101
|
Böckmann RA, Grubmüller H. Conformational dynamics of the F1-ATPase beta-subunit: a molecular dynamics study. Biophys J 2003; 85:1482-91. [PMID: 12944266 PMCID: PMC1303325 DOI: 10.1016/s0006-3495(03)74581-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
According to the different nucleotide occupancies of the F(1)-ATPase beta-subunits and due to the asymmetry imposed through the central gamma-subunit, the beta-subunit adopts different conformations in the crystal structures. Recently, a spontaneous and nucleotide-independent closure of the open beta-subunit upon rotation of the gamma-subunit has been proposed. To address the question whether this closure is dictated by interactions to neighbored subunits or whether the open beta-subunit behaves like a prestressed "spring," we report multinanosecond molecular dynamics simulations of the isolated beta-subunit with different start conformations and different nucleotide occupancies. We have observed a fast, spontaneous closure motion of the open beta(E)-subunit, consistent with the available x-ray structures. The motions and kinetics are similar to those observed in simulations of the full (alpha beta)(3)gamma-complex, which support the view of a prestressed "spring," i.e., that forces internal to the beta(E)-subunit dominate possible interactions from adjacent alpha-subunits. Additionally, nucleotide removal is found to trigger conformational transitions of the closed beta(TP)-subunit; this provides evidence that the recently resolved half-closed beta-subunit conformation is an intermediate state before product release. The observed motions provide a plausible explanation why ADP and P(i) are required for the release of bound ATP and why gamma-depleted (alpha beta)(3) has a drastically reduced hydrolysis rate.
Collapse
Affiliation(s)
- Rainer A Böckmann
- Theoretical Molecular Biophysics Group, Max-Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | |
Collapse
|
102
|
Engel A. Robert Feulgen Lecture. Microscopic assessment of membrane protein structure and function. Histochem Cell Biol 2003; 120:93-102. [PMID: 12898277 DOI: 10.1007/s00418-003-0560-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2003] [Indexed: 11/25/2022]
Abstract
Membrane proteins represent an important class of proteins that are encoded by about 40% of all genes, but compared to soluble proteins structural information is sparse. Most of the atomic coordinates currently available are from bacterial membrane proteins and have been obtained by X-ray crystallography. Recent results demonstrate the imaging power of the atomic force microscope and the accuracy of electron crystallography. These methods allow membrane proteins to be studied while embedded in the bilayer, and thus in a functional state. The low signal-to-noise ratio of cryoelectron microscopy is overcome by crystallizing membrane proteins in a two-dimensional protein-lipid membrane, allowing its atomic structure to be determined. In contrast, the high signal-to-noise ratio of atomic force microscopy allows individual protein surfaces to be imaged at subnanometer resolution, and their conformational states to be sampled. This review discusses examples of microscopic membrane protein structure determination and illuminates recent progress.
Collapse
Affiliation(s)
- Andreas Engel
- M.E. Müller Institute for Microscopy, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland.
| |
Collapse
|
103
|
Cook GM, Keis S, Morgan HW, von Ballmoos C, Matthey U, Kaim G, Dimroth P. Purification and biochemical characterization of the F1Fo-ATP synthase from thermoalkaliphilic Bacillus sp. strain TA2.A1. J Bacteriol 2003; 185:4442-9. [PMID: 12867453 PMCID: PMC165752 DOI: 10.1128/jb.185.15.4442-4449.2003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2003] [Accepted: 05/01/2003] [Indexed: 11/20/2022] Open
Abstract
We describe here purification and biochemical characterization of the F(1)F(o)-ATP synthase from the thermoalkaliphilic organism Bacillus sp. strain TA2.A1. The purified enzyme produced the typical subunit pattern of an F(1)F(o)-ATP synthase on a sodium dodecyl sulfate-polyacrylamide gel, with F(1) subunits alpha, beta, gamma, delta, and epsilon and F(o) subunits a, b, and c. The subunits were identified by N-terminal protein sequencing and mass spectroscopy. A notable feature of the ATP synthase from strain TA2.A1 was its specific blockage in ATP hydrolysis activity. ATPase activity was unmasked by using the detergent lauryldimethylamine oxide (LDAO), which activated ATP hydrolysis >15-fold. This activation was the same for either the F(1)F(o) holoenzyme or the isolated F(1) moiety, and therefore latent ATP hydrolysis activity is an intrinsic property of F(1). After reconstitution into proteoliposomes, the enzyme catalyzed ATP synthesis driven by an artificially induced transmembrane electrical potential (Deltapsi). A transmembrane proton gradient or sodium ion gradient in the absence of Deltapsi was not sufficient to drive ATP synthesis. ATP synthesis was eliminated by the electrogenic protonophore carbonyl cyanide m-chlorophenylhydrazone, while the electroneutral Na(+)/H(+) antiporter monensin had no effect. Neither ATP synthesis nor ATP hydrolysis was stimulated by Na(+) ions, suggesting that protons are the coupling ions of the ATP synthase from strain TA2.A1, as documented previously for mesophilic alkaliphilic Bacillus species. The ATP synthase was specifically modified at its c subunits by N,N'-dicyclohexylcarbodiimide, and this modification inhibited ATP synthesis.
Collapse
Affiliation(s)
- Gregory M Cook
- Department of Microbiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
104
|
Hisabori T, Ueoka-Nakanishi H, Konno H, Koyama F. Molecular evolution of the modulator of chloroplast ATP synthase: origin of the conformational change dependent regulation. FEBS Lett 2003; 545:71-5. [PMID: 12788494 DOI: 10.1016/s0014-5793(03)00395-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Chloroplast ATP synthase synthesizes ATP by utilizing a proton gradient as an energy supply, which is generated by photosynthetic electron transport. The activity of the chloroplast ATP synthase is regulated in several specific ways to avoid futile hydrolysis of ATP under various physiological conditions. Several regulatory signals such as Delta mu H(+), tight binding of ADP and its release, thiol modulation, and inhibition by the intrinsic inhibitory subunit epsilon are sensed by this complex. In this review, we describe the function of two regulatory subunits, gamma and epsilon, of ATP synthase based on their possible conformational changes and discuss the evolutionary origin of these regulation systems.
Collapse
Affiliation(s)
- Toru Hisabori
- Chemical Resources Laboratory, Tokyo Institute of Technology, and ATP System Project, Exploratory Research for Advanced Technology, Japan Science and Technology Corporation, Yokohama, Japan.
| | | | | | | |
Collapse
|
105
|
Murata T, Arechaga I, Fearnley IM, Kakinuma Y, Yamato I, Walker JE. The membrane domain of the Na+-motive V-ATPase from Enterococcus hirae contains a heptameric rotor. J Biol Chem 2003; 278:21162-7. [PMID: 12651848 DOI: 10.1074/jbc.m301620200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In F-ATPases, ATP hydrolysis is coupled to translocation of ions through membranes by rotation of a ring of c subunits in the membrane. The ring is attached to a central shaft that penetrates the catalytic domain, which has pseudo-3-fold symmetry. The ion translocation pathway lies between the external circumference of the ring and another hydrophobic protein. The H+ or Na+:ATP ratio depends upon the number of ring protomers, each of which has an essential carboxylate involved directly in ion translocation. This number and the ratio differ according to the source, and 10, 11, and 14 protomers have been found in various enzymes, with corresponding calculated H+ or Na+:ATP ratios of 3.3, 3.7, and 4.7. V-ATPases are related in structure and function to F-ATPases. Oligomers of subunit K from the Na+-motive V-ATPase of Enterococcus hirae also form membrane rings but, as reported here, with 7-fold symmetry. Each protomer has one essential carboxylate. Thus, hydrolysis of one ATP provides energy to extrude 2.3 sodium ions. Symmetry mismatch between the catalytic and membrane domains appears to be an intrinsic feature of both V- and F-ATPases.
