101
|
Ohshima H, Amizuka N. Oral biosciences: The annual review 2019. J Oral Biosci 2020; 62:1-8. [PMID: 32109566 DOI: 10.1016/j.job.2020.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Journal of Oral Biosciences is devoted to the advancement and dissemination of fundamental knowledge concerning every aspect of oral biosciences. HIGHLIGHT This review features review articles in the fields of "Bone Cell Biology," "Microbiology," "Oral Heath," "Biocompatible Materials," "Mouth Neoplasm," and "Biological Evolution" in addition to the review articles by winners of the Lion Dental Research Award ("Role of nicotinic acetylcholine receptors for modulation of microcircuits in the agranular insular cortex" and "Phospholipase C-related catalytically inactive protein: A novel signaling molecule for modulating fat metabolism and energy expenditure") and the Rising Members Award ("Pain mechanism of oral ulcerative mucositis and the therapeutic traditional herbal medicine hangeshashinto," "Mechanisms underlying the induction of regulatory T cells by sublingual immunotherapy," and "Regulation of osteoclast function via Rho-Pkn3-c-Src pathways"), presented by the Japanese Association for Oral Biology. CONCLUSION These reviews in the Journal of Oral Biosciences have inspired the readers of the journal to broaden their knowledge regarding various aspects of oral biosciences. The current editorial review introduces these exciting review articles.
Collapse
Affiliation(s)
- Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Science, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan.
| | - Norio Amizuka
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Kita 13 Nishi 7 Kita-ku, Sapporo 060-8586, Japan
| |
Collapse
|
102
|
Convery RS, Neason MR, Cash DM, Cardoso MJ, Modat M, Ourselin S, Warren JD, Rohrer JD, Bocchetta M. Basal forebrain atrophy in frontotemporal dementia. NEUROIMAGE-CLINICAL 2020; 26:102210. [PMID: 32143137 PMCID: PMC7058403 DOI: 10.1016/j.nicl.2020.102210] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/22/2020] [Accepted: 02/12/2020] [Indexed: 12/16/2022]
Abstract
Background The basal forebrain is a subcortical structure that plays an important role in learning, attention, and memory. Despite the known subcortical involvement in frontotemporal dementia (FTD), there is little research into the role of the basal forebrain in this disease. We aimed to investigate differences in basal forebrain volumes between clinical, genetic, and pathological diagnoses of FTD. Methods 356 patients with FTD were recruited from the UCL Dementia Research Centre and matched on age and gender with 83 cognitively normal controls. All subjects had a T1-weighted MR scan suitable for analysis. Basal forebrain volumes were calculated using the Geodesic Information Flow (GIF) parcellation method and were compared between clinical (148 bvFTD, 82 svPPA, 103 nfvPPA, 14 PPA–NOS, 9 FTD–MND), genetic (24 MAPT, 15 GRN, 26 C9orf72) and pathological groups (28 tau, 3 FUS, 35 TDP-43) and controls. A subanalysis was also performed comparing pathological subgroups of tau (11 Pick's disease, 6 FTDP-17, 7 CBD, 4 PSP) and TDP-43 (12 type A, 2 type B, 21 type C). Results All clinical subtypes of FTD showed significantly smaller volumes than controls (p ≤ 0.010, ANCOVA), with svPPA (10% volumetric difference) and bvFTD (9%) displaying the smallest volumes. Reduced basal forebrain volumes were also seen in MAPT mutations (18%, p < 0.0005) and in individuals with pathologically confirmed FTDP-17 (17%), Pick's disease (12%), and TDP-43 type C (8%) (p < 0.001). Conclusion Involvement of the basal forebrain is a common feature in FTD, although the extent of volume reduction differs between clinical, genetic, and pathological diagnoses. Tauopathies, particularly those with MAPT mutations, had the smallest volumes. However, atrophy was also seen in those with TDP-43 type C pathology (most of whom have svPPA clinically). This suggests that the basal forebrain is vulnerable to multiple types of FTD-associated protein inclusions.
Collapse
Affiliation(s)
- Rhian S Convery
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Mollie R Neason
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - David M Cash
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - M Jorge Cardoso
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Marc Modat
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Sebastien Ourselin
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Jason D Warren
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| | - Martina Bocchetta
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| |
Collapse
|
103
|
Abstract
The central cholinergic system is one of the most important modulator neurotransmitter system implicated in diverse behavioral processes. Activation of the basal forebrain cortical cholinergic input system represents a critical step in cortical information processing. This chapter explores recent developments illustrating cortical cholinergic transmission mediate defined cognitive operations, which is contrary to the traditional view that acetylcholine acts as a slowly acting neuromodulator that influences arousal cortex-wide. Specifically, we review the evidence that phasic cholinergic signaling in the prefrontal cortex is a causal mediator of signal detection. In addition, studies that support the neuromodulatory role of cholinergic inputs in top-down attentional control are summarized. Finally, we review new findings that reveal sex differences and hormonal regulation of the cholinergic-attention system.
Collapse
Affiliation(s)
- Vinay Parikh
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, USA.
| | - Debra A Bangasser
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, USA
| |
Collapse
|
104
|
Obermayer J, Luchicchi A, Heistek TS, de Kloet SF, Terra H, Bruinsma B, Mnie-Filali O, Kortleven C, Galakhova AA, Khalil AJ, Kroon T, Jonker AJ, de Haan R, van de Berg WDJ, Goriounova NA, de Kock CPJ, Pattij T, Mansvelder HD. Prefrontal cortical ChAT-VIP interneurons provide local excitation by cholinergic synaptic transmission and control attention. Nat Commun 2019; 10:5280. [PMID: 31754098 PMCID: PMC6872593 DOI: 10.1038/s41467-019-13244-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 10/29/2019] [Indexed: 12/17/2022] Open
Abstract
Neocortical choline acetyltransferase (ChAT)-expressing interneurons are a subclass of vasoactive intestinal peptide (ChAT-VIP) neurons of which circuit and behavioural function are unknown. Here, we show that ChAT-VIP neurons directly excite neighbouring neurons in several layers through fast synaptic transmission of acetylcholine (ACh) in rodent medial prefrontal cortex (mPFC). Both interneurons in layers (L)1-3 as well as pyramidal neurons in L2/3 and L6 receive direct inputs from ChAT-VIP neurons mediated by fast cholinergic transmission. A fraction (10-20%) of postsynaptic neurons that received cholinergic input from ChAT-VIP interneurons also received GABAergic input from these neurons. In contrast to regular VIP interneurons, ChAT-VIP neurons did not disinhibit pyramidal neurons. Finally, we show that activity of these neurons is relevant for behaviour and they control attention behaviour distinctly from basal forebrain ACh inputs. Thus, ChAT-VIP neurons are a local source of cortical ACh that directly excite neurons throughout cortical layers and contribute to attention.
Collapse
Affiliation(s)
- Joshua Obermayer
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit, Amsterdam Neuroscience, The Netherlands
| | - Antonio Luchicchi
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit, Amsterdam Neuroscience, The Netherlands
- Department of Anatomy and Neurosciences, Clinical Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam Neuroscience, The Netherlands
| | - Tim S Heistek
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit, Amsterdam Neuroscience, The Netherlands
| | - Sybren F de Kloet
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit, Amsterdam Neuroscience, The Netherlands
| | - Huub Terra
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit, Amsterdam Neuroscience, The Netherlands
| | - Bastiaan Bruinsma
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit, Amsterdam Neuroscience, The Netherlands
| | - Ouissame Mnie-Filali
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit, Amsterdam Neuroscience, The Netherlands
| | - Christian Kortleven
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit, Amsterdam Neuroscience, The Netherlands
| | - Anna A Galakhova
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit, Amsterdam Neuroscience, The Netherlands
| | - Ayoub J Khalil
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit, Amsterdam Neuroscience, The Netherlands
| | - Tim Kroon
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit, Amsterdam Neuroscience, The Netherlands
- MRC Centre-Developmental Neurobiology, King's College London, London, UK
| | - Allert J Jonker
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit, Amsterdam Neuroscience, The Netherlands
| | - Roel de Haan
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit, Amsterdam Neuroscience, The Netherlands
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit, Amsterdam Neuroscience, The Netherlands
| | - Natalia A Goriounova
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit, Amsterdam Neuroscience, The Netherlands
| | - Christiaan P J de Kock
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit, Amsterdam Neuroscience, The Netherlands
| | - Tommy Pattij
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit, Amsterdam Neuroscience, The Netherlands.
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit, Amsterdam Neuroscience, The Netherlands.
| |
Collapse
|
105
|
Ballinger EC, Schaaf CP, Patel AJ, de Maio A, Tao H, Talmage DA, Zoghbi HY, Role LW. Mecp2 Deletion from Cholinergic Neurons Selectively Impairs Recognition Memory and Disrupts Cholinergic Modulation of the Perirhinal Cortex. eNeuro 2019; 6:ENEURO.0134-19.2019. [PMID: 31562178 PMCID: PMC6825959 DOI: 10.1523/eneuro.0134-19.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/21/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022] Open
Abstract
Rett Syndrome is a neurological disorder caused by mutations in the gene encoding methyl CpG binding protein 2 (MeCP2) and characterized by severe intellectual disability. The cholinergic system is a critical modulator of cognitive ability and is affected in patients with Rett Syndrome. To better understand the importance of MeCP2 function in cholinergic neurons, we studied the effect of selective Mecp2 deletion from cholinergic neurons in mice. Mice with Mecp2 deletion from cholinergic neurons were selectively impaired in assays of recognition memory, a cognitive task largely mediated by the perirhinal cortex (PRH). Deletion of Mecp2 from cholinergic neurons resulted in profound alterations in baseline firing of L5/6 neurons and eliminated the responses of these neurons to optogenetic stimulation of cholinergic input to PRH. Both the behavioral and the electrophysiological deficits of cholinergic Mecp2 deletion were rescued by inhibiting ACh breakdown with donepezil treatment.
Collapse
Affiliation(s)
- Elizabeth C Ballinger
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794
- Program in Neuroscience, Stony Brook University, Stony Brook, New York 11794
- Medical Scientist Training Program, Stony Brook University, Stony Brook, New York 11794
| | - Christian P Schaaf
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Baylor College of Medicine, Houston, Texas 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Institute of Human Genetics, Heidelberg University, 69120 Heidelberg, Germany
| | - Akash J Patel
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Baylor College of Medicine, Houston, Texas 77030
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030
| | - Antonia de Maio
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Baylor College of Medicine, Houston, Texas 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Huifang Tao
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Baylor College of Medicine, Houston, Texas 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - David A Talmage
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794
- Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York 11794
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794
| | - Huda Y Zoghbi
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Baylor College of Medicine, Houston, Texas 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030
| | - Lorna W Role
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794
- Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York 11794
| |
Collapse
|
106
|
Alves PN, Foulon C, Karolis V, Bzdok D, Margulies DS, Volle E, Thiebaut de Schotten M. An improved neuroanatomical model of the default-mode network reconciles previous neuroimaging and neuropathological findings. Commun Biol 2019; 2:370. [PMID: 31633061 PMCID: PMC6787009 DOI: 10.1038/s42003-019-0611-3] [Citation(s) in RCA: 225] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 09/16/2019] [Indexed: 12/16/2022] Open
Abstract
The brain is constituted of multiple networks of functionally correlated brain areas, out of which the default-mode network (DMN) is the largest. Most existing research into the DMN has taken a corticocentric approach. Despite its resemblance with the unitary model of the limbic system, the contribution of subcortical structures to the DMN may be underappreciated. Here, we propose a more comprehensive neuroanatomical model of the DMN including subcortical structures such as the basal forebrain, cholinergic nuclei, anterior and mediodorsal thalamic nuclei. Additionally, tractography of diffusion-weighted imaging was employed to explore the structural connectivity, which revealed that the thalamus and basal forebrain are of central importance for the functioning of the DMN. The contribution of these neurochemically diverse brain nuclei reconciles previous neuroimaging with neuropathological findings in diseased brains and offers the potential for identifying a conserved homologue of the DMN in other mammalian species.
