101
|
Abstract
Purpose of the review Cryptococcal disease is most often thought of in the context of HIV infection. Much of our knowledge of the disease originates from its management in the HIV-positive population over the last 30 years. While the majority of cases globally continue to occur in the setting of advanced HIV, Cryptococcus species is increasingly responsible for disease in HIV-negative populations including those considered normal hosts and these HIV-negative populations will be the focus of this review. Recent findings Currently available data indicated that significant differences exist in epidemiology, clinical presentation, management and outcomes of cryptococcal disease in HIV-negative populations when compared to those living with HIV. Summary Further research is required to improve our knowledge of cryptococcal disease in particular in HIV-negative cohorts so as to optimise management of the disease in the future.
Collapse
|
102
|
Chow EWL, Clancey SA, Billmyre RB, Averette AF, Granek JA, Mieczkowski P, Cardenas ME, Heitman J. Elucidation of the calcineurin-Crz1 stress response transcriptional network in the human fungal pathogen Cryptococcus neoformans. PLoS Genet 2017; 13:e1006667. [PMID: 28376087 PMCID: PMC5380312 DOI: 10.1371/journal.pgen.1006667] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 03/01/2017] [Indexed: 12/02/2022] Open
Abstract
Calcineurin is a highly conserved Ca2+/calmodulin-dependent serine/threonine-specific protein phosphatase that orchestrates cellular Ca2+ signaling responses. In Cryptococcus neoformans, calcineurin is activated by multiple stresses including high temperature, and is essential for stress adaptation and virulence. The transcription factor Crz1 is a major calcineurin effector in Saccharomyces cerevisiae and other fungi. Calcineurin dephosphorylates Crz1, thereby enabling Crz1 nuclear translocation and transcription of target genes. Here we show that loss of Crz1 confers phenotypes intermediate between wild-type and calcineurin mutants, and demonstrate that deletion of the calcineurin docking domain results in the inability of Crz1 to translocate into the nucleus under thermal stress. RNA-sequencing revealed 102 genes that are regulated in a calcineurin-Crz1-dependent manner at 37°C. The majority of genes were down-regulated in cna1Δ and crz1Δ mutants, indicating these genes are normally activated by the calcineurin-Crz1 pathway at high temperature. About 58% of calcineurin-Crz1 target genes have unknown functions, while genes with known or predicted functions are involved in cell wall remodeling, calcium transport, and pheromone production. We identified three calcineurin-dependent response element motifs within the promoter regions of calcineurin-Crz1 target genes, and show that Crz1 binding to target gene promoters is increased upon thermal stress in a calcineurin-dependent fashion. Additionally, we found a large set of genes independently regulated by calcineurin, and Crz1 regulates 59 genes independently of calcineurin. Given the intermediate crz1Δ mutant phenotype, and our recent evidence for a calcineurin regulatory network impacting mRNA in P-bodies and stress granules independently of Crz1, calcineurin likely acts on factors beyond Crz1 that govern mRNA expression/stability to operate a branched transcriptional/post-transcriptional stress response network necessary for fungal virulence. Taken together, our findings reveal the core calcineurin-Crz1 stress response cascade is maintained from ascomycetes to a pathogenic basidiomycete fungus, but its output in C. neoformans appears to be adapted to promote fungal virulence. The ubquitiously conserved serine/threonine-specific protein phosphatase calcineurin is crucial for virulence of several opportunistic human fungal pathogens including Candida albicans, Aspergillus fumigatus, and Cryptococcus neoformans. We show that Crz1 acts downstream of calcineurin, to 1) govern expression of genes involved in cell wall integrity, and calcium and small molecule transport, and 2) contribute to stress survival and virulence of C. neoformans. Our studies reveal that calcineurin also controls mRNA expression levels of other genes independently of Crz1. We propose that calcineurin operates in a branched signal transduction cascade controlling targets at both the transcriptional and post-transcriptional levels.
Collapse
Affiliation(s)
- Eve W. L. Chow
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Shelly A. Clancey
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - R. Blake Billmyre
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Anna Floyd Averette
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joshua A. Granek
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina, United States of America
- Duke Center for the Genomics of Microbial Systems, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Piotr Mieczkowski
- High-Throughput Sequencing Facility, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Maria E. Cardenas
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
103
|
Nambu M, Covel JA, Kapoor M, Li X, Moloney MK, Numa MM, Soltow QA, Trzoss M, Webb P, Webb RR, Mutz M. A calcineurin antifungal strategy with analogs of FK506. Bioorg Med Chem Lett 2017; 27:2465-2471. [PMID: 28412204 DOI: 10.1016/j.bmcl.2017.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/31/2017] [Accepted: 04/01/2017] [Indexed: 10/19/2022]
Abstract
A novel antifungal strategy targeting the inhibition of calcineurin is described. To develop a calcineurin based inhibitor of pathogenic fungi, analogs of FK506 were synthesized that were able to permeate mammalian but not fungal cells. Antagonists in combination with FK506 were not immunosuppressive and retained antifungal activity in A. fumigatus. To reduce the dosage burden of the antagonist, murine oral PK was improved an order of magnitude relative to previous FK506 antagonists.
Collapse
Affiliation(s)
- Mitchell Nambu
- Amplyx Pharmaceuticals, 3210 Merryfield Row, San Diego, CA 92121, United States.
| | - Jonathan A Covel
- Amplyx Pharmaceuticals, 3210 Merryfield Row, San Diego, CA 92121, United States
| | - Mili Kapoor
- Amplyx Pharmaceuticals, 3210 Merryfield Row, San Diego, CA 92121, United States
| | - Xiaoming Li
- Amplyx Pharmaceuticals, 3210 Merryfield Row, San Diego, CA 92121, United States
| | - Molly K Moloney
- Amplyx Pharmaceuticals, 3210 Merryfield Row, San Diego, CA 92121, United States
| | - Mehdi M Numa
- Amplyx Pharmaceuticals, 3210 Merryfield Row, San Diego, CA 92121, United States
| | - Quinlyn A Soltow
- Amplyx Pharmaceuticals, 3210 Merryfield Row, San Diego, CA 92121, United States
| | - Michael Trzoss
- Amplyx Pharmaceuticals, 3210 Merryfield Row, San Diego, CA 92121, United States
| | - Peter Webb
- Amplyx Pharmaceuticals, 3210 Merryfield Row, San Diego, CA 92121, United States
| | - Robert R Webb
- Amplyx Pharmaceuticals, 3210 Merryfield Row, San Diego, CA 92121, United States
| | - Mitchell Mutz
- Amplyx Pharmaceuticals, 3210 Merryfield Row, San Diego, CA 92121, United States.
| |
Collapse
|
104
|
Serafin CF, Paris AP, Paula CR, Simão RCG, Gandra RF. Repression of Proteases and Hsp90 Chaperone Expression Induced by an Antiretroviral in Virulent Environmental Strains of Cryptococcus neoformans. MICROBIAL ECOLOGY 2017; 73:583-589. [PMID: 27909750 DOI: 10.1007/s00248-016-0900-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 11/13/2016] [Indexed: 06/06/2023]
Abstract
This study evaluated the effect of the antiretroviral ritonavir on protease secretion in different strains of Cryptococcus neoformans isolated from the environment and investigated the expression of heat shock protein (Hsp90), classically described virulence factors in other yeast in the presence of the same antiretroviral. The presence of the enzyme was detected by the formation of a degradation of the halo around the colonies. The results were classified as follows: level 1 (without proteases), level 2 (positive for proteases), and level 3 (strongly positive for proteases). Total protein extract isolated from the cell walls of the 12 strains incubated in the absence and presence of ritonavir (0.3125 mg mL-1) were resolved by SDS-PAGE and analyzed by Western blot assays using an antiserum against Hsp90 from Blastocladiella emersonii. All strains tested showed inhibition of proteinase activity in the presence of ritonavir at 0.3125 to 1.25 mg mL-1. High levels of Hsp90 were observed in the absence of ritonavir (0.3125 mg mL-1), except for the non-virulent control cells. In contrast, in the presence of the antiretroviral, a drastic reduction in the expression of the chaperone was observed. The data suggest that ritonavir, in addition to containing viral replication, could inhibit the expression of virulence factors in opportunistic yeast, as proteases and Hsp90. According to our current knowledge, this is the first time that the inhibition of Hsp90 by an antiretroviral was reported for environmental isolates of C. neoformans.
Collapse
Affiliation(s)
- Cleber Fernando Serafin
- Hospital Universitário do Oeste do Paraná, Universidade Estadual do Oeste do Paraná - UNIOESTE, Av Tancredo Neves, 3224, Cascavel, PR, Brazil
| | - Ana Paula Paris
- Hospital Universitário do Oeste do Paraná, Universidade Estadual do Oeste do Paraná - UNIOESTE, Av Tancredo Neves, 3224, Cascavel, PR, Brazil
| | | | - Rita Cássia Garcia Simão
- Laboratório de Bioquímica Molecular, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, UNIOESTE, Cascavel, PR, Brazil
| | - Rinaldo Ferreira Gandra
- Hospital Universitário do Oeste do Paraná, Universidade Estadual do Oeste do Paraná - UNIOESTE, Av Tancredo Neves, 3224, Cascavel, PR, Brazil.
| |
Collapse
|
105
|
Juvvadi PR, Lee SC, Heitman J, Steinbach WJ. Calcineurin in fungal virulence and drug resistance: Prospects for harnessing targeted inhibition of calcineurin for an antifungal therapeutic approach. Virulence 2017; 8:186-197. [PMID: 27325145 PMCID: PMC5354160 DOI: 10.1080/21505594.2016.1201250] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 01/26/2023] Open
Abstract
Increases in the incidence and mortality due to the major invasive fungal infections such as aspergillosis, candidiasis and cryptococcosis caused by the species of Aspergillus, Candida and Cryptococcus, are a growing threat to the immunosuppressed patient population. In addition to the limited armamentarium of the current classes of antifungal agents available (pyrimidine analogs, polyenes, azoles, and echinocandins), their toxicity, efficacy and the emergence of resistance are major bottlenecks limiting successful patient outcomes. Although these drugs target distinct fungal pathways, there is an urgent need to develop new antifungals that are more efficacious, fungal-specific, with reduced or no toxicity and simultaneously do not induce resistance. Here we review several lines of evidence which indicate that the calcineurin signaling pathway, a target of the immunosuppressive drugs FK506 and cyclosporine A, orchestrates growth, virulence and drug resistance in a variety of fungal pathogens and can be exploited for novel antifungal drug development.