Collapse
Affiliation(s)
- Takeshi Murata
- Medical Research Council Dunn Human Nutrition Unit, Hills Road, Cambridge CB2 2XY, United Kingdom
| | | | | | | | | | | |
Collapse
|
106
|
Kadenbach B. Intrinsic and extrinsic uncoupling of oxidative phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1604:77-94. [PMID: 12765765 DOI: 10.1016/s0005-2728(03)00027-6] [Citation(s) in RCA: 369] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This article reviews parameters of extrinsic uncoupling of oxidative phosphorylation (OxPhos) in mitochondria, based on induction of a proton leak across the inner membrane. The effects of classical uncouplers, fatty acids, uncoupling proteins (UCP1-UCP5) and thyroid hormones on the efficiency of OxPhos are described. Furthermore, the present knowledge on intrinsic uncoupling of cytochrome c oxidase (decrease of H(+)/e(-) stoichiometry=slip) is reviewed. Among the three proton pumps of the respiratory chain of mitochondria and bacteria, only cytochrome c oxidase is known to exhibit a slip of proton pumping. Intrinsic uncoupling was shown after chemical modification, by site-directed mutagenesis of the bacterial enzyme, at high membrane potential DeltaPsi, and in a tissue-specific manner to increase thermogenesis in heart and skeletal muscle by high ATP/ADP ratios, and in non-skeletal muscle tissues by palmitate. In addition, two mechanisms of respiratory control are described. The first occurs through the membrane potential DeltaPsi and maintains high DeltaPsi values (150-200 mV). The second occurs only in mitochondria, is suggested to keep DeltaPsi at low levels (100-150 mV) through the potential dependence of the ATP synthase and the allosteric ATP inhibition of cytochrome c oxidase at high ATP/ADP ratios, and is reversibly switched on by cAMP-dependent phosphorylation. Finally, the regulation of DeltaPsi and the production of reactive oxygen species (ROS) in mitochondria at high DeltaPsi values (150-200 mV) are discussed.
Collapse
Affiliation(s)
- Bernhard Kadenbach
- Fachbereich Chemie, Philipps-Universität, Hans-Meerwein-Strasse, D-35032 Marburg, Germany.
| |
Collapse
|
107
|
Lolkema JS, Boekema EJ. The A-type ATP synthase subunit K of Methanopyrus kandleri is deduced from its sequence to form a monomeric rotor comprising 13 hairpin domains. FEBS Lett 2003; 543:47-50. [PMID: 12753903 DOI: 10.1016/s0014-5793(03)00398-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ntpK gene of the archaeon Methanopyrus kandleri encodes the equivalent of the c subunit of ATP synthase. The gene product contains 1021 residues and consists of 13 homologous domains, each one corresponding to a single helical hairpin. The amino acid sequence of the domains is highly conserved, ranging between 50 and 80% sequence identity. Each of the 13 domains contains a conserved Gln and Glu residue in the N- and C-terminal helix, respectively, both of which are believed to be involved in cation binding. The protein is likely to form the monomeric rotor of the ATP synthase that consists of 13 hairpin domains.
Collapse
Affiliation(s)
- Juke S Lolkema
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN, Haren, The Netherlands.
| | | |
Collapse
|
108
|
Stahlberg H, Engel A, Philippsen A. Assessing the structure of membrane proteins: combining different methods gives the full picture. Biochem Cell Biol 2003; 80:563-8. [PMID: 12440697 DOI: 10.1139/o02-160] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The rotor stoichiometry of F-ATPases has been revealed by the combined approaches of X-ray diffraction (XRD), electron crystallography, and atomic force microscopy (AFM). XRD showed the rotor from the yeast mitochondrial F-ATPase to contain 10 subunits. AFM was used to visualize the tetradecameric chloroplast rotors, and electron crystallography and AFM together revealed the rotors from Ilyobacter tartaricus to be composed of 11 subunits. While biochemical methods had determined an approximate stoichiometric value, precise measurements and new insights into a species-dependent rotor stoichiometry became available by applying the three structural tools together. The structures of AQP1, a water channel, and G1pF, a glycerol channel, were determined by electron crystallography and XRD. The combination of both of these structural tools with molecular dynamics simulations gave a differentiated description of the mechanisms determining the selectivity of water and glycerol channels. This illustrates that the combination of different methods in structural biology reveals more than each method alone.
Collapse
|
109
|
Abstract
Proton channels exist in a wide variety of membrane proteins where they transport protons rapidly and efficiently. Usually the proton pathway is formed mainly by water molecules present in the protein, but its function is regulated by titratable groups on critical amino acid residues in the pathway. All proton channels conduct protons by a hydrogen-bonded chain mechanism in which the proton hops from one water or titratable group to the next. Voltage-gated proton channels represent a specific subset of proton channels that have voltage- and time-dependent gating like other ion channels. However, they differ from most ion channels in their extraordinarily high selectivity, tiny conductance, strong temperature and deuterium isotope effects on conductance and gating kinetics, and insensitivity to block by steric occlusion. Gating of H(+) channels is regulated tightly by pH and voltage, ensuring that they open only when the electrochemical gradient is outward. Thus they function to extrude acid from cells. H(+) channels are expressed in many cells. During the respiratory burst in phagocytes, H(+) current compensates for electron extrusion by NADPH oxidase. Most evidence indicates that the H(+) channel is not part of the NADPH oxidase complex, but rather is a distinct and as yet unidentified molecule.
Collapse
Affiliation(s)
- Thomas E Decoursey
- Department of Molecular Biophysics and Physiology, Rush Presbyterian St. Luke's Medical Center, Chicago, Illinois 60612, USA.
| |
Collapse
|
110
|
Sugiyama K, Hisabori T. Conformational change of the chloroplast ATP synthase on the enzyme activation process detected by the trypsin sensitivity of the gamma subunit. Biochem Biophys Res Commun 2003; 301:311-6. [PMID: 12565861 DOI: 10.1016/s0006-291x(02)03022-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Delta mu H(+) is known to stimulate the enzyme activity of chloroplast ATP synthase in addition to its important role as energy supply for ATP synthesis. In the present study, we focused on the relationship between the proton translocation via the membrane sector of ATP synthase, F(o), and the conformational change of the central stalk subunit gamma. The conformational change of CF(1) mainly at the gamma subunit was induced by the proton flow via F(o) in the absence of substrates. The effects of inhibitors on CF(o) or CF(1) for this conformational change were also examined. The observed conformational change was partially suppressed by ADP binding. From these results, we propose the Delta mu H(+)-dependent conformational change of CF(1) on the enzyme activation process, which is affected by both ADP binding to the catalytic sites and proton flow via F(o) portion.