Collapse
Affiliation(s)
- Pedro Nascimento Alves
- Brain Connectivity and Behaviour Laboratory, BCBlab, Sorbonne Universities, Paris, France
- Frontlab, Institut du Cerveau et de la Moelle épinière (ICM), UPMC UMRS 1127, Inserm U 1127, CNRS UMR 7225 Paris, France
- Department of Neurosciences and Mental Health, Neurology, Hospital de Santa Maria, CHULN, Lisbon, Portugal
- Language Research Laboratory, Faculty of Medicine, Universidade de Lisboa, Lisbon, Portugal
| | - Chris Foulon
- Brain Connectivity and Behaviour Laboratory, BCBlab, Sorbonne Universities, Paris, France
- Frontlab, Institut du Cerveau et de la Moelle épinière (ICM), UPMC UMRS 1127, Inserm U 1127, CNRS UMR 7225 Paris, France
- Computational Neuroimaging Laboratory, Department of Diagnostic Medicine, The University of Texas at Austin Dell Medical School, Austin, TX USA
| | - Vyacheslav Karolis
- Brain Connectivity and Behaviour Laboratory, BCBlab, Sorbonne Universities, Paris, France
- Frontlab, Institut du Cerveau et de la Moelle épinière (ICM), UPMC UMRS 1127, Inserm U 1127, CNRS UMR 7225 Paris, France
- FMRIB centre, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Danilo Bzdok
- INRIA, Parietal Team, Saclay, France
- Neurospin, CEA, Gif-sur-Yvette, France
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Daniel S. Margulies
- Brain Connectivity and Behaviour Laboratory, BCBlab, Sorbonne Universities, Paris, France
- Frontlab, Institut du Cerveau et de la Moelle épinière (ICM), UPMC UMRS 1127, Inserm U 1127, CNRS UMR 7225 Paris, France
| | - Emmanuelle Volle
- Brain Connectivity and Behaviour Laboratory, BCBlab, Sorbonne Universities, Paris, France
- Frontlab, Institut du Cerveau et de la Moelle épinière (ICM), UPMC UMRS 1127, Inserm U 1127, CNRS UMR 7225 Paris, France
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Laboratory, BCBlab, Sorbonne Universities, Paris, France
- Frontlab, Institut du Cerveau et de la Moelle épinière (ICM), UPMC UMRS 1127, Inserm U 1127, CNRS UMR 7225 Paris, France
- Centre de Neuroimagerie de Recherche CENIR, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- Groupe d’Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France
| |
Collapse
|
107
|
Abstract
In this article, we review the anatomical inputs and outputs to the mouse primary visual cortex, area V1. Our survey of data from the Allen Institute Mouse Connectivity project indicates that mouse V1 is highly interconnected with both cortical and subcortical brain areas. This pattern of innervation allows for computations that depend on the state of the animal and on behavioral goals, which contrasts with simple feedforward, hierarchical models of visual processing. Thus, to have an accurate description of the function of V1 during mouse behavior, its involvement with the rest of the brain circuitry has to be considered. Finally, it remains an open question whether the primary visual cortex of higher mammals displays the same degree of sensorimotor integration in the early visual system.
Collapse
Affiliation(s)
- Emmanouil Froudarakis
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA;
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Paul G Fahey
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA;
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jacob Reimer
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA;
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Stelios M Smirnakis
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
- Jamaica Plain VA Medical Center, Boston, Massachusetts 02130, USA
| | - Edward J Tehovnik
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA;
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Andreas S Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA;
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
108
|
Ahmed NY, Knowles R, Dehorter N. New Insights Into Cholinergic Neuron Diversity. Front Mol Neurosci 2019; 12:204. [PMID: 31551706 PMCID: PMC6736589 DOI: 10.3389/fnmol.2019.00204] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022] Open
Abstract
Cholinergic neurons comprise a small population of cells in the striatum but have fundamental roles in fine tuning brain function, and in the etiology of neurological and psychiatric disorders such as Parkinson’s disease (PD) or schizophrenia. The process of developmental cell specification underlying neuronal identity and function is an area of great current interest. There has been significant progress in identifying the developmental origins, commonalities in molecular markers, and physiological properties of the cholinergic neurons. Currently, we are aware of a number of key factors that promote cholinergic fate during development. However, the extent of cholinergic cell diversity is still largely underestimated. New insights into the biological basis of their specification indicate that cholinergic neurons may be far more diverse than previously thought. This review article, highlights the physiological features and the synaptic properties that segregate cholinergic cell subtypes. It provides an accurate picture of cholinergic cell diversity underlying their organization and function in neuronal networks. This review article, also discusses current challenges in deciphering the logic of the cholinergic cell heterogeneity that plays a fundamental role in the control of neural processes in health and disease.
Collapse
Affiliation(s)
- Noorya Yasmin Ahmed
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Rhys Knowles
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Nathalie Dehorter
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
109
|
Roelfsema PR, Holtmaat A. Control of synaptic plasticity in deep cortical networks. Nat Rev Neurosci 2019; 19:166-180. [PMID: 29449713 DOI: 10.1038/nrn.2018.6] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Humans and many other animals have an enormous capacity to learn about sensory stimuli and to master new skills. However, many of the mechanisms that enable us to learn remain to be understood. One of the greatest challenges of systems neuroscience is to explain how synaptic connections change to support maximally adaptive behaviour. Here, we provide an overview of factors that determine the change in the strength of synapses, with a focus on synaptic plasticity in sensory cortices. We review the influence of neuromodulators and feedback connections in synaptic plasticity and suggest a specific framework in which these factors can interact to improve the functioning of the entire network.
Collapse
Affiliation(s)
- Pieter R Roelfsema
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands.,Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands.,Psychiatry Department, Academic Medical Center, Amsterdam, Netherlands
| | - Anthony Holtmaat
- Department of Basic Neurosciences, Geneva Neuroscience Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
110
|
Correlation Between Electroencephalography and Automated Pupillometry in Critically Ill Patients: A Pilot Study. J Neurosurg Anesthesiol 2019; 33:161-166. [PMID: 31343506 DOI: 10.1097/ana.0000000000000633] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 06/13/2019] [Indexed: 11/27/2022]
Abstract
BACKGROUND Electroencephalography (EEG) is widely used in the monitoring of critically ill comatose patients, but its interpretation is not straightforward. The aim of this study was to evaluate whether there is a correlation between EEG background pattern/reactivity to stimuli and automated pupillometry in critically ill patients. METHODS Prospective assessment of pupillary changes to light stimulation was obtained using an automated pupillometry (NeuroLight Algiscan, ID-MED, Marseille, France) in 60 adult patients monitored with continuous EEG. The degree of encephalopathy and EEG reactivity were scored by 3 independent neurophysiologists blinded to the patient's history. The median values of baseline pupil size, pupillary constriction, constriction velocity, and latency were collected for both eyes. To assess sensitivity and specificity, we calculated areas under the receiver-operating characteristic curve. RESULTS The degree of encephalopathy assessed by EEG was categorized as mild (42%), moderate (37%), severe (10%) or suppression-burst/suppression (12%); a total of 47/60 EEG recordings were classified as "reactive." There was a significant difference in pupillary size, constriction rate, and constriction velocity, but not latency, among the different EEG categories of encephalopathy. Similarly, reactive EEG tracings were associated with greater pupil size, pupillary constriction rate, and constriction velocity compared with nonreactive recordings; there were no significant differences in latency. Pupillary constriction rate values had an area under the curve of 0.83 to predict the presence of severe encephalopathy or suppression-burst/suppression, with a pupillary constriction rate of < 20% having a sensitivity of 85% and a specificity of 79%. CONCLUSIONS Automated pupillometry can contribute to the assessment of cerebral dysfunction in critically ill patients.
Collapse
|
111
|
Thiele A, Bellgrove MA. Neuromodulation of Attention. Neuron 2019; 97:769-785. [PMID: 29470969 PMCID: PMC6204752 DOI: 10.1016/j.neuron.2018.01.008] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/26/2017] [Accepted: 01/02/2018] [Indexed: 02/07/2023]
Abstract
Attention is critical to high-level cognition and attention deficits are a hallmark of neurologic and neuropsychiatric disorders. Although years of research indicates that distinct neuromodulators influence attentional control, a mechanistic account that traverses levels of analysis (cells, circuits, behavior) is missing. However, such an account is critical to guide the development of next-generation pharmacotherapies aimed at forestalling or remediating the global burden associated with disorders of attention. Here, we summarize current neuroscientific understanding of how attention affects single neurons and networks of neurons. We then review key results that have informed our understanding of how neuromodulation shapes these neuron and network properties and thereby enables the appropriate allocation of attention to relevant external or internal events. Finally, we highlight areas where we believe hypotheses can be formulated and tackled experimentally in the near future, thereby critically increasing our mechanistic understanding of how attention is implemented at the cellular and network levels.
Collapse
Affiliation(s)
- Alexander Thiele
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.
| | - Mark A Bellgrove
- Monash Institute of Cognitive and Clinical Neurosciences (MICCN) and School of Psychological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
112
|
A whole-brain map of long-range inputs to GABAergic interneurons in the mouse medial prefrontal cortex. Nat Neurosci 2019; 22:1357-1370. [DOI: 10.1038/s41593-019-0429-9] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 05/16/2019] [Indexed: 01/06/2023]
|
113
|
Abstract
In this issue of Neuron, Turchi et al. (2018) reversibly inactivate the basal forebrain to show that this region magnifies global neocortical signal fluctuations without altering the topography of canonical resting-state networks. Thus, spatially diffuse signals measurable via functional neuroimaging may track large-scale neuromodulatory state changes in the primate brain.
Collapse
Affiliation(s)
- Kathrin Müsch
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Christopher J Honey
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
114
|
Nur T, Gautam SH, Stenken JA, Shew WL. Probing spatial inhomogeneity of cholinergic changes in cortical state in rat. Sci Rep 2019; 9:9387. [PMID: 31253814 PMCID: PMC6598980 DOI: 10.1038/s41598-019-45826-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 06/12/2019] [Indexed: 01/24/2023] Open
Abstract
Acetylcholine (ACh) plays an essential role in cortical information processing. Cholinergic changes in cortical state can fundamentally change how the neurons encode sensory input and motor output. Traditionally, ACh distribution in cortex and associated changes in cortical state have been assumed to be spatially diffuse. However, recent studies demonstrate a more spatially inhomogeneous structure of cholinergic projections to cortex. Moreover, many experimental manipulations of ACh have been done at a single spatial location, which inevitably results in spatially non-uniform ACh distribution. Such non-uniform application of ACh across the spatial extent of a cortical microcircuit could have important impacts on how the firing of groups of neurons is coordinated, but this remains largely unknown. Here we describe a method for applying ACh at different spatial locations within a single cortical circuit and measuring the resulting differences in population neural activity. We use two microdialysis probes implanted at opposite ends of a microelectrode array in barrel cortex of anesthetized rats. As a demonstration of the method, we applied ACh or neostigmine in different spatial locations via the microdialysis probes while we concomitantly recorded neural activity at 32 locations with the microelectrode array. First, we show that cholinergic changes in cortical state can vary dramatically depending on where the ACh was applied. Second, we show that cholinergic changes in cortical state can vary dramatically depending on where the state-change is measured. These results suggests that previous work with single-site recordings or single-site ACh application should be interpreted with some caution, since the results could change for different spatial locations.