Collapse
Affiliation(s)
- Praveen R. Juvvadi
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University School of Medicine, Durham, NC, USA
| | - Soo Chan Lee
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Joseph Heitman
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - William J. Steinbach
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University School of Medicine, Durham, NC, USA
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
106
|
Gassiep I, McDougall D, Douglas J, Francis R, Playford EG. Cryptococcal infections in solid organ transplant recipients over a 15-year period at a state transplant center. Transpl Infect Dis 2017; 19. [DOI: 10.1111/tid.12639] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/28/2016] [Accepted: 08/21/2016] [Indexed: 02/03/2023]
Affiliation(s)
- Ian Gassiep
- Department of Infectious Diseases; Princess Alexandra Hospital; Brisbane QLD Australia
- School of Medicine; University of Queensland; Brisbane QLD Australia
| | - David McDougall
- Department of Infectious Diseases; Princess Alexandra Hospital; Brisbane QLD Australia
| | - Joel Douglas
- Department of Infectious Diseases; Princess Alexandra Hospital; Brisbane QLD Australia
| | - Ross Francis
- School of Medicine; University of Queensland; Brisbane QLD Australia
- Department of Nephrology; Princess Alexandra Hospital; Brisbane QLD Australia
| | - Elliott G. Playford
- Department of Infectious Diseases; Princess Alexandra Hospital; Brisbane QLD Australia
- School of Medicine; University of Queensland; Brisbane QLD Australia
| |
Collapse
|
107
|
Ishii M, Matsumoto Y, Nakamura I, Sekimizu K. Silkworm fungal infection model for identification of virulence genes in pathogenic fungus and screening of novel antifungal drugs. Drug Discov Ther 2017; 11:1-5. [DOI: 10.5582/ddt.2016.01080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | - Kazuhisa Sekimizu
- Genome pharmaceuticals institute Co. Ltd
- Teikyo University Institute of Medical Mycology
| |
Collapse
|
108
|
Species in the Cryptococcus gattii Complex Differ in Capsule and Cell Size following Growth under Capsule-Inducing Conditions. mSphere 2016; 1:mSphere00350-16. [PMID: 28066814 PMCID: PMC5196034 DOI: 10.1128/msphere.00350-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 12/05/2016] [Indexed: 01/20/2023] Open
Abstract
Infections with the fungal pathogen Cryptococcus gattii have been increasing in recent years. Recently, four different species have been described within C. gattii, which correspond to four previously known molecular genotypes (VGI to VGIV). Examining traits related to infection and disease is important for determining whether these different species have clinical relevance. This study examined variation in attributes that are important for infecting and surviving in the host, including tolerance to various stresses, yeast cell size, and the amount of polysaccharide capsule that covers the cell. The cell size and capsule size were significantly different and inversely correlated across the species. Thermotolerance was highest in C. deuterogattii (VGII), the only species known to cause outbreaks, while most strains of the species C. bacillisporus (VGIII) and C. tetragattii (VGIV) grew poorly at 37°C. These findings argue for increased acceptance of the new species and may be useful for informing diagnosis and prognosis in clinical infection. Cryptococcus gattii causes invasive fungal infections that have been increasing in incidence and global distribution in recent years. The major molecular genotypes of C. gattii that were previously classified as VGI to VGIV have recently been described as four new species: C. gattii (VGI), C. deuterogattii (VGII), C. bacillisporus (VGIII), and C. tetragattii (VGIV). The main driver for their classification has been phylogeny, and phenotypic diversity has not yet been extensively characterized. This study examines variation in attributes related to virulence and pathogenicity, including capsule thickness, cell size, tolerance to temperature, oxidative and osmotic stress, and cell wall integrity. A capsule induction agar using diluted Sabouraud medium revealed significant differences in capsule and cell size across the C. gattii species complex and produced irregularly shaped elongated cells in a number of strains. C. gattii/VGI strains possessed the largest capsules of all species but had smaller cells, while C. deuterogattii/VGII strains possessed the largest cells of all species but had smaller capsules. Overall thermotolerance was highest in C. deuterogattii/VGII strains, while a number of C. bacillisporus/VGIII, and C. tetragattii/VGIV strains had substantially reduced growth at 37°C. There was no significant difference among species in their tolerances to oxidative or osmotic stresses, and there was no evidence for defects in cell wall integrity in strains producing irregular cells. These data support the division of the C. gattii species complex into distinctly identified species and suggest underlying reasons for their differences in virulence, epidemiology, and host preference. IMPORTANCE Infections with the fungal pathogen Cryptococcus gattii have been increasing in recent years. Recently, four different species have been described within C. gattii, which correspond to four previously known molecular genotypes (VGI to VGIV). Examining traits related to infection and disease is important for determining whether these different species have clinical relevance. This study examined variation in attributes that are important for infecting and surviving in the host, including tolerance to various stresses, yeast cell size, and the amount of polysaccharide capsule that covers the cell. The cell size and capsule size were significantly different and inversely correlated across the species. Thermotolerance was highest in C. deuterogattii (VGII), the only species known to cause outbreaks, while most strains of the species C. bacillisporus (VGIII) and C. tetragattii (VGIV) grew poorly at 37°C. These findings argue for increased acceptance of the new species and may be useful for informing diagnosis and prognosis in clinical infection.
Collapse
|
109
|
Azevedo RVDM, Rizzo J, Rodrigues ML. Virulence Factors as Targets for Anticryptococcal Therapy. J Fungi (Basel) 2016; 2:jof2040029. [PMID: 29376946 PMCID: PMC5715936 DOI: 10.3390/jof2040029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/18/2016] [Accepted: 11/25/2016] [Indexed: 12/24/2022] Open
Abstract
The global mortality due to cryptococcosis caused by Cryptococcus neoformans or C. gattii is unacceptably high. Currently available therapies are decades old and may be impacted by drug resistance. Therefore, the need for more effective antifungal drugs for cryptococcosis is evident. A number of Cryptococcus virulence factors have been studied in detail, providing crucial information about the fungal biology and putative molecular targets for antifungals. This review focuses on the use of well-described virulence factors of Cryptococcus as potential anticryptococcal agents.
Collapse
Affiliation(s)
- Renata V D M Azevedo
- Fundação Oswaldo Cruz-Fiocruz, Centro de Desenvolvimento Tecnológico em Saúde (CDTS), 21040-361 Rio de Janeiro, Brazil.
| | - Juliana Rizzo
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.
- Instituto de Bioquímica Médica (IBqM), Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.
| | - Marcio L Rodrigues
- Fundação Oswaldo Cruz-Fiocruz, Centro de Desenvolvimento Tecnológico em Saúde (CDTS), 21040-361 Rio de Janeiro, Brazil.
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.
| |
Collapse
|
110
|
Abstract
Cryptococcosis is an invasive mycosis caused by pathogenic encapsulated yeasts in the genus Cryptococcus. Cryptococcus gained prominence as a pathogen capable of widespread disease outbreaks in vulnerable populations. We have gained insight into the pathobiology of Cryptococcus, including the yeast' s capacity to adapt to environmental pressures, exploit new geographic environments, and cause disease in both immunocompromised and apparently immunocompetent hosts. Inexpensive, point-of-care testing makes diagnosis more feasible than ever. The associated worldwide burden and mortality remains unacceptably high. Novel screening strategies and preemptive therapy offer promise at making a sustained and much needed impact on this sugar-coated opportunistic mycosis.
Collapse
Affiliation(s)
- Eileen K Maziarz
- Division of Infectious Diseases and International Health, Department of Medicine, Duke University Medical Center, DUMC Box 102359, 315 Trent Drive, Durham, NC 27710, USA.
| | - John R Perfect
- Division of Infectious Diseases and International Health, Department of Medicine, Duke University Medical Center, DUMC Box 102359, 315 Trent Drive, Durham, NC 27710, USA
| |
Collapse
|
111
|
Abstract
ABSTRACT
Invasive fungal infections are becoming an increasingly important cause of human mortality and morbidity, particularly for immunocompromised populations. The fungal pathogens
Candida albicans
,
Cryptococcus neoformans
, and
Aspergillus fumigatus
collectively contribute to over 1 million human deaths annually. Hence, the importance of safe and effective antifungal therapeutics for the practice of modern medicine has never been greater. Given that fungi are eukaryotes like their human host, the number of unique molecular targets that can be exploited for drug development remains limited. Only three classes of molecules are currently approved for the treatment of invasive mycoses. The efficacy of these agents is compromised by host toxicity, fungistatic activity, or the emergence of drug resistance in pathogen populations. Here we describe our current arsenal of antifungals and highlight current strategies that are being employed to improve the therapeutic safety and efficacy of these drugs. We discuss state-of-the-art approaches to discover novel chemical matter with antifungal activity and highlight some of the most promising new targets for antifungal drug development. We feature the benefits of combination therapy as a strategy to expand our current repertoire of antifungals and discuss the antifungal combinations that have shown the greatest potential for clinical development. Despite the paucity of new classes of antifungals that have come to market in recent years, it is clear that by leveraging innovative approaches to drug discovery and cultivating collaborations between academia and industry, there is great potential to bolster the antifungal armamentarium.
Collapse
|
112
|
Pianalto KM, Alspaugh JA. New Horizons in Antifungal Therapy. J Fungi (Basel) 2016; 2:jof2040026. [PMID: 29376943 PMCID: PMC5715934 DOI: 10.3390/jof2040026] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 12/20/2022] Open
Abstract
Recent investigations have yielded both profound insights into the mechanisms required by pathogenic fungi for virulence within the human host, as well as novel potential targets for antifungal therapeutics. Some of these studies have resulted in the identification of novel compounds that act against these pathways and also demonstrate potent antifungal activity. However, considerable effort is required to move from pre-clinical compound testing to true clinical trials, a necessary step toward ultimately bringing new drugs to market. The rising incidence of invasive fungal infections mandates continued efforts to identify new strategies for antifungal therapy. Moreover, these life-threatening infections often occur in our most vulnerable patient populations. In addition to finding completely novel antifungal compounds, there is also a renewed effort to redirect existing drugs for use as antifungal agents. Several recent screens have identified potent antifungal activity in compounds previously indicated for other uses in humans. Together, the combined efforts of academic investigators and the pharmaceutical industry is resulting in exciting new possibilities for the treatment of invasive fungal infections.
Collapse
Affiliation(s)
- Kaila M Pianalto
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - J Andrew Alspaugh
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA.