Collapse
Affiliation(s)
- Kenji Sugiyama
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259, Midori-Ku, Yokohama 226-8503, Japan
| | | |
Collapse
|
111
|
Turina P, Samoray D, Gräber P. H+/ATP ratio of proton transport-coupled ATP synthesis and hydrolysis catalysed by CF0F1-liposomes. EMBO J 2003; 22:418-26. [PMID: 12554643 PMCID: PMC140756 DOI: 10.1093/emboj/cdg073] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The H(+)/ATP ratio and the standard Gibbs free energy of ATP synthesis were determined with a new method using a chemiosmotic model system. The purified H(+)-translocating ATP synthase from chloroplasts was reconstituted into phosphatidylcholine/phosphatidic acid liposomes. During reconstitution, the internal phase was equilibrated with the reconstitution medium, and thereby the pH of the internal liposomal phase, pH(in), could be measured with a conventional glass electrode. The rates of ATP synthesis and hydrolysis were measured with the luciferin/luciferase assay after an acid-base transition at different [ATP]/([ADP][P(i)]) ratios as a function of deltapH, analysing the range from the ATP synthesis to the ATP hydrolysis direction and the deltapH at equilibrium, deltapH (eq) (zero net rate), was determined. The analysis of the [ATP]/([ADP][P(i)]) ratio as a function of deltapH (eq) and of the transmembrane electrochemical potential difference, delta micro approximately (H)(+) (eq), resulted in H(+)/ATP ratios of 3.9 +/- 0.2 at pH 8.45 and 4.0 +/- 0.3 at pH 8.05. The standard Gibbs free energies of ATP synthesis were determined to be 37 +/- 2 kJ/mol at pH 8.45 and 36 +/- 3 kJ/mol at pH 8.05.
Collapse
Affiliation(s)
| | - Dietrich Samoray
- Laboratory of Biochemistry and Biophysics, Department of Biology, University of Bologna, Via Irnerio 42, I-40126 Bologna, Italy and
Institut für Physikalische Chemie, Universität Freiburg, Albertstraße 23a, D-79104 Freiburg, Germany Corresponding author e-mail:
| | - Peter Gräber
- Laboratory of Biochemistry and Biophysics, Department of Biology, University of Bologna, Via Irnerio 42, I-40126 Bologna, Italy and
Institut für Physikalische Chemie, Universität Freiburg, Albertstraße 23a, D-79104 Freiburg, Germany Corresponding author e-mail:
| |
Collapse
|
112
|
Scheuring S, Seguin J, Marco S, Lévy D, Breyton C, Robert B, Rigaud JL. AFM characterization of tilt and intrinsic flexibility of Rhodobacter sphaeroides light harvesting complex 2 (LH2). J Mol Biol 2003; 325:569-80. [PMID: 12498803 DOI: 10.1016/s0022-2836(02)01241-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Atomic force microscopy (AFM) has developed into a powerful tool to investigate membrane protein surfaces in a close-to-native environment. Here we report on the surface topography of Rhodobacter sphaeroides light harvesting complex 2 (LH2) reconstituted into two-dimensional crystals. These photosynthetic trans-membrane proteins formed cylindrical oligomeric complexes, which inserted tilted into the lipid membrane. This peculiar packing of an integral membrane protein allowed us to determine oligomerization and tilt of the LH2 complexes, but also protrusion height and intrinsic flexibility of their individual subunits. Furthermore the surface contouring reliability and limits of the atomic force microscopy could be studied. The two-dimensional crystals examined had sizes of up to 5 microm and, as revealed by a 10 A cryo electron microscopy projection map, p22(1)2(1) crystal symmetry. The unit cell had dimensions of a = b = 150 A and gamma = 90 degrees, and housed four nonameric complexes, two pointing up and two pointing down. AFM topographs of these 2D crystals had a lateral resolution of 10 A. Further, the high vertical resolution of approximately 1 A, allowed the protrusion height of the cylindrical LH2 complexes over the membrane to be determined. This was maximally 13.1 A on one side and 3.8 A on the other. Interestingly, the protrusion height varied across the LH2 complexes, showing the complexes to be inserted with a 6.2 degree tilt with respect to the membrane plane. A detailed analysis of the individual subunits showed the intrinsic flexibility of the membrane protruding peptide stretches to be equal and independent of their protrusion height. Furthermore, our analysis of membrane proteins within this peculiar packing confirmed the high vertical resolution of the atomic force microscopy on biological samples, and led us to conclude that the image acquisition function was equally accurate for contouring protrusions with heights up to approximately 15 A.
Collapse
Affiliation(s)
- Simon Scheuring
- Institut Curie, UMR-CNRS 168 and LRC-CEA 34V, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05, France.
| | | | | | | | | | | | | |
Collapse
|
113
|
Meier T, Matthey U, von Ballmoos C, Vonck J, Krug von Nidda T, Kühlbrandt W, Dimroth P. Evidence for structural integrity in the undecameric c-rings isolated from sodium ATP synthases. J Mol Biol 2003; 325:389-97. [PMID: 12488103 DOI: 10.1016/s0022-2836(02)01204-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The Na(+)-translocating ATP synthases from Ilyobacter tartaricus and Propionigenium modestum contain undecameric c subunit rings of unusual stability. These c(11) rings have been isolated from both ATP synthases and crystallized in two dimensions. Cryo-transmission electron microscopy projection maps of the c-rings from both organisms were identical at 7A resolution. Different crystal contacts were induced after treatment of the crystals with dicyclohexylcarbodiimide (DCCD), which is consistent with the binding of the inhibitor to glutamate 65 in the C-terminal helix on the outside of the ring. The c subunits of the isolated c(11) ring of I.tartaricus were modified specifically by incubation with DCCD with kinetics that were indistinguishable from those of the F(1)F(o) holoenzyme. The reaction rate increased with decreasing pH but was lower in the presence of Na(+). From the pH profile of the second-order rate constants, the pK of glutamate 65 was deduced to be 6.6 or 6.2 in the absence or presence of 0.5mM NaCl, respectively. These pK values are identical with those determined for the F(1)F(o) complex. The results indicate that the isolated c-ring retains its native structure, and that the glutamate 65, including binding sites near the middle of the membrane, are accessible to Na(+) from the cytoplasm through access channels within the c-ring itself.