Collapse
Affiliation(s)
- Tazima Nur
- Department of Physics, University of Arkansas, Fayetteville, AR, 72701, USA
- Graduate Program in Microelectronics and Photonics, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Shree Hari Gautam
- Department of Physics, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Julie A Stenken
- Graduate Program in Microelectronics and Photonics, University of Arkansas, Fayetteville, AR, 72701, USA
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Woodrow L Shew
- Department of Physics, University of Arkansas, Fayetteville, AR, 72701, USA.
- Graduate Program in Microelectronics and Photonics, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
115
|
The differential impact of acute microglia activation on the excitability of cholinergic neurons in the mouse medial septum. Brain Struct Funct 2019; 224:2297-2309. [DOI: 10.1007/s00429-019-01905-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 06/07/2019] [Indexed: 12/30/2022]
|
116
|
Palomero-Gallagher N, Hoffstaedter F, Mohlberg H, Eickhoff SB, Amunts K, Zilles K. Human Pregenual Anterior Cingulate Cortex: Structural, Functional, and Connectional Heterogeneity. Cereb Cortex 2019; 29:2552-2574. [PMID: 29850806 PMCID: PMC6519696 DOI: 10.1093/cercor/bhy124] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Indexed: 12/21/2022] Open
Abstract
The human pregenual anterior cingulate cortex (pACC) encompasses 7 distinct cyto- and receptorarchitectonic areas. We lack a detailed understanding of the functions in which they are involved, and stereotaxic maps are not available. We present an integrated structural/functional map of pACC based on probabilistic cytoarchitectonic mapping and meta-analytic connectivity modeling and quantitative functional decoding. Due to the restricted spatial resolution of functional imaging data relative to the microstructural parcellation, areas p24a of the callosal sulcus and p24b on the surface of the cingulate gyrus were merged into a "gyral component" (p24ab) of area p24, and areas pv24c, pd24cv, and pd24cd, located within the cingulate sulcus were merged into a "sulcal component" (p24c) for meta-analytic analysis. Area p24ab was specifically associated with interoception, p24c with the inhibition of action, and p32, which was also activated by emotion induction tasks pertaining negatively valenced stimuli, with the ability to experience empathy. Thus, area p32 could be classified as cingulate association cortex playing a crucial role in the cognitive regulation of emotion. By this spectrum of functions, pACC is a structurally and functionally heterogeneous region, clearly differing from other parts of the anterior and middle cingulate cortex.
Collapse
Affiliation(s)
- Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425 Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, 52074 Aachen, Germany
| | - Felix Hoffstaedter
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf 40225, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7), Research Centre Jülich, 52425 Jülich, Germany
| | - Hartmut Mohlberg
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425 Jülich, Germany
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf 40225, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7), Research Centre Jülich, 52425 Jülich, Germany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425 Jülich, Germany
- C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, 40225 Düsseldorf, Germany
- JARA-BRAIN, Jülich-Aachen Research Alliance, 52425 Jülich, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425 Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, 52074 Aachen, Germany
- JARA-BRAIN, Jülich-Aachen Research Alliance, 52425 Jülich, Germany
| |
Collapse
|
117
|
Kuchibhotla KV, Hindmarsh Sten T, Papadoyannis ES, Elnozahy S, Fogelson KA, Kumar R, Boubenec Y, Holland PC, Ostojic S, Froemke RC. Dissociating task acquisition from expression during learning reveals latent knowledge. Nat Commun 2019; 10:2151. [PMID: 31089133 PMCID: PMC6517418 DOI: 10.1038/s41467-019-10089-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 04/07/2019] [Indexed: 11/30/2022] Open
Abstract
Performance on cognitive tasks during learning is used to measure knowledge, yet it remains controversial since such testing is susceptible to contextual factors. To what extent does performance during learning depend on the testing context, rather than underlying knowledge? We trained mice, rats and ferrets on a range of tasks to examine how testing context impacts the acquisition of knowledge versus its expression. We interleaved reinforced trials with probe trials in which we omitted reinforcement. Across tasks, each animal species performed remarkably better in probe trials during learning and inter-animal variability was strikingly reduced. Reinforcement feedback is thus critical for learning-related behavioral improvements but, paradoxically masks the expression of underlying knowledge. We capture these results with a network model in which learning occurs during reinforced trials while context modulates only the read-out parameters. Probing learning by omitting reinforcement thus uncovers latent knowledge and identifies context- not “smartness”- as the major source of individual variability. Performance is generally used as a metric to assay whether an animal has learnt a particular perceptual task. Here the authors demonstrate that in the context of probe trials without the possibility of reward, animals perform the correct instrumental response suggesting a latent knowledge of the task much before it is manifest in their performance.
Collapse
Affiliation(s)
- Kishore V Kuchibhotla
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA. .,Department of Neuroscience, Johns Hopkins Medical School, Baltimore, MD, 21218, USA.
| | - Tom Hindmarsh Sten
- Departments of Otolaryngology, Neuroscience and Physiology, Skirball Institute, Neuroscience Institute, New York University School of Medicine, New York, NY, 10016, USA.,Center for Neural Science, New York University, New York, NY, 10003, USA.,Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY, 10065, USA
| | - Eleni S Papadoyannis
- Departments of Otolaryngology, Neuroscience and Physiology, Skirball Institute, Neuroscience Institute, New York University School of Medicine, New York, NY, 10016, USA.,Center for Neural Science, New York University, New York, NY, 10003, USA
| | - Sarah Elnozahy
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Kelly A Fogelson
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Rupesh Kumar
- Laboratoire des Systèmes Perceptifs, UMR8248, École Normale Supérieure-PSL Research University, 75006, Paris, France
| | - Yves Boubenec
- Laboratoire des Systèmes Perceptifs, UMR8248, École Normale Supérieure-PSL Research University, 75006, Paris, France
| | - Peter C Holland
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA.,Department of Neuroscience, Johns Hopkins Medical School, Baltimore, MD, 21218, USA
| | - Srdjan Ostojic
- Laboratoire de Neurosciences Cognitives, INSERM U960, École Normale Supérieure-PSL Research University, 75006, Paris, France
| | - Robert C Froemke
- Departments of Otolaryngology, Neuroscience and Physiology, Skirball Institute, Neuroscience Institute, New York University School of Medicine, New York, NY, 10016, USA.,Center for Neural Science, New York University, New York, NY, 10003, USA.,Faculty Scholar, Howard Hughes Medical Institute, Chevy Chase, MA, 20815, USA
| |
Collapse
|
118
|
Patel JM, Swanson J, Ung K, Herman A, Hanson E, Ortiz-Guzman J, Selever J, Tong Q, Arenkiel BR. Sensory perception drives food avoidance through excitatory basal forebrain circuits. eLife 2019; 8:44548. [PMID: 31074744 PMCID: PMC6510534 DOI: 10.7554/elife.44548] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/26/2019] [Indexed: 12/14/2022] Open
Abstract
Appetite is driven by nutritional state, environmental cues, mood, and reward pathways. Environmental cues strongly influence feeding behavior, as they can dramatically induce or diminish the drive to consume food despite homeostatic state. Here, we have uncovered an excitatory neuronal population in the basal forebrain that is activated by food-odor related stimuli, and potently drives hypophagia. Notably, we found that the basal forebrain directly integrates environmental sensory cues to govern feeding behavior, and that basal forebrain signaling, mediated through projections to the lateral hypothalamus, promotes selective avoidance of food and food-related stimuli. Together, these findings reveal a novel role for the excitatory basal forebrain in regulating appetite suppression through food avoidance mechanisms, highlighting a key function for this structure as a potent integrator of sensory information towards governing consummatory behaviors.
Collapse
Affiliation(s)
- Jay M Patel
- Medical Scientist Training Program, Baylor College of Medicine, Houston, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Jessica Swanson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Kevin Ung
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States
| | - Alexander Herman
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, United States
| | - Elizabeth Hanson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Joshua Ortiz-Guzman
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States
| | - Jennifer Selever
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
| | - Qingchun Tong
- Institute of Molecular Medicine, University of Texas Health Science Center, Houston, United States
| | - Benjamin R Arenkiel
- Department of Neuroscience, Baylor College of Medicine, Houston, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Program in Developmental Biology, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
| |
Collapse
|
119
|
Shine JM. Neuromodulatory Influences on Integration and Segregation in the Brain. Trends Cogn Sci 2019; 23:572-583. [PMID: 31076192 DOI: 10.1016/j.tics.2019.04.002] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 12/20/2022]
Abstract
Cognitive function relies on the dynamic cooperation of specialized regions of the brain; however, the elements of the system responsible for coordinating this interaction remain poorly understood. In this Opinion article I argue that this capacity is mediated in part by competitive and cooperative dynamic interactions between two prominent metabotropic neuromodulatory systems - the cholinergic basal forebrain and the noradrenergic locus coeruleus (LC). I assert that activity in these projection nuclei regulates the amount of segregation and integration within the whole brain network by modulating the activity of a diverse set of specialized regions of the brain on a timescale relevant for cognition and attention.
Collapse
Affiliation(s)
- James M Shine
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
120
|
Kuatsjah E, Khoshnam M, Menon C. Investigation on the effect of noisy galvanic vestibular stimulation on fine motor skills during a visuomotor task in healthy participants. PLoS One 2019; 14:e0216214. [PMID: 31048906 PMCID: PMC6497271 DOI: 10.1371/journal.pone.0216214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/16/2019] [Indexed: 11/24/2022] Open
Abstract
Noisy galvanic vestibular stimulation (nGVS) has been shown to improve dynamic walking stability, affect postural responses, enhance balance in healthy subjects, and influence motor performance in individuals with Parkinson’s disease. Although the studies to fully characterize the effect of nGVS are still ongoing, stochastic resonance theory which states that the addition of noisy signal may enhance a weak sensory input signals transmission in a non-linear system may provide a possible explanation for the observed positive effects of nGVS. This study explores the effect of nGVS on fine tracking behavior in healthy subjects. Ten healthy participants performed a computer-based visuomotor task by controlling an object with a joystick to follow an amplitude-modulated signal path while simultaneously receiving a sham or pink noise nGVS. The stimulation was generated to have a zero-mean, linearly detrended 1/f-type power spectrum, Gaussian distribution within 0.1–10 Hz range, and a standard deviation (SD) set to 90% based on each participant’s cutaneous threshold value. Results show that simultaneous nGVS delivery statistically improved the tracking performance with a decreased root-mean-squared error of 5.71±6.20% (mean±SD), a decreased time delay of 11.88±9.66% (mean±SD), and an increased signal-to-noise ratio of 2.93% (median, interquartile range (IQR) 3.31%). This study showed evidence that nGVS may be beneficial in improving sensorimotor performance during a fine motor tracking task requiring fine wrist movement in healthy subjects. Further research with a more comprehensive subset of tasks is required to fully characterize the effects of nGVS on fine motor skills.
Collapse
Affiliation(s)
- Eunice Kuatsjah
- Menrva Research Group, Schools of Mechatronic Systems Engineering and Engineering Science, Simon Fraser University, Metro Vancouver, British Columbia, Canada
| | - Mahta Khoshnam
- Menrva Research Group, Schools of Mechatronic Systems Engineering and Engineering Science, Simon Fraser University, Metro Vancouver, British Columbia, Canada
| | - Carlo Menon
- Menrva Research Group, Schools of Mechatronic Systems Engineering and Engineering Science, Simon Fraser University, Metro Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
121
|
Luo P, Li A, Zheng Y, Han Y, Tian J, Xu Z, Gong H, Li X. Whole Brain Mapping of Long-Range Direct Input to Glutamatergic and GABAergic Neurons in Motor Cortex. Front Neuroanat 2019; 13:44. [PMID: 31057372 PMCID: PMC6478816 DOI: 10.3389/fnana.2019.00044] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/29/2019] [Indexed: 11/25/2022] Open
Abstract
Long-range neuronal circuits play an important role in motor and sensory information processing. Determining direct synaptic inputs of excited and inhibited neurons is important for understanding the circuit mechanisms involved in regulating movement. Here, we used the monosynaptic rabies tracing technique, combined with fluorescent micro-optical sectional tomography, to characterize the brain-wide input to the motor cortex (MC). The whole brain dataset showed that the main excited and inhibited neurons in the MC received inputs from similar brain regions with a quantitative difference. With 3D reconstruction we found that the distribution of input neurons, that target the primary and secondary MC, had different patterns. In the cortex, the neurons projecting to the primary MC mainly distributed in the lateral and anterior portion, while those to the secondary MC distributed in the medial and posterior portion. The input neurons in the subcortical areas also showed the topographic shift model, as in the thalamus, the neurons distributed as outer and inner shells while the neurons in the claustrum and amygdala were in the ventral and dorsal part, respectively. These results lay the anatomical foundation to understanding the organized pattern of motor circuits and the functional differences between the primary and secondary MC.
