101
|
Preventive role of green tea catechins from obesity and related disorders especially hypercholesterolemia and hyperglycemia. J Transl Med 2015; 13:79. [PMID: 25888764 PMCID: PMC4351924 DOI: 10.1186/s12967-015-0436-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 02/12/2015] [Indexed: 12/03/2022] Open
Abstract
Background During the last few years, scientific investigations have proposed diet based regimens to prevent several health ailments including obesity, hypercholesterolemia and diabetes. In this regard, a promising tool is the use of functional foods/nutraceuticals. Present research project was an attempt to explore nutraceutical worth of locally grown green tea variety (Qi-Men) against lifestyle related disorders. Methods Functional drinks (T2 and T3) were prepared by adding catechins and epigallocatechin gallate (EGCG) @ 550 mg/500 mL and compared with control (T1). These functional drinks were tested in experimental rats modeling (Sprague Dawley). Based on diets, four studies were conducted i.e. trial-I (normal diet), trial-II (high cholesterol diet), trial-III (high sucrose diet), trial-IV (high cholesterol + high sucrose diet). Rats were monitored daily for their feed and drink intake while body weight was measured on weekly basis. After period of 56 days rats were sacrificed and evaluated their serum lipid (cholesterol, LDL and HDL), glucose and insulin levels. Results Results for feed consumption by rats revealed that highest feed intake was recorded in group provided control drink than other groups. However, non significant differences were noted among all groups for drink consumption. Functional drinks resulted in significant reduction in body weight with maximum lowering noted in trial-II and III i.e. 10.73 to 8.49% and 10.12 to 10.49%, respectively. Likewise, cholesterol and LDL were substantially reduced with 14.42% decrease observed in trial-IV and 30.43% in trial-II, respectively. Furthermore, serum glucose and insulin levels were also lowered significantly in the trial-III and IV while in trial-I and II differences were non-significant. In contrast to lipid profile, experimental drink containing EGCG reduced the trait better than catechins based functional drink. Conclusions The drinks supplemented with catechins and EGCG are effective against obesity, hypercholesterolemia and hyperglycemia.
Collapse
|
102
|
Nunes AR, Alves MG, Moreira PI, Oliveira PF, Silva BM. Can Tea Consumption be a Safe and Effective Therapy Against Diabetes Mellitus-Induced Neurodegeneration? Curr Neuropharmacol 2014; 12:475-89. [PMID: 25977676 PMCID: PMC4428023 DOI: 10.2174/1570159x13666141204220539] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 10/10/2014] [Accepted: 12/03/2014] [Indexed: 12/20/2022] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease that is rapidly increasing and has become a major public health problem. Type 2 DM (T2DM) is the most common type, accounting for up to 90-95% of the new diagnosed DM cases. The brain is very susceptible to glucose fluctuations and hyperglycemia-induced oxidative stress (OS). It is well known that DM and the risk of developing neurodegenerative diseases are associated. Tea, Camellia sinensis L., is one of the most consumed beverages. It contains several phytochemicals, such as polyphenols, methylxanthines (mainly caffeine) and L-theanine that are often reported to be responsible for tea's health benefits, including in brain. Tea phytochemicals have been reported to be responsible for tea's significant antidiabetic and neuroprotective properties and antioxidant potential. Epidemiological studies have shown that regular consumption of tea has positive effects on DM-caused complications and protects the brain against oxidative damage, contributing to an improvement of the cognitive function. Among the several reported benefits of tea consumption, those related with neurodegenerative diseases are of great interest. Herein, we discuss the potential beneficial effects of tea consumption and tea phytochemicals on DM and how their action can counteract the severe brain damage induced by this disease.
Collapse
Affiliation(s)
- Ana R. Nunes
- CICS – UBI – Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Marco G. Alves
- CICS – UBI – Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Paula I. Moreira
- CNC – Center for Neuroscience and Cell Biology, University of Coimbra and Laboratory of Physiology, Faculty of Medicine, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Pedro F. Oliveira
- CICS – UBI – Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Branca M. Silva
- CICS – UBI – Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| |
Collapse
|
103
|
Jesus AR, Dias C, Matos AM, de Almeida RFM, Viana AS, Marcelo F, Ribeiro RT, Macedo MP, Airoldi C, Nicotra F, Martins A, Cabrita EJ, Jiménez-Barbero J, Rauter AP. Exploiting the Therapeutic Potential of 8-β-d-Glucopyranosylgenistein: Synthesis, Antidiabetic Activity, and Molecular Interaction with Islet Amyloid Polypeptide and Amyloid β-Peptide (1–42). J Med Chem 2014; 57:9463-72. [DOI: 10.1021/jm501069h] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ana R. Jesus
- Center
of Chemistry and Biochemistry, Department of Chemistry and Biochemistry,
Faculdade de Ciências, Universidade de Lisboa, Ed C8, Piso
5, Campo Grande, 1749−016 Lisboa, Portugal
| | - Catarina Dias
- Center
of Chemistry and Biochemistry, Department of Chemistry and Biochemistry,
Faculdade de Ciências, Universidade de Lisboa, Ed C8, Piso
5, Campo Grande, 1749−016 Lisboa, Portugal
| | - Ana M. Matos
- Center
of Chemistry and Biochemistry, Department of Chemistry and Biochemistry,
Faculdade de Ciências, Universidade de Lisboa, Ed C8, Piso
5, Campo Grande, 1749−016 Lisboa, Portugal
- CEDOC
Chronic Diseases Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua Câmara Pestana, 6,
6a, 1150-082, Lisboa, Portugal
| | - Rodrigo F. M. de Almeida
- Center
of Chemistry and Biochemistry, Department of Chemistry and Biochemistry,
Faculdade de Ciências, Universidade de Lisboa, Ed C8, Piso
5, Campo Grande, 1749−016 Lisboa, Portugal
| | - Ana S. Viana
- Center
of Chemistry and Biochemistry, Department of Chemistry and Biochemistry,
Faculdade de Ciências, Universidade de Lisboa, Ed C8, Piso
5, Campo Grande, 1749−016 Lisboa, Portugal
| | - Filipa Marcelo
- REQUIMTE,
CQFB, Department of Chemistry, Faculdade de Ciências e Tecnologias, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal
| | - Rogério T. Ribeiro
- CEDOC
Chronic Diseases Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua Câmara Pestana, 6,
6a, 1150-082, Lisboa, Portugal
- APDP, Diabetes
Portugal Education and Research Center, APDP-ERC, Rua do Salitre, 118-120, 1250-203 Lisboa, Portugal
| | - Maria P. Macedo
- CEDOC
Chronic Diseases Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua Câmara Pestana, 6,
6a, 1150-082, Lisboa, Portugal
- APDP, Diabetes
Portugal Education and Research Center, APDP-ERC, Rua do Salitre, 118-120, 1250-203 Lisboa, Portugal
| | - Cristina Airoldi
- Department
of Biotechnology and Biosciences, University Milano Bicocca, Piaza
della Sciencia 2-4, 20126, Milano, Italy
| | - Francesco Nicotra
- Department
of Biotechnology and Biosciences, University Milano Bicocca, Piaza
della Sciencia 2-4, 20126, Milano, Italy
| | - Alice Martins
- Center
of Chemistry and Biochemistry, Department of Chemistry and Biochemistry,
Faculdade de Ciências, Universidade de Lisboa, Ed C8, Piso
5, Campo Grande, 1749−016 Lisboa, Portugal
| | - Eurico J. Cabrita
- REQUIMTE,
CQFB, Department of Chemistry, Faculdade de Ciências e Tecnologias, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal
| | - Jesús Jiménez-Barbero
- Centro de Investigaciones
Biológicas, C.S.I.C., Ramiro
de Maeztu 9, 28040 Madrid, Spain
| | - Amélia P. Rauter
- Center
of Chemistry and Biochemistry, Department of Chemistry and Biochemistry,
Faculdade de Ciências, Universidade de Lisboa, Ed C8, Piso
5, Campo Grande, 1749−016 Lisboa, Portugal
| |
Collapse
|
104
|
Direct comparison of health effects by dietary polyphenols at equimolar doses in wildtype moderate high-fat fed C57BL/6JOlaHsd mice. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.03.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
105
|
Bhakkiyalakshmi E, Sireesh D, Rajaguru P, Paulmurugan R, Ramkumar KM. The emerging role of redox-sensitive Nrf2-Keap1 pathway in diabetes. Pharmacol Res 2014; 91:104-14. [PMID: 25447793 DOI: 10.1016/j.phrs.2014.10.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 10/08/2014] [Accepted: 10/16/2014] [Indexed: 12/30/2022]
Abstract
The pathogenic processes involving in the development of diabetes range from autoimmune destruction of pancreatic β-cells with consequent insulin deficiency to abnormalities that result in resistance to insulin action. The major contributing factor for excessive β-cell death includes oxidative stress-mediated mitochondrial damage, which creates an imbalance in redox homeostasis. Yet, β-cells have evolved adaptive mechanisms to endure a wide range of stress conditions to safeguard its potential functions. These include 'Nrf2/Keap1' pathway, a key cellular defense mechanism, to combat oxidative stress by regulating phase II detoxifying and antioxidant genes. During diabetes, redox imbalance provokes defective Nrf2-dependent signaling and compromise antioxidant capacity of the pancreas which turnout β-cells to become highly vulnerable against various insults. Hence, identification of small molecule activators of Nrf2/Keap1 pathway remains significant to enhance cellular defense to overcome the burden of oxidative stress related disturbances. This review summarizes the molecular mechanism behind Nrf2 activation and the impact of Nrf2 activators in diabetes and its complications.