Collapse
Affiliation(s)
- Thomas Meier
- ETH-Zentrum, Institut für Mikrobiologie, Eidgenössische Technische Hochschule, Schmelzbergstr. 7, CH-8092 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
114
|
Nelson N, Sacher A, Nelson H. The significance of molecular slips in transport systems. Nat Rev Mol Cell Biol 2002; 3:876-81. [PMID: 12415305 DOI: 10.1038/nrm955] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The advantage of precision in biological processes is obvious; however, in many cases, deviations from the faithful mechanisms occur. Here, we discuss how in-built operating imperfections in transport systems can actually benefit a cell.
Collapse
Affiliation(s)
- Nathan Nelson
- Department of Biochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | | | | |
Collapse
|
115
|
von Ballmoos C, Meier T, Dimroth P. Membrane embedded location of Na+ or H+ binding sites on the rotor ring of F1F0 ATP synthases. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:5581-9. [PMID: 12423357 DOI: 10.1046/j.1432-1033.2002.03264.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent crosslinking studies indicated the localization of the coupling ion binding site in the Na+-translocating F1F0 ATP synthase of Ilyobacter tartaricus within the hydrophobic part of the bilayer. Similarly, a membrane embedded H+-binding site is accepted for the H+-translocating F1F0 ATP synthase of Escherichia coli. For a more definite analysis, we performed parallax analysis of fluorescence quenching with ATP synthases from both I. tartaricus and E. coli. Both ATP synthases were specifically labelled at their c subunit sites with N-cyclohexyl-N'-(1-pyrenyl)carbodiimide, a fluorescent analogue of dicyclohexylcarbodiimide and the enzymes were reconstituted into proteoliposomes. Using either soluble quenchers or spinlabelled phospholipids, we observed a deeply membrane embedded binding site, which was quantitatively determined for I. tartaricus and E. coli to be 1.3 +/- 2.4 A and 1.8 +/- 2.8 A from the bilayer center apart, respectively. These data show a conserved topology among enzymes of different species. We further demonstrated the direct accessibility for Na+ ions to the binding sites in the reconstituted I. tartaricus c11 oligomer in the absence of any other subunits, pointing to intrinsic rotor channels. The common membrane embedded location of the binding site of ATP synthases suggest a common mechanism for ion transfer across the membrane.
Collapse
Affiliation(s)
- Christoph von Ballmoos
- Institut für Mikrobiologie der Eidgenössischen Technischen Hochschule, ETH Zentrum, Zürich, Switzerland
| | | | | |
Collapse
|
116
|
Meier T, Dimroth P. Intersubunit bridging by Na+ ions as a rationale for the unusual stability of the c-rings of Na+-translocating F1F0 ATP synthases. EMBO Rep 2002; 3:1094-8. [PMID: 12393753 PMCID: PMC1307599 DOI: 10.1093/embo-reports/kvf216] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2002] [Revised: 09/06/2002] [Accepted: 09/12/2002] [Indexed: 11/13/2022] Open
Abstract
The oligomeric c-rings of Na+-translocating F1F0 ATP synthases exhibit unusual stability, resisting even boiling in SDS. Here, we show that the molecular basis for this remarkable property is intersubunit crossbridging by Na+ or Li+ ions. The heat stability of c11 was dependent on the presence of Na+ or Li+ ions. For equal stability, 10 times higher Li+ than Na+ concentrations were required, reflecting the 10 times lower binding affinity for Li+ than for Na+. In a recent structural model of c11, the Na+ or Li+ binding ligands are located on neighboring c-subunits, which thus become crossbridged by the binding of either alkali ion with a concomitant increase in the stability of the ring. Site-directed mutagenesis strengthens the essential role of glutamate 65 in the crossbridging of the subunits and also corroborates the proposed stabilizing effect of an ion bridge including aspartate 2.
Collapse
Affiliation(s)
- Thomas Meier
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule, ETH-Zentrum, CH-8092 Zürich, Switzerland
| | - Peter Dimroth
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule, ETH-Zentrum, CH-8092 Zürich, Switzerland
| |
Collapse
|
117
|
Fillingame RH, Dmitriev OY. Structural model of the transmembrane Fo rotary sector of H+-transporting ATP synthase derived by solution NMR and intersubunit cross-linking in situ. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1565:232-45. [PMID: 12409198 DOI: 10.1016/s0005-2736(02)00572-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
H(+)-transporting, F(1)F(o)-type ATP synthases utilize a transmembrane H(+) potential to drive ATP formation by a rotary catalytic mechanism. ATP is formed in alternating beta subunits of the extramembranous F(1) sector of the enzyme, synthesis being driven by rotation of the gamma subunit in the center of the F(1) molecule between the alternating catalytic sites. The H(+) electrochemical potential is thought to drive gamma subunit rotation by first coupling H(+) transport to rotation of an oligomeric rotor of c subunits within the transmembrane F(o) sector. The gamma subunit is forced to turn with the c-oligomeric rotor due to connections between subunit c and the gamma and epsilon subunits of F(1). In this essay we will review recent studies on the Escherichia coli F(o) sector. The monomeric structure of subunit c, determined by NMR, shows that subunit c folds in a helical hairpin with the proton carrying Asp(61) centered in the second transmembrane helix (TMH). A model for the structural organization of the c(10) oligomer in F(o) was deduced from extensive cross-linking studies and by molecular modeling. The model indicates that the H(+)-carrying carboxyl of subunit c is occluded between neighboring subunits of the c(10) oligomer and that two c subunits pack in a "front-to-back" manner to form the H(+) (cation) binding site. In order for protons to gain access to Asp(61) during the protonation/deprotonation cycle, we propose that the outer, Asp(61)-bearing TMH-2s of the c-ring and TMHs from subunits composing the inlet and outlet channels must turn relative to each other, and that the swiveling motion associated with Asp(61) protonation/deprotonation drives the rotation of the c-ring. The NMR structures of wild-type subunit c differs according to the protonation state of Asp(61). The idea that the conformational state of subunit c changes during the catalytic cycle is supported by the cross-linking evidence in situ, and two recent NMR structures of functional mutant proteins in which critical residues have been switched between TMH-1 and TMH-2. The structural information is considered in the context of the possible mechanism of rotary movement of the c(10) oligomer during coupled synthesis of ATP.
Collapse
Affiliation(s)
- Robert H Fillingame
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, 1300 University Avenue, Madison, WI 53706-1532, USA.
| | | |
Collapse
|
118
|
Werten PJL, Rémigy HW, de Groot BL, Fotiadis D, Philippsen A, Stahlberg H, Grubmüller H, Engel A. Progress in the analysis of membrane protein structure and function. FEBS Lett 2002; 529:65-72. [PMID: 12354615 DOI: 10.1016/s0014-5793(02)03290-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Structural information on membrane proteins is sparse, yet they represent an important class of proteins that is encoded by about 30% of all genes. Progress has primarily been achieved with bacterial proteins, but efforts to solve the structure of eukaryotic membrane proteins are also increasing. Most of the structures currently available have been obtained by exploiting the power of X-ray crystallography. Recent results, however, have demonstrated the accuracy of electron crystallography and the imaging power of the atomic force microscope. These instruments allow membrane proteins to be studied while embedded in the bi-layer, and thus in a functional state. The low signal-to-noise ratio of cryo-electron microscopy is overcome by crystallizing membrane proteins in a two-dimensional protein-lipid membrane, allowing its atomic structure to be determined. In contrast, the high signal-to-noise ratio of atomic force microscopy allows individual protein surfaces to be imaged at sub-nanometer resolution, and their conformational states to be sampled. This review summarizes the steps in membrane protein structure determination and illuminates recent progress.