Collapse
Affiliation(s)
- Pan Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Anan Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China.,HUST-Suzhou Institute for Brainsmatics, Suzhou, China
| | - Yanxiao Zheng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Yutong Han
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaojiao Tian
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengchao Xu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China.,HUST-Suzhou Institute for Brainsmatics, Suzhou, China
| | - Xiangning Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China.,HUST-Suzhou Institute for Brainsmatics, Suzhou, China
| |
Collapse
|
122
|
APOE-ε4 risk variant for Alzheimer's disease modifies the association between cognitive performance and cerebral morphology in healthy middle-aged individuals. NEUROIMAGE-CLINICAL 2019; 23:101818. [PMID: 30991302 PMCID: PMC6463204 DOI: 10.1016/j.nicl.2019.101818] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 04/01/2019] [Accepted: 04/07/2019] [Indexed: 12/18/2022]
Abstract
The APOE-ε4 genotype is the highest genetic risk factor for Alzheimer's disease (AD). In cognitively unimpaired individuals, it has been related to altered brain morphology, function and earlier amyloid beta accumulation. However, its impact on cognitive performance is less evident. Here, we examine the impact of APOE-ε4 allele load in modulating the association between cognitive functioning and brain morphology in middle-aged healthy individuals. A high-resolution structural MRI scan was acquired and episodic memory (EM) as well as executive functions (EFs) were assessed in a sample of 527 middle-aged unimpaired individuals hosting a substantial representation of ε4-homozygous (N = 64). We adopted a voxel-wise unbiased method to assess whether the number of APOE-ε4 alleles significantly modified the associations between gray matter volumes (GMv) and performance in both cognitive domains. Even though the APOE-ε4 allele load did not exert a direct impact on any cognitive measures, it reversed the relationships between GMv and cognitive performance in a highly symmetrical topological pattern. For EM, interactions mapped onto the inferior temporal gyrus and the dorsal anterior cingulate cortex. Regarding EFs, significant interactions were observed for processing speed, working memory, and visuospatial attention in distinct brain regions. These results suggest that APOE-ε4 carriers display a structure-function association corresponding to an older age than their chronological one. Our findings additionally indicate that APOE-ε4 carriers may rely on the integrity of multiple compensatory brain systems in order to preserve their cognitive abilities, possibly due to an incipient neurodegeneration. Overall this study provides novel insights on the mechanisms through which APOE-ε4 posits an increased AD risk.
Collapse
|
123
|
Ray NJ, Bradburn S, Murgatroyd C, Toseeb U, Mir P, Kountouriotis GK, Teipel SJ, Grothe MJ. In vivo cholinergic basal forebrain atrophy predicts cognitive decline in de novo Parkinson's disease. Brain 2019; 141:165-176. [PMID: 29228203 PMCID: PMC5837422 DOI: 10.1093/brain/awx310] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/27/2017] [Indexed: 11/17/2022] Open
Abstract
See Gratwicke and Foltynie (doi:10.1093/brain/awx333) for a scientific commentary on this article. Cognitive impairments are a prevalent and disabling non-motor complication of Parkinson’s disease, but with variable expression and progression. The onset of serious cognitive decline occurs alongside substantial cholinergic denervation, but imprecision of previously available techniques for in vivo measurement of cholinergic degeneration limit their use as predictive cognitive biomarkers. However, recent developments in stereotactic mapping of the cholinergic basal forebrain have been found useful for predicting cognitive decline in prodromal stages of Alzheimer’s disease. These methods have not yet been applied to longitudinal Parkinson’s disease data. In a large sample of people with de novo Parkinson’s disease (n = 168), retrieved from the Parkinson’s Progressive Markers Initiative database, we measured cholinergic basal forebrain volumes, using morphometric analysis of T1-weighted images in combination with a detailed stereotactic atlas of the cholinergic basal forebrain nuclei. Using a binary classification procedure, we defined patients with reduced basal forebrain volumes (relative to age) at baseline, based on volumes measured in a normative sample (n = 76). Additionally, relationships between the basal forebrain volumes at baseline, risk of later cognitive decline, and scores on up to 5 years of annual cognitive assessments were assessed with regression, survival analysis and linear mixed modelling. In patients, smaller volumes in a region corresponding to the nucleus basalis of Meynert were associated with greater change in global cognitive, but not motor scores after 2 years. Using the binary classification procedure, patients classified as having smaller than expected volumes of the nucleus basalis of Meynert had ∼3.5-fold greater risk of being categorized as mildly cognitively impaired over a period of up to 5 years of follow-up (hazard ratio = 3.51). Finally, linear mixed modelling analysis of domain-specific cognitive scores revealed that patients classified as having smaller than expected nucleus basalis volumes showed more severe and rapid decline over up to 5 years on tests of memory and semantic fluency, but not on tests of executive function. Thus, we provide the first evidence that volumetric measurement of the nucleus basalis of Meynert can predict early cognitive decline. Our methods therefore provide the opportunity for multiple-modality biomarker models to include a cholinergic biomarker, which is currently lacking for the prediction of cognitive deterioration in Parkinson’s disease. Additionally, finding dissociated relationships between nucleus basalis status and domain-specific cognitive decline has implications for understanding the neural basis of heterogeneity of Parkinson’s disease-related cognitive decline.
Collapse
Affiliation(s)
- Nicola J Ray
- Department of Psychology, Manchester Metropolitan University, Manchester, UK
| | - Steven Bradburn
- School of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| | | | - Umar Toseeb
- Department of Education, Derwent College, University of York, York, YO10 5DD, UK
| | - Pablo Mir
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Csubstantia innominataC/Universidad de Sevilla, Sevilla, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | | | - Stefan J Teipel
- Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany.,German Center for Neurodegenerative Diseases (DZNE) - Rostock/Greifswald, Rostock, Germany
| | - Michel J Grothe
- German Center for Neurodegenerative Diseases (DZNE) - Rostock/Greifswald, Rostock, Germany
| |
Collapse
|
124
|
Optogenetic stimulation of basal forebrain parvalbumin neurons modulates the cortical topography of auditory steady-state responses. Brain Struct Funct 2019; 224:1505-1518. [PMID: 30826928 PMCID: PMC6532347 DOI: 10.1007/s00429-019-01845-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 02/06/2019] [Indexed: 10/27/2022]
Abstract
High-density electroencephalographic (hdEEG) recordings are widely used in human studies to determine spatio-temporal patterns of cortical electrical activity. How these patterns of activity are modulated by subcortical arousal systems is poorly understood. Here, we couple selective optogenetic stimulation of a defined subcortical cell-type, basal forebrain (BF) parvalbumin (PV) neurons, with hdEEG recordings in mice (Opto-hdEEG). Stimulation of BF PV projection neurons preferentially generated time-locked gamma oscillations in frontal cortices. BF PV gamma-frequency stimulation potently modulated an auditory sensory paradigm used to probe cortical function in neuropsychiatric disorders, the auditory steady-state response (ASSR). Phase-locked excitation of BF PV neurons in advance of 40 Hz auditory stimuli enhanced the power, precision and reliability of cortical responses, and the relationship between responses in frontal and auditory cortices. Furthermore, synchronization within a frontal hub and long-range cortical interactions were enhanced. Thus, phasic discharge of BF PV neurons changes cortical processing in a manner reminiscent of global workspace models of attention and consciousness.
Collapse
|
125
|
Role of nicotinic acetylcholine receptors for modulation of microcircuits in the agranular insular cortex. J Oral Biosci 2019; 61:5-11. [DOI: 10.1016/j.job.2018.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/22/2022]
|
126
|
Boskovic Z, Meier S, Wang Y, Milne M, Onraet T, Tedoldi A, Coulson E. Regulation of cholinergic basal forebrain development, connectivity, and function by neurotrophin receptors. Neuronal Signal 2019; 3:NS20180066. [PMID: 32269831 PMCID: PMC7104233 DOI: 10.1042/ns20180066] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 12/11/2022] Open
Abstract
Cholinergic basal forebrain (cBF) neurons are defined by their expression of the p75 neurotrophin receptor (p75NTR) and tropomyosin-related kinase (Trk) neurotrophin receptors in addition to cholinergic markers. It is known that the neurotrophins, particularly nerve growth factor (NGF), mediate cholinergic neuronal development and maintenance. However, the role of neurotrophin signalling in regulating adult cBF function is less clear, although in dementia, trophic signalling is reduced and p75NTR mediates neurodegeneration of cBF neurons. Here we review the current understanding of how cBF neurons are regulated by neurotrophins which activate p75NTR and TrkA, B or C to influence the critical role that these neurons play in normal cortical function, particularly higher order cognition. Specifically, we describe the current evidence that neurotrophins regulate the development of basal forebrain neurons and their role in maintaining and modifying mature basal forebrain synaptic and cortical microcircuit connectivity. Understanding the role neurotrophin signalling plays in regulating the precision of cholinergic connectivity will contribute to the understanding of normal cognitive processes and will likely provide additional ideas for designing improved therapies for the treatment of neurological disease in which cholinergic dysfunction has been demonstrated.
Collapse
Affiliation(s)
- Zoran Boskovic
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Sonja Meier
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Yunpeng Wang
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
- College of Forensic Science, Xi’an Jiaotong University, Shaanxi, China
| | - Michael R. Milne
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland, Australia
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Tessa Onraet
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Angelo Tedoldi
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Elizabeth J. Coulson
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland, Australia
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
127
|
Espinosa N, Alonso A, Lara-Vasquez A, Fuentealba P. Basal forebrain somatostatin cells differentially regulate local gamma oscillations and functionally segregate motor and cognitive circuits. Sci Rep 2019; 9:2570. [PMID: 30796293 PMCID: PMC6384953 DOI: 10.1038/s41598-019-39203-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 12/31/2018] [Indexed: 11/08/2022] Open
Abstract
The basal forebrain delivers extensive axonal projections to the cortical mantle regulating brain states and cognitive processing. Recent evidence has established the basal forebrain as a subcortical node of the default mode network that directionally influences cortical dynamics trough gamma oscillations, yet their synaptic origin has not been established. Here, we used optogenetic stimulation and in vivo recordings of transgenic mice to show that somatostatin neurons exert an anatomically specialized role in the coordination of subcortical gamma oscillations of the rostral basal forebrain. Indeed, the spike timing of somatostatin cells was tightly correlated with gamma oscillations in the ventral pallidum, but not in the medial septum. Consequently, optogenetic inactivation of somatostatin neurons selectively disrupted the amplitude and coupling of gamma oscillations only in the ventral pallidum. Moreover, photosupression of somatostatin cells produced specific behavioral interferences, with the ventral pallidum regulating locomotor speed and the medial septum modulating spatial working memory. Altogether, these data suggest that basal forebrain somatostatin cells can selectively synchronize local neuronal networks in the gamma band directly impinging on cortical dynamics and behavioral performance. This further supports the role of the basal forebrain as a subcortical switch commanding transitions between internally and externally oriented brain states.