Collapse
Affiliation(s)
| | - Dornadula Sireesh
- SRM Research Institute, SRM University, Kattankulathur 603 203, Tamilnadu, India
| | - Palanisamy Rajaguru
- Department of Biotechnology, Anna University-BIT Campus, Tiruchirappalli 620 024, Tamilnadu, India
| | - Ramasamy Paulmurugan
- Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | | |
Collapse
|
106
|
Liu J, Tang Y, Feng Z, Hou C, Wang H, Yan J, Liu J, Shen W, Zang W, Liu J, Long J. Acetylated FoxO1 mediates high-glucose induced autophagy in H9c2 cardiomyoblasts: regulation by a polyphenol -(-)-epigallocatechin-3-gallate. Metabolism 2014; 63:1314-23. [PMID: 25062567 DOI: 10.1016/j.metabol.2014.06.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/14/2014] [Accepted: 06/16/2014] [Indexed: 11/18/2022]
Abstract
OBJECTIVE FoxO1 acts as a pivotal transcription factor in insulin signaling. However, in hyperglycemia induced cardiac complications, whether FoxO1 is involved remains unclear. The goal of this study was to delineate the potential role of FoxO1 under high-glucose condition. MATERIALS/METHODS We investigated insulin resistance and reactive oxygen species (ROS) generation in H9c2 cardiomyoblasts after high-glucose exposure. A series of autophagy biomarkers were measured and further confirmed by LC3 turnover assay. Using gene silencing and overexpression experiments we dissected the molecular mechanisms of FoxO1 regulated autophagy. We also tested the protective effect of (-)-epigallocatechin-3-gallate (EGCG, a green tea-derived polyphenol) in high-glucose treated H9c2 cardiomyoblasts. RESULTS High-glucose elicited elevated ROS, autophagy and FoxO1 abundance in cultured H9c2 cardiomyoblasts. Specifically, high-glucose significantly augmented the acetylated FoxO1 in cytosol. In line, compared with 3A-FoxO1 (majorly localized in nuclei with a strong transcriptional activity), overexpression of WT-FoxO1 led to more intense elevated autophagy with enhanced acetylation of FoxO1. In addition, FoxO1 RNAi brought down autophagy induced by high-glucose. Intriguingly, EGCG successfully reversed ROS, autophagy and acetylated FoxO1 in high-glucose treated H9c2 cells. CONCLUSION Our findings suggest that FoxO1, especially the acetylated form, regulates high-glucose induced autophagy in H9c2 cardiomyoblasts, which can be prevented by EGCG via a possible ROS-FoxO1 pathway.
Collapse
Affiliation(s)
- Jia Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Life Science, FIST, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ying Tang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Life Science, FIST, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhihui Feng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Life Science, FIST, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chen Hou
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Life Science, FIST, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hui Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Life Science, FIST, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiong Yan
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Life Science, FIST, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jing Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Life Science, FIST, Xi'an Jiaotong University, Xi'an 710049, China
| | - Weili Shen
- Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Weijin Zang
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Life Science, FIST, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Life Science, FIST, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
107
|
Uchiyama Y, Suzuki T, Mochizuki K, Goda T. Dietary supplementation with a low dose of (-)-epigallocatechin-3-gallate reduces pro-inflammatory responses in peripheral leukocytes of non-obese type 2 diabetic GK rats. J Nutr Sci Vitaminol (Tokyo) 2014; 59:541-7. [PMID: 24477251 DOI: 10.3177/jnsv.59.541] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
(-)-Epigallocatechin-3-gallate (EGCG), which is largely found in green tea, is known to eliminate reactive oxygen species and associated inflammatory responses in vitro and in cells. However, the in vivo mechanisms underlying the effects of EGCG on the amelioration of metabolic disorders are not fully understood. In this study, we examined whether dietary supplementation with EGCG reduces inflammatory responses in peripheral leukocytes of a non-obese type 2 diabetes animal model, Goto-Kakizaki (GK) rats. GK rats at 9 wk of age were fed a control high-fat diet (46 energy % from lard and corn oil) or a high-fat diet containing 0.1%, 0.2%, or 0.5% EGCG (w/w) for 25 wk. The oxidative stress markers 8-hydroxydeoxyguanosine (OHdG) and total malondialdehyde (MDA) were reduced by supplementation with EGCG at 0.1%, but not at 0.2% or more. Significant reductions in the mRNA levels of genes related to inflammatory responses (TNF-α, IFN-γ, IL-1β, IL-6, IL-18, MCP-1, CD11b, and S100a6), 8-OHdG, and total MDA were induced in peripheral leukocytes of GK rats by EGCG supplementation at 0.1%, but not at 0.2% or more, compared with rats fed the control diet. The present results suggest that supplementation with a low dose of EGCG reduces oxidative stress and the expressions of genes involved in inflammation in peripheral leukocytes of GK rats.
Collapse
Affiliation(s)
- Yumiko Uchiyama
- Laboratory of Nutritional Physiology, The University of Shizuoka Graduate School of Nutritional and Environmental Sciences
| | | | | | | |
Collapse
|
108
|
Sanae F, Kamiyama O, Ikeda-Obatake K, Higashi Y, Asano N, Adachi I, Kato A. Effects of eugenol-reduced clove extract on glycogen phosphorylase b and the development of diabetes in db/db mice. Food Funct 2014; 5:214-9. [PMID: 24336787 DOI: 10.1039/c3fo60514k] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We found that the 50% aqueous EtOH extract of clove (Syzygium aromaticum) had potent dose-dependent inhibitory activity toward glycogen phosphorylase b and glucagon-stimulated glucose production in primary rat hepatocytes. Among the components, eugeniin inhibited glycogen phosphorylase b and glucagon-stimulated glucose production in primary rat hepatocytes, with IC50 values of 0.14 and 4.7 μM, respectively. In sharp contrast, eugenol showed no significant inhibition toward glycogen phosphorylase b, even at a concentration of 400 μM. Eugenol-reduced clove extracts (erCE) were prepared and when fed to a db/db mouse they clearly suppressed the blood glucose and HbA1c levels. Furthermore, plasma triglyceride and non-esterified fatty acid levels in 5% and 10% erCE-fed db/db mice were significantly lowered, compared with control db/db mice without erCE supplementation. These results suggested that dietary supplementation with the erCE could beneficially modify glucose and lipid metabolism and contribute to the prevention of the progress of hyperglycemia and metabolic syndrome.
Collapse
Affiliation(s)
- Fujiko Sanae
- Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa 920-1181, Japan
| | | | | | | | | | | | | |
Collapse
|
109
|
Rana S, Blowers EC, Natarajan A. Small molecule adenosine 5'-monophosphate activated protein kinase (AMPK) modulators and human diseases. J Med Chem 2014; 58:2-29. [PMID: 25122135 DOI: 10.1021/jm401994c] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Adenosine 5'-monophosphate activated protein kinase (AMPK) is a master sensor of cellular energy status that plays a key role in the regulation of whole-body energy homeostasis. AMPK is a serine/threonine kinase that is activated by upstream kinases LKB1, CaMKKβ, and Tak1, among others. AMPK exists as αβγ trimeric complexes that are allosterically regulated by AMP, ADP, and ATP. Dysregulation of AMPK has been implicated in a number of metabolic diseases including type 2 diabetes mellitus and obesity. Recent studies have associated roles of AMPK with the development of cancer and neurological disorders, making it a potential therapeutic target to treat human diseases. This review focuses on the structure and function of AMPK, its role in human diseases, and its direct substrates and provides a brief synopsis of key AMPK modulators and their relevance in human diseases.
Collapse
Affiliation(s)
- Sandeep Rana
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center , Omaha, Nebraska 68198-6805, United States
| | | | | |
Collapse
|
110
|
Oh YS, Jun HS. Role of bioactive food components in diabetes prevention: effects on Beta-cell function and preservation. Nutr Metab Insights 2014; 7:51-9. [PMID: 25092987 PMCID: PMC4116378 DOI: 10.4137/nmi.s13589] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 04/21/2014] [Accepted: 04/22/2014] [Indexed: 02/06/2023] Open
Abstract
Bioactive compounds found in fruits and vegetables can have anti-oxidant, anti-inflammatory, and anti-carcinogenic effects and can be protective against various diseases and metabolic disorders. These beneficial effects make them good candidates for the development of new functional foods with potential protective and preventive properties for type 1 and type 2 diabetes. This review summarizes the most relevant results concerning the effects of various bioactive compounds such as flavonoids, vitamins, and carotenoids on several aspects of beta-cell functionality. Studies using animal models with induced diabetes and diabetic patients support the hypothesis that bioactive compounds could ameliorate diabetic phenotypes. Published data suggest that there might be direct effects of bioactive compounds on enhancing insulin secretion and preventing beta-cell apoptosis, and some compounds might modulate beta-cell proliferation. Further research is needed to establish any clinical effects of these compounds.
Collapse
Affiliation(s)
- Yoon Sin Oh
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea. ; Gachon Medical Research Institute, Gil Hospital, Incheon, Korea
| | - Hee-Sook Jun
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea. ; Gachon Medical Research Institute, Gil Hospital, Incheon, Korea. ; College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, Korea
| |
Collapse
|
111
|
Liu J, Tang Y, Feng Z, Liu J, Liu J, Long J. (-)-Epigallocatechin-3-gallate attenuated myocardial mitochondrial dysfunction and autophagy in diabetic Goto-Kakizaki rats. Free Radic Res 2014; 48:898-906. [PMID: 24797301 DOI: 10.3109/10715762.2014.920955] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a risk factor for heart disease. However, the mechanisms of T2DM involvement in cardiac complications are still unclear. In the present study, we investigated mitochondria-related mechanisms underlying the pathogenesis of myocardial disorders in diabetic Goto-Kakizaki (GK) rats. We found that remarkable myocardial mitochondrial deficiency and dysfunction as well as oxidative stress occurred in the heart of GK rats. In addition, our results suggested that the loss of mitochondria was in response to elevated autophagy and upstream FoxO factors in diabetic myocardium. More importantly, (-)-epigallocatechin-3-gallate (EGCG), a polyphenol derived from green tea, successfully improved mitochondrial function and autophagy in the heart of GK rats. Our findings revealed that diabetes-associated myocardial mitochondrial deficiency and dysfunction was associated with enhanced autophagy in myocardium, and EGCG might be a potential agent in preventing and treating myocardial disorders involved in diabetes.
