age estimation. Using standardized immunohistochemical methods, we examined 8 cases which died causatively of TBI with survival times between minutes and 7 days and 5 control cases with cardiovascular failure as the cause of death to determine acute changes in microglial morphology and antigen expression after TBI. In this pilot study, we detected highly localized changes in microglial morphology already early after traumatic damage, e.g., activated microglia and phagocyted erythrocytes in the contusion areas in cases with minute survival. Furthermore, an altered antigen expression was observed with increasing trauma wound age, showing similar effects like earlier transcriptomic studies. There is minute data on the direct impact of shear forces on microglial morphology. We were able to show localization-depending effects on microglial morphology causing localized dystrophy and adjacent activation. While rodent studies are widespread, they fail to mimic the exact mechanisms in human TBI response. Therefore, more studies focusing on cadaveric samples need to follow to thoroughly define the mechanisms leading to cell destruction and eventually evaluate their forensic value.
Collapse
|
148
|
Abstract
AbstractCTE, or chronic traumatic encephalopathy, is caused by repetitive head trauma and detected by a distinctive stain for a protein called ‘tau’ in autopsied brain tissue. While the number of diagnosed patients is only in the hundreds, the cultural footprint of the disease in North America is huge, both because those diagnosed are often celebrity-athletes and because millions of children, adolescents and young men and women play collision sports like football and hockey. We argue that the widespread attention to CTE provides a useful wedge to crack open another, heretofore neglected public health concern: repetitive acts of violence in and around hypermasculine sports create subjects whose brains—and characters—are materially shaped by that violence. Brains change materially when delivering blows as well as receiving them, when participating in degrading hazing rituals as victim or assailant, when belittled or assaulted by a coach, when approaching an upcoming game riddled with fear. We adopt a biosocial model of the brain’s becoming to intervene in a linear discourse around CTE that medicalizes and oversimplifies violence, a story that prematurely dissects one slice of the problem from a noxious whole.
Collapse
|
149
|
Lovett ML, Nieland TJ, Dingle YTL, Kaplan DL. Innovations in 3-Dimensional Tissue Models of Human Brain Physiology and Diseases. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1909146. [PMID: 34211358 PMCID: PMC8240470 DOI: 10.1002/adfm.201909146] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Indexed: 05/04/2023]
Abstract
3-dimensional (3D) laboratory tissue cultures have emerged as an alternative to traditional 2-dimensional (2D) culture systems that do not recapitulate native cell behavior. The discrepancy between in vivo and in vitro tissue-cell-molecular responses impedes understanding of human physiology in general and creates roadblocks for the discovery of therapeutic solutions. Two parallel approaches have emerged for the design of 3D culture systems. The first is biomedical engineering methodology, including bioengineered materials, bioprinting, microfluidics and bioreactors, used alone or in combination, to mimic the microenvironments of native tissues. The second approach is organoid technology, in which stem cells are exposed to chemical and/or biological cues to activate differentiation programs that are reminiscent of human (prenatal) development. This review article describes recent technological advances in engineering 3D cultures that more closely resemble the human brain. The contributions of in vitro 3D tissue culture systems to new insights in neurophysiology, neurological diseases and regenerative medicine are highlighted. Perspectives on designing improved tissue models of the human brain are offered, focusing on an integrative approach merging biomedical engineering tools with organoid biology.
Collapse
Affiliation(s)
- Michael L. Lovett
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155
| | - Thomas J.F. Nieland
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155
| | - Yu-Ting L. Dingle
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155
| |
Collapse
|
150
|
Chen Y, Herrold AA, Martinovich Z, Bari S, Vike NL, Blood AJ, Walter AE, Harezlak J, Seidenberg PH, Bhomia M, Knollmann-Ritschel B, Stetsiv K, Reilly JL, Nauman EA, Talavage TM, Papa L, Slobounov S, Breiter HC. Brain Perfusion Mediates the Relationship Between miRNA Levels and Postural Control. Cereb Cortex Commun 2020; 1:tgaa078. [PMID: 34296137 PMCID: PMC8153038 DOI: 10.1093/texcom/tgaa078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/09/2020] [Accepted: 10/04/2020] [Indexed: 12/13/2022] Open
Abstract
Transcriptomics, regional cerebral blood flow (rCBF), and a virtual reality-based spatial motor task were integrated using mediation analysis in a novel demonstration of “imaging omics.” Data collected in National Collegiate Athletic Association (NCAA) Division I football athletes cleared for play before in-season training showed significant relationships in 1) elevated levels of miR-30d and miR-92a to elevated putamen rCBF, 2) elevated putamen rCBF to compromised Balance scores, and 3) compromised Balance scores to elevated microRNA (miRNA) levels. rCBF acted as a consistent mediator variable (Sobel’s test P < 0.05) between abnormal miRNA levels and compromised Balance scores. Given the involvement of these miRNAs in inflammation and immune function and that vascular perfusion is a component of the inflammatory response, these findings support a chronic inflammatory model in these athletes with 11 years of average football exposure. rCBF, a systems biology measure, was necessary for miRNA to affect behavior.
Collapse
Affiliation(s)
- Yufen Chen
- Center for Translational Imaging, Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Amy A Herrold
- Edward Hines Jr., VA Hospital, Research Service, Hines, IL 60141, USA
| | - Zoran Martinovich
- Mental Health Services and Policy Program, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sumra Bari
- Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nicole L Vike
- Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Anne J Blood
- Mood and Motor Control Laboratory, Departments of Neurology and Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Alexa E Walter
- Department of Kinesiology, Pennsylvania State University, University Park, PA 16802, USA
| | - Jaroslaw Harezlak
- Department of Epidemiology and Biostatistics, Indiana University, Bloomington, IN 47405, USA
| | - Peter H Seidenberg
- Departments of Orthopaedics & Rehabilitation and Family & Community Medicine, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Manish Bhomia
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | - Khrystyna Stetsiv
- Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - James L Reilly
- Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Eric A Nauman
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Thomas M Talavage
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Linda Papa
- Department of Emergency Medicine, Orlando Regional Medical Center, Orlando, FL, USA
| | - Semyon Slobounov
- Department of Kinesiology, Pennsylvania State University, University Park, PA 16802, USA
| | - Hans C Breiter
- Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | |
Collapse
|