- Department of Medicine/Infectious Diseases, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
113
|
de Castro PA, Chiaratto J, Morais ER, Dos Reis TF, Mitchell TK, Brown NA, Goldman GH. The putative flavin carrier family FlcA-C is important for Aspergillus fumigatus virulence. Virulence 2016; 8:797-809. [PMID: 27652896 DOI: 10.1080/21505594.2016.1239010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Aspergillus fumigatus is an opportunistic fungal pathogen and the most important species causing pulmonary fungal infections. The signaling by calcium is very important for A. fumigatus pathogenicity and it is regulated by the transcription factor CrzA. We have previously used used ChIP-seq (Chromatin Immunoprecipitation DNA sequencing) aiming to identify gene targets regulated by CrzA. We have identified among several genes regulated by calcium stress, the putative flavin transporter, flcA. This transporter belongs to a small protein family composed of FlcA, B, and C. The ΔflcA null mutant showed several phenotypes, such as morphological defects, increased sensitivity to calcium chelating-agent ethylene glycol tetraacetic acid (EGTA), cell wall or oxidative damaging agents and metals, repre-sentative of deficiencies in calcium signaling and iron homeostasis. Increasing calcium concentrations improved significantly the ΔflcA growth and conidiation, indicating that ΔflcA mutant has calcium insufficiency. Finally, ΔflcA-C mutants showed reduced flavin adenine dinucleotide (FAD) and were avirulent in a low dose murine infection model.
Collapse
Affiliation(s)
- Patrícia A de Castro
- a Faculdade de Ciências Farmacêuticas de Ribeirão Preto and Faculdade de Medicina de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , Brazil
| | - Jéssica Chiaratto
- a Faculdade de Ciências Farmacêuticas de Ribeirão Preto and Faculdade de Medicina de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , Brazil
| | - Enyara Rezende Morais
- a Faculdade de Ciências Farmacêuticas de Ribeirão Preto and Faculdade de Medicina de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , Brazil
| | - Thaila Fernanda Dos Reis
- a Faculdade de Ciências Farmacêuticas de Ribeirão Preto and Faculdade de Medicina de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , Brazil
| | - Thomas K Mitchell
- b Department of Plant Pathology , The Ohio State University , Columbus , OH , USA
| | - Neil A Brown
- c Plant Biology and Crop Science, Rothamsted Research , Harpenden, Herts , UK
| | - Gustavo H Goldman
- a Faculdade de Ciências Farmacêuticas de Ribeirão Preto and Faculdade de Medicina de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , Brazil
| |
Collapse
|
114
|
Yoo YJ, Kim H, Park SR, Yoon YJ. An overview of rapamycin: from discovery to future perspectives. J Ind Microbiol Biotechnol 2016; 44:537-553. [PMID: 27613310 DOI: 10.1007/s10295-016-1834-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/22/2016] [Indexed: 12/17/2022]
Abstract
Rapamycin is an immunosuppressive metabolite produced from several actinomycete species. Besides its immunosuppressive activity, rapamycin and its analogs have additional therapeutic potentials, including antifungal, antitumor, neuroprotective/neuroregenerative, and lifespan extension activities. The core structure of rapamycin is derived from (4R,5R)-4,5-dihydrocyclohex-1-ene-carboxylic acid that is extended by polyketide synthase. The resulting linear polyketide chain is cyclized by incorporating pipecolate and further decorated by post-PKS modification enzymes. Herein, we review the discovery and biological activities of rapamycin as well as its mechanism of action, mechanistic target, biosynthesis, and regulation. In addition, we introduce the many efforts directed at enhancing the production of rapamycin and generating diverse analogs and also explore future perspectives in rapamycin research. This review will also emphasize the remarkable pilot studies on the biosynthesis and production improvement of rapamycin by Dr. Demain, one of the world's distinguished scientists in industrial microbiology and biotechnology.
Collapse
Affiliation(s)
- Young Ji Yoo
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 120-750, Republic of Korea
| | - Hanseong Kim
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sung Ryeol Park
- Natural Products Discovery Institute, The Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, 18902, USA.
| | - Yeo Joon Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 120-750, Republic of Korea.
| |
Collapse
|
115
|
Park HS, Chow EWL, Fu C, Soderblom EJ, Moseley MA, Heitman J, Cardenas ME. Calcineurin Targets Involved in Stress Survival and Fungal Virulence. PLoS Pathog 2016; 12:e1005873. [PMID: 27611567 PMCID: PMC5017699 DOI: 10.1371/journal.ppat.1005873] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 08/15/2016] [Indexed: 12/26/2022] Open
Abstract
Calcineurin governs stress survival, sexual differentiation, and virulence of the human fungal pathogen Cryptococcus neoformans. Calcineurin is activated by increased Ca2+ levels caused by stress, and transduces signals by dephosphorylating protein substrates. Herein, we identified and characterized calcineurin substrates in C. neoformans by employing phosphoproteomic TiO2 enrichment and quantitative mass spectrometry. The identified targets include the transactivator Crz1 as well as novel substrates whose functions are linked to P-bodies/stress granules (PBs/SGs) and mRNA translation and decay, such as Pbp1 and Puf4. We show that Crz1 is a bona fide calcineurin substrate, and Crz1 localization and transcriptional activity are controlled by calcineurin. We previously demonstrated that thermal and other stresses trigger calcineurin localization to PBs/SGs. Several calcineurin targets localized to PBs/SGs, including Puf4 and Pbp1, contribute to stress resistance and virulence individually or in conjunction with Crz1. Moreover, Pbp1 is also required for sexual development. Genetic epistasis analysis revealed that Crz1 and the novel targets Lhp1, Puf4, and Pbp1 function in a branched calcineurin pathway that orchestrates stress survival and virulence. These findings support a model whereby calcineurin controls stress and virulence, at the transcriptional level via Crz1, and post-transcriptionally by localizing to PBs/SGs and acting on targets involved in mRNA metabolism. The calcineurin targets identified in this study share little overlap with known calcineurin substrates, with the exception of Crz1. In particular, the mRNA binding proteins and PBs/SGs residents comprise a cohort of novel calcineurin targets that have not been previously linked to calcineurin in mammals or in Saccharomyces cerevisiae. This study suggests either extensive evolutionary rewiring of the calcineurin pathway, or alternatively that these novel calcineurin targets have yet to be characterized as calcineurin targets in other organisms. These findings further highlight C. neoformans as an outstanding model to define calcineurin-responsive virulence networks as targets for antifungal therapy. Calcineurin is a Ca2+/calmodulin-dependent protein phosphatase essential for stress survival, sexual development, and virulence of the human fungal pathogen Cryptococcus neoformans and other major pathogenic fungi of global human health relevance. However, no calcineurin substrates are known in pathogenic fungi. Employing state-of-the-art phosphoproteomic approaches we identified calcineurin substrates, including calcineurin itself and the conserved Crz1 transcriptional activator known to function in calcium signaling and stress survival. Remarkably, our study also identified novel calcineurin targets involved in RNA processing, stability, and translation, which colocalize together with calcineurin in stress granules/P-bodies upon thermal stress. These findings support a model whereby calcineurin functions in a branched pathway, via Crz1 and several of the identified novel targets, that governs transcriptional and posttranscriptional circuits to drive stress survival, sexual development, and fungal virulence. Our study underscores C. neoformans as an experimental model to define basic paradigms of calcineurin signaling in global thermostress responsive virulence networks that can be targeted for fungal therapy.
Collapse
Affiliation(s)
- Hee-Soo Park
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Eve W. L. Chow
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Ci Fu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Erik J. Soderblom
- Duke Proteomics and Metabolomics Core Facility, Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, United States of America
| | - M. Arthur Moseley
- Duke Proteomics and Metabolomics Core Facility, Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail: (JH); (MEC)
| | - Maria E. Cardenas
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail: (JH); (MEC)
| |
Collapse
|
116
|
Identification of QTLs Associated with Virulence Related Traits and Drug Resistance in Cryptococcus neoformans. G3-GENES GENOMES GENETICS 2016; 6:2745-59. [PMID: 27371951 PMCID: PMC5015932 DOI: 10.1534/g3.116.029595] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cryptococcus neoformans is a basidiomycete fungus capable of causing deadly meningoenchephilitis, primarily in immunocompromised individuals. Formerly, C. neoformans was composed of two divergent lineages, but these have recently been elevated to species status, now C. neoformans (formerly C. neoformans var. grubii) and C. deneoformans (formerly C. neoformans var. neoformans). While both species can cause deadly infections in humans, C. neoformans is much more prevalent in clinical settings than C. deneoformans. However, the genetic factors contributing to their significant differences in virulence remain largely unknown. Quantitative trait locus (QTL) mapping is a powerful tool that can be used to identify genomic regions associated with phenotypic differences between strains. Here, we analyzed a hybrid cross between these two species and identified a total of 23 QTL, including five for melanin production, six for cell size, one for cell wall thickness, five for the frequency of capsule production, three for minimal inhibitory concentration (MIC) of fluconazole in broth, and three for MIC on solid medium. For the fluconazole resistance-associated QTL, three showed environment and/or concentration-specific effects. Our results provide a large number of candidate gene regions from which to explore the molecular bases for phenotypic differences between C. neoformans and C. deneoformans.
Collapse
|
117
|
Li C, Lev S, Saiardi A, Desmarini D, Sorrell TC, Djordjevic JT. Inositol Polyphosphate Kinases, Fungal Virulence and Drug Discovery. J Fungi (Basel) 2016; 2:jof2030024. [PMID: 29376941 PMCID: PMC5753137 DOI: 10.3390/jof2030024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/23/2016] [Accepted: 08/30/2016] [Indexed: 12/31/2022] Open
Abstract
Opportunistic fungi are a major cause of morbidity and mortality world-wide, particularly in immunocompromised individuals. Developing new treatments to combat invasive fungal disease is challenging given that fungal and mammalian host cells are eukaryotic, with similar organization and physiology. Even therapies targeting unique fungal cell features have limitations and drug resistance is emerging. New approaches to the development of antifungal drugs are therefore needed urgently. Cryptococcus neoformans, the commonest cause of fungal meningitis worldwide, is an accepted model for studying fungal pathogenicity and driving drug discovery. We recently characterized a phospholipase C (Plc1)-dependent pathway in C. neoformans comprising of sequentially-acting inositol polyphosphate kinases (IPK), which are involved in synthesizing inositol polyphosphates (IP). We also showed that the pathway is essential for fungal cellular function and pathogenicity. The IP products of the pathway are structurally diverse, each consisting of an inositol ring, with phosphate (P) and pyrophosphate (PP) groups covalently attached at different positions. This review focuses on (1) the characterization of the Plc1/IPK pathway in C. neoformans; (2) the identification of PP-IP₅ (IP₇) as the most crucial IP species for fungal fitness and virulence in a mouse model of fungal infection; and (3) why IPK enzymes represent suitable candidates for drug development.
Collapse
Affiliation(s)
- Cecilia Li
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.
| | - Sophie Lev
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK.
| | - Desmarini Desmarini
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.
| | - Tania C Sorrell
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Westmead, NSW 2145, Australia.
- Westmead Hospital, Westmead, NSW 2145, Australia.
| | - Julianne T Djordjevic
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Westmead, NSW 2145, Australia.