Collapse
Affiliation(s)
- J Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology and Frontier Institute of Life Science, FIST, Xi'an Jiaotong University , Xi'an , P. R. China
| | | | | | | | | | | |
Collapse
|
112
|
Cocci P, Mosconi G, Palermo FA. Partial cloning, tissue distribution and effects of epigallocatechin gallate on hepatic 3-hydroxy-3-methylglutaryl-CoA reductase mRNA transcripts in goldfish (Carassius auratus). Gene 2014; 545:220-5. [PMID: 24835314 DOI: 10.1016/j.gene.2014.05.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 04/29/2014] [Accepted: 05/13/2014] [Indexed: 11/17/2022]
Abstract
Epigallocatechin gallate (EGCG), the major active component of the green tea, has recently been found to inhibit 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCoAR) activity in vitro and to modulate lipogenesis in vivo. In this study we have evaluated the effects of short-term in vivo exposure to EGCG (6 μg g(-1) BW or 9 μg g(-1) BW) on hepatic HMGCoAR gene expression of goldfish (Carassius auratus). We initially characterized a partial sequence of goldfish HMGCoAR suggesting that the obtained fragment shares high similarity (>92%) with other fish HMGCoAR sequences. Further, the HMGCoAR transcript was detected in all goldfish tissues (except muscle) but primarily in liver, brain and gonads; on the contrary, low expression levels were found in intestine, heart, gill, and kidney. Both EGCG doses significantly decreased hepatic HMGCoAR mRNA levels 180 min post-injection. HMGCoAR was also significantly down-regulated at 90 min after injection in fish treated with the highest dose of EGCG. Our results demonstrate that hepatic HMGCoAR gene expression is acutely responsive to short-term EGCG exposure in goldfish. This finding suggests a potential role of EGCG in transcriptional regulation of the rate-limiting enzyme in cholesterol synthesis.
Collapse
Affiliation(s)
- Paolo Cocci
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino, MC, Italy
| | - Gilberto Mosconi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino, MC, Italy
| | - Francesco Alessandro Palermo
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino, MC, Italy.
| |
Collapse
|
113
|
Mezera V, Kučera O, Moravcová A, Peterová E, Červinková Z. Epigallocatechin gallate does not accelerate the early phase of liver regeneration after partial hepatectomy in rats. Dig Dis Sci 2014; 59:976-985. [PMID: 24318805 PMCID: PMC3991829 DOI: 10.1007/s10620-013-2966-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 11/15/2013] [Indexed: 12/25/2022]
Abstract
BACKGROUND Two-thirds partial hepatectomy (PHx) is an established model for the study of liver regeneration after resection. This process is accompanied by oxidative stress. AIMS In our study, we tested the effect of epigallocatechin gallate (EGCG), a green tea antioxidant, on the early phase of liver regeneration after PHx. METHODS Male Wistar rats were divided into five groups: (I) laparotomy + water for intraperitoneal injections, (II) laparotomy + EGCG 50 mg/kg body weight, (III) PHx + water for injections, (IV) PHx + EGCG 20 mg/kg and (V) PHx + EGCG 50 mg/kg, for 3 consecutive days. The rats were killed 24 h after surgery. Biochemical analysis of rat sera was performed. Histological samples were stained with hematoxylin & eosin and bromodeoxyuridine (BrdU). In hepatectomized rats, we also measured plasma malondialdehyde, tissue malondialdehyde, glutathione and cytokines levels, the activity of caspases 3/7, expression of Nqo-1 and HO-1 genes at the mRNA level, and expression of p21, p-p27 and p-p53 genes at the protein level. RESULTS We observed lower accumulation of BrdU in group V when compared to groups III and IV. The activity of caspases 3/7 and expression of p-p53 were lower in group V than in groups III and IV. Tissue levels of IL-6 were lower in group V when compared to group III. Significant differences were not noted in other parameters. CONCLUSIONS Administration of EGCG did not stimulate early phase liver regeneration in rats after PHx. There was even lower DNA synthesis in the group treated with a high dose of EGCG.
Collapse
Affiliation(s)
- Vojtěch Mezera
- Department of Physiology, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Simkova 870, 500 38 Hradec Kralove 1, Czech Republic
| | - Otto Kučera
- Department of Physiology, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Simkova 870, 500 38 Hradec Kralove 1, Czech Republic
| | - Alena Moravcová
- Department of Physiology, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Simkova 870, 500 38 Hradec Kralove 1, Czech Republic
| | - Eva Peterová
- Department of Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Hradec Kralove 1, Czech Republic
| | - Zuzana Červinková
- Department of Physiology, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Simkova 870, 500 38 Hradec Kralove 1, Czech Republic
| |
Collapse
|
114
|
Mokiran NN, Ismail A, Azlan A, Hamid M, Hassan FA. Effect of dabai (Canarium odontophyllum) fruit extract on biochemical parameters of induced obese–diabetic rats. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
115
|
Ku HC, Tsuei YW, Kao CC, Weng JT, Shih LJ, Chang HH, Liu CW, Tsai SW, Kuo YC, Kao YH. Green tea (-)-epigallocatechin gallate suppresses IGF-I and IGF-II stimulation of 3T3-L1 adipocyte glucose uptake via the glucose transporter 4, but not glucose transporter 1 pathway. Gen Comp Endocrinol 2014; 199:46-55. [PMID: 24486085 DOI: 10.1016/j.ygcen.2014.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 01/13/2014] [Accepted: 01/17/2014] [Indexed: 01/26/2023]
Abstract
This study investigated the pathways involved in EGCG modulation of insulin-like growth factor (IGF)-stimulated glucose uptake in 3T3-L1 adipocytes. EGCG inhibited IGF-I and IGF-II stimulation of adipocyte glucose uptake with dose and time dependencies. EGCG at 20μM for 2h decreased IGF-I- and IGF-II-stimulated glucose uptake by 59% and 64%, respectively. Pretreatment of adipocytes with antibody against the EGCG receptor (also known as the 67-kDa laminin receptor; 67LR), prevented the effects of EGCG on IGF-increased glucose uptake, but pretreatment with normal rabbit immunoglobulin did not. This suggests that the 67LR mediates the anti-IGF effect of EGCG on adipocyte glucose uptake. Further analysis indicated EGCG, IGF-I, and IGF-II did not alter total levels of GLUT1 or GLUT4 protein. However, EGCG prevented the IGF-increased GLUT4 levels in the plasma membrane and blocked the IGF-decreased GLUT4 levels in low-density microsomes. Neither EGCG nor its combination with IGF altered GLUT1 protein levels in the plasma membrane and low-density microsomes. EGCG also suppressed the IGF-stimulated phosphorylation of IGF signaling molecules, PKCζ/λ, but not AKT and ERK1/2, proteins. This study suggests that EGCG suppresses IGF stimulation of 3T3-L1 adipocyte glucose uptake through inhibition of the GLUT4 translocation, but not through alterations of the GLUT1 pathway.
Collapse
Affiliation(s)
- Hui-Chen Ku
- Department of Life Sciences, National Central University, 300 Jhongda Road, Jhongli, Taoyuan 320, Taiwan
| | - Yi-Wei Tsuei
- Taoyuan Armed Forces General Hospital, Longtan, Taoyuan 325, Taiwan
| | - Chung-Cheng Kao
- Taoyuan Armed Forces General Hospital, Longtan, Taoyuan 325, Taiwan
| | - Jueng-Tsueng Weng
- Department of Life Sciences, National Central University, 300 Jhongda Road, Jhongli, Taoyuan 320, Taiwan; Taoyuan Armed Forces General Hospital, Longtan, Taoyuan 325, Taiwan
| | - Li-Jane Shih
- Department of Life Sciences, National Central University, 300 Jhongda Road, Jhongli, Taoyuan 320, Taiwan; Taoyuan Armed Forces General Hospital, Longtan, Taoyuan 325, Taiwan
| | - Hsin-Huei Chang
- Department of Life Sciences, National Central University, 300 Jhongda Road, Jhongli, Taoyuan 320, Taiwan
| | - Chi-Wei Liu
- Department of Life Sciences, National Central University, 300 Jhongda Road, Jhongli, Taoyuan 320, Taiwan
| | | | | | - Yung-Hsi Kao
- Department of Life Sciences, National Central University, 300 Jhongda Road, Jhongli, Taoyuan 320, Taiwan.
| |
Collapse
|
116
|
Bang CY, Choung SY. Enzogenol improves diabetes-related metabolic change in C57BL/KsJ-db/db mice, a model of type 2 diabetes mellitus. J Pharm Pharmacol 2014; 66:875-85. [DOI: 10.1111/jphp.12211] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 12/07/2013] [Indexed: 01/09/2023]
Abstract
Abstract
Objectives
Dietary use of pine bark extract has been associated with reduced risk of inflammation and diabetes. In this study, we investigated the antidiabetic effects of enzogenol, proanthocyanidins-rich bioflavonoid extract derived from the pine bark of New Zealand Pinus radiata trees, using C57BL/KsJ-db/db mice.
Methods
After 1-week acclimation period, the db/db mice were divided into vehicle-treated, Enzogenol-treated (12.5, 25 and 50 mg/kg; EZ) and positive control (tea polyphenol 50 mg/kg; TPP) groups.
Key findings
The administration of EZ improved the glucose tolerance and lowered the glycosylated haemoglobin (HbA1C), insulin and glucagon levels in blood. Interestingly, EZ and TPP treatments resulted in reduced hepatic free fatty acid, cholesterol and triglyceride levels in db/db mice. EZ and TPP treatments significantly elevated hepatic AMPK activity, and the expression of proteins related to glucose homeostasis and lipid metabolism, such as glucokinase, peroxisome proliferator-activated receptor (PPAR)α and long-chain acyl-CoA dehydrogenase protein level with a simultaneous reduction of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase protein expression. In addition, the EZ administration groups had an increased hepatic glycogen synthase expression in db/db mice.
Conclusions
These results suggest that EZ may be beneficial in improving insulin resistance and hyperglycaemia in type 2 diabetic mice by enhancing the glucose and lipids metabolism.