Collapse
Affiliation(s)
- P J L Werten
- M.E. Müller Institute for Microscopy, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056, Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
119
|
Wehrle F, Kaim G, Dimroth P. Molecular mechanism of the ATP synthase's F(o) motor probed by mutational analyses of subunit a. J Mol Biol 2002; 322:369-81. [PMID: 12217697 DOI: 10.1016/s0022-2836(02)00731-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The most prominent residue of subunit a of the F(1)F(o) ATP synthase is a universally conserved arginine (aR227 in Propionigenium modestum), which was reported to permit no substitution with retention of ATP synthesis or H(+)-coupled ATP hydrolysis activity. We show here that ATP synthases with R227K or R227H mutations in the P.modestum a subunit catalyse ATP-driven Na(+) transport above or below pH 8.0, respectively. Reconstituted F(o) with either mutation catalysed 22Na(+)(out)/Na(+)(in) exchange with similar pH profiles as found in ATP-driven Na(+) transport. ATP synthase with an aR227A substitution catalysed Na(+)-dependent ATP hydrolysis, which was completely inhibited by dicyclohexylcarbodiimide, but not coupled to Na(+) transport. This suggests that in the mutant the dissociation of Na(+) becomes more difficult and that the alkali ions remain therefore permanently bound to the c subunit sites. The reconstituted mutant enzyme was also able to synthesise ATP in the presence of a membrane potential, which stopped at elevated external Na(+) concentrations. These observations reinforce the importance of aR227 to facilitate the dissociation of Na(+) from approaching rotor sites. This task of aR227 was corroborated by other results with the aR227A mutant: (i) after reconstitution into liposomes, F(o) with the aR227A mutation did not catalyse 22Na(+)(out)/Na(+)(in) exchange at high internal sodium concentrations, and (ii) at a constant (Delta)pNa(+), 22Na(+) uptake was inhibited at elevated internal Na(+) concentrations. Hence, in mutant aR227A, sodium ions can only dissociate from their rotor sites into a reservoir of low sodium ion concentration, whereas in the wild-type the positively charged aR227 allows the dissociation of Na(+) even into compartments of high Na(+) concentration.
Collapse
Affiliation(s)
- Franziska Wehrle
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule, Schmelzbergstr. 7, CH-8092 Zürich, Switzerland
| | | | | |
Collapse
|
120
|
Hisabori T, Konno H, Ichimura H, Strotmann H, Bald D. Molecular devices of chloroplast F(1)-ATP synthase for the regulation. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1555:140-6. [PMID: 12206906 DOI: 10.1016/s0005-2728(02)00269-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In chloroplasts, synthesis of ATP is energetically coupled with the utilization of a proton gradient formed by photosynthetic electron transport. The involved enzyme, the chloroplast ATP synthase, can potentially hydrolyze ATP when the magnitude of the transmembrane electrochemical potential difference of protons (Delta(micro)H(+)) is small, e.g. at low light intensity or in the dark. To prevent this wasteful consumption of ATP, the activity of chloroplast ATP synthase is regulated as the occasion may demand. As regulation systems Delta(micro)H(+) activation, thiol modulation, tight binding of ADP and the role of the intrinsic inhibitory subunit epsilon is well documented. In this article, we discuss recent progress in understanding of the regulation system of the chloroplast ATP synthase at the molecular level.
Collapse
Affiliation(s)
- Toru Hisabori
- Chemical Resources Laboratory, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan.
| | | | | | | | | |
Collapse
|
121
|
Kaim G, Prummer M, Sick B, Zumofen G, Renn A, Wild UP, Dimroth P. Coupled rotation within single F0F1 enzyme complexes during ATP synthesis or hydrolysis. FEBS Lett 2002; 525:156-63. [PMID: 12163180 DOI: 10.1016/s0014-5793(02)03097-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
F0F1 ATP synthases are the smallest rotary motors in nature and work as ATP factories in bacteria, plants and animals. Here we report on the first observation of intersubunit rotation in fully coupled single F0F1 molecules during ATP synthesis or hydrolysis. We investigate the Na+-translocating ATP synthase of Propionigenium modestum specifically labeled by a single fluorophore at one c subunit using polarization-resolved confocal microscopy. Rotation during ATP synthesis was observed with the immobilized enzyme reconstituted into proteoliposomes after applying a diffusion potential, but not with a Na+ concentration gradient alone. During ATP hydrolysis, stepwise rotation of the labeled c subunit was found in the presence of 2 mM NaCl, but not without the addition of Na+ ions. Moreover, upon the incubation with the F0-specific inhibitor dicyclohexylcarbodiimide the rotation was severely inhibited.
Collapse
Affiliation(s)
- Georg Kaim
- Institute of Microbiology, ETH Zürich, Schmelzbergstrasse 7, CH-8092, Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
122
|
Vonck J, von Nidda TK, Meier T, Matthey U, Mills DJ, Kühlbrandt W, Dimroth P. Molecular architecture of the undecameric rotor of a bacterial Na+-ATP synthase. J Mol Biol 2002; 321:307-16. [PMID: 12144787 DOI: 10.1016/s0022-2836(02)00597-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The sodium ion-translocating F(1)F(0) ATP synthase from the bacterium Ilyobacter tartaricus contains a remarkably stable rotor ring composed of 11 c subunits. The rotor ring was isolated, crystallised in two dimensions and analysed by electron cryo-microscopy. Here, we present an alpha-carbon model of the c-subunit ring. Each monomeric c subunit of 89 amino acid residues folds into a helical hairpin consisting of two membrane-spanning helices and a cytoplasmic loop. The 11 N-terminal helices are closely spaced within an inner ring surrounding a cavity of approximately 17A (1.7 nm). The tight helix packing leaves no space for side-chains and is accounted for by a highly conserved motif of four glycine residues in the inner, N-terminal helix. Each inner helix is connected by a clearly visible loop to an outer C-terminal helix. The outer helix has a kink near the position of the ion-binding site residue Glu65 in the centre of the membrane and another kink near the C terminus. Two helices from the outer ring and one from the inner ring form the ion-binding site in the middle of the membrane and a potential access channel from the binding site to the cytoplasmic surface. Three possible inter-subunit ion-bridges are likely to account for the remarkable temperature stability of I.tartaricus c-rings compared to those of other organisms.