- Westmead Hospital, Westmead, NSW 2145, Australia.
| |
Collapse
|
118
|
Butts A, Palmer GE, Rogers PD. Antifungal adjuvants: Preserving and extending the antifungal arsenal. Virulence 2016; 8:198-210. [PMID: 27459018 DOI: 10.1080/21505594.2016.1216283] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
As the rates of systemic fungal infections continue to rise and antifungal drug resistance becomes more prevalent, there is an urgent need for new therapeutic options. This issue is exacerbated by the limited number of systemic antifungal drug classes. However, the discovery, development, and approval of novel antifungals is an extensive process that often takes decades. For this reason, there is growing interest and research into the possibility of combining existing therapies with various adjuvants that either enhance activity or overcome existing mechanisms of resistance. Reports of antifungal adjuvants range from plant extracts to repurposed compounds, to synthetic peptides. This approach would potentially prolong the utility of currently approved antifungals and mitigate the ongoing development of resistance.
Collapse
Affiliation(s)
- Arielle Butts
- a Department of Clinical Pharmacy , University of Tennessee Health Science Center , Memphis , TN , USA
| | - Glen E Palmer
- a Department of Clinical Pharmacy , University of Tennessee Health Science Center , Memphis , TN , USA
| | - P David Rogers
- a Department of Clinical Pharmacy , University of Tennessee Health Science Center , Memphis , TN , USA
| |
Collapse
|
119
|
Requirement of the isocitrate lyase gene ICL1 for VPS41-mediated starvation response in Cryptococcus neoformans. J Microbiol 2016; 54:487-91. [PMID: 27350614 DOI: 10.1007/s12275-016-6177-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/25/2016] [Accepted: 05/31/2016] [Indexed: 10/21/2022]
Abstract
Cryptococcus neoformans is a major cause of fungal meningitis in individuals with impaired immunity. Our previous studies have shown that the VPS41 gene plays a critical role in the survival of Cryptococcus neoformans under nitrogen starvation; however, the molecular mechanisms underlying VPS41-mediated starvation response remain to be elucidated. In the present study, we show that, under nitrogen starvation, VPS41 strongly enhanced ICL1 expression in C. neoformans and that overexpression of ICL1 in the vps41 mutant dramatically suppressed its defects in starvation response due to the loss of VPS41 function. Moreover, targeted deletion of ICL1 resulted in a dramatic decline in viability of C. neoformans cells under nitrogen deprivation. Taken together, our data suggest a model in which VPS41 up-regulates ICL1 expression, directly or indirectly, to promote survival of C. neoformans under nitrogen starvation.
Collapse
|
120
|
Spitzer M, Robbins N, Wright GD. Combinatorial strategies for combating invasive fungal infections. Virulence 2016; 8:169-185. [PMID: 27268286 DOI: 10.1080/21505594.2016.1196300] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Invasive fungal infections are an important cause of human mortality and morbidity, particularly for immunocompromised populations. However, there remains a paucity of antifungal drug treatments available to combat these fungal pathogens. Further, antifungal compounds are plagued with problems such as host toxicity, fungistatic activity, and the emergence of drug resistance in pathogen populations. A promising therapeutic strategy to increase drug effectiveness and mitigate the emergence of drug resistance is through the use of combination drug therapy. In this review we describe the current arsenal of antifungals in medicine and elaborate on the benefits of combination therapy to expand our current antifungal drug repertoire. We examine those antifungal combinations that have shown potential against fungal pathogens and discuss strategies being employed to discover novel combination therapeutics, in particular combining antifungal agents with non-antifungal bioactive compounds. The findings summarized in this review highlight the promise of combinatorial strategies in combatting invasive mycoses.
Collapse
Affiliation(s)
- Michaela Spitzer
- a Michael G. DeGroote Institute for Infectious Disease Research and the Department of Biochemistry and Biomedical Sciences , McMaster University , Hamilton , ON , Canada
| | - Nicole Robbins
- a Michael G. DeGroote Institute for Infectious Disease Research and the Department of Biochemistry and Biomedical Sciences , McMaster University , Hamilton , ON , Canada
| | - Gerard D Wright
- a Michael G. DeGroote Institute for Infectious Disease Research and the Department of Biochemistry and Biomedical Sciences , McMaster University , Hamilton , ON , Canada
| |
Collapse
|
121
|
Identification of a major IP5 kinase in Cryptococcus neoformans confirms that PP-IP5/IP7, not IP6, is essential for virulence. Sci Rep 2016; 6:23927. [PMID: 27033523 PMCID: PMC4817067 DOI: 10.1038/srep23927] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/15/2016] [Indexed: 01/15/2023] Open
Abstract
Fungal inositol polyphosphate (IP) kinases catalyse phosphorylation of IP3 to inositol pyrophosphate, PP-IP5/IP7, which is essential for virulence of Cryptococcus neoformans. Cryptococcal Kcs1 converts IP6 to PP-IP5/IP7, but the kinase converting IP5 to IP6 is unknown. Deletion of a putative IP5 kinase-encoding gene (IPK1) alone (ipk1Δ), and in combination with KCS1 (ipk1Δkcs1Δ), profoundly reduced virulence in mice. However, deletion of KCS1 and IPK1 had a greater impact on virulence attenuation than that of IPK1 alone. ipk1Δkcs1Δ and kcs1Δ lung burdens were also lower than those of ipk1Δ. Unlike ipk1Δ, ipk1Δkcs1Δ and kcs1Δ failed to disseminate to the brain. IP profiling confirmed Ipk1 as the major IP5 kinase in C. neoformans: ipk1Δ produced no IP6 or PP-IP5/IP7 and, in contrast to ipk1Δkcs1Δ, accumulated IP5 and its pyrophosphorylated PP-IP4 derivative. Kcs1 is therefore a dual specificity (IP5 and IP6) kinase producing PP-IP4 and PP-IP5/IP7. All mutants were similarly attenuated in virulence phenotypes including laccase, urease and growth under oxidative/nitrosative stress. Alternative carbon source utilisation was also reduced significantly in all mutants except ipk1Δ, suggesting that PP-IP4 partially compensates for absent PP-IP5/IP7 in ipk1Δ grown under this condition. In conclusion, PP-IP5/IP7, not IP6, is essential for fungal virulence.
Collapse
|
122
|
Tamuli R, Deka R, Borkovich KA. Calcineurin Subunits A and B Interact to Regulate Growth and Asexual and Sexual Development in Neurospora crassa. PLoS One 2016; 11:e0151867. [PMID: 27019426 PMCID: PMC4809485 DOI: 10.1371/journal.pone.0151867] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 03/04/2016] [Indexed: 01/26/2023] Open
Abstract
Calcineurin is a calcium/calmodulin dependent protein phosphatase in eukaryotes that consists of a catalytic subunit A and a regulatory subunit B. Previous studies in the filamentous fungus Neurospora crassa had suggested that the catalytic subunit of calcineurin might be an essential protein. We generated N. crassa strains expressing the A (cna-1) and B (cnb-1) subunit genes under the regulation of Ptcu-1, a copper-responsive promoter. In these strains, addition of bathocuproinedisulfonic acid (BCS), a copper chelator, results in induction of cna-1 and cnb-1, while excess Cu2+ represses gene expression. Through analysis of these strains under repressing and inducing conditions, we found that the calcineurin is required for normal growth, asexual development and female fertility in N. crassa. Moreover, we isolated and analyzed cnb-1 mutant alleles generated by repeat-induced point mutation (RIP), with the results further supporting roles for calcineurin in growth and fertility in N. crassa. We demonstrated a direct interaction between the CNA-1 and CNB-1 proteins using an assay system developed to study protein-protein interactions in N. crassa.
Collapse
Affiliation(s)
- Ranjan Tamuli
- Department of Plant Pathology and Microbiology, Institute for Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
- * E-mail:
| | - Rekha Deka
- Department of Plant Pathology and Microbiology, Institute for Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
| | - Katherine A. Borkovich
- Department of Plant Pathology and Microbiology, Institute for Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
| |
Collapse
|
123
|
Ishii M, Matsumoto Y, Sekimizu K. Usefulness of silkworm as a host animal for understanding pathogenicity of Cryptococcus neoformans. Drug Discov Ther 2016; 10:9-13. [PMID: 26902902 DOI: 10.5582/ddt.2016.01015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We propose Cryptococcus neoformans infection model using silkworm for understanding cryptococcosis and screening of therapeutically effective antibiotics. Silkworm is an insect whose rearing methods were established through a long history of the sericulture industry. Silkworm facilitates experiments using a large number of individuals because of low cost for rearing and few ethical problems caused by killing animals. Silkworm can be reared at 37˚C to perform infection experiments at same temperature to human body. Injection of accurate amounts of samples into hemolymph of silkworm by usual syringes is easy to be done since silkworm has an appropriate size to handle. Moreover two injection methods, injection into hemolymph and intestine, are distinguishable for silkworms. The former is correspondent to intravenous injection, and the latter is to oral administration in humans. Taking these advantages of silkworms as host animals, it is possible to evaluate the virulence factors in C. neoformans and the therapeutic efficacy of antifungal agents.
Collapse
Affiliation(s)
- Masaki Ishii
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | | | | |
Collapse
|
124
|
DeLeon-Rodriguez CM, Casadevall A. Cryptococcus neoformans: Tripping on Acid in the Phagolysosome. Front Microbiol 2016; 7:164. [PMID: 26925039 PMCID: PMC4756110 DOI: 10.3389/fmicb.2016.00164] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/01/2016] [Indexed: 01/10/2023] Open
Abstract
Cryptococcus neoformans (Cn) is a basidiomycetous pathogenic yeast that is a frequent cause of meningoencephalitis in immunocompromised individuals. Cn is a facultative intracellular pathogen in mammals, insects and amoeba. Cn infection occurs after inhalation of spores or desiccated cells from the environment. After inhalation Cn localizes to the lungs where it can be phagocytosed by alveolar macrophages. Cn is surrounded by a polysaccharide capsule that helps the fungus survive in vivo by interfering with phagocytosis, quenching free radical bursts and shedding polysaccharides that negatively modulates the immune system. After phagocytosis, Cn resides within the phagosome that matures to become a phagolysosome, a process that results in the acidification of the phagolysosomal lumen. Cn replicates at a higher rate inside macrophages than in the extracellular environment, possibly as a result that the phagosomal pH is near that optimal for growth. Cn increases the phagolysosomal pH and modulates the dynamics of Rab GTPases interaction with the phagolysosome. Chemical manipulation of the phagolysosomal pH with drugs can result in direct and indirect killing of Cn and reduced non-lytic exocytosis. Phagolysosomal membrane damage after Cn infection occurs both in vivo and in vitro, and is required for Cn growth and survival. Macrophage treatment with IFN-γ reduces the phagolysosomal damage and increases intracellular killing of Cn. Studies on mice and humans show that treatment with IFN-γ can improve host control of the disease. However, the mechanism by which Cn mediates phagolysosomal membrane damage remains unknown but likely candidates are phospholipases and mechanical damage from an enlarging capsule. Here we review Cn intracellular interaction with a particular emphasis on phagosomal interactions and develop the notion that the extent of damage of the phagosomal membrane is a key determinant of the outcome of the Cn-macrophage interaction.