Collapse
Affiliation(s)
- Chae-Young Bang
- Department of Preventive Pharmacy and Toxicology, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Se-Young Choung
- Department of Preventive Pharmacy and Toxicology, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
117
|
Dey A, Lakshmanan J. The role of antioxidants and other agents in alleviating hyperglycemia mediated oxidative stress and injury in liver. Food Funct 2014; 4:1148-84. [PMID: 23760593 DOI: 10.1039/c3fo30317a] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Several antioxidants and agents having similar antioxidant effects are known to exert beneficial effects in ameliorating the injurious effects of hyperglycemia on liver in different diabetic in vitro and in vivo models. The review deals with some of the agents which have been shown to exert protective effects on liver against hyperglycemic insult and the various mechanisms involved. The different classes of agents which protect the diabetic liver or decrease the severity of hyperglycemia mediated injury include flavonoids, catechins, and other polyphenolic compounds, curcumin and its derivatives, certain vitamins, hormones and drugs, trace elements, prototypical antioxidants and amino acids. Some of the pronounced changes mediated by the antioxidants in liver exposed to hyperglycemia include decreased oxidative stress, and alterations in carbohydrate and lipid metabolism. Other mechanisms through which the agents ameliorate hyperglycemia mediated liver injury include decrease in oxidative DNA and protein damage, restoration of mitochondrial structural and functional integrity, decrease in inflammation and improved insulin signaling. Thus, antioxidants may prove to be an important mode of defense in maintaining normal hepatic functions in diabetes.
Collapse
Affiliation(s)
- Aparajita Dey
- Life Science Division, AU-KBC Research Centre, MIT Campus of Anna University, Chromepet, Chennai 600044, India.
| | | |
Collapse
|
118
|
MATSUMOTO K, TAKEKAWA K. Comparison of the Effects of Three Persimmon Cultivars on Lipid and Glucose Metabolism in High-Fat Diet-Fed Mice. J Nutr Sci Vitaminol (Tokyo) 2014; 60:340-7. [DOI: 10.3177/jnsv.60.340] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
119
|
Abd El-Moneim RA, Abd El-Mouaty HM. A comparative histological, immunohistochemical, and biochemical study of the effect of green tea extracts or chromium picolinate administration on the white visceral adipose tissue and liver in albino rats fed on high-fat diet. THE EGYPTIAN JOURNAL OF HISTOLOGY 2013; 36:882-898. [DOI: 10.1097/01.ehx.0000439094.19244.a8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
120
|
Uchiyama Y, Suzuki T, Mochizuki K, Goda T. Dietary supplementation with (-)-epigallocatechin-3-gallate reduces inflammatory response in adipose tissue of non-obese type 2 diabetic Goto-Kakizaki (GK) rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:11410-11417. [PMID: 24206061 DOI: 10.1021/jf401635w] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
(-)-Epigallocatechin gallate (EGCG), a major catechin in green tea, is an antioxidant associated with the reduction of oxidative stress in vitro. However, the mechanisms underlying the effects of EGCG on adipose tissue-related metabolic disturbances in vivo are not understood. This study examined whether dietary supplementation of EGCG reduces the oxidative stress-associated inflammatory response in the mesenteric adipose tissue of non-obese type 2 diabetic Goto-Kakizaki (GK) rats. GK rats were fed a normal diet or diet containing 0.1, 0.2, or 0.5% EGCG (w/w) for 25 weeks. The mRNA levels of IL-1β were significantly reduced in GK rats given 0.1% EGCG (0.059 ± 0.008; means ± SEM in arbitrary unit) compared with those in GK rats given a control diet (0.135 ± 0.011), but not in those given 0.2% EGCG (0.123 ± 0.012) or 0.5% EGCG (0.112 ± 0.019). The mRNA and protein level of other genes for inflammatory responses such as IL-18, TNF-α, MCP-1, CD11s, CD18, and resistin were also significantly reduced in rats given 0.1% EGCG, but not in those given ≥ 0.2% EGCG. This suggests that supplementation with EGCG at relatively low concentrations (0.1%) in GK rats reduces expression of genes and proteins involved in inflammation in adipose tissue.
Collapse
Affiliation(s)
- Yumiko Uchiyama
- Laboratory of Nutritional Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka , 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | | | | | | |
Collapse
|
121
|
Wang X, Tian J, Jiang J, Li L, Ying X, Tian H, Nie M. Effects of green tea or green tea extract on insulin sensitivity and glycaemic control in populations at risk of type 2 diabetes mellitus: a systematic review and meta-analysis of randomised controlled trials. J Hum Nutr Diet 2013; 27:501-12. [PMID: 24206044 DOI: 10.1111/jhn.12181] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Although the regular consumption of green tea or green tea extract has been considered to improve insulin sensitivity, the reported results are inconsistent. Therefore, we conducted a meta-analysis to evaluate the effect of green tea or green tea extract on insulin sensitivity and glycaemic control in populations at risk of type 2 diabetes mellitus (T2DM). METHODS Electronic databases, including PUBMED, The Cochrane Library, EMBASE, ISI Web of Knowledge, Chinese Biomedical Literature Database and Chinese Scientific Journals Fulltext Database, were systematically searched to identify randomised controlled trials (RCTs) up to December 2011, supplemented by the Clinicaltrials.gov websites and the reference lists of identified studies. Two reviewers independently selected trials, extracted data, and evaluated the methodological qualities and evidence levels. RESULTS Seven RCTs involving 510 participants were identified. There was no statistically significant difference between green tea or green tea extract group and placebo group with regard to fasting plasma glucose [standardised mean difference (SMD) 0.04; 95% confidence interval (CI) -0.15 to 0.24], fasting serum insulin (SMD -0.09; 95% CI -0.30 to 0.11), 2-h plasma glucose in the oral glucose tolerance test (OGTT-2 h) (SMD -0.14; 95% CI -0.63 to 0.34), haemoglobin A₁c (SMD 0.10; 95% CI -0.13 to 0.33) and homeostasis model of insulin resistance (HOMA(IR)) index (SMD -0.06; 95% CI -0.35 to 0.23) in participants at risk of T2DM. CONCLUSIONS The consumption of green tea did not decrease the levels of fasting plasma glucose, fasting serum insulin, OGTT-2 h glucose, haemoglobin A₁c and HOMA(IR) in populations at risk of T2DM. Larger, longer-term and high-quality RCTs are needed to further definitely determine the effect of green tea or green tea extract on insulin sensitivity and glycaemic control in populations at risk of T2DM.
Collapse
Affiliation(s)
- X Wang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
122
|
Baselga-Escudero L, Blade C, Ribas-Latre A, Casanova E, Suárez M, Torres JL, Salvadó MJ, Arola L, Arola-Arnal A. Resveratrol and EGCG bind directly and distinctively to miR-33a and miR-122 and modulate divergently their levels in hepatic cells. Nucleic Acids Res 2013; 42:882-92. [PMID: 24165878 PMCID: PMC3902894 DOI: 10.1093/nar/gkt1011] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Modulation of miR-33 and miR-122 has been proposed to be a promising strategy to treat dyslipidemia and insulin resistance associated with obesity and metabolic syndrome. Interestingly, specific polyphenols reduce the levels of these mi(cro)RNAs. The aim of this study was to elucidate the effect of polyphenols of different chemical structure on miR-33a and miR-122 expression and to determine whether direct binding of the polyphenol to the mature microRNAs (miRNAs) is a plausible mechanism of modulation. The effect of two grape proanthocyanidin extracts, their fractions and pure polyphenol compounds on miRNA expression was evaluated using hepatic cell lines. Results demonstrated that the effect on miRNA expression depended on the polyphenol chemical structure. Moreover, miR-33a was repressed independently of its host-gene SREBP2. Therefore, the ability of resveratrol and epigallocatechin gallate to bind miR-33a and miR-122 was measured using 1H NMR spectroscopy. Both compounds bound miR-33a and miR-122 and differently. Interestingly, the nature of the binding of these compounds to the miRNAs was consistent with their effects on cell miRNA levels. Therefore, the specific and direct binding of polyphenols to miRNAs emerges as a new posttranscriptional mechanism by which polyphenols could modulate metabolism.
Collapse
Affiliation(s)
- Laura Baselga-Escudero
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, 43007, Spain and Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, 08034, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Gao J, Xu P, Wang Y, Wang Y, Hochstetter D. Combined effects of green tea extracts, green tea polyphenols or epigallocatechin gallate with acarbose on inhibition against α-amylase and α-glucosidase in vitro. Molecules 2013; 18:11614-23. [PMID: 24051476 PMCID: PMC6270344 DOI: 10.3390/molecules180911614] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/13/2013] [Accepted: 09/16/2013] [Indexed: 11/16/2022] Open
Abstract
Green tea, green tea polyphenols and epigallocatechin gallate (EGCG) are confirmed to have beneficial effects in the treatment of diabetes mellitus, and a possible mechanism can be ascribed to their inhibitory effect against α-amylase and α-glucosidase in the digestive tract. In this paper, we first investigated the combined inhibitory effect of green tea extracts, green tea polyphenols or EGCG with acarbose on α-amylase and α-glucosidase in vitro. Our results indicated that the interaction between green tea extracts (green tea polyphenols or EGCG) and acarbose was complicated. The combination of green tea extracts, green tea polyphenols or EGCG with acarbose had a synergistic effect on α-amylase and α-glucosidase at low concentrations and the combined effect turned out to be antagonistic at high concentrations according to the Combination Index (CI) values. These findings not only provided some significant quantitative values, but also provide some valuable implications for the combined use of acarbose and GTE (GTP or EGCG) in the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Junjie Gao
- Department of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China; E-Mails: (J.G.); (Y.W.); (D.H.)
| | - Ping Xu
- Department of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China; E-Mails: (J.G.); (Y.W.); (D.H.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Chinese Ministry of Agriculture, Hangzhou 310029, Zhejiang, China
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +86-571-8898-2217
| | - Yuefei Wang
- Department of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China; E-Mails: (J.G.); (Y.W.); (D.H.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Chinese Ministry of Agriculture, Hangzhou 310029, Zhejiang, China
| | - Yiqi Wang
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China; E-Mail:
| | - Danielle Hochstetter
- Department of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China; E-Mails: (J.G.); (Y.W.); (D.H.)
| |
Collapse
|
124
|
Sohrab G, Hosseinpour-Niazi S, Hejazi J, Yuzbashian E, Mirmiran P, Azizi F. Dietary polyphenols and metabolic syndrome among Iranian adults. Int J Food Sci Nutr 2013; 64:661-667. [PMID: 23607642 DOI: 10.3109/09637486.2013.787397] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
AIM The aim of this study was to investigate the association between total polyphenol intake, its subclasses (including flavonoids, phenolic acids, stilbenes and lignans), and the metabolic syndrome (MetS). METHODS This population-based cross-sectional study was conducted on a representative of 2618 adults, aged 19 to 84 years. Dietary intake was assessed using a validated food-frequency questionnaire and intakes of total polyphenol and four main subclasses of polyphenol including flavonoids, phenolic acids, stilbenes and lignans were determined. RESULTS Higher consumption of flavonoid intakes was associated with lower odds of enlarged waist circumference, hypertriglyceridemia, low HDL cholesterol, hyperglycemia, hypertension and MetS. Subjects in the highest quartile of lignan intakes had higher odds of having hypertriglyceridemia and hyperglycemia. Subjects in the highest quartile of stilbene intakes had higher odds of having hypertension. CONCLUSION Intakes of selected subclasses of polyphenol such as flavonoids are associated with a lower prevalence of MetS among Tehranians.