Collapse
Affiliation(s)
- Janet Vonck
- Max-Planck-Institute of Biophysics, Heinrich-Hoffmann-Str. 7, Frankfurt, Germany
| | | | | | | | | | | | | |
Collapse
|
123
|
Long JC, DeLeon-Rangel J, Vik SB. Characterization of the first cytoplasmic loop of subunit a of the Escherichia coli ATP synthase by surface labeling, cross-linking, and mutagenesis. J Biol Chem 2002; 277:27288-93. [PMID: 12021273 DOI: 10.1074/jbc.m202118200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The first cytoplasmic loop of subunit a of the Escherichia coli ATP synthase has been analyzed by cysteine substitution mutagenesis. 13 of the 26 residues tested were found to be accessible to the reaction with 3-(N-maleimidylpropionyl)-biocytin. The other 13 residues predominantly found in the central region of the polypeptide chain between the two transmembrane spans were more resistant to labeling by 3-(N-maleimidylpropionyl)-biocytin while in membrane vesicle preparations. This region of subunit a contains a conserved residue Glu-80, which when mutated to lysine resulted in a significant loss of ATP-driven proton translocation. Other substitutions including glutamine, alanine, and leucine were much less detrimental to function. Cross-linking studies with a photoactive cross-linking reagent were carried out. One mutant, K74C, was found to generate distinct cross-links to subunit b, and the cross-linking had little effect on proton translocation. The results indicate that the first transmembrane span (residues 40-64) of subunit a is probably near one or both of the b subunits and that a less accessible region of the first cytoplasmic loop (residues 75-90) is probably near the cytoplasmic surface, perhaps in contact with b subunits.
Collapse
Affiliation(s)
- Julie C Long
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275, USA
| | | | | |
Collapse
|
124
|
Ma J, Flynn TC, Cui Q, Leslie AGW, Walker JE, Karplus M. A dynamic analysis of the rotation mechanism for conformational change in F(1)-ATPase. Structure 2002; 10:921-31. [PMID: 12121647 DOI: 10.1016/s0969-2126(02)00789-x] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Molecular dynamics trajectories for the bovine mitochondrial F(1)-ATPase are used to demonstrate the motions and interactions that take place during the elementary (120 degrees rotation) step of the gamma subunit. The results show how rotation of the gamma subunit induces the observed structural changes in the catalytic beta subunits. Both steric and electrostatic interactions contribute. An "ionic track" of Arg and Lys residues on the protruding portion of the gamma subunit plays a role in guiding the motions of the beta subunits. Experimental data for mutants of the DELSEED motif and the hinge region are interpreted on the basis of the molecular dynamics results. The trajectory provides a unified dynamic description of the coupled subunit motions involved in the 120 degrees rotation cycles of F(1)-ATPase.
Collapse
Affiliation(s)
- Jianpeng Ma
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, BCM-125, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
125
|
Wehrle F, Appoldt Y, Kaim G, Dimroth P. Reconstitution of Fo of the sodium ion translocating ATP synthase of Propionigenium modestum from its heterologously expressed and purified subunits. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:2567-73. [PMID: 12027895 DOI: 10.1046/j.1432-1033.2002.02923.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The atpB and atpF genes of Propionigenium modestum were cloned as His-tag fusion constructs and expressed in Escherichia coli. Both recombinant subunits a and b were purified via Ni(2+) chelate affinity chromatography. A functionally active Fo complex was reassembled in vitro from subunits a, b and c, and incorporated into liposomes. The F(o) liposomes catalysed (22)Na(+) uptake in response to an inside negative potassium diffusion potential, and the uptake was prevented by modification of the c subunits with N,N'-dicyclohexylcarbodiimide (DCCD). In the absence of a membrane potential the Fo complexes catalysed (22)Na(+)(out)/Na(+)(in)-exchange. After F(1) addition the F(1)F(o) complex was formed and the holoenzyme catalysed ATP synthesis, ATP dependent Na(+) pumping, and ATP hydrolysis, which was inhibited by DCCD. Functional F(o) hybrids were reconstituted with recombinant subunits a and b from P. modestum and c(11) from Ilyobacter tartaricus. These Fo hybrids had Na(+) translocation activities that were not distinguishable from that of P. modestum F(o).
Collapse
Affiliation(s)
- Franziska Wehrle
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule, Zürich, Switzerland
| | | | | | | |
Collapse
|
126
|
Miles G, Movileanu L, Bayley H. Subunit composition of a bicomponent toxin: staphylococcal leukocidin forms an octameric transmembrane pore. Protein Sci 2002; 11:894-902. [PMID: 11910032 PMCID: PMC2373538 DOI: 10.1110/ps.4360102] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Staphylococcal leukocidin pores are formed by the obligatory interaction of two distinct polypeptides, one of class F and one of class S, making them unique in the family of beta-barrel pore-forming toxins (beta-PFTs). By contrast, other beta-PFTs form homo-oligomeric pores; for example, the staphylococcal alpha-hemolysin (alpha HL) pore is a homoheptamer. Here, we deduce the subunit composition of a leukocidin pore by two independent methods: gel shift electrophoresis and site-specific chemical modification during single-channel recording. Four LukF and four LukS subunits coassemble to form an octamer. This result in part explains properties of the leukocidin pore, such as its high conductance compared to the alpha HL pore. It is also pertinent to the mechanism of assembly of beta-PFT pores and suggests new possibilities for engineering these proteins.
Collapse
Affiliation(s)
- George Miles
- Department of Medical Biochemistry and Genetics, The Texas A&M University System Health Science Center, College Station, Texas 77843-1114, USA
| | | | | |
Collapse
|
127
|
Matthey U, Braun D, Dimroth P. NMR investigations of subunit c of the ATP synthase from Propionigenium modestum in chloroform/methanol/water (4 : 4 : 1). EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:1942-6. [PMID: 11952796 DOI: 10.1046/j.1432-1033.2002.02851.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The subunit c from the ATP synthase of Propionigenium modestum was studied by NMR in chloroform/methanol/water (4 : 4 : 1). In this solvent, subunit c consists of two helical segments, comprised of residues L5 to I26 and G29 to N82, respectively. On comparing the secondary structure of subunit c from P. modestum in the organic solvent mixture with that in dodecylsulfate micelles several deviations became apparent: in the organic solvent, the interruption of the alpha helical structure within the conserved GXGXGXGX motif was shortened from five to two residues, the prominent interruption of the alpha helical structure in the cystoplasmic loop region was not apparent, and neither was there a break in the alpha helix after the sodium ion-binding Glu65 residue. The folding of subunit c of P. modestum in the organic solvent also deviated from that of Escherichia coli in the same environment, the most important difference being that subunit c of P. modestum did not adopt a stable hairpin structure like subunit c of E. coli.
Collapse
Affiliation(s)
- Ulrich Matthey
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule, Zürich, Switzerland.
| | | | | |
Collapse
|
128
|
Abstract
Subunit c of the H(+) transporting ATP synthase is an essential part of its membrane domain that participates in transmembrane proton conduction. The annular architecture of the subunit c from different species has been previously reported. However, little is known about the type of interactions that affect the formation of c-rings in the ATPase complex. Here we report that subunit c over-expressed in Escherichia coli and purified in non-ionic detergent solutions self-assembles into annular structures in the absence of other subunits of the complex. The results suggest that the ability of subunit c to form rings is determined by its primary structure.