Collapse
Affiliation(s)
| | - Arturo Casadevall
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, BronxNY, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins University School of Public Health, BaltimoreMD, USA
| |
Collapse
|
125
|
Albataineh MT, Kadosh D. Regulatory roles of phosphorylation in model and pathogenic fungi. Med Mycol 2015; 54:333-52. [PMID: 26705834 PMCID: PMC4818690 DOI: 10.1093/mmy/myv098] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 11/01/2015] [Indexed: 12/25/2022] Open
Abstract
Over the past 20 years, considerable advances have been made toward our understanding
of how post-translational modifications affect a wide variety of biological
processes, including morphology and virulence, in medically important fungi.
Phosphorylation stands out as a key molecular switch and regulatory modification that
plays a critical role in controlling these processes. In this article, we first
provide a comprehensive and up-to-date overview of the regulatory roles that both
Ser/Thr and non-Ser/Thr kinases and phosphatases play in model and pathogenic fungi.
Next, we discuss the impact of current global approaches that are being used to
define the complete set of phosphorylation targets (phosphoproteome) in medically
important fungi. Finally, we provide new insights and perspectives into the potential
use of key regulatory kinases and phosphatases as targets for the development of
novel and more effective antifungal strategies.
Collapse
Affiliation(s)
- Mohammad T Albataineh
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - David Kadosh
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| |
Collapse
|
126
|
Alshahni MM, Shimizu K, Yoshimoto M, Yamada T, Nishiyama Y, Arai T, Makimura K. Genetic and Phenotypic analyses of Calcineurin A subunit in Arthroderma vanbreuseghemii. Med Mycol 2015; 54:207-18. [PMID: 26483437 DOI: 10.1093/mmy/myv088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 08/31/2015] [Indexed: 12/13/2022] Open
Abstract
Calcineurin is a serine/threonine protein phosphatase that consists of catalytic (calcineurin A) and regulatory (calcineurin B) subunits. The conserved protein plays important roles in various biological processes. Drug combination of fluconazole and the calcineurin inhibitor (FK506) showed synergistic effects against dermatophytes. In the current study, we identified the calcineurin A homologous gene (TmcanA) in the dermatophyte Arthroderma vanbreuseghemii (anamorph: Trichophyton mentagrophytes). Knockdown mutants were produced from A. vanbreuseghemii, resulting in a defection in growth properties in accordance with dose of the suppressing reagent. The TmcanA gene restored the ability of calcineurin A-deficient Cryptococcus neoformans strain to grow at elevated temperatures. Repression of TmcanA at 37°C resulted in severely stunted growth, suggesting that this protein plays a role in tolerance to elevated temperatures. In addition, TMCANA showed an interaction with high osmolarity glycerol (HOG) signalling pathway by governing the secretion of a secondary metabolite. Moreover, expression of the hydrophobin A gene (TmHF) decreased significantly under the TmcanA-repressive condition, suggesting that TMCANA is involved in its regulation. In conclusion, calcineurin A is a multifunctional gene that is involved in the regulation of several biological processes and therefore is worth being considered as a drug target for treatment of dermatophytoses.
Collapse
Affiliation(s)
- Mohamed Mahdi Alshahni
- Laboratory of Space and Environmental Medicine, Graduate School of Medicine, Teikyo University, 2-11-1, Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Kiminori Shimizu
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba 260-8673, Japan
| | - Maki Yoshimoto
- Teikyo University Institute of Medical Mycology, 359 Otsuka, Hachioji, Tokyo 192-0395, Japan
| | - Tsuyoshi Yamada
- Teikyo University Institute of Medical Mycology, 359 Otsuka, Hachioji, Tokyo 192-0395, Japan
| | - Yayoi Nishiyama
- Teikyo University Institute of Medical Mycology, 359 Otsuka, Hachioji, Tokyo 192-0395, Japan
| | - Toshiro Arai
- Department of Veterinary Science, School of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino, Tokyo 180-8602, Japan
| | - Koichi Makimura
- Laboratory of Space and Environmental Medicine, Graduate School of Medicine, Teikyo University, 2-11-1, Kaga, Itabashi, Tokyo 173-8605, Japan Teikyo University Institute of Medical Mycology, 359 Otsuka, Hachioji, Tokyo 192-0395, Japan
| |
Collapse
|
127
|
Lee SC, Li A, Calo S, Inoue M, Tonthat NK, Bain JM, Louw J, Shinohara ML, Erwig LP, Schumacher MA, Ko DC, Heitman J. Calcineurin orchestrates dimorphic transitions, antifungal drug responses and host-pathogen interactions of the pathogenic mucoralean fungus Mucor circinelloides. Mol Microbiol 2015; 97:844-65. [PMID: 26010100 DOI: 10.1111/mmi.13071] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2015] [Indexed: 01/09/2023]
Abstract
Calcineurin plays essential roles in virulence and growth of pathogenic fungi and is a target of the natural products FK506 and Cyclosporine A. In the pathogenic mucoralean fungus Mucor circinelloides, calcineurin mutation or inhibition confers a yeast-locked phenotype indicating that calcineurin governs the dimorphic transition. Genetic analysis in this study reveals that two calcineurin A catalytic subunits (out of three) are functionally diverged. Homology modeling illustrates modes of resistance resulting from amino substitutions in the interface between each calcineurin subunit and the inhibitory drugs. In addition, we show how the dimorphic transition orchestrated by calcineurin programs different outcomes during host-pathogen interactions. For example, when macrophages phagocytose Mucor yeast, subsequent phagosomal maturation occurs, indicating host cells respond appropriately to control the pathogen. On the other hand, upon phagocytosis of spores, macrophages fail to form mature phagosomes. Cytokine production from immune cells differs following exposure to yeast versus spores (which germinate into hyphae). Thus, the morphogenic transition can be targeted as an efficient treatment option against Mucor infection. In addition, genetic analysis (including gene disruption and mutational studies) further strengthens the understanding of calcineurin and provides a foundation to develop antifungal agents targeting calcineurin to deploy against Mucor and other pathogenic fungi.
Collapse
Affiliation(s)
- Soo Chan Lee
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Alicia Li
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Silvia Calo
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Makoto Inoue
- Department of Immunology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Nam K Tonthat
- Department of Biochemistry, Duke University Medical Center, Durham, NC, 27710, USA
| | - Judith M Bain
- Division of Applied Medicine, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Johanna Louw
- Division of Applied Medicine, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Mari L Shinohara
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Immunology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Lars P Erwig
- Division of Applied Medicine, University of Aberdeen, Aberdeen, AB25 2ZD, UK.,Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Maria A Schumacher
- Department of Biochemistry, Duke University Medical Center, Durham, NC, 27710, USA
| | - Dennis C Ko
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA.,Center for Human Genome Variation, Duke University Medical Center, Durham, NC, 27710, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA
| |
Collapse
|
128
|
Abstract
Understanding of the taxonomy and phylogeny of Cryptococcus gattii has been advanced by modern molecular techniques. C. gattii probably diverged from Cryptococcus neoformans between 16 million and 160 million years ago, depending on the dating methods applied, and maintains diversity by recombining in nature. South America is the likely source of the virulent C. gattii VGII molecular types that have emerged in North America. C. gattii shares major virulence determinants with C. neoformans, although genomic and transcriptomic studies revealed that despite similar genomes, the VGIIa and VGIIb subtypes employ very different transcriptional circuits and manifest differences in virulence phenotypes. Preliminary evidence suggests that C. gattii VGII causes severe lung disease and death without dissemination, whereas C. neoformans disseminates readily to the central nervous system (CNS) and causes death from meningoencephalitis. Overall, currently available data indicate that the C. gattii VGI, VGII, and VGIII molecular types more commonly affect nonimmunocompromised hosts, in contrast to VGIV. New, rapid, cheap diagnostic tests and imaging modalities are assisting early diagnosis and enabling better outcomes of cerebral cryptococcosis. Complications of CNS infection include increased intracranial pressure, severe neurological sequelae, and development of immune reconstitution syndrome, although the mortality rate is low. C. gattii VGII isolates may exhibit higher fluconazole MICs than other genotypes. Optimal therapeutic regimens are yet to be determined; in most cases, initial therapy with amphotericin B and 5-flucytosine is recommended.
Collapse
|
129
|
Polvi EJ, Li X, O’Meara TR, Leach MD, Cowen LE. Opportunistic yeast pathogens: reservoirs, virulence mechanisms, and therapeutic strategies. Cell Mol Life Sci 2015; 72:2261-87. [PMID: 25700837 PMCID: PMC11113693 DOI: 10.1007/s00018-015-1860-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 02/06/2015] [Accepted: 02/11/2015] [Indexed: 12/21/2022]
Abstract
Life-threatening invasive fungal infections are becoming increasingly common, at least in part due to the prevalence of medical interventions resulting in immunosuppression. Opportunistic fungal pathogens of humans exploit hosts that are immunocompromised, whether by immunosuppression or genetic predisposition, with infections originating from either commensal or environmental sources. Fungal pathogens are armed with an arsenal of traits that promote pathogenesis, including the ability to survive host physiological conditions and to switch between different morphological states. Despite the profound impact of fungal pathogens on human health worldwide, diagnostic strategies remain crude and treatment options are limited, with resistance to antifungal drugs on the rise. This review will focus on the global burden of fungal infections, the reservoirs of these pathogens, the traits of opportunistic yeast that lead to pathogenesis, host genetic susceptibilities, and the challenges that must be overcome to combat antifungal drug resistance and improve clinical outcome.