Collapse
Affiliation(s)
- Nelson Espinosa
- Departamento de Psiquiatria, Centro Interdisciplinario de Neurociencia, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Alejandra Alonso
- Departamento de Psiquiatria, Centro Interdisciplinario de Neurociencia, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Ariel Lara-Vasquez
- Departamento de Psiquiatria, Centro Interdisciplinario de Neurociencia, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Pablo Fuentealba
- Departamento de Psiquiatria, Centro Interdisciplinario de Neurociencia, Pontificia Universidad Catolica de Chile, Santiago, Chile.
| |
Collapse
|
128
|
Fritz HJ, Ray N, Dyrba M, Sorg C, Teipel S, Grothe MJ. The corticotopic organization of the human basal forebrain as revealed by regionally selective functional connectivity profiles. Hum Brain Mapp 2019; 40:868-878. [PMID: 30311315 PMCID: PMC6865372 DOI: 10.1002/hbm.24417] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/06/2018] [Accepted: 10/01/2018] [Indexed: 12/25/2022] Open
Abstract
The cholinergic basal forebrain (CBF), comprising different groups of cortically projecting cholinergic neurons, plays a crucial role in higher cognitive processes and has been implicated in diverse neuropsychiatric disorders. A distinct corticotopic organization of CBF projections has been revealed in animal studies, but little is known about their organization in the human brain. We explored regional differences in functional connectivity (FC) profiles within the human CBF by applying a clustering approach to resting-state functional magnetic resonance imaging (rs-fMRI) data of healthy adult individuals (N = 85; 19-85 years). We further examined effects of age on FC of the identified CBF clusters and assessed the reproducibility of cluster-specific FC profiles in independent data from healthy older individuals (N = 25; 65-89 years). Results showed that the human CBF is functionally organized into distinct anterior-medial and posterior-lateral subdivisions that largely follow anatomically defined boundaries of the medial septum/diagonal band and nucleus basalis Meynert. The anterior-medial CBF subdivision was characterized by connectivity with the hippocampus and interconnected nodes of an extended medial cortical memory network, whereas the posterior-lateral subdivision was specifically connected to anterior insula and dorsal anterior cingulate components of a salience/attention network. FC of both CBF subdivisions declined with increasing age, but the overall topography of subregion-specific FC profiles was reproduced in independent rs-fMRI data of healthy older individuals acquired in a typical clinical setting. Rs-fMRI-based assessments of subregion-specific CBF function may complement established volumetric approaches for the in vivo study of CBF involvement in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Hans‐Christian J. Fritz
- Clinical Dementia Research SectionGerman Center for Neurodegenerative Diseases (DZNE)RostockGermany
- Department of Psychosomatic and Psychotherapeutic MedicineRostock University Medical CenterRostockGermany
| | - Nicola Ray
- Department of PsychologyManchester Metropolitan UniversityManchesterUK
| | - Martin Dyrba
- Clinical Dementia Research SectionGerman Center for Neurodegenerative Diseases (DZNE)RostockGermany
| | - Christian Sorg
- Departments of Neuroradiology and Psychiatry, TUM‐Neuroimaging Center of Klinikum rechts der IsarTechnische Universität München TUMMunichGermany
| | - Stefan Teipel
- Clinical Dementia Research SectionGerman Center for Neurodegenerative Diseases (DZNE)RostockGermany
- Department of Psychosomatic and Psychotherapeutic MedicineRostock University Medical CenterRostockGermany
| | - Michel J. Grothe
- Clinical Dementia Research SectionGerman Center for Neurodegenerative Diseases (DZNE)RostockGermany
| |
Collapse
|
129
|
Yang D, Günter R, Qi G, Radnikow G, Feldmeyer D. Muscarinic and Nicotinic Modulation of Neocortical Layer 6A Synaptic Microcircuits Is Cooperative and Cell-Specific. Cereb Cortex 2019; 30:3528-3542. [PMID: 32026946 PMCID: PMC7233001 DOI: 10.1093/cercor/bhz324] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 12/27/2022] Open
Abstract
Acetylcholine (ACh) is known to regulate cortical activity during different behavioral states, for example, wakefulness and attention. Here we show a differential expression of muscarinic ACh receptors (mAChRs) and nicotinic ACh receptors (nAChRs) in different layer 6A (L6A) pyramidal cell (PC) types of somatosensory cortex. At low concentrations, ACh induced a persistent hyperpolarization in corticocortical (CC) but a depolarization in corticothalamic (CT) L6A PCs via M 4 and M1 mAChRs, respectively. At ~ 1 mM, ACh depolarized exclusively CT PCs via α4β2 subunit-containing nAChRs without affecting CC PCs. Miniature EPSC frequency in CC PCs was decreased by ACh but increased in CT PCs. In synaptic connections with a presynaptic CC PC, glutamate release was suppressed via M4 mAChR activation but enhanced by nAChRs via α4β2 nAChRs when the presynaptic neuron was a CT PC. Thus, in L6A, the interaction of mAChRs and nAChRs results in an altered excitability and synaptic release, effectively strengthening CT output while weakening CC synaptic signaling.
Collapse
Affiliation(s)
- Danqing Yang
- Institute of Neuroscience and Medicine (INM-10), Function of Neuronal Microcircuits, Research Centre Jülich, D-52425 Jülich, Germany
| | - Robert Günter
- Institute of Neuroscience and Medicine (INM-10), Function of Neuronal Microcircuits, Research Centre Jülich, D-52425 Jülich, Germany
| | - Guanxiao Qi
- Institute of Neuroscience and Medicine (INM-10), Function of Neuronal Microcircuits, Research Centre Jülich, D-52425 Jülich, Germany
| | - Gabriele Radnikow
- Institute of Neuroscience and Medicine (INM-10), Function of Neuronal Microcircuits, Research Centre Jülich, D-52425 Jülich, Germany
| | - Dirk Feldmeyer
- Institute of Neuroscience and Medicine (INM-10), Function of Neuronal Microcircuits, Research Centre Jülich, D-52425 Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, D-52074 Aachen, Germany.,Jülich Aachen Research Alliance, Translational Brain Medicine (JARA Brain), D-52074 Aachen, Germany
| |
Collapse
|
130
|
Wong R, Lénárt N, Hill L, Toms L, Coutts G, Martinecz B, Császár E, Nyiri G, Papaemmanouil A, Waisman A, Müller W, Schwaninger M, Rothwell N, Francis S, Pinteaux E, Denés A, Allan SM. Interleukin-1 mediates ischaemic brain injury via distinct actions on endothelial cells and cholinergic neurons. Brain Behav Immun 2019; 76:126-138. [PMID: 30453020 PMCID: PMC6363965 DOI: 10.1016/j.bbi.2018.11.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/12/2018] [Accepted: 11/15/2018] [Indexed: 12/17/2022] Open
Abstract
The cytokine interleukin-1 (IL-1) is a key contributor to neuroinflammation and brain injury, yet mechanisms by which IL-1 triggers neuronal injury remain unknown. Here we induced conditional deletion of IL-1R1 in brain endothelial cells, neurons and blood cells to assess site-specific IL-1 actions in a model of cerebral ischaemia in mice. Tamoxifen treatment of IL-1R1 floxed (fl/fl) mice crossed with mice expressing tamoxifen-inducible Cre-recombinase under the Slco1c1 promoter resulted in brain endothelium-specific deletion of IL-1R1 and a significant decrease in infarct size (29%), blood-brain barrier (BBB) breakdown (53%) and neurological deficit (40%) compared to vehicle-treated or control (IL-1R1fl/fl) mice. Absence of brain endothelial IL-1 signalling improved cerebral blood flow, followed by reduced neutrophil infiltration and vascular activation 24 h after brain injury. Conditional IL-1R1 deletion in neurons using tamoxifen inducible nestin-Cre mice resulted in reduced neuronal injury (25%) and altered microglia-neuron interactions, without affecting cerebral perfusion or vascular activation. Deletion of IL-1R1 specifically in cholinergic neurons reduced infarct size, brain oedema and improved functional outcome. Ubiquitous deletion of IL-1R1 had no effect on brain injury, suggesting beneficial compensatory mechanisms on other cells against the detrimental effects of IL-1 on endothelial cells and neurons. We also show that IL-1R1 signalling deletion in platelets or myeloid cells does not contribute to brain injury after experimental stroke. Thus, brain endothelial and neuronal (cholinergic) IL-1R1 mediate detrimental actions of IL-1 in the brain in ischaemic stroke. Cell-specific targeting of IL-1R1 in the brain could therefore have therapeutic benefits in stroke and other cerebrovascular diseases.
Collapse
Affiliation(s)
- Raymond Wong
- Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT Manchester, UK
| | - Nikolett Lénárt
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, Szigony u. 43, 1083 Budapest, Hungary
| | - Laura Hill
- Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT Manchester, UK
| | - Lauren Toms
- Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT Manchester, UK
| | - Graham Coutts
- Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT Manchester, UK
| | - Bernadett Martinecz
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, Szigony u. 43, 1083 Budapest, Hungary
| | - Eszter Császár
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, Szigony u. 43, 1083 Budapest, Hungary
| | - Gábor Nyiri
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Szigony u. 43, 1083 Budapest, Hungary
| | - Athina Papaemmanouil
- Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT Manchester, UK
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Werner Müller
- Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT Manchester, UK
| | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, 23538 Lübeck, Germany
| | - Nancy Rothwell
- Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT Manchester, UK
| | - Sheila Francis
- Department of Infection, Immunity & Cardiovascular Disease, Medical School, University of Sheffield, S10 2RX Sheffield, UK
| | - Emmanuel Pinteaux
- Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT Manchester, UK
| | - Adam Denés
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, Szigony u. 43, 1083 Budapest, Hungary.
| | - Stuart M Allan
- Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT Manchester, UK.
| |
Collapse
|
131
|
Poulet JFA, Crochet S. The Cortical States of Wakefulness. Front Syst Neurosci 2019; 12:64. [PMID: 30670952 PMCID: PMC6331430 DOI: 10.3389/fnsys.2018.00064] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/11/2018] [Indexed: 11/15/2022] Open
Abstract
Cortical neurons process information on a background of spontaneous, ongoing activity with distinct spatiotemporal profiles defining different cortical states. During wakefulness, cortical states alter constantly in relation to behavioral context, attentional level or general motor activity. In this review article, we will discuss our current understanding of cortical states in awake rodents, how they are controlled, their impact on sensory processing, and highlight areas for future research. A common observation in awake rodents is the rapid change in spontaneous cortical activity from high-amplitude, low-frequency (LF) fluctuations, when animals are quiet, to faster and smaller fluctuations when animals are active. This transition is typically thought of as a change in global brain state but recent work has shown variation in cortical states across regions, indicating the presence of a fine spatial scale control system. In sensory areas, the cortical state change is mediated by at least two convergent inputs, one from the thalamus and the other from cholinergic inputs in the basal forebrain. Cortical states have a major impact on the balance of activity between specific subtypes of neurons, on the synchronization between nearby neurons, as well as the functional coupling between distant cortical areas. This reorganization of the activity of cortical networks strongly affects sensory processing. Thus cortical states provide a dynamic control system for the moment-by-moment regulation of cortical processing.