Collapse
Affiliation(s)
- Ignacio Arechaga
- The Medical Research Council Dunn Human Nutrition Unit, Hills Road, CB2 2YK, Cambridge, UK
| | | | | |
Collapse
|
129
|
Feniouk BA, Cherepanov DA, Voskoboynikova NE, Mulkidjanian AY, Junge W. Chromatophore vesicles of Rhodobacter capsulatus contain on average one F(O)F(1)-ATP synthase each. Biophys J 2002; 82:1115-22. [PMID: 11867431 PMCID: PMC1301917 DOI: 10.1016/s0006-3495(02)75470-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
ATP synthase is a unique rotary machine that uses the transmembrane electrochemical potential difference of proton (Delta(H(+))) to synthesize ATP from ADP and inorganic phosphate. Charge translocation by the enzyme can be most conveniently followed in chromatophores of phototrophic bacteria (vesicles derived from invaginations of the cytoplasmic membrane). Excitation of chromatophores by a short flash of light generates a step of the proton-motive force, and the charge transfer, which is coupled to ATP synthesis, can be spectrophotometrically monitored by electrochromic absorption transients of intrinsic carotenoids in the coupling membrane. We assessed the average number of functional enzyme molecules per chromatophore vesicle. Kinetic analysis of the electrochromic transients plus/minus specific ATP synthase inhibitors (efrapeptin and venturicidin) showed that the extent of the enzyme-related proton transfer dropped as a function of the inhibitor concentration, whereas the time constant of the proton transfer changed only marginally. Statistical analysis of the kinetic data revealed that the average number of proton-conducting F(O)F(1)-molecules per chromatophore was approximately one. Thereby chromatophores of Rhodobacter capsulatus provide a system where the coupling of proton transfer to ATP synthesis can be studied in a single enzyme/single vesicle mode.
Collapse
Affiliation(s)
- Boris A Feniouk
- Division of Biophysics, Faculty of Biology/Chemistry, University of Osnabrück, D-49069 Osnabrück, Germany
| | | | | | | | | |
Collapse
|
130
|
von Ballmoos C, Appoldt Y, Brunner J, Granier T, Vasella A, Dimroth P. Membrane topography of the coupling ion binding site in Na+-translocating F1F0 ATP synthase. J Biol Chem 2002; 277:3504-10. [PMID: 11719523 DOI: 10.1074/jbc.m110301200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A carbodiimide with a photoactivatable diazirine substituent was synthesized and incubated with the Na(+)-translocating F(1)F(0) ATP synthase from both Propionigenium modestum and Ilyobacter tartaricus. This caused severe inhibition of ATP hydrolysis activity in the absence of Na(+) ions but not in its presence, indicating the specific reaction with the Na(+) binding c-Glu(65) residue. Photocross-linking was investigated with the substituted ATP synthase from both bacteria in reconstituted 1-palmitoyl-2-oleyl-sn-glycero-3-phosphocholine (POPC)-containing proteoliposomes. A subunit c/POPC conjugate was found in the illuminated samples but no a-c cross-links were observed, not even after ATP-induced rotation of the c-ring. Our substituted diazirine moiety on c-Glu(65) was therefore in close contact with phospholipid but does not contact subunit a. Na(+)in/(22)Na(+)out exchange activity of the ATP synthase was not affected by modifying the c-Glu(65) sites with the carbodiimide, but upon photoinduced cross-linking, this activity was abolished. Cross-linking the rotor to lipids apparently arrested rotational mobility required for moving Na(+) ions back and forth across the membrane. The site of cross-linking was analyzed by digestions of the substituted POPC using phospholipases C and A(2) and by mass spectroscopy. The substitutions were found exclusively at the fatty acid side chains, which indicates that c-Glu(65) is located within the core of the membrane.
Collapse
Affiliation(s)
- Christoph von Ballmoos
- Institut für Mikrobiologie der Eidgenössischen Technischen Hochschule, ETH Zentrum, CH-8092 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
131
|
Wilkens S, Forgac M. Three-dimensional structure of the vacuolar ATPase proton channel by electron microscopy. J Biol Chem 2001; 276:44064-8. [PMID: 11533034 DOI: 10.1074/jbc.m106579200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vacuolar ATPases are ATP hydrolysis-driven proton pumps found in the endomembrane system of eucaryotic cells where they are involved in pH regulation. We have determined the three-dimensional structure of the proton channel domain of the vacuolar ATPase from bovine brain clathrin-coated vesicles by electron microscopy at 21 A resolution. The model shows an asymmetric protein ring with two small openings on the luminal side and one large opening on the cytoplasmic side. The central hole on the luminal side is covered by a globular protein, while the cytoplasmic opening is covered by two elongated proteins arranged in a collar-like fashion.
Collapse
Affiliation(s)
- S Wilkens
- University of California, Riverside, Department of Biochemistry, Riverside, California 92521, USA.
| | | |
Collapse
|
132
|
Hong S, Ko YH, Pedersen PL. Rotary catalysis within ATP synthases: a bioinformatic approach provides novel insight into how large pH-dependent movements of the C-terminal helix of subunit c may be accommodated. Arch Biochem Biophys 2001; 394:275-9. [PMID: 11594742 DOI: 10.1006/abbi.2001.2549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- S Hong
- Department of Biological Chemistry, Johns Hopkins University, School of Medicine, 725 N. Wolfe Street, Baltimore, Maryland 21205-2185, USA
| | | | | |
Collapse
|
133
|
Meier T, Matthey U, Henzen F, Dimroth P, Müller DJ. The central plug in the reconstituted undecameric c cylinder of a bacterial ATP synthase consists of phospholipids. FEBS Lett 2001; 505:353-6. [PMID: 11576527 DOI: 10.1016/s0014-5793(01)02837-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The isolated rotor cylinder of the ATP synthase from Ilyobacter tartaricus was reconstituted into two-dimensional crystalline arrays. Atomic force microscopy imaging indicated a central cavity on one side of the rotor and a central plug protruding from the other side. Upon incubation with phospholipase C, the plug disappeared, but the appearance of the surrounding c subunit oligomer was not affected. This indicates that the plug consists of phospholipids. As the detergent-purified c cylinder is completely devoid of phospholipids, these are incorporated into the central hole from one side of the cylinder during the reconstitution procedure.
Collapse
Affiliation(s)
- T Meier
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule, ETH-Zentrum, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
134
|
Yoshida M, Muneyuki E, Hisabori T. ATP synthase--a marvellous rotary engine of the cell. Nat Rev Mol Cell Biol 2001; 2:669-77. [PMID: 11533724 DOI: 10.1038/35089509] [Citation(s) in RCA: 666] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
ATP synthase can be thought of as a complex of two motors--the ATP-driven F1 motor and the proton-driven Fo motor--that rotate in opposite directions. The mechanisms by which rotation and catalysis are coupled in the working enzyme are now being unravelled on a molecular scale.