Collapse
Affiliation(s)
- Elizabeth J. Polvi
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Room 4368, Toronto, ON M5S 1A8 Canada
| | - Xinliu Li
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Room 4368, Toronto, ON M5S 1A8 Canada
| | - Teresa R. O’Meara
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Room 4368, Toronto, ON M5S 1A8 Canada
| | - Michelle D. Leach
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Room 4368, Toronto, ON M5S 1A8 Canada
- Aberdeen Fungal Group, Institute of Medical Sciences, School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Room 4368, Toronto, ON M5S 1A8 Canada
| |
Collapse
|
130
|
MacEwen CR, Ryan A, Winearls CG. Donor transmission of Cryptococcus neoformans presenting late after renal transplantation. Clin Kidney J 2015; 6:224-7. [PMID: 26019853 PMCID: PMC4432446 DOI: 10.1093/ckj/sft006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 01/09/2013] [Indexed: 12/19/2022] Open
Affiliation(s)
- Clare R MacEwen
- The Oxford Kidney Unit , Oxford University Hospitals NHS Trust , Oxford OX3 7LE , UK
| | - Aidan Ryan
- The Oxford Kidney Unit , Oxford University Hospitals NHS Trust , Oxford OX3 7LE , UK
| | | |
Collapse
|
131
|
Serra-Cardona A, Canadell D, Ariño J. Coordinate responses to alkaline pH stress in budding yeast. MICROBIAL CELL 2015; 2:182-196. [PMID: 28357292 PMCID: PMC5349140 DOI: 10.15698/mic2015.06.205] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Alkalinization of the medium represents a stress condition for the budding yeast Saccharomyces cerevisiae to which this organism responds with profound remodeling of gene expression. This is the result of the modulation of a substantial number of signaling pathways whose participation in the alkaline response has been elucidated within the last ten years. These regulatory inputs involve not only the conserved Rim101/PacC pathway, but also the calcium-activated phosphatase calcineurin, the Wsc1-Pkc1-Slt2 MAP kinase, the Snf1 and PKA kinases and oxidative stress-response pathways. The uptake of many nutrients is perturbed by alkalinization of the environment and, consequently, an impact on phosphate, iron/copper and glucose homeostatic mechanisms can also be observed. The analysis of available data highlights cases in which diverse signaling pathways are integrated in the gene promoter to shape the appropriate response pattern. Thus, the expression of different genes sharing the same signaling network can be coordinated, allowing functional coupling of their gene products.
Collapse
Affiliation(s)
- Albert Serra-Cardona
- Departament de Bioquímica i Biologia Molecular & Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra 08193, Barcelona, Spain
| | - David Canadell
- Departament de Bioquímica i Biologia Molecular & Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra 08193, Barcelona, Spain
| | - Joaquín Ariño
- Departament de Bioquímica i Biologia Molecular & Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra 08193, Barcelona, Spain
| |
Collapse
|
132
|
Yu SJ, Chang YL, Chen YL. Calcineurin signaling: lessons from Candida species. FEMS Yeast Res 2015; 15:fov016. [DOI: 10.1093/femsyr/fov016] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2015] [Indexed: 12/24/2022] Open
|
133
|
Impact of Protein Palmitoylation on the Virulence Potential of Cryptococcus neoformans. EUKARYOTIC CELL 2015; 14:626-35. [PMID: 25862155 DOI: 10.1128/ec.00010-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/05/2015] [Indexed: 11/20/2022]
Abstract
The localization and specialized function of Ras-like proteins are largely determined by posttranslational processing events. In a highly regulated process, palmitoyl groups may be added to C-terminal cysteine residues, targeting these proteins to specific membranes. In the human fungal pathogen Cryptococcus neoformans, Ras1 protein palmitoylation is essential for growth at high temperature but is dispensable for sexual differentiation. Ras1 palmitoylation is also required for localization of this protein on the plasma membrane. Together, these results support a model in which specific Ras functions are mediated from different subcellular locations. We therefore hypothesize that proteins that activate Ras1 or mediate Ras1 localization to the plasma membrane will be important for C. neoformans pathogenesis. To further characterize the Ras1 signaling cascade mediating high-temperature growth, we have identified a family of protein S-acyltransferases (PATs), enzymes that mediate palmitoylation, in the C. neoformans genome database. Deletion strains for each candidate gene were generated by homogenous recombination, and each mutant strain was assessed for Ras1-mediated phenotypes, including high-temperature growth, morphogenesis, and sexual development. We found that full Ras1 palmitoylation and function required one particular PAT, Pfa4, and deletion of the PFA4 gene in C. neoformans resulted in altered Ras1 localization to membranes, impaired growth at 37°C, and reduced virulence.
Collapse
|
134
|
Brunke S, Quintin J, Kasper L, Jacobsen ID, Richter ME, Hiller E, Schwarzmüller T, d'Enfert C, Kuchler K, Rupp S, Hube B, Ferrandon D. Of mice, flies--and men? Comparing fungal infection models for large-scale screening efforts. Dis Model Mech 2015; 8:473-86. [PMID: 25786415 PMCID: PMC4415897 DOI: 10.1242/dmm.019901] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/17/2015] [Indexed: 12/14/2022] Open
Abstract
Studying infectious diseases requires suitable hosts for experimental in vivo infections. Recent years have seen the advent of many alternatives to murine infection models. However, the use of non-mammalian models is still controversial because it is often unclear how well findings from these systems predict virulence potential in humans or other mammals. Here, we compare the commonly used models, fruit fly and mouse (representing invertebrate and mammalian hosts), for their similarities and degree of correlation upon infection with a library of mutants of an important fungal pathogen, the yeast Candida glabrata. Using two indices, for fly survival time and for mouse fungal burden in specific organs, we show a good agreement between the models. We provide a suitable predictive model for estimating the virulence potential of C. glabrata mutants in the mouse from fly survival data. As examples, we found cell wall integrity mutants attenuated in flies, and mutants of a MAP kinase pathway had defective virulence in flies and reduced relative pathogen fitness in mice. In addition, mutants with strongly reduced in vitro growth generally, but not always, had reduced virulence in flies. Overall, we demonstrate that surveying Drosophila survival after infection is a suitable model to predict the outcome of murine infections, especially for severely attenuated C. glabrata mutants. Pre-screening of mutants in an invertebrate Drosophila model can, thus, provide a good estimate of the probability of finding a strain with reduced microbial burden in the mouse host. Summary: Can the fitness of deletion mutants in a murine model be predicted by their virulence in Drosophila melanogaster? For a fungal pathogen, the answer is, mostly, yes.
Collapse
Affiliation(s)
- Sascha Brunke
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), University Hospital, 07747 Jena, Germany Department of Microbial Pathogenicity Mechanisms, Hans Knöll Institute, 07745 Jena, Germany
| | - Jessica Quintin
- Equipe Fondation Recherche Médicale, Unité Propre de Recherche 9022 du Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Moléculaire et Cellulaire (IBMC), Université de Strasbourg, 67084 Strasbourg, France
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Hans Knöll Institute, 07745 Jena, Germany
| | - Ilse D Jacobsen
- Research Group Microbial Immunology, Hans Knöll Institute, 07745 Jena, Germany Friedrich Schiller University, 07743 Jena, Germany
| | - Martin E Richter
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), University Hospital, 07747 Jena, Germany Institute for Clinical Chemistry and Laboratory Medicine, Jena University Hospital, 07747 Jena, Germany
| | - Ekkehard Hiller
- Department of Molecular Biotechnology, Fraunhofer Institute for Interfacial Engineering and Biotechnology, 70569 Stuttgart, Germany
| | - Tobias Schwarzmüller
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University Vienna, 1030 Vienna, Austria
| | - Christophe d'Enfert
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, 75015 Paris, France INRA, USC2019, 75015 Paris, France
| | - Karl Kuchler
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University Vienna, 1030 Vienna, Austria
| | - Steffen Rupp
- Department of Molecular Biotechnology, Fraunhofer Institute for Interfacial Engineering and Biotechnology, 70569 Stuttgart, Germany
| | - Bernhard Hube
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), University Hospital, 07747 Jena, Germany Department of Microbial Pathogenicity Mechanisms, Hans Knöll Institute, 07745 Jena, Germany Friedrich Schiller University, 07743 Jena, Germany
| | - Dominique Ferrandon
- Equipe Fondation Recherche Médicale, Unité Propre de Recherche 9022 du Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Moléculaire et Cellulaire (IBMC), Université de Strasbourg, 67084 Strasbourg, France
| |
Collapse
|
135
|
Lin YY, Shiau S, Fang CT. Risk factors for invasive Cryptococcus neoformans diseases: a case-control study. PLoS One 2015; 10:e0119090. [PMID: 25747471 PMCID: PMC4352003 DOI: 10.1371/journal.pone.0119090] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 01/09/2015] [Indexed: 12/18/2022] Open
Abstract
Background Cryptococcus neoformans is a ubiquitous environmental fungus that can cause life-threatening meningitis and fungemia, often in the presence of acquired immunodeficiency syndrome (AIDS), liver cirrhosis, diabetes mellitus, or other medical conditions. To distinguish risk factors from comorbidities, we performed a hospital-based, density-sampled, matched case-control study. Methods All new-onset cryptococcal meningitis cases and cryptococcemia cases at a university hospital in Taiwan from 2002–2010 were retrospectively identified from the computerized inpatient registry and were included in this study. Controls were selected from those hospitalized patients not experiencing cryptococcal meningitis or cryptococcemia. Controls and cases were matched by admission date, age, and gender. Conditional logistic regression was used to analyze the risk factors. Results A total of 101 patients with cryptococcal meningitis (266 controls) and 47 patients with cryptococcemia (188 controls), of whom 32 patients had both cryptococcal meningitis and cryptococcemia, were included in this study. Multivariate regression analysis showed that AIDS (adjusted odds ratio [aOR] = 181.4; p < 0.001), decompensated liver cirrhosis (aOR = 8.5; p = 0.008), and cell-mediated immunity (CMI)-suppressive regimens without calcineurin inhibitors (CAs) (aOR = 15.9; p < 0.001) were independent risk factors for cryptococcal meningitis. Moreover, AIDS (aOR = 216.3, p < 0.001), decompensated liver cirrhosis (aOR = 23.8; p < 0.001), CMI-suppressive regimens without CAs (aOR = 7.3; p = 0.034), and autoimmune diseases (aOR = 9.3; p = 0.038) were independent risk factors for developing cryptococcemia. On the other hand, diabetes mellitus and other medical conditions were not found to be risk factors for cryptococcal meningitis or cryptococcemia. Conclusions The findings confirm AIDS, decompensated liver cirrhosis, CMI-suppressive regimens without CAs, and autoimmune diseases are risk factors for invasive C. neoformans diseases.