Collapse
Affiliation(s)
- James F. A. Poulet
- Neural Circuits and Behaviour, Department of Neuroscience, Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Neuroscience Research Center and Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sylvain Crochet
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Lyon Neuroscience Research Center, INSERM U1028/CNRS UMR5292, University Lyon 1, Lyon, France
| |
Collapse
|
132
|
Zhang K, Chen CD, Monosov IE. Novelty, Salience, and Surprise Timing Are Signaled by Neurons in the Basal Forebrain. Curr Biol 2018; 29:134-142.e3. [PMID: 30581022 DOI: 10.1016/j.cub.2018.11.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/12/2018] [Accepted: 11/02/2018] [Indexed: 10/27/2022]
Abstract
The basal forebrain (BF) is a principal source of modulation of the neocortex [1-6] and is thought to regulate cognitive functions such as attention, motivation, and learning by broadcasting information about salience [2, 3, 5, 7-19]. However, events can be salient for multiple reasons-such as novelty, surprise, or reward prediction errors [20-24]-and to date, precisely which salience-related information the BF broadcasts is unclear. Here, we report that the primate BF contains at least two types of neurons that often process salient events in distinct manners: one with phasic burst responses to cues predicting salient events and one with ramping activity anticipating such events. Bursting neurons respond to cues that convey predictions about the magnitude, probability, and timing of primary reinforcements. They also burst to the reinforcement itself, particularly when it is unexpected. However, they do not have a selective response to reinforcement omission (the unexpected absence of an event). Thus, bursting neurons do not convey value-prediction errors but do signal surprise associated with external events. Indeed, they are not limited to processing primary reinforcement: they discriminate fully expected novel visual objects from familiar objects and respond to object-sequence violations. In contrast, ramping neurons predict the timing of many salient, novel, and surprising events. Their ramping activity is highly sensitive to the subjects' confidence in event timing and on average encodes the subjects' surprise after unexpected events occur. These data suggest that the primate BF contains mechanisms to anticipate the timing of a diverse set of important external events (via ramping activity) and to rapidly deploy cognitive resources when these events occur (via short latency bursting).
Collapse
Affiliation(s)
- Kaining Zhang
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Charles D Chen
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110
| | - Ilya E Monosov
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
133
|
Krueger J, Disney AA. Structure and function of dual-source cholinergic modulation in early vision. J Comp Neurol 2018; 527:738-750. [PMID: 30520037 DOI: 10.1002/cne.24590] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 10/29/2018] [Accepted: 11/01/2018] [Indexed: 12/21/2022]
Abstract
Behavioral states such as arousal and attention have profound effects on sensory processing, determining how-even whether-a stimulus is perceived. This state-dependence is believed to arise, at least in part, in response to inputs from subcortical structures that release neuromodulators such as acetylcholine, often nonsynaptically. The mechanisms that underlie the interaction between these nonsynaptic signals and the more point-to-point synaptic cortical circuitry are not well understood. This review highlights the state of the field, with a focus on cholinergic action in early visual processing. Key anatomical and physiological features of both the cholinergic and the visual systems are discussed. Furthermore, presenting evidence of cholinergic modulation in visual thalamus and primary visual cortex, we explore potential functional roles of acetylcholine and its effects on the processing of visual input over the sleep-wake cycle, sensory gain control during wakefulness, and consider evidence for cholinergic support of visual attention.
Collapse
Affiliation(s)
- Juliane Krueger
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina
| | - Anita A Disney
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
134
|
Zheng Y, Feng S, Zhu X, Jiang W, Wen P, Ye F, Rao X, Jin S, He X, Xu F. Different Subgroups of Cholinergic Neurons in the Basal Forebrain Are Distinctly Innervated by the Olfactory Regions and Activated Differentially in Olfactory Memory Retrieval. Front Neural Circuits 2018; 12:99. [PMID: 30483067 PMCID: PMC6243045 DOI: 10.3389/fncir.2018.00099] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/18/2018] [Indexed: 01/16/2023] Open
Abstract
The mammalian basal forebrain (BF), a heterogenous structure providing the primary cholinergic inputs to cortical and limbic structures, plays a crucial role in various physiological processes such as learning/memory and attention. Despite the involvement of the BF cholinergic neurons (BFCNs) in olfaction related memory has been reported, the underlying neural circuits remain poorly understood. Here, we combined viral trans-synaptic tracing systems and ChAT-cre transgenic mice to systematically reveal the relationship between the olfactory system and the different subsets of BFCNs. The retrograde adeno-associated virus and rabies virus (AAV-RV) tracing showed that different subregional BFCNs received diverse inputs from multiple olfactory cortices. The cholinergic neurons in medial and caudal horizontal diagonal band Broca (HDB), magnocellular preoptic area (MCPO) and ventral substantia innominate (SI; hereafter HMS complex, HMSc) received the inputs from the entire olfactory system such as the olfactory bulb (OB), anterior olfactory nucleus (AON), entorhinal cortex (ENT), basolateral amygdala and especially the piriform cortex (PC) and hippocampus (HIP); while medial septum (MS/DB) and a part of rostral HDB (hereafter MS/DB complex, MS/DBc), predominantly from HIP; and nucleus basalis Meynert (NBM) and dorsal SI (hereafter NBM complex, NBMc), mainly from the central amygdala. The anterograde vesicular stomatitis virus (VSV) tracing further validated that the major target of the OB to the BF is HMSc. To correlate these structural relations between the BFCNs and olfactory functions, the neurons activated in the BF during olfaction related task were mapped with c-fos immunostaining. It was found that some of the BFCNs were activated in go/no-go olfactory discrimination task, but with different activated patterns. Interestingly, the BFCNs in HMSc were more significantly activated than the other subregions. Therefore, our data have demonstrated that among the different subgroups of BFCNs, HMSc is more closely related to the olfactory system, both structurally and functionally. This work provides the evidence for distinct roles of different subsets of BFNCs in olfaction associated memory.
Collapse
Affiliation(s)
- Yingwei Zheng
- University of Chinese Academy of Sciences (UCAS), Beijing, China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Shouya Feng
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Xutao Zhu
- University of Chinese Academy of Sciences (UCAS), Beijing, China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Wentao Jiang
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Pengjie Wen
- University of Chinese Academy of Sciences (UCAS), Beijing, China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Feiyang Ye
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaoping Rao
- University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Sen Jin
- Huazhong University of Science and Technology (HUST)-Suzhou Institute for Brainsmatics, Suzhou, China
| | - Xiaobin He
- University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Fuqiang Xu
- University of Chinese Academy of Sciences (UCAS), Beijing, China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
- Huazhong University of Science and Technology (HUST)-Suzhou Institute for Brainsmatics, Suzhou, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
135
|
Záborszky L, Gombkoto P, Varsanyi P, Gielow MR, Poe G, Role LW, Ananth M, Rajebhosale P, Talmage DA, Hasselmo ME, Dannenberg H, Minces VH, Chiba AA. Specific Basal Forebrain-Cortical Cholinergic Circuits Coordinate Cognitive Operations. J Neurosci 2018; 38:9446-9458. [PMID: 30381436 PMCID: PMC6209837 DOI: 10.1523/jneurosci.1676-18.2018] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 11/21/2022] Open
Abstract
Based on recent molecular genetics, as well as functional and quantitative anatomical studies, the basal forebrain (BF) cholinergic projections, once viewed as a diffuse system, are emerging as being remarkably specific in connectivity. Acetylcholine (ACh) can rapidly and selectively modulate activity of specific circuits and ACh release can be coordinated in multiple areas that are related to particular aspects of cognitive processing. This review discusses how a combination of multiple new approaches with more established techniques are being used to finally reveal how cholinergic neurons, together with other BF neurons, provide temporal structure for behavior, contribute to local cortical state regulation, and coordinate activity between different functionally related cortical circuits. ACh selectively modulates dynamics for encoding and attention within individual cortical circuits, allows for important transitions during sleep, and shapes the fidelity of sensory processing by changing the correlation structure of neural firing. The importance of this system for integrated and fluid behavioral function is underscored by its disease-modifying role; the demise of BF cholinergic neurons has long been established in Alzheimer's disease and recent studies have revealed the involvement of the cholinergic system in modulation of anxiety-related circuits. Therefore, the BF cholinergic system plays a pivotal role in modulating the dynamics of the brain during sleep and behavior, as foretold by the intricacies of its anatomical map.
Collapse
Affiliation(s)
- Laszlo Záborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark 07102,
| | - Peter Gombkoto
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark 07102
| | - Peter Varsanyi
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark 07102
| | - Matthew R Gielow
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark 07102
| | - Gina Poe
- Department of Integrative Biology and Physiology, University of California, Los Angeles 90095
| | - Lorna W Role
- Department of Neurobiology and Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York 11794
| | - Mala Ananth
- Program in Neuroscience and Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York 11794
| | - Prithviraj Rajebhosale
- Program in Neuroscience and Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York 11794
| | - David A Talmage
- Department of Pharmacological Sciences and Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York 11794
| | - Michael E Hasselmo
- Center for Systems Neuroscience and Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts 02215, and
| | - Holger Dannenberg
- Center for Systems Neuroscience and Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts 02215, and
| | - Victor H Minces
- Department of Cognitive Science, University of California, San Diego 92093
| | - Andrea A Chiba
- Department of Cognitive Science, University of California, San Diego 92093
| |
Collapse
|
136
|
Tashakori-Sabzevar F, Ward RD. Basal Forebrain Mediates Motivational Recruitment of Attention by Reward-Associated Cues. Front Neurosci 2018; 12:786. [PMID: 30425617 PMCID: PMC6218575 DOI: 10.3389/fnins.2018.00786] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/10/2018] [Indexed: 01/05/2023] Open
Abstract
The basal forebrain, composed of distributed nuclei, including substantia innominata (SI), nucleus basalis and nucleus of the diagonal band of Broca plays a crucial neuromodulatory role in the brain. In particular, its projections to the prefrontal cortex have been shown to be important in a wide variety of brain processes and functions, including attention, learning and memory, arousal, and decision-making. In the present study, we asked whether the basal forebrain is involved in recruitment of cognitive effort in response to reward-related cues. This interaction between motivation and cognition is critically impacted in psychiatric conditions such as schizophrenia. Using the Designer Receptor Exclusively Activated by Designer Drug (DREADD) technique combined with our recently developed signaled probability sustained attention task (SPSA), which explicitly assays the interaction between motivation and attention, we sought to determine the role of the basal forebrain in this interaction. Rats were stereotaxically injected in the basal forebrain with either hM4D(Gi) (a virus that expresses receptors which silence neurons in the presence of the drug clozapine-N-oxide; CNO) or a control virus and tested in the SPSA. Behavior of rats during baseline and under saline indicated control by reward probability. In the presence of CNO, differential accuracy of hM4D(Gi) rats on high and low reward-probability trials was abolished. This result occurred despite spared ability of the reward-probability signals to differentially impact choice-response latencies and omissions. These results indicate that the basal forebrain is critical for the motivational recruitment of attention in response to reward-related cues and are consistent with a role for basal forebrain in encoding and transmitting motivational salience of reward-related cues and readying prefrontal circuits for further attentional processing.
Collapse
Affiliation(s)
| | - Ryan D Ward
- Department of Psychology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
137
|
Wan L, Huang H, Schwab N, Tanner J, Rajan A, Lam NB, Zaborszky L, Li CSR, Price CC, Ding M. From eyes-closed to eyes-open: Role of cholinergic projections in EC-to-EO alpha reactivity revealed by combining EEG and MRI. Hum Brain Mapp 2018; 40:566-577. [PMID: 30251753 DOI: 10.1002/hbm.24395] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/11/2018] [Accepted: 08/31/2018] [Indexed: 12/13/2022] Open
Abstract
Alpha rhythm (8 to 12 Hz) observed in EEG over human posterior cortex is prominent during eyes-closed (EC) resting and attenuates during eyes-open (EO) resting. Research shows that the degree of EC-to-EO alpha blocking or alpha desynchronization, termed alpha reactivity here, is a neural marker of cognitive health. We tested the role of acetylcholine in EC-to-EO alpha reactivity by applying a multimodal neuroimaging approach to a cohort of young adults and a cohort of older adults. In the young cohort, simultaneous EEG-fMRI was recorded from twenty-one young adults during both EO and EC resting. In the older cohort, functional MRI was recorded from forty older adults during EO and EC resting, along with FLAIR and diffusion MRI. For a subset of twenty older adults, EEG was recorded during EO and EC resting in a separate session. In both young and older adults, functional connectivity between the basal nucleus of Meynert (BNM), the major source of cortical acetylcholine, and the visual cortex increased from EC to EO, and this connectivity increase was positively associated with alpha reactivity; namely, the stronger the BNM-visual cortex functional connectivity increase from EC to EO, the larger the EC-to-EO alpha desynchronization. In older adults, lesions of the fiber tracts linking BNM and visual cortex quantified by leukoaraiosis volume, associated with reduced alpha reactivity. These findings support a role of acetylcholine and particularly cholinergic pathways in mediating EC-to-EO alpha reactivity and suggest that impaired alpha reactivity could serve as a marker of the integrity of the cholinergic system.