Collapse
Affiliation(s)
- Golbon Sohrab
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
125
|
Liu K, Zhou R, Wang B, Chen K, Shi LY, Zhu JD, Mi MT. Effect of green tea on glucose control and insulin sensitivity: a meta-analysis of 17 randomized controlled trials. Am J Clin Nutr 2013; 98:340-8. [PMID: 23803878 DOI: 10.3945/ajcn.112.052746] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The results of studies investigating the effect of green tea on glucose control and insulin sensitivity in humans are inconsistent. OBJECTIVE We aimed to quantitatively evaluate the effect of green tea on glucose control and insulin sensitivity. DESIGN We performed a strategic literature search of PubMed, EMBASE, and the Cochrane Library (updated to January 2013) for randomized controlled trials that evaluated the effects of green tea and green tea extract on glucose control and insulin sensitivity. Study quality was assessed by using the Jadad scale. Weighted mean differences were calculated for net changes in glycemic measures by using fixed-effects or random-effects models. We conducted prespecified subgroup and sensitivity analyses to explore potential heterogeneity. Meta-regression analyses were conducted to investigate dose effects of green tea on fasting glucose and insulin concentrations. RESULTS Seventeen trials comprising a total of 1133 subjects were included in the current meta-analysis. Green tea consumption significantly reduced the fasting glucose and hemoglobin A1c (Hb A1c) concentrations by -0.09 mmol/L (95% CI: -0.15, -0.03 mmol/L; P < 0.01) and -0.30% (95% CI: -0.37, -0.22%; P < 0.01), respectively. Further stratified analyses from high Jadad score studies showed that green tea significantly reduced fasting insulin concentrations (-1.16 μIU/mL; 95% CI: -1.91, -0.40 μIU/mL; P = 0.03). CONCLUSIONS This meta-analysis suggested that green tea had favorable effects, ie, decreased fasting glucose and Hb A1c concentrations. Subgroup analyses showed a significant reduction in fasting insulin concentrations in trials with high Jadad scores.
Collapse
Affiliation(s)
- Kai Liu
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Chongqing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
126
|
Kurita I, Kim JH, Auger C, Kinoshita Y, Miyase T, Ito T, Schini-Kerth VB. Hydroxylation of (-)-epigallocatechin-3-O-gallate at 3'', but not 4'', is essential for the PI3-kinase/Akt-dependent phosphorylation of endothelial NO synthase in endothelial cells and relaxation of coronary artery rings. Food Funct 2013; 4:249-57. [PMID: 23104077 DOI: 10.1039/c2fo30087g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
(-)-Epigallocatechin-3-O-gallate (EGCg) has been shown to induce endothelium-dependent nitric oxide (NO)-mediated relaxation via the redox-sensitive Src/PI3-kinase/Akt-dependent phosphorylation of endothelial NO synthase (eNOS). Although the presence of 8 hydroxyl functions, mainly on B and D rings, is essential for the EGCg-induced activation of eNOS, the relative role of each individual hydroxyl function still remains unclear. This study examined the effect of selective replacement of hydroxyl functions by methoxy moieties on either the B or D ring on the EGCg-induced phosphorylation of Akt and eNOS, formation of reactive oxygen species (ROS) and NO in cultured coronary artery endothelial cells, and endothelium-dependent relaxation of coronary artery rings. Replacement of a single hydroxyl by the methoxy group on position 3', 4' or 4'' affected little the EGCg-induced phosphorylation of Akt and eNOS, formation of ROS and NO in endothelial cells, and induction of endothelium-dependent relaxations. In contrast, the single methylation at position 3'' and the double methylation at both positions 3' and 4' reduced markedly the phosphorylation of Akt and eNOS, the formation of ROS and NO in endothelial cells and the relaxation of artery rings. These findings suggest that the hydroxyl group at the 3'' position of the gallate ring is essential and, also, to some extent, the two hydroxyl groups at positions 3' and 4', for the EGCg-induced redox-sensitive activation of eNOS leading to the subsequent NO-mediated vascular relaxation.
Collapse
Affiliation(s)
- Ikuko Kurita
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | | | | | | | | | | | | |
Collapse
|
127
|
Tamaru S, Ohmachi K, Miyata Y, Tanaka T, Kubayasi T, Nagata Y, Tanaka K. Hypotriglyceridemic potential of fermented mixed tea made with third-crop green tea leaves and camellia (Camellia japonica) leaves in Sprague-Dawley rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:5817-5823. [PMID: 23705670 DOI: 10.1021/jf400938h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Fermented mixed tea made with third-crop green tea leaves and camellia leaves by a tea-rolling process has been developed. The objective of this study was to investigate hypotriglyceridemic potential of the mixed tea in rats. The mixed tea contained theasinensins and theaflavins. Rats fed the mixed tea extract at the level of 1% exerted significantly lower body weight and adipose tissue weight compared to animals fed third-crop green tea or camellia tea extract alone for 4 weeks. Serum and hepatic triglyceride was significantly and dose-dependently decreased by the mixed tea. This decrease was associated with lowered lipogenic enzyme activities in the liver. Furthermore, an oral administration of 4 or 8% of the mixed tea extract followed by fat emulsion suppressed the increment of serum triglyceride level. These results suggest that the mixed tea has hypotriglyceridemic action, partially via delaying triglyceride absorption in the small intestine and repressing hepatic lipogenic enzymes.
Collapse
Affiliation(s)
- Shizuka Tamaru
- Department of Nutrition, University of Nagasaki , 1-1-1 Manabino, Nagayo-cho, Nishisonogi-gun, Nagasaki 851-2195, Japan
| | | | | | | | | | | | | |
Collapse
|
128
|
Sathya A, Siddhuraju P. Protective effect of bark and empty pod extracts from Acacia auriculiformis against paracetamol intoxicated liver injury and alloxan induced type II diabetes. Food Chem Toxicol 2013; 56:162-70. [DOI: 10.1016/j.fct.2013.02.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 02/13/2013] [Accepted: 02/15/2013] [Indexed: 12/19/2022]
|
129
|
Chang CLT, Lin Y, Bartolome AP, Chen YC, Chiu SC, Yang WC. Herbal therapies for type 2 diabetes mellitus: chemistry, biology, and potential application of selected plants and compounds. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:378657. [PMID: 23662132 PMCID: PMC3638592 DOI: 10.1155/2013/378657] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 03/11/2013] [Indexed: 01/07/2023]
Abstract
Diabetes mellitus has been recognized since antiquity. It currently affects as many as 285 million people worldwide and results in heavy personal and national economic burdens. Considerable progress has been made in orthodox antidiabetic drugs. However, new remedies are still in great demand because of the limited efficacy and undesirable side effects of current orthodox drugs. Nature is an extraordinary source of antidiabetic medicines. To date, more than 1200 flowering plants have been claimed to have antidiabetic properties. Among them, one-third have been scientifically studied and documented in around 460 publications. In this review, we select and discuss blood glucose-lowering medicinal herbs that have the ability to modulate one or more of the pathways that regulate insulin resistance, β-cell function, GLP-1 homeostasis, and glucose (re)absorption. Emphasis is placed on phytochemistry, anti-diabetic bioactivities, and likely mechanism(s). Recent progress in the understanding of the biological actions, mechanisms, and therapeutic potential of compounds and extracts of plant origin in type 2 diabetes is summarized. This review provides a source of up-to-date information for further basic and clinical research into herbal therapy for type 2 diabetes. Emerging views on therapeutic strategies for type 2 diabetes are also discussed.