Collapse
Affiliation(s)
- Ying-Ying Lin
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Stephanie Shiau
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, United States of America
| | - Chi-Tai Fang
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
136
|
Sahin SZ, Akalin H, Ersoy A, Yildiz A, Ocakoglu G, Cetinoglu ED, Dizdar OS, Kazak E, Ener B. Invasive Fungal Infections in Renal Transplant Recipients: Epidemiology and Risk Factors. Mycopathologia 2015; 180:43-50. [DOI: 10.1007/s11046-015-9875-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/11/2015] [Indexed: 01/09/2023]
|
137
|
Lin X, Chacko N, Wang L, Pavuluri Y. Generation of stable mutants and targeted gene deletion strains in Cryptococcus neoformans through electroporation. Med Mycol 2014; 53:225-34. [PMID: 25541555 DOI: 10.1093/mmy/myu083] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cryptococcus neoformans is the etiologic agent of cryptococcal meningitis that causes more than half a million deaths worldwide each year. This capsulated basidiomycetous yeast also serves as a model for micropathogenic studies. The ability to make stable mutants, either via ectopic integration or homologous recombination, has been accomplished using biolistic transformation. This technical advance has greatly facilitated the research on the basic biology and pathogenic mechanisms of this pathogen in the past two decades. However, biolistic transformation is costly, and its reproducibility varies widely. Here we found that stable ectopic integration or targeted gene deletion via homologous replacement could be accomplished through electroporative transformation. The stability of the transformants obtained through electroporation and the frequency of homologous replacement is highly dependent on the selective marker. A frequency of homologous recombination among the stable transformants obtained by electroporation is comparable to those obtained by biolistic transformation (∼10%) when dominant drug selection markers are used, which is much higher than what has been previously reported for electroporation when auxotrophic markers were used (0.001% to 0.1%). Furthermore, disruption of the KU80 gene or generation of gene deletion constructs using the split marker strategy, two approaches known to increase homologous replacement among transformants obtained through biolistic transformation, also increase the frequency of homologous replacement among transformants obtained through electroporation. Therefore, electroporation provides a low cost alternative for mutagenesis in Cryptococcus.
Collapse
Affiliation(s)
- Xiaorong Lin
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Nadia Chacko
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Linqi Wang
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Yashwant Pavuluri
- Department of Biology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
138
|
Li F, Wang ZL, Zhang LB, Ying SH, Feng MG. The role of three calcineurin subunits and a related transcription factor (Crz1) in conidiation, multistress tolerance and virulence in Beauveria bassiana. Appl Microbiol Biotechnol 2014; 99:827-40. [DOI: 10.1007/s00253-014-6124-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 09/28/2014] [Accepted: 09/30/2014] [Indexed: 11/25/2022]
|
139
|
Juvvadi PR, Lamoth F, Steinbach WJ. Calcineurin as a Multifunctional Regulator: Unraveling Novel Functions in Fungal Stress Responses, Hyphal Growth, Drug Resistance, and Pathogenesis. FUNGAL BIOL REV 2014; 28:56-69. [PMID: 25383089 DOI: 10.1016/j.fbr.2014.02.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Calcineurin signaling plays diverse roles in fungi in regulating stress responses, morphogenesis and pathogenesis. Although calcineurin signaling is conserved among fungi, recent studies indicate important divergences in calcineurin-dependent cellular functions among different human fungal pathogens. Fungal pathogens utilize the calcineurin pathway to effectively survive the host environment and cause life-threatening infections. The immunosuppressive calcineurin inhibitors (FK506 and cyclosporine A) are active against fungi, making targeting calcineurin a promising antifungal drug development strategy. Here we summarize current knowledge on calcineurin in yeasts and filamentous fungi, and review the importance of understanding fungal-specific attributes of calcineurin to decipher fungal pathogenesis and develop novel antifungal therapeutic approaches.
Collapse
Affiliation(s)
- Praveen R Juvvadi
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham NC, USA
| | - Frédéric Lamoth
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham NC, USA ; Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland ; Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - William J Steinbach
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham NC, USA ; Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham NC, USA
| |
Collapse
|
140
|
Hu Y, Wang J, Ying SH, Feng MG. Five vacuolar Ca(2+) exchangers play different roles in calcineurin-dependent Ca(2+)/Mn(2+) tolerance, multistress responses and virulence of a filamentous entomopathogen. Fungal Genet Biol 2014; 73:12-9. [PMID: 25256588 DOI: 10.1016/j.fgb.2014.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/28/2014] [Accepted: 09/16/2014] [Indexed: 11/28/2022]
Abstract
Multiple Vcx1 (vacuolar calcium exchanger) paralogues exist in many filamentous fungi but are functionally unexplored unlike a single Vcx1 ortholog well characterized in yeasts. Here we show that five Vcx1 paralogues (Vcx1A-E) in Beauveria bassiana are conditionally functional for intracellular Ca(2+) homeostasis and contribute differentially to multistress tolerance and virulence in the filamentous entomopathogen. Each vcx1 deletion drastically upregulated transcriptional expressions of four other partners and six P-type Ca(2+)-ATPases, resulting in elevated or lowered intracellular Ca(2+) concentration in some deletion mutants treated with Ca(2+) stress or untreated at 25 and 30 °C. When calcineurin was inactivated by cyclosporine A, Ca(2+) tolerance decreased by 11-17% in five Δvcx1 mutants, but Mn(2+) sensitivity increased only in Δvcx1A and Δvcx1D, at optimal 25 °C. These two mutants were also more sensitive to Ca(2+) stress at 30 °C when calcineurin was active, and showed minor growth defect at 25 and 30 °C when calcineurin was inactive. Moreover, all the Δvcx1 mutants were more sensitive to dithiothreitol (stress-response trigger to endoplasmic reticulum) and Congo red (cell wall stressor); three of them were consistently less tolerant to the oxidants menadione and H2O2. The fungal virulence to Galleria mellonella larvae decreased by 15-40% in four Δvcx1 mutants excluding Δvcx1E, which was uniquely defective in conidial thermotolerance. All the changes were restored by each vcx1 complementation. Our findings indicate that the five Vcx1 paralogues in B. bassiana contribute differentially to calcineurin-dependent Ca(2+)/Mn(2+) tolerance, multistress responses and virulence, and recall attention to multifunctional Vcx1 paralogues in filamentous fungi.
Collapse
Affiliation(s)
- Yue Hu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Jie Wang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China.
| |
Collapse
|
141
|
Abstract
Cryptococcus neoformans is a pathogenic basidiomycetous fungus that engages in outcrossing, inbreeding, and selfing forms of unisexual reproduction as well as canonical sexual reproduction between opposite mating types. Long thought to be clonal, >99% of sampled environmental and clinical isolates of C. neoformans are MATα, limiting the frequency of opposite mating-type sexual reproduction. Sexual reproduction allows eukaryotic organisms to exchange genetic information and shuffle their genomes to avoid the irreversible accumulation of deleterious changes that occur in asexual populations, known as Muller's ratchet. We tested whether unisexual reproduction, which dispenses with the requirement for an opposite mating-type partner, is able to purge the genome of deleterious mutations. We report that the unisexual cycle can restore mutant strains of C. neoformans to wild-type genotype and phenotype, including prototrophy and growth rate. Furthermore, the unisexual cycle allows attenuated strains to purge deleterious mutations and produce progeny that are returned to wild-type virulence. Our results show that unisexual populations of C. neoformans are able to avoid Muller's ratchet and loss of fitness through a unisexual reproduction cycle involving α-α cell fusion, nuclear fusion, and meiosis. Similar types of unisexual reproduction may operate in other pathogenic and saprobic eukaryotic taxa.
Collapse
|
142
|
Juvvadi PR, Lamoth F, Steinbach WJ. Calcineurin-mediated regulation of hyphal growth, septation, and virulence in Aspergillus fumigatus. Mycopathologia 2014; 178:341-8. [PMID: 25118871 DOI: 10.1007/s11046-014-9794-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/31/2014] [Indexed: 01/26/2023]
Abstract
Calcineurin is a heterodimeric protein phosphatase complex composed of catalytic (CnaA) and regulatory (CnaB) subunits and plays diverse roles in regulating fungal stress responses, morphogenesis, and pathogenesis. Fungal pathogens utilize the calcineurin pathway to survive in the host environment and cause life-threatening infections. The immunosuppressive calcineurin inhibitors (FK506 and cyclosporine A) are active against fungi, making calcineurin a promising antifungal drug target. Here, we review novel findings on calcineurin localization and functions in Aspergillus fumigatus hyphal growth and septum formation through regulation of proteins involved in cell wall biosynthesis. Extensive mutational analysis in the functional domains of A. fumigatus CnaA has led to an understanding of the relevance of these domains for the localization and function of CnaA at the hyphal septum. An evolutionarily conserved novel mode of calcineurin regulation by phosphorylation in filamentous fungi was found to be responsible for virulence in A. fumigatus. This finding of a filamentous fungal-specific mechanism controlling hyphal growth and virulence represents a potential target for antifungal therapy.
Collapse
Affiliation(s)
- Praveen R Juvvadi
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Duke University Medical Center, 427 Jones Building, Research Drive, Durham, NC, 27710, USA,
| | | | | |
Collapse
|
143
|
The role of the de novo pyrimidine biosynthetic pathway in Cryptococcus neoformans high temperature growth and virulence. Fungal Genet Biol 2014; 70:12-23. [PMID: 25011011 DOI: 10.1016/j.fgb.2014.06.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/09/2014] [Accepted: 06/14/2014] [Indexed: 11/21/2022]
Abstract
Fungal infections are often difficult to treat due to the inherent similarities between fungal and animal cells and the resulting host toxicity from many antifungal compounds. Cryptococcus neoformans is an opportunistic fungal pathogen of humans that causes life-threatening disease, primarily in immunocompromised patients. Since antifungal therapy for this microorganism is limited, many investigators have explored novel drug targets aim at virulence factors, such as the ability to grow at mammalian physiological temperature (37°C). To address this issue, we used the Agrobacterium tumefaciens gene delivery system to create a random insertion mutagenesis library that was screened for altered growth at elevated temperatures. Among several mutants unable to grow at 37°C, we explored one bearing an interruption in the URA4 gene. This gene encodes dihydroorotase (DHOase) that is involved in the de novo synthesis of pyrimidine ribonucleotides. Loss of the C. neoformans Ura4 protein, by targeted gene interruption, resulted in an expected uracil/uridine auxotrophy and an unexpected high temperature growth defect. In addition, the ura4 mutant displayed phenotypic defects in other prominent virulence factors (melanin, capsule and phospholipase) and reduced stress response compared to wild type and reconstituted strains. Accordingly, this mutant had a decreased survival rate in macrophages and attenuated virulence in a murine model of cryptococcal infection. Quantitative PCR analysis suggests that this biosynthetic pathway is induced during the transition from 30°C to 37°C, and that transcriptional regulation of de novo and salvage pyrimidine pathway are under the control of the Ura4 protein.