Collapse
Affiliation(s)
- Lu Wan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Haiqing Huang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida.,Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Nadine Schwab
- Department of Clinical & Health Psychology, University of Florida, Gainesville, Florida
| | - Jared Tanner
- Department of Clinical & Health Psychology, University of Florida, Gainesville, Florida
| | - Abhijit Rajan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Ngoc B Lam
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Laszlo Zaborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey
| | - Chiang-Shan R Li
- Departments of Psychiatry and Neuroscience, Yale University School of Medicine, New Haven, Connecticut
| | - Catherine C Price
- Department of Clinical & Health Psychology, University of Florida, Gainesville, Florida
| | - Mingzhou Ding
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| |
Collapse
|
138
|
Solari N, Hangya B. Cholinergic modulation of spatial learning, memory and navigation. Eur J Neurosci 2018; 48:2199-2230. [PMID: 30055067 PMCID: PMC6174978 DOI: 10.1111/ejn.14089] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/25/2018] [Accepted: 07/23/2018] [Indexed: 01/02/2023]
Abstract
Spatial learning, including encoding and retrieval of spatial memories as well as holding spatial information in working memory generally serving navigation under a broad range of circumstances, relies on a network of structures. While central to this network are medial temporal lobe structures with a widely appreciated crucial function of the hippocampus, neocortical areas such as the posterior parietal cortex and the retrosplenial cortex also play essential roles. Since the hippocampus receives its main subcortical input from the medial septum of the basal forebrain (BF) cholinergic system, it is not surprising that the potential role of the septo-hippocampal pathway in spatial navigation has been investigated in many studies. Much less is known of the involvement in spatial cognition of the parallel projection system linking the posterior BF with neocortical areas. Here we review the current state of the art of the division of labour within this complex 'navigation system', with special focus on how subcortical cholinergic inputs may regulate various aspects of spatial learning, memory and navigation.
Collapse
Affiliation(s)
- Nicola Solari
- Lendület Laboratory of Systems NeuroscienceDepartment of Cellular and Network NeurobiologyInstitute of Experimental MedicineHungarian Academy of SciencesBudapestHungary
| | - Balázs Hangya
- Lendület Laboratory of Systems NeuroscienceDepartment of Cellular and Network NeurobiologyInstitute of Experimental MedicineHungarian Academy of SciencesBudapestHungary
| |
Collapse
|
139
|
Coppola JJ, Disney AA. Most calbindin-immunoreactive neurons, but few calretinin-immunoreactive neurons, express the m1 acetylcholine receptor in the middle temporal visual area of the macaque monkey. Brain Behav 2018; 8:e01071. [PMID: 30094962 PMCID: PMC6160643 DOI: 10.1002/brb3.1071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/10/2018] [Accepted: 04/15/2018] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Release of the neuromodulator acetylcholine into cortical circuits supports cognition, although its precise role and mechanisms of action are not well understood. Little is known about functional differences in cholinergic modulatory effects across cortical model systems, but anatomical evidence suggests that such differences likely exist because, for example, the expression of cholinergic receptors differs profoundly both within and between species. METHODS In the primary visual cortex (V1) of macaque monkeys, cholinergic receptors are strongly expressed by inhibitory interneurons. Using dual-immunofluorescence confocal microscopy, we examine m1 muscarinic acetylcholine receptor expression by two subclasses of inhibitory interneurons-identified by their expression of the calcium-binding proteins calbindin and calretinin-in the middle temporal extrastriate area (MT) of the macaque. RESULTS AND CONCLUSIONS We find that the majority of calbindin-immunoreactive neurons (55%) and only few calretinin-immunoreactive neurons (10%) express the m1 acetylcholine receptor. These results differ from the pattern observed in V1 of the same species, lending further support to the notion that cholinergic modulation in the cortex is tuned such that different cortical compartments will respond to acetylcholine release in different ways.
Collapse
Affiliation(s)
| | - Anita A. Disney
- Department of PsychologyVanderbilt UniversityNashvilleTennessee
| |
Collapse
|
140
|
Chaves-Coira I, Martín-Cortecero J, Nuñez A, Rodrigo-Angulo ML. Basal Forebrain Nuclei Display Distinct Projecting Pathways and Functional Circuits to Sensory Primary and Prefrontal Cortices in the Rat. Front Neuroanat 2018; 12:69. [PMID: 30158859 PMCID: PMC6104178 DOI: 10.3389/fnana.2018.00069] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/27/2018] [Indexed: 12/25/2022] Open
Abstract
Recent evidence supports that specific projections between different basal forebrain (BF) nuclei and their cortical targets are necessary to modulate cognitive functions in the cortex. We tested the hypothesis of the existence of specific neuronal populations in the BF linking with specific sensory, motor, and prefrontal cortices in rats. Neuronal tracing techniques were performed using retrograde tracers injected in the primary somatosensory (S1), auditory (A1), and visual (V1) cortical areas, in the medial prefrontal cortex (mPFC) as well as in BF nuclei. Results indicate that the vertical and horizontal diagonal band of Broca (VDB/HDB) nuclei target specific sensory cortical areas and maintains reciprocal projections with the prelimbic/infralimbic (PL/IL) area of the mPFC. The basal magnocellular nucleus (B nucleus) has more widespread targets in the sensory-motor cortex and does not project to the PL/IL cortex. Optogenetic stimulation was used to establish if BF neurons modulate whisker responses recorded in S1 and PL/IL cortices. We drove the expression of high levels of channelrhodopsin-2, tagged with a fluorescent protein (ChR2-eYFP) by injection of a virus in HDB or B nuclei. Blue-light pulses were delivered to the BF through a thin optic fiber to stimulate these neurons. Blue-light stimulation directed toward the HDB facilitated whisker responses in S1 cortex through activation of muscarinic receptors. The same optogenetic stimulation of HDB induced an inhibition of whisker responses in mPFC by activation of nicotinic receptors. Blue-light stimulation directed toward the B nucleus had lower effects than HDB stimulation. Our findings pointed the presence of specific neuronal networks between the BF and the cortex that may play different roles in the control of cortical activity.
Collapse
Affiliation(s)
- Irene Chaves-Coira
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jesús Martín-Cortecero
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Angel Nuñez
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Margarita L Rodrigo-Angulo
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
141
|
Teipel SJ, Cavedo E, Hampel H, Grothe MJ, Alzheimer's Disease Neuroimaging Initiative. Basal Forebrain Volume, but Not Hippocampal Volume, Is a Predictor of Global Cognitive Decline in Patients With Alzheimer's Disease Treated With Cholinesterase Inhibitors. Front Neurol 2018; 9:642. [PMID: 30158893 PMCID: PMC6104491 DOI: 10.3389/fneur.2018.00642] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 07/17/2018] [Indexed: 11/13/2022] Open
Abstract
Background: Predicting the progression of cognitive decline in Alzheimer's disease (AD) is important for treatment selection and patient counseling. Structural MRI markers such as hippocampus or basal forebrain volumes might represent useful instruments for the prediction of cognitive decline. The primary objective was to determine the predictive value of hippocampus and basal forebrain volumes for global and domain specific cognitive decline in AD dementia during cholinergic treatment. Methods: We used MRI and cognitive data from 124 patients with the clinical diagnosis of AD dementia, derived from the ADNI-1 cohort, who were on standard of care cholinesterase inhibitor treatment during a follow-up period between 0.4 and 3.1 years. We used linear mixed effects models with cognitive function as outcome to assess the main effects as well as two-way interactions between baseline volumes and time controlling for age, sex, and total intracranial volume. This model accounts for individual variation in follow-up times. Results: Basal forebrain volume, but not hippocampus volume, was a significant predictor of rates of global cognitive decline. Larger volumes were associated with smaller rates of cognitive decline. Left hippocampus volume had a modest association with rates of episodic memory decline. Baseline performance in global cognition and memory was significantly associated with hippocampus and basal forebrain volumes; in addition, basal forebrain volume was associated with baseline performance in executive function. Conclusions: Our findings indicate that in AD dementia patients, basal forebrain volume may be a useful marker to predict subsequent cognitive decline during cholinergic treatment.
Collapse
Affiliation(s)
- Stefan J. Teipel
- German Center for Neurodegenerative Diseases-Rostock/Greifswald, Rostock, Germany
- Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany
| | - Enrica Cavedo
- AXA Research Fund and Sorbonne University Chair, Paris, France
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine, AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'Hôpital, Paris, France
- Brain and Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'Hôpital, Paris, France
- Department of Neurology, Institute of Memory and Alzheimer's Disease (IM2A), Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'Hôpital, Paris, France
- IRCCS Istituto Centro San Giovanni di Dio-Fatebenefratelli, Brescia, Italy
| | - Harald Hampel
- AXA Research Fund and Sorbonne University Chair, Paris, France
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine, AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'Hôpital, Paris, France
- Brain and Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'Hôpital, Paris, France
- Department of Neurology, Institute of Memory and Alzheimer's Disease (IM2A), Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'Hôpital, Paris, France
| | - Michel J. Grothe
- German Center for Neurodegenerative Diseases-Rostock/Greifswald, Rostock, Germany
| | | |
Collapse
|
142
|
Saunders A, Macosko EZ, Wysoker A, Goldman M, Krienen FM, de Rivera H, Bien E, Baum M, Bortolin L, Wang S, Goeva A, Nemesh J, Kamitaki N, Brumbaugh S, Kulp D, McCarroll SA. Molecular Diversity and Specializations among the Cells of the Adult Mouse Brain. Cell 2018; 174:1015-1030.e16. [PMID: 30096299 PMCID: PMC6447408 DOI: 10.1016/j.cell.2018.07.028] [Citation(s) in RCA: 1059] [Impact Index Per Article: 151.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/26/2018] [Accepted: 07/20/2018] [Indexed: 02/06/2023]
Abstract
The mammalian brain is composed of diverse, specialized cell populations. To systematically ascertain and learn from these cellular specializations, we used Drop-seq to profile RNA expression in 690,000 individual cells sampled from 9 regions of the adult mouse brain. We identified 565 transcriptionally distinct groups of cells using computational approaches developed to distinguish biological from technical signals. Cross-region analysis of these 565 cell populations revealed features of brain organization, including a gene-expression module for synthesizing axonal and presynaptic components, patterns in the co-deployment of voltage-gated ion channels, functional distinctions among the cells of the vasculature and specialization of glutamatergic neurons across cortical regions. Systematic neuronal classifications for two complex basal ganglia nuclei and the striatum revealed a rare population of spiny projection neurons. This adult mouse brain cell atlas, accessible through interactive online software (DropViz), serves as a reference for development, disease, and evolution.