Collapse
Affiliation(s)
- Cicero L. T. Chang
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Yenshou Lin
- Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan
| | - Arlene P. Bartolome
- Institute of Chemistry, University of the Philippines, Diliman, Quezon City 1100, Philippines
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Academia Sinica Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Yi-Ching Chen
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Academia Sinica Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Shao-Chih Chiu
- Graduate Institute of Immunology, China Medical University, Taichung 404, Taiwan
- Center for Neuropsychiatry, China Medical University Hospital, Taichung 404, Taiwan
| | - Wen-Chin Yang
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Academia Sinica Road, Section 2, Nankang, Taipei 115, Taiwan
- Institute of Pharmacology, Yang-Ming University, Taipei 112, Taiwan
- Institute of Zoology, National Taiwan University, Taipei 106, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
130
|
Chang CLT, Lin Y, Bartolome AP, Chen YC, Chiu SC, Yang WC. Herbal therapies for type 2 diabetes mellitus: chemistry, biology, and potential application of selected plants and compounds. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 5:22-9. [PMID: 23598921 PMCID: PMC3579016 DOI: 10.4103/0974-8490.105644] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/02/2012] [Accepted: 01/08/2013] [Indexed: 01/11/2023]
Abstract
Background: Diabetes mellitus, becoming the third killer of mankind after cancer and cardiovascular diseases, is one of the most challenging diseases facing health care professionals today. That is why; there has been a growing interest in the therapeutic use of natural products for diabetes, especially those derived from plants. Aim: To evaluate the anti-diabetic activity together with the accompanying biological effects of the fractions and the new natural compounds of Hyphaene thebaica (HT) epicarp. Materials and Methods: 500 g of coarsely powdered of (HT) fruits epicarp were extracted by acetone. The acetone crude extract was fractionated with methanol and ethyl acetate leaving a residual water-soluble fraction WF. The anti-diabetic effects of the WF and one of its compounds of the acetone extract of the (HT) epicarp were investigated in this study using 40 adult male rats. Results: Phytochemical investigation of active WF revealed the presence of ten different flavonoids, among which two new natural compounds luteolin 7-O-[6”-O-α-Lrhamnopyranosyl]-β-D-galactopyranoside 3 and chrysoeriol 7-O-β-D-galactopyranosyl(1→2)-α-L-arabinofuranoside 5 were isolated. Supplementation of the WF improved glucose and insulin tolerance and significantly lowered blood glycosylated hemoglobin levels. On the other hand, compound 5 significantly reduced AST and ALT levels of liver, respectively. Likewise, the kidney functions were improved for both WF and compound 5, whereby both urea and creatinine levels in serum were highly significant Conclusion: The results justify the use of WF and compound 5 of the (HT) epicarp as anti-diabetic agent, taking into consideration that the contents of WF were mainly flavonoids
Collapse
Affiliation(s)
- Cicero L T Chang
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | | | | | | | | | | |
Collapse
|
131
|
Comparative Evaluation of the Antidiabetic Effects of Different Parts ofCassia fistulaLinn, a Southeast Asian Plant. J CHEM-NY 2013. [DOI: 10.1155/2013/714063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The hypoglycemic effect of the methanolic and aqueous extracts of whole parts ofCassia fistulain both normoglycemic and streptozotocin-nictotinamide induced Type 2 diabetic rats were investigated. Acute toxicity, oral glucose tolerance test and glucose uptake in isolated rat hemidiaphragm were performed in normal rats. Diabetes was induced in Sprague Dawley rats by the administration of streptozotocin-nictotinamide (50, 110 mg/kg b.w., resp.) intraperitoneally. Different extracts ofCassiawas administered to diabetic rats at 250 and 500 mg/kg doses for 21 days. Biochemical parameters like blood glucose, insulin, glycosylated hemoglobin, lipid profile, and serum marker enzymes were determined. The methanolic extract of the bark and leaves were show more effective in causing hypoglycemia in normoglycemic rats. Diabetic rats showed increased levels of glycosylated hemoglobin, reduced levels of plasma insulin, were significantly reverted to near normal after oral administration of the bark and leaf methanolic extracts. Glucose uptake studies in isolated rat hemidiaphragm have shown enhanced peripheral utilization of glucose. Chronic treatment ofCassiaremarkably restored the normal status of the histopathological changes observed in the selected tissues. Dose dependent anti-diabetic effects with the cohorts receiving the methanolic extract of bark followed by leaves ofCassiawas revealed.
Collapse
|
132
|
Schrader E, Wein S, Kristiansen K, Christensen LP, Rimbach G, Wolffram S. Plant extracts of winter savory, purple coneflower, buckwheat and black elder activate PPAR-γ in COS-1 cells but do not lower blood glucose in Db/db mice in vivo. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2012; 67:377-383. [PMID: 23135898 DOI: 10.1007/s11130-012-0322-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The aim of this study was to investigate possible blood glucose-lowering effects of plant extracts in vivo for which prior to this a peroxisome proliferator-activated receptor-γ activity in vitro was observed. The ability of extracts of winter savory, purple coneflower, buckwheat and black elder to dose-dependently activate peroxisome proliferator-activated receptor-γ was determined in a reporter gene assay in COS-1 cells. For evaluation of glucose-lowering effects in vivo, db/db mice were fed a diet containing either rosiglitazone (0.02 g/kg diet, positive control) or one of the plant extracts (0.1 and 1 g/kg diet) for four weeks. Apart from glucose, insulin, triacylglycerols, non-esterified fatty acids, cholesterol and adiponectin were determined in plasma. All plant extracts showed a dose-dependent peroxisome proliferator-activated receptor-γ-activating effect in vitro. In db/db mice none of the plant extracts exerted glucose-lowering effects at the used dosages compared to rosiglitazone. Non-esterified fatty acids, triacylglycerols, cholesterol, insulin and adiponectin in plasma were not altered by the plant extracts as well. Although dose-dependent peroxisome proliferator-activated receptor-γ activity could be shown in COS-1 cells, the experiments in db/db mice lacked to confirm any anti-diabetic effect of the plant extracts in vivo and emphasizes the importance of verifying cell culture data using an appropriate in vivo model.
Collapse
Affiliation(s)
- Eva Schrader
- Institute of Animal Nutrition and Physiology, Christian-Albrechts-Universität zu Kiel, Hermann-Rodewald-Str. 9, 24118 Kiel, Germany.
| | | | | | | | | | | |
Collapse
|
133
|
Green Tea Attenuates Oxidative Stress and Downregulates the Expression of Angiotensin II AT(1) Receptor in Renal and Hepatic Tissues of Streptozotocin-Induced Diabetic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:409047. [PMID: 23243444 PMCID: PMC3518821 DOI: 10.1155/2012/409047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 10/13/2012] [Indexed: 02/06/2023]
Abstract
This study investigates the potential of green tea to modulate oxidative stress and angiotensin II AT1 receptor expression in renal and hepatic tissues of diabetic rats. Three groups of rats were studied after 8 weeks following diabetes induction: normal, streptozotocin-induced diabetic (diabetic control), and green-tea-treated diabetic rats. Total antioxidant, catalase, and malondialdehyde levels were assayed by standard procedures. Levels of AT1 receptor labeling, in renal and hepatic tissues of the three rat groups, were immunohistochemically investigated using an anti-AT1 receptor antibody. Levels of total antioxidant and catalase were significantly reduced, whereas malondialdehyde levels and AT1 receptor labeling were significantly increased in renal and hepatic tissues of diabetic control rats compared to normal rats. Compared to diabetic control rats, total antioxidant and catalase levels were significantly increased, whereas malondialdehyde levels and AT1 receptor labeling in the green-tea-treated diabetic group were significantly reduced throughout hepatic lobules and renal cortical and medullary vascular and tubular segments to levels comparable to those observed in normal rats. The capacity of green tea to modulate diabetes-induced oxidative stress and AT1 receptor upregulation may be beneficial in opposing the deleterious effects of excessive angiotensin II signaling, manifested by progressive renal and hepatic tissue damage.
Collapse
|
134
|
Forester SC, Gu Y, Lambert JD. Inhibition of starch digestion by the green tea polyphenol, (-)-epigallocatechin-3-gallate. Mol Nutr Food Res 2012; 56:1647-54. [PMID: 23038646 DOI: 10.1002/mnfr.201200206] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 07/30/2012] [Accepted: 08/08/2012] [Indexed: 11/07/2022]
Abstract
SCOPE Green tea has been shown to ameliorate symptoms of metabolic syndrome in vivo. The effects could be due, in part, to modulation of postprandial blood glucose levels. METHODS AND RESULTS We examined the effect of coadministration of (-)-epigallocatechin-3-gallate (EGCG, 100 mg/kg, i.g.) on blood glucose levels following oral administration of common corn starch (CCS), maltose, sucrose, or glucose to fasted CF-1 mice. We found that cotreatment with EGCG significantly reduced postprandial blood glucose levels after administration of CCS compared to control mice (50 and 20% reduction in peak blood glucose levels and blood glucose area under the curve, respectively). EGCG had no effect on postprandial blood glucose following administration of maltose or glucose, suggesting that EGCG may modulate amylase-mediated starch digestion. In vitro, EGCG noncompetitively inhibited pancreatic amylase activity by 34% at 20 μM. No significant change was induced in the expression of two small intestinal glucose transporters (GLUT2 and SGLT1). CONCLUSIONS Our results suggest that EGCG acutely reduces postprandial blood glucose levels in mice when coadministered with CCS and this may be due in part to inhibition of α-amylase. The relatively low effective dose of EGCG makes a compelling case for studies in human subjects.
Collapse
Affiliation(s)
- Sarah C Forester
- Center of Excellence for Plant and Mushroom Foods for Health, Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
135
|
Ku HC, Liu HS, Hung PF, Chen CL, Liu HC, Chang HH, Tsuei YW, Shih LJ, Lin CL, Lin CM, Kao YH. Green tea (-)-epigallocatechin gallate inhibits IGF-I and IGF-II stimulation of 3T3-L1 preadipocyte mitogenesis via the 67-kDa laminin receptor, but not AMP-activated protein kinase pathway. Mol Nutr Food Res 2012; 56:580-92. [PMID: 22495985 DOI: 10.1002/mnfr.201100438] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
SCOPE This study investigated the pathways involved in epigallocatechin gallate (EGCG) modulation of insulin-like growth factor (IGF)-I-stimulated and IGF-II-stimulated mitogenesis in 3T3-L1 preadipocytes. METHODS AND RESULTS We found that this process was dose and time dependent, and caused by suppression of IGF-I-stimulated and IGF-II-stimulated phosphorylation of p66Shc and mitogen-activated protein kinase (MAPK) pathway proteins, including MEK1 kinase (RAF1), extracellular signal-regulated protein kinase (ERK) kinase (MEK1), and ERK 1 and ERK 2 (ERK1/2), but not phospho-Jun-N-terminal kinase, protein kinase B, p52Shc, or p46Shc. Furthermore, EGCG inhibited the IGF-I-stimulated phosphorylation of the IGF-I receptor-beta (IGF-IR β), the association of IGF-IR with the p66Shc protein, and the IGF-II-stimulated associations of the IGF-II receptor with G(αi-2) and p66Shc proteins, suggesting that EGCG selectively affects particular types of Shc and MAPK family members. Pretreatment with antiserum against the EGCG receptor (also known as the 67-kDa laminin receptor; 67LR), but not with an adenosine monophosphate (AMP)-activated protein kinase (AMPK) inhibitor, prevented the inhibitory actions of EGCG on IGF-I- and IGF-II-stimulated ERK1/2 phosphorylation and subsequent preadipocyte proliferation. CONCLUSION The results of this study suggest that EGCG mediates anti-IGF-I and anti-IGF-II signals in preadipocyte mitogenesis via the 67LR but not the AMPK pathway.