Collapse
Affiliation(s)
- M Yoshida
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259, Yokohama 226-8503, Japan.
| | | | | |
Collapse
|
135
|
Pänke O, Cherepanov DA, Gumbiowski K, Engelbrecht S, Junge W. Viscoelastic dynamics of actin filaments coupled to rotary F-ATPase: angular torque profile of the enzyme. Biophys J 2001; 81:1220-33. [PMID: 11509339 PMCID: PMC1301604 DOI: 10.1016/s0006-3495(01)75780-3] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
ATP synthase (F(O)F(1)) operates as two rotary motor/generators coupled by a common shaft. Both portions, F(1) and F(O), are rotary steppers. Their symmetries are mismatched (C(3) versus C(10-14)). We used the curvature of fluorescent actin filaments, attached to the rotating c-ring, as a spring balance (flexural rigidity of 8. 10(-26) Nm(2)) to gauge the angular profile of the output torque at F(O) during ATP hydrolysis by F(1) (see theoretical companion article (. Biophys. J. 81:1234-1244.)). The large average output torque (50 +/- 6 pN. nm) proved the absence of any slip. Variations of the torque were small, and the output free energy of the loaded enzyme decayed almost linearly over the angular reaction coordinate. Considering the threefold stepping and high activation barrier of the driving motor proper, the rather constant output torque implied a soft elastic power transmission between F(1) and F(O). It is considered as essential, not only for the robust operation of this ubiquitous enzyme under symmetry mismatch, but also for a high turnover rate of the two counteracting and stepping motor/generators.
Collapse
Affiliation(s)
- O Pänke
- Division of Biophysics, University of Osnabrück, D-49069 Osnabrück, Germany
| | | | | | | | | |
Collapse
|
136
|
Perzov N, Padler-Karavani V, Nelson H, Nelson N. Features of V-ATPases that distinguish them from F-ATPases. FEBS Lett 2001; 504:223-8. [PMID: 11532458 DOI: 10.1016/s0014-5793(01)02709-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The general structure of F- and V-ATPases is quite similar and they may share a common mechanism of action that involves mechanochemical energy transduction. Both holoenzymes are composed of catalytic sectors, F1 and V1 respectively, and membrane sectors, F(o) and V(o) respectively. Although we assume that a similar mechanism underlies ATP-dependent proton pumping by F- and V-ATPases in eukaryotic cells, the latter cannot catalyze pmf-driven ATP synthesis. The loss of this ability is probably due to a proton slip that is a consequence of alterations in its membrane sector. The major events include gene duplication of the proteolipids and the presence of three distinct proteolipids in each complex.
Collapse
Affiliation(s)
- N Perzov
- Department of Biochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | | | | | | |
Collapse
|
137
|
Junge W, Pänke O, Cherepanov DA, Gumbiowski K, Müller M, Engelbrecht S. Inter-subunit rotation and elastic power transmission in F0F1-ATPase. FEBS Lett 2001; 504:152-60. [PMID: 11532447 DOI: 10.1016/s0014-5793(01)02745-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
ATP synthase (F-ATPase) produces ATP at the expense of ion-motive force or vice versa. It is composed from two motor/generators, the ATPase (F1) and the ion translocator (F0), which both are rotary steppers. They are mechanically coupled by 360 degrees rotary motion of subunits against each other. The rotor, subunits gamma(epsilon)C10-14, moves against the stator, (alphabeta)3delta(ab2). The enzyme copes with symmetry mismatch (C3 versus C10-14) between its two motors, and it operates robustly in chimeric constructs or with drastically modified subunits. We scrutinized whether an elastic power transmission accounts for these properties. We used the curvature of fluorescent actin filaments, attached to the rotating c ring, as a spring balance (flexural rigidity of 8.10(-26) N x m2) to gauge the angular profile of the output torque at F0 during ATP hydrolysis by F1. The large average output torque (56 pN nm) proved the absence of any slip. Angular variations of the torque were small, so that the output free energy of the loaded enzyme decayed almost linearly over the angular reaction coordinate. Considering the three-fold stepping and high activation barrier (>40 kJ/mol) of the driving motor (F1) itself, the rather constant output torque seen by F0 implied a soft elastic power transmission between F1 and F0. It is considered as essential, not only for the robust operation of this ubiquitous enzyme under symmetry mismatch, but also for a high turnover rate under load of the two counteracting and stepping motors/generators.
Collapse
Affiliation(s)
- W Junge
- Division of Biophysics, University of Osnabrück, D-49069, Osnabrück, Germany.
| | | | | | | | | | | |
Collapse
|
138
|
Grüber G, Wieczorek H, Harvey WR, Müller V. Structure–function relationships of A-, F- and V-ATPases. J Exp Biol 2001; 204:2597-605. [PMID: 11533110 DOI: 10.1242/jeb.204.15.2597] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Ion-translocating ATPases, such as the F1Fo-, V1Vo- and archaeal A1Ao enzymes, are essential cellular energy converters which transduce the chemical energy of ATP hydrolysis into transmembrane ionic electrochemical potential differences. Based on subunit composition and primary structures of the subunits, these types of ATPases are related through evolution; however, they differ with respect to function. Recent work has focused on the three-dimensional structural relationships of the major, nucleotide-binding subunits A and B of the A1/V1-ATPases and the corresponding β and α subunits of the F1-ATPase, and the location of the coupling subunits within the stalk that provide the physical linkage between the regions of ATP hydrolysis and ion transduction. This review focuses on the structural homologies and diversities of A1-, F1- and V1-ATPases, in particular on significant differences between the stalk regions of these families of enzymes.
Collapse
Affiliation(s)
- G Grüber
- FR 2.5 Biophysik, Universität des Saarlandes, D-66421 Homburg, Germany.
| | | | | | | |
Collapse
|
139
|
Scheuring S, Fotiadis D, Möller C, Müller SA, Engel A, Müller DJ. Single Proteins Observed by Atomic Force Microscopy. ACTA ACUST UNITED AC 2001. [DOI: 10.1002/1438-5171(200107)2:2<59::aid-simo59>3.0.co;2-p] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
140
|
Tate CG. A feast of membrane protein structures in Madrid. Workshop: Pumps, channels and transporters: structure and function. EMBO Rep 2001; 2:476-80. [PMID: 11415978 PMCID: PMC1083910 DOI: 10.1093/embo-reports/kve116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- C G Tate
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| |
Collapse
|
141
|
Abstract
In recent years, structural information on the F(1) sector of the ATP synthase has provided an insight into the molecular mechanism of ATP catalysis. The structure strongly supports the proposal that the ATP synthase works as a rotary molecular motor. Insights into the membrane domain have just started to emerge but more detailed structural information is needed if the molecular mechanism of proton translocation coupled to ATP synthesis is to be understood. This review will focus mainly on the ion translocating rotor in the membrane domain of the F-type ATPase, and the related vacuolar and archaeal relatives.
Collapse
Affiliation(s)
- I Arechaga
- The Medical Research Council Dunn Human Nutrition Unit, Wellcome Trust/MRC Building, Hills Road, CB2 2XY, Cambridge, UK.
| | | |
Collapse
|