Collapse
Affiliation(s)
- Arpiar Saunders
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Evan Z Macosko
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA.
| | - Alec Wysoker
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Melissa Goldman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Fenna M Krienen
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Heather de Rivera
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Elizabeth Bien
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Matthew Baum
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Laura Bortolin
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shuyu Wang
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Aleksandrina Goeva
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - James Nemesh
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nolan Kamitaki
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sara Brumbaugh
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - David Kulp
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Steven A McCarroll
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
143
|
Tingley D, Alexander AS, Quinn LK, Chiba AA, Nitz D. Multiplexed oscillations and phase rate coding in the basal forebrain. SCIENCE ADVANCES 2018; 4:eaar3230. [PMID: 30083600 PMCID: PMC6070333 DOI: 10.1126/sciadv.aar3230] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 06/19/2018] [Indexed: 05/30/2023]
Abstract
Complex behaviors demand temporal coordination among functionally distinct brain regions. The basal forebrain's afferent and efferent structure suggests a capacity for mediating this coordination at a large scale. During performance of a spatial orientation task, synaptic activity in this region was dominated by four amplitude-independent oscillations temporally organized by the phase of the slowest, a theta-frequency rhythm. Oscillation amplitudes were also organized by task epoch and positively correlated to the task-related modulation of individual neuron firing rates. For many neurons, spiking was temporally organized through phase precession against theta band field potential oscillations. Theta phase precession advanced in parallel to task progression, rather than absolute spatial location or time. Together, the findings reveal a process by which associative brain regions can integrate independent oscillatory inputs and transform them into sequence-specific, rate-coded outputs that are adaptive to the pace with which organisms interact with their environment.
Collapse
Affiliation(s)
- David Tingley
- New York University (NYU) Neuroscience Institute, School of Medicine, NYU, New York, NY 10016, USA
- Department of Cognitive Science, University of California, San Diego, San Diego, CA 92093–0515, USA
| | - Andrew S. Alexander
- Department of Cognitive Science, University of California, San Diego, San Diego, CA 92093–0515, USA
- Department of Psychological and Brain Science, Boston University, Boston, MA 02215, USA
| | - Laleh K. Quinn
- Department of Cognitive Science, University of California, San Diego, San Diego, CA 92093–0515, USA
| | - Andrea A. Chiba
- Department of Cognitive Science, University of California, San Diego, San Diego, CA 92093–0515, USA
| | - Douglas Nitz
- Department of Cognitive Science, University of California, San Diego, San Diego, CA 92093–0515, USA
| |
Collapse
|
144
|
Longitudinal Alzheimer’s Degeneration Reflects the Spatial Topography of Cholinergic Basal Forebrain Projections. Cell Rep 2018; 24:38-46. [DOI: 10.1016/j.celrep.2018.06.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/09/2018] [Accepted: 05/30/2018] [Indexed: 10/28/2022] Open
|
145
|
Segregation of the human basal forebrain using resting state functional MRI. Neuroimage 2018; 173:287-297. [DOI: 10.1016/j.neuroimage.2018.02.042] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/19/2018] [Accepted: 02/21/2018] [Indexed: 12/11/2022] Open
|
146
|
Staib JM, Della Valle R, Knox DK. Disruption of medial septum and diagonal bands of Broca cholinergic projections to the ventral hippocampus disrupt auditory fear memory. Neurobiol Learn Mem 2018; 152:71-79. [PMID: 29783059 DOI: 10.1016/j.nlm.2018.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 04/24/2018] [Accepted: 05/17/2018] [Indexed: 01/08/2023]
Abstract
In classical fear conditioning, a neutral conditioned stimulus (CS) is paired with an aversive unconditioned stimulus (US), which leads to a fear memory. If the CS is repeatedly presented without the US after fear conditioning, the formation of an extinction memory occurs, which inhibits fear memory expression. A previous study has demonstrated that selective cholinergic lesions in the medial septum and vertical limb of the diagonal bands of Broca (MS/vDBB) prior to fear and extinction learning disrupt contextual fear memory discrimination and acquisition of extinction memory. MS/vDBB cholinergic neurons project to a number of substrates that are critical for fear and extinction memory. However, it is currently unknown which of these efferent projections are critical for contextual fear memory discrimination and extinction memory. To address this, we induced cholinergic lesions in efferent targets of MS/vDBB cholinergic neurons. These included the dorsal hippocampus (dHipp), ventral hippocampus (vHipp), medial prefrontal cortex (mPFC), and in the mPFC and dHipp combined. None of these lesion groups exhibited deficits in contextual fear memory discrimination or extinction memory. However, vHipp cholinergic lesions disrupted auditory fear memory. Because MS/vDBB cholinergic neurons are the sole source of acetylcholine in the vHipp, these results suggest that MS/vDBB cholinergic input to the vHipp is critical for auditory fear memory. Taken together with previous findings, the results of this study suggest that MS/vDBB cholinergic neurons are critical for fear and extinction memory, though further research is needed to elucidate the role of MS/vDBB cholinergic neurons in these types of emotional memory.
Collapse
Affiliation(s)
- Jennifer M Staib
- University of Delaware, Department of Psychological and Brain Sciences, United States
| | - Rebecca Della Valle
- University of Delaware, Department of Psychological and Brain Sciences, United States
| | - Dayan K Knox
- University of Delaware, Department of Psychological and Brain Sciences, United States.
| |
Collapse
|
147
|
Schmitz TW, Duncan J. Normalization and the Cholinergic Microcircuit: A Unified Basis for Attention. Trends Cogn Sci 2018; 22:422-437. [PMID: 29576464 DOI: 10.1016/j.tics.2018.02.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/23/2018] [Accepted: 02/26/2018] [Indexed: 12/22/2022]
Abstract
Attention alters three key properties of population neural activity - firing rate, rate variability, and shared variability between neurons. All three properties are well explained by a single canonical computation - normalization - that acts across hierarchically integrated brain systems. Combining data from rodents and nonhuman primates, we argue that cortical cholinergic modulation originating from the basal forebrain closely mimics the effects of directed attention on these three properties of population neural activity. Cholinergic modulation of the cortical microcircuit underlying normalization may represent a key biological basis for the rapid and flexible changes in population neuronal coding that are required by directed attention.
Collapse
Affiliation(s)
- Taylor W Schmitz
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, 3801 rue University, Montreal, QC, H3A 2B4, Canada.
| | - John Duncan
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, UK; Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford OX1 3UD, UK
| |
Collapse
|
148
|
Huppé-Gourgues F, Jegouic K, Vaucher E. Topographic Organization of Cholinergic Innervation From the Basal Forebrain to the Visual Cortex in the Rat. Front Neural Circuits 2018; 12:19. [PMID: 29662442 PMCID: PMC5890115 DOI: 10.3389/fncir.2018.00019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/19/2018] [Indexed: 12/20/2022] Open
Abstract
Acetylcholine is an important neurotransmitter for the regulation of visual attention, plasticity, and perceptual learning. It is released in the visual cortex predominantly by cholinergic projections from the basal forebrain, where stimulation may produce potentiation of visual processes. However, little is known about the fine organization of these corticopetal projections, such as whether basal forebrain neurons projecting to the primary and secondary visual cortical areas (V1 and V2, respectively) are organized retinotopically. The aim of this study was to map these basal forebrain-V1/V2 projections. Microinjections of the fluorescent retrograde tracer cholera toxin b fragment in different sites within V1 and V2 in Long–Evans rats were performed. Retrogradely labeled cell bodies in the horizontal and vertical limbs of the diagonal band of Broca (HDB and VDB, respectively), nucleus basalis magnocellularis, and substantia innominata (SI), were mapped ex vivo with a computer-assisted microscope stage controlled by stereological software. Choline acetyltranferase immunohistochemistry was used to identify cholinergic cells. Our results showed a predominance of cholinergic projections coming from the HDB. These projections were not retinotopically organized but projections to V1 arised from neurons located in the anterior HDB/SI whereas projections to V2 arised from neurons located throughout the whole extent of HDB/SI. The absence of a clear topography of these projections suggests that BF activation can stimulate visual cortices broadly.
Collapse
Affiliation(s)
- Frédéric Huppé-Gourgues
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'Optométrie, Université de Montréal, Montreal, QC, Canada.,École de Psychologie, Université de Moncton, Moncton, NB, Canada
| | - Karim Jegouic
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'Optométrie, Université de Montréal, Montreal, QC, Canada
| | - Elvire Vaucher
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'Optométrie, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
149
|
McFarland DJ. How neuroscience can inform the study of individual differences in cognitive abilities. Rev Neurosci 2018; 28:343-362. [PMID: 28195556 DOI: 10.1515/revneuro-2016-0073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/17/2016] [Indexed: 02/06/2023]
Abstract
Theories of human mental abilities should be consistent with what is known in neuroscience. Currently, tests of human mental abilities are modeled by cognitive constructs such as attention, working memory, and speed of information processing. These constructs are in turn related to a single general ability. However, brains are very complex systems and whether most of the variability between the operations of different brains can be ascribed to a single factor is questionable. Research in neuroscience suggests that psychological processes such as perception, attention, decision, and executive control are emergent properties of interacting distributed networks. The modules that make up these networks use similar computational processes that involve multiple forms of neural plasticity, each having different time constants. Accordingly, these networks might best be characterized in terms of the information they process rather than in terms of abstract psychological processes such as working memory and executive control.
Collapse
|
150
|
Unal G, Crump MG, Viney TJ, Éltes T, Katona L, Klausberger T, Somogyi P. Spatio-temporal specialization of GABAergic septo-hippocampal neurons for rhythmic network activity. Brain Struct Funct 2018; 223:2409-2432. [PMID: 29500537 PMCID: PMC5968071 DOI: 10.1007/s00429-018-1626-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/10/2018] [Indexed: 01/06/2023]
Abstract
Medial septal GABAergic neurons of the basal forebrain innervate the hippocampus and related cortical areas, contributing to the coordination of network activity, such as theta oscillations and sharp wave-ripple events, via a preferential innervation of GABAergic interneurons. Individual medial septal neurons display diverse activity patterns, which may be related to their termination in different cortical areas and/or to the different types of innervated interneurons. To test these hypotheses, we extracellularly recorded and juxtacellularly labeled single medial septal neurons in anesthetized rats in vivo during hippocampal theta and ripple oscillations, traced their axons to distant cortical target areas, and analyzed their postsynaptic interneurons. Medial septal GABAergic neurons exhibiting different hippocampal theta phase preferences and/or sharp wave-ripple related activity terminated in restricted hippocampal regions, and selectively targeted a limited number of interneuron types, as established on the basis of molecular markers. We demonstrate the preferential innervation of bistratified cells in CA1 and of basket cells in CA3 by individual axons. One group of septal neurons was suppressed during sharp wave-ripples, maintained their firing rate across theta and non-theta network states and mainly fired along the descending phase of CA1 theta oscillations. In contrast, neurons that were active during sharp wave-ripples increased their firing significantly during "theta" compared to "non-theta" states, with most firing during the ascending phase of theta oscillations. These results demonstrate that specialized septal GABAergic neurons contribute to the coordination of network activity through parallel, target area- and cell type-selective projections to the hippocampus.
Collapse
Affiliation(s)
- Gunes Unal
- Department of Pharmacology, Mansfield Rd, University of Oxford, Oxford, OX1 3QT, UK.
- Department of Psychology, Bogazici University, 34342, Istanbul, Turkey.
| | - Michael G Crump
- Department of Pharmacology, Mansfield Rd, University of Oxford, Oxford, OX1 3QT, UK
| | - Tim J Viney
- Department of Pharmacology, Mansfield Rd, University of Oxford, Oxford, OX1 3QT, UK
| | - Tímea Éltes
- Department of Pharmacology, Mansfield Rd, University of Oxford, Oxford, OX1 3QT, UK
- Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083, Budapest, Hungary
| | - Linda Katona
- Department of Pharmacology, Mansfield Rd, University of Oxford, Oxford, OX1 3QT, UK
| | - Thomas Klausberger
- Center for Brain Research, Medical University of Vienna, 1090, Vienna, Austria
| | - Peter Somogyi
- Department of Pharmacology, Mansfield Rd, University of Oxford, Oxford, OX1 3QT, UK.
- Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083, Budapest, Hungary.
| |
Collapse
|