Collapse
Affiliation(s)
- Hui-Chen Ku
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Hirsova P, Kolouchova G, Dolezelova E, Cermanova J, Hyspler R, Kadova Z, Micuda S. Epigallocatechin gallate enhances biliary cholesterol secretion in healthy rats and lowers plasma and liver cholesterol in ethinylestradiol-treated rats. Eur J Pharmacol 2012; 691:38-45. [DOI: 10.1016/j.ejphar.2012.06.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 06/15/2012] [Accepted: 06/20/2012] [Indexed: 01/12/2023]
|
137
|
Pinent M, Cedó L, Montagut G, Blay M, Ardévol A. Procyanidins improve some disrupted glucose homoeostatic situations: an analysis of doses and treatments according to different animal models. Crit Rev Food Sci Nutr 2012; 52:569-84. [PMID: 22530710 DOI: 10.1080/10408398.2010.501533] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review analyses the potential beneficial effects of procyanidins, the main class of flavonoids, in situations in which glucose homeostasis is disrupted. Because the disruption of glucose homeostasis can occur as a result of various causes, we critically review the effects of procyanidins based on the specific origin of each type of disruption. Where little or no insulin is present (Type I diabetic animals), summarized studies of procyanidin treatment suggest that procyanidins have a short-lived insulin-mimetic effect on the internal targets of the organism, an effect not reproduced in normoglycemic, normoinsulinemic healthy animals. Insulin resistance (usually linked to hyperinsulinemia) poses a very different situation. Preventive studies using fructose-fed models indicate that procyanidins may be useful in preventing the induction of damage and thus in limiting hyperglycemia. But the results of other studies using models such as high-fat diet treated rats or genetically obese animals are controversial. Although the effects on glucose parameters are hazy, it is known that procyanidins target key tissues involved in its homeostasis. Interestingly, all available data suggest that procyanidins are more effective when administered in one acute load than when mixed with food.
Collapse
Affiliation(s)
- Montserrat Pinent
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili (URV), Tarragona, Spain
| | | | | | | | | |
Collapse
|
138
|
Babu PVA, Si H, Liu D. Epigallocatechin gallate reduces vascular inflammation in db/db mice possibly through an NF-κB-mediated mechanism. Mol Nutr Food Res 2012; 56:1424-32. [PMID: 22753231 DOI: 10.1002/mnfr.201200040] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 05/02/2012] [Accepted: 05/21/2012] [Indexed: 01/26/2023]
Abstract
SCOPE Hyperglycemia-induced vascular inflammation resulting in the adhesion of monocytes to endothelium is a key event in the pathogenesis of atherosclerosis in diabetes. We investigated whether epigallocatechin gallate (EGCG), a major catechin found in green tea, reduces vascular inflammation in diabetes. METHODS AND RESULTS Human aortic endothelial cells (HAEC) were pretreated with green tea catechins before the addition of high glucose (25 mM) for 72 h. EGCG at physiologically achievable concentration (1 μM) significantly inhibited high glucose induced adhesion of monocytes to HAEC both in static and under flow conditions. EGCG also reduced nuclear factor κB (NF-κB) regulated transcriptional activity in ECs. Six-week-old diabetic db/db mice were fed a diet containing 0% or 0.1% EGCG for 8 weeks. ECs were isolated from aortic vessels of db/db, db/db-EGCG, and control db/+ mice. EGCG supplementation greatly suppressed diabetes-increased monocytes adhesion to ECs, which is associated with reduced circulating levels of chemokines, and reduced secretions of chemokines and adhesion molecules by aortic ECs from db/db-EGCG mice. EGCG treatment reduced nuclear translocation of NF-κB p65 in aortic vessels, decreased blood pressure and serum concentrations of cholesterol and triglycerides in db/db-EGCG mice. CONCLUSION EGCG may have a direct protective effect against vascular inflammation in diabetes.
Collapse
Affiliation(s)
- Pon V Anandh Babu
- Department of Human Nutrition, Foods and Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA, USA
| | | | | |
Collapse
|
139
|
Gao R, Wang Y, Wu Z, Ming J, Zhao G. Interaction of barley β-glucan and tea polyphenols on glucose metabolism in streptozotocin-induced diabetic rats. J Food Sci 2012; 77:H128-34. [PMID: 22583021 DOI: 10.1111/j.1750-3841.2012.02688.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
UNLABELLED Soluble dietary fiber and antioxidants have received much attention as most important components of functional foods. However, few data are available on the effects of the combination of tea polyphenols (TP) and β-glucan (BG) on blood glucose in a diabetic rat. The effects of administration of barley BG and TP or their combination (TP + BG) on blood glucose, lipid profiles, and antioxidant parameters on streptozotocin-induced diabetic rats were investigated. Significant improvements on the blood glucose level, serum lipid parameters (decreases in triglyceride, total cholesterol, LDL-C, and increase in HDL-C), lipid peroxidation (decrease in malondiadehyde content), and serum antioxidant status (increases in superoxide dismutase, glutathione peroxidase, and total antioxidant capacity) resulted in diabetic rats after administering TP + BG. This study, therefore, demonstrated that the intake of TP + BG has beneficial effects on glucose tolerance, lipid metabolism, and serum antioxidant status. It also revealed that TP + BG is better than TP or BG alone in improving glucose metabolism and antioxidant status in diabetic rats. Practically, the present study suggested that polyphenols-rich cereal foods are help for type 2 diabetes. PRACTICAL APPLICATION Although TP or BG was definitely helpful in the treatment and management of diabetes mellitus, synthetic anti-hyperglycemic effects were found between TP and BG. The fortification of a BG-rich cereal diet with TP could be used as a strategy to maintain health of diabetic subjects.
Collapse
Affiliation(s)
- Ruiping Gao
- College of Food Science, Southwest Univ and Food Engineering and Technology Research Centre of Chongqing, Chongqing 400715, PR China
| | | | | | | | | |
Collapse
|
140
|
Umar KM, Abdulkarim SM, Radu S, Abdul Hamid A, Saari N. Engineering the production of major catechins by Escherichia coli carrying metabolite genes of Camellia sinensis. ScientificWorldJournal 2012; 2012:529031. [PMID: 22645428 PMCID: PMC3353496 DOI: 10.1100/2012/529031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Accepted: 01/22/2012] [Indexed: 11/28/2022] Open
Abstract
A mimicked biosynthetic pathway of catechin metabolite genes from C. sinensis, consisting of flavanone 3 hydroxylase (F3H), dihydroflavonol reductase (DFR), and leucoanthocyanidin reductase (LCR), was designed and arranged in two sets of constructs: (a) single promoter in front of F3H and ribosome-binding sequences both in front of DFR and LCR; (b) three different promoters with each in the front of the three genes and ribosome-binding sequences at appropriate positions. Recombinant E. coli BL (DE3) harbouring the constructs were cultivated for 65 h at 26°C in M9 medium consisting of 40 g/L glucose, 1 mM IPTG, and 3 mM eriodictyol. Compounds produced were extracted in ethyl acetate in alkaline conditions after 1 h at room temperature and identified by HPLC. Two of the four major catechins, namely, (−)-epicatechin (0.01 ) and (−)-epicatechin gallate (0.36 mg/L), and two other types ((+)-catechin hydrate (0.13 mg/L) and (−)-catechin gallate (0.04 mg/L)) were successfully produced.
Collapse
Affiliation(s)
- Kabir Mustapha Umar
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia UPM 43400, Serdang Selangor, Malaysia
| | | | | | | | | |
Collapse
|
141
|
Wang D, Taylor EW, Wang Y, Wan X, Zhang J. Encapsulated nanoepigallocatechin-3-gallate and elemental selenium nanoparticles as paradigms for nanochemoprevention. Int J Nanomedicine 2012; 7:1711-21. [PMID: 22619522 PMCID: PMC3356175 DOI: 10.2147/ijn.s29341] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Chemoprevention that impedes one or more steps in carcinogenesis, via long-term administration of naturally occurring or synthetic compounds, is widely considered to be a crucial strategy for cancer control. Selenium (Se) has chemopreventive effects, but its application is limited due to a low therapeutic index as shown in numerous animal experiments. In contrast to Se, which was known for its toxicity prior to the discovery of its beneficial effects, the natural compound epigallocatechin-3-gallate (EGCG) was originally considered to be nontoxic. Due to its preventive effects on many types of cancer in various animal models, EGCG has been regarded as a prime example of a promising chemopreventive agent without major toxicity concerns. However, very recently, evidence has accumulated showing that efficacious doses of EGCG used in health promotion may not be far from its toxic dose level. Therefore, both Se and EGCG need to be modified by novel pharmaceutical technologies to attain enhanced efficacy and/or reduced toxicity. Nanotechnology may be one of these technologies. In support of this hypothesis, the characteristics of polylactic acid and polyethylene glycol-encapsulated nano-EGCG and elemental Se nanoparticles dispersed by bovine serum albumin are reviewed in this article. Encapsulation of EGCG to form nano-EGCG leads to its enhanced stability in plasma and remarkably superior chemopreventive effects, with more than tenfold dose advantages in inducing apoptosis and inhibition of both angiogenesis and tumor growth. Se at nanoparticle size (“Nano-Se”), compared with Se compounds commonly used in dietary supplements, has significantly lower toxicity, without compromising its ability to upregulate selenoenzymes at nutritional levels and induce phase II enzymes at supranutritional levels.