Collapse
|
144
|
Kwon-Chung KJ, Fraser JA, Doering TL, Wang Z, Janbon G, Idnurm A, Bahn YS. Cryptococcus neoformans and Cryptococcus gattii, the etiologic agents of cryptococcosis. Cold Spring Harb Perspect Med 2014; 4:a019760. [PMID: 24985132 PMCID: PMC4066639 DOI: 10.1101/cshperspect.a019760] [Citation(s) in RCA: 329] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cryptococcus neoformans and Cryptococcus gattii are the two etiologic agents of cryptococcosis. They belong to the phylum Basidiomycota and can be readily distinguished from other pathogenic yeasts such as Candida by the presence of a polysaccharide capsule, formation of melanin, and urease activity, which all function as virulence determinants. Infection proceeds via inhalation and subsequent dissemination to the central nervous system to cause meningoencephalitis. The most common risk for cryptococcosis caused by C. neoformans is AIDS, whereas infections caused by C. gattii are more often reported in immunocompetent patients with undefined risk than in the immunocompromised. There have been many chapters, reviews, and books written on C. neoformans. The topics we focus on in this article include species description, pathogenesis, life cycle, capsule, and stress response, which serve to highlight the specializations in virulence that have occurred in this unique encapsulated melanin-forming yeast that causes global deaths estimated at more than 600,000 annually.
Collapse
Affiliation(s)
- Kyung J Kwon-Chung
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - James A Fraser
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Tamara L Doering
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Zhou Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Guilhem Janbon
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, 75015 Paris, France
| | - Alexander Idnurm
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri, Kansas City, Missouri 64110
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| |
Collapse
|
145
|
Membrane fluidity and temperature sensing are coupled via circuitry comprised of Ole1, Rsp5, and Hsf1 in Candida albicans. EUKARYOTIC CELL 2014; 13:1077-84. [PMID: 24951438 PMCID: PMC4135801 DOI: 10.1128/ec.00138-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Temperature is a ubiquitous environmental variable which can profoundly influence the physiology of living cells as it changes over time and space. When yeast cells are exposed to a sublethal heat shock, normal metabolic functions become repressed and the heat shock transcription factor Hsf1 is activated, inducing heat shock proteins (HSPs). Candida albicans, the most prevalent human fungal pathogen, is an opportunistic pathogen that has evolved as a relatively harmless commensal of healthy individuals. Even though C. albicans occupies thermally buffered niches, it has retained the classic heat shock response, activating Hsf1 during slow thermal transitions such as the increases in temperature suffered by febrile patients. However, the mechanism of temperature sensing in fungal pathogens remains enigmatic. A few studies with Saccharomyces cerevisiae suggest that thermal stress is transduced into a cellular signal at the level of the membrane. In this study, we manipulated the fluidity of C. albicans membrane to dissect mechanisms of temperature sensing. We determined that in response to elevated temperature, levels of OLE1, encoding a fatty acid desaturase, decrease. Subsequently, loss of OLE1 triggers expression of FAS2, encoding a fatty acid synthase. Furthermore, depletion of OLE1 prevents full activation of Hsf1, thereby reducing HSP expression in response to heat shock. This reduction in Hsf1 activation is attributable to the E3 ubiquitin ligase Rsp5, which regulates OLE1 expression. To our knowledge, this is the first study to define a molecular link between fatty acid synthesis and the heat shock response in the fungal kingdom.
Collapse
|
146
|
Abstract
ABSTRACT New antifungals are needed, particularly in the developing world, to treat life-threatening fungal infections, such as cryptococcosis. Drug repurposing is one strategy to identify new drug-like compounds, but it is often difficult to identify a mechanism of action. Here we discuss the outstanding effort by Butts et al. to identify calmodulin as an antifungal target of repurposed estrogen receptor antagonists [A. Butts, K. Koselny, Y. Chabrier-Roselló, C. P. Semighini, Y. C. S. Brown, et al., mBio 5(1):e00765-13, 2014, doi:10.1128/mBio.00765-13]. The authors show that these compounds bind to and directly inhibit fungal calmodulin and also reduce fungal burden in an animal disease model. These studies thus establish both the key preclinical efficacy and the antifungal mechanism of action, which will allow these compounds to progress toward development of novel antifungal therapies.
Collapse
|
147
|
To Sense or Die: Mechanisms of Temperature Sensing in Fungal Pathogens. CURRENT FUNGAL INFECTION REPORTS 2014. [DOI: 10.1007/s12281-014-0182-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
148
|
Louis B, Waikhom SD, Roy P, Bhardwaj PK, Singh MW, Goyari S, Sharma CK, Talukdar NC. Secretome weaponries of Cochliobolus lunatus interacting with potato leaf at different temperature regimes reveal a CL[xxxx]LHM - motif. BMC Genomics 2014; 15:213. [PMID: 24650331 PMCID: PMC4000054 DOI: 10.1186/1471-2164-15-213] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 03/13/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plant and animal pathogenic fungus Cochliobolus lunatus cause great economic damages worldwide every year. C. lunatus displays an increased temperature dependent-virulence to a wide range of hosts. Nonetheless, this phenomenon is poorly understood due to lack of insights on the coordinated secretome weaponries produced by C. lunatus under heat-stress conditions on putative hosts. To understand the mechanism better, we dissected the secretome of C. lunatus interacting with potato (Solanum tuberosum L.) leaf at different temperature regimes. RESULTS C. lunatus produced melanized colonizing hyphae in and on potato leaf, finely modulated the ambient pH as a function of temperature and secreted diverse set of proteins. Using two dimensional gel electrophoresis (2-D) and mass spectrometry (MS) technology, we observed discrete secretomes at 20°C, 28°C and 38°C. A total of 21 differentially expressed peptide spots and 10 unique peptide spots (that did not align on the gels) matched with 28 unique protein models predicted from C. lunatus m118 v.2 genome peptides. Furthermore, C. lunatus secreted peptides via classical and non-classical pathways related to virulence, proteolysis, nucleic acid metabolism, carbohydrate metabolism, heat stress, signal trafficking and some with unidentified catalytic domains. CONCLUSIONS We have identified a set of 5 soluble candidate effectors of unknown function from C. lunatus secretome weaponries against potato crop at different temperature regimes. Our findings demonstrate that C. lunatus has a repertoire of signature secretome which mediates thermo-pathogenicity and share a leucine rich "CL[xxxx]LHM"-motif. Considering the rapidly evolving temperature dependent-virulence and host diversity of C. lunatus, this data will be useful for designing new protection strategies.
Collapse
Affiliation(s)
- Bengyella Louis
- Institute of Bioresources and Sustainable Development (IBSD), Takyelpat, Imphal 795001, Manipur, India
- Department of Biotechnology, The University of Burdwan, Golapbag More 713104, West Bengal, India
- Department of Biochemistry, University of Yaoundé I, Yaoundé-BP812 Yaoundé, Cameroon
| | - Sayanika Devi Waikhom
- Institute of Bioresources and Sustainable Development (IBSD), Takyelpat, Imphal 795001, Manipur, India
| | - Pranab Roy
- Department of Biotechnology, Haldia Institute of Technology, Haldia 721657, West Bengal, India
| | - Pardeep Kumar Bhardwaj
- Regional Centre of the Institute of Bioresources and Sustainable Development (RCIBSD), Gangtok 737102, Sikkim, India
| | - Mohendro Wakambam Singh
- Institute of Bioresources and Sustainable Development (IBSD), Takyelpat, Imphal 795001, Manipur, India
| | - Sailendra Goyari
- Institute of Bioresources and Sustainable Development (IBSD), Takyelpat, Imphal 795001, Manipur, India
- Department of Biotechnology, Guwahati University, Guwahati 781 014, Assam, India
| | - Chandradev K Sharma
- Institute of Bioresources and Sustainable Development (IBSD), Takyelpat, Imphal 795001, Manipur, India
| | - Narayan Chandra Talukdar
- Institute of Bioresources and Sustainable Development (IBSD), Takyelpat, Imphal 795001, Manipur, India
| |
Collapse
|
149
|
Schieffelin J, Garcia-Diaz J, Loss G, Beckman E, Keller R, Staffeld-Coit C, Garces J, Pankey G. Phaeohyphomycosis fungal infections in solid organ transplant recipients: clinical presentation, pathology, and treatment. Transpl Infect Dis 2014; 16:270-8. [DOI: 10.1111/tid.12197] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 08/23/2013] [Accepted: 09/07/2013] [Indexed: 11/28/2022]
Affiliation(s)
- J.S. Schieffelin
- Department of Internal Medicine; Section of Infectious Diseases; Tulane University School of Medicine; New Orleans Louisiana USA
| | - J.B. Garcia-Diaz
- Infectious Diseases; Ochsner Clinic Foundation; New Orleans Louisiana USA
- The University of Queensland School of Medicine; Ochsner Clinical School; New Orleans Louisiana USA
| | - G.E. Loss
- The University of Queensland School of Medicine; Ochsner Clinical School; New Orleans Louisiana USA
- Multi-Organ Transplant Center; Ochsner Clinic Foundation; New Orleans Louisiana USA
| | - E.N. Beckman
- Anatomic Pathology; Ochsner Clinic Foundation; New Orleans Louisiana USA
| | - R.A. Keller
- Dermatology; Audie L. Murphy Memorial Veterans, Hospital; San Antonio Texas USA
| | - C. Staffeld-Coit
- Multi-Organ Transplant Center; Ochsner Clinic Foundation; New Orleans Louisiana USA
- Nephrology; Ochsner Clinic Foundation; New Orleans Louisiana USA
| | - J.C. Garces
- Multi-Organ Transplant Center; Ochsner Clinic Foundation; New Orleans Louisiana USA
- Nephrology; Ochsner Clinic Foundation; New Orleans Louisiana USA
| | - G.A. Pankey
- Infectious Diseases; Ochsner Clinic Foundation; New Orleans Louisiana USA
| |
Collapse
|
150
|
O'Meara TR, Cowen LE. Hsp90-dependent regulatory circuitry controlling temperature-dependent fungal development and virulence. Cell Microbiol 2014; 16:473-81. [PMID: 24438186 DOI: 10.1111/cmi.12266] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/09/2014] [Accepted: 01/13/2014] [Indexed: 11/28/2022]
Abstract
The pathogenic fungi Candida albicans, Aspergillus fumigatus, and Cryptococcus neoformans are an increasing cause of human mortality, especially in immunocompromised populations. During colonization and adaptation to various host environments, these fungi undergo morphogenetic alterations that allow for survival within the host. One key environmental cue driving morphological changes is external temperature. The Hsp90 chaperone protein provides one mechanism to link temperature with the signalling cascades that regulate morphogenesis, fungal development and virulence. Candida albicans is a model system for understanding the connections between morphogenesis and Hsp90. Due to the high degree of conservation in Hsp90, many of the connections in C. albicans may be extrapolated to other fungal pathogens or parasites. Examining the role of Hsp90 during development and morphogenesis in these three major fungal pathogens may provide insight into key aspects of adaptation to the host, leading to additional avenues for therapy.
Collapse
Affiliation(s)
- Teresa R O'Meara
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|