Collapse
Affiliation(s)
- Dongxu Wang
- Key Laboratory of Tea Biochemistry and Biotechnology, School of Tea and Food Science, Anhui Agricultural University, Hefei, Anhui, People's Republic of China
| | | | | | | | | |
Collapse
|
142
|
Calorimetric and spectroscopic studies of the interactions between insulin and (−)-epigallocatechin-3-gallate. Biochem Eng J 2012. [DOI: 10.1016/j.bej.2012.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
143
|
Yasui K, Tanabe H, Miyoshi N, Suzuki T, Goto S, Taguchi K, Ishigami Y, Paeng N, Fukutomi R, Imai S, Isemura M. Effects of (-)-epigallocatechin-3-O-gallate on expression of gluconeogenesis-related genes in the mouse duodenum. ACTA ACUST UNITED AC 2012; 32:313-20. [PMID: 22033300 DOI: 10.2220/biomedres.32.313] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Green tea has been shown to have many beneficial health effects. We have previously reported that dietary (-)-epigallocatechin-3-O-gallate (EGCG), the major polyphenol in green tea, reduced gene expressions of gluconeogenic enzymes, glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK), in the normal mouse liver. In the present study, we examined the effects of intragastrical administration of EGCG on the expression of gluconeogenesis-related genes in the mouse intestine. The results of experiments with the semi-quantitative reverse transcription-polymerase chain reaction indicated that EGCG at 0.6 mg/head caused a reduced expression of G6Pase, PEPCK, hepatocyte nuclear factor 1α (HNF1α), and HNF4α. Experiments using the quantitative real-time polymerase chain reaction confirmed these effects. We then examined the effects of EGCG using human colon carcinoma Caco-2 cells stimulated with dexamethasone and dibutyryl cAMP. The results were generally consistent with those from the experiments in vivo. The present findings suggest EGCG to contribute to the beneficial effects of green tea on diabetes, obesity, and cancer by modulating gene expression in the intestine.
Collapse
Affiliation(s)
- Kensuke Yasui
- Health Care Research Center, Nisshin Pharma Inc., Fujimino, Saitama 356-8511
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Ortsäter H, Grankvist N, Wolfram S, Kuehn N, Sjöholm A. Diet supplementation with green tea extract epigallocatechin gallate prevents progression to glucose intolerance in db/db mice. Nutr Metab (Lond) 2012; 9:11. [PMID: 22333133 PMCID: PMC3298777 DOI: 10.1186/1743-7075-9-11] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 02/14/2012] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Green tea was suggested as a therapeutic agent for the treatment of diabetes more than 70 years ago, but the mechanisms behind its antidiabetic effect remains elusive. In this work, we address this issue by feeding a green tea extract (TEAVIGO™) with a high content of epigallocatechin gallate (EGCG) or the thiazolidinedione PPAR-γ agonist rosiglitazone, as positive control, to db/db mice, an animal model for diabetes. METHODS Young (7 week-old) db/db mice were randomized and assigned to receive diets supplemented with or without EGCG or rosiglitazone for 10 weeks. Fasting blood glucose, body weight and food intake was measured along the treatment. Glucose and insulin levels were determined during an oral glucose tolerance test after 10 weeks of treatment. Pancreata were sampled at the end of the study for blinded histomorphometric analysis. Islets were isolated and their mRNA expression analyzed by quantitative RT-PCR. RESULTS The results show that, in db/db mice, EGCG improves glucose tolerance and increases glucose-stimulated insulin secretion. EGCG supplementation reduces the number of pathologically changed islets of Langerhans, increases the number and the size of islets, and heightens pancreatic endocrine area. These effects occurred in parallel with a reduction in islet endoplasmic reticulum stress markers, possibly linked to the antioxidative capacity of EGCG. CONCLUSIONS This study shows that the green tea extract EGCG markedly preserves islet structure and enhances glucose tolerance in genetically diabetic mice. Dietary supplementation with EGCG could potentially contribute to nutritional strategies for the prevention and treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Henrik Ortsäter
- Karolinska Institutet, Department of Clinical Science and Education, Södersjukhuset, SE-118 83 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
145
|
Masterjohn C, Bruno RS. Therapeutic potential of green tea in nonalcoholic fatty liver disease. Nutr Rev 2012; 70:41-56. [PMID: 22221215 DOI: 10.1111/j.1753-4887.2011.00440.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a constellation of progressive liver disorders that are closely related to obesity, diabetes, and insulin resistance and may afflict over 70 million Americans. NAFLD may occur as relatively benign, nonprogressive liver steatosis, but in many individuals it may progress in severity to nonalcoholic steatohepatitis, fibrosis, cirrhosis, and liver failure or hepatocellular carcinoma. No validated treatments currently exist for NAFLD except for weight loss, which has a poor long-term success rate. Thus, dietary strategies that prevent the development of liver steatosis or its progression to nonalcoholic steatohepatitis are critically needed. Green tea is rich in polyphenolic catechins that have hypolipidemic, thermogenic, antioxidant, and anti-inflammatory activities that may mitigate the occurrence and progression of NAFLD. This review presents the experimental evidence demonstrating the hepatoprotective properties of green tea and its catechins and the proposed mechanisms by which these targeted dietary agents protect against NAFLD.
Collapse
|
146
|
Yasui K, Paeng N, Miyoshi N, Suzuki T, Taguchi K, Ishigami Y, Fukutomi R, Imai S, Isemura M, Nakayama T. Effects of a catechin-free fraction derived from green tea on gene expression of enzymes related to lipid metabolism in the mouse liver. Biomed Res 2012; 33:9-13. [DOI: 10.2220/biomedres.33.9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
147
|
Abstract
With the diabetes epidemic reaching menacing proportions worldwide, there is an urgent need for the development of cost-efficient prevention strategies to be effective at the population level. Great potential in this direction lies in properly designed, large-scale dietary interventions. The macronutrient composition and the caloric content of our diet are major determinants of glucose homeostasis and there is a continuously growing list of foods, nutrients or individual compounds that have been associated with an increased or reduced incidence of diabetes mellitus. These include fat, carbohydrates, fibre, alcohol, polyphenols and other micronutrients or individual dietary compounds, which have been shown to either promote or prevent a progression towards a (pre-)diabetic state. This review aims to briefly summarize relevant epidemiological data linking foods to diabetes and to provide insights into the mechanisms through which these effects are mediated. These include improvement of insulin sensitivity or promotion of insulin resistance, regulation of inflammatory pathways, regulation of glucose transport and tissue glucose uptake, aggravation or attenuation of postprandial glycaemia/insulinaemia, interactions with hormonal responses and β-cell-dependent mechanisms.
Collapse
Affiliation(s)
- Theodoros Thomas
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.
| | | |
Collapse
|
148
|
SUZUKI Y, MIYOSHI N, ISEMURA M. Health-promoting effects of green tea. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2012; 88:88-101. [PMID: 22450537 PMCID: PMC3365247 DOI: 10.2183/pjab.88.88] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Green tea is manufactured from the leaves of the plant Camellia sinensis Theaceae and has been regarded to possess anti-cancer, anti-obesity, anti-atherosclerotic, anti-diabetic, anti-bacterial, and anti-viral effects. Many of the beneficial effects of green tea are related to the activities of (-)-epigallocatechin gallate (EGCG), a major component of green tea catechins. For about 20 years, we have engaged in studies to reveal the biological activities and action mechanisms of green tea and EGCG. This review summarizes several lines of evidence to indicate the health-promoting properties of green tea mainly based on our own experimental findings.
Collapse
Affiliation(s)
- Yasuo SUZUKI
- Faculty of Human Life Sciences, Nagoya Keizai University, Inuyama, Japan
| | - Noriyuki MIYOSHI
- Graduate School of Nutritional and Environmental Sciences and Global COE Program, University of Shizuoka, Shizuoka, Japan
| | - Mamoru ISEMURA
- Graduate School of Nutritional and Environmental Sciences and Global COE Program, University of Shizuoka, Shizuoka, Japan
- Correspondence should be addressed: M. Isemura, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan (e-mail: )
| |
Collapse
|
149
|
Bansal S, Syan N, Mathur P, Choudhary S. Pharmacological profile of green tea and its polyphenols: a review. Med Chem Res 2011. [DOI: 10.1007/s00044-011-9800-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
150
|
Islam MS. Effects of the aqueous extract of white tea (Camellia sinensis) in a streptozotocin-induced diabetes model of rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2011; 19:25-31. [PMID: 21802923 DOI: 10.1016/j.phymed.2011.06.025] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 06/02/2011] [Accepted: 06/25/2011] [Indexed: 05/27/2023]
Abstract
White tea (WT) is very similar to green tea (GT) but it is exceptionally prepared only from the buds and young tea leaves of Camelia sinensis plant while GT is prepared from the matured tea leaves. The present study was investigated to examine the effects of a 0.5% aqueous extract of WT in a streptozotocin-induced diabetes model of rats. Six-week-old male Sprague-Dawley rats were divided into 3 groups of 6 animals in each group namely: normal control (NC), diabetic control (DBC) and diabetic white tea (DWT). Diabetes was induced by an intraperitoneal injection of streptozotocin (65 mg/kg BW) in DBC and DWT groups except the NC group. After 4 weeks feeding of 0.5% aqueous extracts of WT, the drink intake was significantly (P<0.05) increased in the DWT group compared to the DBC and NC groups. Blood glucose concentrations were significantly decreased and glucose tolerance ability was significantly improved in the DWT group compared to the DBC group. Liver weight and liver glycogen were significantly increased and serum total cholesterol and LDL-cholesterol were significantly decreased in the DWT group compared to the DBC group. The food intake, body weight gain, serum insulin and fructosamine concentrations were not influenced by the consumption of WT. Data of this study suggest that the 0.5% aqueous extract of WT is effective to reduce most of the diabetes associated abnormalities in a steptozotocin-induced diabetes model of rats.
Collapse
Affiliation(s)
- Md Shahidul Islam
- Department of Biochemistry, School of Biochemistry, Genetics and Microbiology, University of KwaZulu-Natal (Westville Campus), Durban 4000, South Africa.
| |
Collapse
|